
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.be

Knowledge Transfer in Database Reverse Engineering - A Supporting Case Study

Hainaut, Jean-Luc; Englebert, Vincent; Hick, Jean-Marc; Henrard, Jean; Roland, Didier

Published in:
Proc. of the 4th IEEE Working Conference on Reverse Engineering

Publication date:
1997

Link to publication
Citation for pulished version (HARVARD):
Hainaut, J-L, Englebert, V, Hick, J-M, Henrard, J & Roland, D 1997, Knowledge Transfer in Database Reverse
Engineering - A Supporting Case Study. in Proc. of the 4th IEEE Working Conference on Reverse Engineering.
IEEE Computer Society Press, pp. 194-203.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 21. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the University of Namur

https://core.ac.uk/display/198248908?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.unamur.be/en/publications/0bb6cec8-4947-465e-9094-e05cf1231259

WCRE-97 (18/04/02) 1

Database Reverse Engineering - A Case Study

J-L. Hainaut, D. Roland, V. Englebert, J-M. Hick, J. Henrard
Institut d'Informatique, University of Namur, rue Grandgagnage, 21 - B-5000 Namur

jlh@info.fundp.ac.be

Abstract. This paper presents a generic methodology for
database reverse engineering comprising two main steps,
namely Data structure extraction and Data structure
conceptualization. The first process tries to elicit the
physical data structures of the database, while the second
one tries to recover the semantics of these structures. This
methodology is illustrated by a small, but non-trivial, example
through which a set of COBOL files is transformed into a
relational database.

Keywords : database, reverse engineering, methodology,
CASE tool

1. Introduction
Database reverse engineering is a software engineering
process through which the analyst tries to understand and
redocument the files and/or the database of an application.
More precisely, this process is to yield the complete logical
schema and the conceptual schema of this database. The
problem is particularly complex when old, ill-designed and
poorly (if any) documented applications are processed.
Grossly speaking, the most frequent problems can be
classified as follows.
- Implicit structures. Such constructs have not been

explicitly declared in the DDL specification of the database.
We distinguish two kinds of implicit structures: hidden
structures which have been intentionally undeclared (e.g.
compound fields in COBOL files), and untranslatable
structures which cannot be expressed due to the expressive
weakness of the DBMD (e.g. foreign keys in Oracle 5
databases). In favorable situations, these lost constructs
are managed in procedural components of the application:
programs, dialog procedures, triggers, etc, and can be
recovered through procedural analysis.

- Optimized structures. For technical reasons, such as time
and/or space performance optimization, many database
structures include non semantic constructs. In addition,
redundant and unnormalized constructs are added to try to
get better response time.

- Awkward design. Not all databases were built by
experienced designers. Novice and untrained developers,
generally unaware of database theory and database
methodology, can produce poor or even wrong structures.

- Obsolete constructs. Some parts of a database can be
abandonned, and ignored by the current programs.

- Cross-model influence. The cultural background of some
designers can lead to very peculiar results. For instance,
some relational databases actually are straighforward
translations of IMS databases, of COBOL files or of
spreadsheets.

Several authors have addressed the problem of non-standard
data structures [1,2,14,28,29]. The Database Research Group
of the University of Namur has proposed a general
methodology for tackling this problem [13], and has
developed a generic CASE tool [??] to support reverse
engineering processes. The problem of recovering implicit
structures have been particularly developed in [??]

In this paper, we first recall the main aspects of the
methodology, then we develop a small case study which
illustrates, despite its very small size, the problems
encountered in actual situations, and which shows the
reasonings and CASE features that can help solve these
problems. This work is a part of the DB-MAIN1 project,
dedicated to Database Application Evolution and
Maintenance [15].

2. A Generic Methodology for Database
Reverse Engineering

The problems that arise when one tries to recover the
documentation of the data naturally fall in two categories
that are addressed by the two major processes in DBRE,
namely data structure extraction and data structure
conceptualization. By naturally, we mean that these
problems relate to the recovery of two different schemas, and
that they require quite different concepts, reasonings and
tools. In addition, each of these processes grossly appears
as the reverse of a standard database design process (resp.
physical and logical design). We will describe briefly some
of these processes and the problems they try to solve.
This methodology is generic in two ways. First, its
architecture and its processes are largely DMS2-
independent. Secondly, it specifies what problems have to
be solved, and in which way, rather than the order in which
the actions must be carried out. Its general architecture is
outlined in figure 1.

2.1 The Data Structure Extraction Process
This phase consists in recovering the complete DMS
schema, including all the implicit and explicit structures and
constraints. True database systems generally supply, in
some readable and processable form, a description of this
schema (data dictionary contents, DDL texts, etc). Though
essential information may be missing from this schema, it is a
rich starting point that can be refined through further
analysis of the other components of the application (views,
subschemas, screen and report layouts, procedures,
fragments of documentation, database content, program
execution, etc).
The problem is much more complex for standard files, for
which no computerized description of their structure exists in
most cases. The analysis of each source program provides a
partial view of the file and record structures only. For most
real-world applications, this analysis must go well beyond

1 This research is a part of the DB-MAIN project, which is partly
supported by a consortium comprising ACEC-OSI (Be), ARIANE-II
(Be), Banque UCL (Lux), BBL (Be), Cap Gemini (Lux), Centre de
recherche public H. Tudor (Lux), Cliniques Univ. St-Luc (Be), CGER
(Be), Cockerill-Sambre (Be), CONCIS (Fr), D'Ieteren (Be), DIGITAL
(Be), EDF (Fr), EPFL (CH), GEDIS (Be), Groupe S (Be), IBM (Be),
OBLOG Software (Port), ORIGIN (Be), TEC Charleroi, Ville de
Namur (Be), Winterthur (Be), 3 Suisses (Be). The DB-PROCESS
subproject is supported by the Communauté Française de Belgique.
2 A Data Management System (DMS) is either a File Management
System (FMS) or a Database Management System (DBMS).

WCRE-97 (18/04/02) 2

the mere detection of the record structures declared in the
programs, as will be shown in the case study.

Normalized
conceptual schema

CONCEPTUAL
NORMALIZATION

SCHEMA
UNTRANSLATION

Raw conceptual
schema

SCHEMA
DE-OPTIMIZATION

Conceptual-logical
-physical schema

DMS-compliant
optimized schema

DMS-DDL
schema

DMS-compliant
optimized schema

Programs

PROGRAM
ANALYSIS

DATA
ANALYSIS

Physical
schema

DMS-DDL text
ANALYSIS

Data

SCHEMA
INTEGRATION

SCHEMA
UNTRANSLATION

SCHEMA
PREPARATION

Figure 1: Main components of the generic DBRE methodology.
Quite naturally, this reverse methodology is to be read from right to

left, and bottom-up.

The main processes of DATA STRUCTURE EXTRACTION
are the following :
• DMS-DDL text ANALYSIS. This rather straighforward

process consists in analyzing the data structures
declaration statements (in the specific DDL) included in the
schema scripts and application programs. It produces a
first-cut logical schema.

• SCHEMA REFINEMENT. This process is much more
complex. Non declarative sources of information are
analyzed in order to elicit implicit constructs and
constraints.

♦ PROGRAM ANALYSIS. It consists in analyzing the
other parts of the application programs, a.o. the
procedural sections, in order to detect evidence of
additional data structures and integrity constraints.
The first-cut schema can therefore be refined through
the detection of hidden, non declarative structures.

♦ DATA ANALYSIS. This refinement process
examines the contents of the files and databases in
order (1) to detect data structures and properties (e.g.
to find the unique fields or the functional
dependencies in a file), and (2) to test hypotheses
(e.g. "could this field be a foreign key to this file ?").

♦ Other sources ANALYSIS.
• SCHEMA INTEGRATION. When more than one

information source has been processed, the analyst is
provided with several, generally different, extracted (and
possibly refined) schemas. Let us mention some common
situations : base tables and views (RDBMS), DBD and PSB
(IMS), schema and subschemas (CODASYL), file structures

from all the application programs (standard files), etc. The
final logical schema must include the specifications of all
these partial views, through a schema integration process.

The end product of this phase is the (hopefully) complete
logical schema. This schema is expressed according to the
specific model of the DMS, and still includes possible
optimized constructs, hence its name : the DMS-compliant
optimized schema , or DMS schema for short.

2.2 The Data Structure Conceptualization
Process

This second phase addresses the conceptual interpretation
of the DMS schema. It consists for instance in detecting and
transforming or discarding non-conceptual structures,
redundancies, technical optimization and DMS-dependent
constructs. It consists of two sub-processes, namely Basic
conceptualization and Conceptual normalization.
• BASIC CONCEPTUALIZATION. The main objective of

this process is to extract all the relevant semantic concepts
underlying the logical schema. Two different problems,
requiring different reasonings and methods, have to be
solved: schema untranslation and schema de-
optimization. However, before tackling these problems, we
often have to prepare the schema by cleaning it.

♦ SCHEMA PREPARATION. The schema still includes
some constructs, such as files and access keys, which
may have been useful in the Data Structure Extraction
phase, but which can now be discarded. In addition,
translating names to make them more meaningful (e.g.
substitute the file name for the record name), and
restructuring some parts of the schema can prove
useful before trying to interpret them.

♦ SCHEMA UNTRANSLATION . The logical schema is
the technical translation of conceptual constructs.
Through this process, the analyst identifies the traces
of such translations, and replaces them by their
original conceptual construct. Though each data
model can be assigned its own set of translating (and
therefore of untranslating) rules, two facts are worth
mentioning. First, the data models can share an
important subset of translating rules (e.g. COBOL files
and SQL structures). Secondly, translation rules
considered as specific to a data model are often used
in other data models (e.g. foreign keys in IMS and
CODASYL databases). Hence the importance of
generic approaches and tools.

♦ SCHEMA DE-OPTIMIZATION. The logical schema is
searched for traces of constructs designed for
optimization purposes. Three main families of
optimization techniques should be considered :
denormalization, structural redundancy and
restructuring.

• CONCEPTUAL NORMALIZATION. This process
restructures the basic conceptual schema in order to give it
the desired qualities one expects from any final conceptual
schema, e.g. expressiveness, simplicity, minimality,
readability, genericity, extensibility. For instance, some

WCRE-97 (18/04/02) 3

entity types are replaced by relationship types or by
attributes, is-a relations are made explicit, names are
standardized, etc.

3. A small case study
This section is dedicated to a typical application of database
reverse engineering, namely database conversion. The
source application is a small COBOL program which uses
three files. The objective of the exercise is to produce a
relational schema which translates the semantics of these
source files. This can be done in two steps: first we
elaborate a possible conceptual schema of the three files,
then we translate this schema into relational structures. Due
to space limit, we will simplify the relational translation, that
is now considered as standard. For the same reason, we will
develop the first main process (Data Structure Extraction) of
the reverse engineering step in more detail than the second
one (Data Structure Conceptualization) which has been more
extensively treated in the literature.

4. The DATA STRUCTURE EXTRACTION
process

The only source of information that will be considered is the
COBOL program listed in appendix. The case has been
solved with the help of the DB-MAIN CASE tool [20].
4.1 DMS-DDL text ANALYSIS
This operation is carried out by a COBOL parser which
extracts the file and record descriptions, and expresses them
as a first cut schema in the repository. The resulting schema
is given in figure 2.
Each record type is represented by a physical entity type,
and each field by a physical attribute. Record keys are
represented by identifiers when they specify uniqueness
constraints and by access keys when they specify indexes.
Files are represented as physical entity collections (cylinder
icons).

ORD-CODE
ORD-CUSTOMER
ORD-DETAIL
id: ORD-CODE

acc
acc: ORD-CUSTOMER

ORD
CUS-CODE
CUS-DESCR
CUS-HIST
id: CUS-CODE

acc

CUS

CUSTOMERORDER STOCK

STK-CODE
STK-NAME
STK-LEVEL
id: STK-CODE

acc

STK

Figure 2 : The first cut file and record schema as produced by the
COBOL parser of DB-MAIN.

The textual view shows the type and length of the fields :

Schema CUST-ORD/1stCut-Logical

 collection CUSTOMER ORD
CUS in ORDER

 collection ORDER ORD-CODE numeric(5)
ORD ORD-CUSTOMER char(12)

 collection STOCK ORD-DETAIL char(200)
STK id:ORD-CODE

access key

 CUS access key:ORD-CUSTOMER
in CUSTOMER

CUS-CODE char(12) STK
CUS-DESCR char(80) in STOCK
CUS-HIST char(1000) STK-CODE num(5)
id:CUS-CODE STK-NAME char(100)
 access key STK-LEVEL num(5)

id:STK-CODE
 access key

4.2 PROGRAM ANALYSIS
This schema will be refined through an in-depth inspection
of the ways in which the program uses and manages the
data. Through this process, we will detect additional
structures and constraints which were not explicitly declared
in the file/record declaration sections, but which were
expressed in the procedural code and in local variables. We
will consider four important processes, namely Field
refinement, Foreign key elicitation, Attribute identifier
elicitation, and Field cardinality refinement.

4.2.1 Field refinement
First observation : some fields are unusually long (CUS-
DESCR, CUS-HIST, ORD-DETAIL, STK-NAME). Could they
be further refined ? Let us consider CUS-DESCR first. We
build the variable dependency graph, which summarizes the
dataflow concerning CUS-DESCR (statements [1] and [1']) :

CUS.CUS-DESCR DESCRIPTION
[1']
[1]

This graph clearly suggests that CUS-DESCR and
DESCRIPTION should have the same structure, i.e. :
01 DESCRIPTION.
02 NAME PIC X(20).
02 ADDRESS PIC X(40).
02 FUNCTION PIC X(10).
02 REC-DATE PIC X(10).

This structure is associated with the field CUS-DESCR in the
logical schema. We proceed in the same way for CUS-HIST,
ORD-DETAIL and STK-NAME. The analysis shows that
only the first two need be refined, as illustrated in figure 3.

ORD-CODE
ORD-CUSTOMER
ORD-DETAIL

DETAILS[20-20]
REF-DET-STK
ORD-QTY

id:ORD-CODE
acc

acc:ORD-CUSTOMER

ORD
CUS-CODE
CUS-DESCR

NAME
ADDRESS
FUNCTION
REC-DATE

CUS-HIST
PURCH[100-100]

REF-PURCH-STK
TOT

id:CUS-CODE
acc

CUS

CUSTOMERORDER STOCK

STK-CODE
STK-NAME
STK-LEVEL
id:STK-CODE

acc

STK

Figure 3 . Result of the field refinement process.

4.2.2 Foreign key elicitation

WCRE-97 (18/04/02) 4

There should exist reference links between these record
types. Let us examine the field ORD-CUSTOMER for
instance. We observe that :
- its name includes the name of another file (CUSTOMER);
- it has the same type and length as the record key of

CUSTOMER;
- it is supported by an access key (= index);
- its dependency graph shows that it receives its value from

the record key of CUSTOMER
CUS.CUS-CODE ORD.ORD-CUSTOMER[4]

- its usage pattern shows that, before moving it to the ORD
record to be stored, the program verifies that ORD-
CUSTOMER value identifies a stored CUS record :

NEW-ORD.
...
MOVE 1 TO END-FILE.
PERFORM READ-CUS-CODE UNTIL END-FILE = 0.
...
MOVE CUS-CODE TO ORD-CUSTOMER.
...
WRITE ORD INVALID KEY DISPLAY "ERROR".

READ-CUS-CODE.
ACCEPT CUS-CODE.
MOVE 0 TO END-FILE.
READ CUSTOMER INVALID KEY
DISPLAY "NO SUCH CUSTOMER"
MOVE 1 TO END-FILE

END-READ.

These are five positive evidences contributing to asserting
that ORD-CUSTOMER is a foreign key. Data analysis could
have added additional information. We decide to confirm the
hypothesis. In the same way, we conclude that :
- ORD-DETAIL.DETAILS.REF-DET-STK is a multivalued

foreign key to STOCK. Here the REF part of the name
suggests a referential function of the field.

- CUS-HIST.PURCH.REF-PURCH-STK is a multivalued
foreign key to STOCK

Now the schema looks like that in figure 4.

4.2.3 Elicitation of identifiers of multivalued fields
Compound multivalued fields in COBOL records often have
an implicit identifier that makes their values unique. The

ORD-CODE
ORD-CUSTOMER
ORD-DETAIL

DETAILS[20-20]
REF-DET-STK
ORD-QTY

id: ORD-CODE
acc

ref: ORD-DETAIL.DETAILS[*].REF-DET-STK
ref: ORD-CUSTOMER

acc
id(ORD-DETAIL.DETAILS):

REF-DET-STK

ORD

CUS-CODE
CUS-DESCR

NAME
ADDRESS
FUNCTION
REC-DATE

CUS-HIST
PURCH[100-100]

REF-PURCH-STK
TOT

id: CUS-CODE
acc

ref: CUS-HIST.PURCH[*].REF-PURCH-STK
id(CUS-HIST.PURCH):

REF-PURCH-STK

CUS

CUSTOMERORDER STOCK

STK-CODE
STK-NAME
STK-LEVEL
id: STK-CODE

acc

STK

Figure 5. Identifiers of the multivalued fields.

ORD-CODE
ORD-CUSTOMER
ORD-DETAIL

DETAILS[20-20]
REF-DET-STK
ORD-QTY

id: ORD-CODE
acc

ref: ORD-DETAIL.DETAILS[*].REF-DET-STK
ref: ORD-CUSTOMER

acc

ORD
CUS-CODE
CUS-DESCR

NAME
ADDRESS
FUNCTION
REC-DATE

CUS-HIST
PURCH[100-100]

REF-PURCH-STK
TOT

id: CUS-CODE
acc

ref: CUS-HIST.PURCH[*].REF-PURCH-STK

CUS

CUSTOMERORDER STOCK

STK-CODE
STK-NAME
STK-LEVEL
id: STK-CODE

acc

STK

Figure 4. The foreign keys are made explicit.

WCRE-97 (18/04/02) 5

schema includes two candidate multivalued fields : ORD-
DETAIL.DETAILS and CUS-HIST.PURCH.
By examining the way in which these fields are
searched and managed, we isolate the following pattern
(or program slice [38]):

SET IND-DET TO 1.
UPDATE-ORD-DETAIL.

MOVE 1 TO NEXT-DET.
...
PERFORM UNTIL

REF-DET-STK(NEXT-DET) = PROD-CODE
OR IND-DET = NEXT-DET

ADD 1 TO NEXT-DET
END-PERFORM.
IF IND-DET = NEXT-DET
MOVE PROD-CODE TO REF-DET-STK(IND-DET)
PERFORM UPDATE-CUS-HIST
SET IND-DET UP BY 1

ELSE
DISPLAY "ERROR : ALREADY ORDERED".

It derives from this code section that the LIST-
DETAIL.DETAILS array will never include twice the same
REF-DET-STK value. Therefore, this field is the local
identifier of this array, and of ORD-DETAIL.DETAILS as
well. Through the same reasoning, we are suggested that
REF-PURCH-STK is the identifier of LIST-
PURCHASE.PURCH array. These findings are shown in
figure 5.

4.2.4 Refinement of the cardinality of multivalued
attributes

The multivalued fields have been given cardinality
constraints derived from the occurs clause. The latter gives
the maximum cardinality, but says nothing about the
minimum cardinality.

Storing a new CUS record generally implies initializing each
field, including CUS-HIST.PURCH. This is done through the
INIT-HIST paragraph [13], in which the REF-DET-STK is set
to 0. Furthermore, the scanning of this list stops when 0 is
encountered [7]. Conclusion : there are from 0 to 100
elements in this list. A similar analysis leads to refine the
cardinality of ORD-DETAIL.DETAILS). Hence the final
schema of figure 6.

5. The DATA STRUCTURE
CONCEPTUALIZATION process

5.1 Schema preparation
The schema obtained so far describes the complete
COBOL data structures. Before trying to recover the
conceptual schema, we will clean this schema a little bit
(figure 7).

5.1.1 Name processing
- The files have more meaningful names than their record

types : we give the latter the name of their files.
- The fields of each record type are prefixed with a common

short-name identifying their the record type, and which
bears no semantics. We trim them out.

- Compound fields CUS.CUS-HIST and ORD.ORD-DETAIL
have one component only, and can be disaggregates
without structural or semantic loss.

5.1.2 Physical cleaning
The physical constructs, namely files and access keys,
are no longer useful, and are removed.

5.2 Schema de-optimization
The attributes CUSTOMER.PURCH and
ORDER.DETAILS have a complex structure : they
are compound, they are multivalued, they have a local
identifier and they include a foreign key. They
obviously suggest a typical COBOL trick to represent
dependent entity types. This very efficient technique

ORD-CODE
ORD-CUSTOMER
ORD-DETAIL

DETAILS[0-20]
REF-DET-STK
ORD-QTY

id: ORD-CODE
acc

ref: ORD-DETAIL.DETAILS[*].REF-DET-STK
ref: ORD-CUSTOMER

acc
id(ORD-DETAIL.DETAILS):

REF-DET-STK

ORD
CUS-CODE
CUS-DESCR

NAME
ADDRESS
FUNCTION
REC-DATE

CUS-HIST
PURCH[0-100]

REF-PURCH-STK
TOT

id: CUS-CODE
acc

ref: CUS-HIST.PURCH[*].REF-PURCH-STK
id(CUS-HIST.PURCH):

REF-PURCH-STK

CUS

CUSTOMERORDER STOCK

STK-CODE
STK-NAME
STK-LEVEL
id: STK-CODE

acc

STK

Figure 6. The exact cardinality (repeating factors) of attributes ORD-DETAIL.DETAILS and CUS.HIST.

WCRE-97 (18/04/02) 6

consists in representing such entity types by embedded
multivalued fields. We transform the latter into entity
types. The schema appears as in figure 8.

CODE
CUSTOMER
DETAILS[0-20]

REF-DET-STK
ORD-QTY

id: CODE
acc

ref: DETAILS[*].REF-DET-STK
ref: CUSTOMER

acc
id(DETAILS):

REF-DET-STK

ORDER

CODE
DESCR

NAME
ADDRESS
FUNCTION
REC-DATE

PURCH[0-100]
REF-PURCH-STK
TOT

id: CODE
ref: PURCH[*].REF-PURCH-STK
id(PURCH):

REF-PURCH-STK

CUSTOMER
CODE
NAME
LEVEL
id: CODE

STOCK

Figure 7 : Reducing the names and removing physical constructs
from the logical schema.

0-20

ORD_DET

1-1

0-100

CUS_PURCODE
NAME
LEVEL
id: CODE

STOCK

REF-PURCH-STK
TOT
id: CUS_PUR.CUSTOMER

REF-PURCH-STK
ref: REF-PURCH-STK

PURCH

CODE
CUSTOMER
id: CODE

acc
ref: CUSTOMER

acc

ORDER

REF-DET-STK
ORD-QTY
id: ORD_DET.ORDER

REF-DET-STK
ref: REF-DET-STK

DETAILS

CODE
DESCR

NAME
ADDRESS
FUNCTION
REC-DATE

id: CODE

CUSTOMER

1-1

Figure 8 : Making dependent entity types explicit.

5.3 Schema untranslation
The foreign keys are the most obvious traces of the
ER/COBOL translation. We express them as one-to-
many relationship types (Fig. 9).

5.4 Conceptual normalization
We will only mention three elementary problems to
illustrate the process.

5.4.1 Maximal cardinalities

Are the maximum cardinalities 100 and 20 of real
semantic value, or do they simply describe obsolete
technical limits from the legacy system? Considering
their origin these constraints are dropped, and replaced
with "N".

5.4.2 Rel-type entity types
PURCH and DETAILS could be perceived as mere
relationships, and are transformed accordingly.

5.4.3 Names
Now, the semantics of the data structures have been
elicited, and better names can be given to some of
them. Since customers pass orders, we rename
ORD_CUS as passes. In addition, PURCH is given
the full-name Purchase (figure 10).

Figure 10. A normalized variant of the conceptual schema.

6. Relational database design
To complete the exercice, let us develop a new relational
database schema from this conceptual specification. The
process is fairly standard, and includes the Logical design
and the Physical design phases. Due to the size of the
problem, they are treated in a rather symbolic way.

6.1 Logical design
Transforming this schema into relational structures is fairly
easy : we disaggregate the compound attribute DESC, we
express the complex relationship types passes and
Purchase into entity types, then we translate the one-to-

many relationship types into foreign
keys. The resulting schema comprises
flat entity types, identifiers and foreign
keys. It can be considered as a logical
relational schema (Fig. 11).

0-N

PUR_STO
1-1

0-20

ORD_DET

1-1 0-NORD_CUS

1-1

0-N

DET_STO
1-1

0-100

CUS_PUR

CODE
NAME
LEVEL
id: CODE

STOCK

TOT
id: PUR_STO.STOCK

CUS_PUR.CUSTOMER

PURCH

CODE
id: CODE

acc

ORDER

ORD-QTY
id: DET_STO.STOCK

ORD_DET.ORDER

DETAILS

CODE
DESCR

NAME
ADDRESS
FUNCTION
REC-DATE

id: CODE

CUSTOMER

1-1

Figure 9. The first cut conceptual schema.

0-N

TOT
Purchase

1-1 0-Npasses

0-N

0-N

ORD-QTY
Details

CODE
NAME
LEVEL
id: CODE

STOCK

CODE
id: CODE

acc

ORDER
CODE
DESCR

id:

0-N

WCRE-97 (18/04/02) 7

CUS_CODE
STK_CODE
TOT
id: CUS_CODE

STK_CODE
ref: STK_CODE
ref: CUS_CODE

Purchase

CODE
CUS_CODE
id: CODE

acc
ref: CUS_CODE

ORDER

ORD_CODE
STK_CODE
ORD-QTY
id: STK_CODE

ORD_CODE
ref: STK_CODE
ref: ORD_CODE

Details

CODE
NAME
ADDRESS
FUNCTION
REC-DATE
id: CODE

CUSTOMER

CODE
NAME
LEVEL
id: CODE

STOCK

Figure 11. The relational logical schema.

6.2 Physical design
We reduce this phase to processing the names according to
SQL standard (e.g. all the names in uppercase, no "-", no
reserved words, etc) and defining the physical spaces and
the access keys (indexes) which support identifiers and
foreign keys (Fig. 12). As a symbolic touch of optimization,
we remove all the indexes which are a prefix of another index
(i.e. no index on PURCHASE.CUS_CODE and on
DETAILS.ORD_CODE).

CUS_CODE
STK_CODE
TOT
id:CUS_CODE

STK_CODE
acc

ref:STK_CODE
acc

ref:CUS_CODE

PURCHASE

ORD_CODE
CUS_CODE
id:ORD_CODE

acc
ref:CUS_CODE

acc

ORDER

ORD_CODE
STK_CODE
ORD_QTY
id:STK_CODE

ORD_CODE
acc

ref:STK_CODE
acc

ref:ORD_CODE

DETAILS

CUS_CODE
CUS_NAME
ADDRESS
FUNCTION
REC-DATE
id:CUS_CODE

acc

CUSTOMER

PRO_SPACE

CUS_SPACE

STK_CODE
STK_NAME
LEVEL
id:STK_CODE

acc

STOCK

Figure 12 :The relational physical schema

6.3 Code generation
The production of the SQL code is straightforward:
create database CUS-ORD;

create dbspace PRO_SPACE;
create dbspace CUS_SPACE;

create table CUSTOMER (
 CUS_CODE char(12) not null ,
 CUS_NAME char(20) not null ,
 ADDRESS char(40) not null ,
 FUNCTION char(10) not null ,
 REC-DATE char(10) not null ,
 primary key (CUS_CODE))
 in CUS_SPACE;
create table DETAILS (
 ORD_CODE numeric(10) not null,
 STK_CODE numeric(5) not null,
 ORD-QTY numeric(5) not null,
 primary key (STK_CODE,ORD_CODE))
 in CUS_SPACE;
create table ORDER (
 ORD_CODE numeric(10) not null,
 CUS_CODE char(12) not null ,
 primary key (ORD_CODE))
 in CUS_SPACE;
create table PURCHASE (
 CUS_CODE char(12) not null ,
 STK_CODE numeric(5) not null,
 TOT numeric(5) not null ,
 primary key(STK_CODE,CUS_CODE))
 in CUS_SPACE;
create table STOCK (
 STK_CODE numeric(5) not null ,
 STK_NAME char(100) not null ,
 LEVEL numeric(5) not null ,
 primary key (STK_CODE))
 in PRO_SPACE;
alter table DETAILS add
 constraint FKDET_STO
 foreign key (STK_CODE)
 references STOCK;
alter table DETAILS add
 constraint FKDET_ORD
 foreign key (ORD_CODE)
 references ORDER;
alter table ORDER add
 constraint FKO_C
 foreign key (CUS_CODE)
 references CUSTOMER;
alter table PURCH add
 constraint FKPUR_STO
 foreign key (STK_CODE)
 references STOCK;
alter table PURCH add
 constraint FKPUR_CUS
 foreign key (CUS_CODE)
 references CUSTOMER;
create unique index CUS-CODE
 on CUSTOMER (CUS_CODE);
create unique index IDDETAILS
 on DETAILS (STK_CODE,ORD_CODE);
create index FKDET_ORD
 on DETAILS (ORD_CODE);

WCRE-97 (18/04/02) 8

create unique index ORD-CODE
 on ORDER (ORD_CODE);
create index FKO_C
 on ORDER (CUS_CODE);
create unique index IDPURCH
 on PURCHASE (STK_CODE,CUS_CODE);
create index FKPUR_CUS
 on PURCHASE (CUS_CODE);
create unique index STK-CODE
 on STOCK (STK_CODE);
The project window of DB-MAIN shows the engineering
products that have been used and produced in this
conversion (figure 13).

CUST-ORD/1stCut-Logical

CUST-ORD/COBOL-Logical

CUST-ORD/1stCut-Concept

CUST-ORD/Conceptual

CUST-ORD/SQL-Logical

CUST-ORD/SQL-Physical

order.ddl/SQL

order.cob/Source

Figure 13 : The products (program texts and schemas) of the
conversion project, and their dependency relations.

7. Conclusions
This case study was a toy application only. A typical,
medium size, real-world project could included, for instance:
- 250 program units, with a size ranging from 100 to 20,000

lines;
- 1,000 files, 50 of which being relevant;
- these 50 files include 100 record types and 3,000 fields;
- more than one DMS (for instance COBOL files + a

CODASYL database);
- more sophisticated constructs such as : alternate field

structures, overlapping foreign keys, transitive and
embedded foreign keys, conditional identifier and foreign
keys, field redundencies, explicit NEXT pointers [2,29];

- conflicting structures and views
- usage of data dictionaries, CASE tools, generators.
It is important to notice that we have translated the data
structures only. We have to mention two additional
problems: converting the COBOL data into relational data,
and converting the COBOL programs into COBOL/SQL
programs. But this is another, more complex, story.
At the present time, practically no commercial CASE tool can
cope with even such a simple application. Obviously, much

work must be devoted to the fundamentals of Database
reverse engineering, and to CASE tools that can be used not
only by their developers, but also by analysts and
programmers. The DB-MAIN project aims, among others, at
developing methodologies and CASE tools to help solve
these problems. Its reverse engineering functions have been
used in several industrial projects in redocumentation,
conversion and migration projects. An Education version is
available for non-profit organizations.

8. References
[1] Andersson, M. 1994. Extracting an Entity Relationship

Schema from a Relational Database through Reverse
Engineering, in Proc. of the 13th Int. Conf. on ER Approach,
Manchester, Springer-Verlag

[2] Blaha, M.R., Premerlani, W., J. 1995. Observed Idiosyncracies
of Relational Database designs, in Proc. of the 2nd IEEE
Working Conf. on Reverse Engineering, Toronto, July 1995,
IEEE Computer Society Press

[3] Bolois, G., Robillard, P. 1994. Transformations in
Reengineering Techniques, in Proc. of the 4th Reengineering
Forum "Reengineering in Practice", Victoria, Canada

[4] Casanova, M., Amarel de Sa, J. 1983. Designing Entity
Relationship Schemas for Conventional Information Systems,
in Proc. of ERA, pp. 265-278

[5] Casanova, M., A., Amaral De Sa. 1984. Mapping
uninterpreted Schemes into Entity-Relationship diagrams :
two applications to conceptual schema design, in IBM J. Res.
& Develop., Vol. 28, No 1

[6] Chiang, R., H., Barron, T., M., Storey, V., C. 1994. Reverse
Engineering of Relational Databases : Extraction of an EER
model from a relational database, Journ. of Data and
Knowledge Engineering, Vol. 12, No. 2 (March 94), pp107-
142

[7] Davis, K., H., Arora, A., K. 1985. A Methodology for
Translating a Conventional File System into an Entity-
Relationship Model, in Proc. of ERA, IEEE/North-Holland

[8] Davis, K., H., Arora, A., K. 1988. Converting a Relational
Database model to an Entity Relationship Model, in Proc. of
ERA : a Bridge to the User, North-Holland

[9] Edwards, H., M., Munro, M. 1995. Deriving a Logical Model
for a System Using Recast Method, in Proc. of the 2nd IEEE
WC on Reverse Engineering, Toronto, IEEE Computer
Society Press

[10] Fong, J., Ho, M. 1994. Knowledge-based Approach for
Abstracting Hierarchical and Network Schema Semantics, in
Proc. of the 12th Int. Conf. on ER Approach, Arlington-Dallas,
Springer-Verlag

[11] Fonkam, M., M., Gray, W., A. 1992. An approach to Eliciting
the Semantics of Relational Databases, in Proc. of 4th Int.
Conf. on Advance Information Systems Engineering -
CAiSE'92, pp. 463-480, May, LNCS, Springer-Verlag

WCRE-97 (18/04/02) 9

[12] Hainaut, J-L., Cadelli, M., Decuyper, B., Marchand, O. 1992.
Database CASE Tool Architecture : Principles for Flexible
Design Strategies, in Proc. of the 4th Int. Conf. on Advanced
Information System Engineering (CAiSE-92), Manchester,
May 1992, Springer-Verlag, LNCS

[13] Hainaut, J-L., Chandelon M., Tonneau C., Joris M. 1993a.
Contribution to a Theory of Database Reverse Engineering, in
Proc. of the IEEE Working Conf. on Reverse Engineering,
Baltimore, May 1993, IEEE Computer Society Press

[14] Hainaut, J-L, Chandelon M., Tonneau C., Joris M. 1993b.
Transformational techniques for database reverse engineering,
in Proc. of the 12th Int. Conf. on ER Approach, Arlington-
Dallas, E/R Institute and Springer-Verlag, LNCS

[15] Hainaut, J-L, Englebert, V., Henrard, J., Hick J-M., Roland, D.
1994. Evolution of database Applications : the DB-MAIN
Approach, in Proc. of the 13th Int. Conf. on ER Approach,
Manchester, Springer-Verlag

[16] Hainaut, J-L. 1995. Database Reverse Engineering -
Problems, Methods and Tools ,Tutorial notes, CAiSE•95,
Jyväskylä, Finland, May. 1995 (available at
jlh@info.fundp.ac.be)

[17] Hainaut, J-L. 1995b. Transformation-based Database
Engineering,Tutorial notes, VLDB-95, Zürich, Switzerland, ,
Sept. 1995 (available at jlh@info.fundp.ac.be)

[18] Hainaut, J-L. 1996. Specification Preservation in Schema
transformations - Application to Semantics and Statistics,
Data & Knowledge Engineering, Elsevier (to appear)

[19] Hainaut, J-L, Roland, D., Hick J-M., Henrard, J., Englebert, V.
1996b. Database design recovery, in Proc. of CAiSE•96,
Springer-Verlag, 1996

[20] Hainaut, J-L, Roland, D., Hick J-M., Henrard, J., Englebert, V.
1996c. Database Reverse Engineering : from Requirements to
CARE tools, Journal of Automated Software Engineering, Vol.
3, No. 1 (1996).

[21] Hall, P., A., V. (Ed.) 1992. Software Reuse and Reverse
Engineering in Practice, Chapman&Hall

[22] IEEE, 1990. Special issue on Reverse Engineering, IEEE
Software, January, 1990

[23] Johannesson, P., Kalman, K. 1990. A Method for Translating
Relational Schemas into Conceptual Schemas, in Proc. of the
8th ERA, Toronto, North-Holland,

[24] Joris, M., Van Hoe, R., Hainaut, J-L., Chandelon M., Tonneau
C., Bodart F. et al. 1992. PHENIX : methods and tools for
database reverse engineering, in Proc. 5th Int. Conf. on
Software Engineering and Applications, Toulouse, December
1992, EC2 Publish.

[25] Markowitz, K., M., Makowsky, J., A. 1990. Identifying
Extended Entity-Relationship Object Structures in Relational
Schemas, IEEE Trans. on Software Engineering, Vol. 16, No.
8

[26] Navathe, S., B., Awong, A. 1988. Abstracting Relational and
Hierarchical Data with a Semantic Data Model, in Proc. of
ERA : a Bridge to the User, North-Holland

[27] Nilsson,E., G. 1985. The Translation of COBOL Data
Structure to an Entity-Rel-type Conceptual Schema, in Proc.
of ERA, IEEE/North-Holland,

[28] Petit, J-M., Kouloumdjian, J., Bouliaut, J-F., Toumani, F.
1994. Using Queries to Improve Database Reverse
Engineering, in Proc. of the 13th Int. Conf. on ER Approach,
Manchester, Springer-Verlag

[29] Premerlani, W., J., Blaha, M.R. 1993. An Approach for
Reverse Engineering of Relational Databases, in Proc. of the
IEEE Working Conf. on Reverse Engineering, IEEE Computer
Society Press

[30] Rock-Evans, R. 1990. Reverse Engineering : Markets,
Methods and Tools , OVUM report

[31] Rosenthal, A., Reiner, D. 1994. Tools and Transformations -
Rigourous and Otherwise - for Practical Database Design,
ACM TODS, Vol. 19, No. 2

[32] Sabanis, N., Stevenson, N. 1992. Tools and Techniques for
Data Remodelling Cobol Applications, in Proc. 5th Int. Conf.
on Software Engineering and Applications, Toulouse, 7-11
December, pp. 517-529, EC2 Publish.

[33] Selfridge, P., G., Waters, R., C., Chikofsky, E., J. 1993.
Challenges to the Field of Reverse Engineering, in Proc. of the
1st WC on Reverse Engineering, pp.144-150, IEEE Computer
Society Press

[34] Shoval, P., Shreiber, N. 1993. Database Reverse Engineering :
from Relational to the Binary Relationship Model, Data and
Knowledge Engineering, Vol. 10, No. 10

[35] Signore, O, Loffredo, M., Gregori, M., Cima, M. 1994.
Reconstruction of ER Schema from Database Applications:
a Cognitive Approach, in Proc. of the 13th Int. Conf. on ER
Approach, Manchester, Springer-Verlag

[36] Springsteel, F., N., Kou, C. 1990. Reverse Data Engineering of
E-R designed Relational schemas, in Proc. of Databases,
Parallel Architectures and their Applications

[37] Vermeer, M., Apers, P. 1995. Reverse Engineering of
Relational Databases, in Proc. of the 14th Int. Conf. on ER/OO
Modelling (ERA)

[38] Weiser, M. 1984. Program Slicing, IEEE TSE, Vol. 10, pp 352-
357

[39] Wills, L., Newcomb, P., Chikofsky, E., (Eds) 1995. Proc. of
the 2nd IEEE Working Conf. on Reverse Engineering,
Toronto, July 1995, IEEE Computer Society Press

[40] Winans, J., Davis, K., H. 1990. Software Reverse Engineering
from a Currently Existing IMS Database to an Entity-
Relationship Model, in Proc. of ERA : the Core of Conceptual
Modelling, pp. 345-360, October, North-Holland

WCRE-97 (18/04/02) 10

Appendix. The COBOL source text

IDENTIFICATION DIVISION.
PROGRAM-ID. C-ORD.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT CUSTOMER ASSIGN
 TO "CUSTOMER.DAT"
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS CUS-CODE.

SELECT ORDER ASSIGN TO "ORDER.DAT"
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS ORD-CODE
ALTERNATE RECORD KEY

 IS ORD-CUSTOMER
WITH DUPLICATES.

SELECT STOCK ASSIGN TO "STOCK.DAT"
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS STK-CODE.

DATA DIVISION.
FILE SECTION.
FD CUSTOMER.
01 CUS.
02 CUS-CODE PIC X(12).
02 CUS-DESCR PIC X(80).
02 CUS-HIST PIC X(1000).

FD ORDER.
01 ORD.
02 ORD-CODE PIC 9(10).
02 ORD-CUSTOMER PIC X(12).
02 ORD-DETAIL PIC X(200).

FD STOCK.
01 STK.
02 STK-CODE PIC 9(5).
02 STK-NAME PIC X(100).
02 STK-LEVEL PIC 9(5).

WORKING-STORAGE SECTION.
01 DESCRIPTION.
02 NAME PIC X(20).
02 ADDRESS PIC X(40).
02 FUNCTION PIC X(10).
02 REC-DATE PIC X(10).

01 LIST-PURCHASE.
02 PURCH OCCURS 100 TIMES

INDEXED BY IND.
03 REF-PURCH-STK PIC 9(5).
03 TOT PIC 9(5).

01 LIST-DETAIL.
02 DETAILS OCCURS 20 TIMES

INDEXED BY IND-DET.
03 REF-DET-STK PIC 9(5).
03 ORD-QTY PIC 9(5).

01 CHOICE PIC X.
01 END-FILE PIC 9.
01 END-DETAIL PIC 9.
01 EXIST-PROD PIC 9.
01 PROD-CODE PIC 9(5).

01 TOT-COMP PIC 9(5) COMP.
01 QTY PIC 9(5) COMP.
01 NEXT-DET PIC 99.

PROCEDURE DIVISION.
MAIN.
PERFORM INIT.
PERFORM PROCESS UNTIL CHOICE = 0.
PERFORM CLOSING.
STOP RUN.

INIT.
OPEN I-O CUSTOMER.
OPEN I-O ORDER.
OPEN I-O STOCK.

PROCESS.
DISPLAY "1 NEW CUSTOMER".
DISPLAY "2 NEW STOCK".
DISPLAY "3 NEW ORDER".
DISPLAY "4 LIST OF CUSTOMERS".
DISPLAY "5 LIST OF STOCKS".
DISPLAY "6 LIST OF ORDERS".
DISPLAY "0 END".
ACCEPT CHOICE.
IF CHOICE = 1
PERFORM NEW-CUS.

IF CHOICE = 2
PERFORM NEW-STK.

IF CHOICE = 3
PERFORM NEW-ORD.

IF CHOICE = 4
PERFORM LIST-CUS.

IF CHOICE = 5
PERFORM LIST-STK.

IF CHOICE = 6
PERFORM LIST-ORD.

CLOSING.
CLOSE CUSTOMER.
CLOSE ORDER.
CLOSE STOCK.

NEW-CUS.
DISPLAY "NEW CUSTOMER :".
DISPLAY "CUSTOMER CODE ?"
WITH NO ADVANCING.

ACCEPT CUS-CODE.

DISPLAY "NAME DU CUSTOMER : "
WITH NO ADVANCING.

ACCEPT NAME.
DISPLAY "ADDRESS OF CUSTOMER : "

WCRE-97 (18/04/02) 11

WITH NO ADVANCING.
ACCEPT ADDRESS.
DISPLAY "FUNCTION OF CUSTOMER : "
WITH NO ADVANCING.

ACCEPT FUNCTION.
DISPLAY "DATE : " WITH NO ADVANCING.
ACCEPT REC-DATE.
MOVE DESCRIPTION TO CUS-DESCR. [1]
PERFORM INIT-HIST.
WRITE CLI INVALID KEY DISPLAY "ERROR".

LIST-CUS.
DISPLAY "LISTE DES CUSTOMERS".
CLOSE CUSTOMER.
OPEN I-O CUSTOMER.
MOVE 1 TO END-FILE.
PERFORM READ-CUS UNTIL END-FILE = 0.

READ-CUS.
READ CUSTOMER NEXT
AT END MOVE 0 TO END-FILE
NOT AT END
DISPLAY CUS-CODE
DISPLAY CUS-DESCR
DISPLAY CUS-HISTORY.

NEW-STK.
DISPLAY "NEW STOCK".
DISPLAY "PRODUCT NUMBER : "
WITH NO ADVANCING.

ACCEPT STK-CODE.

DISPLAY "NAME : " WITH NO ADVANCING.
ACCEPT STK-NAME.

DISPLAY "LEVEL : " WITH NO ADVANCING.
ACCEPT STK-LEVEL.

WRITE STK INVALID KEY DISPLAY "ERREUR ".

LIST-STK.
DISPLAY "LIST OF STOCKS ".

CLOSE STOCK.
OPEN I-O STOCK.

MOVE 1 TO END-FILE.
PERFORM READ-STK UNTIL END-FILE = 0.

READ-STK.
READ STOCK NEXT
AT END MOVE 0 TO END-FILE
NOT AT END
DISPLAY STK-CODE
DISPLAY STK-NAME
DISPLAY STK-LEVEL.

NEW-ORD.
DISPLAY "NEW ORDER".
DISPLAY "ORDER NUMBER : "
WITH NO ADVANCING.

ACCEPT ORD-CODE.

MOVE 1 TO END-FILE.
PERFORM READ-CUS-CODE
 UNTIL END-FILE = 0.
MOVE CUS-DESCR TO DESCRIPTION. [1']
DISPLAY NAME.
MOVE CUS-CODE TO ORD-CUSTOMER. [4]
MOVE CUS-HISTORY TO LIST-PURCHASE.

SET IND-DET TO 1.
MOVE 1 TO END-FILE.
PERFORM READ-DETAIL
UNTIL END-FILE = 0 OR IND-DET = 21.

MOVE LIST-DETAIL TO ORD-DETAIL. [2]

WRITE COM INVALID KEY DISPLAY "ERROR".

MOVE LIST-PURCHASE
TO CUS-HISTORY. [3]

REWRITE CLI
INVALID KEY DISPLAY "ERROR CUS".

READ-CUS-CODE.
DISPLAY "CUSTOMER NUMBER : "
WITH NO ADVANCING.

ACCEPT CUS-CODE.
MOVE 0 TO END-FILE.
READ CUSTOMER INVALID KEY
DISPLAY "NO SUCH CUSTOMER"
MOVE 1 TO END-FILE

END-READ.

READ-DETAIL.
DISPLAY "PRODUCT CODE (0 = END) : ".
ACCEPT PROD-CODE.
IF PROD-CODE = "0"
MOVE 0
TO REF-DET-STK(IND-DET) [12]

MOVE 0 TO END-FILE
ELSE
PERFORM READ-PROD-CODE.

READ-PROD-CODE.
MOVE 1 TO EXIST-PROD.
MOVE PROD-CODE TO STK-CODE. [5]
READ STOCK INVALID KEY
MOVE 0 TO EXIST-PROD.

IF EXIST-PROD = 0
DISPLAY "NO SUCH PRODUCT"

ELSE
 PERFORM UPDATE-ORD-DETAIL.

UPDATE-ORD-DETAIL.
MOVE 1 TO NEXT-DET.
DISPLAY "QUANTITY ORDERED : "
WITH NO ADVANCING

ACCEPT ORD-QTY(IND-DET).
PERFORM UNTIL
REF-DET-STK(NEXT-DET)
= PROD-CODE [9]

OR IND-DET = NEXT-DET
ADD 1 TO NEXT-DET

END-PERFORM.

WCRE-97 (18/04/02) 12

IF IND-DET = NEXT-DET [10]
MOVE PROD-CODE
TO REF-DET-STK(IND-DET) [6]
PERFORM UPDATE-CUS-HISTO
SET IND-DET UP BY 1

ELSE
DISPLAY "ERROR : ALREADY ORDERED".

UPDATE-CUS-HISTO.
SET IND TO 1.
PERFORM UNTIL
REF-PURCH-STK(IND) = PROD-CODE
OR REF-PURCH-STK(IND) = 0
OR IND = 101 [7]
SET IND UP BY 1

END-PERFORM.

IF IND = 101
DISPLAY "ERR : HISTORY OVERFLOW"
EXIT.

IF REF-PURCH-STK(IND)
= PROD-CODE [11]

ADD ORD-QTY(IND-DET) TO TOT(IND)
ELSE
MOVE PROD-CODE
TO REF-PURCH-STK(IND) [8]
MOVE ORD-QTY(IND-DET) TO TOT(IND).

LIST-ORD.
DISPLAY "LIST OF ORDERS ".
CLOSE ORDER.
OPEN I-O ORDER.
MOVE 1 TO END-FILE.
PERFORM READ-ORD UNTIL END-FILE = 0.

READ-ORD.
READ ORDER NEXT
AT END MOVE 0 TO END-FILE
NOT AT END
DISPLAY "ORD-CODE "
WITH NO ADVANCING

DISPLAY ORD-CODE
DISPLAY "ORD-CUSTOMER "
WITH NO ADVANCING

DISPLAY ORD-CUSTOMER
DISPLAY "ORD-DETAIL "
MOVE ORD-DETAIL TO LIST-DETAIL
SET IND-DET TO 1
MOVE 1 TO END-DETAIL
PERFORM DISPLAY-DETAIL.

INIT-HIST. [13]
SET IND TO 1.
PERFORM UNTIL IND = 100
MOVE 0 TO REF-PURCH-STK(IND)
MOVE 0 TO TOT(IND)
SET IND UP BY 1

END-PERFORM.
MOVE LIST-PURCHASE TO CUS-HISTORY.

DISPLAY-DETAIL.
IF IND-DET = 21

MOVE 0 TO END-DETAIL
EXIT.

IF REF-DET-STK(IND-DET) = 0
MOVE 0 TO END-DETAIL

ELSE
DISPLAY REF-DET-STK(IND-DET)
DISPLAY ORD-QTY(IND-DET)
SET IND-DET UP BY 1.

