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Convergence properties of minimization algorithms for convex

constraints using a structured trust region

A.R. Conn Nick Gould A. Sartenaer Ph.L. Toint

October 9, 1995

Abstract

In this paper, we present a class of trust region algorithms for minimization problems
within convex feasible regions, in which the structure of the problem is explicitly used in the
definition of the trust region. This development is intended to reflect the possibility that some
parts of the problem may be more accurately modelled than others, a common occurrence in
large-scale nonlinear applications. After describing the structured trust region mechanism,

we prove global convergence for all algorithms in our class.

1 Introduction

Trust region algorithms have enjoyed a long and successful history as tools for the solution of non-
linear, nonconvex, optimization problems. They have been studied and applied to unconstrained
problems (see [7], [17], [25], [28], [29], [30], [31], [34], [35], [38]) and to problems involving various
classes of constraints, including simple bounds ([6], [10], [11], [27], [32]), convex constraints ([2],
(3], [14], [41]), and nonconvex omes ([5], [8], [16], [36], [44]). This long lasting interest is prob-
ably justified by the attractive combination of a solid convergence theory, a noted algorithmic
robustness, the existence of numerically efficient implementations and an intuitively appealing
motivation. The main idea behind trust region algorithms is that, if a nonlinear function (ob-
jective and/or constraints) is expensive to compute or difficult to handle explicitly, it should be
replaced by a suitable model. This model is deemed to be trustworthy within a certain {rust
region around the current point. The trust region is defined by its shape and its radius. The
minimization involving the difficult nonlinear function(s) is then replaced by a sequence of min-
imizations of the simpler model(s) within appropriate trust regions. The trust region radii are
adjusted to reflect the agreement between the model and true functions as the process proceeds.

It is remarkable that, up to now, all algorithms that we are aware of use a single trust

region radius to measure the degree of trustworthiness of the models employed, even if several
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different functions are involved. This choice is somewhat surprising if one admits that some of
the modelled functions could be substantially “better behaved” than others in the same problem,
as this implies that the region in which their models can be trusted might also be substantially
larger. In this context, the unstructured trust region choice might be viewed as a conservative
strategy ensuring that all models may be trusted in what amounts to a “safe minimal” region.
While this strategy might be reasonable for small problems, where each involved function depends
on all the problem’s variables, it is clearly questionable for large-scale applications, where each
of the problem’s function typically depends only on a small number of variables. For instance,
one might consider the minimization of an unconstrained objective function consisting of the sum
of many quadratic and a few highly nonlinear terms, the latter involving a small subset of the
variables. If a classical unstructured trust region algorithm, with a quadratic model, is used, the
quadratic terms are perfectly modelled, but the steps that one can make at each iteration are
(unnecessarily) limited by the highly nonlinear behaviour of a small subset of the variables.

It is the purpose of this paper to present and analyze a class of algorithms that use the
problem’s structure in the definition of the trust region, allowing large steps in directions in
which the model has proved to be adequate while restricting the movement in directions where the
model seems unreliable. To be more precise, we will consider the problem of minimizing a partially
separable objective function subject to convex constraints; we will then use the decomposition of
the objective function into element functions as the basis for our structured trust region definition.
The choice of the partially separable structure, a concept introduced in [21], is motivated by the
very general geometric nature of this structure and by the increasing recognition of its practical
use (see [4], [9], [12], [13], [18], [19], [20], [22], [26], [39], [42], [43], amongst others). More
significantly, partial separability provides a decomposition of the considered nonlinear function
into a linear combination of smaller element functions, each of which may then be modelled
separately (see [40]). It is then quite natural to assign one trust region radius per element
function and to decide on its increase or decrease separately. Because different element functions
typically involve different sets of variables, each element trust region only restricts the components
of the step corresponding to its elemental variables.

An obvious approach is to use the norm-scaling matrices allowed in the theory for unstructured
trust region methods ([10], for instance) to account for differences in model adequacy among
elements when constructing the trust region. This would be satisfactory if the existing theory did
not require that the scaling matrices be of uniformly bounded condition number. Unfortunately,
it is easy to conceive of instances where this is a severe handicap. For example, it would prevent
the trust region radius of a well-modelled (perhaps linear or quadratic) element from increasing to
infinity while at the same time ensuring that that of a badly behaved nonlinear element function
remains of modest size. Moreover, this strategy may well cause numerical difficulties when
attempting to solve the trust region problem. In fact, as we will shortly see, additional algorithmic
safeguards are important when simultaneously handling trust regions of vastly different sizes.
Thus, we do not consider such an approach further in this paper.

Section 2 of the paper presents the problem in more detail and the new class of algorithms

using the principle of structured trust regions. Global convergence for all algorithms in the class



is proved in Section 3. We briefly discuss the identification of active constraints in Section 4. We
examine in Section 5 some extensions of the results of the previous sections. We finally give some

comments and perspectives in Section 6.

2 Structured trust region for partially separable problems

2.1 A structured model of the objective and the corresponding structured
trust region

2.1.1 The problem

The problem we consider is that of minimizing a smooth objective function subject to convex

constraints. That is, we wish to solve the problem

minimize f(z), (2.1)
ze€X

where X is a closed convex subset of R”. We denote the Euclidean inner product on R™ by (-, ),
and the associated f3-norm by ||-||. Given Y a closed convex subset of R”, we define the operator

Py (-) to be the orthogonal projection onto Y. We now list our additional assumptions on (2.1).
AS.1 X has a non-empty interior.
AS.2 fis bounded below on X.

AS.3 f is partially separable, which means that

f@) =3 fil2) (2.2)

and that, for each 7 € {1,...,p}, there exists a subspace N; # {0} such that, for all w € N;
and all z € X,

Jilz +w) = fi(z). (2.3)

AS.4 For each i € {1,...,p}, f; is continuously differentiable in an open set containing X and

its gradient is uniformly bounded on X.

Note that we admit the case where X is unbounded or even identical to R™ itself, in which
case we obtain an unconstrained problem. In relation to the partial separability of the objective
function, we also consider the range subspace (see [23]) associated with each element function f;,

which is defined as

R € NE. (2.4)

We are mostly interested in the case where the dimension of each R; is small compared to n.

A commonly occurring case is when each element function f; only depends on a small subset



of the problem’s variables: R; is then the subspace spanned by the vectors of the canonical
basis corresponding to the variables that occur in f; (the elemental variables). The range of the
projection operator Pg () is therefore of low dimensionality. The reader is referred to [12] for a
more detailed introduction to partially separable functions.

We note that f is invariant for any translation in the subspace (}_7_,; Ri)J'. We may therefore

restrict our attention to the case where
P
Y Ri=R" (2.5)
=1

without loss of generality.

2.1.2 The element models

The algorithm we have in mind is iterative and generates feasible iterates (in the sense that all
iterates belong to X). At iteration k, we will associate a model m; ; with each element function
fi- This model, defined on R; in a neighbourhood of the projection of the k-th iterate xj on this

subspace, is meant to approximate f; for all z in the element trust region

def
Biy = {2z € R" | [|[Pr,(z — 2)] < Aip}, (2.6)
where A; ;> 0 is the i-th trust region radius at iteration k£ and the norm || - || is chosen to be the
usual Euclidean norm in order to simplify the exposition. In what follows, we will slightly abuse
notation by writing m; x(z) for an 2 € R”, instead of the more complete m; 1(Pr,;(z)). We will
furthermore assume that each model m;x (¢ € {1,...,p},k=0,1,2,...) is differentiable and has

Lipschitz continuous first derivatives on an open set containing B; j, and that
mz,k(xk) = fz(xk) (iE {1,...,p},k: 0,1,2,...). (2.7)

Moreover, we assume that g; ; def Vm; i(zr) € R; approximates V fi(z)) € R; in the sense that,
forall i € {1,...,p} and all &,
”eiqk” S RlAmin,ky (28)

where e; def gik — Vfi(zr), where k1 > 0 is a constant and where A,,;, ; is defined by

Apin k d:ef_ min A . (2.9)
i€{1,ep}

Condition (2.8) is quite weak, as it merely requires that the first order information be rea-
sonably accurate whenever some trust region radius is small (i. e. the corresponding model fits
badly). Indeed, one expects the coherency of this first order behaviour to be of crucial importance
in such cases. Further arguments supporting a choice similar to (2.8) for problems with convex
constraints are presented in [14].

Amongst the most commonly used element models, linear or quadratic approximations are
pre-eminent. One can, for instance, consider the quadratic model given by the first three terms
of the element function Taylor series around the current iterate. Another popular choice is a

quadratic model where the second derivative matrix is recurred using quasi-Newton formulae.



2.1.3 The overall model and trust region

With all the element models at hand, we are now in position to define the overall model at
iteration k, denoted my, whose purpose is to approximate the overall objective function f in a

neighbourhood of the current iterate z;. From (2.2), it is natural to use the overall model

P
mi(z) €Y mi () (2.10)
=1
for all z in the overall trust region defined by

Br= ()] Bix (2.11)
i€{1,p}
Indeed By is the intersection of all element trust regions, that is the region in which all element
models may be trusted, irrespective of the additional limitation possibly imposed by the feasible
set X.

Of course, the actual shape of the trust region By is determined by the choice of the Euclidean
norm: it corresponds to the intersection of cylinders whose axis are aligned with the subspaces N;
and whose radii reflect the quality of the element models: large in subspaces where the element
models predict the element function correctly and smaller in subspaces where the prediction is
poorer. In practice, one might wish to choose other norms, such as the {,,-norm. In this case,
and assuming that the subspaces R; are spanned by subsets of the canonical basis vectors, the
shape of the trust region is that of a box, the length of whose sides again reflects the quality of the

element models. The extension of the theory to more general norms is considered in Section 5.4.

2.1.4 Curvature

We now follow [14] and [41] and define the generalized Rayleigh quotient of f at x along s # 0 by

(. 5) % @mx )= f(z) — (Vf(x),5)]. (2.12)

Obviously, this definition is valid only if s is such that z 4+ s belongs to the domain of definition

of f. Note that, by convention,
w(f,z,s) =0 whenever s =0. (2.13)

If we assume that f is twice continuously differentiable, the mean-value theorem (see [24]) implies

that
w(f,z,8)=2 /01 /01 t<8’ V2f|(’;|—|2_ tvs)s) dv dt. (2.14)

Furthermore, if f is quadratic, then one easily verifies that w(f,z, s) is independent of z and is

equal to the Rayleigh quotient of the matrix V2f in the direction s. We note that, because of
AS.4, w(fi,z,s)is bounded by some constant L; > 0 (see [24]). Hence we obtain that

|lw(fisz,8)| < maX{lyiE%a};}p} Li} ¥y (2.15)



forall z,24+ s € X and all ¢ € {1,...,p}. The quantity that we need in our algorithm statement
and analysis is a monotonically increasing upper bound on the magnitude of the generalized

Rayleigh quotient w(my; , zk, s; ) defined by

Be 1+ max fw(mig, o, si)| > 1, (2.16)
qgefo,..., k}
1€{1,...,p}

where s; def Pgr,(sy) for s the actual trial step computed by the algorithm, as defined below.
The quantity w(m; k, 2, s; 1) measures the curvature of the model m;  in the direction of the trial
step s;. If quadratic models m;  are considered, an upper bound on 3 is given by the largest
singular value of all Hessian matrices, plus one. We will assume that our choice of models is such
that this curvature does not increase too fast, which could lead to premature convergence of the
algorithm to a non-critical point (see [41]). More precisely, we make the following assumption,
as in [14], [10], [35] and [41].

AS.5
)DL (2.17)
=0 /ak

This condition is weaker than the common assumption that the model’s second derivative
matrices are uniformly bounded [32], which holds, for instance, for the classical Newton’s method,
where quadratic models using analytical second derivatives are used on a compact domain. It is
also weaker than the condition

lw(myg gy g, 8ik)| < cok (2.18)

for some constant ¢y > 0, which holds in the case where quadratic element models are used and

updated using either the BFGS or the safeguarded Symmetric Rank One quasi-Newton formulae.

2.1.5 Criticality

Before we can describe our algorithm in detail, we also need a criticality criterion for our problem.
A critical point of our problem is a feasible point z where the negative gradient of the objective

function —V f(z) belongs to the normal cone of X at € X, which is defined by
N@)E {yeR"| (y,u—2)<0,Yue X} (2.19)
The associated tangent cone of X at z € X is the polar of M'(z), that is
T(x) % N(2)° = closure{\(u—2) | A >0 and u € X}. (2.20)

Thus every measure of criticality has to depend on the (differentiable) objective f and on the
geometry of the feasible set at the current point. We will use the symbol a(z, f, X') to denote

such a criticality measure.

AS.6 The criticality measure a(z, h, X) is non-negative for all z € X and all functions h differ-
entiable in an open neighbourhood of z. Moreover a(z,h, X ) = 0 if and only if = is critical
for the problem

minimizegex h(z). (2.21)



But, within the algorithm, only approximate gradient vectors might be available, namely the

vectors gi and g; r, the gradients of the models. It is therefore natural to use

Qg def a(wg, mg, X), (2.22)
the criticality measure for the problem

minimize e x my(z), (2.23)

as an “approximate” criticality measure for (2.1). Note that oy > 0 implies that g; # 0.

In unconstrained optimization, one typically chooses
ay = [|gxll; (2.24)
the obvious criticality measure (see [31] or [34]). When bound constraints are present, the choice
ap = || Px(zx — gr) — k|| (2:25)
is made in [10]. For the infinite dimensional case, the definition
ak = || Px(ek = gi) — @] (2.26)
is used in [41]. For the case where convex constraints are considered,

|1 Px (2 — 15 g&) — |
tf ’

ap = (2.27)

is chosen in [32], where tf > 0 is the line coordinate of the so-called “generalized Cauchy point”

to be discussed below. In a similar context,

=| mi d 2.28
ap = | min (g, d) (2.28)
lldl|<1

is used in [14].

2.2 Ensuring sufficient model decrease
2.2.1 An overview of the classical sufficient decrease condition

A key to trust region algorithms is to choose a step s at iteration k& that is guaranteed to provide

a sufficient decrease on the overall objective function model my. In other words, a step such that
def
dbmy, = mk(xk) — mk(:vk + Sk) (2.29)

is sufficiently positive, given the value of a suitable criticality measure oy satisfying AS.6. This
concept of “sufficient decrease” is usually made more formal by introducing the notion of the

(generalized) Cauchy point. This remarkable point, denoted z{, is typically computed by trust



region algorithms as a point on (or close to) the projected gradient path Px(zr — tgx) (t > 0)

that is also within the trust region and sufficiently reduces the overall model in the sense that

2
mi(zy) — me(2$) > Ry =2, (2.30)

Br
where Ky > 0 is a constant and ay a criticality measure satisfying AS.6. However, such a point
may not exist when the trust region radius Ay is small compared with a?/3;. In this case, the
generalized Cauchy point is chosen as (or close to) the intersection of the projected gradient path

with the boundary of the trust region, yielding an inequality of the form
m(zy) — m(z) > RoarpAy. (2.31)

A point on the projected gradient path satisfying (2.30) may also fail to exist because the projected
gradient path itself ends on the boundary of X, well inside the trust region. In that case, this
end point (or another feasible point close to it) is typically chosen as generalized Cauchy point,

and it is then typically shown that
m(xy) —m(z) > Roap. (2.32)

One then ensures the “sufficient decrease” by requiring that the chosen step s; produces at least
a fixed fraction of the overall model reduction achieved by the generalized Cauchy point, which

is to say that

dmy, > Kooy min {%, Ap, 1} , (2.33)
k

where k3 € (0, Rg.

Many variants on the above scheme exist in the literature for the unstructured trust region
case. All of these variants ensure that a suitable step is found after a finite number of trials. The
best known is for unconstrained problems when the {3-norm is used to define the trust region
shape. In that case, the projected gradient path is simply given by all negative multiples of
the gradient g, and the Cauchy point is simply the point that minimizes the model my in the
intersection of the steepest descent direction and the trust region (see, for instance, [34] and [37]).
When other norms are used, for example the {,,-norm, one can then choose either to minimize
the model in the intersection of this steepest descent direction and the trust region, as before
(see [10]), or to “bend” the projected gradient path onto the boundary of the trust region and to
choose the generalized Cauchy point as a point which satisfies classical Goldstein-type linesearch
conditions along that path while staying within the trust region (see [33] and [41]). Both these
latter strategies are used in the LANCELOT software [13]. When additional convex constraints
are present, the projected gradient path is additionally “bent” to follow the boundary of the
feasible domain. Thus the philosophy is the same, in that (2.33) is guaranteed in the above cases.
Indeed satisfaction of this condition has been derived for each of the choices (2.24)-(2.28) for ay

in the papers where they were respectively introduced.



2.2.2 Sufficient decrease for structured model and trust region

We will use a similar approach in our structured model and trust region framework to determine
what is a sufficient decrease of the overall model my within the region By, whose shape is chosen
to reflect the structure of the problem. Special care is needed because this region might be very
“asymmetric” in the sense that it may allow very large steps in some directions and only very
short ones in others. As a consequence, we have to adapt the notion of trust region “radius” to
our context and adequately reformulate condition (2.33).

From a practical point of view, one might use a two-stage approach. In this, one first aims
to find a step producing a sufficient model decrease in a smaller, but more symmetric, region.
Following this, one then allows the step to increase within the trust region while maintaining
control over the model decrease.

To be specific, let
Bringk 2 By {z € R™ | ||z — 24| < Amini}, (2.34)

be the trust region whose radius is determined by the possibly most nonlinear part of the model.
Applying the results discussed in the previous section after condition (2.33), one may deduce that
it is possible to find, in a finite number of trials, a step s,,;,, 1 such that 2 + sy € Boine N X

and

[«
my(xr) — Mm@k + Spmink) > K20y min {ﬂ—k, Apin ks 1} , (2.35)
%

for some suitably chosen criticality measure oy satisfying AS.6 and some constant k3 > 0.
However, the restriction that the length of s, % is bounded by A,,;,r makes the whole
exercise of shaping By to reflect the problem’s structure entirely irrelevant. One might therefore
be prepared to accept a larger step provided it remains feasible, within the trust region By, and
produces a further significant model decrease. More specifically, we allow our algorithm to choose

any step sp such that z; + s € By N X and which guarantees that
. ak
dmy, > Koay mm{E,maX[Amm,k,HskH],l} (2.36)

for some kg € (0, Ra].
Note that, since (2.36) holds for s; = Sink, this condition can therefore be achieved in
practice after a finite number of trials. Observe also that (2.36) is fundamentally different from

an angle test of the form
{9k, se)| = Cllgrllllskll - (€ € (0,1)) (2.37)

as (2.36) does not prevent sj from being orthogonal to the steepest descent direction, so long
as a sufficient model reduction is obtained. This is useful because such a step may occur when
moving away from a saddle point of the objective function. Finally note that, as expected, (2.36)

reduces to (2.33) in the case where only one trust region is considered.



2.3 A class of structured trust region algorithms

We now describe the class of algorithms that we consider for solving (2.1). Besides x; used in

(2.8) and Ky used in (2.36), it depends on the constants

0<7 <72<1<s, (2.38)
O<m<<np<<ny<l (2.39)

and
0<pg < pg <1, (2.40)

In addition to the above conditions, we also require a compatibility condition between the n;’s

and the y;’s. Specifically, we request that

N2 —Mm 2 i+ pa. (2.41)

Typical values for these constants are k1 = 0.1, ko = 0.01, v3 = 0.1, y2 = 0.5, 73 = 2, 11 = 0.01,
e = 0.25, 13 = 0.75, 1 = 0.05 and po = 0.1.

Algorithm

step 0: initialization.
The starting point 2o € X is given, together with the element function values {fi(zo)}:_,
and the initial trust region radii {A;o}"_;. Set £ = 0.

step 1: model choice.
For i € {1,...,p}, choose the model m; j of the element function f; in the trust region B j
centered at zj, (as defined in (2.6)), satisfying (2.7) and (2.8).

step 2: determination of the step.

Choose a step si such that the sufficient decrease condition (2.36) holds and

xp+ s € BN X. (2.42)
step 3: measure overall model fit.
If

6 E Jxi) = Sz + 1) > mbmy (2.43)

then
Thy1 = Tk + Sk, (2.44)

else
Thy1 = Tk (2.45)

10



step 4: update the element trust region radii.

Denote the achieved changes in the element functions and their models by

ik  filar) = filax + 1), i€{l,...,p} (2.46)

and
def .
omip = mir(er) — migp(zr + sg), 1 €4{1,...,p}, (2.47)

respectively. Then define the set of negligible elements at iteration k as

N e {1 p) | [6mig] < %émk} (2.48)

and the set of meaningful elements as its complement, that is

My =1{1,...,p}\ Ny. (2.49)

Then, for each i € {1,...,p}, perform the following.

Case 1: 1 € M;,.

o If )
Ofie > 6myp — — s dmy, (2.50)
and (2.43) both hold, then choose
A1 € [Aig, 1304 ] (2.51)
e If (2.50) holds but (2.43) fails then choose
Ai,k+1 = Az’,k- (2.52)
o If (2.50) fails, but
1—
Ofin > 6m; g — Tmﬁmk (2.53)
holds, then choose
Ai,k+1 € [’)/QAZ',]C,AZ',]C]. (2.54)
o If (2.53) fails, then choose
Aigt1 € [1180k, 7204 k). (2.55)
Case 2: 1 € N.
o If
|6fi k] < %577% (2.56)
and (2.43) both hold, then choose
A kg1 € [Ai,k773Ai,k]- (2-57)

11



o If (2.56) holds but (2.43) fails, then choose
Aikt1 = A (2.58)
o If (2.56) fails, then choose
A1 € 1Ak, 7200 k) (2.59)
Increment k& by one and return to step 1.

End of Algorithm

As is traditional in trust region algorithms, we will call an iteration successful if the test
(2.43) is satisfied, that is when the achieved objective reduction §f is large enough compared
to the reduction dmy, predicted by the overall model. If (2.43) fails, the iteration is said to be
unsuccessful. In what follows, we will denote by § the set of all successful iterations.

We now comment on various aspects of the algorithm.

1. The algorithm is constructed in such a way that a successful step is always possible, for
sufficiently small trust region radii, if the current iterate x; is not critical. This result is

formally proved in Corollary 8.

2. The choice of the element models m; j is left rather open in the above description. It clearly
needs to be made precise for any practical implementation of the algorithm. One common

choice would be to set
mip(zk +8) = filzr) + (gik, ) + (s, H; 15), (2.60)

where H; j is a symmetric approximation to V2 f;(z;) whose nullspace contains the subspace
N;. In particular, Newton’s method corresponds to the choice g; = V fi(z) and H;j =
V2 fi(x1), which is guaranteed to satisfy this latter condition. Another possible choice is
mik(er + s) = fi(zr + s), which may be attractive for the simpler element functions. In
this case, the model’s fit to the true function is always good for the ¢-th element, and the

algorithm guarantees that the A;; form a non-decreasing sequence.

3. If the model change for an element is negligible, that is small compared to the overall
predicted change, we do not need to restrict its element trust region size unless the true
element change is relatively large compared with the same overall predicted change. We
can therefore afford to ignore negligible items until they stop being relatively negligible,
something which is inevitable when convergence occurs. Hence our distinction between

“negligible” elements (in Nj) and “meaningful” ones (in Mjy).

Condition (2.41) can be viewed in this context as a guarantee that a new iterate will be
accepted in (2.43) whenever the model reduction obtained for all meaningful elements is
also acceptable (i.e. (2.53) holds for all ¢ € M), irrespective of the contribution of the

negligible ones. This interpretation is clarified in Lemma 2.
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4. The apparent intricacy of (2.50) and (2.53) is caused by two complications which arise in
the context of multiple elements. The first is that, although (2.36) ensures that dmy is
always positive, we may not assume in general that the same is true for ém; ;. The second
is that possible cancellation between elements makes it necessary to consider the “accuracy
of model fit” for an element to be relative to the overall model fit. Indeed, requiring small
relative errors for models with very large values may result in large absolute errors. If
émy, is small, these large errors will then cause émy to be a poor prediction of §f; and the

iteration might be unsuccessful. This explains why the perhaps more intuitive tests
8fik 2 bmip — (1= ny)lémikl (5 =2,3) (2.61)

cannot be used instead of (2.53) (j = 2) and (2.50) (j = 3).

Observe also that conditions (2.50) and (2.53) reduce to the familiar
Of > njdmy (j = 2,3), (2.62)
when p = 1.

5. Note again the consistency between the trust region radii updates in step 4 and the case
where p = 1. In this latter case, the set Ny is always empty and (2.50) then implies (2.43),
because of (2.39). Equation (2.52) is thus never invoked.

6. No stopping criterion has been explicitly included in our algorithm description. This is
adequate for the theoretical analysis that we consider in the present paper, where we are
interested in the asymptotic behaviour of the method, but it should be completed for any
practical use. The choice of a particular stopping criterion will depend on the type of

models being used.

7. The mechanism that we specified for updating the trust region radii does not exclude the
additional requirement that the radii be uniformly bounded, if that is judged suitable for
the type of models used. In practice, keeping the radii bounded is essential to prevent

numerical overflow.

8. One possible implementation of Step 2 first computes a feasible step sg that minimizes
my(Px(z; — tgr)) within a trust region of radius A,,;, ;. Note that sg satisfies (2.35) and
(2.36) by construction. This step may then subsequently be increased by progressing further
along the arc Px(xy — tgr) — @k so long as the overall model my continues to decrease and
(2.36) holds. Additional decrease in mj may then be obtained (for instance by applying

conjugate-gradient steps) provided condition (2.36) is maintained.

Before starting our global convergence analysis, we first state, for future reference, some

properties that result from the mechanism of the algorithm.

Lemma 1 Assume that AS.3 holds. Al each ileration k of the algorithm,

13



1. My contains at least one element. Furthermore

—1 1
(1 _P : ,u1> dmy, < Z om; g < <1 + P= ,u1> dmy; (2.63)
p ieM,
2.
YAk <A ppr <730k (2.64)

forallie {1,...,p}.

Proof.  The first result immediately follows from the definition of Nj and the inequality

1 < 1. One then deduces that N contains at most p — 1 elements. Hence,

Ny,
dmy, = Z om; i + Z om;p < Z om p + ,uluémk (2.65)

ZEMk ’LENk ZEMk

from which the first part of (2.63) may be deduced. The second inequality in this result is

obtained from

Z 5mi,k = 6mk — Z 5mi,k < 6mk + Z |5mi7k|, (2.66)
1EM}, 1EN 1€ Nk
the relation (2.48) and |Ni| < p — 1. The bound (2.64) results from (2.51), (2.54), (2.55), (2.57)

and (2.59). O
We also investigate the coherency between the measure of fit for individual elements and that

for the overall model.

Lemma 2 Assume AS.3 holds and that, at iteration k of the algorithm, (2.53) holds for all
i € My, and that (2.56) holds for all i € Ny. Then iteration k is successful, i.e. k € S.

Proof. Because (2.53) holds for i € My, one has that

M -1
Z ofik > Z omi, — (1 — n2)| pklémk > < P p ,u1> dmy, (2.67)

for all such i, where we used the inequality |M}| < p and Lemima 1 to deduce the second inequality.
On the other hand, since (2.56) holds for ¢ € N}, one obtains for these i that

Z |‘5fz k| <

ZENk

,ugémk, (2.68)

where we used item 1 of Lemma 1 to bound |Ng|. Now,

o= D 8w+ D 8iw> > i — > |6fil. (2.69)

Combining this last inequality with (2.67) and (2.68) gives that

-1 -1
ofy 2 <772 P, -t ,u2> omy, (2.70)
p p
which then yields (2.43) because of (2.41). O
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We observe from this proof that the weaker condition

-1
my—m > pT(m + p2) (2.71)

could be imposed instead of (2.41). However (2.71), and hence the setting of the algorithm’s
constants, would then be problem dependent, which one might consider to be undesirable.
Of course, (2.53) holds whenever (2.50) holds because of (2.39). Lemma 2 therefore shows that

(2.43) is coherent with the measure of the fit between the element models and element functions.

3 Global convergence

We now study the convergence properties of the class of algorithms that we introduced in the
preceding section. Our analysis follows the pattern of similar proofs with an unstructured trust
region (see [14] or [41]). The central idea in the proof is that the algorithm will continue to make
progress as long as a critical point is not reached. We first start by bounding the error between
the true element functions and their models. We next derive a lower bound on the size of the
smallest trust region radius at a non-critical point. This lower bound ensures that the trust region
constraint will not prevent further progress towards a critical point. Only with this bound can
we then prove that limit points of the sequence of iterates produced by the algorithm are indeed
critical for the models used. We close the section by deriving some simple consequences of these
results on the criticality of the limit points for the true objective function.

We first start by bounding the error made between the model of any element function and

the element function itself at xj + s.

Lemma 3 Assume that AS.4 holds and consider a sequence {xi} of iterates generated by the

algorithm. Then there exists a positive constant ¢y > 1 such that
| fi(wk + sx) — mag(zr + sp)| < eiBeAly (3.1)
forallie{1,...,p} and all k.

Proof.  We first observe that, for each ¢ € {1,...,p} and for all k, the definition (2.12),
(2.7) and the Cauchy-Schwarz inequality imply that

|fi(zr + sk) = mig(zr + si)

| filwr + sik) — mip(2r + sik)]

< KV Sfilzr) = giks Sik)l
1 1sikl Pl fi, @k, sik) — w(mik, Tk, sik)] (3.2)
< leswl] 1]sikll

+ 2 IsikP(w( fis zhy si6)| + |lw(mg g, Tk, s08)])-

But [|s; %] < A;x because of (2.6), and hence we obtain from (2.8), (2.15) and (2.16) that

|fi(ze + sk) = mip(2r + s6)| < K1 Amin ki + 5L+ Br) Af . (3.3)
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Using (2.9), this then yields (3.1) with
o ki + (L 1) > 1, (3.4)

where the last inequality results from (2.15). O
We now derive an upper bound on the change predicted for an element at a non-critical point,

as a function of the size of the step in the corresponding range subspace.

Lemma 4 Assume that AS.1, AS.3 and AS.j hold. Consider iteration k of the algorithm and
assume that, for some i € {1,...,p},

Brlig < 1. (3.5)

Then one has that
[6m; k| < ea|si k] (3.6)

for some constant ¢ > 0 independent of © and k.
Proof. We first note that (2.9), (2.16) and (3.5) imply that
Ak < 1. (3.7)
Using (2.12) and (2.16), we also obtain that
[6mi il < [giks siadl + 5Bellsill® < UV Filwr), sid)] + [eik, sie)| + 2 Bell il (3.8)

Remembering now (2.8), (2.6), (3.5) and (3.7), we can deduce that

[6mik] < maxger,nx (V@) sikll + 51 Amingllsiell + 38515kl (3.9)
< [maxgerinx ([[Vi@)l]) + k1 + 5] [lsixll-
Inequality (3.9) then gives (3.6) with
def . : L
2= max ([Vi(@))+r+3 (3.10)
1€{1,...p}

We next prove the important fact that, so long as a critical point has not been determined, the
trust region radii stay sufficiently bounded away from zero, therefore allowing further progress

to be made.

Lemma 5 Assume that AS.1-AS.} hold. Consider a sequence {x1} of iterales generated by the

algorithm and assume that there exists a constant € > 0 such that
ap > € (3.11)
for all k. Then there is a constant ¢z > 0 such that
€3

for all k.
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Proof. Assume, without loss of generality, that
€< min{l,ﬁoAmimo}. (313)

In order to derive a contradiction, assume that there exists a k such that

2 1— _ .
BrAming < 71 min{e, pea(l =) calp ’“)} o s, (3.14)

2 )
Cc1C2p c1p

where ¢4 def koy1€. Now define r to be the smallest iteration number such that (3.14) holds.
(Note that » > 1 because of (3.13) and the inequality v; < 1.) Also fix ¢ such that Ay, = Aj .
The monotonic nature of the sequence {3;} and the bound (2.64) then ensure that

Air
T8 cecn, (3.15)
7 71

where we used (3.14) and the inequality (3.13). We note that the definitions of ¢ and r give that

ﬂr—lAmin,r—l < ﬂr—lAi,r—l < ﬂr

ﬂ'rAi,r = ﬂrAmin,r < ﬂr—lAmin,'r—la (316)

which in turn implies that A, ,—1 > A;, because of the monotonic nature of the sequence
{Br}. Using this inequality with (2.36), (3.11), and (3.15), we obtain that

. €
édm,_1 > Koemin {ﬁ—, maX[Amin,'r—lv Hsr—lmv 1}
r—1
) €
> Kg€min m,Amin,'r—lal} (317)
Z HQEAmin,r—l
> HQEAi,T7

which ensures, because of (2.64), that
dmp_1 > caNjrq. (3.18)
But (3.15) guarantees that §,_1A;,_1 < 1. We may thus apply Lemma 4 and deduce that
|6 p—1] < allsipo1ll < i1 < E—flamr_l, (3.19)

where we also used (2.6) and (3.18).
Assume first that ¢ € M,_y, which guarantees that ém;,_1 # 0. Then, using (2.48) and
(3.18),
|6mir_1| > %57727,_1 > %Am_l. (3.20)

Because of (2.7), (3.1) and (3.20), we therefore obtain that

‘ 8fi 1

6mi,r—1

_ M@t sra) = mipa (@1 4 80 < ap Bro1 Ayt (3.21)

-1
|6m 1] T op1cy

But (3.14) and (3.15) together give that

Br-18 1 < (1 - 773)#1_@21 (3.22)
. creap?’
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which, with (3.21), implies that

1 g .
< Uz me (3.23)
Cap

‘ Wfirmr

(577%‘77«_1

Consider first the case where §m;,_; > 0. We may then apply (3.19) and deduce that

1- 1—13) 6ms_ 1-
Syt — —— P8,y = mipy |1 - (1-ms) dmra ) §mir_1 <1 _ w) . (3.24)
P p o |émy, | cap

Using (3.23), we now deduce that

Of; r— 1-
firmt oy (= m)es (3.25)
6mi,7‘—1 Cap
and therefore, because of (3.24), that
1- 1—
8fivo1 > 6mip s (1 - w) > 6mipq — ——bm,_y, (3.26)
C2p p

which implies that (2.50) holds for element ¢ at iteration » — 1. Now turn to the case where
dm; ,—1 < 0. Because of (3.19), we deduce that

6mi,7’—1 - L= n36m7—1 = 6mi,7’—1 1+ (1 — 773) by < 6mi,7‘—1 <1 + m) : (327)
p p |61 1

As above, we use (3.23) to obtain that

8 1
fir—1 <14 ( ?73)047 (3.28)
6mi,7"—1 C2p
and therefore, because of (3.27), that
6fi,7‘—1 > 6mi,7‘—1 <1 + w) > 6mi,7‘—1 - ﬂ‘sm‘r—l: (329)
c2p p

which again implies that (2.50) holds for element 7 at iteration r — 1.
Assume now that ¢ € N,_y. Then, because of (2.7), (2.48) and (3.1), we have that

|6fi,'r—1| < |6mi,7‘—1| + |fi(x7‘—1 + 37‘—1) - mi,'r—l(x'r—l + 5r—1)| (3 30)
S %6’”"7‘—1 + Clﬂr—lAiT_l- .
Now, multiplying (3.18) by A;,_1, we obtain that
AV
A< = m, . (3.31)
Cq
Combining (3.30) and (3.31), we deduce that
6| < (“—1 i C—lﬂr_lAi,T_l) i1, (3.32)
p C4
Observing now that (3.14) and (3.15) imply that
BBy < G2 =) (3.33)

c1p
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we obtain from (3.32) that
16;r_1] < %5mr_1. (3.34)

But this inequality implies that (2.56) holds for element ¢ at iteration r — 1. Thus either (2.50)
or (2.56) holds for element 7 at iteration 7 — 1 and the mechanism of the algorithm then implies

that A;, > A;,—1. But we may deduce from this inequality that
ﬁr—lAmin,T—l < ﬂ?"—lA’i,’l‘—l < ﬂTAi,Ty (335)

which contradicts the assumption that r is the smallest iteration number such that (3.14) holds.
The inequality (3.14) therefore never holds and we obtain that (3.12) is satisfied for all k. O
We now turn to one of the main results in this section, which proves a weak form of global

convergence. The technique is inspired by [35].

Theorem 6 Assume that AS.1-AS.6 hold. Consider a sequence {xr} of iterates generated by
the algorithm. Then
liminf o = 0. (3.36)

k—oco

Proof. Assume, for the purpose of obtaining a contradiction, that there exists an ¢ € (0,1)
such that (3.11) holds for all £ > 0. Then

Y okes Ofk M Y kes Omk
M K€ ZkES min {ﬁe_k’ IIlaX[Amin,kv H'Sk”]7 1}
1K€ Y pes ININ {ﬁe—k, Apink

nikgemin{e, e3} 3 s ﬁl_ka

(3.37)

(AVARN AVARN VAR V4

where we used successively (2.43), (2.36), (3.11) and Lemma 5. We note that (3.37) and AS.2
then imply that

> ﬁi < to0. (3.38)
kes 7k
Now let 7 be an integer such that
yay TP (3.39)
and define
S(k) 1snqo,... . k-1}, (3.40)

the number of successful iterations up to iteration £k — 1 (k > 1). Then define

Fr Y > 1k <rS(k)} and B X {k> 1]k > rS(k)}. (3.41)
We now wish to show that both sums
1

Z — and Z ﬂl_k (3.42)

keF Pr kEF,

are finite. Consider the first. If it has only finitely many terms, its convergence is obvious.

Otherwise, we may assume that F; has an infinite number of elements, and we then construct
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two subsequences. The first consists of the indices of F; in ascending order and the second, F3
say, of the set of indices in S (in ascending order) with each index repeated r times. Hence the

j-th element of F3 is no greater than the j-th element of F;. This gives that

Z <> ﬂk = rZ (3.43)

keF, kEFs kes

because of the nondecreasing nature of the sequence {f§;} and (3.38). Now turn to the second
sum in (3.42). Lemma 2 and the mechanism of the algorithm imply that, at each unsuccessful
iteration, at least one element trust region radius satisfies (2.55) or (2.59) and none of them is
allowed to increase. Hence
HAzk <48° HAzo, (3.44)
=1

which immediately implies that
Amin <75 Oy SO Ao, (3.45)

where Ay 0z0 def max;e(q,..p} Dio. We deduce from this inequality that, for k € 73,

k/r
C_3 < Amin,k < 7§(k)7§k_5(k))/pAmax,0 < 7§/T7£k_k/r)/pAmax,0 < [”/37§T_1)/p] / AmawL‘,Ov (346)

Br
where we have also used Lemma 5 and the definition of F, in (3.41). Using (3.39), this gives that
mal‘ ,0 r—1 k/r
Z . Z [7375 )/p] < 400, (3.47)
iez, P B keR

and the second sum is convergent. Therefore the sum

=1
- il - A4
Z—: Pr A ﬂ’“ kg}:' (345)

is finite, which contradicts AS.5. Hence condition (3.11) is impossible and (3.36) follows. O
Notice that the relation between ay, the criticality measure for problem (2.23), and a(zg, f, X),
the criticality measure for problem (2.1), has been left rather unspecified up to this point. It
is indeed remarkable that we can prove Theorem 6 assuming so little on «. In order to derive
convergence properties for the original problem from Theorem 6, we have to be slightly more
specific and request that, if both function and model have the same first order information, then

the criticality measures on the original problem and on the model problem agree.

AS.7 Let hy and hy be two continuously differentiable functions in the intersection of X with
a neighbourhood of the feasible point z, such that hy(z) = ha(z). Then, the difference
a(z,h1,X) = a(z, he, X) tends to zero when Vhy(z) — Vhg(z) tends to zero.

In other words, we require the criticality measure to be continuous (near zero) in the gradient
of its second argument. Again, this is true for the choices (2.24)-(2.25) and (2.28).
With this additional assumption, we are now ready to examine the criticality of the limit

points of the sequence of iterates generated by the algorithm for the original problem (2.1).
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Corollary 7 Assume that AS.1-AS.7 hold. Consider a sequence {x} of iterates generated by

the algorithm and assume that

klim lei k]| =0 (3.49)
foralli e {1,...,p}. Then this sequence has at least one critical limil point z..

Proof. From AS.7 and (3.49), we obtain that

klim [a(zg, [, X) — ag] =0, (3.50)
which, with (3.36), guarantees
ligninf a(zg, f,X)=0. (3.51)

The desired conclusion then follows by taking a subsequence of {z} if necessary. O

Condition (3.49) is important, otherwise the situation might arise that an iterate is critical for
the current overall model (because its gradient is inexact) while not being critical for the original
problem. There are various ways in which (3.49) can be achieved in a practical algorithm, the
simplest being to make the size of e;; also depend on ay, itself, ensuring that the first goes to

zero if the latter does.

Corollary 8 Assume that AS.1-AS5.7 hold. If S, the sel of successful iterations generated by the

algorithm is finite, then all iterates xy are equal to some x, for k large enough, and x, is critical.

Proof. Assume indeed that S is finite. It is then clear from (2.45) that z is unchanged for
k large enough, and therefore that z, = 2;41, where j is the largest index in §. Note now that
Lemma 2 implies that, if £ ¢ S, then (2.53) or (2.56) must be violated for at least one element.
Hence we obtain that A,,;, ; converges to zero. But (2.8) then implies that e; ; also converges to
zero for all 7 € {1,...,p} and g}, converges to V f(zy). Thus AS.7 and Corollary 7 then guarantee
the criticality of z,. O

As in existing theories for the unstructured trust region case, it is possible to replace the limit
inferior in (3.36) by a true limit, therefore ensuring (if the gradients are asymptotically exact)
that all limit points are critical. As in these theories, a slight strengthening of our assumptions

is however necessary.

AS.8 We assume that
klim Bréfr = 0. (3.52)

This assumption is similar to that used in [14] and [41], where it is motivated in detail. We only
mention here that (3.52) holds for Newton’s method on bounded domains, because 3 is bounded
above in that case.

With this additional assumption, we are now able to replace the limit inferior by a true limit.

Theorem 9 Assume that AS.1-AS.8 hold. Consider the sequence {1} of ilerales generated by
the algorithm and assume that there are infinitely many successful iterations. Then
li =0 3.53
lim i = 0, (359)

where S is, as above, the setl of successful iterations.
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Proof. We again proceed by contradiction. Assume therefore that there exists an ¢ € (0,1)

and a subsequence {g¢;} of successful iterates such that, for all ¢; in this subsequence
Qg > €. (3.54)
Theorem 6 guarantees the existence of another subsequence {/;} such that
ap > e for ¢; <k <l and o < €, (3.55)

where we have chosen ¢; € (0,¢1). We may now restrict our attention to the subsequence of

successful iterations whose indices are in the set

K¥{k|keS and ¢; <k <1}, (3.56)

where ¢; and [; belong, respectively, to the two subsequences defined above. Applying now (2.36)
for k € K, we obtain from (2.43), (2.16) and €; < 1 that

. (€ . (e
Ofr, > ko€ min {ﬁ—r‘;,max[Amm,k, [|s%l] 1} = 1 Ko€y Min {ﬁ_i’maX[Amm’k’ ”SkH]} . (3.57)

But AS.8, along with (3.57), imply that

lim fl|sk|| =0 and lm BpAumr =0 (3.58)
k—oo k—oco
keX kex
and, because of (2.16), that
lim ||sg]| =0 and lim A, = 0. (3.59)
k—oo k—oo
kek keX

Therefore, we can deduce from (3.57) and (3.58), that, for j sufficiently large,

;-1
Hw% - wl]” S ijij ”xk-}-l - ka
{;—1
= 2y, ©llsl

- (3.60)
< X5, Ol () - flarn)]
< CS[f(mqj) - f(mlj)L
where the sums with superscript (K) are restricted to the indices in K, and
el (3.61)

Mka€y
But AS.2 and the decreasing nature of the sequence {f(z)} imply that the last right-hand side
of (3.60) converges to zero as j tends to infinity. Hence the continuity of Vf and AS.7 give that

oy, 1. X) = aat,, £, X)) < (e~ 2) (3:62)

for j sufficiently large. On the other hand, the second part of (3.59) and (2.8) imply that g,, is

arbitrarily close to V f(z,,) when j is large enough, and AS.7 hence guarantees that

g, — (g, [, X)| < ~(e1 — €&2) (3.63)

| =
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for j sufficiently large. We note also that, because of (2.8),

P
g1, = V[ (i)l < Z leis; || < K1pAmin,i, - (3.64)

=1
But the mechanism of the algorithm guarantees that no A;; can increase between iterations
k; +1 and [; (assuming k; + 1 # [;), where k; is the largest integer in K that is smaller than /;.
This yields that

llgr, = Vf(2)ll £ K173PAmink; - (3.65)
We now deduce from the second part of (3.59) that the left-hand side of (3.65) tends to zero
when j tends to infinity, and therefore that, for 5 sufficiently large,
1
lar, = ey, [, X) < (e - e) (3.66)
because of AS.7. Combining (3.62), (3.63) and (3.66), we obtain, using (3.55), that

ag; < ap + 36— ) < (e +6) <, (3.67)

which is impossible because of (3.54). Hence our initial assumption cannot hold and the theorem
is proved. O
As above, we now consider the case where we impose that the element gradients are asymp-

totically exact.

Corollary 10 Assume that AS.1-AS.8 hold. Consider the sequence {xi} of ilerales generated
by the algorithm and assume furthermore that (3.49) holds for all i € {1,...,p}. Then all limit

points of this sequence are critical.

Proof. If the set S is finite, the conclusion immediately follows from Corollary 8. If, on
the other hand, § has an infinite number of elements, (3.49) implies that g, is arbitrarily close
to Vf(z1) and the combination of AS.7 and Theorem 9 ensures the criticality of any limit point
of the sequence of successful iterates. O

Of course, (3.49) might be impossible to achieve in practice, and one might consider the case

where we can only assert that

limsup | max |le;x||| = K3, (3.68)
k—o0 i€{1,...,p}

for some small constant k3 > 0. This is the case, for instance, if gradients are approximated by
finite differences.

Corollary 11 Assume that AS.1-AS.6 and AS.8 hold. Consider the sequence {z} of ilerates
generated by the algorithm. Assume furthermore that (3.68) holds and that, for some constant

Ly > 0, the criticality measure « salisfies
la(z,hy1, X) — a(z,hy, X)| < L,||Vhi(z) — Vhy(z)|| (3.69)

for allx € X and all functions hy and hy continuously differentiable in a neighbourhood of x such

that hi(z) = ha(z). Then, for each limit point z. of the sequence,

Oé(:U*,f,X) < KSpLa- (370)
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Proof. Asin Corollary 10, the desired conclusion immediately follows from Corollary 8 if
S is finite. Assume therefore that & has infinitely many elements. We then deduce that, for all
kes,
a(zg, f,X) ag + |a(zg, mg, X) — a(ak, f,X)]
ap + Lallge = V[ ()] (3.71)

a4+ Lapmax;err, o ||eill-

[VANMVANRVAN

Taking the limit for k£ tending to infinity in S and using Theorem 9 and (3.68) then gives the
desired conclusion. O

Finally observe that although (3.69) is stronger than AS.7, it is not a very strong condition.
For instance, it is satisfied with L, = 1 for the choices (2.24), and also for (2.25) and (2.26)
because of the non-expansive character of the projection operator Px (see [41], for example).

The same property also holds for the choice (2.28), as discussed in [14].

4 Finite identification of the correct active set

When applied to constrained problems, trust region algorithms typically use the notion of pro-
jected gradient or projected gradient path in order to identify a subset of inequality constraints
that are satisfied as equalities. Ultimately, the aim thereby is to identify the constraints satisfied
as equalities at the solution well before the solution is reached. The methods then reduce to an
unconstrained calculation in the manifold defined by the currently “active” constraints. As a
consequence, it is possible to guarantee fast asymptotic rates of convergence when using accurate
models, as is the case when analytical second order information of the objective and constraint
functions is available.

It is possible to show that structured trust regions do not upset the theory developed in the
unstructured case: it can indeed be shown that the constraints active at a particular limit point
of the sequence of iterates are identified after a finite number of iterations, provided the normals
of the active constraints are linearly independent and strict complementarity holds, and provided

the step siy1 satisfies the inequality

[[sk41ll (k1) = 7ollsxllx) (4.1)

for each £ ¢ S and for some constant 79 € (0,7;]. This latter condition is meant to avoid
a situation where the successful iterates converge to a critical point while a subsequence of
unsuccessful iterates converges to another point with a different active set. It does not constitute
a severe restriction in the step selection procedure and is automatically verified if s is determined
by a succession of steps of increasing norm such that they remain feasible, within the trust region
By, and ensure (2.36). This is the case, for instance, if truncated conjugate gradients are used
for computing the step in the solution of an unconstrained problem (see [37] or [38]).

The theory considers the active constraint identification problem from a quite general point
of view. The main observation is that a number of the existing theories for active constraint

identification are based on the definition of a special criticality measure that satisfies AS.6 while
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not satisfying AS.7 (see [2] or [3], for instance). Let us denote this measure at iteration & by ay.

The steps leading to constraint identification are then as follows.

1. The first step is to prove that a sufficient decrease condition of the type (2.33) also holds

with &y instead of ayg.

2. One then proceeds to prove that
liminfa, =0 (4.2)

k—oo

much in the same way as for (3.36).

3. The measure @y is also constructed to ensure that it is asymptotically bounded away from
zero for all points such that their active set is not identical to that of a (close) critical point.

(This, in particular, prevents AS.7 from holding.)
4. Some contradiction is then deduced from these last two properties.

However, since this development is rather technical and lengthy, we do not include it in the
present paper, but refer the interested reader to [15] for details of the results and additional
assumptions. This reference also contains the theory concerning the convergence of the iterates
to a single limit point, adapted from [14].

Our experience with the solution of practical problems however indicates that the identifi-
cation of active constraints is seldom observed in practice before the very last iterations of the

algorithm, which makes the results discussed in this section mainly of theoretical interest.

5 Extensions

We examine in this section some extensions and variants of the results presented above.

5.1 A hybrid technique

One of the possible drawbacks of the algorithm of Section 2.3 is that steps might be constrained to
be unnecessarily small in directions corresponding to highly nonlinear element functions. Indeed,
the negative effect of inaccurate models for these elements might be compensated by a successful
step in directions corresponding to less nonlinear elements. This compromise between the different
parts of the objective is, of course, inherent to the classical method using an unstructured trust
region.

We might try to obtain the best of both classical and structured approaches by using a hydrid
technique. In this technique, a global trust region radius Ay is recurred for the objective function
considered as a single element (using the algorithmn analyzed above, which is then equivalent to
the classical one), along with the individual radii A;;. We then define the individual “hybrid”
radii by

Al max{Ay, A} (5.1)
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for each i € {1,...,p} and redefine B} as
def
Bip = {z € R" | [|Pr,(z — )| < ALY (5.2)

We can then apply our algorithm with these new quantities, to the effect that well-modelled
elements have their associated trust regions possibly extended without having to contract those
corresponding to badly-modelled ones, as long as the global agreement is satisfactory.

It is not difficult to verify that the theory presented above still holds for this hybrid mod-
ification. The key points are to observe that the revised definition of our trust region implies
that

. af
dmy, > Koay mln{ﬁ—,Ak,l} , (5.3)
k

which is the classical sufficient decrease condition (2.33), that the inequalities (2.64) are still valid
with A; i replaced by A?k? and also that an analogous result to Lemma 5 also holds for the global
trust region radius, as is already well-known from the unstructured trust region case (see [14],

for instance).

5.2 An alternative definition of success

An immediate consequence of inequality (2.63) in Lemma 1 is that it would be possible to replace
the condition (2.43) for an iteration to be successful by
8 >m Y dmix(xy), (5.4)
1€ My,
without altering the developments presented above. Indeed, (2.63) shows the equivalence between

(2.43) and (5.4). We have chosen to use (2.43) above, because it seems natural to consider the

same collection of elements on both sides of the inequality.

5.8 Weaker sufficient decrease conditions

It is remarkable to note that Lemma 5 and Theorem 6 can be proved in a weaker context. Indeed,
we could require the weaker sufficient decrease condition

dmy > Kooy min{%,Amm,k,l} (5.5)
k

instead of (2.36), and still prove Lemma 5 and Theorem 6. However, we have not been able to
prove Theorem 9, nor active constraint identification, with these assumptions, because (5.5) only

involves the length of the step in a possibly small subspace of R”.

5.4 Using uniformly equivalent norms

Another possible generalization of the theory developed above allows the use of different norms
for each element and for each iteration. Let us denote these norms by the symbol || - [|; z). The

element trust region definition (2.6) then becomes

Bip ¥ {e e R" | ||Pr(z — 2|y < Ain}y (5.6)
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while the gradient approximation condition (2.8) may be written as

leiklliing < m18min (5.7)
where the norm || - [|f; 5 is any norm that satisfies
[z, ) < Mz ll i p) 1yl ps,m (5.8)
for all z,y € R”™. In particular, one can choose the dual norm of || - [|(; ) defined by
def  |(,9)]
lylligy = sup —. (5.9)
z#0 H$| (4,k)
With iteration k, we may also associate an overall norm ||-|[|(z) defined on the whole of R”, whose
purpose is to reflect the relative weighting of the different elemental norms || - [|(; z) in a global

measure.
If we assume that all the considered norms are uniformly equivalent, that is if there exists a

constant ¢ > 1 such that, for all =z,
1
Szl < llzfla < olills, (5.10)

where || - ||a, || - ||z is any pair of the above defined norms, then the theory developed in all
the preceding sections is still valid without any substantial modification. Again the details of
the proofs in this more general setting are provided in [15]. Note that this extension covers
the possible introduction of iteration dependent scaling in a practical implementation of our

algorithm, which can be highly desirable for some difficult problems.

6 Conclusions

We have shown in this paper that the trust region concept, one of the most powerful tools for
building efficient and robust algorithms for optimization, can be extended in a very natural way
to reflect the structure of the underlying problem. The algorithm proposed above is indeed a
direct generalization of the more usual case where only an unstructured uniform trust region is
considered. Similar global convergence properties can be proved for the new algorithm, including
the case where dynamic scaling is performed on the variables and the situation where the gradients
are only known approximately.

It remains to see if this modification of a trust region algorithm will prove efficient in practice
and justify the slight additional complexity of the method. Note that the results of preliminary
numerical experiments (based on a modification of LANCELOT using the implementation de-
scribed after the algorithm) have been encouraging. Tests on unconstrained problems from the
CUTE collection [1] have shown that the new method, although very comparable to LANCELOT
in many cases, sometimes produces substantial improvements. However, we anticipate the real
power of the concept to appear when minimizing augmented Lagrangians or other penalty-like

functions, because scaling is much more critical there than in many of the classical unconstrained
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test examples. The authors are planning to include the new technique described in this paper
within the next release of LANCELOT.

One of the nice features of the partially separable functions considered in the present theory
is that the objective is a linear combination of its elements. While group partially separability, as
used in [12] or [13], has computational advantages in terms of economy of derivative calculation,
this structure involves a nonlinear relationship between the elements and the overall function.
This seems to make exploiting the link between local and global models much harder. While
we would be interested in deriving structured trust region methods for group partially separable
functions, the methods would undoubtedly be more complicated and less amenable to analysis.
Thus, we are content, in the present paper, to consider the simpler, but nonetheless very general,
partially separable structure.

Finally, there might be other ways to introduce structure in trust region methods than con-
sidering (group) partially separable objective functions. In particular, trust region methods for
nonlinearly constrained problems seems attractive candidates for an alternative approach that

would separate the trust region(s) on the objective from those on the constraints.
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