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9 The Keratinocyte in Cutaneous
Irritation and Sensitization

Alain Coquette, Nancy Berna, Yves Poumay,
and Mark R. Pittelkow
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I. INTRODUCTION

Epithelial tissues, including epidermis, tracheobronchial epithelium of lung, gastrointestinal epi-
thelium, and uterine cervical epithelium, play a critical role in protecting man and other mammals
from external environmental threats. Epithelial cells such as epidermal keratinocytes have long
been known to provide a relatively impermeable barrier to outside factors that challenge the
structural integrity and resilience of epidermis and other epithelia. However, only more recently
have we discovered the active role played by the keratinocyte in initiating, modulating, and
regulating responses of the skin as well as organism to the multitude of irritant or allergic (sensi-
tizing) reactions that are part of daily existence. Keratinocytes express and, in some cases, secrete
aplethora of biologically active molecules that mediate these responses. As the identification and
biological function(s) of factors produced by keratinocytes continue to expand, the complexity and
functional sophistication of epidermis become more apparent.

This chapter provides an overview and update on the role of the keratinocyte in cutaneous
iritant and sensitization reactions. These findings significantly impact how skin reactions in dermal
and transdermal delivery can be biochemically modulated. We also summarize various models that
have been developed to better assess and predict epidermal irritation and sensitization. The cellular
and molecular mechanisms mediating these responses in man will also be delineated.
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The epidermis is a multilayered squamous epithelium that forms the interface between the
organism and its environment. It is composed of several types of specialized resident or transient
epithelial, neuroectodermal, and bone marrow-derived cells. These include epidermal keratinocytes
to generate the protective barrier and provide for repair and regeneration of the epidermis, Langer-
hans cells, and T lymphocytes (T cells) for immunologic defense, melanocytes for pigment pro-
duction and protection from ultraviolet radiation, and Merkel cells for neurocutaneous sensibility.
Keratinocytes constitute the major cell type (>90%) and thus have the primary biologic role in
providing both physical and biochemical attributes that maintain epidermal integrity and homeo-
stasis. Epidermal keratinocytes also create a sentry function and compose the first level of com-
munication with neighboring skin cells as well as other distant organs.!

The keratinocyte elaborates its protective function by undergoing a complex and finely coordi-
nated program of cellular differentiation.? The basal layer consists of a single layer of proliferative
and noncommitted keratinocytes, a fraction of which are functionally stem cells. The basal cell layer
is anchored to the basal lamina via hemidesmosomes. These basal cells produce daughter cells that
can either continue to populate the germinative layer or exit the basal layer to undergo terminal
differentiation as they migrate to the epidermal surface. The spinous layer, constituting several or
more cell layers, is located immediately above the basal layer and is characterized by the presence
of extensive desmosomal connections between cells. The next morphologic layer, the granular layer,
is distinguished by the presence of keratohyalin granules within the cytoplasm of the keratinocyte.
Keratohyalin granules contain products of keratinocyte differentiation, such as loricrin, filaggrin,
cystatin-a., and lipids that are used in the assembly of the corneocyte membrane and intercellular
compartment. Another subcellular organelle, the keratinosome or lamellar body, is a specialized
secretory vesicle present in the upper spinous and granular layers. Enzymes such as glucosylceramide
synthase, lipid substrates/products such as glucocylceramides and sphyingolipids, as well as spe-
cialized proteins such as corneodesmosin that make up the corneodesmosomes of the cornified layers,
are also present in keratinosomes.3 The transition zone delineates the region between nucleated and
anucleate cells in upper epidermal layers. Within this region, selected cellular organelles and nucleic
acids are targeted for elimination by the action of specific proteases, nucleases, and other enzymes.
The final stage in keratinocyte terminal differentiation results in the formation of the cornified layer.
This outermost layer is made up of corneocytes or “bricks” that form a packaged, stabilized array
of keratin filaments, proteins, peptides, and other breakdown products contained within a cross-
linked protein envelope and united by a lipid-rich intercellular “mortar.”

Each stage of epidermal differentiation is characterized by specific biomarkers of gene expres-
sion. During normal epidermal differentiation, keratins 5 (K5) and 14 (K14) are expressed in the
basal keratinocyte layer, while keratin 1 (K1) and 10 (K 10) are expressed in the suprabasal layers.
Involucrin is expressed in the late spinous layers and granular layers, and loricrin and filaggrin are
specific markers of granular layers.

In the last decade, it has become clear that keratinocytes are not simply a mechanical barrier
to the external environment, but are also able to produce a number of cytokines and other mediators
with immunologic, inflammatory, and cell-adaptive (e.g., proliferative) properties. Cytokines are
relatively small, soluble (glyco)proteins which are synthesized and secreted by various cells, bind
to specific receptors, and regulate activation, proliferation, and differentiation of immune as well
as nonimmune cells. They include several subclasses, designated: (1) interleukins (IL), (2) colony-
stimulating factors (CSF), (3) interferons (IEN), (4) tumor necrosis factor (TNF) family members,
(5) growth factors, and (6) suppressor factors.>® Selected cytokines produced by keratinocytes in
sensitization or irritation reactions will be reviewed here as well as in Chapter 12. We also will
briefly review other keratinocyte-produced factors that mediate these responses. These include
arachidonic acid and metabolites, biogenic amines, small molecular weight factors, and second-
messenger molecules, as well as nitric oxide (NO) and reactive oxygen species (ROS). Together,
these constitutive or inducible gene products and cellular metabolites of the keratinocyte directly
or indirectly regulate the epidermal response to irritant or allergic agents contacting skin.
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Figure 1 provides a schematic framework depicting the sequence of cellular and biochemical
events that induce irritant or sensitization reactions in epidermis. The keratinocyte plays a central
role in controlling and coordinating cutaneous responses by other immune and inflammatory cells
within and between the epidermis, dermis, and microvasculature.

Sensitizer or Irritant

—_——— == = =< Epidermis

Langerhans' cell

T-cell, etc Keratinocyte —_
\ / Injury or death
__Activation |
ey ines Release of preformed cytokine/growth
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actor mediators, IL-1q, AR, etc
Inflammatory mediator>< l
eicosanoids, etc
l Epidermal damage
Induction of Disrup;ed_ barrier
Inflammatory reaction or Spongiosis

Immune reaction Reactive keratinocyte
hyperproliferation

Microvascular Cellular infiltration
response <> response — inflammatory
! or immune

Epidermal

Dermal erythema thickening and scaling

edema

Figure 1 Sequence of events following irritant or sensitizer exposure to epidermis. (Modified from Corsini
and Galli, Toxicol. Lett., 102—-103, 277-82, 1998.

Numerous protein and nonprotein factors are synthesized and secreted or released by kerati-
nocytes that become “activated™ by an irritant or allergen. A current, but inevitably incomplete list
of these biologically active factors is presented in Table 1. The function(s) of some of these factors
are well characterized while others are less well defined.

An important concept still to be comprehensively addressed for keratinocyte function in irri-
tation and sensitization reactions is the hierarchy and ordering of events that take place within a
single cell and the tissue to produce a given response. This concept is also critical for many other
epidermal reactions to disease (e.g., psoriasis,” dermatitis, viral infections [verrucae-human papil-
lomavirus, etc.]) In this context, some cytokines, such as IL-1 and TNF-o, have been considered
to be “primary” cytokines, whereas others, such as IL-6, IL-8, and GM-CSF. are “secondary” since
they are insufficient to induce an inflammatory response in the absence of other stimuli or primary
cytokines.* However, the biological circuitry is no doubt much more complex and will likely require
sophisticated mathematical modeling and application of neural network theory to fully describe
the biological “output™ of the keratinocyte that has been stimulated by an irritant or allergic “input.”?

I1. KERATINOCYTE IRRITATION OR SENSITIZATION:
THE INTEGRATED CELL RESPONSE

As depicted in Figure 1, irritants and allergens (haptens) have the ability to initiate similar responses
in epidermis. In fact, irritants and sensitizers have the potential to overlap in their activity profiles;
that is, some sensitizers also have irritant properties. The difference lies in the ability of a sensitizer
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TABLE 1
Keratinocyte Mediators of Irritation and Sensitization

Cytokines
Primary C-C chemokines
IL-1a MCP-1
IL-1B MIP-1a
TNF-a RANTES
Humoral/cellular immune regulation Growth factors
IL-10 TGF-a
IL-12 AR
IL-18 HB-EGF
IFN-a. NDF
IFN-B VEGF
T cell growth PDGF
IL-7 NGF =
IL-15 FGFs
Col()ny-s(imulaling activity Neurotrophin
IL-6 Suppressive/antagonist
G-CSF IL-IRA
M-CSF TGF-B
GM-CSF IL-10
C-X-C chemokines
IL-8
Gro-a, -B, -y
IP-10
Neuroendocrine
a-MSH
Eicosenoids
Arachidonate 12-HETE
PGE-2 LTB,

Oxygen-derived
Nitric oxide (NO) Superoxide (0,)

Hydrogen peroxide (H,0,)

e e I

to induce a specific immune response with immunological “memory.” By contrast, cutaneous
irritation is a nonimmunologic, reversible, local inﬁammatory reaction that induces edema and
erythema following a single or repeated epicutaneous exposure to the chemical at a defined skin site.

Upon exposure of the keratinocyte to an irritant or sensitizer, cell injury or cell death (due to
sufficiently severe damage induced by agents such as nitrogen or sulfa mustard agents'%) occurs
and triggers a set of responses in the keratinocyte and epidermis. Key to this response is IL-1q
release. Loss of barrier function by irritants, such as acetone, a strong delipidizing solvent, also
can trigger rapid increase in expression of specific growth factors, such as amphiregulin (AR) and

The keratinocyte becomes “activated” in response to irritant or sensitizer exposure. Specific
sets of cytokines, as well as arachidonic acid metabolites and other inflammatory mediators, are
expressed and secreted to trigger and modulate the inflammatory reaction. The ability of the
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Whether induced by an irritant or a sensitizer, similar morphologic and histologic features of

p cythema, edema, and epidermal scaling and thickening (acanthosis) are observed. Chapters 6, 7,
b 40d 10 delineate the unique roles of the Langerhans cell and the T cell in the epidermal immune
P response and allergic contact dermatitis.

In addition to expressing and releasing potent cytokines and other inflammatory mediators, the

* enatinocyte also modulates expression of various immune and nonimmune related cell surface
; Y

receptors, cell adhesion molecules, and extracellular matrix (ECM) factors. These cell-associated

~ molecules likely play important roles in orchestrating the keratinocyte response during irritant and
- sensitization reactions. These gene products include ICAM-1. HLA-DR, receptors of growth factor

£ and other cytokine families, integrins, cadherins, fibronectin, heparin sulfate and related proteogly-
' cans, and numerous other cell-cell and ligand-receptor factors.

Intracellular signaling pathways of the keratinocyte are only beginnipg to Abe_ identified, assem-
bled, and integrated into an intricate stimulus—response network that mediates irritant and sensitizer
reactions in skin. The keratinocyte has the potential to either upregulate or downregulate a specific
cutaneous response. For example, ultraviolet (UV) radiation induces cytokine cascades that have

- the ability to induce systemic immune suppression.'> We have recently shown that H,0, and other

ROS induced in human keratinocytes by UVB rapidly, but transiently, enhance epidermal growth

1 factor (EGF) receptor phosphorylation and differentially activate downstream protein kinase sig-

naling pathways, including extracellular regulated kinase (ERK), p38, and c-jun N-terminal kinase
(INK), critical kinases of mitogen- and stress-related cascades in keratinocytes.!?!4 These pathways,
inpart, terminate in the nucleus where specific transcription factors such as activator protein (AP)-
I, AP-2, y-interferon activation site (GAS), NF-«B, EGR, etc. regulate gene expression within the
keratinocyte and many other cell types. In this regard, glucocorticoids are also known to be potent
mhibitors of the inflammatory response. Recent studies have demonstrated that these steroid hor-
mones strongly inhibit AP1, GAS, and NF-k3 DNA-binding activities and induction of the arachi-
donic acid metabolizing enzyme, cyclooxygenase-2 (COX-2), in IL-13-stimulated keratinocytes. !

These findings link cytokines and other inflammatory mediators to signaling pathways that
“aetivate” the keratinocyte, but also demonstrate that keratinocyte responses can be downregulated
by UV or glucocorticoids, well known and potent modulators of Cutaneous irritation and sensiti-
zation (see also Chapters 15 and 20).

In the following sections, we provide a concise review of selected cytokines and other inflam-
matory mediators produced by keratinocytes that regulate cutaneous sensitization and irritancy.
This chapter also examines the progress and comparative evaluation of in vitro models to test
imitants and sensitizers using keratinocytes or more complex multicellular system:s.

. KERATINOCYTE ELABORATED MEDIATORS

A. INTERLEUKIN T (IL-1)

IL-1 was originally described as a lymphocyte-activating factor produced only by monocytes.
However, it is now well established that many cells, including epithelial cells, endothelial cells,
fibroblasts, and various tumor cells, produce IL-1.'6 Two different forms of IL-1, IL-1a and IL-
I, encoded by distinct genes, have been identified. These two forms bind to the same two IL-1
receptor types, suggesting they have similar biological activities. IL.- 1. and IL-1B are synthesized
as larger “pro-interleukins,” which in the case of IL-1B must be cleaved by a specific converting
enzyme to the shorter biologically active form. IL-1a. is also cleaved, but this does not seem to be
necessary for its activity. Keratinocytes are able to synthesize and secrete both forms of IL-1, but
the predominant biologically active form released by keratinocytes is IL-1c,!7 since keratinocytes
lack constitutive IL-1B converting enzyme (ICE) activity. However, ICE activity is induced in
keratinocytes by both irritant chemicals and sensitizers, such as urushiol.'® TL-1B activation may
be induced in epidermis in vivo by a non-ICE mechanism.'® This contrasts with observations in



130 Biochemical Modulation and Skin Reaction: Transdermals, Topicals, Cosmetics

vitro suggesting lack of IL-1B processing.2’ IL-low appears to be retained intracellularly or in a
membrane-bound form. As long as the epidermis is intact, IL-1 is eliminated by normal desqua-
mation. Because IL-1 lacks a hydrophobic leader sequence necessary for transmembrane secretion,
it has been proposed that it only can be released after some type of cell injury or membrane
perturbation.'® In human skin, the levels of IL-1 are 100 to 1000 times higher than ii: most other
tissues. Keratinocytes are able to produce it constitutively without stimulation. Upregulation of IL-
I synthesis has been observed upon stimulation with lipopolysaccharides (LPS), phorbol myristic
acetate (PMA), physical, chemical, or thermal injury, ultraviolet irradiation, and a variety of
cytokines (i.e., GM-CSF, TNF-a, IL-6, TGF-a, and IL-1a. and IL-1B itself).?! Interestingly, 1L-3
appears to be specifically induced by hapten within 1 to 3 h of exposure, whereas IL-1c. mRNA
is not induced by either hapten or primary irritants, as measured by reverse transcriptase-polymerase
chain reaction (RT-PCR).? Furthermore, IL-1f induces Langerhans cell migration out of epidermis
and neutralizing antibody to IL-B, but not IL- 1o, TNF-o, or GM-CSF, prevented allergen-induced
migration of Langerhans cells, suggesting that IL-1B plays a role in irritation of contact hypersen-

n7

sitivity.** The effects of IL-1 are highly pleiotropic and space limits delineation of all of its biological
effects. For further detailed information on IL-1, see Chapter 12.

IL-1is a proinflammatory cytokine. It is chemotactic for monocytes, lymphocytes, and neutro-
phils. It stimulates the proliferation, differentiation, and activation of various cells and the produc-
tion of other cytokines such as GM-CSF, IL-6, and IL-8. Keratinocytes, in addition to producing
IL-1, express large amounts of specific IL-1 receptors and IL-1 receptor antagonists (IL-1ra).>* This
antagonist binds to the same receptor as IL-1, but it does not produce cell activation and so acts
as a competitive inhibitor to prevent IL-1 effects unless IL-1 exceeds certain threshold levels. The
reader is referred to Chapter 14 for further information on IL-1 and IL-1ra effects.

B. INTERLEUKIN 6 (IL-6)

IL-6 is a multifunctional cytokine released by many different cells, including monocytes, fibroblasts,
endothelial cells, keratinocytes, and different tumor cells.2’ Unstimulated keratinocytes usually
produce low levels of IL-6, but expression can be upregulated by the addition of stimulants such
as IL-1, LPS, PMA, or UV-B irradiation, TNF-ot, GM-CSF, 1L-4, TGF-B, and injury.® Like IL-1,
IL-6 has a variety of biological activities on different target cells. Many biological effects of IL-1
and IL-6 overlap. IL-6 may augment proliferation of keratinocytes. Moreover, some evidence
suggests that IL-6 plays a role as mediator in inflammatory skin diseases such as psoriasis.?!
Compared to other cytokines and growth factors, the potency of IL-6 in these responses 1s less
pronounced and likely secondary.

C. INTERLEUKIN 8 (IL-8)

In addition to monocytes, a variety of cells including endothelial cells, keratinocytes, fibroblasts,
and T lymphocytes produce IL-8.2 Keratinocytes do not produce IL-8 constitutively, but the
production is stimulated by other cytokines (IL-1lct, IL-18, TNF-o, and IFN-y), LPS, and phorbol
esters.?” IL-8 is strongly chemotactic for polymorphonuclear neutrophils and lymphocytes, increases
cytosolic free calcium, and induces granule exocytosis.?® IL-8 is also chemotactic for human

basophils and stimulates them to release histamine.?” Therefore, IL-8 is also classified as a potent
chemokine of the C-X-C class.2¢

D. INTERLEUKIN 10 (IL-10)

Originally described as a product of bone marrow-derived cells, IL-10 is also produced by activated
murine keratinocytes.” IL-10 is known to be an anti-inflammatory cytokine and may act as a
suppressor factor of immune reactions. IL-10 expression is enhanced in UV-treated keratinocytes,
and hapten-specific tolerance induced by UVB is mediated by IL-10.3° It may inhibit the production
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of cytokines such as IFN-y, IL-1, and TNF-a.. By inhibiting IFN-y production by Thl cells. it
promotes induction of a Th2 response. One role of 1L-10 may be to prevent severe damage to the
skin by reducing the risk of necrosis by an ongoing inflammatory process.

E. INTERLEUKIN 12 (IL-12)

IL-12 is a heterodimeric protein and a potent costimulator of Th1 cells that are involved in cutaneous
sensitization responses. Keratinocytes constitutively express the lower Mr (35 kDa) chain of IL-12
and are induced to express the 40-kDa chain following €xposure to contact allergen, but not irritants. 3!
[L-12 strongly stimulates T cell proliferation and mediates the primary immune response in skin.

F. INTERLEUKIN 15 (IL-15)

[L-15 has recently been shown to be induced in epidermal keratinocytes by culture and selected
cytokines. IL-15 is a potent immunomodulator of T cell-mediated immune responses, similar in
function to IL-2, and attracts and activates antigen-specific Thl cells. IL-15 also stimulates the
proinflammatory and antimicrobial properties of neutrophils. Both UVB exposure and corticoster-
oids downregulate IL-15 expression in keratinocytes.?2

G. Tumor NEecrosis AtpHA (TNF-or)

TNF-a is a pleiotropic proinflammatory cytokine that mediates a range of biological responses,
including proliferation, apoptosis, and inducing gene responses in TNF receptor-bearing cells.
TNF-a also induces inflammation in skin following local synthesis and release or by injegtion as
well as inducing ICAM-1 expression in keratinocytes.® Irritants such as SDS and PMA also have
been shown to rapidly induce TNF-o. expression as well as subsequent inflammation and edema
in skin.** Selected allergens such as nickel and DNFB also induce TNF-a. gene expression and
protein in epidermis of sensitized animals.?

H. CHEMOKINES — IP-10 ETC.

Chemokines such as interferon-induced protein (IP)-10 and macrophage chemotactic protein
(MCP)-1 have been shown to be upregulated in cutaneous delayed-type hypersensitivity reactions
and other epidermal responses. Chemokines play an important role in inﬂammulionJviu T cell
chemotactic and adhesion-promoting activities . Interferon-y strongly stimulates expression of
[P-10 in keratinocytes.*® IP-10 and other selected chemokines expressed by keratinocytes function
in the epidermal signaling network to localize and induce specific responses that n-wdiute cuta-
neous allergic and irritant reactions.

I.  MISCELLANEOUS MEDIATORS

Products of the arachidonic acid metabolic pathway (termed “eicosenoids™), as well as arachidonate
itself, are potent regulators of inflammation and allergic or irritant epidermal responses. The
polyunsaturated fatty acid precursor, arachidonic acid, is produced by the enzymatic action of
phospholipases (A, or C) on lipids of the cell membrane. In addition to the well-known actions of
the cyclooxygenase, lipoxygenase, and monooxygenase metabolites of arachidonate in skin. arachi-
donic acid itself has been shown to trigger keratinocyte stress-activated responses, such as JNK
activation.””* A variety of the early events in skin inflammation are mediated by arachidonic acid
and its metabolites. Tumor promoters and other irritants induce arachidonic u;‘id metabolism in
skin which may be used as relevant markers for cutaneous irritation.340

The keratinocyte also generates various free radicals following stimulation by chemical agents. UV
radiation, etc. We have recently shown that superoxide and H,0, are rapidly produced and gliminzucd
in keratinocytes following exposure to UVB'>' and other agents. These ROS potently regulate levels
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and activity of phosphorylated proteins and protein kinases within keratinocytes. These mediators may
therefore be considered as second messengers mediating irritant or toxic responses in the epidermis.

IV. MODELS OF KERATINOCYTE IRRITANCY AND SENSITIZER TESTING

Human skin irritation and allergic contact dermatitis are common occupational and environmental
health problems, resulting from skin exposure to man-made chemicals, waste products, and/or
commercially marketed products such as solvents, soaps, organic dyes, cosmetics, pharmaceuticals,
and skin protectants. Consequently, it is vital that the potential of a chemical compound to cause
dermal irritancy and/or sensitization must be assessed accurately. For this purpose, various animal
testing methods have been developed over the decades and have served industry very well. The
most widely applied bioassays have been the rabbit skin irritation test,*! the guinea pig maximization
test,*? the occluded patch test of Buehler,*? the local lymph node assay,* and the mouse ear swelling
test.** However, major problems of in vivo assays have been identified, including the (1) structural
and physiological differences between the skin of rabbit, guinea pig or mouse, and human skin,
(2) extrapolation from testing at fixed dose and time of application to the variable conditions of
human exposure, (3) subjective nature of multi-end point assessment which can lead to interlabo-
ratory differences, and (4) false-positive and false-negative responses.* Finally, when systemic
effects of a product are estimated following topical exposure in vivo, metabolism in skin must also
be considered. The general lack of data in this category is due to the difficulty in measuring skin
metabolism in vivo that requires sampling from skin. Consequently, because of the multitude of
problems associated with in vivo protocols as well as other restrictions emerging from ethical issues
of animal use, the validity and propriety of in vivo testing methods have been increasingly chal-
lenged. As a consequence, in vitro methods offer alternatives to evaluate the interactions between
chemical substances and a biological system such as skin and epidermis. Different types of excised
skin have been used for in vitro screening studies to test a variety of biological properties, such as
percutaneous absorption.*”*$ The major drawback of using this particular model for routine screen-
ing purposes is the time necessary to acquire both the specimens and data and the equipment needed
to prepare the skin. Therefore, the development of new in vitro models and methods has become
a focus of many academic and commercial laboratories. In this review, the usefulness of in vitro
skin equivalent models will be illustrated and our experience with a system of human epidermis
reconstructed on an inert filter substrate will be summarized.

Keratinocytes grown submerged in culture medium have often been used as in vitro alternatives
for testing cutaneous toxicity, and a good correlation between skin irritation, cytotoxicity, and
proinflammatory mediators release has been demonstrated.4%50 However, under these conditions,
keratinocytes organize to flattened, loosely associated layers, synthesize a different pattern of
polypeptides, only sporadically form keratohyalin granules, and rarely contain lamellar bodies.’!
They lack a normal stratum corneum that acts as a barrier to chemical toxicity and, consequently,
fall far short of simulating the in vivo situation. Moreover, these culture models are typically limited
to water-soluble compounds.

The development of keratinocyte culture systems using de-epidermized dermis,’>5? collagen
matrix (with or without fibroblasts),’*% or inert filters (with or without fibroblasts),7-58 coupled
with living keratinocytes that undergo maturation to form a stratified epidermal tissue at the
air-liquid interface, has led to the production of functional human skin equivalent models. They
exhibit a considerable greater degree of tissue organization that closely resembles the in vivo
state.”'3759-61 Over the past few years, different commercially available cultured human skin models
have been developed and studied, including: (1) EpiDerm (MatTek Corporation, Ashland, MA),
(2) Episkin (SADUC, Chaponost, France), the human reconstructed epidermis from SkinEthic
(SkinEthic, Nice, France) with no fibroblasts, (4) Living Skin Equivalent (Organogenesis, Cam-
bridge, MA), and (5) Skin2 (Advanced Tissue Sciences, La Jolla, CA), which are composed of
both epithelial cells and fibroblasts.?2-6 These cultures exhibit a well-stratified epithelium and
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comified epidermis with significantly improved barrier function and metabolic activity.5766-68 The
presence of a stratum corneum makes it possible to apply topically a wide variety of products
and/or complex formulations. Differentiation markers such as suprabasal keratins, integrin 4,
integrin a6, fibronectin, involucrin, filaggrin, trichohyalin, type I, III, TV, V, and VII collagen,
laminin, heparan sulfate, and membrane-bound transglutaminase have been found to be expressed
similar to those of the epidermis.®®%-7! Moreover, keratin synthesis and the production of cornified
envelopes parallels that found in vivo. Spinous cells display abundant glycogen deposit, and
keratohyalin granules are more abundant in the granular layer. Both the size and number of
hemidesmosomes increase during maturation in vitro and anchoring fibrils are observed.5866.69.72-74

Percutaneous penetration studies performed with human skin recombinant models have revealed
that the stratum corneum forms a substantial barrier to 3H-water,>>¢* pindolol, calcitonin,” toluene,
arbazole, benzopyrene,®® testosterone,’>7%’7 estradiol,™ hydrocortisone,’768 benzoic acid,'s7?
cyclosporine,” salicylic acid, provitamin BS, theophylline, and scopolamine.” The results obtained
are more consistent and reproducible than cadaver skin” and correlate well with those recorded for
hairless guinea pig skin.”> Nevertheless, the relative permeability of normal human skin compared to
reconstructed skin is different and is likely to vary considerably from one compound to another. A
good correlation for one class of chemicals is not necessarily indicative of a similar relationship for
other chemicals.*356377 This points to an impaired barrier function of reconstructed epidermis in
vitro. In fact, despite the similarity in tissue architecture, reconstructed epidermis exhibits some
deviations from normal epidermis, depending on the tissue culture method and the source of kerati-
nocytes. Reduction of ceramides 4 to 7 and 6 to 7, integrin overexpression, premature expression of
specific differentiation markers, and abnormal lipid composition have been observed under normal
in vitro culture conditions.”'#%8! By using freeze-fracture electron microscopy,®? X-ray diffraction 338
and confocal laser scanning microscopy,® it has been shown that, in some cases, reconstructed
epidermis displays abnormalities in lamellar body delivery and extrusion, which manifests itself by
adisturbance of the transformation of lamellar bodies into lamellar lipid bilayers by impaired structural
organization and distribution of epidermal lipids into the intercellular space.®*%” Furthermore, by using
small-angle X-ray diffraction techniques, it has been shown that the stratum corneum lipids appear
tobe organized in multilamellar structures with a periodicity of 12 nm®” in contrast to native epidermis,
in which two lamellar phases with periodicities of 6.4 and 13.4 nm are typically detected.®> Conse-
quently, whereas for native epidermis the penetration pathway is confined only to the extracellular
space, diffusion within the stratum corneum in the reconstructed epidermis likely occurs via both
extracellular and intracellular pathways.® These findings may partially explain the divergent results
obtained from various percutaneous penetration studies.

Improvements in the culture conditions, such as maintaining the cultures in delipidized serum,
reduction of the relative humidity,’® and use of chemically defined medium,’7#8 has led to further
optimization of these models. Epidermal tissues generated at 33°C in absence of epidermal growth
factor,”" and in the presence of vitamin C7' but absence of retinoic acid,’”$8 improves the stratum
comeumn architecture and lipid profile. In vitamin C-supplemental medium, the content of glucosyl-
ceramides and of ceramides 6 and 7 is markedly increased.”! In absence of serum, the relative amounts
of ceramides, free fatty acids, and cholesterol are comparable to native epidermis.’?> Epidermis recon-
structed on fibroblast-populated collagen at 37°C in the presence of EGF has a similar morphology
to that of native epidermis. However, irrespective of the culture conditions, involucrin is aberrantly
expressed. EGF supplementation has a deleterious effect on epidermal morphogenesis and differen-
tiation. The synthesis of K1 and K10 is suppressed on both protein and mRNA levels.”!

Since 1990, a fully differentiated epithelium having the features of in vivio epidermis has been
obtained in vitro by culturing second-passage normal human keratinocytes in a retinoic acid-free,
chemically defined medium MCDB 153 on inert filter substrates exposed to the air-liquid interface
for 14 days.>” In this model, the basal cells synthesize and secrete all major markers of hemides-
mosomes as well as components of the lamina lucida. Hemidesmosomes with major dense plaques
and anchoring filaments and a basement membrane-like structure were identified, suggesting that
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the presence of serum and dermal factors is not required.”® Because of the restricted presence of £

exogenous growth factors and protein in the medium, this in vitro human living epidermis is
approaching the most suitable system for detecting and testing the effects of any product that has
the potential to be in contact with epidermis.89

An advantage of in vitro-reconstructed skin equivalents is the possibility of incorporating
various additional cell types alone or in combination with keratinocytes. Recently, the introduction
of melanocytes into epidermal reconstructs has expanded potential applications of these models.”

As in the in vivo state, melanocytes appear as dendritic cells and are located in the basal keratinocyte &

layer. Melanin has been detected in both the melanocytes and the neighboring keratinocytes.

Following UV radiation, increase in the number of dopa-positive melanocytes in the basal layer §

has been shown that results in increased pigmentation of the irradiated skin equivalent. More recent
advances in culture techniques have made it possible to develop reconstructed epidermis containing
not only keratinocytes but melanocytes and Langerhans cells as well. Cord blood-derived CD34+
hematopoietic progenitor cells induced to differentiate by GM-CSF and TNF-a were seeded onto
a reconstructed epidermis composed of keratinocytes and melanocytes. This culture system gives
rise to a reconstructed in vitro model displaying a pigmented epidermis with melanocytes in the
basal layer and resident epidermal Langerhans cells located suprabasally and expressing major
histocompatibility complex class II, CD1 antigen, and Birbeck granules.”! It provides an attractive
in vitro system to study the regulation of melanogenesis and melanocyte—keratinocyte interactions,
and to investigate in a more defined model how these processes are affected by UV irradiation. In
addition, this epidermal model can be used to test the phototoxic or photoprotective potential of
various compounds as well as sunscreens, which is a distinct advantage over other animal models.

In vitro reconstructed epidermis allows testing of products at concentrations and in formulations
that would be used in vivo. In addition, the dose-response relationship can be examined over a
wide range of concentrations. Furthermore, the lower part of the tissue is bathed in the culture
medium that can be withdrawn for analysis of released mediators. They provide quantifiable and
objective end point measurements compared to those in vivo studies where more subjective param-
eters, such as erythema and edema, are often used. For these reasons, reconstructed human epidermis
can be widely exploited for various research purposes, including studies of cutaneous biogenesis
and skin wound healing, investigation of the regulation of keratinocyte differentiation, pharmaceu-
tical agent metabolism studies and absorption properties,®*7992-95 assessment of cutaneous immu-
notoxicological response,®’ and responses to irritants®0-98.6265.6996-9 and to sensitizers.?%0

The end points most frequently used include histological analysis of tissue damage, cell
membrane damage estimated by measuring leakage of enzymes such as lactate dehydrogenase
(LDH);¢ cell viability determination by MTT conversion®263:89.96.101.102 o1 Neutral Red assay;'?" the
modulation of the stratum barrier function and the release of proinflammatory mediators, such as
IL-1q,3661.6289.96.103,104 ] - 18 and IL-6,%'%3 1L-8;% TNF-a.f! prostaglandins;36:6296.105.106 hydroxye-
icosanotretaeno (HETEs) and leukotriene B, (LTB,);'"” plasminogen activator;’® cytokine mRNA
expression;'%-'"" antileukoproteinase synthesis;''> ICAM-1 expression;®' integrin receptor modula-
tion;*" measure of intracellular ATP''? and corneosurfametry.''

Upon reaching the living layers of the epidermis, irritant and sensitizing agents modulate cell
membrane integrity. Irritation in vivo modulates integrin expression.®! Keratinocytes in the basal layer
of healthy epidermis express four different integrins, namely, a2f1, a3B1, a6B4, and o B3; they
participate in keratinocyte adhesion to the basement membrane that separates the epidermis from the
dermis. Integrins have been shown to be involved in keratinocyte differentiation and activation, cell—ell
adhesion between keratinocytes, and keratinocyte migration on extracellular matrix proteins.''> Under
inflammatory conditions, upregulation and suprabasal expression of these integrins coupled with the
induction of a5B 1 and intercellular adhesion molecule-1 (ICAM-1), a specific ligand for 32 integrins,
have been demonstrated.''® Finally, in skin reconstructed in vitro, UVB exposure leads to major
epidermal developmental changes characterized by a downregulation of major markers of keratinocyte
differentiation such as keratin 10, loricrin, filaggrin, and keratinocyte transglutaminase (Type 1).'"
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Iritants and sensitizing agents also trigger cutaneous responses by inducing epidermal kerati-
nocytes to elaborate and/or to release proinflammatory cytokines at both the protein and mRNA
levels. These cytokines activate dermal microvascular endothelial cells and induce accumulation
of specific mononuclear cells in vivo, and they, therefore, are considered as critical signaline
molecules in the cascade of events leading to in vivo skin irritation and/or sensitization, 2529.56.118
Consequently, the expression and/or release of cytokines by human skin equivalent models have
been proposed as reliable markers to predict in vivo toxicological effects.5665.119.120 Although the
complexity of the skin response to injury has created significant challenges in the discrimi:mlion
of irritant from sensitizing agents by in vitro methods exclusively, it is now evident that analysis
of the cytokine mRNA expression and protein release by epidermal keratinocyte cells may pr()\"ide
one possible approach to detect which agents are irritants or sensitizers.

Cultured keratinocytes synthesize constitutively, or can be induced to produce a variety of
cytokines, including IL-la, -6, -8, and -10, GM-CSF, TGF-¢, and TGF-B, TNF-o,, monocyte
chemotaxis and activating factor (MCAF), IP-10, and macrophage inflammatory protein 2 (:\/IiP—
2).#12! Cultured keratinocytes exposed to contact allergens exhibit a rapid increase in mRNAs for
[L-la, -8, -6, and -1B, GM-CSF, TNF-a, IP-10, and MIP-2 2829122 ith subsequent release of
keratinocyte-derived IL-10, -8, -6, and TNF-¢.28:118.123

Studies have shown that skin equivalent models constitutively express mRNAs for inflammatory
and immunomodulatory cytokines. The MatTek model expresses mRNAs for IL-1c.. -1B, -8, -6, and
-15, GM-CSF, and TNF-o..'?* In vitro epicutaneous contact with irritants leads to mRNASs expression
of IL-lat, -1B, -6, -8, and -10, GM-CSF, TNF-a, TGF-, and IL-12.'% In this case, the mRNA levels
for IL-6 and IL-8 are higher. This may well be due to the presence of fibroblasts.!25.126 Finally,
experiments performed on reconstituted human epidermis have shown that both the skin irritant
sodium lauryl sulfate (SLS) and the sensitizing agent 1-chloro-2.4-dinitrobenzene (DNCB) induce
anincrease in IL-1au and IL-8 release. However, DNCB only upregulates TNF-« release. Constitutive
message was expressed for IL-1ot, IL-8, and IL-10 but not for IL-1B. Both DNCB and SLS increased
message for IL-lo.. The in vitro-reconstituted human epidermis, EPISKIN, was used to
molecular mechanisms of skin irritation and sensitization.'?’ Studies were performed to assess the
ability of irritants and contact allergens to modulate cytokine message in SKIN2™ and EpiDerm
cultures and determine if a cytokine or panel of cytokines would identifiy and contact allergen and
differentiate it from an irritant. For the EpiDerm model, two different irritants were cvzvxlu;ucd.
benzalkonium chloride and nonanoic acid, along with two moderate allergens, TNCB and Oxazolone.
Both irritants and allergens increased steady-state message levels for IL-8 and decreased messace
levels for IL-1pB in the epithelial cells. Only irritants increased message levels for TFN-o, whereas
the allergens produced either no change or a decrease in TNF-q message. Effects on the messa
levels of IL-6 and IL-lo differed for each chemical in magnitude, timing, and concentration.”

For the SKIN2™ the irritants BC, SLS, and nonanoic acid (NA) were evaluated along with
three contact allergens TNCB, DNCB, and oxazolone. All three irritants increased stead;/-slzuc
message levels for IL-6, IL-8, and TNF-o. The allergens DNCB and oxazolone increased m-essuge
levels for IL-6, IL-8, and GM-CSF, whereas TNCB only increased message for IL-8. The 5[621(1;'-
state level of IL-15 was increased by NA only.!% These results suggest that different patterns of
epidermal cytokines are stimulated during in vitro irritation and/or sensitization processes. Conse-
quently, it should be possible to distinguish between skin sensitizing agents and irritants by
investigating the differential upregulation and modulation of epidermal cytokines by kcrzuinocvle;.
In this respect, the roles of IL-la and IL-8 may be particularly relevant. IL-l1qa is produce;l by
keratinocytes and sequestered in the epidermis. During irritation, the release of IL-1ae causes
autocrine regulation of epidermal cytokine synthesis which, in turn, induces accumulation of
dendritic cells in lymph nodes, draining the site of irritation, and stimulates the maturation of
Langerhans cells."”!*® Moreover, previous experiments have demonstrated that allergens induce
expression and release of IL-8 mRNA, which is a potent chemoattractant for poly r
neutrophils and T lymphocytes.?8.12
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Recently, a model of reconstructed human epidermis (RHE) was used as an in vitro skin mode
to discriminate the effects of Tween 80, Triton X100, and benzalkonium chloride (BC) as irritants
and 1-chloro-2,4-dinitrobenzene (DNCB) as a sensitizing agent.'3! It is based on the modl
developed by Rosdy and Cross®® and consists of a mitotically and metabolically active culture of
human-derived epidermal keratinocytes that are differentiated into basal, spinous, granular, and
cornified layers analogous to those found in vivo.’® Specific markers of epidermal differentiation
such as keratins 1/10, involucrin, filagrin, loricrin, and transglutaminase have been localized. The
lipid profile analysis shows that this model contains free fatty acids and all classes of ceramides.
These cultures exhibit barrier function and metabolic activity which allow direct application of
the product to be tested, thus simulating in vivo human topical exposure and an in vivo skin
irritation/sensitization test.%®% In the experiment, the extent of epidermal irritation and sensitization
was evaluated morphologically and amounts of intracellular and extracellular of IL-1c and IL4$
were assayed. The corresponding constitutive mRNA levels of these interleukins were quantified
and the cytotoxic response was assessed by a MTT assay. The RHE resembled normal human
epidermis with all typical epidermal layers. Keratin 10 was typically confined to the suprabas
layers of the tissue, suggesting normal epidermal terminal differentiation. Topical application of
each of the three surfactants resulted in significant changes of tissue morphology and was coupled
with different dose-dependent decreases in cell viability corresponding to their in vivo irritant
potency.''?130-B1 TL-1o release was shown to increase inversely with decrease in cell viability, but
interestingly, the surfactants did not stimulate increase in IL-8 levels. In contrast, DNCB did not
induce elevated IL-1a release, although it induced a rapid dose-dependent decrease in cell viability.
By contrast, DNCB increased IL-8 release. RT-PCR demonstrated the presence of mRNA for IL-
loe and for IL-8 as previously described in vivo.'32!33 IL-1ae was the most abundant cytokine
transcript. BC, Triton X100, and DNCB upregulated IL-8 mRNA expression, while only BC
induced a significant increase in IL-lo. mRNA expression. The results demonstrate that the
production of IL-la and its release into the extracellular medium were due not only to specific
cytotoxicity, but also to the extent of direct epidermal tissue stimulation. Conversely, the production
of IL-8 did not directly correlate with cytotoxicity but may be linked to the type of product applied
and classified as either irritant or sensitizer. These findings emphasize the requirement to use
substances of the same class as standard controls in order to test unknown compounds that will
be coupled with the investigation of multiple end points. Our data demonstrate that divergence of
the IL-1o and IL-8 releases profiles and corresponding mRNA upregulation differentiates between
specific responses to irritants or allergens. These findings suggest that it may be possible in
single integrated assay to classify and discriminate between irritant and sensitizing agents as 2
function of patterns of induced cytokine production and cell viability measurements. It has not
been determined which mechanism is responsible for the change in cytokine mRNA expression,
but we have observed that mRNA levels do not necessarily correlate with protein expression, and
we also find that the type of product appears to determine the pattern of cell mediator expression
and release. This could explain the disparate results obtained with the EpiDerm or the Skin
models where only mRNA expression was investigated.'® Our results suggest that skin allergens
and skin irritants could stimulate variable patterns of epidermal cytokine production in RHE. The
stimulation seems to be nonspecific in terms of mRNA signal strength, but specific in terms of
protein production and release. In fact, if the cytokine levels (intracellular vs. extracellular) are
plotted, a strong correlation for IL-1a (R = 0.999) is observed, suggesting a direct relationship

among synthesis, storage, and release. By contrast, we observe for IL-8 that BC and Triton X100
induces synthesis and storage without significant release, while DNCB induces a rapid synthesis

and release of IL-8 without storage (Figure 2). These observations highlight the complexity of

biochemical pathways underlying cytokine production, and suggest interactions with different |

specific cellular target sites.
Functional mitochondria seem to be required in keratinocytes for de novo IL-1a. synthesis.”

In fact, tributyltin, a well-known skin irritant in rodent and human, causes disturbance in the -
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Figure 2 Correlation between the intra- and extracellular levels of IL-la. (@) and IL-8 (A) in the RHE
after topical application of Tween 80, Triton X100, BC, and DNCB (20 h, 37°C, 5%CO0,).

respiratory chain of mitochondria, probably by production of reactive oxygen intermediates at the
ubiquinone site which activates transcription factor and promotes IL-la synthesis.'3*!35 In our
experiments, the RHE treatments with Triton X100, BC, and DNCB reduce mitochondrial function
as demonstrated by decreased MTT conversion and could partially explain the results. However.
the release observed with DNCB suggests that mechanisms other than mitochondrial activity may
be involved in the RHE cytokine production. In fact, DNCB increases NADPH oxidase enzymatic
activity, producing reactive oxygen intermediates that mediate effects of this hapten on cells in
vivo."** In addition, human keratinocyte IL-8 synthesis may be either positively or negatively
regulated by protein kinase C depending on the stimulus.!37

In conclusion, the reconstructed human epidermal equivalents more closely resemble native
tissue in terms of their biosynthetic, morphological, and barrier properties than conventional sub-
merged ones and than animal skins do. Due to the presence of the stratum corneum, water-insoluble
as well as solid materials can be applied topically and are better suited than conventional cultures
for predicting the irritation and sensitization potentials of topically applied agents. Divergent
cytokine secretion profiles characterize the RHE response to irritants and sensitizers, suggesting
that it is a complex array of signals that determines the type of protein released, not only in terms
of mRNA upregulation, but above all in terms of interaction with the signal transduction. The
combination of cell viability measurement with the quantification of IL-1a and IL-8 allows the
classification and discrimination between irritant and sensitizing agents. The low interexperimental
variations, irrespective of whether the experiments are performed on RHE derived from cells of
the same or different donors, indicate that the RHE grown in defined medium represent a very
useful in vitro model for toxicological studies which correlates with in vivo results. However, the
number of products is not actually sufficient to extend the correlation across different classes of
chemicals. The possibility that other irritant or sensitizing agents from different classes may exhibit
specific patterns of inflammatory mediators would provide for the validation of in vitro models as
alternatives to animal testing.
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