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In this paper, we investigate the system of partial di�erential equations governing the

dynamics of martensitic phase transitions in shape memory alloys under the presence of

a (possibly small) viscous stress. The corresponding free energy is assumed in Landau-

Ginzburg form and nonconvex as function of the order parameter. Results concerning

the asymptotic behavior of the solution as time tends to in�nity are proved, and the

compactness of the orbit is shown.

1 Introduction

In the present paper, we study the asymptotic behavior of the solutions to a system that arises

in the thermomechanical developments in a one-dimensional heat-conducting viscous solid of

constant mass density % (assumed to be normalized to unity, i.e. % = 1). The solid is subjected

to heating and loading. We think of metallic solids that not only respond to a change of the

strain " by a (possibly nonlinear) elastic stress � = �("), but also to a change of the curvature

of their metallic lattice by a couple stress � = �("x).

We assume that the Helmholtz free energy density F is a potential of Landau-Ginzburg form,

i.e.

F = F ("; "x; �) (1.1)

where � denotes the absolute temperature. To cover systems modelling �rst-order stress-induced

and temperature-induced solid-solid phase transitions accompanied by hysteresis phenomena, we

do not assume that F is a convex function of the order parameter ".

A particular class of materials, in which both stress-induced and temperature-induced �rst-

order phase transitions leading to a rather spectacular hysteretic behavior occur, are the so-

called shape memory alloys. In these materials the metallic lattice is deformed by shear, and the

assumption of a constant density is justi�ed. The shape memory e�ect itself is due to martensitic

phase transitions between di�erent con�gurations of the crystal lattice, namely austenite and

martensitic twins. For an account of the physical properties of shape memory alloys, we refer

the reader to chapter 5 in the monograph [4]. In a series of papers (cf., for instance, [7], [8]),

Falk has proposed a Laudau-Ginzburg theory that uses the shear strain " as order parameter in

order to explain the occurrence of the martensitic transitions in shape memory alloys. In this

connection, we also refer to the works of M�uller (cf. [1], [14]).

The simplest form for the free energy density F that accounts quite well for the experimentally

observed behavior and that takes couple stresses into account is (see Falk [7], [8]) given by

F ("; "x; �) = F0(�) + F1(")� + F2(") +
�

2
"
2

x
; (1.2)

where

F1(") = �1"
2
; F2(") = �3"

6 � �2"
4 � �1�1"

2
; (1.3)

F0(�) = �CV � log

 
�

�2

!
+ CV � + ~C ; (1.4)

with positive physical constants �1; �; �1; �2; �3; �2; CV ;
~C. The constant CV denotes the speci�c

heat. Observe that in the interesting range of temperatures, for � close to �1, F is not a convex

function of the shear strain ". In fact, F (�; "x; �) may have up to three minima that correspond

to the austenitic and the two martensitic phases.

We want to forecast the dynamics of the phase transitions in the one-dimensional situation.

To this end, let 
 = (0; 1), and, for t > 0, 
t = 
 � (0; t) . Then the balance laws of linear

momentum and internal energy read

utt � �x + �xx = 0; in 
1 ; (1.5)
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t qx t � xt ; 1 ( )

The second law of thermodynamics is expressed by the Clausius-Duhem inequality

St +

�
q

�

�
x

� 0; in 
1 : (1.7)

Here, u; �; �; U; q; "; S, and �, denote displacement, shear stress, couple stress, internal

energy density, heat ux, shear strain, entropy density, and absolute temperature, in that order.

For one-dimensional homogeneous thermoviscoelastic materials, we have the constitutive rela-

tions

" = ux; � =
@F

@"
+ "t; � =

@F

@"x

; S = �
@F

@�
; U = F + �S ; (1.8)

where  > 0 is the viscosity. For the heat ux q, we assume Fourier's law

q = �k�x; (1.9)

where k > 0 is the heat conductivity (assumed constant). Obviously, this assumption implies

the validity of (1.7), so that the second law of thermodynamics is automatically satis�ed.

Inserting the constitutive relations in the balance laws (1.5){(1.6), we obtain the system of

partial di�erential equations

utt � (f1� + f2)x � "xt + �uxxxx = 0; in 
1; (1.10)

CV �t � k�xx � f1�"t � "
2

t
= 0; in 
1; (1.11)

" = ux; in 
1; (1.12)

where

f1 = f1(") = F
0

1("); f2 = f2(") = F
0

2("): (1.13)

In addition, we prescribe the initial and boundary conditions

ujx=0 = "xjx=0 = 0; "jx=1 = (uxt � �uxxx + �1)jx=1 = 0; (1.14)

with

�1 = f1� + f2; (1.15)

as well as

�xjx=0; 1 = 0; (1.16)

u(x; 0) = u0(x); ut(x; 0) = u1(x); �(x; 0) = �0(x) > 0; x 2 
: (1.17)

The physical meaning of the boundary conditions is clear; for instance, the second condition at

x = 1 describes the stress-free situation.

Next, we employ an idea of Andrews [2] and Pego [17] to simplify the problem by introducing

the velocity potential

p(x; t) =

Z
x

1

ut(y; t) dy : (1.18)

Then,

"t = pxx; in 
1; (1.19)

and (1.10){(1.11) can be rewritten as

pt � pxx + �"xx � �1 = 0; in 
1; (1.20)

CV �t � k�xx � f1�pxx � p
2

xx
= 0; in 
1: (1.21)
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pxjx=0 = pxxxjx=0 = "xjx=0 = 0; (1.22)

pjx=1 = pxxjx=1 = "jx=1 = 0; (1.23)

"(x; 0) = "0 = u0x; p(x; 0) = p0(x) =

Z
x

1

u1(y) dy; �(x; 0) = �0; x 2 
 : (1.24)

It is easy to see that if (u; v; �) is a smooth solution to (1.10){(1.17), then ("; p; �) is a smooth

solution to (1.19){(1.24), and vice versa. Therefore, it su�ces to consider the problem (1.19){

(1.24). In the sequel, we assume without loss of generality that CV = 1.

Before stating and proving our results, let us �rst recall some related results in the literature. In

the case � = 0, Dafermos [5], Dafermos & Hsiao [6], Chen & Ho�mann [9], and Jiang [11], proved

the global existence of a classical solution to the system of (1.10){(1.12) with various boundary

conditions for a class of solid-like materials. However, an analysis of the asymptotic behavior as

t!1 was not performed in these papers. Recently, on the basis of Dafermos [5] and Dafermos

& Hsiao [6], T. Luo [13] further investigated the asymptotic behavior of smooth solutions as

time tends to in�nity for a special class of solid-like materials in which e = CV �, F2 = 0, and

� = 0. Racke & Zheng [18] obtained global existence, uniqueness and the asymptotic behavior

of weak solutions to (1.10){(1.12) for � = 0 if both ends of the rod are insulated and if at least

one end is stress-free.

In the case � > 0, we refer to Sprekels & Zheng [20], if � > 0;  = 0, and to Ho�mann & Zochowski

[10], if � > 0;  > 0, for global existence and uniqueness results for Falk's Landau-Ginzburg model

of shape memory alloys. However, the a priori estimates for the solution obtained in these papers

depend on t, and hence the asymptotic behavior of the solution for t!1 could not be treated

there.

We also refer to the works of Andrews [2], Andrews & Ball [3], and Pego [17], for the isothermal

and purely viscoelastic case.

The purpose of our contribution is to study the asymptotic behavior as t!1 of the solutions

to the system (1.19){(1.24) and to prove the compactness of the orbit.

Next, we state the main result of this paper.

Theorem 1.1 Suppose that "0; p0 2 H
3 and �0 2 H

1 are given functions that satisfy the com-

patibility conditions p0xjx=0 = "0xjx=0 = 0; p0jx=1 = pxxjx=1 = "xjx=1 = 0, and suppose that

�0 > 0 in [0; 1]. Then the following results hold.

(i) The problem admits a unique global solution ("; p; �) satisfying

" 2 C(IR+;H3); "t 2 C(IR+;H1) \ L
2(IR+;H2);

p 2 C(IR+;H3) \ L
2(IR+;H4); pt 2 C(IR+;H1) \ L

2(IR+;H2);

� 2 C(IR+;H1); �x 2 L
2(IR+;H1); �t 2 L

2(IR+;L2);

�(x; t) > 0; 8 (x; t) 2 [0; 1]� IR
+
: (1.25)

(ii) As t!1, it holds

kp(�; t)kH3 ! 0; kpt(�; t)kH1 ! 0; (1.26)

k�"xx(�; t)� �1(�; t)kH1 ! 0; k"t(�; t)kH1 ! 0; k�x(�; t)k ! 0: (1.27)

(iii) For all � > 0,

" 2 C([�;+1);H4); p 2 C([�;+1);H4); � 2 C([�;+1);H3); (1.28)

i.e. the orbit is compact in H
3 �H

3 �H
1.

(iv)

("(�; t); p(�; t); �(�; t))! ("; 0; �); as t!1; in H
3 �H

3 �H
1
; (1.29)

where ("; �) is one of the equilibria for the corresponding stationary problem.
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in the system (1.19){(1.21), and to the higher order derivative arising for � > 0. The presence

of this higher order derivative makes the problem in two ways signi�cantly di�erent from the

problem with � = 0;  > 0: it renders the orbit compact (while discontinuities of strain will

persist in the case � = 0;  > 0, as shown in [18]), and the technique needed to obtain the

asymptotic behavior di�ers considerably from that used in the case � = 0;  > 0. One of the

main ingredients of the proof in this paper is to bound the norms of "; p, as well as of their

derivatives, in terms of expressions of the form

1 + sup
0���t

k�(�)k�
L1

+
�Z t

0

k�t(�)k2 d�
�
�

; (1.30)

where 0 � � � 3

2
; 0 � � � 1

2
. This makes it possible to reduce the degree of nonlinearity

via interpolation techniques. To study the asymptotic behavior, we will make repeated use of a

basic lemma in analysis proved in Shen & Zheng [19]. In Section 2, we will prove the uniform

a priori estimates and the compactness of the orbit. In Section 3, the asymptotic behavior is

investigated.

The notation in this paper will be as follows: Lp, 1 � p � 1, W
m;1, m 2 IN , H

1 � W
1;2,

and H
1
0 = W

1;2

0 , respectively, denote the usual Lebesgue and Sobolev spaces on (0,1). By (�; �),
we denote the inner product in L

2, and k � kB denotes the norm in the space B. We use the

abbreviation k � k := k � kL2
, and C

k(I; B), k 2 IN 0, denotes the space of k-times continuously

di�erentiable functions from I � IR into a Banach space B. The spaces Lp(I; B), 1 � p � 1,

are de�ned analogously. Finally, @t or
d

dt
or a subscript t and, likewise, @x or a subscript x,

denote the partial derivatives with respect to t and x, respectively.

2 Uniform A Priori Estimates

The general framework to prove global existence and uniqueness of solution has been established

in earlier papers, for instance in Sprekels & Zheng [20] and Ho�mann & Zochowski [10]. The

setting will become more apparent soon during the derivation of uniform a priori estimates.

Therefore, we can focus our attention on the study of the asymptotic behavior and on the

compactness of the orbit. In order to get the asymptotic behavior of the solution as t ! 1,

we shall prove uniform a priori estimates on "; p; and � with repect to t. From now on, we will

always denote by C a universal positive constant that may depend on the initial data, but not

on t.

Lemma 2.1 For any t > 0, the following estimates hold.

k"(t)k + k"(t)kL6 + kpx(t)k + k"x(t)k + k�(t)kL1 � C; (2.1)

kp(t)kL1 + k"(t)kL1 � C; (2.2)

�(x; t) > 0; 8 (x; t) 2 [0; 1]� IR
+
: (2.3)

Proof. First, applying the maximum principle to (1.21), we �nd that

�(x; t) > 0; 8 (x; t) 2 [0; 1]� IR
+
: (2.4)

Next, multiplying (1.20) by �pxx, adding the result to (1.21), and integrating with repect to x

over 
, we arrive at
d

dt

Z
1

0

(� + F2(") +
1

2
p
2

x
+
�

2
"
2

x
)(t) dx = 0: (2.5)

Thus, Z
1

0

(� + F2(") +
1

2
p
2

x
+
�

2
"
2

x
)(t) dx = E1 ; (2.6)
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Using Young's inequality, we see that

F2(") � C1"
6 � C2 ; (2.7)

whence

k"(t)k + kpx(t)k + k"x(t)k + k"(t)kL6 + k�(t)kL1 � C: (2.8)

By virtue of the boundary conditions and of Poincare's inequality, we �nd

kp(t)kL1 + k"(t)kL1 � C ; (2.9)

whence the assertion follows. 2

Lemma 2.2 For any t > 0, the following estimates hold.

Z
t

0

Z
1

0

 
�
2
x

�2
+
p
2
xx

�

!
dx d� � C; (2.10)

Z
t

0

kpx(�)k2d� �
Z
t

0

kpx(�)k2L1d� � C;

Z
t

0

kp(�)k2
L1

d� � C ; (2.11)

Z
t

0

kpx(�)kn+2d� � C; 8 n � 0: (2.12)

Proof. Multiplication of (1.21) by �
�1 and integration with respect to x over 
 yield

d

dt

Z
1

0

(log � � F1("))(t) dx �
Z

1

0

 
k�

2
x

�2
+
p

2
xx

�

!
(t) dx = 0: (2.13)

Since log � � � � 1 for all � > 0, we obtain

Z
t

0

Z
1

0

 
k�

2
x

�2
+
p

2
xx

�

!
dx d� � C: (2.14)

From pxjx=0 = 0 it follows that

px(x; t) = px(0; t) +

Z
x

0

pxx(y; t) dy =

Z
x

0

pxx(y; t) dy: (2.15)

Hence, Z
t

0

kpx(�)k2L1d� �
Z
t

0

�Z 1

0

jpxx(x; �)j dx
�2
d�

�
Z
t

0

 Z
1

0

p
�
jpxxjp

�
dx

!2
d� �

Z
t

0

�Z 1

0

� dx

� �Z 1

0

p
2
xx

�
dx

�
d�

� C

Z
t

0

Z
1

0

p
2
xx

�
dx d� � C: (2.16)

Thus, Z
t

0

kpx(�)k2d� �
Z
t

0

kpx(�)k2L1d� � C: (2.17)

Combining (2.11) with (2.8), a simple induction yields that to any n 2 IN there is some

C = C(n) such that Z
t

0

kpx(�)kn+2d� � C : (2.18)

The proof of the assertion is complete. 2

In the sequel we will see that (2.18) is very useful for reducing the degree of nonlinearity. To

get further estimates, we will now derive estimates for the derivatives of the norms of "; p by

expressions of the form (1.30).
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t

0

(k"t(�)k2 + kpxx(�)k2) d� � C sup
0���t

k�(�)kL1 ; (2.19)

Z
t

0

k�x(�)k2d� � C sup
0���t

k�(�)k2
L1

: (2.20)

Proof. Using Lemma 2.2, we obtain

Z
t

0

kpxx(�)k2d� =
Z
t

0


p
�
pxxp
�
(�)


2

d�

� sup
0���t

k�(�)kL1
Z
t

0

pxxp� (�)

2

d�

� C sup
0���t

k�(�)kL1 : (2.21)

Similarly, we have Z
t

0

k�x(�)k2d� � C sup
0���t

k�(�)k2
L1

: (2.22)

The proof is complete. 2

We can now show further estimates.

Lemma 2.4 For any t > 0 the following estimates hold.

kpxt(t)k2 + kpxxx(t)k2 +

Z
t

0

(kpxxt(�)k2 + k"tt(�)k2) d�

� C

 
1 + sup

0���t

k�(�)k3
L1

+

Z
t

0

k�t(�)k2 d�
!
; (2.23)

k"xt(t)k2 +

Z
t

0

(kpxxxx(�)k2 + k"xxt(�)k2) d�

� C

 
1 + sup

0���t

k�(�)k3
L1

+

Z
t

0

k�t(�)k2 d�
!
: (2.24)

Proof. First, di�erentiating (1.20) with respect to t, multiplying the result by �"tt, and
integrating with repect to x over 
, we obtain

0 = (ptt(t);�pxxt(t)) + k"tt(t)k2 + (�"xt(t); "xtt(t)) +

Z
1

0

�1t(t) "tt(t) dx

= (pxtt(t); pxt(t)) + k"tt(t)k2 + �("xt(t); "xtt(t))

+

Z
1

0

(f 01(") "t � + f
0

2(") "t + f1(") �t)(t) "tt(t) dx: (2.25)

Combination with (2.9) yields

1

2

d

dt
(kpxt(t)k2 + �k"xt(t)k2) + k"tt(t)k2 �



2
k"tt(t)k2 + C

Z
1

0

(�2"2
t
+ "

2

t
+ �

2

t
)(t) dx: (2.26)

Integrating (2.26) with respect to t and applying Lemma 2.3, we arrive at

kpxt(t)k2 + k"xt(t)k2 +
Z
t

0

k"tt(�)k2d�

� C + C

Z
t

0

(k�(�) "t(�)k2 + k"t(�)k2 + k�t(�)k2) d�

� C + C sup
0���t

k�(�)k2
L1

Z
t

0

k"t(�)k2 d� + C

Z
t

0

(k"t(�)k2 + k�t(�)k2) d�

� C

�
1 + sup

0���t

k�(�)k3
L1

+

Z
t

0

k�t(�)k2d�
�
: (2.27)
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Next, we di�erentiate (1.20) with respect to t, then multiply by "xxt, and integrate the result

with respect to x over 
, to obtain

0 = (ptt(t); "xxt(t))� ("tt(t); "xxt(t)) + �k"xxt(t)k2 �
Z

1

0

"xxt(t) �1t(t) dx

= (pxxtt(t); "t(t)) + ("xtt(t); "xt(t)) + �k"xxt(t)k2 �
Z

1

0

"xxt(t) �1t(t) dx

=
d

dt
(pxxt(t); "t(t))� kpxxt(t)k2 +



2

d

dt
k"xt(t)k2 + �k"xxt(t)k2

�
Z

1

0

"xxt(t) �1t(t) dx: (2.28)

However, by integration by parts, we have

(pxxt(t); "t(t)) = �(pxt(t); "xt(t)): (2.29)

Combining this with (2.28), and using (2.23) and Young's inequality, we �nd



4
k"xt(t)k2 + �

Z
t

0

k"xxt(�)k2d�

� C +
�

2

Z
t

0

k"xxt(�)k2d� + C

�
kpxt(t)k2 +

Z
t

0

(k�1t(�)k2 + kpxxt(�)k2) d�
�

� C

�
1 + sup

0���t

k�(�)k3
L1

+

Z
t

0

k�t(�)k2d�
�
+

�

2

Z
t

0

k"xxt(�)k2d� : (2.30)

The proof of the lemma is complete. 2

In the sequel, we will �nd that the above lemma plays a crucial role in reducing the degree of

nonlinearity.

Lemma 2.5 For any t > 0, the following estimates hold.

k�x(t)k2 +
Z
t

0

k�t(�)k2d� � C: (2.31)

sup
0���t

k�(�)kL1 � C: (2.32)

Proof. Multiplying (1.21) by �t and integrating with repect to x over 
, we obtain

k

2

d

dt
k�x(t)k2 + k�t(t)k2 =

Z
1

0

(f1(") � �t pxx +  �t p
2

xx
)(t) dx

� C

�
k�(t) pxx(t)k k�t(t)k+

�Z 1

0

p
4

xx
(t) dx

�1

2 k�t(t)k
�

� C

�
k�(t)k

1

2

L1
kpxx(t)kL1

�Z 1

0

�(t) dx
�1

2 k�t(t)k + kpxx(t)k2L4 k�t(t)k
�
: (2.33)

Therefore, integration with respect to t yields

k�x(t)k2 +
Z
t

0

k�t(�)k2d� � C

 
sup
0���t

k�(�)k
1

2

L1

�Z t

0

kpxx(�)k2L1d�
� 1

2

�Z t

0

k�t(�)k2d�
�1

2

+
�Z t

0

kpxx(�)k4L4d�

� 1

2

�Z t

0

k�t(�)k2d�
�1

2

+ 1

�
= C (I1 + I2 + 1) : (2.34)

We now estimate the terms I1; I2: By virtue of Nirenberg's inequality and the boundary condi-

tions, we obtain

kpxx(t)kL1 � C kpxxxx(t)k
1

2 kpx(t)k
1

2 ; (2.35)
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Hence,

I1 = C

 
sup
0���t

k�(�)kL1
Z
t

0

k�t(�)k2d�
Z

t

0

kpxx(�)k2L1d�
! 1

2

� C

 
sup
0���t

k�(�)kL1
Z
t

0

k�t(�)k2d�
Z
t

0

kpxxxx(�)k kpx(�)k d�
!1

2

� C

 
sup
0���t

k�(�)kL1
Z
t

0

k�t(�)k2d�
! 1

2
�Z

t

0

kpxxxx(�)k2d�
Z
t

0

kpx(�)k2d�
� 1

4

: (2.37)

Using Lemma 2.2, Lemma 2.4, and Young's inequality, we conclude that

I1 � C

 
sup
0���t

k�(�)kL1
Z

t

0

k�t(�)k2d�
! 1

2
�Z

t

0

kpxxxx(�)k2d�
� 1

4

� C

 
sup
0���t

k�(�)kL1
Z

t

0

k�t(�)k2d�
! 1

2

 
1 + sup

0���t

k�(�)k3
L1

+

Z
t

0

k�t(�)k2d�
! 1

4

�
1

4

Z
t

0

k�t(�)k2d� + C

�
1 + sup

0���t

k�(�)k
5

2

L1

�
: (2.38)

Next, owing to Schwarz's inequality and (2.36), we have

I2 = C

�Z
t

0

k�t(�)k2d�
Z

t

0

kpxx(�)k4L4d�

� 1

2

� C

�Z
t

0

k�t(�)k2d�
Z

t

0

kpxxxx(�)k
5

3 kpx(�)k
7

3d�

� 1

2

� C

�Z
t

0

k�t(�)k2d�
� 1

2
�Z

t

0

kpxxxx(�)k2d�
� 5

12
�Z

t

0

kpx(�)k14d�
� 1

12

: (2.39)

Applying (2.18) with n = 12 and Lemma 2.4, we get

I2 � C

�Z
t

0

k�t(�)k2d�
� 1

2
�Z

t

0

kpxxxx(�)k2d�
� 5

12

� C

�Z
t

0

k�t(�)k2d�
� 1

2

 
1 + sup

0���t

k�(�)k3
L1

+

Z
t

0

k�t(�)k2d�
! 5

12

�
1

4

Z
t

0

k�t(�)k2d� + C sup
0���t

k�(�)k
5

2

L1
+ C: (2.40)

Owing to Nirenberg's inequality and (2.1), we have

k�(t)kL1 � C k�x(t)k
2

3 k�(t)k
1

3

L1 + C k�(t)kL1 � C k�x(t)k
2

3 + C: (2.41)

Combining (2.38){(2.40) with (2.34) and (2.41), and applying Young's inequality, we �nd

k�x(t)k2 +
Z
t

0

k�t(�)k2d� �
1

2

Z
t

0

k�t(�)k2d� + C

�
1 + sup

0���t

k�x(�)k
5

3

�

� C +
1

2

 Z
t

0

k�t(�)k2d� + sup
0���t

k�x(�)k2
!
: (2.42)

Taking the supremum with respect to t in (2.42) yields

sup
0���t

k�x(�)k2 +
Z
t

0

k�t(�)k2d� �
1

2

�Z t

0

k�t(�)k2d� + sup
0���t

k�x(�)k2
�
+ C: (2.43)

8
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sup
0���t

k�x(�)k2 +
Z
t

0

k�t(�)k2d� � C: (2.44)

Thus, using (2.41),

sup
0���t

k�(�)k2
L1

� C ; (2.45)

which concludes the proof of the assertion. 2

Combining the Lemmas 2.3 to 2.5, and using the system equations, we immediately conclude

that

Lemma 2.6 For any t > 0, the following estimates hold.

Z
t

0

(kpxx(�)k2 + k"t(�)k2 + k�x(�)k2H1) d� � C; (2.46)

Z
t

0

(kpxxt(�)k2 + k"tt(�)k2 + kpxxxx(�)k2 + k"xxt(�)k2) d� � C; (2.47)

kpxt(t)k2 + kpxxx(t)k2 + k"xt(t)k2 + k"xxx(t)k2 � C: (2.48)

Lemma 2.7 For any t > 0, the following estimates hold.

Z
t

0

(kpt(�)k2 + kpt(�)k2L1 + kpxt(�)k2 + kpxt(�)k2L1) d� � C; (2.49)Z
t

0

(k�"xx(�)� �1(�)k2d� + k(�"xx � �1)t(�)k2) d� � C; (2.50)Z
t

0

(kpxx(�)k2L1 + kpxxx(�)k2 + kpxxx(�)k2L1 + kptt(�)k2) d� � C; (2.51)

kpt(t)k2 + kpxx(t)k2 + kpt(t)k2L1 + kpx(t)k2L1 + kpxx(t)k2L1 � C: (2.52)

Proof. These estimates can easily be derived from the system equations and from the Lemmas

2.5 and 2.6. 2

Now we proceed to investigate the compactness of the orbit of the solution for t > 0 in H
3 �

H
3 �H

1. For the time being, we assume that the initial data are so smooth that the solution

will have enough smoothness to carry out the following argument; if the initial data belonged

just to H
3 � H

3 � H
1, we could approximate them by smooth functions and then pass to the

limit.

Di�erentiating (1.20) twice with respect to t, we �nd that

pttt � pxxtt + �"xxtt � �1tt = 0 : (2.53)

A straightforward calculation yields

�1tt = f
0

1(") "tt � + 2 f 01(") "t �t + f1(") �tt + f
00

2 (") "
2

t
+ f

0

2(") "tt: (2.54)

Multiplying (2.53) by ptt and integrating with respect to x over 
, we �nd

0 =
1

2

d

dt
kptt(t)k2 � (pxxtt(t); ptt(t)) + �("xxtt(t); ptt(t))� (�1tt(t); ptt(t))

=
1

2

d

dt
kptt(t)k2 + kpxtt(t)k2 + �("tt(t); pxxtt(t))� (�1tt(t); ptt(t))

=
1

2

d

dt

�
kptt(t)k2 + �k"tt(t)k2

�
+ kpxtt(t)k2 � (�1tt(t); ptt(t)) : (2.55)

9
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1

2

d

dt

�
t
2kptt(t)k2 + t

2
�k"ttk2

�
� t (kptt(t)k2 + �k"tt(t)k2) + t

2kpxtt(t)k2

� t
2kptt(t)k2 + Ct

2k�1tt(t)k2

� t
2kptt(t)k2 + Ct

2(k"tt(t)k2 + k�t(t)k2 + k�tt(t)k2 + k"t(t)k2) : (2.56)

Hence, it follows from (2.31), (2.46), and (2.47), that

t
2(kptt(t)k2 + �k"tt(t)k2) +

Z
t

0

�
2kpxtt(�)k2d� � C1 + Ct

2 + C

Z
t

0

�
2k�tt(�)k2d� ; (2.57)

where C1 = C(k"0kH3 ; kp0kH3; k�0kH1):

On the other hand, di�erentiating (1.21) with respect to t, we get

�tt � k�xxt � (f1(")�pxx + p
2

xx
)t = 0: (2.58)

Multiplying by �tt and integrating with respect to x, we arrive at

k

2

d

dt
k�xt(t)k2 + k�tt(t)k2 �

1

2
k�tt(t)k2 +

1

2
k(f1(")�pxx + p

2

xx
)t(t)k2

�
1

2
k�tt(t)k2 + C (kpxx(t)k2 + k�t(t)k2 + kpxxt(t)k2): (2.59)

Multiplication of (2.59) by t
2 yields

k

2

d

dt
(t2k�xt(t)k2)� ktk�xt(t)k2 +

t
2

2
k�tt(t)k2 � Ct

2(kpxx(t)k2 + k�t(t)k2 + kpxxt(t)k2): (2.60)

In order to estimate
R
t

0 �k�xt(�)k2d� , we multiply (2.58) by �t and then integrate with respect

to x over 
, to obtain

1

2

d

dt
k�t(t)k2 + kk�xt(t)k2 �

1

2
k�t(t)k2 +

1

2
k(f1(")�pxx + p

2

xx
)t(t)k2

�
1

2
k�t(t)k2 + C (k"t(t)k2 + k�t(t)k2 + kpxxt(t)k2): (2.61)

Multiplying (2.61) by t, we �nd

1

2

d

dt
(tk�t(t)k2)+ktk�tx(t)k2 � C (k�t(t)k2+tk�t(t)k2+t (k"t(t)k2+k�t(t)k2+kpxxt(t)k2)): (2.62)

Therefore,

tk�t(t)k2 +
Z

t

0

�k�xt(�)k2d� � Ct+ C2 ; (2.63)

where C2 = C(k"0kH3 ; kp0kH3; k�0kH1).

Combination of (2.63) with (2.60) yields

Z
t

0

�
2k�tt(�)k2d� � C3 + Ct

2
; (2.64)

with C3 = C(k"0kH3 ; kp0kH3 ; k�0kH1).

Thus, it follows from (2.57) that

kptt(t)k2 + k"tt(t)k2 � C4t
�2 + C: (2.65)

Also, using (2.63) and (2.60),

k�t(t)k2 � C + C4t
�1
; k�xt(t)k2 � C4t

�2 + C ; (2.66)

10
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Thus, it easily follows from the equations (1.19) to (1.21) that for any initial data inH3�H3�H1

it holds

("(�; t); p(�; t); �(�; t)) 2 H
4 �H

4 �H
3
; 8 t > 0 : (2.67)

Moreover, we can infer from the Lemmas 2.5 to 2.7, and from (2.55), (2.59) and (2.61), that for

any � > 0 the triple ("; p; �) is bounded in C([�;+1);H4�H4�H3). From this the compactness

of the orbit in H
3 �H

3 �H
1 follows. 2

3 Asymptotic Behavior

In this section, we will prove the results on the asymptotic behavior of the solution given in

Theorem 1.1. In the sequel, a convergence symbol "! " is always to be understood as t!1.

We will make use of the following basic lemma from Shen & Zheng [19]:

Lemma 3.1 Suppose that y and h are nonnegative functions on (0;1) such that y0 is locally

integrable and such that y; h satisfy

8t � 0 : y
0(t) � A1y

2(t) + A2 + h(t); (3.1)

8T > 0 :

TZ
0

y(�)d� � A3;

TZ
0

h(�)d� � A4; (3.2)

where A1; A2; A3; A4 denote positive constants which are independent of t and T . Then, for any

r > 0,

8t � 0 : y(t+ r) �
�
A3

r
+ A2r + A4

�
e
A1A2 : (3.3)

Moreover,

lim
t!1

y(t) = 0: (3.4)

Lemma 3.2 It holds

kp(t)kH3 ! 0; kpt(t)kH1 ! 0; (3.5)

k"t(t)kH1 ! 0; k(�"xx � �1)(t)kH1 ! 0; (3.6)

kut(t)kH2 ! 0: (3.7)

Proof. It follows from (2.26) and (2.32) that

d

dt
(kpxt(t)k2 + �k"xt(t)k2) + k"tt(t)k2

� C (k�(t) "t(t)k2 + k"t(t)k2 + k�t(t)k2)
� C (k"t(t)k2 + k�t(t)k2): (3.8)

Combining (3.8) with (2.51), (2.46), (2.49), (2.31), and applying Lemma 3.1, we arrive at

kpxt(t)k2 + k"xt(t)k2 ! 0: (3.9)

Hence, kpxxx(t)k2 ! 0, and thus kutkH2 ! 0.

Next, we di�erentiate (1.20) with respect to t, then multiply by �"xx � �1 and integrate with

respect to x over 
. It follows

1

2

d

dt
k�"xx(t)� �1(t)k2 = �(ptt(t)� "tt(t); �"xx(t)� �1(t))

�
1

2
k�"xx(t)� �1(t)k2 + C(kptt(t)k2 + k"tt(t)k2): (3.10)

11
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k�"xx(t)� �1(t)k2 ! 0: (3.11)

From (1.20) and (3.9), we also get

k(�"xx � �1)x(t)k2 ! 0: (3.12)

The assertions of Lemma 3.2 now follow from the above estimates and from Poincare's inequal-

ity. 2

Lemma 3.3 It holds

k�x(t)k ! 0 : (3.13)

Proof. We multiply (1.21) by �t and integrate with respect to x over 
 to get

k

2

d

dt
k�x(t)k2 + k�t(t)k2 =

Z
1

0

�
 p

2

xx
�t + f1(") � �t pxx

�
(t) dx

�
1

2
k�t(t)k2 + k�(t) pxx(t)k2 + kp2xx(t)k

2
: (3.14)

Combining (3.14) with (2.32) and (2.52), we see that

k
d

dt
k�x(t)k2 + k�t(t)k2 � Ckpxx(t)k2: (3.15)

Hence, we can infer from (2.46) and Lemma 3.1 that

k�x(t)k2 ! 0 ;

which concludes the proof. 2

Concerning the convergence of "; u; �, we have the following result.

Lemma 3.4 It holds

("(�; t); p(�; t); �(�; t))! ("; 0; �); in H
3 �H

3 �H
1
; (3.16)

u(�; t)! u ; in H
4
; with u(x) =

Z
x

0

"(y) dy; 8 x 2 [0; 1] ; (3.17)

where ("; �) is one of the equilibria for the corresponding stationary problem,

�"xx � f1(")� � f2(") = 0; (3.18)

"xjx=0 = 0; "jx=1 = 0; (3.19)

� = Const:; (3.20)Z
1

0

�
� + F2(") +

�

2
"
2

x

�
dx = E1: (3.21)

Proof. It is easy to see from (2.4) and (2.12) that, for any 0 < � < 1,

d

dt

Z
1

0

�
�� � log � + F2(") + �F1(") +

1

2
p
2

x
+
�

2
"
2

x

�
(t) dx+ �

Z
1

0

 
k�

2
x

�2
+
p

2
xx

�

!
(t) dx = 0: (3.22)

Thus the system (1.19){(1.21) has a Lyapunov function of the formZ
1

0

�
� � � log � + F2(") + �F1(") +

1

2
p
2

x
+
�

2
"
2

x

�
(t) dx :

Since the orbit is compact, as proved in previous section, it follows from the standard theory of

dynamical systems that the !-limit set is connected, compact and consists of equilibria. Since

the corresponding stationary problem admits only a �nite number of solutions (see Zhou [22],

and also Luckhaus & Zheng [12], Novick-Cohen & Zheng [16], Zheng [21]), (3.16) follows. In

view of the boundary condition ujx=0 = 0 , we also get (3.17). Therefore, the proof is complete. 2
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