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Summary. In this paper statistical properties of estimators of drift parameters for

di�usion processes are studied by modern numerical methods for stochastic di�er-

ential equations. This is a particularly useful method for discrete time samples,

where estimators can be constructed by making discrete time approximations to

the stochastic integrals appearing in the maximum likelihood estimators for contin-

uously observed di�usions. A review is given of the necessary theory for parameter

estimation for di�usion processes and for simulation of di�usion processes.

Three examples are studied.

1 Introduction

In recent years signi�cant progress has been made in the theory of numerical sim-

ulation of di�usion processes. An extensive presentation of the state of the art can

be found in [17], [M], [T] or [A]. In the present paper we propose to use these new

simulation methods to study the behavior of estimators in di�usion process models.

The availability of fast computers makes this a feasible procedure. Related work

has been done by [13], [14] and [2].

Several authors have studied the problem of estimating parameters in the drift

coe�cient when a di�usion process has been observed continuously, i.e. at all time

points in an interval. In this situation an explicit expression for the likelihood

function can be given under weak conditions. Reviews can be found in [1] and [19].

A particularly nice theory is obtained if the drift coe�cient depends linearly on

the parameters. This type of model is common in practice.

In the more realistic situation where a di�usion process has been observed at

discrete time points only, an explicit likelihood function is rarely available. This

type of data has recently attracted considerable interest; see [22], [4], [12], [28],

[5], [6], [8], [26] and [2]. A simple method of obtaining an estimator for discrete

time that is often used in practice is to construct, from the available data, an

approximation to the estimator found in the theory for continuous observations.

This involves, in particular, discrete time approximations to stochastic integrals.

It is, in general, di�cult to study the quality of such estimators analytically, see

[22], [5] and [7], but it can be done easier by numerical simulation.

In section 2 we introduce our three examples and give the continuous time version

of the maximum likelihood estimators of the parameters. It is also discussed how to

construct approximate maximum likelihood estimators for discrete time observa-

tions. In Section 3 we review those aspects of the theory of numerical simulation of

di�usion processes that are relevant to our purposes. In particular, a few important

simulation schemes are given explicitly. In Section 4, simulation of the di�usion

processes considered in the examples of Section 2 is discussed and sample paths

of the processes and of the estimators found in Section 2 are simulated. In the

appendix a brief summary is given of the theory of maximum likelihood estimation

based on continuous observation for a class of stochastic di�erential equations large

enough to cover our examples.

Generalized di�usion processes where discontinuous sample paths are allowed are

called di�usion with jumps. These more general processes are of importance in

many �elds of application. Also for these processes there exists a nice likelihood

theory for continuous observation ([31]) and a theory for numerical simulation



([15]), so the ideas outlined in the present paper could be extended to di�usions

with jumps.

2 Some di�usion models and their parameter es-

timators

In this section we give three examples of parametric statistical models de�ned by

stochastic di�erential equations. For each model the maximum likelihood estimator

based on continuous observation of the process in the time interval [0; T ] is given.

In the appendix a brief summary of the theory of maximum likelihood estimation

for a class of stochastic di�erential equations large enough to cover all our examples

can be found.

Example 2.1 Linear stochastic di�erential equation.

Consider the stochastic di�erential equation

d Xt = (�1Xt + �2)dt+ c dWt; (2.1)

where c is known. The solution is an Ornstein-Uhlenbeck process.

For the model (2.1) we �nd the maximum likelihood estimators
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and where we have used Ito's formula. 2

Example 2.2 Du�ng-van der Pol oscillator

The velocity X
(2)
t of a Du�ng-van der Pol oscillator is determined by the stochas-

tic di�erential equation
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is the position of the oscillator (displacement).

We assume that � is known. The maximum likelihood estimator for � is
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Note that �̂T = � + T
�1
� WT so that �̂ � N(�; T�1

�
2) exactly and not only

asymptotically.

For trajectories where X(1) does not cross the level zero in the time interval [0; T ],

we can apply Ito's formula to obtain
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When this relation holds, we obtain from (2.7) that
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Example 2.3 Population model

A logistic population model of the di�usion branching type is given by

dXt = �Xt(K �Xt)dt+ �

q
Xt dWt; (2.12)

where K is the carrying capacity of the environment. The drift coe�cient can be

written as in (A.1) with �1 = �K; �2 = ��:

It is assumed that � is known.

For the logistic population model (2.12) the maximum likelihood estimators are
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and where we have used Ito's formula. 2

In practice continuous trajectories are usually not observed. Rather the state of

the di�usion process is observed at a �nite number of times t0 < t1 < ::: < tn. The

exact likelihood function corresponding to such data is the product of transition

densities which can only rarely be found explicitly. A simple estimation procedure

for such data is to use the continuous time maximum likelihood estimator (A.4)

with t0 = 0 and tn = T and with suitable approximations to the integrals inHT and

ST given by (A.2) and (A.3). If the spacings between consecutive observation times

are small, it seems likely that some of the good properties of the continuous time

maximum likelihood estimator are preserved, although its discrete time version will

be biased to a certain extent; see [5] and [22].

It is well-known how to approximate the Riemann integrals in ST and HT by Rie-

mann sums or quadrature formulae like the trapezoidal formula. Also the stochastic

integral in HT can be approximated by a �nite sum. However, it is preferable to re-

place the stochastic integral by Riemann and Stieltjes integrals when possible, and

then to approximate these. This can in most cases be done for a one-dimensional

di�usion by direct use of Ito's formula as was done in the examples above. It can,

however, be done only in special cases when X is multidimensional.

3 Numerical approximation of stochastic di�er-

ential equations

3.1 Basic notions

Our �nal aim in the paper will be to test the practical behaviour and the consistency

of the estimators proposed above. For this purpose we will need to generate the

solution X of a stochastic di�erential equation

dXt = a(Xt) dt+ b(Xt) dWt (3.1)

for t 2 [0; T ] and X0 = x0. Speci�cally, we want to simulate the values of trajecto-

ries which represent such solution at discrete time instants.

Unfortunately, it is only in rare cases that one knows an explicit solution for a

stochastic di�erential equation. But we shall see that it is possible to simulate

approximate solutions Y � at discrete time instants which, for vanishing time step

size (�! 0), converge to the exact solution X.

For studying estimators of statistical parameters it is necessary to generate path-

wise approximations. Such approximations are called strong approximations. Let

us introduce what we mean by the order of strong convergence. We say that a

discrete time approximation Y
� converges with strong order  > 0 at time T if

there exist positive constants K < 1 and �0 < T such that for all � 2 (0; �0) we

have the inequality

E(jXT � Y
�(T )j) � K�

; (3.2)



where K does not depend on the time step size �. If X and Y � are deterministic,

then (3.2) represents the usual deterministic criterion. For controlling constant K

with increasing time T , see recent contribution [D].

Paper [23] was one of the �rst to develop numerical schemes solving stochastic dif-

ferential equations. [33] and [27] obtained general results which allow construction

of strong approximations of any desired strong order, as long as enough `smooth-

ness' of model components is present. Also [3], [32], [25] and [24] studied strong

approximations. An extensive discussion of higher order methods for numerical so-

lution of stochastic di�erential equations is given in [17], where several additional

references can also be found. Compare also with [A], [M], [D] and [T].

In the following we will give a short review presenting basic strong numerical

schemes which we will apply later to perform numerical simulations. For conve-

nience and ease of autonomous integration, we shall restrict attention to equidistant

time Discretization of the interval [0; T ] with time points

tn = n�; (3.3)

for n = 1; :::; nT with step size � = T=nT for some integer nT . The simplest

discrete time approximation is given by the Euler scheme

Yn+1 = Yn + a(Yn)� + b(Yn)�Wn (3.4)

for n = 0; 1; 2; ::: with Y
�
0 = X0. Here �Wn = Wtn+1 � Wtn is the current in-

crement of the Wiener process and is normally distributed with mean zero and

variance E((�Wn))
2) = �: This scheme provides a recursive algorithm for sim-

ulating approximate solutions of the stochastic equation (3.1). It turns out that

under Lipschitz and growth conditions an a and b, which also ensure the unique

existence of the (strong) solution X of (3.1), the Euler approximation converges

with strong order  = 0:5. This is in contrast to order 1 for deterministic Euler

scheme and is a consequence of the di�erence between deterministic and stochastic

calculi.

3.2 Higher order strong approximations

Truncated stochastic Taylor expansions provide a general systematic means of de-

riving numerical schemes for stochastic di�erential equations. These are based on

the Ito-Taylor formula proposed in [33] or on the Stratonovich-Taylor formula pre-

sented in [16]. In both of these formulae functions of an Ito process are represent

in terms of multiple stochastic integrals. Here we will not go into the details of

stochastic Taylor expansions, but refer to the literature cited above.

The simplest useful scheme which can be obtained by truncation of a stochastic

Taylor expansion is the Euler scheme (3.4), which as mentioned above is of strong

order of convergence  = 0:5: Inclusion of one more term from the stochastic Taylor

expansion yields the order  = 1:0 strong Taylor scheme which was originally

proposed by [23]. In the one-dimensional case it has the Ito version
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where a = a� 1
2
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0 is the corrected drift from the Stratonovich stochastic di�erential

equation corresponding to the Ito equation (3.1).

If we introduce the di�erential operator
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By including further terms from Ito-Taylor expansion we can achieve a strong

order  = 1:5 with the following scheme under further assumptions. For the 1-

dimensional case the order  = 1:5 strong Taylor scheme is given by
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where the coe�cients a; b; ::: are taken at Yn. Here an additional random variable

�Zn is required to represent the double stochastic integral
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s2Z
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which is Gaussian distributed with mean E(�Zn) = 0, variance E((�Zn)
2) = 1

3
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and with covariance E(�Zn�Wn) =
1
2
�2. The pairs (�Wn;�Zn) are mutually

independent for n = 1; 2; :::.

We note that a Stratonovich version of (3.9) has a little advantage since it al-

ready involves most of the terms appearing in the following order  = 2:0 strong

Stratonovich-Taylor scheme in the d-dimensional form
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Here we use the multiple Stratonovich integrals

J(j1;j2;j3);n =

tn+1Z
tn

s3Z
tn

s2Z
tn

� dW j1
s1
� dW j2

s2
� dW j3

s3
(3.13)

j1; j2; j3 2 f0; 1g with �dW 0
s = ds and �dW 1

s = �dWs. The last symbol denotes

Stratonovich integration with respect to W .

The random variables J(j1;j2;j3);n can be approximated as accurately as needed

by a method described in Kloeden, Platen and Wright (1992) which uses series

expansions of the Wiener process. We remark that the Stratonovich version (3.11)

of an order  = 2:0 strong Taylor scheme is more convenient than its counterpart

derived from the Ito-Taylor expansion. In many practical situations it turns out

that the schemes become much simpler for speci�c equations as we shall see in our

examples.

For an easy and reliable implementation it is convenient to have schemes which

avoid derivatives of the coe�cients as Runge-Kutta schemes do in the deterministic

case. However, it must be emphasized that they cannot be taken as simple heuristic

stochastic adaptations of the deterministic Runge-Kutta schemes as it can be seen

from R�umelin (1982). A systematic treatment of this problem can be found in

Kloeden and Platen (1992), and here we describe only an explicit order  = 1:0

strong scheme which we will use in our simulations. In the d-dimensional case it

has the form

Yn+1 = Yn + a(Yn)� + 1
2

�
b

�
Yn + a(Yn)� + b(Yn)�Wn

�
+ b(Yn)

�
�Wn:

(3.14)

Finally, we remark that it might be necessary to simulate multivariate stochas-

tic dynamic systems involving coordinates with extremely di�erent time scales.

Such stochastic di�erential equation systems are considered by Kloeden and Platen

(1992) who call them sti� stochastic di�erential equations. The sti�ness of a sys-

tems of equations causes numerical instabilities for the schemes described above,

which can be avoided by applying implicit strong schemes; see Kloeden and Platen

(1992). For more recent analysis of implicit methods, see [E], [D].

4 Case studies

In the following we will generate approximate solutions for the stochastic di�eren-

tial equations given in our Examples 2.1, 2.1 and 2.3 using the numerical schemes

described above. From these simulated sample paths we will estimate the param-

eters by the approximate maximum likelihood estimators described in Section 2.

We approximate time integrals by the trapezoidal formula. Other quadrature for-

mulae could be used as well. One can not give a simple rule for how to choose

an appropriate numerical scheme and a corresponding step size for the di�erent

examples. One could try to implement higher order schemes which, of course,

produce a smaller systematic error on �nite time-intervals. The choice of the step

size depends greatly on the computer time available. Also with other schemes and

su�ciently small step size one obtains results similar to those described in the fol-

lowing. There is also some hint to prefer implicit trapezoidal or midpoint rules, cf.

[D], to a certain extent.



Example 2.3 (continued). For the equation (2.1) we simulate, in [0; T ] with

T = 2000, the corresponding Ornstein-Uhlenbeck process with the parameters

�1 = �1:0; �2 = 1:0 and c = 1:0 starting X0 = 0. Equation (2.1) has additive noise,

which implies several simpli�cations in higher order schemes. Therefore, we choose

the order 2:0 strong Taylor scheme (3.11), which in this example has the form

Yn+1 = Yn + f�1Yn + �2g�+ 1
2
�1 (�1Yn + �2)�

2 + c�Wn + c�1�Zn

(4.1)

with time step size � = 2�4. We note that a = a and that in (4.1) we do not

need to generate the multiple integrals J(1;1;0);n; J(1;0;1);n and J(0;1;1);n contained in

(3.11) because the corresponding terms vanish. This saves a lot of computer time

compared with the implementation of (3.11) for a general stochastic di�erential

equation. A simulated trajectory of (2.1) is shown in Figure 1.

To estimate the parameters �1 and �2 we apply the estimators given by the last

expressions in (2.2) and (2.3) and obtain, after approximation of the relevant time

integrals by the trapezoidal formula, the approximate estimators
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Figures 2 and 3 show that the approximate estimators �̂�1;t and �̂
�
2;t converge after

initial oscillations to the corresponding values of �1 and �2, respectively. If one

uses the Euler scheme, one obtains a similar behaviour of the estimator, but for

too large step sizes, e.g. � > 2�2 one observes that the estimators are not as close

to the exact parameters as in the above �gures.

Example 2.2 (continued). For the Du�ng-van der Pol equation (2.5) we simu-

late, in [0; T ] with T = 50, an approximate realization with the parameters � = 1:0

and � = 0:1 starting at (X
(1)
0 ; X

(2)
0 ) = (�1:8; 0). To avoid simulation of multiple

stochastic integrals we use the Milstein scheme (3.8) which for (2.5) has the form

Y

(2)
n+1 = Y

(2)
n +

�
�Y

(1)
n �

�
Y

(2)
n +

�
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n
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n �Wn (4.5)

using Y
(1)
n+1 = Y

(1)
n + Y

(2)
n �. The time step size is � = 10�2. Note that, considered

as a two-dimensional process (X
(1)
t ; X

(2)
t ), the Du�ng-van der Pol oscillator is of the

type (3.1). Also here a = a, and we emphasize that in this example the Milstein

scheme is identical to the Euler scheme because the term L
1
b(Yn) vanishes. A



Figure 1. A simulated trajectory for the model (2.1) with �1 = �1; �2 = 1; c = 1

and X0 = 0.

Figure 2. A simulated trajectory for the estimator �̂�1;t of Example 2.1. The true

value is �1 = �1.



typical simulated trajectory of the Du�ng-van der Pol oscillator is shown in Figure

4.

To estimate the parameter � we apply the estimator (2.11) and obtain, after

approximating the relevant time integrals by the trapezoidal formula, the approx-

imate estimator
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This estimator can, of course, only be used for trajectories (or parts of trajectories)

where Xtn 6= 0; n = 0; 1; : : : ; nT . A trajectory of �̂�
T is shown in Figure 5. We note

that the estimator converges quickly to the exact parameter value.

Example 2.3 (continued). For the stochastic population model (2.12) we sim-

ulate, in [0; T ] with T = 2000, the corresponding approximate population growth

process with the parameters �1 = 2:0; �2 = �2:0 and � = 0:5 starting at X0 = 0:5.

The fact that the derivatives of
p
Yn are getting large for small values of Yn can

cause numerical instability. Therefore we use the derivative free explicit strong

scheme of order  = 1:0 given by (3.14), which for the population model (2.12) has

the form

Yn+1 = Yn +
n
�1Yn + �2Y

2
n �

1
4
�
2
o
� (4.7)

+ 1
2
�

8<
:
"�
Yn +

�
�1Yn + �2Y

2
n �

1
4
�
2
�
�+ �

q
(Yn)+�Wn

�+# 12
+
q
(Yn)+

9=
;�Wn

with time step size � = 2�6. Here x+ denotes the positive part of x. In contrast to

Example 2.1 and 2.2, the Ito equation di�ers here from its Stratonovich version. We

emphasize that for the approximation the expression Yn+(�1Yn+ �2Y
2
n �

1
4
�
2)�+

�

p
Yn�Wn can become negative. In such a case we set this expression equal to

zero. A simulated trajectory is shown in Figure 6.

To estimate the parameters �1 and �2 we apply the estimators given by the last

expressions in (2.13) and (2.14) and obtain, after approximation of the relevant

time integrals by the trapezoidal formula,

�̂
�
1;T =

1

2N�
T

8<
:(XT �X0)

nT�1X
n=0

�
X

3
tn+1

+X
3
tn

�
�

�
1

2

8<
:X2

T �X
2
0 �

�
2

2

nT�1X
n=0

�
Xtn+1 +Xtn

�
�

9=
;

nT�1X
n=0

�
X

2
tn+1

+X
2
tn

�
�

9=
; (4.8)

and

�̂
�
2;T =

1

2N�
T

8<
:12

0
@
X

2
T �X

2
0 �

�
2

2

nT�1X
n=0

�
Xtn+1 +Xtn

�
�

1
A nT�1X

n=0

�
Xtn+1 +Xtn

�
�

�(Xt �X0)

nT�1X
n=0

�
X
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+X
2
tn

�
�

9=
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Figure 3. A simulated trajectory for the estimator �̂�2;t of Example 2.1. The true

value is �2 = 1.

Figure 4. A simulated trajectory for the Du�ng-van der Pol oscillator (2.5) with

� = 1; � = 0:1 and (X
(1)
0 ; X

(2)
0 ) = (�1:8; 0).



Figure 5. A simulated trajectory for the estimator �̂�
t =̂�(t) of example 2.2. The

true value is � = 1.

using

N
�
T =

1

4

nT�1X
n=0

�
Xtn+1 +Xtn

�
�

nT�1X
n=0

�
X

3
tn+1

+X
3
tn

�
� (4.10)

�
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:12

nT�1X
n=0

�
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2
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+X
2
tn

�
�

9=
;
2

:

Trajectories of �̂�1;T and �̂�2;T are shown in Figure 7 and Figure 8, respectively.

A Appendix: Maximum likelihood estimation

In this appendix we briey review the theory of maximum likelihood estimation for

a class of stochastic di�erential equations broad enough to cover the examples stud-

ied in this paper. We shall consider parametric statistical models for d{dimensional

di�usion processes de�ned by a class of stochastic di�erential equations of the form

dXt = [At(X) +Bt(X)�] dt+Dt(X) dWt: (A.1)

We assume that this equation has a unique strong solution for every �. In (A.1)

At; Bt and Dt are functionals depending only on the sample path up to time t. For

simplicity we will assume that they are continuous functions of t for all sample paths

of X. The statistical parameter � is k{dimensional, and W is a d1{dimensional

Wiener process, so B is a d � k{matrix and D is a d � d1{matrix. The vector A

is d{dimensional. The functionals A;B and D are assumed to be known (given

by the scienti�c problem under study), while the parameter � is to be estimated



Figure 6. A simulated trajectory for the population model (2.12) with �1 = 2; �2 =

�2; � = 0:5 and X0 = 0:5.

Figure 7. A simulated trajectory for the estimator �̂�1;t of Example 2.3. The true

value is �1 = 2.



Figure 8. A simulated trajectory for the estimator �̂�2;t of Example 2.3. The true

value is �2 = �2.

from an observed sample path fXt : t 2 [0; T ]g. We assume that the columns of

the matrix Bt(X) are linearly independent functions of t. Otherwise the model

could be parametrized by a parameter of dimension smaller than k. Models of the

type (A.1) are statistically well{behaved because they are exponential families of

stochastic processes; see K�uchler and S�rensen (1989, 1992).

We assume that � 2 �; an open subset of Rk. Without loss of generality we can

assume that 0 2 �. In most applications the functionals At; Bt and Dt depend on

X through Xt only, i.e. At(X) = At(Xt); Bt(X) = Bt(Xt) and Dt(X) = Dt(Xt).

In such cases the solution of (A.1) is Markovian. An example where this is not the

case is given in Example 2.2, since At(X
(2)) = �(X(2)

t + X

(1)
t )3; Bt(X

(2)) = X

(1)
t

and Dt(X
(2)) = �X

(1)
t depend on the whole sample path of X(2) in [0; t]. Note,

however, that the pair (X(1)
; X

(2)) is a Markov process.

Suppose we have observed the process X in the time interval [0; T ]: Let P T
�

denote the probability measure on the set of continuous functions from [0; T ] into

R
d corresponding to the solution of (A.1) for the parameter value �. The likelihood

function for our observation fXt : t 2 [0; T ]g is the Radon{Nikodym derivative

LT (�) = dP
T
� =dP

T
0 provided P T

� is dominated by P T
0 for all � 2 �. This is the case

if the d�d{matrix Ct(X) = Dt(X)Dt(X)� is non{singular for almost all t 2 [0; T ],

and P T
� (ST <1) = 1 for all � 2 �, where ST is the k � k{matrix

ST =

TZ
0

Bt(X)� Ct(X)�1 Bt(X) dt: (A.2)



A star denotes matrix transposition. De�ne the k-dimensional random vector

HT =

TZ
0

Bt(X)�Ct(X)�1d ~Xt; (A.3)

~
Xt = Xt �

tZ
0

As(X) ds:

Then the likelihood function is given by

LT (�) = exp[��HT �
1

2
�
�

ST �]:

The estimator obtained by maximizing LT (�) is

�̂t = S
�1
T HT ; (A.4)

which exists because ST is non-singular under the conditions imposed. Note that

ST is the observed information matrix.

In cases where P T
� is not dominated by P

T
0 we can interpret LT (�) as a quasi-

likelihood function, see [11], [9], [30] and [10]. Estimators obtained by maximizing

a quasi-likelihood function have many of the optimality properties enjoyed by the

maximum likelihood estimator.

Under natural regularity conditions one can apply a central limit theorem for

martingales to the score martingaleHt�ST � to prove that the maximum likelihood

estimator is consistent and asymptotically normal distributed, see e.g. [31].
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