
Abstract

We give a review on the rigorous results concerning the storage capacity of

the Hop�eld model. We distinguish between two di�erent concepts of storage

both of them guided by the idea that the retrieval dynamics is a Monte{Carlo

dynamics (possibly at zero temperature). We recall the results of McEliece et

al. [MPRV87] as well as those by Newman [N88] for the storage capacity of

the Hop�eld model with unbiased i.i.d. patterns and comprehend some recent

development concerning the Hop�eld model with semantically correlated or

biased patterns.
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1 Introduction and

Two Concepts of Storage Capacity

Let us recall that one of the most important motivations to study the Hop�eld model

has always been that it can be regarded as one of the central and easiest models

of a neural network and that it exhibits certain phenomena considered as the most

important advantages of neural networks over ordinary computers. Especially, when

considering the memory aspects of the Hop�eld model the memory is di�used (in

contrast to the localized computer memory) and content-addressable such that even

strongly noised data can be successfully retrieved. Hence we may regard the Hop�eld

model as a toy model for modelling brain functions.

In this context the most natural question to ask is how many patterns the Hop�eld

model can store and how the maximum number of stored patterns scales with the

number of neurons N . Already numerical investigations by Hop�eld [Ho82] suggest

that there is a critical value �c � 0:14 such that the Hop�eld model can store less

than �cN patterns, if small errors are tolerated. This �nding has been supported

(with a similar value for �c) by the non-rigorous analysis in [AGS87].

Before we give a mathematical analysis of the storage capacity of the Hop�eld model

we �rst have to brie
y explain the two di�erent concepts of storage we are dealing

with on a technical level.

To this end let us �rst recall the de�nition of the Hop�eld Hamiltonian with M :=

M(N) patterns

HN(�) = �
NX

i;j=1

Jij�i�j (1)

where

Jij =
1

N

M(N)X
�=1

�
�

i
�
�

j

and �i 2 f�1; 1g.
The idea behind the �rst notion of storage capacity is that a possible retrieval dy-

namics is a Monte{Carlo dynamics at zero temperature working as follows: Choose

a site i at random. Flip the spin �i, if 
ipping lowers the energy (the Hamiltonian)

and stay with �i otherwise. On a more formal level we de�ne the gradient dynamics

T on the energy landscape given by HN via

T : �i 7! sgn(

NX
j=1

�jJij)

(where sgn is the sign function) and call a con�guration � = (�i)i�N stable if it is

a �xed point of T , i.e.

�i = sgn(

NX
j=1

�jJij) for all i = 1; : : : ; N

which means that � is a local minimum of the Hamiltonian. The storage capacity

in this concept is de�ned as the greatest number of patterns M := M(N) such that
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all the patterns �� are stable in the above sense (almost surely or with probability

converging to one).

The other approach to storage capacity is due to Newman [N88]. It takes into

consideration the small errors (mentioned above) we are willing to accept in the

restoration of the patterns. So we are satis�ed, if the retrieval dynamics converges

to a con�guration which is not too far away from the original patterns. Thus in

this concept a pattern �� is called stable, if it is close to a local minimum of the

Hamiltonian or in other words if it is surrounded by a su�ciently high energy barrier.

Technically speaking we will call �� stable if there exist " > 0 and � > 0 such that

inf
�2S�(�

�)

HN(�) � HN(�
�) + "N: (2)

Here the set S�(�
�) the in�mum is taken over is the Hamming sphere of radius �N

centered in ��. Again we will use the notion of storage capacity for the maximal

number M(N) of patterns such that (2) holds true for all �� almost surely.

2 Results in the Case of Unbiased I.I.D. Patterns

In this section we will review the results in the case of unbiased i.i.d. patterns. Most

of them go back already to the papers of McEliece et al. [MPRV87] and Newman

[N88] and are well-known nowadays. So we will only brie
y indicate the basic ideas

of the proofs here and refer the interested reader to the original papers or the review

article by Petritis [P95] for more detailed informations.

With the de�nitions introduced above the following results can be proved in the case

that the �
�

i
are i.i.d. and P (�

�

i
= 1) = 1

2
(and until otherwise stated we will assume

that the patterns are unbiased and i.i.d.).

Theorem 1 Assume that M(N) = N


 logN
.

Then the following assertions hold true:

1. If 
 > 6

P (lim inf
N!1

(\M(N)

�=1
T�� = ��)) = 1

i.e. the patterns are almost surely stable.

2. If 
 � 4

P ((\M(N)

�=1
T�� = ��)) = 1� RN

with limN!1RN = 0.

3. If 
 > 2 for every �xed � = 1; : : : ;M

P (T�� = ��) = 1�RN

with limN!1RN = 0.
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Part one of the theorem is contained e.g. in [P95]. Part two of this result �rst was

stated in [MPRV87] and proved in [M92]. Part three has already been proved in

[MPRV87].

The idea of the proof is fairly simple. It mainly consists of the observation that

according to the de�nition of the dynamics T the pattern �� is stable if and only if

NX
j=1

M(N)X
�=1

��
i
��
j
�
�

i
�
�

j
� 0

for all i = 1; : : : ; N (with the convention sgn(0) = 1), an application of the ex-

ponential Chebyshev{Markov inequality, a computation of the moment generating

function

E

0
B@exp(�t(

NX
j=1

M(N)X
�=1

�6=�

��
1
��
j
�
�

1
�
�

j
))

1
CA = cosh(t)N M(N) � exp(

1

2
t2N M(N))

(by the independence of the �
�

i
) and a �nal application of the Borel{Cantelli Lemma.

We will give a more explicit proof of a more general statement when proving

Theorem 5.

Theorem 1 in other words states that the patterns are �xed points of the gradient

dynamics and hence are recognized if one starts with them. But just recalling

patterns if they are presented without errors can hardly be called an associative

memory. What we would like to have is that even if a pattern is corrupted by a

certain percentage of noise the gradient dynamics is able to retrieve this pattern. The

following theorem shows that also noised patterns can be successfully reconstructed.

Theorem 2 (see [KP88],[P95]) Let r 2 [0; 1
2
) and for each � = 1; : : : ;M(N) let

~�� be an element of the Hamming sphere of radius rN centered at ��. Assume that

M(N) = (1� 2r)2 N


 logN
.

Then:

1. If 
 > 6

P (lim inf
N!1

(\M(N)

�=1
T ~�� = ��)) = 1

i.e. the noised patterns are almost surely attracted.

2. If 
 � 4

P ((\M(N)

�=1
T ~�� = ��)) = 1� RN

with lim
N!1

RN = 0.

3. If 
 > 2 for every �xed � = 1; : : : ;M

P (T ~�� = ��) = 1�RN

with lim
N!1

RN = 0.
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The proof of this Theorem follows the same steps as the proof of Theorem 1.

Observe that Theorem 2 basically deals with the case of the so-called \direct con-

vergence" error-correcting power of the Hop�eld model, i.e. the convergence to the

stored patterns in one iteration. Much more interesting (and technically more in-

volved) is, of course, the question of non-direct convergence, i.e. the number of

patterns that can be stored such that the retrieval dynamics starting in a noised

pattern eventually converges to the corresponding stored pattern. Already the re-

sults in [MPRV87] motivated the authors to conjecture a storage capacity of N


 logN

with again 
 = 2; 4 or 6 depending on whether we concentrate on storing a �xed

pattern or all patterns and whether we want convergence in probability or almost

surely. This conjecture actually could be proved by [Bu94].

Let us now turn to the second notion of storage capacity. We will see, that if small

errors are tolerated, the Hop�eld model indeed can store a number of patterns M

proportional to the number of neurons N { in agreement with the non-rigorous

results of Hop�eld [Ho82] and Amit et al. [AGS87] (although the critical �c is

somewhat smaller than what could be expected from the numerical analysis and

di�erent concepts of storage capacity are used).

Theorem 3 There exists an �c > 0 such that if M(N) � �cN , then there are " > 0

and 0 < � < 1=2 such that

P
�
lim inf
N!1

(\M(N)

�=1
\�2S�(�

�) (HN(�) � HN(�
�) + "N))

�
= 1

where S�(�
�) is the Hamming sphere of radius �N centered in ��.

The �rst proof of this theorem can be found in [N88]. Re�ned estimates have been

obtained in [Lou94] and [T96]. The basic idea is to compute the energy di�erences

between the energy of a �xed pattern �� and some element in S�(�
�), to use the ex-

ponential Chebyshev{Markov inequality and to replace the variables in the moment

generating function by independent N (0; 1)- Gaussian random variables. The value

of the critical � obtained by this theorem has increased from �c = 0:056 (Newman,

[N88]), over �c = 0:071 (Loukianova, [Lou94]) to �c = 0:08 recently proved by Ta-

lagrand ([T96]). Again we will see how these ideas are realized in a more explicit

proof of a more general statement at the end of this article.

3 The Storage Capacity of The Hop�eld Model

with Semantically Correlated Patterns

In this section we are going to drop the independence assumption of the previous

section. Basically there are two reasonable ways to introduce correlations between

the patterns.

One is to consider spatially correlated patterns, i.e. to consider a correlation between

��
i
and ��

j
even if i 6= j, but to leave the ��

i
and �

�

j
independent for � 6= �. This model

may be of interest when storing e.g. images that can be considered to come from a

Markov random �eld. The other type of dependency one may assume is semantical
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or sequential dependency among the patterns. That means that we consider random

variables ��
i
such that ��

i
and �

�

j
still are independent if i 6= j, but that we may have

correlations between ��
i
and �

�

i
even if � 6= �. Such sequences may be interesting if

non deterministic sequences of patterns have to be learned, and in some sense every

type of human behavior is such a sequence.

Here we will concentrate on the case of semantically correlated patterns as in [L�o96a].

More precisely we assume that the correlation comes from a homogeneous Markov

chain and that the patterns �
�

i
are correlated in � but still are independent in i. Such

a result is, of course, interesting in its own right, since most realistic situations do not

produce independent information. Moreover, one may regard results concerning the

Hop�eld model with correlated patterns as a step towards showing the universality

of the Hop�eld model.

So let us assume that the (��
i
)i2N;�2N form a Markov chain with initial distribution

P (�1
i
= x1

i
; i = 1; : : : ; N) = 2�N for all x1

i
2 f�1; 1g and all i = 1; : : : ; N: (3)

and transition probabilities

P (��
i
= x�

i
j��
j
= x

�

j
; j = 1; : : : ; N; � = 1; : : : ; � � 1) (4)

= P (��
i
= x�

i
j���1
i

= x��1
i

) = Q(x��1
i

; x�
i
):

Here Q denotes a symmetric 2� 2 matrix with entries

Q =

�
p 1� p

1� p p

�

where 0 < p < 1 (note that p = 1

2
is the case of independent patterns).

With this de�nition our �rst result concerning correlated patterns reads as follows:

Theorem 4 Assume the random patterns �� ful�ll (3) and (4) and M(N) = N


 logN
.

Then for the following assertions hold true:

1. If 
 >
3(p

2
+(1�p)2)

p(1�p)

P (lim inf
N!1

(\M(N)

�=1
T�� = ��)) = 1

i.e. the patterns are almost surely stable.

2. If 
 � 2(p
2
+(1�p)2)

p(1�p)

P ((\M(N)

�=1
T�� = ��)) = 1� RN

with limN!1RN = 0.

3. If 
 >
p
2
+(1�p)2

p(1�p)
for every �xed � = 1; : : : ;M(N)

P (T�� = ��) = 1�RN

with limN!1RN = 0.
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Let us only sketch the proof here. For a complete proof we refer the reader to [L�o96]:

Sketch of the Proof: Fix 1 � � � M(N). As has been mentioned above the

pattern �� is stable if and only if

NX
j=1

M(N)X
�=1

��
i
��
j
�
�

i
�
�

j
� 0

for all i = 1; : : : ; N .

Hence for by the identical distribution of the �
�

i
for di�erent i and the exponential

Chebyshev-inequality we obtain all t � 0

P (�� is not stable ) � NP (

NX
j=1

M(N)X
�=1

�6=�

��
1
��
j
�
�

1
�
�

j
� �N)

= Ne�tN

0
B@E

0
B@exp(�t(

M(N)X
�=1

�6=�

��
1
��
2
�
�

1
�
�

2
))

1
CA
1
CA

N

(5)

Now putting Y� := �
�

1
�
�

2
and calculating the expectation in (5) leads to

E(exp(�t
M(N)X
�=1;
�6=�

Y�Y�))

=
X

y1=�1;1;
yM=�1;1

���1
L

(y1; 1)�
M��
R

(1; yM)

=

��
1

1

�
���1
L

�
1

0

��
�
��

1

0

�
�M��
R

(1; �)
�

1

1

��
� �M�1

1

where

�L :=

�
qe�t (1� q)e�t

(1� q)et qet

�
;

(�L)
t = �R, and �1 is the largest eigenvalues of �L. Observe that

�1 = q cosh(t) +

q
1� 2q + q2 cosh2(t) (6)

Hence we arrive at

P (�� is not stable ) � Ne�tN�
(M(N)�1)N
1

:

Moreover, expanding the root in (6) using
p
(1 + x) � 1+ x

2
and approximating the

hyperbolic functions contained in (6) by their leading two terms yields

�1 � 1 + t2
q

2(1� q)
+O(t4) � exp(t2

q

2(1� q)
)(1 +O(t4)):
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Choosing t = 1�q

qM(N)
gives

P (�� is not stable ) � N exp(�
1� q

2q

N

M(N)
)(1 +O(t4))M(N)N :

So if M(N) = N


 logN
the last factor on the right hand side can be bounded by

exp(const:
(logN)

4

N2
) which is converging to one. Hence the right hand side of the

inequality is bounded by const: N1�
(1�q)


2q which, for 
 > 2q

1�q
=

p
2
+(1�p)2

p(1�p)
, converges

to zero and therefore yields part three of the theorem.

For the other two parts observe that the bounds obtained above do not depend on

�. Thus

P (9� : �� is not stable ) �M(N)N exp(�
1� q

2q

N

M(N)
)O(1)

So putting again M(N) = N


 logN
this time with 
 > 6q

1�q
=

3(p
2
+(1�p)2)

p(1�p)
leads to the

converging series
P

1

N� logN
for an � > 1 and thus proves part one of the theorem

by the Borel{Cantelli Lemma. The choice of 
 � 4q

1�q
=

2(p
2
+(1�p)2)

p(1�p)
yields

P (9� : �� is not stable )! 0

and therefore part two of the theorem. 2

Observe that the bounds obtained in Theorem 4 are decreasing functions of the

correlation. This in a way re
ects the idea that the basic reason why the Hop�eld

model works well as an associative memory in the case of i.i.d. patterns is that

such patterns tend to be \nearly orthogonal" which more precisely means that the

overlap 1

N

P
N

i=1
�
�

i
��
i
for � 6= � if of order N� 1

2 (and it is e.g. quickly checked that the

Hop�eld model indeed can store N orthogonal patterns). For sequences of correlated

patterns such a behavior cannot be expected. However, since Markov chains have

exponentially decreasing correlation the dependencies do not in
uence the storage

capacities too heavily in our case.

Let us also mention that there is, of course, a version of Theorem 2 for the case

of patterns ful�lling (3) and (4). The value of 
 there is the one which could be

expected from Theorems 2 and 4 (also see [L�o96a]).

With the second notion of storage capacity we obtain the following result

Theorem 5 Suppose that the random patterns ful�ll (3) and (4). There exists an

�c > 0 (depending on p) such that if M(N) � �cN , then there are " > 0 and

0 < � < 1=2 such that

P
�
lim inf
N!1

(\M(N)

�=1
\�2S�(�

�) (HN(�) � HN(�
�) + "N))

�
= 1

where S�(�
�) is the Hamming sphere of radius �N centered in ��.
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We present the proof as given in [L�o96a].

Proof:

The main steps of the proof consist of a centering of the patterns and by replacing

them by appropriate Gaussian random variables. Although this basic idea is fairly

standard in the context of storage capacity estimates (see e.g. [N88], [BG92]) in our

situation the computations become technically quite involved.

We set

hN (�; �) := inf
�02S�(�)

HN (�
0):

First of all observe that

P
�
f\M(N)

�=1
(hN(�

�; �) � HN(�
�) + "N)gc

�

�
X

J :jJ j=�N

M(N)X
�=1

P (HN(�
�

J
)�HN (�

�) � "N)

where ��
J
denotes a con�guration di�ering from �� exactly in the coordinates J and

� is chosen in such a way that �N is an integer.

Let us keep � �xed in the sequel and note that

HN(�
�

J
)�HN(�

�) =
2

N

X
�6=�

X
i2J;j =2J

��
i
��
j
�
�

i
�
�

j
+ 2�(1� �):

Thus by the exponential Chebyshev-Markov inequality for any t � 0

P (HN(�
�

J
)�HN(�

�) � "N) � e�t"
0NE

0
@exp

0
@� t

N

X
�6=�

X
i2J;j =2J

��
i
��
j
�
�

i
�
�

j

1
A
1
A

where we have set "0 = �"=2 + �(1� �).

Let us moreover assume that ��
i
= 1 for all i = 1; : : : ; N (this can be done without

loss of generality since the initial situation is completely symmetric). Then the sum

in the exponent of the moment generating function can be split into two parts:X
�6=�

X
i2J;j =2J

�
�

i
�
�

j
=
X
�>�

X
i2J;j =2J

�
�

i
�
�

j
+
X
�<�

X
i2J;j =2J

�
�

i
�
�

j
(7)

which, conditioned on ��
i
= 1 for all i = 1; : : : ; N , are independent. Introducing

�
�

i
= �

�

i
� (2p� 1)�

��1
i

: (8)

we can express the �rst sum on the right hand side of (7) as

X
i2J;j =2J

MX
�>�

�
�

i
�
�

j

=
X

i2J;j =2J

 
MX

�1;�2>�

a�1;�2�
�1

i
�
�2

j
+

MX
�>�

a�;�(�
�

i
+ �

�

j
) +

M���1X
n=0

(2p� 1)2n

!
;
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where

a�1;�2 :=

M�maxf�1;�2gX
n=0

(2p� 1)2n+j�1��2j (9)

for �1; �2 � �, (�1; �2) 6= (�; �). Note that a�1;�2 = a�2;�1 .

For the second sum in (7) we observe that reversing the chains (�
�

i
)�<� (i = 1; : : : ; N)

does not change their distribution. So applying the same transformation as above

to the reversed Markov chains (�
�

i
)�<� (i = 1; : : : ; N) yields

E(exp(�
t

N

X
i2J;j =2J

X
�6=�

�
�

i
�
�

j
)) = exp(�

t

N

X
i2J;j =2J

(

M���1X
n=0

(2p� 1)2n +

��1X
n=0

(2p� 1)2n))

� E

0
@exp

0
@� t

N

X
i2J;j =2J

 X
�>�

a�;�(�
�

i
+ �

�

j
) +
X
�<�

~a�;�(�
�

i
+ �

�

j
)+

+
X

�1;�2>�

a�1;�2�
�1

i
�
�2

j
+

X
�1;�2<�

~a�1;�2�
�1

i
�
�2

j

!!!
;

where

~a�1;�2 :=

��1�minf���1;���2gX
n=0

(2p� 1)2n+j�1��2j: (10)

Using the independence of the initial part and the tail part of the Markov chains

mentioned above together with H�older's inequality to split up the moment generating

function of the linear part from the moment generating function of the genuine

quadratic form we obtain for all � > 1

E

0
B@exp

0
B@� t

N

X
�6=�

X
i2J;j =2J

��
i
��
j
�
�

i
�
�

j

1
CA
1
CA

� exp(�tN�(1� �)(

M���1X
n=0

(2p� 1)2n +

��1X
n=0

(2p� 1)2n)) (11)

�

0
B@E

0
B@exp

0
B@� t

N

�

�� 1

X
�>�

a�;�
X

i2J;j =2J

(�
�

i
+ �

�

j
)

1
CA
1
CA
1
CA

��1

�

�

�

0
B@E

0
B@exp

0
B@� t

N

�

�� 1

X
�<�

~a�;�
X

i2J;j =2J

(�
�

i
+ �

�

j
)

1
CA
1
CA
1
CA

��1

�

�

0
B@E

0
B@exp

0
B@� t

N
�
X

i2J;j =2J

X
�1;�2>�

a�1;�2�
�1

i
�
�2

j

1
CA
1
CA
1
CA

1

�

10



�

0
B@E

0
B@exp

0
B@� t

N
�
X

i2J;j =2J

X
�1;�2<�

~a�1;�2�
�1

i
�
�2

j

1
CA
1
CA
1
CA

1

�

:

We now have to estimate the factors on the right hand side of (11). Note that for

M large enough

(

M���1X
n=0

(2p� 1)2n +

��1X
n=0

(2p� 1)2n)) �
1

C 0(1� (2p� 1)2)
:

for any C 0 > 1

To treat the other terms let us agree on the following notation: With EI
0

I
(where

I � f1; : : : ; Ng and I 0 � f1; : : : ;Mg) we denote the integration with respect to

those random variables �
�

i
with i 2 I and � 2 I 0. Especially, if we drop the upper or

lower indices we will usually mean the expectation with respect to all the random

variables occuring in the argument of the integral. By the independence of the co-

ordinate processes and the identical distribution of the �
�

i
we obtain for the moment

generating function of the linear part

E

0
B@exp

0
B@� t

N

�

�� 1

X
�>�

a�;�
X

i2J;j =2J

(�
�

i
+ �

�

j
)

1
CA
1
CA

=

"
E

 
exp(�

t

N

�

�� 1

X
�>�

a�;��
�

1
)

!#�(1��)N2

The expectation above can now be estimated as follows

E

 
exp

 
�

t

N

�

�� 1

X
�>�

a�;��
�

1

!!

= E�<��M�1

 
exp

 
�

t

N

�

�� 1

M�1X
�>�

a�;��
�

1

!!
EM

�
exp(�

t

N

�

�� 1
aM;��

M

1
)

�

= E�<��M�1

 
exp

 
�

t

N

�

�� 1

M�1X
�>�

a�;��
�

1

!!
�

�
�
p exp(�2

t

N

�

�� 1
aM;�(1� p)�M�1

1
) + (1� p) exp(2

t

N

�

�� 1
aM;�p�

M�1
1

�

� E�<��M�1

 
exp

 
�

t

N

�

�� 1

M�1X
�>�

a�;��
�

1

!!
cosh(

t

N

�

�� 1
aM;�(1 + j2p� 1j)�M�1

1
)

� E�<��M�1

 
exp

 
�

t

N

�

�� 1

M�1X
�>�

a�;��
�

1

!!
exp(

1

2

t2

N2
(

�

�� 1
)2a2

M;�
(1 + j2p� 1j)2)

where we have used j�M�1
1

j = 1 ,

p exp(�2(1� p)t) + (1� p) exp(2pt) � cosh((1 + j2p� 1j)t)

11



for all 0 < p < 1 and all t 2 R and �nally

cosh(x) � exp(x2=2):

Integrating the other variables in the same way gives

E

 
exp

 
�

t

N

�

�� 1

X
�>�

a�;��
�

1

!!

� exp(
1

2

t2

N2
(

�

�� 1
)2(1 + j2p� 1j)2

MX
�>�

a2
�;�
)

� exp

�
1

2

t2

N2
(

�

�� 1
)2(1 + j2p� 1j)2

1

(1� (2p� 1)2)3

�
:

So altogether we arrive at

E

0
B@exp

0
B@� t

N

�

�� 1

X
�>�

a�;�
X

i2J;j =2J

(�
�

i
+ �

�

j
)

1
CA
1
CA

� exp

�
1

2
t2�(1� �)(

�

�� 1
)2(1 + j2p� 1j)2

1

(1� (2p� 1)2)3

�

Thus applying the same techniques to the second linear term on the right hand side

of (11) we obtain

0
B@E

0
B@exp

0
B@� t

N

�

�� 1

X
�>�

a�;�
X

i2J;j =2J

(�
�

i
+ �

�

j
)

1
CA
1
CA
1
CA

��1

�

�

�

0
@E

0
@exp

0
@� t

N

�

�� 1

X
�<�

~a�;�
X

i2J;j =2J

(�
�

i
+ �

�

j
)

1
A
1
A
1
A

��1

�

� exp

�
t2�(1� �)(

�

�� 1
)(1 + j2p� 1j)2

1

(1� (2p� 1)2)3

�

We will see that due to our �nal choice of t this factor will have a negligible con-

tribution to the �nal estimate (which might have been expected by just counting

the number of linear terms and comparing it to the number of terms in the genuine

quadratic form.

The moment generating function of the quadratic form is treated similarly using the

independence of the �
�

i
for di�erent i to replace them by Gaussian random variables:

E

0
@exp

0
@� t

N
�
X

i2J;j =2J

X
�1;�2>�

a�1;�2�
�1

i
�
�2

j

1
A
1
A
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= E�<�1;�2�M�1EM

Jc

0
@exp

0
@� t

N
�
X

i2J;j =2J

MX
�2>�

M�1X
�1>�

a�1;�2�
�1

i
�
�2

j

1
A

EM

J

0
@exp(�

t

N
�
X

i2J;j =2J

�M
i

MX
�2=�+1

aM;�2
�
�2

j
)

1
A
1
A

= E�<�1;�2�M�1EM

Jc

0
@exp

0
@� t

N
�
X

i2J;j =2J

MX
�2>�

M�1X
�1>�

a�1;�2�
�1

i
�
�2

j

1
A

Y
i2J

EM

fig

0
@exp(�

t

N
��M

i

X
j =2J

MX
�2=�+1

aM;�2
�
�2

j
)

1
A
1
A

� E�<�1;�2�M�1EM

Jc

0
@exp

0
@� t

N
�
X

i2J;j =2J

MX
�2>�

M�1X
�1>�

a�1;�2�
�1

i
�
�2

j

1
A
1
A�

�
Y
i2J

exp

0
@1

2

t2

N2
�2(1 + j2p� 1j)2(

X
j =2J

MX
�2=�+1

aM;�2
�
�2

j
)2

1
A

= E�<�1;�2�M�1EM

Jc

0
@exp

0
@� t

N
�
X

i2J;j =2J

MX
�2>�

M�1X
�1>�

a�1;�2�
�1

i
�
�2

j

1
A
1
A�

�
Y
i2J

EzMi
exp

0
@zM

i

t

N
�(1 + j2p� 1j)

X
i2J;j=2J

MX
�2=�+1

aM;�2
�
�2

j

1
A

= E�<�1;�2�M�1EM

Jc

0
@exp

0
@� t

N
�
X

i2J;j =2J

MX
�2>�

M�1X
�1>�

a�1;�2�
�1

i
�
�2

j

1
A
1
A�

� EzMJ
exp

0
@ t

N
�(1 + j2p� 1j)

X
i2J;j =2J

MX
�2=�+1

aM;�2
zM
i
�
�2

j

1
A

where zM
i

are Gaussian random variables with expectation 0 and identity covariance

matrix independent of the �
�

i
, EzMi

denotes the expectation with respect to zM
i
, and

�nally EzMJ
denotes the expectation with respect to the vector (zM

i
)i2J . Here we

have used the well known identity

exp(
1

2
x2) =

1p
2�

Z 1

�1

exp(xy �
1

2
y2)dy:

Interchanging the order of integration and using the above technique on every �
�

i

we are now able to consecutively replace all the variables �
�

i
by Gaussian random

variables z
�

i
with expectation zero and identity covariance matrix. This leads to

E

0
B@exp

0
B@� t

N
�
X

i2J;j =2J

X
�1;�2>�

a�1;�2�
�1

i
�
�2

j

1
CA
1
CA
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� Ez

0
B@exp

0
B@ t

N
�(1 + j2p� 1j)2

X
i2J;j =2J

X
�1;�2>�

a�1;�2z
�1

i
z
�2

j

1
CA
1
CA

� Ez

 
exp

 
t�(1 + j2p� 1j)2

p
�(1� �)

X
�1;�2>�

a�1;�2z
�1z�2

!!

= Ez

�
exp

1

2

�
t�(1 + j2p� 1j)2

p
�(1� �)hz; Âzi

��

where (by normalizing) (z�)�=�+1;:::;M and (z�)�=�+1;:::;M are now Gaussian random

variables with expectation 0 and identity covariance matrix, z denotes the vector

of the (z�; z�) and Ez is integration with respect to z. Finally Â is an 2(M � �)�
2(M � �)-matrix with entries

Â =

�
0 A

A 0

�

and the (M � �)� (M � �)-matrix A is given by

A = (A�1;�2
) = (a�1��;�2��):

.

Observe that the above integral only exists if t is small enough (i.e. if

Id� t�(1 + j2p� 1j)2
p
�(1� �)Â is positive de�nite) and in this case it equals the

inverse of the square-root of the determinant of Id� t�(1 + j2p� 1j)2
p
�(1� �)Â.

On the other hand this determinant can be estimated since trivially the identity

matrix commutes with Â. Thus

det(Id� t�(1 + j2p� 1j)2
p
(�(1� �)Â) =

2(M��)Y
i=1

%i

=

2(M��)Y
i=1

(1� t�(1 + j2p� 1j)2
p
�(1� �)�i)

where the %i are the eigenvalues of Id � t�(1 + j2p � 1j)2
p
�(1� �)Â and the �i

are the eigenvalues of Â. Moreover note that Â has a symmetric spectrum, i.e. if

�i is an eigenvalue of Â then so is ��i (which can be seen from the fact that if

v = (v1; : : : ; vM��; vM��+1; : : : v2(M��)) is an eigenvector for the eigenvalue �i then

~v = (�v1; : : : ;�vM��; vM��+1; : : : v2(M��)) is an eigenvector for ��i). Therefore

det(Id� t�(1 + j2p� 1j)2
p
(�(1� �)Â) =

M��Y
i=1

(1� t2�2(1 + j2p� 1j)4�(1� �)�2

i
)

� (1� t2�2(1 + j2p� 1j)4�(1� �)�2

max
)M��

where the product is taken over all non-negative eigenvalues and �max denotes the

maximum eigenvalue of Â. This maximum eigenvalue by Gershgorin's theorem can

be bounded by the maximum row sum, i.e.

�max � max
�1

X
�2

ja�1;�2 j �
1

1� (2p� 1)2
2

1� j2p� 1j
:
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Plugging that into our estimates gives

Ez

 
exp

 
t

N
�(1 + j2p� 1j)

p
�(1� �)

X
�1;�2>�

a�1;�2z
�1z�2

!!

�

0
@ 1q

1� t2�2(1 + j2p� 1j)4�(1� �)( 1

1�(2p�1)2
2

1�j2p�1j
)2

1
A

M��

:

where we have assumed that t is so small that the latter quantity is real.

Thus repeating the estimate for the moment generating function of the second

quadratic form and setting M = �N

P (HN(�
�

J
)�HN(�

�) � "N)

� inf
t��t�0

exp

�
�t"0N � tN�(1� �)

1

C 0(1� (2p� 1)2)

�

� exp

�
� log

�
1� t2�2

�(1� �)

(1� (2p� 1)2)2
4(1 + j2p� 1j)4

(1� j2p� 1j)2

�
M � �

2

�

� exp

�
� log

�
1� t2�2

�(1� �)

(1� (2p� 1)2)2
4(1 + j2p� 1j)4

(1� j2p� 1j)2

�
�

2

�

� exp

�
t2�(1� �)(

�

�� 1
)(1 + j2p� 1j)2

1

(1� (2p� 1)2)3

�

= inf
t��t�0

exp

�
�t"0N � tN�(1� �)

1

C 0(1� (2p� 1)2)

�

� exp

�
� log

�
1� t2�2

�(1� �)

(1� (2p� 1)2)2
4(1 + j2p� 1j)4

(1� j2p� 1j)2

�
M

2

�

� exp

�
t2�(1� �)(

�

�� 1
)(1 + j2p� 1j)2

1

(1� (2p� 1)2)3

�

where t� =
(1�(2p�1)2)(1�j2p�1j)

2�(1+j2p�1j)2

q
1

�(1��)
.

Finally by Stirling's formula (to bound the binomial coe�cient) and the above esti-

mate

X
J :jJj=�N

M(N)X
�=1

P (HN(�
�

J
)�HN(�

�) � "N)

� M(N)

�
N

�N

�
exp

�
�t"0N � tN�(1� �)

1

C 0(1� (2p� 1)2)

�
�

� exp

�
� log(1� t2�2

�(1� �)

(1� (2p� 1)2)2
4(1 + j2p� 1j)4

(1� j2p� 1j)2
)
�

2
N

�

� exp

�
t2�(1� �)(

�

�� 1
)(1 + j2p� 1j)2

1

(1� (2p� 1)2)3

�
� �N inf

t��t�0
exp ((�� log � � (1� �) log(1� �))N)�

� exp

�
�t"0N � tN�(1� �)

1

C 0(1� (2p� 1)2)

�
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� exp

�
� log(1� t2�2

�(1� �)

(1� (2p� 1)2)2
4(1 + j2p� 1j)4

(1� j2p� 1j)2
)
�

2
N

�

� exp

�
t2�(1� �)(

�

�� 1
)(1 + j2p� 1j)2

1

(1� (2p� 1)2)3

�

and we have to �nd an admissible t (i.e. 0 � t � t�) and values of � and � such

that the above exponent becomes negative. To this end �rst of all note that for all

admissible t

exp

�
t2�(1� �)(

�

�� 1
)(1 + j2p� 1j)2

1

(1� (2p� 1)2)3

�
= O(1)

and therefore this term does not in
uence the convergence (as promised above).

Moreover if t2�2
�(1��)

(1�(2p�1)2)2
4(1+j2p�1j)4

(1�j2p�1j)
� 3=4

1q
1� t2�2

�(1��)

(1�(2p�1)2)2
4(1+j2p�1j)4

(1�j2p�1j)2

� exp

�
4t2�2

�(1� �)

(1� (2p� 1)2)2
(1 + j2p� 1j)4

(1� j2p� 1j)2

�
:

and hence up to terms of order one
P

J:jJj=�N

P
M(N)

�=1
P (HN(�

�

J
)�HN(�

�) � "N)

can be bounded by

exp

�
(�� log � � (1� �) log(1� �))N � t"0N � tN�(1� �)

1

C 0(1� (2p� 1)2)

� log(1� t2�2
�(1� �)

(1� (2p� 1)2)2
4(1 + j2p� 1j)4

(1� j2p� 1j)2
)
�

2
N

�

� exp

�
(�� log � � (1� �) log(1� �))N � t"0N � tN�(1� �)

1

C 0(1� (2p� 1)2)

+ 4t2�2
�(1� �)

(1� (2p� 1)2)2
(1 + j2p� 1j)4

(1� j2p� 1j)2
�N

�

if

t � t�� :=
(1� (2p� 1)2)(1� j2p� 1j)

4�(1 + j2p� 1j)2

s
3

�(1� �)
:

Choosing " very small the exponent is minimized by a t which is close to

tmin =
1

�

1

8�2(1 + j2p� 1j)4
((1� (2p� 1)2) +

1

C 0
)(1� (2p� 1)2)(1� j2p� 1j)2:

Observe that tmin � t�� if

� �
p
�(1� �)

1p
3�(1 + j2p� 1j)2

(1� (2p� 1)2 +
1

C 0
)(1� j2p� 1j): (12)

On the other hand inserting tmin into the essential part of the exponent and choosing

" su�ciently small gives (for the exponent)
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(�� log � � (1� �) log(1� �))N � tmin"
0N � tminN�(1� �)

1

C 0(1� (2p� 1)2)

+ 4t2
min

�2
�(1� �)

1� (2p� 1)2
(1 + j2p� 1j)4

1� j2p� 1j
�N (13)

� (�� log � � (1� �) log(1� �))N � 

�(1� �)(1� j2p� 1j)2(1� (2p� 1)2 + 1

C0 )
2

16�2(1 + j2p� 1j)4
1

�
N

with 
 < 1 and close to 1 (as " becomes small). The right hand side of this inequality

becomes negative when � and � become small appropriately. To check whether this

can be done in agreement with (12) we insert

� =
p
�(1� �)

1p
3�(1 + j2p� 1j)2

(1� (2p� 1)2 +
1

C 0
)(1� j2p� 1j)

into the right hand side of (13) and obtain 
�
p
3
(1� (2p� 1)2 + 1

C0

16�(1 + j2p� 1j)2
(1� j2p� 1j)

p
�(1� �)� � log � � (1� �) log(1� �)

!
N:

(14)

As it is quickly checked that for each positive constant C there is an interval [0; r]

(depending on C, of course) such that

C
p
�(1� �) � �� log � � (1� �) log(1� �)

for all � 2 [0; r], the above exponent becomes negative if we choose � small enough

and e.g. � as the right hand side of (12). This completes the proof of the theorem.

2

Let us �nally comment a little on the result of Theorem 5. Observe that the bound

on the moment generating function in (14) as well as the bound on � in (13) depends

on p mainly via the factor (1� j2p� 1j) (the other terms containing p are bounded

from above and away from 0) which converges to zero for p close to one or close

to zero and therefore can only deteriorate the bounds for � (allowing smaller �0s

only) for large correlations. Due to the many estimates in the proof of Theorem

5 this is, of course, in no way a proof that the storage capacity decreases with an

increasing correlation (only our bounds do), but it might either indicate that the

Hop�eld model has problems to store patterns with large correlations or it just

shows that our estimates get worse for large p (which is probably true). However,

as already mentioned after Theorem 4, a decrease of storage capacity (when the

correlation increases) would not be totally unexpected due to the way the Hop�eld

model is assumed to work. On the other hand from the point of view of information

theory, sequence of correlated data contains less information than an independent

sequence (e.g. in the extreme case that all patterns agree it su�ces to know the

�rst patterns to reconstruct them all). Hence one could expect a reasonable neural

network to be able to store more correlated patterns than uncorrelated ones. Indeed,

as shown in [L�o96a], provided we know the p of our Markov chain and therefore the
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covariance of the patterns in advance (note that we do not impose to know the

empirical correlations), there exists a variant of the Hop�eld model that can store a

larger number of correlated data than the number of independent patterns one can

store in the standard Hop�eld model provided the �rst notion of storage capacity

is used. With the second notion of storage capacity a bound of �N with � not

depending on p is obtained.

4 The Storage Capacity of the Hop�eld Model

with Biased Patterns

Finally we will brie
y report on some recent results on the storage capacity for the

Hop�eld model with biased patterns obtained in [L�o96b]. More precisely we will

assume that the patterns are i.i.d. as in Section 2 but have a uniform bias, i.e.

P (��
i
= 1) = p and P (��

i
= �1) = 1� p: (15)

As already pointed out several times in the physical literature (see e.g [HK91]) the

standard Hop�eld model as introduced above cannot store any increasing amount

of such patterns, simply because the local �eld associated with the Hop�eld Hamil-

tonian h
�

i
at site i and for a pattern �

h
�

i
:= �

�

i
+
X
� 6=�
j 6=i

�
�

j
��
i
��
j

quickly gets dominated by the bias from the second term for M !1. To overcome

this di�culty we center the patterns in the Hamiltonian, i.e. we consider synaptic

e�cacies of the form

Jij =

M(N)X
�=1

��
i
��
j
;

where

The ��
i
are the centered patterns ��

i
, i.e.

��
i
= ��

i
� (2p� 1):

This leads to the Hamiltonian of the biased Hop�eld model

HN(�) = �
1

2N

NX
i;j=1

�i�jJij = �
1

2N

NX
i;j=1

M(N)X
�=1

�i�j�
�

i
��
j
: (16)

For this variant of the Hop�eld model we have the following results

Theorem 6 Assume the random patterns �� ful�ll (15) and M(N) = N


 logN
.

Then for the Hop�eld model (16) the following assertions hold true:

1. If 
 > 3

8p2(1�p)2

P (lim inf
N!1

(\M(N)

�=1
T�� = ��)) = 1

i.e. the patterns are almost surely stable.
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2. If 
 > 1

4p2(1�p)2

P ((\M(N)

�=1
T�� = ��)) = 1� RN

with limN!1RN = 0.

3. If 
 > 1

8p2(1�p)2
for every �xed � = 1; : : : ;M

P (T�� = ��) = 1�RN

with limN!1RN = 0.

Here, of course, T is the gradient dynamics de�ned as in Section 1 for the

Hamiltonian (16).

Note that the estimates of the above Theorems for p = 1

2
(the unbiased case) agree

with the results in the standard Hop�eld model. I may of course be true that the

estimates can be improved in some respects. Note however, that our bound on the

storage capacity of the Hop�eld model with biased patterns is (similar to the case

of correlated patterns) a decreasing function in the bias of the patterns.

We now give a result on the storage capacity of the Hop�eld model with biased

patterns provided that Newman's concept of storage is used. It turns out that a

bias does not destroy the storage abilities of the Hop�eld model and that it can

store \extensively many" patterns (i.e. M(N) grows like �N), although the critical

� decreases to zero when the bias get s large.

Theorem 7 Suppose that the random patterns ful�ll (15). There exists an �c > 0

(depending on p) such that if M(N) � �cN , then there are " > 0 and 0 < � < 1=2

such that for the standard Hop�eld model (16)

P
�
lim inf
N!1

(\M(N)

�=1
\�2S�(�

�) (HN(�) � HN(��) + "N))
�
= 1

where S�(�
�) is the Hamming sphere of radius �N centered in ��.

Note that these results resemble the results of the Hop�eld model with correlated

patterns obtained in [L�o96a].

A proof of the above theorems can be carried out along the ideas introduced in the

proofs of Theorems 4 and 5 (and uses nearly the same inequalities). The interested

reader may consult [L�o96b] for details.
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