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Abstract

In this paper we study singularly perturbed systems with discontinuity sur-

faces. This means that we have a system of ordinary di�erential equations with

a small parameter and a piecewise smooth vector �eld. The state where the

trajectory moves on the discontinuity surface is called sliding mode. We present

an asymptotic representation for trajectories with temporary sliding and apply

the result to stick-slip vibrations.
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1 Introduction

There are many applications of the theory of ordinary di�erential equations with dis-

continuitiy surface. Often this surface can be described by a scalar equation s = 0,

for example if there is arising the nonsmooth function sgn (s) on the righthand side of

the di�erential system. This case represents oscillations with dry friction as well

as relay control systems which are systems with switching devices.

We start our paper with explaining the term singularly perturbed system with sliding

mode.

1.1 Sliding modes

In early regulators the control has often been of relay type because of their simple

implementation.

In control theory the term for the motion on discontinuity surfaces is sliding mode

motion. From the geometrical viewpoint the trajectory slides on the surface. 1

In practice, the sliding mode motion is characterized by a high-frequency switching

of the relay. Levant [Le93] calls it real sliding. There is no ideal sliding in real

relay control systems. Therefore perfect sliding is only an approximation of the real

behaviour of such systems. In dry friction systems we have a di�erent situation. There

exists (almost) perfect sticking which means that there is ideal sliding.

The so-called equivalent control method is characterized by the following procedure

(cf. [Utk92, Part I.]): Let's consider the system

_x = f(x; t; u)

ui(x; t) =

(
u
+
i (x; t) if si(x) > 0

u
�

i (x; t) if si(x) < 0
i = 1; :::;m

(1)

where x 2 Rn
; t 2 R; u; s 2 Rm. The vector u represents the control by m relays.

Whenever a sliding mode appears, the velocity vector in the state space lies on the

tangential plane of one or several discontinuity surfaces. The existence of a sliding

mode motion means that there is a continuous control function u and a time interval

[t1; t2] such that for a trajectory starting at time t1 on the manifold fs(x) = 0g � Rn

the vector s(x) has a zero time derivative along system (1) on [t1; t2] :

_s =
@s

@x

f(x; t; u) = 0 8t 2 [t1; t2] : (2)

A domain Dsli � R
n which satis�es the property that all points d 2 Dsli are starting

points of a sliding motion is called sliding domain of (1).

1
In mechanical systems with dry friction this sliding on the surface corresponds to the sticking of

two bodies ! If you are not in the sticking region, from the mechanical point of view you have slipping

of the bodies. This is maybe confusing.
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If there is a unique continuous solution u = ueq(x; t) of the algebraic equation (2)

and ueq;i is between u
�

i and u
+
i then substitute this solution ueq(x; t), referred to as

equivalent control, in system (1) for u:

_x = f(x; t; ueq(x; t)) : (3)

This equation is called sliding mode equation.

The equivalent control method implies a replacement of the unde�ned discontinuous

control on the discontinuity surface with a continuous control. From the geometric

viewpoint, in the case m = 1 one should vary the scalar control from u
� to u+, plot

the vector f(t; x; u) and �nd the intersection point of the vector and the tangential

plane at (x; t). If m = 1 and f depends linearly on u this vector coincides with the

corresponding vector f0 of Filippov type [Fil88, x 4] . Otherwise the two vectors may

be not even colinear. There is no unambigious answer to the question which equation

is better for the description of the motion.

There is an important special case regarding system (1) chracterized by the property

x = (x1; :::; xn�m; s1; :::; sm)
T . In this case we can separate the di�erential equation in

the following way:

_y = f1(y; s; t; u); _s = f2(y; s; t; u)

where y = (x1; :::; xn�m)
T . If there is a unique solution u = ueq(y; t) of the algebraic

equation

f2(y; 0; t; u) = 0

this case is called �rst order sliding.

If f2 does not depend on u then the conditions

s = _s = 0

are not su�cient for determining ueq. Here we have to consider

�s =
d

dt

_s =
d

dt

f2(y; s; t)

Hence, the algebraic equation which determines the equivalent control is

(
@f2

@y

f1 +
@f2

@s

f2 +
@f2

@t

)

�����
(y;s=0;t;u)

= 0 :

If there is a unique solution ueq of this equation we have second order sliding (cf. [BF92]).

The case of arbitrary sliding manifolds of �rst or higher order is studied in [Le93] and

[FL94].

The stability of sliding domains is not considered in this paper. A Lyapunov type

Theorem is stated in [Utk92, p.45�.].
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1.2 Discontinuous singularly perturbed systems

One of the major obstacles in the use of e�cient tools for analyzing dynamical systems is

a high dimension. If there is a small parameter, in many cases high dimensional systems

may be reduced to a system of lower dimension by separating them into fast and slow

components and substituting the fast system by an algebraic system by neglecting the

small parameter in a certain way. This can be achieved in a rightful way using the

singular perturbation approach [VBK95] which can be applied to systems of the form

�

dz

dt

= F (z; y; t);
dy

dt

= f(z; y; t); z 2 Rm
; y 2 R

n (4)

which satisfy certain conditions.

In the discontinuous case there is a theorem on the passage from the reduced system to

the full system [Utk92, ch.5]. But the result is only valid for a system with linear fast

motion equation and a relay control added linearly only to the slow motion equation.

And there is only given an approximation of the full system solution to the zeroth order

with respect to the small parameter.

In the following sections these restrictions are not supposed. But otherwise the con-

sideration is restricted to singularly perturbed systems with �rst order sliding mode.
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2 Asymptotic representation of trajectories

For smooth singularly perturbed systems there exists not only a result for the 0th order

approximation of the full system solution with respect to the small parameter [TVS85,

ch.7] but an algorithm for the construction of an approximation of any order [VBK95,

ch.1].

For proving existence and uniqueness of the solution of singularly perturbed relay

control systems as well as their asymptotic behaviour two lemmas will be stated.

At �rst we de�ne:

K
q(r) := f� 2 R

q
j j�j � r; r > 0g :

Consider the system

�

da

dt

= F (a; b; t);
db

dt

= f(a; b; t) (5)

where (a; b; t) 2 �
G = K

m(r1) � K
n(r2) � [~t; T ]; T > max (t0; t0 + t(�)); � 2 (0; �e]

and G is a domain, together with two di�erent initial conditions

a(t0; �) = a
0
; b(t0; �) = b

0
; (6)

a(t0 + t(�); �) = a
0 + z(�); b(t0 + t(�); �) = b

0 + y(�); (7)

(a0; b0; t0) 2 G. We assume the following hypotheses:

(H0) �e > 0; ~t := min(t0;min�2[0;�e](t0 + t(�))) 2 R; t(�) continuous.

(H1) F; f 2 C
k+2(G); k � 0.

(H2) For � = 0 there is an isolated solution a0 = '(b0; t), ' smooth, of F (a; b; t) =

0; (b0; t) 2 K
n(r2)� [~t; T ] with the same smoothness as F .

(H3) The slow motion system

db0

dt

= f('(b0; t); b0; t); b0(t0) = b
0 (8)

has a unique solution b0(t) for t 2 [~t; T ], and ('(b0(t); t); b0(t); t) 2 �
G.

(H4) There is a 
 > 0 such that for all t 2 [~t; T ] the eigenvalues �i(t) of

@F

@a

('(b0(t); t); b0(t); t)

satisfy

Re �i(t) � �
 :

for all i 2 f1; ::;mg.
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(H5) Let a0 be in the interior of the domain of attraction of the asymptotically stable

equilibrium point '(b0; 0) of the associated system

d~a

d�

= F (~a; b0; t); ~a(t0) = a
0

(H6) t(�) = O(�k+2); z(�) = O(�k+1); y(�) = O(�k+1)

Lemma 1. Assume hypotheses (H0) to (H6) are satis�ed. Let

L(t; �) = (A(t; �); B(t; �))

N(t; �) = (�(t; �); �(t; �))

be solutions of system (5) with initial conditions (6) resp. (7).

Then for su�ciently small �e L(t; �); N(t; �) are unique solutions of (5) on [~t; T ] , and

it holds

jLk(t; �)�N(t; �)j = O(�k+1)

where

Lk(t; �) =
kX

i=0

�
i(�ci(t) + �ic(� )) :

Proof. It's known [VBK95] that Lk(t; �) is the asymptotic representation of L, and

there exist �; � > 0 such that for all � 2 [t0=�; T=�]

j�ic(� )j < �e
���

; i = 0; :::; k :

Existence and uniqueness of the solution L follows from the Tychonov theorem [TVS85,

p.191],[VBK95] which can be applied because of the assumptions (H1) to (H5). From

the continuous dependence of the solution on initial conditions we get the same prop-

erties for the solution N , too.

Without restricting the generality we assume that ~t = t0.

For all t 2 [0; t(�)] we get

jjA(t0+ t; �)� a
0
jj = jj

Z t0+t

t0

F (A(�; �); B(�; �); �)d�=�jj � K1t(�)=� = O(�k+1)

jjB(t0+ t; �)� b
0jj = jj

Z t0+t

t0

f(A(�; �); B(�; �); �)d�jj � K2t(�) = O(�k+2)

where K1 = sup(a;b;t)2 �G jjF (a; b; t)jj; K2 = sup(a;b;t)2 �G jjf(a; b; t)jj.

From (H1) we know that for su�ciently small � there is a unique solution to initial

condition (7) on the interval [t0; t0 + 2t(�)]. It holds due to (H6)

t(�) = O(�k+2); t = O(�k+2); t(�)� t = O(�k+2) :
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Expanding � around t0 + t(�) we get

�(t0+ t; �) = �(t0+ t(�); �)+ _�(t0+ t(�); �)(t� t(�))+ ��(t0+ t(�); �)(t� t(�))
2+ ::: =

a
0 +O(�k+1) + F (a0+ z(�); b0 + y(�); t0)(t� t(�))=� +O(�2k+1) :

With

F (a0+z(�); b0+y(�); t0) = F (a0; b0; t0)+O(k(z(�); y(�); t(�))
Tk) = F (a0; b0; t0)+O(�

k+1)

we get

�(t0 + t; �) = a
0 +O(�k+1) :

Furthermore, expanding the slow part � around t0 + t(�) we get

�(t0+ t; �) = �(t0+ t(�); �)+ _
�(t0+ t(�); �)(t� t(�))+ �

�(t0+ t(�); �)(t� t(�))
2+ ::: =

= �̂(t0 + t(�); �) +O(�k+1) :

Therefore, for all t 2 [0; t(�)] we get

L(t0 + t; �)) = N(t0 + t; �) +O(�k+1) :

Hence, on [t0; t0+t(�)] the asymptotical representations of L and N are the same up to

the order k. Because the di�erence of the initial conditions (7) and (a(t0+t(�); �); b(t0+

t(�); �)) = L(t0+ t(�); �) is O(�k+1) with the Vasileva Theorem [VBK95, p.26] we get

the same asymptotic representation of both solutions up to the order k on [t0+t(�); T ]:

Consider Lk, the k-th order asymptotic representation of L. Since all functions �ci and

�ic are solutions of smooth di�erential equations and the initial values at time t0+t(�)

due to these solutions are the same as in the asymptotic representation Nk of N , we

get the uniqueness of these initial value problem solutions. It follows that for all

t 2 [t0 + t(�); T ]

Nk(t; �) = Lk(t; �) :

Altogether the assertion is proven because for all t 2 [~t; T ]

jN(t; �)� Lk(t; �)j � jN(t; �)�Nk(t; �)j+ jNk(t; �)� Lk(t; �)j = O(�k+1)
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Remarks.

1. The exponentially fast decreasing function �c(� ) which is approximated by the

series of �ic(� ), is called boundary layer function.

2. A smooth dependence of the righthand side (F; f) of the small parameter �

does not change the result because we use the technique of series expansion with

respect to �.

3. If initial time and initial values depend smoothly on mu i.e. t0(�) = t0 +

O(�); b0(�) = b
0 + O(�) we can reduce this situation to the case t0(�) = 0,

b
0(�) = b

0 by the following transformation:

s = t� t0(�); � = b+ b
0
� b

0(�) :

This is an important fact because without this transformation initial time and ini-

tial value of the full and the reduced system are not identical which is a necessary

condition in the theorems of Tychonov and Vasileva.

The second lemma is similar to the �rst but there is an important di�erence: The initial

points are assumed to be near to the fast variable solution ' of the reduced system.

This additional condition yields the possibility to weaken the condition regarding t(�).

Now consider again system (5) on G, but with two other initial conditions

a(t0; �) = '(b0; t0) ; b(t0; �) = b
0
; (9)

a(t0 + t(�); �) = '(b0; t0) + ẑ(�) ; b(t0 + t(�); �) = b
0 + ŷ(�); (10)

('(b0; t0) ; b
0
; t0) 2 G. We assume the following hypotheses:

(A1) F; f 2 C
k+1(G); k � 0:

(A2) For � = 0 there is an isolated solution â0 = '(b̂0; t), of F (a; b; t) = 0; (b̂0; t) 2

K
n(r2)� [t0; T ] with the same smoothness as F .

(A3) The slow motion system

db̂0

dt

= f('(b̂0; t); b̂0; t); b̂0(t0) = b
0 (11)

has a unique solution b̂0(t) for t 2 [~t; T ], and ('(b̂0(t); t); b̂0(t); t) 2 �
G.
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(A4) There is a 
̂ > 0 such that for all t 2 [~t; T ] the eigenvalues �̂i(t) of

@F

@a

('(b̂0(t); t); b̂0(t); t)

satisfy

Re �̂i(t) � �
̂ :

for all i 2 f1; ::;mg.

(A5) t(�); ẑ(�); ŷ(�) smooth,

t(�) = O(�k+1); ẑ(�) = O(�k+1); ŷ(�) = O(�k+1).

Lemma 2. Assume hypotheses (A1) to (A5) are satis�ed.Let

M(t; �) = (Â(t; �); B̂(t; �))

R(t; �) = (�̂(t; �); �̂(t; �))

be solutions of system (5) with initial conditions (9) resp. (10).

Then for su�ciently small �e M(t; �); R(t; �) are unique solutions of (5) on [~t; T ], and

it holds

jMk(t; �)�R(t; �)j = O(�k+1) :

Proof. Existence and uniqueness of the solutions M and R for t 2 [~t; T ] follows

from the Tychonov theorem and the continuous dependence on initial conditions. A

condition like (H5) regarding the associated system is satis�ed because of condition

(9).

Without restricting the generality we assume that ~t = t0.

It holds due to (A5)

t(�) = O(�k+1); t = O(�k+1); t(�)� t = O(�k+1) :

With (9) we know that

_̂
A(t0; �) = F (�0(�); b0; t0)=� = F ('(b0; t0) +O(�); b0; t0)=� = 0 +O(1) :

Let t 2 [0; t(�)]. Together with (A5) we get

Â(t0 + t; �) = �
0(�) +O(1)t+

t
2

2

�̂
A(t0; �) + ::: = �

0(�) +O(�k+1) : (12)

We know further that

jjB̂(t0 + t; �)� b
0jj = jj

Z t0+t

t0

f(Â(�; �); B̂(�; �); �)d�jj � K̂t(�) = O(�k+1)
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where K̂ = sup(a;b;t)2 �G jjf(a; b; t)jj :

From (A1) we know that for su�ciently small � there is a unique solution to the initial

condition (10) on the interval [t0; t0 + 2t(�)]. Expanding �̂ around t0 + t(�) we get

�̂(t0+ t; �) = �̂(t0+ t(�); �) + _̂
�(t0+ t(�); �)(t� t(�)) + �̂

�(t0 + t(�); �)(t� t(�))2 + :::

With

�̂(t0 + t(�)) = �
0(�) +O(�k+1)

and

_̂
�(t0 + t(�); �)(t� t(�)) = F (�0(�) + ẑ(�); b0 + ŷ(�); t0 + t(�))(t� t(�))=� =

(F (�0(�); b0; t0)=� +O(k(ẑ(�); ŷ(�); t(�))Tk))(t� t(�))=� =

(F ('(b0; t0)) +O(�) +O(�k+1))O(�k) = O(�k+1)

we conclude that for all t 2 [0; t(�)]

�̂(t0 + t; �) = '(b0; t0) +O(�k+1) :

Furthermore, expanding the slow part �̂ around t0 + t(�) we get

�̂(t0+ t; �) = �̂(t0+ t(�); �) +
_̂
�(t0+ t(�); �)(t� t(�)) +

�̂
�(t0+ t(�); �)(t� t(�))2 + :::

= �̂(t0 + t(�); �) +O(�k+1) = b
0 + ŷ(�) = �̂(t0; �) +O(�k+1) :

Therefore, for all t 2 [t0; t0 + t(�)] we get

M(t0 + t; �)) = R(t0 + t; �) +O(�k+1) :

Hence, on [t0; t0 + t(�)] the asymptotical representations of M and R are the same

up to the order k. Because the di�erence of the initial conditions (10) and (a(t0 +

t(�); �); b(t0 + t(�); �)) = M(t0 + t(�); �) is O(�k+1) with Vasileva we get the same

asymptotic representation of both solutions up to the order k on [t0 + t(�); T ]:

Rk(t; �) =Mk(t; �) :

Altogether the assertion is proven because for all t 2 [~t; T ]

jR(t; �)�Mk(t; �)j � jR(t; �)�Rk(t; �)j+ jRk(t; �)�Mk(t; �)j = O(�k+1) :
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2.1 Transition into sliding

Consider the initial value problem

�

dz

dt

= F (z; y; s; u; t)

dy

dt

= f(z; y; s; u; t) (13)

ds

dt

= h(z; y; s; u; t)

z(t0) = z
0
; y(t0) = y

0
; s(t0) = s

0

where (z; y; s; t) 2 �
G = K

m(r1)�K
n(r2)�K

1(r3)� [t0; T ]; T > t0; � 2 (0; �e] and G

is a domain. Moreover,

u = sgn (s) 8s 6= 0

i.e. there is a discontinuity surface S� = fs = 0g � �
G. On this surface we get the

so-called sliding mode equation by substituting u by the equivalent control function

ueq 2 [�1; 1] [Utk92, p.37],[Fil88, p.54] (cf. assumption (B7)).

We assume:

(B0) (z0; y0; s0; t0) 2 S
+ = f(z; y; s; t) 2 �

Gjs > 0g.

(B1) F; f; h 2 C
k+2

; k � 0.

(B2) The equation F (z; y; s; 1; t) = 0 has an isolated solution z = '
+(y; s; t), '+

smooth, with (y; s; t) 2 Kn(r2)�K
1(r3)� [t0; ~T + �] where ~

T < T; � > 0.

(B3) The so-called reduced system

dy

dt
= f('+(y; s; t); y; s; 1; t)

ds

dt
= h('+(y; s; t); y; s; 1; t)

y(t0) = y
0

s(t0) = s
0

(14)

has a unique solution (�y+0 (t); �s
+
0 (t); t) inK

n(r2)�K
1(r3)�[t0; ~T+"] for t 2 [t0; ~T ].

(B4) There is a �1 > 0 such that for all t 2 [t0; ~T + "] the eigenvalues �i(t) of

@F

@z

('+(�y+0 (t); �s
+
0 (t); t); �y

+
0 (t); �s

+
0 (t); 1; t)

satisfy

Re �i(t) � ��1

for all i 2 f1; ::;mg.
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(B5) z
0 is located in the interior of the domain of attraction of the asymptotically

stable equilibium point '+(y0; s0; t0) of the associated system

d~z

d�

= F (~z; y0; s0; 1; t0); ~z(t0) = z
0

where � = (t� t0)=�; � 2 [0;1).

(B6) For the reduced system there exists a moment tA0 = ~
T 2 (t0; T ) where the trajec-

tory arrives at S� with

� �s+0 (�
A
0 ) = 0

� h('+(�y+0 (�
A
0 ); 0; �

A
0 ); �y

+
0 (�

A
0 ); 0; 1; �

A
0 ) < 0,

� h('+(�y+0 (�
A
0 ); 0; �

A
0 ); �y

+
0 (�

A
0 ); 0;�1; �

A
0 ) > 0.

(B7) The equation

h(z; y; 0; u; t) = 0

has a unique, smooth solution u = ueq(z; y; t) on a neighbourhood U1 � K
m(r1)�

K
n(r2) � [t0; T ] of ('

+(�y+0 (�
A
0 ); 0; �

A
0 ); �y

+
0 (�

A
0 ); �

A
0 ). Therefore, the sliding mode

equation with the equivalent control ueq is of the following form:

�

dz
�

dt

= F (z�; y�; 0; ueq(z
�

; y
�

; t); t) ; (15)

dy
�

dt

= f(z�; y�; 0; ueq(z
�

; y
�

; t); t) :

(B8) There exists an isolated solution z = '
�(y�; t), '� smooth, to

0 = F (z�; y�; 0; ueq(z
�

; y
�

; t); t)

for (y�; t) 2 Kn(r2)� [�A0 � "; T ] .

(B9) The reduced system in the sliding regime

dy
�

dt

= f('�(y�; t); y�; 0; ueq('
�(y�; t); y�; t); t) ;

y
�(�A0 ) = �y+0 (�

A
0 )

has a unique solution y�(t) 2 Kn(r2) on [�A0 � "; T ] with the following properties:

h('�(y�(t); t); y�(t); 0; 1; t) < 0;

h('�(y�(t); t); y�(t); 0;�1; t) > 0:

(B10) There is a �2 > 0 such that for all t 2 [�A0 � "; T ] the eigenvalues ��i (t) of

@F

@z

('�(y�(t); t); y�(t); ueq('
�(y�(t); t); y�(t); t); t)

satisfy

Re ��i (t) � ��2

for all i 2 f1; ::;mg.
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(B11) '
+(�y+0 (�

A
0 ); 0; �

A
0 ) is located in the interior of the domain of attraction of the

equilibrium point '�(�y+0 (�
A
0 ); �

A
0 ) of the system

d~z�

d�

= F (~z�; y�(�A0 ); 0; ueq('
�(y�(�A0 )); y

�(�A0 )); �
A
0 ) (16)

where � = (t� �
A
0 )=�; � 2 [0;1).

(B12) For all � 2 [0; 1] it holds

h(�('+(�y+0 (�
A
0 ); 0; �

A
0 ); �y

+
0 (�

A
0 ); 0; 1; �

A
0 )+(1��)('

�(�y+0 (�
A
0 ); �

A
0 ); �y

+
0 (�

A
0 ); 0; 1; �

A
0 )) < 0;

h(�('+(�y+0 (�
A
0 ); 0; �

A
0 ); �y

+
0 (�

A
0 ); 0;�1; �

A
0 )+(1��)('

�(�y+0 (�
A
0 ); �

A
0 ); �y

+
0 (�

A
0 ); 0;�1; �

A
0 )) > 0:

Theorem 1. Let system (13) satisfy the conditions (B1) to (B12). Then there ex-

ists a �e > 0 such that for all � 2 (0; �e) there is a unique solution x(t; �) =

(z(t; �); y(t; �); s(t; �)) of the system (13) on [t0; T ], and the following estimation holds:

jx(t; �)�Xk(t; �)j = O(�k+1) (17)

where

Xk(t; �) =
kX

i=0

�
i(�xi(t) + �+

i x(� ) + ��ix(�k+1)) (18)

and

�k+1 =
t��A

k+1

�

where �A
k+1 := �

A
0 + ��

A
1 + :::+ �

k+1
�
A
k+1 is the (k + 1)th order approximation of the

arrival moment tA(�) of the full system.

Proof of Theorem 1. Our assumptions (B0) to (B5) are su�cient to apply the

theorems of Tychonov and Vasileva to system (13). Hence, the solution of the IVP

(13) (z(t; �); y(t; �); s(t; �)) exists uniquely inKm(r1)�K
n(r2)�K

1(r3) for t 2 [t0; �
A
0 +

"], and for � ! 0 z(t; �); y(t; �); s(t; �)) tends to ('+(�y+0 (t); �s
+
0 (t); t); �y

+
0 (t); �s

+
0 (t)) on

(t0; �
A
0 +"]. Together with condition (B6) we may apply the Implicit Function Theorem

to s(t; �) since we know that s(�A0 ; 0) = �s+0 (�
A
0 ) = 0. Hence, for the full system there

exists a arrival moment tA(�) with lim�!0 t
A(�) = �

A
0 where the solution reaches the

discontinuity surface transversally.

We get the asymptotic representation of our solution by separating two steps: analyzing

the solution starting in S+ until it meets S�, and analyzing the solution moving on S�.

Due to our assumptions we may apply the Theorem of Vasileva to the solution x+(t) =

(z+(t); y+(t); s+(t)) of (13) with u = 1 on the time interval [t0; �
A
0 + "], i.e.

max
t2[t0;�

A

0 +"]
jjx

+(t)�X
+
k (t)jj = O(�k+1):
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The arrival moment tA(�) depends smoothly on �. We may write

t
A(�) = �

A
0 + ��

A
1 + :::+ �

k+1
�
A
k+1 + �

k+2
�k+2 (19)

where �k+2 =
1

(k+2)!

@k+2�(�A)

@�k+2 with �A 2 [0; �]. For su�ciently small � we get tA(�);�k+1 2

U"(�
A
0 ). Evidently, tA(�) � �A

k+1 = O(�k+2). Expanding x+ as series around �
A
0 , we

get:

(tA(�)) = x
+(�A0 + h) = x

+(�A0 ) + _x+(�A0 )h+ :::+
x
+(k+1)

(�A0 )

(k + 1)!
h
k+1 +O(�k+2)

where h = ��1 + :::+ �
k+1

�k+1 + �
k+2

�k+2, and

x
+(�A

k+1) = x
+(�A0 + hk+1) = x

+(�A0 ) + _x+(�A0 )hk+1 + :::+
x
+(k+1)

(�A0 )

(k + 1)!
h
k+1
k+1 +O(�k+2)

where hk+1 = ��1 + :::+ �
k+1

�k+1. Since _z+ = F=� and

h � hk+1 = O(�k+2) , hj � h

j
k+1 = (h� hk+1)O(�

j�1) if j � 1

it follows that x+(tA(�))� x
+(�A

k+1) = O(�k+1). Moreover, due to Vasileva, we know

that x+(�A
k+1)�X

+
k (�

A
k+1) = O(�k+1). This yields

x
+(tA(�))�X

+
k (�

A
k+1) = O(�k+1) :

Now we consider the solution moving on S
�: Because of IFT,(B6) and (B7) for the

solution x(t; �) = (z(t; �); y(t; �); s(t; �)) of system (13) with u = ueq it holds not only

s(tA(�); �) = s
+(tA(�)) = 0 but for T su�ciently near to tA(�)

s(t; �) = 0 on [tA(�); T ] :

Therefore, in the following we consider only solutions z�a; y
�

a and z�e ; y
�

e of (15) to the

initial conditions

z
�

e (t
A(�)) = z

+(tA(�)); y�e(t
A(�)) = y

+(tA(�)) (20)

resp.

z
�

a(�
A
k+1) = Z

+
k (�

A
k+1); y

�

a(�
A
k+1) = Y

+
k (�A

k+1) : (21)

For applying Lemma 1 it is necessary to introduce the following new coordinates:

�z := z
�

;

�y := y
� +�

b
+
0 � y

+(tA(�)) ;

�
t := t� t

A(�)

where �b+0 := �y+0 (�
A
0 ). Hence, due to (15) we get the following two IVPs:
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�

d�z

d
�
t

= F (�z; �y � �
b
+
0 + y

+(tA(�)); 0; ueq(�z; �y � �
b
+
0 + y

+(tA(�)); �t+ t
A(�)); �t+ t

A(�)) ; (22)

d�y

d
�
t

= f(�z; �y � �
b
+
0 + y

+(tA(�)); 0; ueq(�z; �y � �
b
+
0 + y

+(tA(�)); �t+ t
A(�)); �t+ t

A(�)) ;

�ze(0) = z
+(0) ; �ye(0) = �

b
+
0 resp.

�za(��
k+2

�k+2) = Z
+
k (��

k+2
�k+2) ; �ya(��

k+2
�k+2) = Y

+
k (��k+2

�k+2) + �
b
+
0 � y

+(0) :

With t0 = 0 and t(�) = ��k+2
�k+2 we may apply Lemma 1 to system (22) because all

hypotheses including (H6) are satis�ed and the righthand side depends smoothly on �.

Hence, for the k-th order approximation �
Xk = ( �Zk;

�
Yk; 0) of �x = (�z; �y; 0) it follows that

max
�t2[��k+2�

k+2;T�t
A(�)]

jj�x(�t)� �
Xk(�t)jj = O(�k+1):

After backward transformation we get

max
t2[�A

k+1
;T ]
jjx

�(t)�X
�

k (t)jj = O(�k+1)

because jjx�(t) � X
�

k (t)jj = jj�x(�t) � �
Xk(�t)jj. Remark that x�(t) = (z�(t); y�(t); 0) on

[tA(�); T ]. Finally, glueing together the approximations X+
k and X

�

k at t = �A
k+1 we

get the estimation (17) with

x(t; �) =

(
x
+(t) if t 2 [t0; t

A(�)]

x
�(t) if t 2 [tA(�); T ]

and (23)

Xk(t; �) =

(
X

+
k (t) if t 2 [t0;�

A
k+1]

X
�

k (t) if t 2 [�A
k+1; T ]

(24)

such that

�xi(t) =

(
�x+i (t) if t 2 [t0;�

A
k+1]

�x�i (t) if t 2 [�A
k+1; T ]

i = 0; ::; k :
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2.2 Leaving sliding domain

Now consider the initial value problem

�

dz

dt

= F (z; y; s; �; u; t)

dy

dt

= f(z; y; s; �; u; t) (25)

ds

dt

= h1(z; y; s; �; u; t)

d�

dt

= h2(z; y; s; �; u; t)

z(t0) = z
0
; y(t0) = y

0
; s(t0) = 0; �(t0) = �

0

where (z; y; s; �; t) 2 �
G = K

m(r1) �K
n(r2) �K

1(r3) �K
1(r4) � [t0; T ]; T > t0; � 2

(0; �e] and G is a domain. Moreover,

u = sgn (s) 8s 6= 0 :

We assume:

(C1) F; f; h1; h2 2 C
k+2

; k � 0.

(C2) The equation

h1(z; y; 0; �; u; t) = 0

has a unique solution u = ueq(z; y; �; t) on a neighborhood U2 of S�. Therefore

the sliding mode equation is of the following form:

�

dz
�

dt

= F (z�; y�; 0; ��; ueq(z
�

; y
�

; �
�

; t); t)

dy
�

dt

= f(z�; y�; 0; ��; ueq(z
�

; y
�

; �
�

; t); t) (26)

d�
�

dt

= h2(z
�

; y
�

; 0; ��; ueq(z
�

; y
�

; �
�

; t); t)

z
�(t0) = z

0
; y

�(t0) = y
0

; �
�(t0) = �

0

(C3) Let (z0; y0; s0; �0; t0) 2 f(z; y; s; �; t) 2 S
� j jueq(z; y; �; t)j < 1g.

(C4) There exists a unique solution z = '
�(y�; ��; t), '� smooth, to

0 = F (z�; y�; 0; ��; ueq; t)

for (y�; ��; t) 2 f(y; �; t) 2 Kn(r2)�K
1(r4)� [t0; ~T + "] j jueq(y; �; t)j � 1g
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(C5) De�ne �ueq(y; �; t) := ueq('
�(y; �; t); y; �; t). The reduced system in the sliding

regime
dy
�

dt

= f('�(y�; ��; t); y�; 0; ��; �ueq(y
�

; �
�

; t); t);

d�
�

dt

= h2('
�(y�; ��; t); y�; 0; ��; �ueq(y

�

; �
�

; t); t); (27)

y
�(t0) = y

0
; �

�(t0) = �
0

has a unique solution (�y�(t); ���(t)) on [t0; ~T + "]; t0 < ~
T < T with the following

properties: For t 2 [t0; ~T )

h1('
�(�y�(t); ���(t); t); �y�(t); 0; ���(t); 1; t) < 0;

h1('
�(�y�(t); ���(t); t); �y�(t); 0; ���(t);�1; t) > 0:

(C6) There is a �̂1 > 0 such that for all t 2 [t0; ~T + "] the eigenvalues ��i (t) of

@F

@z

('�(�y�(t); ���(t); t); �y�(t); ���(t); �ueq(�y
�(t); ���(t); t); t)

satisfy

Re ��i (t) � ��̂1

for all i 2 f1; ::;mg.

(C7) z
0 is element of the interior of attraction domain of the (asymptotically stable)

rest point '�(y0; �0; t0) of system

dz
�

d�

= F (z�; y0; 0; �0; ueq(z
�

; y
0
; �

0
; t0); t0) (28)

where � = (t� t0)=�; � 2 [0;1).

(C8) Let � := f(z; y; �; t) 2 Km(r1)�K
n(r2)�K

1(r4)� [t0; ~T +"] j ueq(z; y; �; t) = 1g.

Assume (w.l.o.g) that � = K
m(r1)�K

n(r2)� f0g � [t0; ~T + "].

There is a leaving moment (\Break-away moment") tB0 = ~
T 2 (t0; T ) of system

(27) such that

� ('�(�y�(�B0 ); 0; �
B
0 ); �y

�(tA0 ); ��
�(�B0 ); �

B
0 ) 2 � ,

� h2('
�(�y�(�B0 ); 0; �

B
0 ); �y

�(�B0 ); 0; 0; 1; �
B
0 ) > 0,

� h1('
�(�y�(�B0 ); 0; �

B
0 ); �y

�(�B0 ); 0; 0; 1; �
B
0 ) = 0,

� @h1
@�

('�(�y�(�B0 ); 0; �
B
0 ); �y

�(�B0 ); 0; 0; 1; �
B
0 ) > 0,

� h1('
�(�y�(�B0 ); 0; �

B
0 ); �y

�(�B0 ); 0; 0;�1; �
B
0 ) > 0.

(C9) The equation F (z; y; s; �; 1; t) = 0 has a unique solution z = '
+(y; s; �; t), '+

smooth, with (y; s; �; t) 2 R := K
n(r2)�K

1(r3)�K
1(r4)� [�B0 � "; T ].
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(C10) The reduced system

dy

dt

= f('+(y; s; �; t); y; s; �; 1; t) (29)

ds

dt

= h1('
+(y; s; �; t); y; s; �; 1; t) (30)

d�

dt

= h2('
+(y; s; �; t); y; s; �; 1; t) (31)

y(�B0 ) = �y�(�B0 ) ; s(�B0 ) = 0 ; �(�B0 ) = 0 (32)

has a unique solution (�y+0 (t); �s
+
0 (t); ��

+
0 (t); t) in R on [�B0 � "; T ].

(C11) There is a 
 < 0 such that for all t 2 [0; ~T ] the eigenvalues �i(t) of

@F

@z

('+(�y+0 (t); �s
+
0 (t); ��

+
0 (t); t); �y

+
0 (t); �s

+
0 (t); ��

+
0 (t); 1; t)

satisfy

Re �i(t) � 


for all i 2 f1; ::;mg.

(C12) ~z�(0) = '
�(y�(�B0 ); 0; �

B
0 ) is element of the interior of attraction domain of

'
+(y�(�B0 ); 0; 0; �

B
0 ) of system

d~z

d�

= F (~z; y�(�B0 ); 0; 0; 1; �
B
0 ) (33)

where � = (t� t
A
0 )=�; � 2 [0;1).

Theorem 2. Let system (25) satisfy the conditions (C1) to (C12). Then there exists a

�e > 0 such that for all � 2 (0; �e) there is a unique solution x(t; �) = (z(t; �); y(t; �))

of the system (25) on [t0; T ], and the following estimation holds:

jx(t; �)�Xk(t; �)j = O(�k+1) (34)

where

Xk(t; �) =
kX

i=0

�
i(xi(t) + ��ix(� ) + �+

i x(�k))

and

�k =
t��B

k

�

where �B
k := �

B
0 + ��

B
1 + ::: + �

k
�
B
k is the k-th order approximation of the leaving

moment tB(�) of the full system. Moreover, �+
0 x � 0 .
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Proof of Theorem 2. Assumptions (C1) to (C7) are su�cient to apply the the-

orem of Tychonov and Vasileva to system (26). Hence, there is a unique solution

(z�(t); y�(t); ��(t)) of the IVP (26) in Km(r1)�K
n(r2)�K

1(r4) for t 2 [t0; t
A
0 + "].

With condition (C8) and the results of Tychonov and Vasileva we may apply the Im-

plicit Function Theorem to  (t; �) = �
�(t) since we know that  (tA0 ; 0) = ���(tA0 ) = 0.

Hence for the full sliding mode system for su�ciently small � there exists a time tB(�)

continuous depending on � where the solution meets �, which belongs to the bound-

ary of the sliding domain. Furthermore, at this meeting point we have a transversal

intersection of the solution with � because from the smoothness of h1 and h2 we may

conclude
@h

@�

h1('
�(y�(�B0 ); 0; �

B
0 ); y

�(�B0 ); 0; 0; 1; �
B
0 ) > 0 :

Moreover,

h2('
�(y�(�B0 ); 0; �

B
0 ); y

�(�B0 ); 0; 0; 1; �
B
0 ) > 0 ;

h1('
�(y�(�B0 ); 0; �

B
0 ); y

�(�B0 ); 0; 0;�1; �
B
0 ) > 0 :

Hence, tB(�) is the leaving moment, i.e. instead of sliding on S� (s = 0) for t � t
B(�)

the solution x(t) = (z(t); y(t); s(t); �(t)) of system (25) moves in S
+ for some time

interval starting at tB(�). The reason for this behaviour is the following: Assume

there is a � > 0 such that on I� := (tB(�); tB(�) + �) s(t) < 0. We can choose � such

that on I� _s(t) > 0 taking into account the conditions regarding h1. But this means

that on I� s(t) is increasing starting with s(tB(�)) = 0. This is an contradiction to

the assumption. Alternatively, assume that for the solution on I� s(t) = 0. Hence,

_s = h1 = 0 on I�. Taking into account the conditions regarding h1 and h2 in (C8)

we can choose � such that on I� h1 > 0 for u = 1 and u = �1. According to the

de�nition of solution we get a contradiction to the assumption because _x would not be

almost everywhere element of the set corresponding to the discontinuous vector �eld.

The conclusion is that the solution must leave S� into S+.

The leaving moment tB(�) depends smoothly on �. We may write

t
B(�) = �

B
0 + ��

B
1 + :::+ �

k
�
B
k + �

k+1
�k+1 (35)

where �k+1 =
1

(k+1)!

@k+1tB(�B)

@�k+1
with �B 2 [0; �]. We de�ne the break-away time approx-

imation

�B
k := �

B
0 + ��

B
1 + :::+ �

k
�
B
k :

For su�ciently small � we get tB(�);�B
k 2 U"(�

B
0 ). Evidently, t

B(�)��B
k = O(�k+1).

Expanding x� as series around �B0 , we get

x
�(tB(�)) = x

�(�B0 + h) = x
�(�B0 ) + _x�(�B0 )h+ :::+

x
�
(k)

(�B0 )

k!
h
k +O(�k+1)
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where h = ��
B
1 + :::+ �

k
�
B
k + �

k+1
�k+1, and

x
�(�B

k ) = x
�(�B0 + hk) = x

�(�B0 ) + _x�(�B0 )hk + :::+
x
�
(k)

(�B0 )

k!
h
k
k +O(�k+1)

where hk = ��
B
1 + :::+�k�Bk . For estimating the di�erence of x�(tB(�)) and x�(�B

k ) we

have to consider _x� = ( _z�; _y�; 0; _��): _y� and _�� do not depend on � but

_z�(�B0 ) =
F (z�(�B0 ); _y

�(�B0 ); 0; _�
�(�B0 ); ueq; t

A
0 )

�

:

Expanding F around � = 0 we get

_z�(�B0 ) =
F ('�(y�(�B0 ); �

�(�B0 ); ueq; �
B
0 ); _�y

�(�B0 ); 0; _��
�(�B0 ); ueq; t

A
0 ) +O(�)

�

= 0 +O(1) :

Since

h� hk = O(�k+1) and hj � h

j
k = (h� hk)O(�

j�1) if j � 1

it follows that x�(tB(�)) � x
�(�B

k ) = O(�k+1). Moreover, due to Vasileva, we know

that x�(�B
k )�X

�

k (�
B
k ) = O(�k+1). This yields

x
�(tB(�))�X

�

k (�
B
k ) = O(�k+1) :

Now we consider the solutions (z+e ; y
+
e ; s

+
e ; �

+
e ) and (z+a ; y

+
a ; s

+
a ; �

+
a ) of (25) to the initial

conditions

z
+
e (t

B(�)) = z
�(tB(�)); y+e (t

B(�)) = y
�(tB(�)); s+e (t

B(�)) = 0; �+e (t
B(�)) = 0 (36)

resp.

z
+
a (�

B
k ) = Z

�

k (�
B
k ); y

+
a (�

B
k ) = Y

�

k (�
B
k ); s

+
a (�

B
k ) = 0; �+a (�

B
k ) = 0 : (37)

Hence,

x
+
e (t

B(�))� x
+
a (�

B
k ) = O(�k+1) : (38)

From (C8) we know that

ueq('
�(y�(�B0 ); 0; �

B
0 ); y

�(�B0 ); 0; �
B
0 ) = 1 :

Together with (C4) it follows that

F ('�(�y�(�B0 ); 0; �
B
0 ); �y

�(�B0 ); 0; 0; ueq('
�(�y�(�B0 ); 0; �

B
0 ); �y

�(�B0 ); 0; �
B
0 ); �

B
0 ) =

= F ('�(�y�(�B0 ); 0; �
B
0 ); �y

�(�B0 ); 0; 0; 1; �
B
0 ) = 0 :

And by (C9) and (C10) it holds that

F ('+(�y�(�B0 ); 0; 0; �
B
0 ); �y

�(�B0 ); 0; 0; 1; �
B
0 ) = 0 :



L.M. Fridman / R.J. Rumpel Singularly perturbed systems with sliding mode 21

From the last two equations and the uniqueness of '� and '+ it follows that

'
�(�y�(�B0 ); 0; �

B
0 ) = '

+(�y�(�B0 ); 0; 0; �
B
0 ) : (39)

Furthermore, it is well known that

z
+
e (t

B(�)) = z
�(tB(�)) = '

�(�y�(tB(�)); 0; tB(�)) +O(�) :

With '�(�y�(tB(�)); 0; tB(�)) = '
�(�y�(�B0 ); 0; �

B
0 ) +O(�) and (39) we get

z
+
e (t

B(�)) = '
+(�y�(�B0 ); 0; 0; �

B
0 ) +O(�) : (40)

For applying Lemma 2 it is necessary to introduce new coordinates:

�z := z
+ + '

+(�y�(�B0 ); 0; 0; �
B
0 )� z

�(tB(�)) ;

�y := y
+ + �y�(�B0 )� y

�(tB(�)) ;

�s := s ;

�� := � ;

�
t := t� t

B(�) :

Hence, corresponding to (25),(36) and (37) we get the following two IVPs:

�
d�z
d�t

= F (�z � '
�(�y�(�B0 ); 0; �

B
0 ) + z

�(tB(�)); �y � �y�(�B0 ) + y
�(tB(�)); �s; ��; 1; �t+ tA(�)) ;

d�y

d�t
= f(�z � '

�(�y�(�B0 ); 0; �
B
0 ) + z

�(tB(�)); �y � �y�(�B0 ) + y
�(tB(�)); �s; ��; 1; �t+ tA(�)) ;

d�s
d�t

= h1(�z � '
�(�y�(�B0 ); 0; �

B
0 ) + z

�(tB(�)); �y � �y�(�B0 ) + y
�(tB(�)); �s; ��; 1; �t+ tA(�)) ;

d��
d�t

= h2(�z � '
�(�y�(�B0 ); 0; �

B
0 ) + z

�(tB(�)); �y � �y�(�B0 ) + y
�(tB(�)); �s; ��; 1; �t+ tA(�)) ;

(41)

�ze(0) = '
�(�y�(�B0 ); 0; �

B
0 ); �ye(0) = �y�(�B0 ) ; �se(0) = 0; ��e(0) = 0 (42)

resp.

�za(��
k+1

�k+1) = Z
�

k(��
k+1

�k+1) + '
�(�y�(�B0 ); 0; �

B
0 )� z

�(0) ;

�ya(��
k+1

�k+1) = Y
�

k (��
k+1

�k+1) + �y�(�B0 )� y
�(0) ;

�sa(��
k+1

�k+1) = 0; ��a(��
k+1

�k+1) = 0 :

(43)

Remark the properties (38) and (40). With t0 = 0 and t(�) = ��k+1
�k+1 we may

apply Lemma 2 to system (41) because all hypotheses including (A5) are satis�ed and

the righthand side depends smoothly on �. Hence, for the k-th order approximation
�
Xk = ( �Zk;

�
Yk;

�
Sk;

��k) of �x = (�z; �y; �s; ��) it follows that

max
�t2[��k+1�

k+1;T�t
B(�)]

jj�x(�t)� �
Xk(�t)jj = O(�k+1):

From the derivation of the asymptotic algorithm in [VBK95] we know that �+
0 (�y; �s; ��) �

0. Moreover it follows that �+
0 �z satis�es a linear homogenuous variational equation
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with initial condition �+
0 �z(�� = 0) = �z0 � '

+(�y�(�B0 ); 0; 0; �
B
0 ). Condition (42) yields

�z0 = '
�(�y�(�B0 ); 0; �

B
0 ). Hence, by (39) we get �+

0 �z(� = 0) = 0 such that

�+
0 �z(�� ) = 0 8�� : (44)

After backward transformation we get

max
t2[�B

k
;T ]
jjx+(t)�X

+
k (t)jj = O(�k+1)

because jjx+(t)�X
+
k (t)jj = jj�x(�t) � �

Xk(�t)jj. Finally, glueing together the approxima-

tions X�

k and X+
k at t = t

B
k we get the estimation (34) with

x(t; �) =

(
x
�(t) if t 2 [t0; t

B(�)]

x
+(t) if t 2 [tB(�); T ]

and

Xk(t; �) =

(
X
�

k (t) if t 2 [t0;�
B
k ]

X
+
k (t) if t 2 [�B

k ; T ]

such that

�xi(t) =

(
�x�i (t) if t 2 [t0;�

B
k ]

�x+i (t) if t 2 [�B
k ; T ]

i = 0; ::; k :

From the coordinate change it follows that

x
+(t) = �x(t� t

B(�)) + xshift

where

xshift = ('+(�y�(�B0 ); 0; 0; �
B
0 )� z

�(tB(�)); �y�(�B0 )� y
�(tB(�)); 0; 0)T

such that

X
+
k (t) =

�
Xk(t� t

B(�)) + xshift :

Especially, because of (44) it follows that

X
+
0 (t) = �x+0 (t) + �+

0 x
+(t) = �x0(t� t

B(�)) + xshift :

This means that the 0th order approximation X+
0 of x+ possesses no boundary layer

part. Hence, we may conclude that not only �+
0 (y

+
; s

+
; �

+) � 0 but �+
0 z

+ � 0.

Therefore,

�+
0 x � 0 :
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3 Application: Coupled Oscillators with dry friction

We consider two pendula which are coupled by a spiral spring. One of them is in contact

with a uniformly rotating disk. Both pendula have the same distance l := l1 = l2 of the

centre of gravity from the axis of rotation. In angle coordinates we get the following

equation of motion for this 2DOF system:

m1l
2 �'1 =�k('1 � '2)�m1g sin� sin'1l � a( _'1 � 
) + FRl

m2l
2 �'2 = k('1 � '2)�m2g sin� sin'2l � b( _'2 � 
)

(45)

where m1;m2 are the masses of the two pendula, k the hardness of the spring, g the

gravity constant, � the clination angle of the disk and a; b constants due to linear

damping. FR represents the friction force with

FR = ��( _'1)m1g cos� sgn ( _'1 �
)

where

�( _'1) = �0(1 � c arctan(�j _'1 � 
j)) :

Assuming that " := m2 � m1 and setting y1 := '1; y2 := '2; s := _'1 � 
; z := _'2 we

get

" _z = k

l2
(y1 � y2)� "g sin� sin y2 �

b

l2
(z � 
)

_y1 = s+ 


_y2 = z

_s = � k

m1l
2 (y1 � y2)�

g

l
sin� sin y1 �

F
R

m1l
� a

m1l
2 s :

(46)

To apply Theorem 2 we do one further transformation

� := y2 � y1 �
m1gl

k

(�0 cos�+ sin� sin y1) :

Hence, we consider the following nondegenerate system:

" _z = � k
l2
(� + m1gl

k
(�0 cos�+ sin� sin y1))�

b
l2
(z � 
)

�"
g

l
sin� sin(� + y1 +

m1gl

k
(�0 cos�+ sin� sin y1)) = F (z; y1; �)

_y1 = s+ 
 = f(s)

_s = k
m1l2

� + g

l
cos��0(1 � (1� c arctan(�jsj))u)� a

m1l2
s = h1(s; �; u)

_� = z � (s+ 
)(1 + m1gl sin�

k
cos y1) = h2(z; y1; s)

(47)
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DPendulum on disk, alpha=0.55,mu=0.5,c=0.2 (eps=0.005)

y1

s (0.4,1)
red.traj.

@
@@R

�
��	

AB

-3 3

0

3

Figure 1: Comparison between full system and reduced system trajectory

In S+ with z = 
� k

b
(�+ m1gl

k
(�0 cos�+sin� sin y1)) = '

+(y1; �) we get the reduced

system

_y1 = f(s) = s+ 


_s = h1(s; �; 1) =
k

m1l
2
� +

g

l

cos��0(1� (1 � c arctan(�jsj)))�
a

m1l
2
s (48)

_� = h2('
+(y1; �); y1; s) = 
�

k

b

(� +
m1gl

k

(�0 cos�+ sin� sin y1))

�(s+ 
)(1 +
m1gl sin�

k

cos y1) :

With ueq(�) = 1 + k

m1gl cos��0
� we get the sliding mode system

" _z = F (z; y1; �)

_y1 = f(0) (49)

_� = h2(z; y1; 0) :

Hence, with z = '
�(y1; �) = '

+(y1; �) the reduced sliding mode system reads as

follows:

_y1 = f(0) = 


_� = h2('
�(y1; �); y1; 0) = �k

b
(� + m1gl

k
(�0 cos� + sin� sin y1))�

m1gl


k
cos y1 :

(50)
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Remarks.

It is easy to verify that the conditions (B0) to (B5) and (B7) to (B12) of Theorem 1

are satis�ed. Also it's easy to compute that conditions (C1) to (C7) and (C9) to (C12)

of Theorem 2 are satis�ed.

The existence and size of the sliding domain depends on the parameters of the oscillator

system. Therefore, the transition conditions (B6) and (C8) are only satis�ed if the

parameters belong to an appropriate region of parameter space and the initial value is

carefully choosen. An example is displayed in �gure 1 with initial values

z(0) = 0; y1(0) = 0:4; s(0) = 1; �(0) = 0 :
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