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Abstract 

We consider abstract forced symmetry breaking problems of the type 

F(x,A)=y, x~O(xo), A~Ao, y~O. 

It is supposed that for all A the maps F( ·,A) are equivariant with respect to rep-
resentations of a given compact Lie group, that F(xo, Ao) = 0 and, hence, that 
F(x, Ao)= 0 for all elements x of the group orbit O(x0 ) of xo. 

We look for solutions x which bifurcate from the solution family O(x0 ) as A and 
y move away from Ao and zero, respectively. Especially, we describe the number of 
different solutions x (for fixed control parameters A and y), their dynamic stability, 
their asymptotic behavior for y tending to zero and the structural stability of all 
these results. Further, generalizations are given to problems of the type F(x, A)= 
y(x, A), x ~ O(xo), A~ Ao, y(x, A)~ 0. 

This work is a generalization of results of J. K. HALE, P. TA.BOAS , A. VAN-

DERBAUWHEDE and E. DANCER to such extend that the conclusions are applicable 
to forced frequency locking problems for rotating and modulated wave solutions of 
certain S1-equivariant evolution equations which arise in laser modeling. 
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1 Introduction 

In this paper we consider abstract forced (or "induced") symmetry breaking problems of 
the type 

F ( x, .A) = y, x ~ V ( x0 ), .A ~ .:\0 , y ~ 0. (1.1) 

In (1.1), F is a smooth mapping such that for all .A the maps F( ·,.A) are equivariant 
with respect to representations of a given compact Lie group, that F(x0 , .:\0 ) = 0 and, 
hence, that F( x, .:\0 ) = 0 for all elements x of the group orbit V( xo) of Xo. We look for 
solutions to (1.1) which bifurcate from the solution family V(xo) as .A and y move away 
from .:\0 and zero, respectively. Thus, x is the "state parameter", .A is the "internal, 
symmetry preserving control parameter", and y is the "external, symmetry breaking 
control parameter". 

The aim of this work is to present a simple analytic and geometric strategy for pre-
dicting, or engineering, solutions to (1.1) in the case of dimV(x0) > 0. The strategy is 
simple because it is founded on a Liapunov-Schmidt reduction, certain scaling techniques 
(Hadamard's lemma) and the Implicit Function Theorem, only. For example, we provide 
a criterion which implies that for a given subspace A* of the space of all internal, symme-
try preserving control parameters the following is true: For each nondegenerate (in the 
sense of Corollary 5.3) external, symmetry breaking control parameter y near zero there 

exist a .A* E A* near zero and an x near V(x0 ) such that F(x, Ao+ .A*) = y. In other 
words: For each nondegenerate y near zero, it is possible to adjust .A near .:\0 , by variing 
the components in A* only, such that (1.1) gets solvable. 

Our results make it possible to determine (under certain assumptions) the number 
of different solutions x to (1.1) (for fixed control parameters .A and y), their dynamic 
stability, their asymptotic behavior for y tending to zero and the structural stability of 
all these results. 

In fact, this work is a generalization of results of J. K. HALE and P. T ABOAS [24, 26, 
39), A. VANDERBAUWHEDE [41] and E. DANCER [16] to such extend that these results 
are applicable to forced frequency locking problems for rotating and modulated wave 
solutions of certain S1-equivatiant evolution equations which arise in laser modeling (cf. 
[32]). For example, in the context of frequency locking of a self-pulsating two section DFB 
lasers under periodically modulated external signals, the criterion mentioned above yields 
the following (cf. [32]): For each external signal with small amplitude, with arbitrary 
modulation frequency near a given one and with arbitrary, nondegenerate modulation 
profile, it is possible to adjust the laser state, by variing only the two laser currents near 
given values, such that frequency locking takes place. 
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The paper is organized as follows. 
In Section 2 we introduce some notation and assumptions. 
Using an approach of VANDERBAUWHEDE [42] and DANCER [16], in Section 3 we carry 

out a Liapunov-Schmidt reduction for (1.1) which leads to a smooth bifurcation equation 
(though we do not suppose the Lie group to act smoothly on the state space). This 
reduction is "semi-global" in the sense that the control parameters A and y have to move 
near points (A = Ao and y = 0), but the state parameter x may vary in a neighbourhood 
of the compact submanifold O(xo) in the state space. The main assumptions for this 
reduction are that the partial derivative 8xF(x0 , Ao) is a Fredholm operator and that 
its kernel is as small as it is possible in the given situation of equivariance (namley 
ker8xF(x0 , Ao) is equal to Tx0 0(xo), the tangential space at O(xo) in the point x0 ). 

In Section 4 we describe the solution behavior of (1.1) in the case of vanishing sym-
metry breaking control parameter: 

F(x, A)= 0, x ~ O(x0 ), A~ A0 . (1.2) 

We show that generically there exists a smooth submanifold M in the A-space with 
Ao E M and tangential space 

such that (1.2) is solvable iff A E M. Here we use and generalize results of DANCER 

[15, 16, 18], who considered the case of codimM == 0, i.e. the case that (1.2) is solvable 
for all A ~ Ao. We are mainly interested (because of the applications in [34, 32]) in the 
case that codimM = dim 0( x 0 ) (that is the largest generically possible codimension of 

M). 
Assuming dimO(x0 ) == dimI', in Section 5 we describe sqlution families of (1.1) 

which are obtained by a scaling technique. These families are smoothly parametrized by 
the control parameter (A, y) belonging to certain open subsets (so-called locking cones) of 

the (A, y )-space. 
To be more precise, let A2 be a topological complement of T>.0 M in A, and let ~2 : 

T>.0 M--+ A2 be a parametrization of M near Ao, i.e. 

(1.3) 

Then the scaling, used in Section 5, is 

(1.4) 
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where € E R and A1 E T>.0 M are small, and µ E A2 and z E X are new scaled control 
parameters. Each isolated solution I = /o to the so-called reduced bifurcation equation 

(1.5) 

generates a family of solutions to (1.1 ), and the corresponding locking cone is the set of 
all control parameters (A,y) of the type (1.4), where€ and A1 vary near zero,µ near µ0 

and z near Zo. In (1.5), s : r -+ .C(X) is one of the r-representations mentioned above, 
and P E ,C(X) is a projector onto im 8:r:F( x0 , Ao) which commutes with S(r) for all / 
belonging to the isotropy subgroup of x0 • The reduced bifurcation equation (1.5) is the 
condition for vanishing of the first order terms of the €-expansion of an equation which is 
created by inserting (1.4) (withµ= µ0 and z = z0 ) and the ansatz 

into (1.1). Here S : r -+ .C(X) is the other r-representation (and the equivariance 
assumption is S(1)F(x, A)= F(S(r)x, A) for all 1, x and A). 

There exists a remarkable difference between the solution behavior of problem (1.1) 
and that of problem (1.2): The parameter A2 E A2 is a "state parameter" for (1.2), 
because (1.2) determines A2 to be a function of the "control parameter" A1 (which may 
vary in an open subset of the A1-space, cf. (1.3)). But for equation (1.1), A2 is a "control 
parameter" as well as Ai, because for all A = (A1 , A2), belonging to the locking cones, 
(1.1) is solvable. 

In Section 6 we present a simple criterion which implies linearized stability (resp. 
linearized instability) simultaneously for all solutions to ( 1.1) belonging to the solution 
family corresponding to a solution I = /o to (1.5). Essentially, the criterion consists in 
whether or not all eigenvalues of the linearization of (1.5) with respect to/ in the solution 
/ = /o have negative real parts. The contents of Section 6 are natural generalisations 
of results about the so-called principle of reduced stability for bifurcation from isolated 
solutions (cf. VANDERBAUWHEDE [44] and RECKE [33]). 

In Section 7 we assume the Lie group to be S1• Then the reduced bifurcation equation 
takes values in a one-dimensional space, and the control parameter A2 is one-dimensional. 
In this case (and under certain generic assumptions) we describe how the solution families 
may be smoothly continued and what sort of bifurcations occures if the control parameter 
( \ y) tends to the boundary of a maximal domain of continuation. Here we use techniques 
of HALE and TAB OAS [24, 26] (see also the results about "abstract bifurcation near a 
closed curve" in [14, Section 11.5] and about "symmetry and bifurcation near families of 
solutions" in [42, Chapter 8]). 
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We confine us to forced symmetry breaking problems of type (1.1) by reasons of 
simplicity, only (and because the applications, we have in mind, are of this type). There 
exist straightforward generalizations of our results to forced symmetry breaking problems 
of the more general type 

F(x, A)= y(x, A), x ~ O(x0 ), A~ Ao, y(x, A)~ 0. 

Such generalizations are presented in the Remarks 3.5, 5.10, 6.3 and 7. 7. 

In (34), which is a direct continuation of the present work, we apply our results on 
abstract forced symmetry breaking to two problems for parameter depending forced S1-

equivariant ordinary differential equations of the type 

e(t) = f(e(t), A) - 71(t). (1.6) 

In (1.6), we suppose S( ei-r)J(e, A) = j(S( ei-r)e, A) for all 1, e and A, where S is an S1-

representation on the e-space. 
First, we suppose the unperturbed equation 

e ( t) = f ( e ( t), Ao) (1.7) 

to have an orbitally stable rotating wave solution e0 (t) = S( eio:ot)x0 , and we describe the 
frequency locking of this solution to a forcing 71(t) = S( eio:t)y with a ~ a 0 and y ~ 0. 
We show that for small forcings (i.e. for small llYll) near the rotating wave solution 
occures a modulated wave solution, which has a modulation frequency near la - a 0 I, 
and the modulation oscillation max{ lle(t)ll : t E R} - min{ l!e(t)ll : t E R} of 

-which tends to zero for llYll tending to zero. If the forcing increases then the modulation 
oscillation increases, too, but the modulation frequency decreases. Moreover, at a certain 
value of the forcing intensity the modulation frequency vanishes, and the modulated wave 
solution changes "back" into (generically two) rotating wave solutions, which are close to 
fixed phase shifts of the "initial" rotating wave solution eo(t) and which have exactly the 
same freql.!.ency as the forcing (saddle node bifurcation of rotating waves). We describe 
which of them are stable and which are unstable. In this sense, frequency locking of the 
rotating wave solution of the unperturbed equation (1.7) with a forcing 71(t) = S(eio:t)y 
of "rotating wave type" occures. If the intensity of the forcing is increased further then 
a second saddle node bifurcation of the rotating wave solutions (into a modulated wave 
solution) may occure or not. This depends on whether or not the locking cone is "lop-
sided". We describe this bifurcation scenario rigorously and uniformly for all control 
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parameters A~ .Ao, a~ a0 and y = EZ with EE JR near zero and z E Rm near z0 , where 
zo is a "direction" in JR m such that the corresponding reduced bifurcation equation has 
nondegenerate solutions. 

And second, we suppose equation (1.7) to have an orbitally stable modulated wave 
solution fo(t) = S(eiaot)x0 (t) with x0 (t) = x0 (t + ~;) for all t, and we describe the 
quasiperiodic frequency locking of this solution to a forcing "l(t) = S( eiat)y(t) with y(t) = 

y(t + ~) and y(t) ~ 0 for all t, a~ ao and f3 ~ f3o. 

The motivation for our investigations comes from problems in semiconductor laser 
modeling. At present, self-pulsations (i.e. periodic intensity change in the output power 
with frequencies of tenth of gigahertz, cf., e.g., [31, 37, 9, 47, 46, 8]) and frequency 

locking of self-pulsations to optically injected modulations (cf. [5, 19, 28, 32]) are topics 
of intensive experimental and theoretical research. The mathematical models are, as 
a rule, ordinary differential equations (rate equations for the carrier densities) which 

are nonlinearly coupled with boundary value problems for dissipative hyperbolic systems 

of first order partial differential equations ("coupled mode equations" for the complex 
amplitudes of the electric field). Moreover, the models are equivariant with respect to an 
S1-representation on the state space ( ei'"Y E S1 works trivially on the carrier densities and 

by multiplication on the complex amplitudes). 

By means of the results of the present paper, the forced frequency locking behavior 

of these models can be described to a great extent by analogy with the description of the 

forced frequency locking behavior of S1-equivariant ordinary differential equations (which 
is presented [34]). The frequencies a and a 0 (resp. f3 and /30 ) are the so-called optical 

or carrier frequencies (resp. the power frequencies) of the external light signal and the 
self-pulsation, respectively, and the internal, symmetry preserving control parameter .A 
describes the internal laser parameter (laser currents, geometric and material parameters, 
facet re:fiectivities), for details see [32]. 

Let us introduce some notation. 
All the vector spaces considered in this paper are real. 

If X and X are normed vector spaces then .C(X, X) is the vector space of all linear 
bounded operators from X into X. Further, we denote .C(X) := .C(X, X), and X* :== 

.C(X,R) is the dual space to X. 
For LE .C(X,X) we denote by ker L :== {x EX: Lx == O} and imL :== {Lx EX: 
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x EX} the kernel and the image of the operator L, respectively. 
Partial derivatives will be denoted in a usual manner. For example, if A is a further 

normed vector space and F: Xx A-+ Xis a 0 1-map then 8xF(x0 , .A0 ) E £(X,X) denotes 
the partial derivative of F with respect to x EX in the point (x0 , .A0 ) EX x A. 

Let r be a group. A map S : r -+ C(X) is called a representation of r on X 
if S(18) = S(r)S(5) for all r and 5 and if S maps the unit element from r onto the 
identity map in X. For x E X we denote by V(x) := {S(r)x E X : r E r} and 
r( x) := { r E r : S( r )x = x} the group orbit and the isotropy subgroup of x with respect 
to the representation S, respectively. 

2 Notation, Assumptions and Set-up 

Throughout in this paper X and X are fixed Banach spaces, A is a normed vector space, 
k 2:: 2 is a natural number, F : X x, A -+ X is a Ck-map, and x0 E X and .A0 E A are 
points such that 

(I) F( xo, .Ao) = 0, 

(II) 8xF(x0 , .A0 ) is a Fredholm operator from X into X. 

Further, by r we denote a fixed compact Lie group, and S: r-+ C(X) and S: r-+ £(X) 
are representations of the group r on the spaces X and X, respectively, such that 

(III) F(S(r)x, .A)= S(r)F(x, .A) for all x Ex, A EA and' Er, 

(IV) 1 Er r----1- (S(r)x, S(r)x) EX x Xis continuous for all x EX and x EX. 

Assumptions (I) - (IV) imply that the map r E r r-+ S( r )x E X is Ck-smooth (cf. 
[18]). Hence, the group orbit V(xo) := {S(r)x0 EX: r E r} is a Ck-submanifold in X, 
the map 1 E r r-+ S( r )x E V( x0 ) is a submersion, and 

dimV(x0 ) = dimr - dimr(xo) (2.1) 

(cf. [42]). Here r(xo) := {1 : S(r)xo = xo} is the isotropy subgroup of the point Xo-

Moreover, the assumptions (I) - (IV) imply that the tangential space Tx0 V(x0 ) at V(x0 ) 

in x0 is a subspace of the kernel ker8xF(x0 , .A0 ). We assume that this kernel is as small 
as it is possible in our situation, i.e. 
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Finally, from (I) and (III) follows that the subspaces ker8xF(x0 , Ao) and im 8xF(x0 , Ao) 
are invariant with respect to S(r) and S(r) with r E r(x0), respectively. Hence (cf. [42]), 
(II) and (IV) imply that there exist projectors P E £(X) and P E £(X) such that 

ker P = ker8xF(xo, Ao), imP = im BxF(xo, Ao) (2.2) 

and 
S(r)P =PS(,), S(r)P = FS(r) for an, E r(xo). (2.3) 

In most of the applications there is a natural unique choise of the projectors P and 
P because it holds 

X is continuously embedded into X, 
X = ker8xF(xo, Ao) EB im8xF(xo, Ao), 

S(r)x = S(r)x for all x EX. 

(2.4) 

In that case the projectors P and P may be (uniquely) chosen such that, in addition to 
(2.2) and (2.3), we have 

im P = X n im BxF(xo, Ao), ker P = ker8xF(xo, Ao) (2.5) 

and, hence, Px = Px for all x EX. 
Finally, throughout in this paper Y is a normed vector space such that Y is continu-

ously embedded into X, that S ( r )y E Y for all y E Y and that 

(VI) (r, y) E r x Y r------+ S (r )y E X is Ck-smooth. 

3 Liapunov-Schmidt Reduction 

The following proposition is due to VANDERBAUWHEDE (cf. [41, 42, 43]). It describes a 
parametrization of a tubular neighbourhood of the group orbit O(x0 ) which is invariant 
with respect to the action of r on x: 

Proposition 3.1 Suppose (I) - (IV). Then there exist neighbourhoods U ~ im P of 
zero and V ~ X of O(x0 ) such that the map 

( r, u) E r X U t----+ S (r) ( Xo + u) E V (3.1) 

is surjective. Moreover, for (r;, Uj) E r x u (j = 1, 2) we have S( r1)(xo+u1) = S(r2)(xo+ 
u2) if and only if S(r1)xo = S(r2)xo. 
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Remark 3.2 Later on we will formulate results which are valid in certain neighbour-
hoods of zero in im P, of O(xo) in X etc. As in Proposition 3.1, these neighbourhoods 
will be denoted by U, V etc., though these "new" neighbourhoods are not the same as in 
Proposition 3.1 (but, may be, smaller one's). 

In what follows in this work we will consider the following abstract forced symmetry 
breaking problem 

F(x,A)=y, x~O(xo), A~Ao, y~O (OE) 

(here "OE" stands for "original equation"). This problem, written in the "new coordi-
nates" (3.1), is 

F(S(t)(xo + u), A) = y, (3.2) 

or, equivalently (cf. (III)), 
(3.3) 

The following lemma proceeds with a Liapunov-Schmidt reduction for equation (3.3) 
with u E im P near zero, A E A near Ao, y E Y near zero and arbitrary I E r. It is similar 
to [42, Lemma 8.2.10]. 

Lemma 3.3 Suppose (I) - (VI). Then there exist neighbourhoods W ~ A x Y of 
(Ao, 0) and U ~ imP of zero and a Ck-map u: r x W-+ imP such that: 

(i) It holds F[F(xo + u, A) - §-1 (t)y] = 0, u E U, (>.., y) E W if and only if u = 
u(t, A,y). 

(ii) It holds u(t, Ao, 0) = 0 for all 1 Er. 

(iii) It holds u(81, )..,y) = u(!,).., S(8t1y) for all 1, 8 Er and (A,y) E w. 
(iv) It holds u(!8,A,y) = S(8)- 1u(t,A,y) for all 1 Er, 8 E I'(xo) and ()..,y) E W. 

Proof The partial derivative of F[F(x0 + u, A) - S(tt 1y] with respect to u in u = 
0, A = Ao, y = 0 (and in an arbitrary 1) equals to the restriction of F8xF(x0 , Ao) = 
8xF(xo,Ao) on imP (cf. (2.2)). But the assumption (II) yields that 

8xF(x0 , Ao) is an isomorphism from imP onto im.P. (3.4) 

Therefore, the Implicit Function Theorem (together with the compactness of I') implies 
assertions (i) and (ii) of the lemma. 

Further, from (III) and (2.3) follows 

F[F(xo + u, A) - S(!8t1y] = S(8t 1 F[F(xo + S(8)u, A) - S(tt1y] 
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for all / E r, o E I'(xo) and (A, y) E W. Therefore, assertion (iv) follows from the 
uniqueness assertion of the Implicit Function Theorem. 

A similar argument proves (iii). 

• 
Let us define a map G : r x W -+ ker P by 

G(!,).., y) :=(I - F)[F(xo + u(!,).., y), A) - S(!t1y]. (3.5) 

In (3.5), I is the identity in the space X. Because of (III), (2.3) and Lemma 3.3 we have 
for all / E I' and (A, y) E W 

G(!, Ao, 0) = 0, 

G(o1, A, y) = G(1, A, S(o)y) for all 0 Er, 
G(!o,A,y) = s-1(o)G(!,A,y) for all o E I'(xo). 

(3.6) 

(3.7) 

(3.8) 

The correspondence between the solutions of (OE) and of the Liapunov-Schmidt 
bifurcation equation 

G(!, A, y) = 0, / E I', A ~ Ao, y ~ 0 (BE) 

(here "BE" stands for "bifurcation equation") may be described in the following way: 
Let (x, )., y) be a solution to (OE). Then there existes a '* E r such that x = 

S(!*)(x0 + u(!*,).., y)) and that (!,).., y) is a solution to (BE) iff / = 1*0 with o E r(x0 ). 

And conversely, let (!,A,y) be a solution to (BE). Then, for all o E I'(x0 ), (!o,A,y) 
is a solution to (BE), too, x := S(!o)(x0 +u(!o,A,y)) does not depend on o, and (x,A,y) 
is a solution to (OE). 

Remark 3.4 We do not assume the representations Sand S to be smooth (because 
in many applications they are not smooth). Therefore, in our setting the parametrization 
(3.1) and the equation (3.2) are not smooth, in general. But we overcome this technical 
difficulty easily by transforming equation (3.2) into equation (3.3), which is Ok-smooth 
already (because of assumption (VI)). 

If the symmetry breaking parameter does not appear as a right hand side in the 
equation (OE), such an approach is not possible, in general. Then one can use a result 
of DANCER [16], who showed that there exists a smooth vector subbundle of the trivial 
vector bundle 0( xo) x X which is invariant with respect to the representation S and 
which has the property that (x,v) i-+ x + v (with x E O(x0 ) and v belonging to the fiber 
over x) is a smooth parametrization of a tubular neighbourhood of O(x0 ) in X. Another 
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way to deal with such more general forced symmetry breaking problems is described in 
the following Remark 3.5. 

Remark 3.5 There exist staightforward generalizations of Lemma 3.3 (and, hence, 
of the results of the Sections 4-7 of this paper, which follow from Lemma 3.3) to original 
equations of the type 

F(x, A,y) = 0, x ~ O(xo), A~ Ao, y ~ 0 (3.9) 

with F(xo, Ao, 0) = 0 and 

F(S(r)x, A, T(r)y) = S(r)F(x, )..,y) for all x Ex, A EA and1 Er, (3.10) 

where T : r -+ ..C(Y) is a r-representation on the space Y of the symmerty breaking 

parameters such that the map (x,).., y, 1) E X x A x Y x r 1-7 F(x, A, T(T)y) E X is 
Ck-smooth. 

Especially, forced symmetry breaking problems 

F(x, A)= y(x, A), x ~ O(xo), A~ Ao, y ~ 0 

are of this type, where the symmetry breaking parameter space Y is a suitable subspace 
of the space of all Ck-maps y : X x A --+ X such that the map 

(x,)..,y,1) Ex x Ax y x r r---+ S(T)y(S(Tt1x,A) Ex (3.11) 

is Ck-smooth. In this case the r-representation Ton Y has to be defined by 

[T(y)](x, A):= S(T)y(S(Tt1x, A). (3.12) 

Let us indicate a typical example for the situation described above. 
Let X be the space of all continuous 27r-periodic maps x : JR -+ JRm, and let X be 

the space of all C1-smooth elements of X (with the usual supremum norms). Let r be 
S1 := {eiip E C: cp E IR}, 

[S(eicp)x](t) := x(t + cp), 

and let S ( eicp) be the restriction of S ( eicp) on X. Let A : = IR n and 

[F(x, A)](t) := x(t) + f(x(t), A) 

with a Ck-smooth map f : Rm X ]Rn -+ JRm. Finally, let Y be the space of all superposition 

operators y : X -+ X of the type 

[y ( x)] ( t) : = y ( t' x ( t)) 
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with a Ck-smooth generating map y : JR x Rm --+ Rm such that y( · , x) is 27r-periodic for 
all x E Rm and that y and all its derivatives up to the k-th one y(k) are bounded. In Y 
we use the norm sup{ll:Y(l)(t, x )II: t E JR, x E Rm, l = 0, 1, ... , k}, where II · 11 is a norm in 
Rm. From (3.12) follows 

[(T(eicp)y)(x)](t) = y(t + <p,x). 

Hence, the map (3.11) is Ck-smooth, because the so-called evaluation map ( t, x, y) E 

JR x Rm x Y H- y(t, x) E JR is Ck-smooth (cf., e.g., [1, Proposition 2.4.17]). 
Analogously, forced symmetry breaking problems for symmetric elliptic boundary 

value problems on symmetric domains may be formulated in this way. Here one has to 
use known smoothness properties of superposition operators between Sobolev or Holder 
spaces (cf., e.g., [40, 3]). 

4 The Solutions in the Case of Vanishing Symmetry 

Breaking Parameter 

In this section we describe the solution behavior of the bifurcation equation (BE) and, 
hence, of the original equation (OE) in the case of vanishing symmetry breaking parameter 
y: 

F(x, >.) = 0, x ~ O(xo), >.~>.a. (4.1) 

Because of (3.7), G(r, >., 0) is independent of I· Hence, it is correct to define 

Go(>.) := G(r, >., 0). (4.2) 

Here G0 is a Ck-map which is defined for all>. EA with (>., 0) E W (W ~Ax Y is the 
neighbourhood of (>.0 , 0) from Lemma 3.3) and which takes values inker P (F E ..C(X) is 
the projector introduced in (2.2)), and (3.5) and ( 4.2) imply 

Let 

Ga(>.) = (I - F)F(xo + u(r, >., 0), >.). 

X 0 := {x EX: S(r)x = x for all / E r(x0 )}, 

Xo := {x Ex: S(r)x = x for all / E r(xo)} 

(4.3) 

be the isotropy subspaces corresponding to the isotropy subgroup r(x0 ), respectively. 
Then, because of (III), F(·, >.) maps X0 into X0 for all>.. Hence, 

(4.4) 
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Moreover, (3.4) yields that 8xF(xo, Ao) is an isomorphism from Xo nimP onto Xo nim..P, 
and we get 

(4.5) 

Thus, 8xF(xo,Ao)Xo is a closed subspace of finite codimension in X 0 (cf. (II)), and we 
denote this codimension by codim_x

0
8xF(xo, A0 )X0 • From (4.5) follows 

(4.6) 

The following theorem describes the solution behavior of equation ( 4.1) under the 
assumption that the subspaces 8xF(xo, Ao)Xo and 8>..F(x0 , A0 )A are transversal in X0 : 

Theorem 4.1 Suppose (I) - (V), and let A2 be a closed subspace in A such that 

Further, let Ai be a complement of A2 in A, and let Ao = Aoi + Ao2 with Aoj E Aj (j = 1, 2). 
Then there exist neighbourhoods V ~ X of O(xo) and Wj ~ Aj of Aoj and Ck-maps 

Xo : Wi -t Xo and ~2 : W1 -t A2 with xo(Ao1) = Xo and ~2(Aoi) = Ao2 such that the 
following is true: It holds F(x, Ai + A2) = 0 with x E V and Aj E Aj if and only if 
A2 = ~2 (A1 ) and x = S(r)x0 (Ai) for some! Er. 

Proof Because of (3.5), (3.8) and (4.2), we have G0 (A) E X0 n ker P for all A. Let 
G~(Ao) E £(A; x n ker F) be the derivative of the map Go in the point Ao. Then (2.2) 
and ( 4.3) yield 

(4.7) 

Let us show that the restriction of G~(Ao) on A2 is injective. Thus, let Gb(Ao)A2 = 0 
with A2 E A2 • Then (4.7) yields that 8>..F(xo, Ao)A2 E im ..P. Hence, (4.4) and (4.5) imply 
that 8>.F(x0 , Ao)A2 E 8xF(xo, Ao)Xo, and from (VIII) follows that 8>.F(xo, Ao)A2 = 0. 
But assumptions (VII) and (VIII) provide, moreover, that 8>..F(x0 , Ao) is injective on A2 • 

Therefore A2 = 0. 
On the other hand, from ( 4.4)' ( 4. 7) and (VII) follows that G~ (Ao )A2 = Xo n ker p. 

Hence, the restriction of Gci(Ao) on A2 is an isomorphism from A2 onto Xo nker P, and the 
Implicit Function Theorem solves equation Go( A) = 0 for A~ Ao in form of A2 = ~2(Ai). 

Thus, the theorem is proved with 

(4.8) 
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Remark that, because of Lemma 3.3(iii) and (iv), the right hand side of (4.8) belongs to 
X 0 and does not depend on I· 

• 
Corollary 4.2 Suppose the assumptions of Theorem 4.1 to be satisfied. 

Then Ai :={A EA: 8>.F(x0 , Ao)A E im 8>.F(x0 , Ao)} is a closed complement of A2 in 
A. Moreover, this choise of Ai implies that the derivative of the map j 2 in Aoi vanishes. 

Proof In the proof of Theorem 4.1 we showed that for a parameter A2 E A2 the 
condition 8>.F(x0 ,Ao)A2 E imF implies that A2 = 0. But imF = im8xF(xo,Ao) (cf. 
(2.2)). Hence, Ai n A2 = {O}. 

On the other hand, we have 

codim Ai codim ker (I - F) 8>.F(x0 , Ao)= dim im (J - F) 8>.F(xo, Ao) = 

- dim (J - F) 8>.F(xo, Ao)A2::; 

< dim 8>.F(xo, Ao)A2 = codimg
0
8xF(xo, Ao)Xo =dim A2. 

Here we used that (J - P) 8>.F(x0 , Ao) is an isomorphism from A2 onto X0 n ker P (see 
the proof of Theorem 4.1) and, hence, that (J - f>) 8>.F(x0 , Ao)A =(I -P) 8>.F(x0 , .:\0 )A2 
(cf. (4.4)). So we get A= Ai ffi A2. 

Finally, ( 4. 7) yields Ai = ker G~ (Ao). Moreover, if we differentiate in Ai = .:\01 the 
identity (J - f>)F(:Z:o(Ai),Ai + j 2(.Ai)) = 0, we get j~(Aoi)Ai ~ kerG~(Ao). Hence, 

• 
Using a more geometrical language, Theorem 4.1 can be formulated as follows: 
Suppose (I) - (V), (VII) and (VIII). Then there exist a Ck-submanifold M in A 

(namley M :={Ai+ j2(Ai) : Ai ~ Aoi}, here Ai and A2 are closed subspaces of A which 
satisfy the assumptions of Theorem 4.1, .5t2 is the corresponding map, given by Theorem 
4.1, and, obviously, M does not depend on the choise of Ai and A2) with ) 0 EM and 

T>.0 M {.A EA: B>.F(xo, Ao)A E im B>.F(xo, Ao)} 

codimM - codimg
0 
8xF ( xo, Ao )Xo 

(4.9) 

(4.10) 

and a map :F from M into the orbit space X /r such that ( 4.1) holds iff A E M and 
O(x0 ) = :F(.A). All the orbits :F(A) are Ck-diffeomorphic to O(x0 ). 

The following lemma states, under the assumption (2.4), a necessary and sufficient 
condition for a subspace A2 of A to satisfy (VII) and a sufficient condition for (VIII): 
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Lemma 4.3 Suppose (I) - (V) and (2.4)} and let A2 be a closed subspace of A. Then 
the following is true: 

(i) Condition (VII) is satisfied if and only if 

(4.11) 

(ii) Condition (VIII) is satisfied if 

( 4.12) 

Proof (i) Because of (2.4) we have Xo = [Xonker8:i:F(xo, Ao)]e[Xonim a:i:F(xo, Ao)]. 
Hence, (V) and ( 4.5) yield 

( 4.13) 

Therefore, (4.11) is equivalent to (VII). 
(ii) Obviously, ( 4.12) and ( 4.13) imply (VIII). 

Let us mention two in a certain sense "extremal" situations described by Theorem 
4.1. 

In the first situation the codimension of the submanifold M of all control parameters 
A E A near Ao such that ( 4.1) is solvable, is as large as it is possible under the assumptions 
of Theorem 4.1. Because of (2.1), (II), (4.6), (VII) and (4.10) this is the case if 

( 4.14) 

For example, if r 0 consists of the unit element only (and, hence, X 0 = X and X0 = X) 
then (4.14) is satisfied. If, in addition to the assumptions of Theorem 4.1, condition (2.4) 
holds, then ( 4.14) is equivalent to Tx0 0( xo) ~ Xo. This condition is fulfilled, for example, 
if r is Abelian. 

In the second situation the codimension of M is as small as it is possible: 

( 4.15) 

In that case (VII) and (VIII) are satisfied with A2 = {O}, and Theorem 4.1 states that 
for all A ~ Ao there exists exactly one orbit of solutions to (4.1). This is the so-called 
G-Invariant Implicit Function Theorem of DANCER [15, 16, 18]. If, moreover, (2.4) is 
fulfilled, then ( 4.15) is equivalent to Xo n Tx0 0( x0 ) = {O}, the so-called P-property of 
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DANCER. If it is violated then for generic A ~ Ao no solutions to ( 4.1) will exist (cf. 
[17, 18, 21]). 

On the other hand, if the assumptions (I) - (V) are satisfied with Hilbert spaces 
X = X, if the representations S =Sare unitary and if F(·, A) is a gradient map (for each 
A), then, even if the property P is not fulfilled, we have G(!, .A, 0) = 0 for all 1 E r and 
A~ Ao, and, hence, for all A~ Ao there exists exactly one orbit of solutions x ~ O(x0 ) to 
( 4.1) (cf. [16]). 

Remark 4.4 It is easy to see that all the assumptions (I)-(VIII) (and (I.9) and 
(I.10) from the subsequent Sections 5 and 6, too) remain to be satisfied if one replaces 
xo and Ao by S(T)xo(Ai) and Ai+ j 2 (Ai), respectively, where 1 E r and Ai E W1 are 
arbitrary. Hence, all the results of this paper remain to be valied under such a "change 
of the starting solution". For example, we have 

( 4.16) 

for all 1 E r and Ai E Wi. Moreover, we will show that our bifurcation results (for 
example the existence of locking cones, cf. Theorem 5.2) hold not only for each (fixed) 
such "starting solution", but in a certain sense uniformely with respect to them. 

5 Symmetry Breaking and Locking Cones 

In this section we suppose the assumptions (I)-(VIII) to be satisfied. 
We introduce in the original problem 

F(x, A)= y, x ~ O(xo), A~ Ao, y ~ 0 (OE) 

and in the bifurcation equation 

G (!, A, y) = 0, ! E r, A ~ Ao, y ~ 0 (BE) 

new control parameters € E JR., Ai E Ai, µ E A2 and z E Y by scaling the old control 
parameters A E A and y E Y in the following way: 

A = Ai+ j2(Ai) + Eµ, y = €Z 

€ ~ 0, Ai~ Aoi, (µ,z) ES:= {(A2,Y) E A2 x Y: ll.A2ll2 + llYll 2 = l}. 
(5.1) 

In (5.1), the symbol II· II is used for the norms in A and Y, respectively, and ~2 is the map 
given by Theorem 4.1. The parameters (µ, z) ES are "directions" in the space A2 x Y. 
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Because of Theorem 4.1, G(r, .X1 + ~2 (.X 1 ) + eµ, ez) vanishes for e = 0. Therefore 

(5.2) 

with 

H(r, e, A.1, µ, z) := 

:= 11 
[8>.G('Y, >.1 + ~2(>.1) + teµ, tEz)µ + 8yG('Y, >.1 + ~2(Ai) +ifµ, tez)z]dt. (5.3) 

Especially, for e = 0 we have (cf. (3.5)) 

Ho(r,µ,z) := 

:= H(r, 0, Ao1,µ,z) =(I - F)[8>.F(xo, .X0 )µ- S(r)-1z]. (5.4) 

The solutions withe =J 0 to the problem 

H(r,e,A.i,µ,z) = 0, ! Er, e ~ 0, A.1 ~ .X01, (µ,z) ES (SE) 

(here "SE" stands for "scaled bifurcation equation") correspond, via (5.1), to solutions of 
(BE) and, hence, to solutions of (OE). 

The aim of this section is to look for solutions/= /o, e = 0, A.1 = A.0i, µ = µ0 and 
z = z0 of (SE), i.e. of the problem (cf. (5.4)) 

Ho(ro, µo, zo) = 0, /o E r, (µo, zo) ES (RE) 

(here "RE" stands for "reduced bifurcation equation"), such that in these solutions the 
Implicit Function Theorem works with respect to /· Such solutions to (RE) produce 
families of solution to (SE) with / ~ /o, E ~ 0, A1 ~ Ao1, µ ~ µ0 and z ~ z0 and, 
hence, families of solutions to (OE) with control parameters (A,y) EA x Y defined by 
(5.1) with € ~ 0, A.1 ~ .X01 , µ ~ µo and z ~ zo. In order to describe the sets of such 
control parameters (A., y), we introduce for e0 > 0, (µ0 , z0 ) E S and for neighbourhoods 
W ~ A1 x S of ( A.01 , µo, z0 ) the following notation: 

K( Eo, µo, zo, W) := 

:= {(A.1 + ~2(A.1) + eµ, ez) EA x Y: 0 < lei < Eo, (.X1, µ, z) E W}. (5.5) 

Because of the applications we have in mind (cf. Sections 9 and 10 of this paper) we call 
the sets (5.5) locking cones. 

Let (!0 , µ0 , z0 ) be a solution to (RE). The Implicit Function Theorem works in this 
solution in order to solve (SE) with respect to / iff the operator 

8-yHo(!o,µo,zo) =-(I - F)dd [s(!t1zo] 
I -r=-ro 

(5.6) 
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(cf. (5.4)) is an isomorphism from the tangential space T,,0 r onto ker P. Obviously, for 
that condi~ion to be fulfilled it is necessary that the following condition 

(IX) dim r(x0 ) == 0, 

is satisfied, because it holds H0 (1'0 o, µ0 , z0 ) == s-1 ( o)H0 (1'0 , µ0 , z0 ) for all o E I'( x 0 ) (cf. 
(3.8), (5.2) and (5.4)). 

Let A be the Lie algebra of the Lie group r, exp: A ---+ r the corresponding exponential 
map, n :== dim r and { ai, ... ,an} a basis in the vector space A. Assumption (IX) implies 
that the vectors 

d 
Vj :== dt [S(exp(taj)xo)]t=O (5.7) 

form a basis in Tx/~(xo) = ker BxF(xo, Ao) (cf. (V)). 
Further, let BxF(xo, Ao)* E £(X*, X*) be the adjoint operator to 8xF(x0 , Ao). Then 

(II), (V), (IX) and (2.1) imply that dim ker 8xF(x0 , Ao)* = dim r. If, moreover, (2.4) is 
satisfied then there exists a basis { vr' ... , v~} in ker OxF( Xo, Ao)* such that 

n 

(vi,vj) = Oij and Px = x - L < x,v; > Vj for x Ex. (5.8) 
j=l 

Here ( ·, ·) : X x X* ---+ JR is the dual pairing, and Oij is the Kronecker symbol. 
The following lemma states two necessary and sufficient conditions for the operator 

(5.6) to be an isomorphism: 

Lemma 5.1 Suppose (I) - (VI) and (IX). Then the following is true: 

{i) The operator (5.6) is an isomorphism from Ts(1'o)-1zo O(zo) onto ker P if and only 
if 

(5.9) 

{ii) Suppose (2.4). Then the operator (5.6) is an isomorphism from Ts(1'o)-1z/.J(zo) 
onto ker P if and only if the matrix 

[ d - Jn (-d [S( exp(taiho1 )zo]t=o, vj) .. t ~J=l 
(5.10) 

has a non-vanishing determinant. 

Proof Because of (II), (V), (IX), (2.1) and (2.2) we have dim r ==dim ker P. Hence, 
(5.6) is an isomorphism from Ts(1'o)-1zo O(zo) onto ker P iff it is injective. 

(i) Suppose (5.6) to be injective. Then dim I'(zo) = 0 and, hence, dim O(zo) = dim 
r = codim 8xF(x0 ,A0 ) (cf. (II), (V),(IX) and (2.1)). Therefore, for (5.9) it remains to 
show that 

(5.11) 

18 



Let x be an element of the left hand side of (5.11). Then there exists a ;y E T,,
0
r such 

that, on the one hand, 

x = dd [s(1)-1 zo] 7 
I -Y="Yo 

and, on the other hand, (5.6) maps 7 into zero. But (5.6) is injective, therefore ;y = O. 
Now, conversely, suppose (5.9). Then, as above, dim O(zo) = codim BxF(x0 , ..:\0 ) = 

dim rand, hence, dim r(zo) = 0. Therefore, ~ [S(!)-1zo]-r='Yo is injective, and (5.9) yields 
that (5.6) is injective, too. 

(ii) The map IE r t-7 -(I - P)S(!)-1zo E ker pis a local diffeomorphism in I= lo 
iff the map 

a EA 1-t -(I - P)S(exp(a)!ot1zo E ker.P (5.12) 

is a local diffeomorphism in a= 0. But (5.10) is the matrix representation with respect to 
the bases {a1, ... ,an} of Aand {v1, ... ,vn} ofker P = Tx0 0(xo) (cf. (2.4)) of the derivative 
of (5.12) in a = 0. II 

Again, using a more geometrical language, Lemma 5.l(i) can be formulated in the 
following way: 

Suppose (I) - (VI) and (IX). Then ( /o, µ0 , z0 ) is a regular solution to the reduced bifur-
cation equation (RE) iff the group orbit O(zo) intersects the affine subspace 8">..F(x0 , ..:\0 )µ0+ 
im BxF( xo, .Ao) in S(!o}-1 zo transversaly. 

The following theorem is the main result of this section. In its formulation we use the 
maps x0 and ~2 , given by Theorem 4.1. 

Theorem 5.2 Suppose (I) - (IX), and let (!0 , µ0 , z0 ) be a solution to (RE) with 

(5.9). 
Then there exist€> 0, neighbourhoods V ~ X of S(!o)xo, W ~Ai xS of (..:\01 , µ0 , z0 ), 

a ok-1 -map i : w --7 r with i(.Ao1, µo, zo) = /o and a Gk-map x : K( Eo, µo, zo, W) --7 x 
such that the following is true: 

(i) It holds F(x,.A) = y with x E V and (.A,y) E K(Eo,µo,zo, W) if and only if 

x = x(A,y). 
(ii) Let ( ..:\1, µ, z) E W be fixed. Then x( .A1 +~2( .A1 )+Eµ, Ez) tends to S( i( .A1, µ, z) )xo( .A1) 

for€ --7 0. 

Proof The Implicit Function Theorem yields a relation / = i'( E, ..:\1 , µ, z) solving 
(SE) near the solution/ = /o, € = 0, .A1 = .A01, µ = µo and z = zo (especially it hold 
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i(O, Ao1, µo, zo) = 10). Hence, (i) follows with 

x(A1 + 5.2(.:\1) + eµ, ez) := 

:= S( i( e, Ai,µ, z))(xo + u(i( e, .:\1, µ, z), .:\1 + 5.2(.:\1) + eµ, ez)). (5.13) 

In (5.13), u is the map given by Lemma 3.3, and Lemma 3.3(ii) and ( 4.8) imply assertion 
(ii) with -)'(Ai,µ, z) := i(O, .:\1, µ, z). 

Remark that the map H is only ck-1-smooth in arguments with e = 0 (cf. (5.2) and 
(5.3)), therefore the map i' is only ck-1-smooth, in general. • 

Suppose (I) - (IX). Then, by means of Theorem 5.2, there exists a straightforward 
procedure to construct control parameters A and y such that (OE) is solvable: Just take 
(µ0 , z0 ) E S such that the orbit O(zo) intersects the affine subspace O>..F(x0 , .:\0 )µ0 + 
OxF(xo, .Ao)X in at least one point transversaly. Then A = .:\1 + 5.2(.:\1) + eµ and y = ez 
with arbitrary e E JR near zero, A1 E Ai near Ao1, µ E A2 near µo and z E Y near z0 are 
parameters of the type being in demand. 

In applications, however, often one has to answer more specific questions about the 
solvability of (OE): 

One of such questions, for example, is the following: Given an external, symmetry 
breaking control parameter y E Y near zero, do there exist internal, symmetry preserving 
control parameters .:\ E A near .:\0 and state parameters x E X near CJ ( x 0 ) such that 
F(x, A) = y ? In other words, is it possible to adjust .:\ near Ao (in a manner, depending 
on the given y) such that (OE) is solvable? 

The answer is "yes" if there exists a A2 E A2 such that O(y) intersects O>..F(x0 , .:\0 )µ0 + 
OxF ( xo, Ao )X in at least one point transversaly. Moreover, the answer is "no" if none of 
the affine subspaces 8;.F(xo, .Ao).:\2 + OxF(xo, Ao)X (with A2 E A2 ) intersects CJ(y) (cf. 
Remark 5.4 below). Hence, the answer depends considerably on the number dimA2 = 
codimg0 8xF(xo, Ao)Xo (cf. (VII)). For example, if codimg

0
8xF(xo, Ao)Xo = 0 (i.e. if the 

unperturbed equation ( 4.1) is solvable for all .:\ ~ Ao, cf. the discussion after ( 4.14)) then 
CJ(y) may intersect the subspace 8xF(x0 , .:\0)X or not, independently on any .:\2 • Hence, 
no adjustment of.:\ can influence the question of the solvability of (OE) with the given y. 

Now suppose, by contrast, 

(5.14) 

(that is the largest codimension of 8xF(x0 , Ao)Xo in X0 , which is possible under the 
assumptions (I) - (IX), cf. the discussion after (4.13)). In this case it holds ker P ~ X0 , 

and, hence, for each I E r there exists a unique A2 E A2 such that (I - P) ( 8>..F ( x0 , Ao) A2 -
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S(rt1y) = 0 (because (I - F)8>.F(xo, .Ao) is an isomorphism from A2 onto X0 n ker P, 
cf. the proof of Theorem 4.1). Thus, in this case for any y E Y near zero and for any 

/ E r there exists a .A2 E A2 such that CJ(y) intersects 8>.F(x0 , .A0 ).A2 + 8:r:F(x0 , .A0 )X 
in S(rt1y. This intersection is transversal if (I - f>)i,[S(ot 1Y]8=-y is injective. In 
other words: If codimg

0
8:r:F(x0 , .Ao)Xo = dimr then, for any y E Y near zero such that 

(I - P)~[S(ot1Y]8=-y is injective for at least one IE r, there exists a .A EA such that 
(OE) is solvable. 

Let us consider an even more specific question concerning the solvability of (OE), 
which arises from applications and which may be answered by means of Theorem 5.2. 

Suppose there is given a closed subspace A* in A. In the applications, we have in mind, 
the internal, symmetry preserving parameters in A* are distinguished by the property that 

it is much easier to vary them then other internal, symmetry preserving parameters (by 
reasons of the technology of the real system which is modeled by (OE)). In laser modeling, 
for example, the parameters in A* are the laser currents which are much easier to vary 
then other laser parameters (as geometric and material parameters or facet reflectivities). 

Now, a natural question is the following: Given an y E Y near zero, do there exist 

parameters .A* EA* near zero and state parameters x EX near CJ(xo) such that F(x, .A0 + 
.A*) = y? In other words: Is it possible to adjust .A near .A0 , by variing the components in 
A* only, such that (OE) with the given y is solvable? 

The answer depends, firstly, on whether or not the orbit O(y) intersects one of the 
affine subspaces 8>.F(xo, .A0 ).A2 + 8:r:F(xo, Ao)X in at least one point transversaly. This 
question does not depend on the choise of A* and is discussed above. And second, if 
CJ(y) intersects 8>.F(xo, .A0 )A2 + 8:r:F(xo, .Ao)X (with a fixed A2 E A2 near zero) in at least 
one point transversaly, then the answer depends on whether or not the affine subspace 
{ (Ao+ .A*, y) E Ax Y : .A* E A*} intersects the corresponding locking cone K( Eo, µ0 , z0 , W) 
with 

.A2 y 
µo := Jll.A2ll 2 + llYll2 and zo := Jll.A2ll 2 + llYll 2 

(cf. (5.5)). This second question is equivalent to the question whether or not there exist 

.A* E A* near zero and .A1 E A1 near .A01 such that .Ao + A* = A1 + ~2(A1) + A2, and, 
hence, the answer is "yes" if the affine subspace .A0 +A* is transversal to the submanifold 
M = {.A1 + ~2 (.A 1 ) : A1 ~ Ao1} (cf. (4.9)). Especially, for that it is necessary that 
dimA* 2:: codimg

0 
8:r:F(xo, .A0 )Xo (cf. ( 4.10)). Summarizing, we get the following 

Corollary 5.3 Suppose (I) - (IX) and (5.14). Let A* be a closed subspace in A which 

is transversal to the subspace ( 4.9). 
Then for each y E Y near zero such that X = TyO(y) EBim8xF(xo, Ao) for at least one 
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y E O(y) there exist A* EA* near zero and x EX near O(x0 ) with F(x, Ao+ A*)= y. 

Remark 5.4 Let us consider the uniqueness assertion of Theorem 5.2(i) in more 
detail. 

Suppose (I) - (IX), let (µ0 , z0 ) ES be fixed, and let r ='To be a solution to 

Ho(r, µo, zo) = 0 (5.15) 

with (5.9). Then Theorem 5.2 asserts that for (A, y) E K( e0 , µ0 , z0 , W) there exists exactly 
one solution x near S(ro)x0 to (OE). Of course, there may exist other solutions x near 
O(xo) to (OE) (with the same control parameter (A,y)), not close to S(r0 )x0 • 

Now, suppose that all solutions r E r to (5.15) satisfy (5.9). Then the number of 
these solutions is finite (because r is compact), each such solution generates a family 
of solutions to (OE) (via Theorem 5.2), and we have the following "global" uniqueness 
assertion: 

If (A, y) ~ (Ao, 0) belongs to the intersection of the locking cones corresponding to 
the solutions to (5.15) (this intersection is a locking cone, i.e. of structure (5.5), again) 
and if x ~ V(x0 ) is a solution to (OE) with this control parameter (A,y), then x is 
a member of one of the families of solutions to (OE) corresponding to the solutions to 
(5.15). Especially, if (5.15) (with fixed (µ0 , z0 ) ES) is not solvable then there do not exist 
solutions to F(x, Ai+ ~2(Ai) + €µ) = €Z with x EX near O(x0 ), EE JR near zero, Ai E Ai 
near Aoi, µ E A2 near µo and z E Y near z0 • Moreover, if (5.15) (with fixed z0 E Y) 
is not solvable for each µ0 such that (µ0 , z0 ) E S, then there do not exist solutions to 
F(x, A)= €Z with x EX near O(x0 ), EE JR near zero, A EA near Ao and z E Y near z0 • 

Remark 5.5 This is a remark on the "continuation assertion" (ii) of Theorem 5.2. 
Suppose the assumptions of Theorem 5.2 to be satisfied. Then, if the control param-

eter (A, y) E K( Eo, µo, zo, W) tends to (A1 + ~2 (.Xi), 0) (with fixed (.Xi, µ0 , z0 ) E W), but 
not along a straight line {(Ai+ ~2 (A1 ) + eµ, ez) : € E JR}, the solution x(.X, y) does not 
converge, in general (because the right hand side of (5.13) with € = 0 depends on µ and 
z, in general). In other words, in general it is not possible to continue continuously the 
family (A,y) E K(E0 ,µo,z0 , W) i--+ x(A,y) EX of solutions to (OE) onto the closure of 
K( e0 , µ0 , z0 , W), for example. This phenomenon is well-known in the theory of damping 
and forcing of second order ordinary differential equations (cf. [26, 39]). 

Remark 5.6 Let the assumptions of Theorem 5.2 be satisfied, and let (A, y) E 
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K( ea, µo, zo, W). Then, because of the uniqueness assertion of Theorem 5.2(i), 

for all / near the unit element. Hence, the map / E r r-+ S(r)x(.A,y) E X is Ck-
smooth ( cf.(VI)). This is a kind of "abstract solution regularity" result for (OE): The 
representation S does not act smoothly on each element x EX, but on solutions to (OE) 
it does. 

Remark 5. 7 If assumption (IX) is not satisfied then, at first glance, the parametriza-
tion (3.1) seems to be unsuitable for solving (OE) because we have 

and all 1, e, .A1, µand z (cf. (3.8) and (5.2)). Hence, the solutions/ E rof the scaled 
bifurcation equation (SE) (with fixed control parameters e, .A1,µ and z) are not isolated, 
but occure as r(x0 )-orbits. On the other hand, because of the "uniqueness assertion" 
of Proposition 3.1, each such r(x0 )-orbit of solutions / E r to (SE) (with fixed control 
parameters e, .A1 , µ and z) corresponds to an isolated solution x E X of (OE) (with 
control parameters (.A, y) EA x Y determined by (5.1)). Therefore, it should be possible 
to apply the results of Sections 3 and 4 (especially a second Liapunov-Schmidt reduction) 
in order to get families of r( x0 )-orbits of solutions to (SE) and, hence, families of isolated 
solutions to (OE). These families would be parametrized by the control parameters of 
the corresponding equations which have to belong to certain submanifolds in the control 
parameter spaces of codimension less or equal to dim r( Xo). This is a topic of future 
research. 

Remark 5.8 From (3. 7) and (5.2) follows 

(5.16) 

and for all suitable/, e, .A1 , µ and z. Therefore, the solutions/ E r to the scaled bifur-
cation equation (SE) (with fixed control parameters e, .A 1 , µand z) occure as r(z)-orbits, 
and, hence, are not isolated, if dim r(z) > 0. In contrast to the situation, considered in 
Remark 5.7, such r(z)-orbit of solutions to (SE) corresponds to a r(z)-orbit of, in general, 
nonisolated solutions x E X to (OE) (with fixed control parameters .A and y, determined 
by (5.1)). 

Now, suppose H0 (r0 , µ0 , z0 ) = 0 and dimr(zo) > 0. Then, because of (5.16), (5.9) 
is not satisfied, and Theorem 5.2 is not applicable. But (SE) with z :::::::: z0 is a forced 
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symmetry breaking problem, again (the parameter Z - Zo breaks the r ( Zo )-symmetry). 
Therefore, in principle one can apply the results of this section to (SE) with z ~ z0 

(especially a second Liapunov-Schmidt reduction and a second scaling in order to get 
a "scaled bifurcation equation for the scaled bifurcation eqution"). Then Theorem 5.2 
yields families of isolated solutions to (OE) which are parametrized by control parameters 
( \ y) belonging to certain "locking cones of second kind". 

Remark 5.9 Theorem 5.2 has the advantage that the left hand side (5.4) of the re-
duced bifurcation equation (RE) does not depend on the implicit given map u. Moreover, 
in certain cases (with A2 = {O}) this left hand side does not depend on the map F (the 
left hand side of the original problem (OE)) at all, but only on the action of the group r 
on x 0 and on Y. For example, if X = X are Hilbert spaces, if the representations S = S 
are unitary and if F(·, .A) is a gradient map (for each .A), then this left hand side is equal 
to 

Ho(T, z) =-(I - P)S(Tt1z, 

where l - P is the orthoprojector onto Tz0 0(x0 ), in X. 0HILLINGWORTH, MARSDEN 

and WAN used this property in their study of the dead load traction problem in three-
dimensional elastostatics [13, 45, 11]. 

Remark 5.10 The generalization of Theorem 5.2 to problems of the type (3.9) with 
(3.10) (cf. Remark 3.5) is straightforward. In this case one has to use the following more 
general form of the left hand side of the reduced bifurcation equation 

(5.17) 

and the matrix (5.10) has to be replaced by the matrix 

(5.18) 

6 Stability from the Reduced Bifurcation Equation 

Theorem 5.2 shows that regular solutions to the reduced bifurcation equation (RE) gen-
erate families of solutions to the original equation (OE). In this section we show that, 
moreover, under certain natural assumptions the linearization of (RE) with respect to the 
state parameter 'Y E r in such a solution to (RE) determines the linearized stability of all 
the corresponding solutions to (OE). 

In this section we assume the conditions (I) - (IX) and (2.4) to be satisfied. 
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As usual, for LE .C(X; X) we denote by specL the set of all complex numbers e such 
that the operator L - e J is not an isomorphism of the complexification of X onto the 
complexification of X. Here J E .C(X; X) is the embedding operator. 

Theorem 6.1 Suppose (I) - (IX), (2.4) and 

(X) sup {Ree: e E spec 8xF(xo, Ao), e f:. O} < 0. 

Then, if €0 and W are sufficiently small, for all (A, y) E K( €0, µo, z0 , W) the following 

is true: If all eigenvalues of the matrix (5.10) have negative real parts (resp. one such 

eigenvalue has a positive real part) then sup{Re e : e E spec 8xF ( x (A, y), A)} is negative 

{resp. positive). 

Proof Let P E .C(X) and P E .C(X) be the projectors defined by (2.2) and (2.5), 
and let {v1, ... , vn} and {vr, ... , v~} (with n := dimr) be the bases inker 8xF(x0 , Ao) and 
ker 8xF(x0 , Ao)*, respectively, which are defined in (5.7) and (5.8). Further, let u be the 
map which is determined by Lemma 3.3, xo and :\2 the maps determined by Theorem 4.1 
and x, 7 (resp. i) the maps determined by (resp. in the proof of) Theorem 5.2. 

From (III) and (5.13) we get 

8xF(x(A1 + ~2(A1) + €µ,ez),A1 + ~2(A1) + eµ))S(,.:Y(€,A2,µ,z)) == 
= S(i(€, Ai,µ, z))8xF(xo + u(,.:Y(€, Ai,µ, z)), Ai+ ~2(A1) + €µ, €z)). (6.1) 

A clever application of the Implicit Function Theorem (cf. VANDERBAUWHEDE [44] 
and RECKE [33]) yields that there exist families of operators A(€, A1 , µ, z) E .C(ker P), 
B(€,A1,µ,z) E .C(imP;imF), C(e,Ai,µ,z) E .C(X) and C(e,A1,µ,z) E .C(X), which are 
ck-1-smoothly parametrized by€ E IR near zero, A1 E A1 near Aoi, µ E A2 near µ0 and 
z E Y near z0 , such that 

A(O, Ao1, µo, zo) 0, 
B(O, Ao1, µo, zo) - 8xF(xo, Ao) on im P, 
C(O, Ao1, µo, zo) - I; 

and that for all suitable €, A1 , µ·and z we have 

and 
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In (6.4), AEBB E ..C(X; X) is the "diagonal" operator, which is defined by (AEBB)(a+b) := 

Aa + Bb for a E ker P and b E im P. 
From (IX) and ( 4.16) follows that the dimension of the kernel of 8xF(xo(A1 ), A1 +~(A1 )) 

(which is the limit for€ --7 0 of the left hand side of (6.4), cf. (4.8) and Theorem 5.2(ii)) 
is equal to dim r. On the other hand, (3.4) and (6.2) imply that B(€,Ai,µ,z) is an 
isomorphism from im P onto im P for e ~ 0, A1 ~ A01 , µ ~ µo and z ~ zo. Hence, 
dim ker A(O, Ai,µ, z) = dim r for such A1 , µ and z. But dim r is the dimension of the space 
where A(0,A1 ,µ,z) is defined (cf. (2.1), (2.2), (V) and (IX)). Therefore, A(O,Ai,µ,z) is 
the zero operator, and we have 

(6.5) 

where A(€, Al'µ, z) E ..C(ker P) depends ck-2-smoothly (in arguments with € =!= 0 ck-l_ 
smoothly) on €, A1 , µand z. Moreover, (6.2) - (6.5) imply 

A(O, Ao1, µo, zo)vi = 
= p dd [axF( Xo + u( i( €, A01, µo, zo)' Ao + eµo, €Zo) )vj] ( 6.6) 

€ e=O 

for all j = 1, ... , n. 

Let us denote 

(6.7) 

Theorem 5.2 and (5.13) imply that F(S(1'(e))(x0 + u(e)), Ao+ eµo) = ezo for all small 
e E JR. Hence, (III) yields 

for all small e E JR and j = 1, ... , n. We differentiate the identity (6.8) with respect tot in 
t == 0 and obtain (using (5.7)) 

d 
8xF(xo + u(e), Ao+ eµo)(vi + dt [S(exp(tai))u(€)]t=o) == 

= edd [s(exp(tai)T(e)- 1 )zo] . t t=O 
(6.9) 

Further, we differentiate the identity (6.9) with respect to e in e == 0 and get (using (6.6) 
and (6.7)) 

.A.(o, Ao, µo, zo) == (I - P) dd [s( exp( taih'o1 )zo] . t t=O 

Hence, the matrix (5.10) is the matrix representation of the operator A(O, A01 , µ0 , z0 ) with 
respect to the basis {vi, ... ,vn} ((cf. 5.7) and (5.8)). 
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Let us summarize. Denote by M the matrix (5.10). Then spec M equals to the 
spectrum of A.(O, .A01 , µ0 , z0 ). Hence, (6.5) yields that 

sgn max {Ree: e E spec M} = sgn max {Ree: e E spec A(E, .A1, µ, z)} (6.10) 

for all small € > 0, A1 E A1 near Aoi, µ E A2 near Ao2 and z E Y near z0 • Further, 
assumption (X), (6.2) and the upper-semicontinuity of spectra (cf. [14, Chapter 14]) 
provide 

sup {Ree: e E spec B(E, .A1, µ, z)} < 0 (6.11) 

for all small € > 0, A1 E A1 near Ao1, µ E A2 near Ao2 and z E Y near z0 • Now, (6.1), 
(6.4), (6.10) and (6.11) imply the desired result. 11 

Remark 6.2 Suppose (I) - (IX) and, for the sake of simplicity, that X = X = Rm. 

A solution x = Xo of the equation F( x, Ao) = 0, which satisfies condition (X), is usually 
called linearly orbitally stable. This property implies the so-called asymptotic orbital 
stability with asymptotic phase of the stationary solution X = Xo of the r-equivariant 
ordinary differential equation 

x = F(x, .Ao), (6.12) 

i.e. each solution x(t) of (6.12) with x(O) ~ xo exists and stays near x0 for all times t 2:: 0, 
and there exists a ro E r such that x(t) --+ S(r0 )x0 fort--+ oo (cf. [6, 22]). 

The solution x = x(A, y) of equation F( x, .A) = y with sup {Re e : e E spec 
8xF(x, A)} < 0 (resp. > 0) is usually called linearly stable (resp. linearly unstable). 
As it is well-known, such a solution is an asymptotically stable (resp. unstable) station-
ary solution of x = F(x, A) - y. 

In the case of dim X = dim X = oo, the things are more difficult, of course (see, e.g., 
[27, 7] for corresponding criteria for isolated stationary solutions of evolution equations). 

Remark 6.3 The generalization of Theorem 5.2 to problems of the type (3.9) with 
(3.10) (cf. Remarks 3.5 and 5.10) is straightforward. In this case the eigenvalues of the 
matrix (5.18) determine the linearized stability of the solution families to (3.9) corre-
sponding to solutions to the reduced bifurcation equation with left hand side (5.17). 

7 Abstract Forced S1-Equivariant Equations 

Theorem 5.2 describes solution families of the problem 

F ( x, A) = y, x ~ V( x0 ), A ~ Ao, y ~ 0 (OE) 
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which are smoothly parametrized by the control parameter (.A, y) belonging to the lock-
ing cone K( Eo, µ0 , z0 , W) C A x Y. But Theorem 5.2 does not state any assertion 
about the questions whether or not these families have a smooth continuation outside 
of K( e:0 , µ0 , z0 , W) (with the exception of the assertion of the impossibility of continuous 
continuation onto the points (A,y) = (..\1 + ~2 (.\ 1 ),0), cf. Remark 5.5), whether or not 
there exists a maximal domain of definition of such a continuation and how behaves the 
solution x if (A, y) tends to the boundary of such a maximal domain of continuation. 

Following ideas of HALE and TABOAS (see [24, 26, 39], [25, Chapter 17] and [14, 
Chapter 11]), in this section we will give some answers on the questions stated above in 
the case 

(XI) r = S1 := {ei'Y E c: IE R}. 

For general groups and a more geometric and topological approach (in contrast to our 
analytic approach) see [12]. 

In this section we suppose assumptions (I) - (X) and (2.4) to be satisfied. We use the 
notation (similar to (5.7) and (5.8)) 

'V :== .!!:._ [s( ei..,,)xo] , v* E X* : 8xF( x0 , .Ao)*v* = 0, (v, v*) = 1. (7.1) 
d/ ')'=O 

Here(·,·) : Xx X*-+ R is the dual pairing, again. 
The Lie group S 1 is one dimensional and Abelian. Therefore, if (IX) is valid, each 

subspace A2 of A, which satisfies (VII) and (VIII), is one dimensional (cf. (4.14) and the 
discussion below this formula). Hence, (VII), (VIII) and (7.1) imply that there exists a 

..\* E A2 such that 
(7.2) 

For the sake of simplicity, in this section we will use the following notation (for z E Y) 

µ+(z) := max {(S(e-i'Y)z,v*): /ER} 
µ_(z) := min { (S( e-i'Y)z, v*) : /ER}. 

and the following terminology: 

(7.3) 

Definition 7 .1 A point z E Y is called nondegenerate of type 7z if the function 
/ E R 1--1- ( S( e-i'Y)z, v*) E R has exactly 21 critical points in [O, 27r) and if all these critical 
points are nondegenerate (i.e. if the first derivative of this function vanishes in exactly 2Z 
points in [O, 27r) and if the second derivative is nonzero in all this points). 
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Remark 7.2 Obviously, if all critical points of cp(·, z) are nondegenerate then there 
exists a nonnegative integer l such that z is nondegenerate of type 7i in the sense of 
Definition 7.1. 

The main result of this section is the following 

Theorem 7 .3 Suppose (I) - (XI) and (2.4), and let z0 E Y be nondegenerate of type 

Ti.. 
Then there exist Eo > 0, neighbourhoods V ~ X of O(xo), W1 ~ A1 of .X01 , W 2 ~ ~ 

of zero and W ~ Y of zo and ck-1-maps v+ and v_ from (-Eo, Eo) x W1 x W into JR. such 
that 

uniformly for z E W, and that for all€ E (-Eo, Eo), A1 E W1, v E W2 and z E W the 
following holds: 

(i} For all v E (v_(E,Ai,z),v+(E,A1,z)) there exist exactly two solutions x EV of 
the equation 

(7.5) 

one is linearly stable, the other is linearly unstable. These solutions depend Ck-smoothly 

on E, .X1 , v and z, and for Iv- v+(E,A1,z)I -t 0 or Iv- v_(E,Ai,z)I -t 0 they coalesce 
(saddle node bifurcation). 

(ii) For v ~ (v_(E, .X1, z), v+(E, .X1 , z)) there do not exist solutions x EV to (7.5). 

Proof For r E ~' A1 E Ai near Ao1, E, v E JR. near zero and z E Y near z0 we 
denote 

(7.6) 

Then Theorem 4.1 implies that G(r, 0, A1, 0, z) = 0 for an,, A1 and z. Hence, we have 

with 
G.(1', e, Ai, v, z) := 11 

a.G(I', te, Ai, tv, z)dt and 

Gv('Y, e, A1, v, z) := 11 
8vG(T, te, A1, tv, z)dt. 
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Let P and P be the projectors which satisfy (2.2) and (2.5). Then we have (cf. (5.8) 
and (7.1)) Px = x - (x, v*) for x EX, and (3.5), (7.2), (7.3), (7.6) and (7.7) imply 

G€(r, 0, Ao1, 0, z) 
Gv(r, 0, Ao1, 0, z) 

-(S( e-i-r)z, v*) 

1. 
(7.8) 

In order to solve equation (7.5) for x ~ 0( x0 ), E ~ 0, -X1 ~ -X01 , v ~ 0 and z ~ z0 , 

we have to solve the equation 

From (7. 7) and (7.8) follows that there exists a constant c > 0 such that for all solutions 
to (7.9) it holds lvl ::; CE. Therefore, without loosing solutions we may substitude v = €µ 
in (7.9) and, after that, divide by €. So we get the equivalent equation 

(7.10) 

First, we determine the singular solutions to (7.10), i.e. the solutions to (7.10) such 
that 

(7.11) 

From (7.8) follows that, for € = 0, A1 == A01 and z == z0 , the system (7.10), (7.11) has the 
following form: 

-(S( e-i-r)z, v*) + µ == 0 
- j,. (S( e-i-r)z, v*) == 0. 

Hence, because z0 is nondegenerate of type Ti and because of the Implicit Function 
Theorem, it holds (7.10), (7.11) iff 

(7.12) 

or 
(7.13) 

Here 9+, i-, P,+ andµ,_ are ck-1-smooth (in arguments withe =j:. 0 Ck-smooth) functions 
such that 

P,+ (0, Ao1, z) = µ+ ( z) = (S( e-i:Y+ (o,>.o1 ,z) )z, v*) 
fi,_(O,Ao1,z) = µ_(z) = (S(e-i:Y-(O,>.o1 ,z))z,v*). 

(7.14) 

It is easy to verify (using (7.8) and the assumption of nondegeneracy of type Ti of z0 ) 

that in the solutions (7.12) and (7.13) the saddle node bifurcation theorem (cf., e.g., 
[14, Theorem 6.2.l]) works. It claims that, ifµ decreases from fe+(E, -X1,z) or increases 
from P:-( e, -X1 , z), exactly two solutions to (7.10) grow out of the solutions (7.12) or (7.13). 
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These. solutions may be Ck-smoothly continued (because of the Implicit Function Theorem 
and of the compactness of S1) for allµ E (jL(€,.A1,z),fL+(€,Ai,z)) (and€~ 0, .A1 ~ .A01 
and z ~ zo)- Other solutions to (7.10) do not exist (again, because of the nondegeneracy 
of Zo and because of the compactness of S1' cf. Remark 5.4). Hence, the theorem (with 
the exeption of the stability assertions) is proved with v±(€, .A1, z) := €/L±(€, .A1, z). 

Now, let us prove the stability assertions. 
The reduced bifurcation equation is (cf. (5.2), (5.4), (7.1), (7.2) and (7.6) - (7.8)) 

Ho( r, µ, z) = [µ - (S( e-i-r)z, v*) ]v = 0. 

For z ~ z0 andµ E (µ-(z),µ+(z)) it has exactly two solutions, and (8-yHo(1,µ,z),v*) = 
- f-r (S( e-i-r)z, v*) has different signs in these solutions. Hence, Theorem 6.1 yields the 
claim. II 

Often in applications one is interested in strategies to head for control parameters 
.A EA near .A0 and y E Y near zero such that (OE) has exactly one linearly stable solution 
x ~ O(x0 ). Let us describe such a strategy, using Theorem 7.3: 

First, verify assumptions (I) - (XI) and (2.4), determine v E X and v* E X* with 
(7.1) and .A* E A2 with (7.2). 

Second, choose a z0 E Y which is nondegenerate of type Ti. 
Third, choose€> 0 near zero, .A1 E A1 near Ao1 andµ E IR with 

min{(S(e-i-rz,v*): r E IR}<µ< max{(S(e-i-rz,v*): r E IR}. (7.15) 

Then .A = .A1 + >:2 ( .A1) + €A* and y = €Z are control parameters of the desired type. 

For applications of Theorem 7.3 the following two lemmata (which will be proved in 
-the Appendix of this paper) are useful. They describe sufficient conditions for z to be 
nondegenerate of type 71 and forµ and to satisfy (7.15). 

For z E Y we define 

1 127!" - . . 1 127!" - -. * . . aj(z) := - (S(e-i-rz,v*)cosJr d1, bAz) := - (S(e 'L'Yz,v )smJ'Y d1. 
7r 0 7r 0 

(7.16) 

Then 
(S( e_;,, z, v*) = ao(z) + f)a;(z) cos h + b;(z) sinjr]. 

2 . 
i=l 

(7.17) 

Lemma 7.4 Suppose k ~ 3 and 
00 

ai(z)2 + b1(z)2 > 7r2 Lj4(1 + j2)[aAz)2 + bj(z)2]. (7.18) 
j=2 
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Then z is nondegenerate of type 71. 

Lemma 7.5 Suppose 

[a1(z )2 + bi(z)2]! > [µ - aa;z) [ + 71" [f j2(a;(z)2 + b;(z)2)] t. (7.19) 
j=2 

Then (7.15) holds. 

Remark 7.6 Analogously one can show that condition 

[µ _ aa;z) 12 > 11"2 f j2[a;(z)2 + b;(z)2] 
j=l 

(7.20) 

implies that (7.15) is not satisfied and, hence, that for .A= .A1 + '5:2(.Ai) +EA* and y = e:z 
there do not exist solutions x ~ O(xo) to (OE) (cf. Theorem 7.3(ii)). 

Let the assumptions of Theorem 7.3 be satisfied with X = X = JR711
, and consider the 

ordinary differential equation 
x = F(x,.A)-y. (7.21) 

Then the group orbit 0( x 0 ) is an attracting normally hyperbolic invariant manifold for 
(7.21) (cf., e.g., [29]). Hence, for .A~ Ao and y ~ 0 there exists an attracting normally 
hyperbolic invarint manifold M(A,y) for (7.21) near O(x0 ) (cf., e.g., [36, 48]). The man-
ifold M(A,y) is diffeomorphic to O(xo) and, hence, to S1

. All solutions x(t) of (7.21), 
which stay near O(x0 ) for all times, move on M(.A, y). 

Let us consider the dynamics of (7.21) with 

.A = .A1 + ~2(.A1) + e:.A*, y = e:z, e: > 0 

in more detail. 
If v E (v_(e:,.A1,z),v+(e:,.A1,z)), then the two stationary solutions to (7.21), described 

by Theorem 7.3, lie on M(A, y). Hence, they are connected by two heteroclinic orbits. 
One of these stationary solutions is asymptotically stable, the other is unstable. For 
v + v_(e:, ..:\1 , z) or v t v+(e:, ..:\1 , z) they coalesce in a nonhyperbolic stationary solution to 
(7.21) (a saddle node), one of the heteroclinic orbits disappears, and the other changes 
into a homoclinic orbit from the saddle node. 

If v ¢:. (v_(e:,.Ai,z),v+(e:,.A 1 ,z)), then there do not exist stationary solutions to (7.21) 
on M(.A,y). Hence, M(.A,y) is an attracting periodic orbit. For v t v_(..:\1 , E,z) or v + 
v+(.A1, E, z) this periodic orbit changes into the homoclinic orbit from the saddle node. 
Especially, its period tends to infinity. 
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The codimension one bifurcation which occures for v = v_(.A1, e, z) and v = v+(.A1, e, z) 
is well dicovered. In [2, Chapter 21] it is called "blue loop" and in [4, Chapter 33] "birth 
of a cycle from a homoclinic orbit of a saddle node" (see also [14, Chapter 10.4]). 

Now, consider the case e = 0, i.e. the S1-equivariant differential equation 

x = F(x, .A). (7.22) 

Denote by M := {.A1 +~2(.A1) : A1 ~ Ao1} the bifurcation hypersurface in A corresponding 
to Theorem 4.1 (cf. (4.9) and (4.10)). 

Because of Theorem 4.1, for A E M we have M(A, 0) = O(x0 (.A)), i.e. the invariant 
manifold M(A, 0) for (7.22) consists of stationary solutions only. 

For A ¢:. M, M(A, 0) is an attracting periodic orbit for (7.22) and simultaneously a 
group orbit. Hence, it is the orbit of a solution of the type 

(7.23) 

usually called rotating wave or relative equilibrium. For A on opposite sides of the hy-
persurface M, the frequency a of the rotating wave (7.23) has opposite signs, i.e. the 
solution (7.23) rotates in opposite directions. Moreover, it holds 

o{A )( ~ [S( e•t)x.( >. )]t=o, v*) = (F( x.( >.), >.), v*) 

and, hence, 
a(A) = O(dist(A,M)) for dist(A,M)-+ 0 (7.24) 

(cf. (7.1)), i.e. the period of the rotating wave solution (7.23) tends to infinity if the 
distance of the control parameter A to M tends to zero. This is the so-called "freezing 

phenomenon" (cf. [20]). 

Remark 7. 7 The generalization of the results of this section to problems of the 
type (3.9) with (3.10) (cf. Remarks 3.5, 5.10 and 6.3) is straightforward. One has to 
replace everywhere the term (S( e-i-r)z, v*) by the term -( OyF( x0 , Ao, O)T( e-i'Y)z, v*). 
For example, (7.3) must be replaced by 

µ+(z) .- -min{(8yF(xo,Ao,O)T(e-i1')z,v*): IE JR} 
µ_ (z) .- - max { (8yF(xo, Ao, O)T(e-i-Y)z, v*) : IE JR}. 

(cf. (5.17 and (5.18)). 

Remark 7.8 A similar to Theorem 7.3, but more complicated result holds if the 

assumption "zo is nondegenerate of type Ti" in Theorem 7.3 is replaced by "z0 is non-
degenerate of type 7i". In that case the system (7.10), (7.11) has not only two, but 2l 
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solution families 

P,1(0,Ao1,z) = max{(S(e-i-Y)z,v*): 'YER}= (S(e-i..Yi(O,>.oi,z)z,v*) 
P,2z(O,Aoi,z) = min{(S(e-i-Y)z,v*): 'YER}= (S(e-i..Y2z(O,>.oi,z)z,v*). 

Setting vA <:,Ai, z) := eµ;( <:,Ai, z) for j = 1, ... , 2l, one can describe the solution behavior 
of (7.5) with € ~ 0, A1 ~ Aoi, v ~ 0 and z ~ z0 in the following way: 

For v E (v2z(E,A1,z),v1(<:,A1,z)) there exist at least two (but a finite number of) 
solutions x ~ CJ( x 0 ) to (7.5). If the control parameter ( €, A1, v, z) intersects one of the 
hypersurfaces v = Vj ( €, A1, z), then the number of solutions x ~ CJ ( Xo) changes generically 
by two (saddle node bifurcations). If ( <:, A1, v, z) does not belong to one of these hyper-
surfaces, then the number of solutions x ~ CJ( x 0 ) is even, half of them are linearly stable, 
the other's are linearly unstable (for related results see [26, Theorem 1.1], [42, Theorem 
8.5.6] and [14, Theorem 11.5.1 ]). 

A Appendix 

Let us use the notation of Section 7. Let z E Y be fixed. We denote ¢( 'Y) : = ( S ( 'Y )-1 z, v*) 
and leave out the argument z in the notation (7.16). Then (cf. (7.17)) 

00 

¢(!) = ~o + L:)a; cosj1 + bj sinJ.'Y), 
j=l 

and Parceval's identity yields 

(A.l) 

Further, the following inequality (corresponding to the continuous embedding of the 
Sobolev space W 1•2 (0, 27r) into C([O, 27r]) is easily proved: 

Hence, (A.1) gives 

(A.2) 

Let us prove Lemma 7 .5. 
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The desired inequality (7.15) is satisfied if the equation¢(!) - µ = 0 has at least two 
solutions. This is the case if the equation ¢( /) - µ- ai cos 1- b1 sin/ = -a1 cos 1-b1 sin I 
has at least two solutions, i.e. if 

min(-a1 cos1 - bi sin/)< 
"Y 

<max 1¢(!) - µ - a1 cos1 - bi sin1l < max(-a1 cos1 - b1 sin/). (A.3) 
"Y "Y 

But ( A.3) is equivalent to 

00 

max I aa - µ + L(ai cosj1 +bi sinj1)I < ) ai +bi. 
"Y 2 . 

1=2 
(A.4) 

Applying (A.2) (with aa replaced by aa-2µ and a1 = b1 = 0) we get that (A.4) is fulfilled 
if ( 7 .19) is fulfilled. 

Now, let us prove Lemma 7.4. 
For /, 8 E JR denote 

cp(T, 8) := 
1 

[a1 cos1 + b1 sin/+ 8[¢(!) - a1 cos1 - b1 sin1J]. 
y'ai +bi 

Obviously, cp(·, 0) is nondegenerate of type /i. Hence, cp(·, 1) = ~¢ is nonde-

generate of type 7i if for all / E JR and 8 E [O, 1] the following condition is true: 

If a"Ycp(,, 8) = 0 then 8~cp( /a, 8a) # 0. (A.5) 

Suppose (A.5) is not true, i.e. 8"Ycp(Ta, 8a) = a;cp(To, 8a) = 0 for some /a E JR and 
80 E [O, 1]. Then there exists a f* E R such that 

0 = 8"Ycp(/a, 8a) = cos(/a + f*) + 
5
a [¢'(1a) + ai sin/a - bi cos1a], 

y'ai +bi 

I. e. 

1 - sin2 (1'o + 1.) = 2 

5~ b2 [¢'(/a)+ a1 sin /o - b1 cos /a] 
2

, (A.6) 
al+ 1 

and 

But ( A.6) and (A. 7) yield 

00 2 00 2 

ai+bi:::; [Lj(-ajsinj1+bicosj1)] + [Ll(-aisinj1-bjcosj1)]. 
j=2 j=2 

Applying (A.2), we get a contradiction to (7.18). 
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