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Abstract 

In [11] we considered a class of hyperbolic endomorphisms and asked the 
question whether there exists a physical motivated invariant measure (SRB-
measure) and if so we gave a criterion when the map is invertible on a set of 
full measure. In this work we want to consider a particular example of this 
class - in fact a 3-parameter family of those - and proof that a.s. the criterion 
is fulfilled. From this it follows that the Young formulae for the Hausdorff 
dimension of the SRB-measure holds. 
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1 Introduction 
In this work we want to apply the general theory from [11] to a specific example. 
From the first point of view this example seems rather special. But it contains 
almost all difficulties of the general case and it is the most natural one for further 
investigations. The results we derive in this section may be generalized to other 
cases by following the proofs but we need some sort of transversality conditions for 
which we have no simple criterion in general and moreover we don't know if they are 
generic. Therefore, we restrict to our example where the transversality condition is 
proven. 

We consider the three-parameter family of the Belykh map and restrict to the set 
of parameters for which the assumptions of [11] hold. This allows us to investigate 
the properties of the SER-measure. In particular, we are interested in the question 
how the dependence of the Hausdorff dimension of the measure - what is the same 
as the information dimension - on the parameters is. By our criterion in [11] this is 
connected to the almost sure invertibility of the map. As we mentioned in [11] it is 
not to expect that the Young-Pesin formula holds for all parameters of the family. 
But it seems likely - and we will prove it - that the criterion in [11] holds for almost 
all parameters in the sense of Lebesgue. Actually, it is sometimes conjectured that 
the exceptional set is also of first Baire category or even countable. For us the answer 
to this conjecture even in particular examples is for out of reach at the moment. 

We will have two results leading together with the general observations of [11] 
to a complete picture of the bifurcations of the invertibility picture of the map. We 
will discuss this picture at the end of this work. The interesting thing is that in 
theorem 3.1 we prove the invertibility directly and then apply the criterion to get 
the dimension formula while in theorem 3.3 we prove the dimension formula and 
then derive the almost sure invertibility with the help of the criterion. So we use the 
criterion in [11] from both sides what indicates that both statements of the criterion 
have its own interest and it depends on the application which way we want to read 
it. 

2 The Belykh family 
We want briefly remind the Belykh system (see section 0.1.3). 

Let us consider the square Q = [-1, 1] x [-1, 1] E JR.2 and the map f : Q -t Q 
defined by 

(x ) _ { ( AX1 + 1 - A, "fX2 + 1 - 'Y) x2 > kx1 
f 'y - (Ax1 + (,;\ - 1), "{X2 + ('Y - 1)) X2 < kx1 (1) 

with -1<k<1, 1 < 'Y::; lkl~l' 0 <A::; l. 
We denote the upper half U and the lower half L by 

and 
(2) 

Let au, aL denote their boundaries, N+ = au n aL. 
For A. 2::: ~ this map is not injective. See figure 
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Figure 1 

The fat Belykh attractor A= A(;\,"(, k), (;\ > ~), is defined by 

Q+ = {x E Qjfn(x) f/. au U aL, n = 0, 1, 2, ... } 

D = n fn(Q+) and finally 

A= Cl(D) 

where Cl(·) denotes the closure. We write for~> 0, l 2:: 1 

D'l,z = { x E Q+ jd(f kx, au U aL) 2:: z-1e-.!lk, k = 0, 1, 2, ... , n} 
D!,z = n D'l,z 

n2::0 

(3) 

(4) 

In [11] it is proved that if the maps f = f>.,1 ,k satisfies the conditions (H4) - (H7) 
then µsBR exists and 

µSBR (u n A,l) = 1 
Z2::1 

(5) 

for sufficiently small ~. 

Remark. It is easy to see that the Belykh map satisfies always the conditions (H4) 
- (H7) from [11]. The preimages of the singularity line never meet and the constant 
L in (H7) equals 1 for all iterates r. Since 'Y > 1 we find a 'T such that 'YT > 2 and 
(H7) is satisfied for fr. 

This means there is an open subset of parameters (A,"(, k) such that f is not 
injective, exhibits an SER-measure with µsBR(UD.!l,z) = 1 and the sum of the Lya-
punov exponents Xs = log;\ and Xu = log"( is less than 0 ( dissipativity). 

Let us now remind the main result of [] applied to the Belykh map 
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Theorem 2.1 [11]: If f = f>..,"f.k satisfies {H4) - {H7) from [11} then the following 
is equivalent 

{1) dimH µSER= 1 - ~~!1 

{2) f is invertible on a set of full µSER-measure. 

We also will use the lifted system: 

(6) 

"' ,.. "' "' "' "' "'+ "' "' We write Q, L, Q+, D, A, D~ 1, D t:.. z, D,6: 1 and so on for the similar defined sets for f. 
' ' ' 

7r : Q -+ Q is the canonical projection. The above defined sets for the lifted system 
are projected via 7r to the corresponding sets for f. Since these sets depend on the 
parameters (..\, 'Y, k) in the case it is important we indicate this dependence by an 
index or a bracket. In the lifted system we are able to define backward orbits and 
also to filtrate them 

fYA,1 = {XE bjd(f-n(X), fv+ c N) 2: ~e-d.n}. (7) 

In [8] and [9] it is proved that for 

fJ0 = LJ D!,z n LJ fJ-;,.,z 
l;?:l Z;?:l 

(8) 

3 The main theorems 
In this this section we prove the following 

Theorem 3.1 Let BP C ffi.3 be a ball of radius p such that for (..\, 'Y, k) E Bp the 
map f> .. ,1 ,k fulfills {H4) - {H7) and I,,\ · 'Y2 < 1 ! and ,,\ < 0.64. Then the map is fully 
invertible on the attractor almost surely. 

Corollary 3.2 Under the assumption of theorem 3.1 for Lebesgue a.e. 
(..\, 'Y, k) E Bp 

. log7 
d1mH µSBR = 1 - log,,\ 

Proof. Theorem 3.1 says that Lebesgue almost surely the condition ii) of the 
criterion in [11 J is fulfilled. Hence, condition i) holds almost surely. D 
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Theorem 3.3 Let Bp C :IR.3 be a ball of radius p such that for (A,/, k) E BP the 
map f>..,-y,k fulfills {H4} - {H7} and I .>t • 'Y < 1 I and ,\ < 0.64. Then for Lebesgue a. e. 
(.>t,1,k)EBp 

. log/ 
d1mH µSBR = 1 - log,\. 

Corollary 3.4 Under the assumptions of theorem 3.3 for Lebesgue a.e. 
(,\, /, k) E BP the map f>..,1,k is almost surely invertible. 

(9) 

Proof. Theorem 3.3 says that Lebesgue almost surely the condition i) of the crite-
rion in [11] is fulfilled. Hence, condition ii) holds almost surely. D 

Theorem 3.5 Let Bp C :IR.3 be a ball of radius p such that for (,\, /, k) E BP the 
map f>..,1,k fulfills {H4) - {H7} and I .>t • 'Y > 11. Then for Lebesgue a.e. (.A,/, k) E BP 

dimH µSBR = 2. 

Remarks: 

(i) Equation (9) is known as the Young or sometimes the Young-Pesin formula. 
It was proved in the invertible case in [14]. Actually L.S. Young proved that 
for an ergodic measure m for a diff eomorphism on a surface 

dimHm = hm (~ - __!__). xt£ xs 
Since log 'Y == xn' log,\ == XS and by the Pesin formula hµSBR = log 'Y we get the 
above formula. 

(ii) The Lyapunov dimension of a two-dimensional system is defined by 

d. A . ( log 'Y 2) imL ==mm 1- log,\' . 

Theorem 3.1 - 3.5 tell that the Lyapunov dimension equals the information 
dimension - i.e. the Hausdorff dimension of the SBR-measure - for almost all 
Belykh maps. This is the well-known Kaplan-Yorke conjecture for the special 
case of the Belykh attractor. 

(iii) If (,\0 , 'Yo, k0 ) EH== H 0 n {.A· 'Y < 1} n {,\ < 0.64} then there is always a ball 
with center (,\0 , /o, k0 ) fulfilling the assumptions of the theorem. Therefore for 
Lebesgue a.e. parameter in H the Young formula holds. 

(iv) It is standard to show that the Hausdorff dimension of A is less or equal to 
1 - ~~:I. Consequently, for Lebesgue a.e. (.A,/, k) E BP 

. log/ d1mHA = 1- - (10) log,\ 

The fact that the SBR-measure has maximal dimension is prior to the constant 
Jacobian of f along unstable leafs. 

( v) In fact, we will prove slightly stronger statements than those in theorem 1 and 
2. We will prove that for fixed/, k for almost all,\ E BP the assertions hold. 
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4 S-coding 
In this section we want to define a way how to trace points while the parameters 
vary. For this we want to introduce a coding space. Since we want to fix 'Y and k 
and let only A vary and on the other hand the "unraveling" of the images proceeds 
in the stable direction we concentrate our coding to the stable direction. The main 
problem is that there is no unique coding space as A varies - except in the case when 
k = 0. Therefore we introduce a coding space into which all the symbolic spaces for 
various A are embedded. The basic point is that the orbit of the points are subject 
to two different maps according to their position in Q. We will code a point by the 
sequence of the map applied to it. 

We consider the linear maps Si = Sf = s;,-r = [-1, 1] x (-oo, oo) 0, i = 1, 2 
given by 

Then 

sr(x1, X2) = (A(x1 - 1) + 1, "f(X2 - 1) + 1) 
Si(x1, X2) = (A(x1+1) - 1, "f(X2 + 1) - 1) 

-.x S1 (x1) = A(x1 - 1) + 1 
-.x S2 (xi) = A(x1 +1) - 1. 

(11) 

L d b I (n) · - · · · fi · · fi · f 1' d 2' et us enote y i , ! - i 1 i 2 •.. in . . . - a mte or m mte sequence o s an s, 
the strip -

It~.in (A)= S~ o S~ o ... o st ([-1, 1] x (-oo, oo)) 
-n ->. = si1 0 ... 0 sin ([-1, 1]) x (-oo, oo). (12) 

If 00) (A) denotes for infinite i the corresponding vertical line which is the intersection 
n1i(n). 

For given i = i 1 ... in ... finite or infinite we consider the set 

Then the R~n) are connected polygons in Ii(n) or empty. The sets R~n) (A) are the 
analogously -defined sets for the lifted system. -

The sets R~n) are the images of Jn of the maximal components of continuity of 
the map Jn. Therefore 

00 

D= n LJ Rfn). (14) 
n=OiE:Et 

Here we denoted by :Et the set of all one-sided sequences of symbols 1 and 2. For 
given A,/, k the symbolic coding space for J>.,-y,k is the set :E.x = :E.x,-y,k of all infinite 
sequences i E :Et defined by 

Those, it consists of the forward coding sequences of all points in D. 
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Notice, that the coding spaces :Et, :E.-\ are the same for f.-\ and A and 7r : Q -+ Q 
projects the sets R~n) (.A) to R~n) (.A). 

The idea of the proof of fheorem 3.1 is to show that the probability that two 
different R~n) have non-empty intersection tends to 0 as n tends to infinity. The 
next characteristic function turns out to be useful. 

For a given pair i, j_ of length n we introduce the function 

Xi,i(.A) = {1 if Rin)~A) # 0 and Rt\A) # Ql 
- 0 otherwise 

(15) 

A crucial step is to get estimates on the number of non-empty R~n),s for different .A. 
This will be done in the next two lemmata. -

Lemma 4.1 The partition {U, .l} of the cube Q is a generator for fJ. 

Proof. We have to prove that for x, fJ E fJ, x -:/:- fJ there is an n E Z such 
that Jn(x), Jn(y) are in different elements of the partition {U, .l}. Since x = 
(x1, x2, w1) -:/:- fJ = (y1, Y2, w2) we have X1 -:/:- Y1 or X2 -:/:- Y2 or W1 -:/:- w2. We can 
assume that x and fJ are in the same element of {U, .l}. Otherwise we are done. Let 
us assume first that x1 =I- y1. As long as j-kx and j-ky stay in the same elements 
of {U, L} the same maps Sf are applied to (x1, x2)and (y1, Y2) and the distance 
lx1 - y1 I increases by hyperbolicity by the factor ,A-k. But, this cannot happen 
forever since the diameter of the square is bounded. Hence, there is an n E - N c Z 
with Jnx, jny in different elements of {U, L }. 

If x2 :/=- y2 or w1 :/=- w2 then we can argue in the same manner by iterating 
forwards. 0 

Since { 0, L} is a generator for the expansive map J the topological entropy of 
j is given by the following procedure (see [2] and appendix): 

Let flCn)(x) = Rin)(x) = {fJ E CJlfkfJ is in the same element of {U, .l} as fkx for 
k=O,l, ... ,n}. Then · 

(f") _ 
1
. log(number of distinct flCn)(x)) _ 

htop - Im -
n.,.oo n 

. log#R(n)(x) 
= hm . 

n.,.oo n 

It is easy to see that #R(n)(x) =number of distinct Rin) =#Rt). Hence, 

,.. . log#Ri 
htop(/) = hm - . 

n.,.oo n (16) 

But, the topological entropy is less than the logarithm of the longest stretching rate; 
consequently 

(17) 

Now we can state the estimate we need. 
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Lemma 4.2 For fixed /, k and given c:1 , c:2 > 0 there is a set Y C (0, 1) with 
.C(Y) > 1 - e1 and a number n0 = no ( c:1, e2) such that for .A E Y, n > n0 

L Xi,i(.A) ~ ( 'Y + c2)2n 
i,;l_EWn 

where £-denotes the Lebesgue measure and wn = {1, 2}N are all words of length n 
of symbols 1 or 2. 

Proof. Let c:, /, k be given. From the variational principle ([7]) it follows that 
the entropy of the SBR-measure htopcJ) 2:: hµ.sBR = log/. On the other hand the 
topological entropy is always less then log 'Y, hence 

,. . log#R~n) 
log/= htop(f) = hm l -

n-+oo ogn (18) 

By applying Lusin's theorem we find a set Y c (~, 1) with .C(Y) > 1- c:, a number 
n0 and a constant C > 0 such that 

Inserting this into the definition of Xi,;l_ and into () we get the desired result. D 

Proof of theorem 3.1 

The method of proof of theorem 3.1 was developed in [10], proof of lemma 2. 
The crucial step is to trace points as they vary with the parameters and derive that 
they stay away each other in average. For this we will estimate integrals of the kind 

J d.Ad1dk 
jp(.A, /, k) - q(.A, /, k)js. 

A 

This is known as the potential-theoretic approach. 
Let us fix BP according to the assumption of the theorem. Clearly, we can modify 

the set Y of lemma 4.2 in the way that if we restrict the Lebesgue measure .C to the 
interval that is the projection of Bp to the .A- axis then .C(Y) > 1 - c:1 and then 
.A · 1 2 < 1 for all .A E Y. 

Let :EA c :E2 = {O, 2}N be the set of all infinite sequences i = i1 ... in ... such 
that R~n) (.A) # 0 for all n EN. Fix/, k according to the assumptions. We want to 
show that the map PA : :EA-+ [-1, 1] 

(19) 

where P1 is the projection onto the first coordinate, is injective a.s. This implies 
the statement. Moreover, it is enough to show that PA (i) # PA (j) a.s. if i 1 # j 1 . 

Finally we will prove that if Rt) and RJn) are both non-empty then It) and Ijn) 
will eventually be disjoint almost surely. - -

Fix c:1 , c:2 > 0 and let Y and n0 be as in lemma 4.2. We fix another e3 > 0 
and let "X = max(~2 , 0, 64). We denote by O~ thee-neighbourhood of the iterated 
singularity line: 
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Let us consider the event 

En= En(e) = (20) 

= { >. E G' x) n YI c~-1 (Rii\o:)) n c~_yi~t\o:)) "' 0} 
This event means that the map Jn is not one-to-one outside an c-neighbourhood of 
the singularity line if we look at images which arise when starting in U and L. Our 
aim is to prove that the probability of this event tends to 0 as n tends to infinity. 

We can proceed: 

£(En)~ L £ ((Ri7\o~) n (R~i\o~) # 0) 
i:.,,tEwn-1 

< L j xt~,2i(.x)x1,i(.x)d.x 
i:.,,iEWn-l(! 0 64)nY 

2' ' 

(21) 

where 

{ 
1 ·rd (I(oo) l(oo) ) vi 

) 
1 1!_000 ' 2,i000 ~ .I\ Xii(.X = _,_ 0 otherwise 

and 
(22) 

Obviously, 

(23) 

We want to decouple the functions under the integral sign in (21). This is because 
we are able to estimate them separately. This is the point where the difficulties arise 
from the fact that :E.x - the symbolic space - changes with A. Our way to overcome 
these difficulties is to estimate how fast the symbolics change as A varies. 

Auxiliary lemma. Let A > !, c > 0 be given. Let x be a point in Q+(,X) and let . {1 if fkx EU i = i 0i 1 ... in be the sequence ik = . ~ . We assume that the distance of 
2 if f.xx EL 

Jkx to the boundary of the corresponding R~k)(.X) is larger than c fork= 0, 1, ... , n. 
Then for 8 < min(~, 1; 00 ) and A' with .X(I - 8) < X < .X(l + 8) the sets Rik)(X) 
are non-empty and moreover, ff,(x) E Rik)(A'), k = 0, 1, ... , n, and d(ff,(x)) < 
10008, k = 0, 1, ... ,n. 

Proof. Let us fix c > 0, n E N, 8 <min(~, 1; 00 ) x, A according to the assumptions 
of the lemma. We only have to prove that d(ff.,(x), ff(x)) < 10008 fork= 0, ... , n. 
Because, then ff, ( x) stays always on the same side of the singularity as ff. we 
also notice that as long as the same sequence of Si is applied to x for A and X the 
coordinates in the 1-(unstable) directions of the images don't change (We have / 
fixed!). So we concentrate on the first (.X-) coordinates. We will prove the lemma 
by induction. 

For k = 0 the assertion is trivially fulfilled. 
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Let us assume that the assertion holds for (k - 1) and conclude it fork. 
The first coordinate of f i ( x) is given by 

(fl(x)) 1 = AX1 + (1 - .X)[ji, +-Xh + ... + _x1
-
1jk] 

{
-1 if iz = 1 

where jz = .. 
1 If 'tz = 2 

Since we assumed the assertion to hold for l ::; k - 1 the maps Biz applied for .X' 
are the same as for A as long as l::; k - 1. But we also have d(ff,-1(x), Jf-1(x)) < 
10008 < c and d(ff-1(x), {x2 = kx1}) > c. This yields that we apply in the k-th 
step also the same Sik. Hence, 

I (/f(x))1 - (ff,(x))1l = 

= 1.xkx1 + (1- .X) (j1 + ... + _xk-ljk) -

- (.x')kx1 + (1 - .x') u1 + ... + (.X')k-ljk) I ::; (24) 

< l.xk(1+8)kx + (1 - .x(1+8)) U1+.x(1+8)i1 + .. . 

... + _xk-1(1+8)k-ljk) - (.xkx + (1- .x)(j1 + ... + _xk-ljk)) I 
Now we have 8 < ~· This gives fork::; n 

Inserting this into ( 24) we can continue 

I (ff,(x)) 1 - (/f(x))1 I ::; l.xk(l + 2k8)x + (1- .X(l + 8))(j1 + ... 

... + _xk-1(1+2(k - 1)8)jk) -

- .xkx + (1- .x)(j1 + ... + _xk-ljk) I < 
k-1 

::; _xk · 2k8 + (1- .X) L 2(m - 1).Xm8 + (25) 
m=l 

k-1 
+ 8 L _xm(l + 2(m - 1)8)m 

m=l 
< 10008 < c 

for~< .X, .X' < 0, 64. 
We have proved the assertion fork and hence by complete induction we conclude 

d (ff,(x), Jf(x)) < 10008 < c, k = 0, ... , n 
This completes the proof of the lemma. D 

Let us now fix c4 and consider the event En = En ( c4), n > n0 • We also fix 
8 < min(~, 1~i0 ). In (~, 0.64) n Y we choose a sequence {.X1}1 = {.X~n)}i such that 
for any A E (~, 0.64) n Y there is a number n such that 

.X ( 1 - 8) < An < .X ( 1 + 8). 
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Since 1 > ,.\ > ~ we can find such a sequence { Az }1 with cardinality r < i and 
Az+i > Az. 

Let us consider an interval lz+1 = (..\z, Az+i)· Here we use the convention that 
Ao = ~, Ar+l == 0. 64. 

As an immediate consequence of the auxilary lemma we see that for ..\(1 - 8) < 
..\z < ..\(1 + 8) 

It follows, that 

for (1 - 8)..\ < Az < ..\(1 - 8). 

Hence, we have 
on fz. 

Therefore, we can continue in formula (21) 

.C(En(c:4)) ::; .. ~ 
1 

j ~.t_(A)Xi,i(,\)d,·\ 
'!,1_E - ( ~,0.64)nY 

r+l 

< :E L J xf.t(A)X!.t(A)dA 
i,,tewn-1 Z=l IznY 

r+l 

< L :E J xf,r10005(A1)X,.t(A)dA 
i,,tewn-1 Z=l IznY 

(26) 

r+l J 
~ :E :E xi,r10008 (..\z) Xi,,t(..\)d..\ 

Z=l !,,tewn-1 IznY 

r+l J 
~ :E :E Xi,,t ( ..\z) Xi,,t ( ..\) d..\ 

Z=l i,,tewn-1 JznY 

and by lemma 4.2 ( Az E Y) with n ~ no 

The integral on the right-hand side of (26) can be transformed in the following way: 

j X!.t(A)dA = .c ( d(I~~L, I~foL ::; A) = 
(~,0.64) 

= .c (1(1- ..\) [2 + ..\(ei1 + ej1) + ... + ,.\n(ejn-1 + ein-1)] I ~xi) ~ (21) 

~ .c (1(1- ..\) [2 + ..\(ei1 + ejJ + ... + ,.\n(ein-1 + ejn-1)] 1-s ~ x-sn) 

{ 
1 ifl=l 

where 0 < s < 1 and 6 = ~ if l = 2 
In [13] it is proved that 

J d ,.\ 
~~~~~~~~~~~~~~~~:-:-:--<cs<oo 

1(1 - ..\)[2 + ..\(ei1 + eji) + ... + ,.\n(ein-1 + ejn_J]15 -
( ~,0.64) 
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where C8 is independent of n, 'i and j. 
Therefore we can continue in (27) by using Chebyshev's inequality: 

j X!,,i(>.)d>. 
( ~,0.64) 

~ J 
( ~,0.64) 

Inserting this into (26) we have 

r+l 

.C(En(c-4)) ::; L)! + c2)2
n · A?8 ~ (~ + 1)(1' + c2)2

n • (maxAzt8 (28) 
Z=l 

Now we want to look at the condition that the orbit stays at least c-4 off the singu-
larity line. The condition (H3) implies that the two-dimensional Lebesgue measure 
v of the points that stay away from the singularity line is large: 

v (unt::..,z) = 1 
l;?,:1 

for all small enough .6.. (29) 

(see [11]). 
Let c-5 > 0 and .6.. be chosen that et::.. ·12(maxA1) < 1 and l such v(Dt::..,z) ~ 1-c:5 . 

This is possible since 1 2 • ,;\ < 1 by the assumption of the theorem. Let now n grow 
and c-4 depend on n: 

( ) 1 -An 
c4 n =ye . 

Letting n tend to infinity and observing that for large enough n we can choose 
bn = ~~~nj ~min(~, 1~~0 ) and En+I(c-4) C En(c4) we obtain for 0 < s < 1: 

£ (!] En(e4)) = ,!~ [ ( ~ + 1) ('Y +E2)2n(max>.1r·J = 

= lim [(4000l · et::..n + 1)(1' + c2)2n(maxAzt8
] • 

n-too 

(30) 

Since (Az,1,k) E Bp,A·/2 <1 for all (A,1,k) E BP we can choose c:2 and .6.. small 
enough, n0 according to lemma 4.2 large enough such that 

Also we can find an s < 1 such that 

(31) 

Therefore the limit on the right-hand-side of (30) tends to 0 and hence, 

(32) 

i.e. for almost every ,;\ E G, 0.64) n Y there is an n with,;\ =j:. En(c-4). But this means 
that if x and y are points in U or L, respectively, and d(ff (x), {z2 = kz1}) > c:4 (n) 
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and d(fk.(y), {z2 = kzi}) > c:4(n), k = 0, 1, ... , n - i.e., for instance x, y EDD. z - and 
fk.(x) E RZ(A), ff(y) E Rj(A) for some sequences i, j_ E L>.and k = 0, 1, .... ~;then 
Rf (A) n Rj(A') = 0. -

Letting now cs tend to 0 we can conclude that for almost every A E Y and almost 
every x and yin Q there is an n such that if ff(x) E RY)(A), fj(y) E RJk)(A) for 
appropriate chosen i and j_, k = 0, 1, ... , n then Rt) (A) n R)n) (A)= 0. Let us now 
assume for this - almost surely chosen - A there is a pair of points x and y E Q+ 
which are mapped under some iteration of f >. - say ff - onto the same point. 

This means that there are sets 

Rt)= {z E Q+lffz EU~ ffx EU 

Rt) = { z E Q+lff z E U ~ ffy E U 

k = 0, 1, ... ,n} 
k = 0, 1, ... , n} 

(Note that fkz, fkx, fky are always contained in U or L since x, y E Q+) with 
non-empty intersection 

Rt) n Rt) # 0 for all large enough n. 

Since both Rt) and Rt) are open there exists an non-empty open set G c Rin)nR]n). 
But this yields that there are at least two non-empty open sets G1 and G2 which are 
mapped under ff onto the same set G. They have both positive Lebesgue measure 
what contradicts ( 32). 

Finally, let c:2 and then c:1 tend to 0 we derive the assertion of the theorem. D 

5 Proof of theorem 3.3 and 3.5 
We will proof both theorems simultaneously. 

The following proof relies on the potential-theoretic definition of the Hausdorff 
dimension of a measure. This approach is widely used to get dimension results for 
parameters dependend system ([10], [3]). As far as we know in all the considered 
cases there was a canonical symbolic space with a canonical measure which where 
projected to the invariant set with the invariant measure. The only dependence on 
the parameter was that of the projection map. In our case the situation is more 
delicate. We have no canonical symbolic space. It varies as the parameters change 
as we have explained in section 2.4. Although we could embed all these spaces into 
:Et - the space of all 1, 2-sequences - we still have the problem that the measure 
varies with the parameter. Moreover, usually these measures have disjoint Borel 
supports - this is definitely true for ergodic measures. Therefore, we have to discuss 
their dependence on the parameter, especially, we have to prove that the depend 
continuously in the weak topology and estimate their rate of convergence. 

Let us fix a ball BP c R3 according to the assumptions of the theorem and let 
£} denote the Lebesgue measure restricted to B~ and normalized. Let 7, k E BP be 
fixed and B~ c G,0.64) the projection of the straight (A,7,k) n BP onto R. The 
proof of theorem 3.3 and 3.5 will consist of several steps: 

STEP 0: Ergodicity 
In a - as far as we know not yet published - manuscript Sataev claims that 

the Belykh attractor is ergodic with respect to the SBR-measure. Therefore, we 
restrict our proof to the case that µsBR is ergodic. This makes the notations and 
calculations much more convenient and transparent. It is only a technical problem 

13 



to generalize the proof for the non-ergodic case and does not involve new ideas. One 
way is to restrict the SBR-measure to an ergodic component or to use the ergodic 
decomposition in all calculations. 

STEP 1: The restriction to a set of "controllable" points 
From the assumptions of the theorem and [11] we know that for all >.. E B~ 

(>.) (u ,.. - ) µsBR D ll.,z(A.) = 1. 
Z;?:l 

(33) 

We want to note that the sets b--;,_,1 = b--;,.,z( A) depend on >..!. Let us fix .6. small and 
c1 > 0. Then there is for all A EB~ an l0 == l0 (>..), depending measurably on>.., such 
that 

(>.) ( " ) µsBR D"i,.,z(A) > 1 - c1 for all l 2:: lo. 

Since the SBR-measure is concentrated on fJ we have 

(>.) ( " ,.. ) µsBR D"i,.,z(A) n D(>..) > 1 - c1. (34) 

By Lusin's theorem for given c2 > 0 we can find a number l1 = l1 (c1 , c2) - indepen-
dent of >.. - and a set Z1 c B~ such that 

i) lo(>..) < li for A E Z1 
ii) .C1(Z1) > 1 - c2 (35) 

where £ 1 denotes the normalized one-dimensional Lebesgue measure restricted to 
B~. 

STEP 2: The measure of the set R,Cn)(x) 
In section 2.4 we have defined the sets R,Cn>(x) = R,<n>(x,>..) = Rin>(x) as the 

n ---n 
elements of the partition V J-n{U, L} =: {U, L}o =: i?.,(n) = Rin). We also showed 

i=O 
that the entropy of {U, L} is the maximal possible - the topological entropy: 

H ( {U, L }, ]>.) = htop(f>.) = log/. (36) 

Since {U, L} is generating (see lemma. 4.1) we have by the theorem of Kolmogorov 
and Sinai (see appendix) that it also carries the metric entropy of the SBR-measure: 

(37) 

To this situation we apply the Shannon-McMillan-Breiman theorem: 

Lemma 5.1 (Shannon-McMillan-Breiman). For A fixed, c3 > 0 there is an 
no= no(>..)= no(>.., c3) such that for n > m > n0 

ft~~R [l2 {LJ.R~q)(X)J exp{-qlog('Y-ea)} < ftssR(R~q)(X)) < exp{-qlog(7+e3)}}] 

> l-c3 
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The next lemma follows easily from the continuous dependence of f>. on A (say 
in the C 1-topology which respects the singularities). 

Lemma 5.2 The function n0 : B~-+ N is measurable. 

This means we can apply Lusin's theorem: 

Lemma 5.3 For given c4 > 0 there is a set Z2 C Z1 and an n1 = n1 (c-4, c-3) E N -
independent of A - such that 

i) ni > no(A, c3) for all A E Z2 
ii) £ 1(Z2) > 1 - c2 - c4 

STEP 3: Continuous dependence of the measure 
In this section the crucial point is that the auxiliary lemma helps to control 

the measure of points staying apart from the singularities when A is changed. So 
we have to ensure that an essential part of the points is covered by cylinder sets 
containing enough "good" points and then check the variation of the measure of those 
rectangles. Let ci, c-2, c3 and c4, A E Z2, n 2:'.: m > ni(c3, c4), Ll small, l > li(c-1, c-2) 
be fixed. 

By (34) and (35) we have that most of the atoms of Riq), l1 < m ::; q ::; n, contain 
points from fJ~ z(.X). 

' 

In other words this means that most atoms of the partition ftCn) contain a significant 
part of points from D~ z • 

Further lemma 5.1 tells us that most atoms have measure approximately 'Y-n. 
The previous observations conglomerate to the following statement: 

Let 9::i = 9::i(.X) (and gn = gn(.X) := 9;:(.X)) be the set of atoms Riq)(x) of ftiq) 
with m ::; q ::; n the properties 

i) vf\)(Riq)(x)) < 2vkA)(Riq)(x) n fJ~,z,q(.X)) m::; k::; q 

ii) ('Y - c-3)-q < flsBR(Riq)(x)) < ('Y + c-3)-q (39) 

where fJ~,z,q(.X) = {x E kj3f-k(x) and d(j-kx, N+) > ~e-Ak} fork== O, 1, ... , q. 

Lemma 5.4 For given c-5 > 0 there is a set Z2 C Z1 with £ 1(Z2) > l-c-2 - c4 - cs 
and an n 2 == n2 (ci, ... , c-4) EN such that for A E Z2 and n2 < m::; n 

(40) 
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Proof of lemma 5.4. We first fix A. Let A= A(A) be the set 

A= { x E D(A) l3n(x) s.t. \fn(x) < k:::; Q: v~>-.) (Riq)) < 2vY) ( kiq) n Da,z,q(A))}. 

Then 

B = {x E D(A) j3k·(x) -t oo Q· > k· with v<>-.)(R(qi)) < 2v(>-.) (k(qi) n fJ- (A))} z ' z - z ki ). ki .A A,l,qi 

is its complement. 
We are going to prove that there is a number n2 = n2 (A) such that 

p~~~ { x E Ajn(x) < n2(A)} ~ 1- 3e:1. 

we fix 8 > 0 small and choose n2 (A) = n2 (A, 8) such that for A' = { x E Aln(x) < 
n2(A)} 

(41) 

We observe that the partition elements Rf) have the net property - i.e. kin) (x) n 
Rim)(Y) = 0 or Rin)(x) C Rim)(fJ) or Rin)(x) :> kim)(fJ). This yields that we can 
find a finite partition P(A) of A' by cylinders R~i)(x) 

(42) 

Since Pm converges weakly to PsBR there is a number m > n2 such that 

Pm ( LJ Riqi)(x)) > PsBn ( LJ Riqi)(x)) - 8. 
'P(A) 'P(A) 

(43) 

Also we can find a partition P(B) of B by cylinders with the properties: 

iii) PsBR ( U R3_q;)(X)\ < flssR(B)+8 = l-flssR(A)+8 < 1-flm ( LJ Riqi)(x)) + 
'P(B) J 'P(A) 

48 

iv) if Riqi) (x) E P(B) then Qi ~ m and there is a ki, m:::; ki :::; Qi such that 

We note that 
Dk ( kiqi) ( x)) > 2Dk ( kiqi) ( x) n Da,z,qi) . 

if kiqi) (x) E P(B) and k = 0, 1, ... , Qi holds, since f has constant Jacobian and all 
the maps j-k, k = 0, ... , Qi are diffeomorphisms when restricted to Rfi)(x). 
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By condition (H3) we have 

vk ( Y ( Riq•) ( x) n D;l,1,q,)) 

= v ( y { X E QJfq'(X) E Riq•) and d (in(X), N+) ;::: ~e-Aq, n = O, 1, ... , q}) ;::: 
;::: 1- v {Q J-n ( U Ge-An, N+))} ;::: (44) 

~ fl,SBR (.t>.;:,l) > 1 - Cl 

On the other hand for 0 ::; k ::; n 

(45) 

and 

(46) 

Combining ( 44) to ( 46) we see that for all 0 ::; k ::; m 

(47) 

Hence, 

(48) 

This implies 

(49) 

and, by (43) 

(50) 

Applying Lusin's theorem to the measurable function n2 (A) for c-5 > 0 we can find 
a number n2 and a set Z2 C Z1 with 
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and for n2 < m :::=; n 

µ~;~ (n ~u Rlq)(x)) > 
q=m gq(,\) 

n 

> µ~~R( An n { u fliq)(x)I exp {-qlog('Y- c3)} < 
q=m 

D 

Let us now investigate the dependence of the measures vY) on the parameter ..\. 
Let flin)(x) E gn(..X). Let y E flin\x) n fJ~ 1(..X). Then all its preimages exist, in 
particular zk = f;k(x) E Q\aU n at, k = 0, i, ... , n and for fk(zn) = zn-k we have 

( "'k,..) "' "') 1 -A(n-k) _ d f,\ (zn , au n aL ~ ye k - 0, 1, ... , n. (51) 

This means we are in the situation where the auxiliary lemma can be applied to the 
points Zn-k. 

Note that flin) (x) are the images of the maximal components of continuity of 
/):. This yields that J;k is continuous on flin)(x) fork= 0, 1, ... , n. 

According to the auxiliary lemma we fix 8 < 1~8 < min{~, 10~01 e-An}. We 
consider a X with (1 - 8)..X < X < (1 + 8)..X. Then the auxilary lemma gives 
that J},(zn-k) E R~n)(X), for all Zn-k = J;ky, where R~n)(..X) = flin)(x) is the 
corresponding continouity component for X. Also we have -

vt) (.Rt) (..X')) = D (f;,k(.Rt\A'))) ~ 

~ D (J;,k(_kt)(A')) n J;k(fJ~,z,n(..X))) = 

= f) (J;k(flt)(..X)) n J";k(fJ~,l,n(..X))) = 

= f) (J;k(flin) (x)) n J;k(fJ~,z,n(..X))) = (52) 

= D (J;k(flin)(x) n fJ~,z,n(..X))) = 
=vi,\) ( .Rin)(x) n fJ~,z,n(..X)) = 

2 ~vf•l ( Rln)(X)) · 
For this chain of inequalities we used only the definition of the measures vk, the 
above observation that the map if, J;k is continous at least on fl in) ( x) n fJ~ 1 n and 

'' that Rf) (x) E gn what in particular means that it has large intersection with the 
set fJ~ l n· 

Ob~~rving that R~n)(..X') = fli~\w) for w = J1,(zn-k), k = 0, 1, ... , n, and 
1~8 <min{~, 10~0;eAn} we have (1 - l~d")X <A< (1+ 1~8 )X fulfills the condi-

tions of the auxilary lemma, too. 
Hence, if X E Z2 we can apply it to the reverse situation - i.e. we start with the 

map /..\' - and can derive 

cf·l ( Rtl(A)) = vf'l ( Rln)(X)) 2 H>.') ( R<;}(X)) k = 0, 1, ... , n. 
(53) 
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Proceeding as in the definition of the SER-measure by setting 
m-1 

... (>.) - 1 2= ... (,\) µ - - vk 
m m (54) 

k=O 

and 

(55) 

we obtain 

~µ ... (>.') (k(n)(w)) < µ"'(-\) (k(n)(x)) < 2µ"(A') (k(n)(w)) 2 m,n2 A' - m,n2 ,\ - m,n2 ').' (56) 

as long as A, A' E Z2, (1-c5)A <A' < (l+c5).A, c5 <min{~, 10ii01 e-D.n} and n2 :::; m:::; n. 
Since Rf1) = U {Rt) li1 = ji ... iz = jz}, n 2'.: l we finally have the 

Lemma 5.5 Let n 2'.: l, m > n2(c1, ... , cs), 1~0 <min{~, 10ii01 e-D.n}, A, A' E Z2 , (1-
c5)A <A'< (1+8).A,Rf1)(.A) E g(z)(.A). Then 

~µ"(.A') (k~z) (.A')) < µ" (-\) (k~z) (A)) < 2µ" (A') (k~z) (.A')) . 2 m,n2 ! - m,n2 ! - m,n2 ! 

Combining the previous lemma with ( 40) we get 

Corollary 5.6 Under the assumptions of lemma 5.4 and n > p > n2(c, ... , cs) 

fe~'.~2 [0 {LJ~q)(>,')IRfq){A) E !lq{A)}] > ~ {1- 3c1 - c3). 

For fixed A the measures p,'r;}n2 converge weakly to the SER-measure fi,~~R: 

lim µ"(.A) = lim µ" (-\) = p,(-\) 
m--too m m--too m,n2 SBR • 

Since the sets R~k) (A) are open the weak convergence yields that for given k0 there 
is an m 0 (.A, k0 ) > n2 such that for all m >mo, k:::; ko 

~µ--(,\) (k~k)(.A)) < µ"(,\) (k~k)(.A)) <~µ"(.A) (k~k)(.A)). 
3 m,n2 ! - SBR ! - 2 m,n2 ! (57) 

It is an easy exercise to see that the number m0 (A, ko) depends measurable on .A. 
Therefore, Lusin's theorem improves lemma 5.4 and corollary 5.6 to: 

Lemma 5.7 For given c-6 there is a number m1 = m1(c6) > n2(c-1, ... , cs) and a set 
Z3 C Z2 such that 

i) .C(Z3) > .C(Z2) - C6 

ii) for n 2": m 1, A, XE Z3, {1 - 8)A < X < (1+8)A, l ~ 8 <min{~, IO~Ole-t.n}, 
m 1 < k:::; n, .Rfk)(A) E g(k)(_A) 

~ ... (.A') (.R~k) (A')) < ... (.A) (.R~k) (-A)) < 3µ ... {.A') (.R~k) (.A')) 
3µsBR ! - µSBR ! - SBR ! 

iii) fl,~~i LO, {LJRtl(X)IRlk){A) E !li}] > ~ {1- 3c1 - c3). 
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STEP 4: Dimension estimates 

We like to estimate the stable dimension 8s(A) of the SBR-measure µ~;>R. In [11] 
we discussed the existence of 8s(A.) and proved the formula 

dimH µ~;>R = 1+8s(A.). (58) 

Here we want to prove that 

s . ( log1' ) 8 (A)= mm -log A' 1 almost surely. (59) 

Let x E fJ--;,,_ 1, x = (x1 , x2 , w), let fl,~,(>.) denote the conditional measure of µ~;>R on 
the square {~i} x [-1, 1] x [O, 1] and µ;,(>..) = fl,~,(>.) o 7r-1 be the projection onto the 
straight {xi} x [-1, 1] x {O}. Then if we set y = (y1, y2, K,), z = (zi, z2, () 

ff d s,(>..)( )d s,(>..)( ) µ:r; Y1, Y2 µ:r; Z1, Z2 = 
I (y1, Y2) - (zi, z2) Is 

n.x n.x -ff dp,;,c>..) (y)dp,;,(>..) (z) 
- 17r(y) - 7r(z) Is < oo (60) 

n.x!h 
-¢:::::} 

s < 8s(A) 

provided µ~;~(0>..) > 0, (see appendix). 
We want to prove a slightly stronger statement (which in fact is equivalent in the 

case of the Belykh map). Namely, we claim that for s(A) =min (-~~g, 1) , e7 > 0 

µSBR Y µSBR z < OO (61) ff d"(>..) (")d"(>..) (") 
IY1 - Z1 ls(>..)-c7 

n.x n.x 

for almost all A and some sets n>.. of positive measure. Because (61) implies that 

ff dp,;,<>..)(Y)dp,;,<>..)(z) 
17r(y) - 7r(z) 1s(>..)-e=1 < oo 

n.x n.x 
for almost every x this yields the theorem. 

STEP 5: Proof of claim (61) 

We fix ei > 0, i = 1, ... , 7. We are going to prove that 

ff f dfl,~~~) (y)dfl,~~~) (z)dA < 
00 IY1 - Z1 ls(>..)-e:7 

z3 n.x n.x 

for s(A.) =min (-~~g, 1) and some sets fl>. of positive measure. 

(62) 

(63) 

This gives the assertion of the claim for a.e. A E Z3 • The claim then follows by 
letting e2 and e4 tend to 0. As in the proof of theorem 3.1 the crucial point is that 
we can estimate (see [13]) 

f dA 
-(>..) -c>..) =Cs < oo, for all!, j_ E ~t, ii # i1, s < 1. ISi - Si Is 

(~,0,64) 

(64) 
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We first approximate the function s(A)-c-7 by a step function. We choose a partition 
:J of the interval(!, 0, 64) into finitely many intervals JP= (ap-I, ap),p = 1, ... , P, 
such that for Sp = max..\EJp s(A) - ~ we have Sp > s(A) - c-7 on JP, p = 1, ... , P. 

Hence, it is enough to prove that 

(65) 

for some sets 0..\ with p,~;~(O..\) > 0 for A E Za. 
We have seen that §JA) is the first coordinate of a point on the attractor iff 

R~n) (A) i= (/J for all n. -
- Let y E R~k)(A) n fJ-;. l for i =ii ... ik. Then there is a point q(y, A) E [-1, 1] 

-(..\) ' -(..\') such that Si (q(y, A)) = Y1 and Si (q(y, A)) = Y1 is the first coordinate of a 
point in R~k) (A') provided A' is nea; A. This way we have defined a map B..\' : 
(R~k)(A) n D"i,. z)1 -+ (R~k)(A'))i on the first coordinates which has all properties 
derived above.' This map is the tracing map. 

We start with the estimation made in [13] (see also the proof of theorem 3.1): 
L · · . " R" (k+I)( ') " R,.. (k+I) ( ') Th et ! = i 0 ... ik, y E il A , z E 12 A • en 

(66) 

we now fix 0 ::; p ::; P, n 2:: k 2:: m1, define 1~k = min{i, 10~01 e-sk} and choose a 
sequence {At}l = {A~k)}ik) such that 

i) A~k) E Z3 n JP t = 1, ... , r(k) 
ii) For any A E Z3 there is number t with (67) 

(1 - c5k)A~k) < A < (1 + c5k),\~k). 
We always can choose the sequence in the way that its cardinality r(k) is less than 
4 (k) {k) . '(k) '(k) . h J r and At+i > At . We make the convent10n Ao = ap-1, Ar+I = ap, wit P = 
k (k) ( (k) {k)) (k) (ap-1? ap), and It = At_1 , At , t = 1, ... , r + 1. 

For A~k) E { A~k)}~(k), m1 ::; k ::; n we define 

R"(k)(,(k)) nfJ- (,x(k)) 
!_ At ll.,l t • 

Then 
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Let now ;\ be arbitrary in JP. Then by ii) of (67) we find a t = t(;\) (if there are 
more than one we choose the smallest one) with 

B>.(Y1,Y2,w) = (s>.(Y1),y2,W) 

is well defined and by lemma 5. 7 has the property 

Using lemma 5.7 we obtain for 0 < k:::; n,i = i 0 ... ik-l 

T.k,t,p = 
!. 

= J 
::; 3 J 

J 

J 

J 
J J 

J 

(68) 

(69) 

We remember the definition of gk (A) and we use the fact that A E Z3 C Z2 we see 
that 

(71) 

This yields 

T~,t,p < 3c (max ;\)-ksp ("" - c )-kµ ... (>.~k)) (fl~k) (;\ (k)) n f'k ) (72) 
!. - Sp Jp I 3 SBR !. t ).~k) • 

We are now going to estimate the original integral (63). Let 

(73) 

By choosing c7 and c3 small enough and P large - i.e. the partition of G, 0.64) 
consists of very small intervals JP - we can achieve that 

(74) 
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(75) 

For .6. small by the choice of the sequence { A~k) E(k), r ( k) < 0
4 = 4000l . eAk we can 

• k contmue 

(76) 

00 

::s; Gp L 4000lel:l.kTk. 
k=m1 

If we take .6. so small that eAT < 1 we have a uniform bound for UN: 
00 

u}:) ::s; uCP) =Gp L 4000l (el:l.r)k < 00. (77) 
k=m1 

Hence, for A E JP n Zs, N >mi, s1 , c3 small enough and 

N 

f'>.(N) = n u Rf (A) n f'j 
q=m1 i=io ... iq 

holds 

i) µ~;>R ( f'>.(N)) > ~(1 - 3s1 - c3) > ~ 
ii) u~) (1\(N)) = u~) (t~k)). 

(78) 

Using the a-additivity of the SER-measure we derive that the set 
00 00 00 

f>.(oo) = ·n LJ f>.(N) = n f\(N) (79) 
A=m1N=A A=m1 

has positive measure: 

(80) 

Finally, we choose cylinder sets Rf'1 (At) E 9;:i, 1 ::s; t ::s; r(m1), bm1 = 40ii0ze-Ami, 
with 

(81) 
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This can be done if e1 , e3 are small by lemma 5.7. 
Then the sets 

have still positive measure: 

... (.\) (... ) 1 ... (.\~k)) (... ) 1 µSBR n,\ > 4µSBR n,\~k) 2:: 4f3m1 > Q. (82) 

Putting all this together we are able to estimate 

(83) 

The potential-theoretic characterization of the Hausdorff dimension (see appendix) 
tells us that for Lebesgue a.e. A E Z3 

d. (.\) . (i log 7 2) 
ImH µSBR 2:: mm - log,.\' - e7. (84) 

Letting first e7 then c6 , c4 and c1 tend to 0 we finish the proof of theorem 3.3 and 
3.5. [] 

6 Concluding Remarks 

6.1 The Bifurcation Picture of lnvertibility 
We want to consider the question to what extend Belykh maps are invertible for 
given parameters A, 7, k. 

• If A < ~ it is obvious that f.\,-y,k is invertible on f ( Q\N+) no matter what 
values take 7 and k (as long as the map is defined). Let this set of parameters 
be denoted by 

1 1 
A= {(A,7, k)IA < 2' lkl < 1, 1<7 < lkl + 1 }. 

• If ..\72 < 1 then theorem 3.1 says that almost every f with respect to the 
Lebesgue measure on the parameter space is fully invertible when restricted 
to the non-closed attractor D. We denote this parameter set by 

For this set we loose the invertibility on f ( Q\N+) but still have invertibility 
on the limit set. 
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• If A increases further to A"f < 1 < A"f2 then we loose invertibility on D but 
still almost every f with respect to the Lebesgue measure on the parameter 
space is invertible on a set of full SBR-measure. We write 

1 1 c = {(A,"f,k)IA > 2' lkl < 1, 1 < 'Y < lkl + l'A"( < 1 < A"f2}. 

• The criterion in [11] tells us that for parameters from the complement of the 
set AU BU C the map f is never invertible even when restricted to a set of 
full measure. 

This gives the following picture (for k = 0): 

(1,0) (2,0) 
Figure 2 

In the appendix we have included Fig. 3-5 which show the Belykh map for 
parameters in A, C and the complement of A U B U C, respectively. 

As we mentioned in the remarks of section 2.3 we proved for the Belykh family 
the validity of the Kaplan-Yorke conjecture. 

6.2 Generalizations 
Our proof of theorem 3.3 and 3.5 of this work is based on some special properties 
of the Belykh family. We restricted ourselves to this map because these special 
properties make the formulae and technical details more transparent. Also the 
proofs contain all ideas which are needed to prove a more general result. Below we 
will discuss how this could be done. 

The first property is having constant Jacobian. To avoid this condition is only 
technical problem. We have to follow a similar way as in the proof that conditions 
(H4) - (H7) imply condition (H3) in [11] where we first proved the constant Jacobian 
case and then explained how to use uniform bounds on the ratio of the growth rate 
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of the Jacobian along the orbits of points from the same local stable (unstable) 
manifold. This technique is now standard. 

The next properties are more serious. We do not know whether similar results 
hold for generic families fulfilling conditions (Hl) - (H3) only. 

The following condition (H8) we need to get continuous dependence of the SBR-
measure on the parameters and to estimate the convergence rate. 

(H8) i) The family ft is defined w.r.t. the same sets M ~ K ~ N, K\N = Ki U· · ·UKr 
(compare with (Hl)) and fulfills (Hl), (H2) and (H3) uniformly int~ 

ii) The partition {Ki, · · · , Kr} is generating. 

iii) ft depends continuously in the topology defined in the appendix on t. 

The condition (H8) is similar to those Sataev [9] used to prove continuous depen-
dence of the SER-measure. Unfortunately, we cannot use his results because there 
are no estimates we need for the rate of convergence. 

The last condition is more tricky. The Belykh family possesses for.:\ E (~, 0.64) 
a certain transversality condition which was used in [13] to estimate the integrals 
(66) and (27). We have to assume this condition for the considered family to hold. 

Definition 6.1 We say a parameter family Bt(x, y) : Xt x Xt -+JR, t E T C JR.d, 
T is the open parameter space, (Xt, µt) are probability spaces, is a.s. transversal 
w.r.t. the family {µt} if for all t E T and µt x µt a.e. (x, y) E X x X there is a 
neighborhood U:r:,y(t) c T such that g(t) = 9t(x, y) : T-+ JR is C 2 and det Dg 'I- 0 
whenever g(t) == 0. 

Then (H9) can be formulated as follows: 

(H9) The parameter family Bt(x, y) = 2t(x) - 2t(Y), where St is the tracing map 
defined in section 2.5 step 3, is transversal w.r.t P,~~R· 

We have no idea if property (H9) is a generic property in any sense. Moreover, 
we don't have a simple general criterion for a family of maps to satisfy (H9). But 
there are other examples where a stronger condition than (H9) is proved and used 
to get dimension results (see [12], [l]). 

The above conditions (H8) and (H9) are together with (Hl)-(H3) all conditions 
we need to derive general results analoguous to theorem 3.3 and 3.5. 

Concerning theorem 3.1 the situation is different. The theorem is definitely not 
true for projections of the solenoid. The reason is that for the Belykh family each 
lifted unstable manifold of Xo wCu)(xo, w) projects to one and the same vertical 
line. Therefore we either have to make a corresponding condition on our system 
or the result would be more restrictive, f.i. a.e. map restricted to almost all 
stable manifolds is invertible. Also we have to change condition .:\ · 1 2 < 1 to 
A exp{2htop} < 1. 

This is because we have to calculate the number of all cylinders fl?) which is 
given assymptoticly in terms of the topological entropy rather than the positive 
Lyapunov exponent (log/ = htop is a consequence of the constant Jacobian on 
unstable manifolds). 

The generalization to more than two-dimensional systems should involve more 
knowledge on the dimension theory of higher-dimensional diffeomorphisms. Espe-
cially, to get nice dimension formulae one would like to have the Kaplan-Yorke 
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conjecture to hold for generic higher-dimensional systems. Also it seems to be vital 
to have the Ruelle-Eckmann conjecture to hold. The first conjecture is to have a 
higher-dimensional Pesin-Young formula - the Lyapunov dimension formula - for a 
generic system with an SER-measure and the second deals with the possibility to 
add stable and unstable dimension to the dimension of the system. 

Another interesting direction for further investigations would be the description 
of the exceptional set of parameters. Even in the case of the fat Belykh attractor 
- i.e. the case where :EA = :Et - very little is known about the exceptional set. 
The only examples of known exceptional values form a countable set - the set of 
reciprocies of Pisot - Vijayaraghavan numbers. 

7 Appendix 

A Some Terminology in Dynamical Systems 
We consider piecewise smooth maps f: K--+ f(K) CK, where K is an open finite-
dimensional submanifold with compact closure of a manifold M. N is a finite union 
of smooth submanifolds and K\N = K1 U ···UK, with Ki - open, i = 1, ... , r, and 
f 'Ki (the restriction off to Ki) is a C2-diffeomorphism. Let us denote this class by 
S2(K, N). We will use the topology defined by the basis of neighbourhoods 

U(f,e, M1, ... 'M,) = { g E S2(K, N)I ~ llJIM, - YIMJlc2 < e} 

where c > 0, Mi are regular compact subsets of Ki. B° = id, gn+I = gn o g and if 
g is a homeomorphism we write g-n = (g-1 t. Sometimes we use g-n for the full 
preimage i.e. g-n(Y) = {zlgnz E Y}. 

Let K+ = {x E Kl3fn(x) for all n 2: O} be the set of points whose trajectory 
never hits the singularities. Then the non-closed attractor Doff is the set 

and the attractor A its closure. 
A set A is called invariant if f (A) =A, clearly. Dis invariant. 

B Measures - Invariance and Ergodicity 
A Borel probability measureµ is called invariant if µ(f-1(A)) =µ(A) for all Borel-
measurable sets A. An invariant measure µ is called ergodic if for all measurable 
invariant sets A either µ(A) = 0 or µ(A) = 1. 

C Entropy 
Let f : X --+ X be a Borel measurable map. Let U be an open cover of the compact 
space X. We write 

H(il) = log N(il) 
where N(il) denotes the smallest cardinality of a subcover of il. We consider the 
expression 

(

N-1 ) 
H(il, !) = lim H V f-i(il) 

N-+oo 
i=O 
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where for two open covers ll = {Ua} and ll' = {U'.a} of X ll V ll' is the cover 
consisting of elements U a. n U' .a. 

Definition C.1 The quantity 

htop(f) =sup { H(ll, !) Ill an open cover of} 

is called the topological entropy of f. 

Definition C.2 For a partition P the quantity 

Hµ(P) = - :E µ(P) log µ(P) 
PEP 

is called the entropy of the partition P. 

Definition C.3 For a partition P of finite entropy and an invariant measureµ the 
value 

h,,(P, !) = Ji!1oo !Hµ CZ ri(P)) 

is called the entropy of P w. r. t. f. 

Definition C.4 Ifµ is invariant the expression 

hµ(f) =sup { hµ(P, !) IP is a partition with H(P) < oo} 

is called the entropy ofµ. 

Proposition C.5 hµ(f) ::; htop(f). 

Definition C.6 Let Y C X and f be invertible on Y. An at most countable parti-
tion P of X is called a generator for Y if 

i) each P E P is regular {Cl int P = P) 

ii) for x, y E Y the assumption fi(x) and fi(y) stay in the same atom P(!i(x)) = 
P (Ji (y)) for all i E Z implies that x = y 

iii) µ (LJPiE'P 8Pi) = 0 

Remark The last definition is stronger than the usually given ones and contains 
topological generators as well as measurable generators. 

The next theorem shows the importance of generators. The second part is called 
the Kolmogorov-Sinai theorem. 

Theorem C. 7 Let P be a generating partition. Then 

28 



i} if P is finite then 

htop(f) = H(P, f) := )~ ~& (~
1 

r'P) 
where N is the number of elements of d partition. 

ii} if Hµ(P) < oo then 

Next we will give a non-standard version of the Shannon-McMillan-Breiman 
theorem for ergodic measures. 

Theorem C.8 Letµ be ergodic and P be a finite partition. Then for c > 0 there 
is a number n0 E N such that for all n 2:: m > n0 

n q-1 

µ( n { LJ [atoms p(q) of V Pl exp {-g(hµ(P, !) + c)} > 
q=m i=O 

< µ(P(q)) <exp {-n(hµ(P, !) - c)} J}) > 1- c. 

From general ergodic theory follows the next lemma which says that the "present" 
is contained in the "future" if the entropy of the system is 0. Thus a zero entropy 
system is completely deterministic. 

Lemma C.9 hµ(f) = 0 if and only if for any finite entropy partition P 
00 

2l(P) c V f-i (2l(P)) 
i=l 

where 2l(P) is the sub-u-algebra generated by P. 

For more details of entropy theory we refer to the standard literature [see f.i. [2], 
[6]] 

D The Uniformity Theorems of Lusin and Egorov 
The references to the following two theorems are somewhat confusing in the lit-
erature. One of them belongs to Lusin the other to Egorov. These theorems are 
consequences of the u-additivity of the measureµ. 

Theorem D.10 Let¢ be a real-valued function of the space (X, µ) then¢ is mea-
surable if and only if for all c > 0 there is a closed set E whose complement has 
measure less than c such that ¢ is continuous on E. 

Theorem D.11 Let {¢n} be a sequence of measurable functions converging point-
wise on the space ( X, µ) then for all c > 0 there is a measurable set E whose 
complement has measure less than c on which { ¢n} converges uniform. 

Detailed information on these theorems can be found in [5]. 
We will use the following particular version of theorem D .11. 

Theorem D.12 Let n: (0, 1) -7 N be a measurable function with n(x) < oo for all 
x ER Then for c > 0 there is a set Y C (0, 1) and a number n0 such that 

i} .C1(Y) > 1-c 

ii} n(x)::;; n for all x E Y. 
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E A Density Lemma for Borel Measures 
The following lemma is the analogue of the Lebesgue density lemma for Borel mea-
sures. It is proved in [4] chapter 4. 

Lemma E.13 Let (X, µ) be a Borel space and g E L1(µ). We define 

go(x) = µ(B(~, 5)) j g dµ 
B(x,o) 

then 
9a(x) -+ g(x) µ- a.e. 

F Hausdorff dimension 
For a subset Y of a metric space X the s-dimensional (s E [O, oo]) Hausdorff measure 
is defined as 

1-l5(F) = liminf, {f (diam U;)'JF C CJ U; and m!JX(diam U;) < 5} 
o~O i 

i=l i=l 

It is easy to see that there is a unique s0 = s0 (F) such that 

1i'(F) = {: 
for s <so 
for s >so 

This number s0 is called the Hausdorff dimension of F and is denoted by dimH F. 
Let µbe a Borel probability measure on X. Then the Hausdorff dimension of 

the measure µ is defined by 

dimH µ=inf { dimH Ylµ(Y) = 1}. 

Clearly, if µ(A) > 0 then 

and 

dimH µ=sup { dimH µLAlµ(A) > o}. 
Let §..µ ( x) denote the lower pointwise dimension of µ: 

~ ( ) _ 1. . flog µ(B(x, c)) 
!!..µ X - Im lil l . 

e~O Oge 

The next lemma is usually known as Frostman's lemma: 

Lemma F.14 If §..µ(x) > 8 for a set of points x of positive measure then 

dimHµ > 8. 

One can even prove a stronger statement 

Proposition F.15 dimHµ=esssup~µ(x) =sup{8jµ{xl§..µ(x) > 8} > O}. 
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Sometimes it is convenient to use the potential theoretic approach to calculate 
the dimension. This approach is based on the following facts. 

Theorem F.16 If 

then ~µ(x) 2: s. 

Corollary F .1 7 If 

then 

f dµ(y) < 
Ix -yls oo 

x 

ff dµ(x)dµ(y) < 
00 lx-yls 

xx 

The next theorem is the combination of theorem F.16 and (85). 

Theorem F .18 Let A C X be a set of positive measure. Let moreover 

then 

ff dµ(x)dµ(y) < 
00 lx-yls 

A A 

A survey of the methods and results in dimension theory can be found in [3]. 
There are contained actually stronger results than those stated above. But for our 
purposes the here stated versions are satisfactory. 
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