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1 Introduction

A posteriori error estimates play a crucial role in the approximate solution

of partial di�erential equations by adaptive �nite element methods. In this

paper we will consider hierarchical error estimates which are resulting from

the following two steps.

� Discretize the defect problem with respect to an enlarged space.

� Localize the discrete defect problem by domain decomposition.

The �rst appearance of hierarchical error estimates that we know is in the

work of Zienkiewicz et al. [1] in the early eighties. The intimate relation to

preconditioning was made explicit by Deu
hard, Leinen, and Yserentant [2].

Recently, it turned out that the hierarchical approach allows a uni�ed view

on a variety of apparently di�erent concepts (cf. Bornemann, Erdmann, and

Kornhuber [3, 4] and Verf�urth [5, 6]).

Bank and Smith [7] have extended hierarchical error estimates from the ellip-

tic selfadjoint case to a variety of other situations including smooth nonlinear

problems. Here we will concentrate on non{smooth optimization problems as

arising in the �xed{domain formulation of certain free boundary problems.

Obstacle problems or semi{discretized Stefan problems are typical examples.

As Newton{type linearization cannot be used, we will apply the hierarchical

concept to the given nonlinear problem directly. This requires some care in

the localization of the discrete defect problem. A straightforward approach

was applied successfully to a special obstacle problem arising from semicon-

ductor device simulation [8, 9]. However, it turned out in the subsequent

analysis and numerical experiments (cf. Hoppe and Kornhuber [10]) that in

general the resulting error estimate is not robust. In particular, there are

no �nite upper bounds of the e�ectivity rates because the localized defect

problem may have a vanishing solution even if the solution of the discrete

defect problem is not zero.

In the present paper this problem is remedied by using a diagonal scaling

of the discrete defect problem. In this way, the original global problem is

decomposed in a number of one{dimensional subproblems. The quality of

the resulting error estimate relies on the condition that the solutions of the

discrete defect problem and of the decoupled version are high frequency func-

tions (cf. Theorem 4.1). This condition is satis�ed in the linear selfadjoint

case where we can prove optimal bounds for the e�ectivity rates. We refer

to similar properties of cascadic iterations (cf. Deu
hard [11], Shaidurov

[12] and Bornemann and Deu
hard [13]). In the general nonlinear case our

present analysis only gives exponential bounds. On the other hand, numeri-

cal experiments showed similar e�ectivity rates as for related linear problems
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so that these pessimistic theoretical results may still be improved.
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2 The Continuous Problem and its

Discretization

Let 
 be a bounded polygonal domain in the Euclidean space R
2. We con-

sider the optimization problem

u 2 H
1

0 (
) : J (u) + �(u) � J (v) + �(v); v 2 H
1

0 (
): (2.1)

Other boundary conditions of Neumann or mixed type and the case of three

space dimensions can be treated in a similar way [3, 4]. The quadratic func-

tional

J (v) = 1

2
a(v; v)� `(v) (2.2)

is induced by a continuous, symmetric and H1
0 (
){elliptic bilinear form a(�; �)

and a linear functional ` 2 H
�1(
). The convex functional � : H1

0 (
) !

R [ f+1g of the form

�(v) =
Z



�(v(x))dx; (2.3)

is generated by a scalar convex function �. We assume that � is chosen in

such a way that � is lower semi{continuous and proper (i.e. � 6� +1 and

�(v) > �1, v 2 H
1
0 (
)). To �x the ideas, we give two typical examples.

The �rst one is an obstacle problem generated by the indicator function

�(z) =

(
0; if z � �0

+1; if z > �0
(2.4)

with some upper obstacle �0 2 R. The other example is resulting from

the implicit time discretization of a two{phase Stefan problem. Denoting

z
�
= �minfz; 0g and z+ = maxfz; 0g the piecewise quadratic function

�(z) = 1

2
a1(z � �0)

2
�
+ s1(z � �0)� + 1

2
a2(z � �0)

2
+
+ s2(z � �0)+ (2.5)

with non{negative constants a1; a2; s1; s2 2 R now stands for the potential

of the generalized enthalpy. For positive latent heat s1 + s2 the derivative of

� is discontinuous at the phase transition temperature �0 2 R. A variety of

other examples can be found in the monographs of Crank [14], Duvaut and

Lions [15], Glowinski [16] and the literature cited therein.

It is well{known (cf. e.g. [16]) that (2.1) admits a unique solution and can

be equivalently rewritten as the following variational inequality of the second

kind

u 2 H
1

0 (
) : a(u; v � u) + �(v)� �(u) � `(v � u); v 2 H
1

0 (
): (2.6)
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Let T be a consistent triangulation of 
. The sets of interior nodes and edges

are called N and E, respectively. Discretizing (2.6) by continuous, piecewise

linear �nite elements S � H
1
0
(
), we obtain the �nite dimensional problem

u
S
2 S : a(u

S
; v � u

S
) + �

S
(v)� �

S
(u
S
) � `(v � u

S
); v 2 S: (2.7)

Observe that the functional � is approximated by the S{interpolation of the

integrand �(v), giving

�
S
(v) =

Z



X
p2N

�(v(p))�p(x)dx; v 2 S; (2.8)

where � = f�p j p 2 Ng stands for the nodal basis of S. Of course, the

discrete problem (2.7) is uniquely solvable. For convergence results we re-

fer for example to Glowinski [16], Brezzi et al. [17], and Elliot [18]. The

e�cient iterative solution of (2.7) by monotone multigrid methods has been

considered by Kornhuber [19, 20].
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3 Discrete Defect Problems

Assume that ~u 2 S is an approximation of the �nite element solution u
S
of

(2.7). Usually ~u is produced by some iterative solver. We want to derive

upper and lower bounds for the approximation error ku� ~uk with respect to

the energy norm k � k = a(�; �)1=2. Note that the algebraic error ku
S
� ~uk may

interfere with the discretization error ku� u
S
k.

Observe that the desired correction e = u � ~u is the unique solution of the

defect problem

e 2 H
1

0 (
) : a(e; v� e) +  (v)�  (e) � r(v � e); v 2 H
1

0 (
); (3.1)

where we have used the translated functional  de�ned by

 (v) = �(~u+ v) =

Z



�(~u(x) + v(x))dx; v 2 H1

0 (
);

and the residual

r = `� a(~u; �) 2 H�1(
):

To discretize the continuous defect problem (3.1), we introduce the �nite ele-

ment space of continuous, piecewise quadratic functionsQ � H
1
0
(
), spanned

by the nodal basis

�
Q
= f�

Q

p
j p 2 N

Q
g:

Here we have set N
Q
= N [ N

E
and N

E
consists of the midpoints of the

interior edges. Interpolating �(~u+ v) by piecewise quadratic �nite elements,

we obtain the approximation

 
Q
(v) =

Z



X
p2NQ

�(~u(p) + v(p))�Q
p
(x)dx; v 2 Q;

of the defect functional  . Then e
Q
2 Q is the unique solution of the discrete

defect problem

e
Q
2 Q : a(e

Q
; v � e

Q
) +  

Q
(v)�  

Q
(e
Q
) � r(v � e

Q
); v 2 Q: (3.2)

Correcting ~u by e
Q
we obtain the piecewise quadratic approximation

u
Q
= ~u+ e

Q
2 Q

with respect to the triangulation T .

Note that there are other interesting ways of extending the underlying �nite

element space S, in particular in the case of three space dimensions [4].

We now investigate the e�ect of discretization on the continuous defect prob-

lem (3.1).
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Theorem 3.1 Assume that u
Q
provides a better approximation than ~u in

the sense that

ku� u
Q
k � �ku� ~uk (3.3)

holds with some � < 1. Then we have the estimates

(1 + �)�1ke
Q
k � ku� ~uk � (1 � �)�1ke

Q
k: (3.4)

Proof. The proof follows immediately from the triangle inequality.

The crucial condition (3.3) with � = �s=(1� �a) < 1 is a consequence of the

saturation assumption

ku� u
Q
k � �sku� u

S
k; �s < 1; (3.5)

and the algebraic accuracy assumption

ku
S
� ~uk � �aku� u

S
k; �a < 1� �s: (3.6)

The saturation assumption (3.5) states that the larger �nite element space Q

provides a better approximation than the original space S. For su�ciently

regular problems the piecewise quadratic solution u
Q
is even an approxima-

tion of higher order (see for instance [17]). In this case (3.5) clearly holds for

su�ciently �ne triangulations. On the other hand, there are simple examples

showing that (3.5) may be violated, if the mesh is not properly chosen. In

this sense reliable a posteriori error estimates still involve a certain amount

of a priori information.

The algorithmic realization of the algebraic accuracy assumption (3.6) will

be discussed in the �nal section.

In the case of elliptic selfadjoint problems, (3.6) is not needed and the sat-

uration assumption (3.5) is even equivalent to the upper estimate in (3.4)

with � = �s. We refer to [4] for details.
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4 Preconditioned Discrete Defect Problems

In general, the solution of the discrete defect problem (3.2) is not available at

reasonable computational cost. This motivates further simpli�cations which

should preserve lower and upper bounds of the form (3.4).

Extending well{known results from the elliptic selfadjoint case [2, 3, 4, 7], we

will now investigate the e�ect of preconditioning on the solution e
Q
of (3.2).

For this reason we consider the variational inequality

eb 2 Q : b(eb; v � eb) +  
Q
(v)�  

Q
(eb) � r(v � eb); v 2 Q; (4.1)

with some symmetric and positive de�nite bilinear form b(�; �) on Q. Observe

that the preconditioned defect problem (4.1) is uniquely solvable and that the

preconditioner b(�; �) induces the norm j � j = b(�; �)1=2 on Q.

Theorem 4.1 Assume that the norm equivalence


0b(v; v) � a(v; v) � 
1b(v; v); v 2 spanfe
Q
; ebg; (4.2)

holds with positive constants 
0; 
1. Then we have the estimates

c0jebj
2
� ke

Q
k
2
� c1jebj

2 (4.3)

with c0 = (
�10 + 2
1(1 + 

�1

0 ))�1 and c1 = 
1 + 2
�10 (1 + 
1).

Proof. By symmetry arguments it is su�cient to establish only the right

inequality in (4.3). Inserting v = eb in the original discrete defect problem

(3.2), we obtain

ke
Q
k
2
� a(e

Q
; eb) +  

Q
(eb)�  

Q
(e
Q
) + r(e

Q
� eb):

Now the inequality 2a(e
Q
; eb) � ke

Q
k
2 + kebk

2 and (4.2) yield

ke
Q
k
2
� 
1jebj

2 + 2( 
Q
(eb)�  

Q
(e
Q
) + r(e

Q
� eb)): (4.4)

It remains to show that

 
Q
(eb)�  

Q
(e
Q
) + r(e

Q
� eb) � 


�1

0 (
1 + 1)jebj
2
: (4.5)

Inserting v = e
Q
in (4.1) and using the Cauchy{Schwarz inequality, we get

 
Q
(eb)�  

Q
(e
Q
) + r(e

Q
� eb) � jebjjeQ � ebj

so that (4.5) follows from

je
Q
� ebj � 


�1

0 (1 + 
1)jebj: (4.6)
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In order to prove (4.6), we insert v = eb in (3.2) and v = e
Q
in the precondi-

tioned problem (4.1). Adding the two resulting inequalities we obtain

a(e
Q
; eb � e

Q
) + b(eb; eQ � eb) � 0

which can be reformulated as

keb � e
Q
k
2
� a(eb; eb � e

Q
)� b(eb; eb � e

Q
):

The assertion now follows from the Cauchy{Schwarz inequality and (4.2).

In the light of Theorem 4.1, we are left with the problem to select a precon-

ditioner b(�; �) which combines reasonable constants 
0, 
1 with a cheap eval-

uation of eb. In analogy to the linear selfadjoint case one might be tempted

to construct a preconditioner based on the hierarchical splitting

Q = S � V (4.7)

where the di�erence space V = spanf�Q
p
j p 2 N

E
g consists of the quadratic

bubble functions associated with the edges E (cf. e.g. [2, 3, 4, 7]). However,

in contrast to the linear case the unknowns now become coupled with respect

to the functional  
Q
as soon as the hierarchical representation is used. Even

in simple cases, this coupling cannot be ignored without loosing the relia-

bility of the resulting error estimate [10]. On the other hand, the coupled

preconditioned problem is still not solvable with reasonable computational

e�ort.

To �nd a way out of this dilemma, observe that the constants 
0, 
1 ap-

pearing in the crucial estimate (4.3) depend only on the local quality of the

preconditioner b(�; �) on the subspace span fe
Q
; ebg � Q. As a consequence,

we can expect good results even from very simple preconditioners like the

diagonal scaling

b(v;w) =
X

p2NQ

v(p)w(p)a(�Q
p
; �

Q

p
); v; w 2 Q; (4.8)

if e
Q
and eb are high frequency functions.

In addition, the preconditioned defect equation (4.1) resulting from the diag-

onal scaling (4.8) consists of independent local subproblems for the nodal val-

ues of eb. In many applications (involving for example a piecewise quadratic

scalar function �) these sub{problems can be solved explicitly.

The Theorems 3.1 and 4.1 immediately provide (quite pessimistic) upper

bounds for the e�ectivity rates of the resulting error estimate which increase

exponentially with the re�nement level. However, this implies at least that

the localization preserves a non vanishing error estimate jebj 6= 0, if e
Q
is not

zero. Related previous error estimates do not have this property [10].

In the special case of linear elliptic problems the above results can be signif-

icantly improved.
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Proposition 4.1 Let the preconditioner b(�; �) be given by (4.8). Assume

that � � 0 and that the discrete problem (2.7) has been solved exactly, i.e.

~u = u
S
. Then the estimates (4.3) hold with constants depending only on the

ellipticity of a(�; �) and on the shape regularity of T .

Proof. Let us consider the hierarchical splitting (4.7). For given v 2 Q

the superscripts S and V will indicate the contributions vS 2 S and vV 2 V

of the unique decomposition v = v
S + v

V. We will make use of the bilinear

forms

â(v;w) = a(vS; wS) +
X
p2NE

v
V(p)wV (p)a(�Q

p
; �

Q

p
)

and

b̂(v;w) =
X
p2N

v
S(p)wS (p)a(�Q

p
; �

Q

p
) +

X
p2NE

v
V(p)wV (p)a(�Q

p
; �

Q

p
)

de�ned on Q. Observe that both preconditioners are based on the hierarchi-

cal splitting (4.7) and subsequent diagonalization. Using the standard a�ne

transformation technique in a similar way as for example in [4, 2], it can be

shown that the norm equivalences

b(v; v) � b̂(v; v); â(v; v) � a(v; v) (4.9)

hold for all v 2 Q. Here the abbreviation x � y stands for the estimates

cy � x � Cy with constants c, C depending only on the ellipticity of a(�; �)

and on the shape regularity of T . Using the preconditioners â(�; �) and b̂(�; �)

in the preconditioned defect problem (4.1), we obtain the corrections eâ and

e
b̂
, respectively. Now the estimates

jebj
2
� b̂(e

b̂
; e

b̂
); â(eâ; eâ) � ke

Q
k
2 (4.10)

are an immediate consequence of Theorem 4.1. The crucial question is how

to relate b̂(e
b̂
; e

b̂
) to â(eâ; eâ).

Here we make heavily use of the assumption � � 0. In this case the discrete

defect problem (3.2) reduces to the variational equality

e
Q
2 Q : a(e

Q
; v) = r(v); v 2 Q: (4.11)

Replacing a(�; �) by the preconditioner b̂(�; �), the linear and the quadratic

contribution of e
b̂
= e

S

b̂
+ e

V

b̂
are completely decoupled. The same happens

if the other hierarchical preconditioner â(�; �) is used. Applying in addition

that r(v) = 0 holds for all v 2 S (a consequence of the second assumption

~u = u
S
), we get

e
S

b̂
= e

S

â
= 0; e

V

b̂
= e

V

â
: (4.12)
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This clearly yields b̂(e
b̂
; e

b̂
) = â(eâ; eâ) and the assertion follows from (4.10).

The above result reminds to related properties of cascadic iterations as intro-

duced by Deu
hard [11] and further analyzed by Shaidurov [12] and Borne-

mann and Deu
hard [13]. A similar estimate can be also found in [2].

Proposition 4.1 can be extended to variational inequalities under severe re-

strictions on the behavior of the discrete free boundary [21]. The main di�-

culty is that the equations (4.12) are no longer valid because now the linear

and the quadratic parts of e
b̂
and eâ remain coupled with respect to the

nonlinear functional  
Q
. This basic problem was already mentioned above.

Nevertheless Proposition 4.1 gives some motivation to assume that the cor-

rection e
Q
is a high frequency function. Then Theorem 4.1 assures that jebj

provides reasonable lower and upper bounds for the exact correction ke
Q
k.

This heuristic reasoning is strengthened by our numerical experiments re-

ported below.

To increase the robustness (and unfortunately the computational costs) of

the a posteriori error estimation one may consider the iterative solution of

the discrete defect problem (3.2) as suggested in [21].
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5 Numerical Experiments

A posteriori estimates of the approximation error are typically used as part

of an adaptive multilevel method in order to provide stopping criteria for the

complete algorithm and local error indicators for the adaptive re�nement.

Based on the global estimate jebj as resulting from (4.1) with diagonal scaling

(4.8) we select local error indicators as follows.

Using the hierarchical splitting (4.7) we decompose eb according to

eb = e
S

b
+ e

V

b
; e

S

b
2 S; e

V

b
2 V:

Here eS
b
and eV

b
represent the low and high frequency parts of eb. In analogy

to the linear selfadjoint case we want to re�ne the given triangulation T in

such regions where the high frequency contributions deteriorate the overall

accuracy. Hence, the local contributions �p,

�p = e
V

b
(p)2a(�Q

p
; �

Q

p
); p 2 N

E
;

of jeV
b
j
2 =

P
p2NE

�p are used as local error indicators. If �p exceeds a certain

threshold �� then the two triangles containing p are marked for re�nement.

The threshold �� is computed by extrapolation [22]. Marked triangles are

subdivided into four congruent subtriangles. Additional re�nement may be

necessary for structural reasons. See for example Bank [23] or Deu
hard,

Leinen, and Yserentant [2] for further information.

An adaptive cycle consists of discretization, iterative solution and adaptive

re�nement of the given triangulation. An adaptive algorithm is producing

a sequence of triangulations Tj, of corresponding approximations ~uj and of

error estimates je
j

b
j, j = 0; : : :, by inductive application of adaptive cycles to

an intentionally coarse initial triangulation T0. The algorithm stops, if the

estimated error is bounded by some prescribed accuracy TOL,

je
j

b
j � TOL: (5.1)

The re�nement level j counts the number of adaptive cycles while the re-

�nement depth of Tj denotes the maximal number of successive re�nements

applied to an initial triangle t 2 T0. For selfadjoint elliptic problems a the-

oretical justi�cation of a similar adaptive approach was recently given by

D�or
er [24].

An estimate of the relative approximation error is given by 100 � jej
b
j=k~ujk%.

In the following numerical examples, we approximate the solution with an

(estimated) accuracy of 5%. Equivalently, the algorithm stops, if (5.1) is

satis�ed with TOL = 0:05 � k~ujk.

The discrete problems (2.7) occurring on each re�nement level are solved

iteratively using monotone multigrid methods as introduced by Kornhuber
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[19, 20]. Denoting the iterates on level j by u0
j
; u

1
j
; : : :, the relative algebraic

error of the �-th iterate is estimated by 100�ku�+1
j

�u
�

j
k=ku

�+1

j
k%. We refer to

[21] for a theoretical justi�cation. The iterate ~uj := u
�+1

j
is accepted as soon

as the estimated relative algebraic error of u�
j
is less than 0:5% (assuming

that u�+1j is even more accurate than u�
j
).

Ignoring constants, let us for the moment assume that our estimates are rep-

resenting the algebraic and the approximation error exactly. Then the above

stopping criterion for the algebraic solver clearly implies the algebraic accu-

racy assumption (3.6) with �a = 1=9 as long as the relative approximation

error is greater than 5%, i.e. until the �nal level is reached. On the �nal level

this inequality still holds with �a = 1=4, if the relative approximation error

on this level is still greater than 2:5%, i.e. if it is not reduced by more than

a factor of 2 in the �nal re�nement step. This is a reasonable assumption,

because asymptotically the discretization error is well-known to decrease at

most linearly with the maximal stepsize which in turn can be only halved in

each re�nement step.

The implementation was carried out in the framework of a recent C++ ver-

sion of the �nite element toolbox KASKADE [25].

Example 5.1: Obstacle Problem We consider the numerical solution of

the obstacle problem

u 2 K : J (u) � J (v); v 2 K; (5.2)

where J is de�ned in (2.2) and the closed convex set K is given by

K = fv 2 H
1

0 (
) j v(x) � '(x) a.e. in 
g

with some obstacle function ' 2 H
1
0 (
). It is easily checked that (5.2) can

be rewritten in the form of our general problem (2.1) with the scalar function

� given by (2.4).

In our numerical computations we select the quadratic form a(�; �) and the

right hand side `(�) according to

a(v;w) =
Z



(@1v@1w + @2v@2w) dx; `(v) = 2C
Z



v dx

and the obstacle function is given by '(x) = dist(x; @
), x 2 
. Finally let


 = (0; 1) � (0; 1).

The resulting obstacle problem (5.2) is modeling the elasto{plastic torsion

of a cylindrical bar with cross{section 
. The active points (where u(x) =

dist(x; @
)) characterize the plastic region, while the material is considered

elastic in inactive points. The solution u represents the stress potential and
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the applied twist angle is expressed by the parameterC. We refer for example

to Rodrigues [26] for further information.

The inactive region is located along the diagonals of 
 and becomes arbi-

traryly small with increasing C. This leads to various numerical di�culties so

that (5.2) has become a well{established test example [10, 16, 19, 27, 28, 29].

Following [10], we chose the parameter C = 15 and the initial triangulation

T0 as depicted in Figure 5.1.

Figure 5.1: Initial Triangulation T0

Figure 5.2: Final Triangulation T9 and Approximate Free Boundary

Starting with T0, our adaptive algorithm generates a sequence of succes-

sively re�ned triangulations T0; : : : ;T9 and of corresponding approximations
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~u0; : : : ; ~u9. The �nal triangulation T9 is depicted in the left picture of Figure

5.2. The right picture shows the (discrete) free boundary of the �nal ap-

proximation ~u9. Observe that T9 is almost uniformly re�ned in the inactive

region and as coarse as possible in the remaining part of 
. As the (piecewise

linear) obstacle is represented exactly by the �nite element approximations,

this triangulation is well{suited to the actual problem. The very thin inactive

region has no adequate representation on the coarse grids. Even if T0 is uni-

formly re�ned, all nodal points remain active up to the 3rd re�nement level.

Hence, the detection and location of the inactive region is a quite challenging

task for an adaptive scheme.

The complete approximation history is reported in Table 1. In the fourth

column we report the estimates 100�je
j

b
j=k~ujk% of the relative approximation

errors on the levels j = 0; : : : ; 9. To check the quality of these error estimates

we consider the e�ectivity index �j

�j = je
j

b
j=ku� ~ujk; j = 0; : : : ; 9: (5.3)

A computable approximation of �j is obtained by replacing the exact solution

u by the approximation resulting from two further uniform re�nements of the

�nal triangulation T9.

Level Depth Nodes est. Error E�ectivity

0 0 1 38.5 % 2.5

1 1 5 38.5 % 2.5

2 2 13 27.4 % 1.8

3 3 53 21.9 % 1.5

4 4 93 17.9 % 1.2

5 5 277 13.5 % 1.0

6 5 357 12.8 % 1.0

7 5 713 10.3 % 1.5

8 6 1577 5.40 % 1.6

9 7 5905 2.81 % 1.7

Table 1. Approximation History

Observe that the resulting e�ectivity indices can be interpreted as

0:39jej
b
j � ku� ~ujk � je

j

b
j; j = 0; : : : ; 9;

with even better results on the �ne levels. Hence, our error estimate works

satisfactory throughout the approximation. A comparable a posteriori error

estimator [10, 8, 9] fails for this example, because it does not detect the

inactive region and thus provides the error estimate zero on the �rst levels.

It is interesting that the approximation history given in Table 1 is very similar

to related results in [10] where a considerably more expensive semi{local error

estimate has been used.
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Example 5.2: A Semidiscrete Stefan Problem The nonlinear evolu-

tion equation
@

@t
H(U) ��U = F; in 
� (0; T ); (5.4)

with suitable initial and boundary conditions describes the heat conduction

in 
 undergoing a change of phase. F is a body heating term and the

generalized enthalpy H is a scalar maximal monotone multifunction,

H(z) =

8><
>:

c1(z � �0)=k1 if z < �0

[0; L] if z = �0;

c2(z � �0)=k2 + L if z > �0

z 2 R; (5.5)

which is set{valued at the phase change temperature �0. The unknown gener-

alized temperature U is resulting from the standard Kirchho� transformation

U = k1� for � < �0 and U = k2� for U > �0 of the physical temperature �.

The positive constants ci; ki, i = 1; 2, describe the thermal properties in the

two di�erent phases and L > 0 stands for the latent heat.

Discretizing (5.4) in time by the backward Euler scheme with respect to some

step size � > 0, the spatial problems at the di�erent time levels tk = k� can

be identi�ed with problems of the form (2.1). The solution u = U� (�; tk)

is the approximation at the actual time step, the bilinear form a(v;w) =

� (rv;rw) is generated by the Laplacian and the functional ` is given by

`(v) = (�Fk+Hk�1; v) with Fk = F (�; tk) and an appropriate selectionHk�1 2

H(U� (�; tk�1)). Finally, we choose ai = ci=�i, i = 1; 2, and s1 = 0, s2 = L

so that H is the subdi�erential of the piecewise quadratic function � de�ned

in (2.5). This semi{discretization has been used to establish existence and

uniqueness of a weak solution U (see e.g. Jerome [30]) and also provides a

general framework for a variety of numerical methods.

Adaptive techniques for the two{phase Stefan problem have been derived by

Nochetto, Paolini, and Verdi [31, 32]. In contrast to our approach which

is aiming at the adaptive solution of the spatial problems up to a certain

accuracy, their local error indicators concentrate exclusively on an e�cient

resolution of the free boundary.

We will consider a model problem due to Ciavaldini [33]. The space{time

domain 
 � (0; T ) is given by 
 = (0; 1) � (0; 1) and T = 0:5. The physical

data are c1 = 2, k1 = 1, c2 = 6, k2 = 2 and �0 = 0, L = 1. Using the right

hand side

F (x; t) =

(
c1exp(�4t)� 4k1 if � < 0

c2exp(�4t)� 4k2 if � > 0
; x 2 
; t > 0;

the Kirchho� transformation U of the physical temperature � given by

�(x1; x2; t) = (x1 � 0:5)2 + (x2 � 0:5)2 � exp(�4t)=4; (x1; x2) 2 
; t � 0;
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is the exact solution of (5.4) with the corresponding initial and boundary

conditions. For the semi{discretization in time we choose the uniform step

size � = 0:0125.

Recall that an estimated accuracy of 5% is required on each time level. We

always start with initial triangulation T0 as shown in Figure 1.

The evolution of the solution is illustrated in Figure 5.3 showing the discrete

interface and the approximate physical solution along the diagonal x1 = x2

for the �rst and the last time step. The corresponding �nal triangulations

are depicted in Figure 5.4. In both cases the re�nement concentrates on the

lack of regularity at the interface.

Figure 5.3: Discrete Interfaces and Diagonal Cuts for the First and the Last Time Step

The complete approximation history for the �rst time step is given in Ta-

ble 2 where the e�ectivity rates are computed according to (5.3). On the

subsequent time levels we found similar results.
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Figure 5.4: Final Triangulations for the First and the Last Time Step

Level Depth Nodes est. Error E�ectivity

0 0 1 160 % 0.14

1 1 5 193 % 0.65

2 2 25 190 % 2.0

3 3 65 56.8 % 0.80

4 4 261 36.7 % 1.8

5 5 409 24.0 % 0.96

6 5 517 17.2 % 0.84

7 6 717 13.1 % 0.90

8 7 1225 7.9 % 0.62

9 7 1629 6.9 % 0.98

10 7 2133 5.9 % 1.0

11 7 3149 4.4 % 0.92

Table 2. Approximation History for the First Time Step

As in the previous example we observe a similar e�ciency and reliability of

our adaptive algorithm as for related linear selfadjoint problems.
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