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1 Introduction

The weak solution of an elliptic selfadjoint boundary value problem is ob-

tained by minimizing the corresponding quadratic energy functional J . We

will consider the more general problem

J (u) + �(u) = min

with � denoting a convex functional which is piecewise quadratic but not

di�erentiable. Such non{smooth optimization problems are modeling phys-

ical phenomena involving a change of phase. Obstacle problems or time{

discretized two{phase Stefan problems are typical examples (see e.g. [6, 7, 14]

for further applications).

The continuous problem is discretized by piecewise linear �nite elements with

respect to a sequence of triangulations resulting from the successive adaptive

re�nement of a given initial mesh. A corresponding adaptive algorithm has

been described in [20]. In this paper we will concentrate on the e�cient

solution of the nonlinear discrete problems arising on each re�nement level.

The most delicate question in constructing a multigrid method for a nonlin-

ear problem is how to represent the nonlinearity on the coarse grids. This

process usually involves some kind of linearization. Unfortunately, the com-

puted corrections may exceed the region in which the actual linearization is

valid. This problem is often remedied by a posteriori damping of the coarse

grid correction [12]. The appropriate selection of damping parameters is a

non{trivial task [13, 15]. The basic idea of monotone multigrid methods to

be presented here is �rst to �nd out a neighborhood of the actual iterate in

which the actual linearization is valid and then to constrain the coarse grid

correction to this neighborhood. In this way, we ensure monotonically de-

creasing energy in course of the iteration. It turns out that such kind of local

linearization is equivalent to the damping of the inaccessible nonlinear coarse

grid correction. Suitable damping parameters are implicitly incorporated in

the constraints. This approach provides globally convergent methods and

we can prove asymptotic multigrid convergence rates. In comparison with

previous multigrid algorithms, monotone multigrid methods turned out to be

superior both from a theoretical and from a numerical point of view [18, 19].

As proofs of the basic convergence results have been already presented else-

where [18, 19], we will try to give an algorithmically oriented presentation

here. In this way, we hope to simplify further generalizations of the un-

derlying ideas and the implementation in existing multigrid codes. A more

detailed description will be contained in a forthcoming work [21].
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2 Discretization of the Continuous Problem

Let 
 be a bounded, polygonal domain in the Euclidean space R
2. We

consider the optimization problem

u 2 H : J (u) + �(u) � J (v) + �(v); v 2 H; (2.1)

on a closed subspace H � H
1(
). For simplicity, we select H = H

1
0 (
) cor-

responding to homogeneous Dirichlet boundary conditions. Other boundary

conditions of Neumann or mixed type and the case of three space dimensions

can be treated in a similar way [3, 4].

The quadratic functional J ,

J (v) = 1
2
a(v; v)� `(v); (2.2)

is induced by a continuous, symmetric, and H{elliptic bilinear form a(�; �)

and a bounded, linear functional `. H is equipped with the energy norm

k � k = a(�; �)1=2.

The convex functional � of the form

�(v) =

Z


�(v(x)) dx; (2.3)

is generated by a scalar function � : R! R [ f+1g. We assume that � is

convex and piecewise quadratic,

�(z) = 1
2
biz

2 � fiz + ci; �i � z � �i+1; (2.4)

on a partition

�1 � �0 < �1 < : : : < �N < �N+1 � +1

of the closed interval K � R bounded by �0, �N+1 and that �(z) =1 holds,

if z =2 K. To make sure that 0 2 K, we assume �0 � 0 � �N+1. The

convexity implies that � is continuous on K but the derivative �0 may be

discontinuous at the transition points �i, i = 1; : : : ; N .

From the assumptions on �, the functional � is convex, lower semi{continuous,

and proper (i.e. �(v) > �1 and � 6� +1). In particular, � is �nite and

continuous on the closed convex set K � H,

K = fv 2 H j v(x) 2 K; a.e. in 
g 6= �:

Hence, it follows from well{known results [10] that the optimization problem

(2.1) has a unique solution u 2 H and can be equivalently rewritten as the

elliptic variational inequality of the second kind

u 2 H : a(u; v � u) + �(v)� �(u) � `(v � u) ; v 2 H: (2.5)
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Let Tj be a consistent partition of 
 in triangles with minimal diameter

hj = O(2�j). The interior nodes and edges of Tj are denoted by Nj and

Ej, respectively. The �nite element space Sj � H contains all continuous

functions v 2 H which are linear on each triangle t 2 Tj. Sj is spanned by

the nodal basis �j = f�(j)p j p 2 Njg. Replacing H by the �nite dimensional

approximation Sj and the functional � by its Sj{interpolate �j ,

�j(v) =
X
p2Nj

�(v(p))
Z


�
(j)
p (x) dx; v 2 Sj; (2.6)

we obtain the discrete optimization problem

uj 2 Sj : J (uj) + �j(uj) � J (v) + �j(v); v 2 Sj : (2.7)

Observe that the discrete energy J +�j is �nite and continuous on the closed

convex set Kj � Sj ,

Kj = fv 2 Sj j v(p) 2 K; p 2 Njg 6= �:

It is easily seen that the discrete functional �j still is convex, lower semi{

continuous, and proper. Hence, the discrete problem (2.7) has a unique

solution uj 2 Sj which is characterized by the variational inequality

uj 2 Sj : a(uj; v � uj) + �j(v)� �j(uj) � `(v � uj); v 2 Sj : (2.8)

The convergence of the discretization (2.7) follows from general results as

condensed by Glowinski [10] and error estimates have been derived for ex-

ample by Brezzi et al. [5] or Elliot [9].
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3 Multilevel Relaxations

Assume that Tj is resulting from j re�nements of a given, intentionally coarse

triangulation T0 of 
. In this way, we obtain a sequence of triangulations

T0; : : : ;Tj and of corresponding nested �nite element spaces S0 � : : : � Sj.

To avoid additional technicalities, we assume for the moment that each tri-

angulation is uniformly re�ned, i.e. that each triangle t 2 Tk�1 is subdivided

into four congruent subtriangles to obtain the next triangulation Tk.

Collecting the nodal basis functions �k = f�(k)pi
j i = 1; : : : ; nkg from all

re�nement levels, we de�ne the multilevel nodal basis �S ,

�S =

�
�
(j)
p1
; : : : ; �

(j)
pnj
; �

(j�1)
p1

; : : : ; �
(j�1)
pnj�1

; : : : ; �
(0)
p1
; : : : ; �

(0)
pn0

�

which is ordered from �ne to coarse. We frequently write �S = (�1; : : : ; �m)

with m = nj + : : :+ n0.

In the special case of an elliptic selfadjoint problem (i.e. � � 0) one step of

a classical multigrid V{cycle with Gauss-Seidel smoother can be regarded as

the successive optimization of the energy functional J in the direction of the

multilevel nodal basis functions �l 2 �S (cf. e.g. McCormick [24], Xu [26],

or Yserentant [27]). We will use a straightforward extension of this multilevel

relaxation as the starting point for the construction of monotone multigrid

methods for the non{smooth optimization problem (2.7). To be precise, we

introduce the splitting

Sj =
mX
l=1

Vl; (3.1)

of Sj in the one{dimensional subspaces Vl = spanf�lg, l = 1; : : : ;m. For a

given �{th iterate u�j 2 Kj one step of a nonlinear multilevel relaxation now

reads as follows.

Algorithm 3.1 (Nonlinear Multilevel Relaxation)

initialize: w0 := u
�
j

for l = 1 step 1 until m do

�vl 2 Vl : J (wl�1 + �vl) + �j(wl�1 + �vl) �

� J (wl�1 + v) + �j(wl�1 + v); v 2 Vl
(3.2)

wl := wl�1 + !l�vl; !l 2 [0; 1]

new iterate: u�+1j := wm

Observe that we have introduced certain damping parameters !l which will

be useful later on. Assuming

!l = 1; l = 1; : : : ; nj ; (3.3)
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the leading �ne grid corrections in direction of �l 2 �j can be regarded as

one step of the well{known single grid relaxation [10]. The corresponding

iteration operator is denoted by Mj and �u�j := Mj(u
�
j ) is called smoothed

iterate. Note that we have �u0j 2 Kj for an arbitrary initial iterate u0j 2 Sj.

The subsequent coarse grid corrections of the smoothed iterate �u�j in the

directions �l 2 �S n�j are intended to reduce the low frequency contributions

of the error.

The following convergence proof will be based on the global convergence of

the leading single grid relaxation and on the monotonicity

J (wl) + �j(wl) � J (wl�1) + �j(wl�1); l = 1; : : : ;m; (3.4)

of the local corrections.

Theorem 3.1 For any initial iterate u0j 2 Sj and any sequence of damping

parameters with the property (3.3) the sequence of iterates (u�j )��0 produced

by Algorithm 3.1 converges to the solution uj of the discrete problem (2.7).

Proof: We will use the abbreviation �J = J + �j . The sequence of

iterates u�j , � � 0, is bounded because the monotonicity (3.4) yields

�J (u�j ) �
�J (�u0j) <1; � � 1;

and we have �J (u�)!1 for any unbounded sequence (u�)��0 � Sj.

Let u�kj , k � 0, be an arbitrary, convergent subsequence of u�j with the limit

u
� 2 Sj,

u
�k
j ! u

�
; k !1: (3.5)

Such a subsequence exists, because u�j is bounded and Sj has �nite dimension.

Observe that u� 2 Kj , because (u
�k
j )k�1 � Kj and Kj is a closed subset of Sj.

In order to prove u� = uj, we will show that u� is a �xed point of the single

grid relaxation Mj. It is easily checked that Mj is continuous so that

Mj(u
�k
j )!Mj(u

�); k !1: (3.6)

As each step of the multilevel relaxation starts with the single grid relaxation

Mj, the local monotonicity (3.4) implies

�J (u�k+1j ) � �J (Mj(u
�k
j )) �

�J (u�kj ):

From (3.4) we also have

�J (u
�k+1
j ) � �J (u�k+1j ):
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In virtue of the convergence (3.5), (3.6), and the continuity of �J on Kj, this

leads to
�J (Mj(u

�)) = �J (u�): (3.7)

It is easily seen that (3.7) holds, if and only if all local corrections of the

single grid relaxation applied to u� are zero, i.e. Mj(u
�) = u

�. The single

grid relaxation is globally convergent so that uj is the only �xed point of

Mj, giving u
� = uj .

As (u�kj )k�0 was an arbitrary convergent subsequence, the whole sequence u�j
must converge to uj. This completes the proof.

In the special case �j � 0 Algorithm 3.1 can be implemented as a V{cycle:

Representing the bilinear form a(�; �) on the coarse grid spaces Sk by their

values on �k, one can update the residual and evaluate the local corrections

without visiting the �ne grid. This provides optimal numerical complexity,

i.e. O(nj) operations, for each iteration step. To �nd a related implementa-

tion for the nonlinear case, we will now consider the local subproblems for

the local corrections

�vl = �zl�l 2 Vl

in more detail. Using subdi�erential calculus [8], (3.2) can be rewritten as

the following scalar inclusion for the unknown coe�cient �zl 2 R

0 2 a(�l; �l)�zl � (`(�l)� a(wl�1; �l)) + @�j(wl�1 + �zl�l)(�l): (3.8)

Observe that @�j(wl�1 + z�l)(�l) is a piecewise linear function in z because

the scalar function � which generates �j is piecewise quadratic. Hence, after

some tedious calculations, the �ne grid corrections in direction of �l 2 �j are

available in closed form [19, 20].

Let us consider the coarse grid correction in direction of some �xed �l 2 �k,

k < j. It is clear that �zl can not be computed without evaluating the inter-

mediate iterate wl�1 at all nodes p 2 int supp �l, because the subdi�erential

@�j(wl�1 + z�l)(�l) is nonlinear with respect to the argument wl�1 + z�l.

This leads to (at least) one additional prolongation for each local coarse grid

correction. As a consequence, the number of operations for one complete

iteration step is no longer linearly bounded but grows like O(njlog(nj)).

To preserve the optimal numerical complexity of the classical V{cycle, we will

now approximate the exact coarse grid corrections �vl by a local linearization

of the subproblems (3.8) in a neighborhood of the smoothed iterate �u�j . For

this reason, we de�ne the discrete phases N i
j (�u

�
j ) � Nj of �u

�
j by

N i
j (�u

�
j ) = fp 2 Nj j �u

�
j (p) 2 (�i; �i+1)g; ; i = 0; : : : ; N:
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At the remaining critical nodes N �
j (�u

�
j ),

N �

j (�u
�
j ) = Nj n

N[
i=0

N i
j (�u

�
j ); (3.9)

�u�j has values in the set f�1; : : : ; �Ng of transition points.

Now the key observation is that �j(w) is a quadratic functional as long as the

discrete phases of w remain invariant. Such a neighborhood of �u�j is given

by the closed convex subset K�u�
j
� Sj,

K�u�
j
= fw 2 Sj j '�u�j

(p) � w(p) � '�u�
j
(p); p 2 Njg;

where the obstacles '
�u�
j

; '�u�j
2 Sj are de�ned by

'
�u�
j

(p) = �i; '�u�j
(p) = �i+1; if p 2 N i

j (�u
�
j );

'
�u�j
(p) = '�u�

j
(p) = �u�j (p); if p 2 N �

j (�u
�
j ):

(3.10)

Recall that K�u�
j
is �xed by the �ne grid correction.

By construction, the functional �j on K�u�
j
can be rewritten as

�j(w) =
1
2
b�u�

j
(w;w)� f�u�

j
(w) + const.; w 2 K�u�

j
; (3.11)

with the symmetric positive semide�nite bilinear form b�u�
j
(v;w),

b�u�
j
(v;w) =

NX
i=0

X
p2N i

j
(�u�

j
)

biv(p)w(p)

Z


�
(j)
p (x) dx; (3.12)

and the linear functional f�u�
j
(v),

f�u�
j
(v) =

NX
i=0

X
p2N i

j
(�u�

j
)

fiv(p)
Z


�
(j)
p (x) dx: (3.13)

To take advantage of the simple representation of bilinear forms and linear

operators on the coarse spaces Sk, k < j, we want to constrain the local

corrections in such a way that all the intermediate iterates wl remain in K�u�
j
.

Equivalently, the coarse grid corrections must not cause a change of phase.

Hence, the local subproblems (3.2) in Algorithm 3.1 are replaced by the

quadratic obstacle problems

�vl 2 D
�
l : J (wl�1 + v

�
l ) + �j(wl�1 + v

�
l ) �

� J (wl�1 + v) + �j(wl�1 + v); v 2 D�
l ;

(3.14)
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with constraints

D�

l = fv 2 Vl j wl�1 + v 2 K�u�
j
g � Vl: (3.15)

In the light of (3.11), the energy functional on D�
l has the representation

J (wl�1 + v) + �j(wl�1 + v) = 1
2
a�u�

j
(v; v)� r�u�

j
(wl�1)(v) + const. (3.16)

where we have set r�u�
j
(wl�1) = `�u�

j
� a�u�

j
(wl�1; �) and

a�u�
j
(�; �) = a(�; �) + b�uj(�; �); `�u�

j
= `+ f�u�

j
: (3.17)

The set D�
l clearly contains all v 2 Vl satisfying

'
�u�
j

� wl�1 � v � '�u�
j
� wl�1: (3.18)

Hence, we still have to evaluate the intermediate iterate wl�1 2 Sj to check

wether some v is contained in D�
l or not. For this reason, we approximate D�

l

by replacing the �ne grid defect obstacles wl�1 � '
�u�
j

, wl�1 � '�u�
j
appearing

in (3.18) by coarse grid approximations  
l
,  l 2 Vl. To make sure that the

resulting subset

Dl = fv 2 Vl j  l
� v �  lg � Vl (3.19)

satis�es 0 2 Dl � D�
l , we require

'
�u�
j

� wl�1 �  
l
� 0 �  l � '�u�

j
�wl�1: (3.20)

Let us postpone the construction of such monotone approximations  
l
,  l

to the next section. We now summarize one complete step of our linearized

multilevel relaxation.

Algorithm 3.2 (Linearized Multilevel Relaxation)

�ne grid smoothing: �u�j :=Mj(u
�
j )

local linearization: a�u�
j
:= a+ b�u�

j
, `�u�

j
:= ` + f�u�

j

coarse grid correction:

initialization: wnj := �u�j

for l = nj + 1 step 1 until m do

update Dl

vl 2 Dl :
1
2
a�u�

j
(vl; vl)� r�u�

j
(wl�1)(vl) �

1
2
a�u�

j
(v; v)� r�u�

j
(wl�1)(v); v 2 Dl

(3.21)

wl := wl�1 + vl

new iterate: u�+1j := wm
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It is the main result of this section that local linearization can be regarded

as local damping.

Lemma 3.1 For a given intermediate iterate wl�1 2 Sj the local corrections

�vl and vl resulting from the subproblems (3.2) and (3.21), respectively, are

related by

vl = !l�vl (3.22)

with some !l 2 [0; 1].

Proof: If �vl 2 Dl, then the inclusion Dl � D�
l yields �vl = vl. As �vl 2 Vl

and  
l
,  l 2 Vl, we only have to consider the remaining cases �vl <  

l
and

 l < �vl. In the �rst case, (3.20) gives �vl < vl =  
l
� 0. The second case can

be treated in a similar way.

Lemma 3.1 implies that Algorithm 3.2 is a special case of Algorithm 3.1.

In particular, it is globally convergent. By keeping the local coarse grid

corrections vl in Dl, the damping parameters !l are implicitly selected in such

a way that the local linearization (3.11) remains valid. A similar approach

can be used, if the functional �j is not piecewise linear but piecewise smooth.

This will be the subject of a forthcoming paper.
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4 Standard Monotone Multigrid Methods

To complete the construction of a monotone multigridmethod, we now derive

suitable local obstacles  
l
and  l, l = nj + 1; : : : ;m. For symmetry reasons,

it is su�cient to consider only the upper obstacles  l. The construction relies

on suitable successive restrictions of the initial defect obstacle '�u�j
� �u�j .

To identify the supporting points and the levels of �l 2 �S, we will use the

notation

�lik = �
(k)
pi
; i = 1; : : : ; nk; k = 0; : : : ; j:

Then the correction

v
(k) = v

(k)
p1

+ : : :+ v
(k)
pnk

is the sum of all local corrections vlik = v
(k)
pi

in direction of the basis functions

�lik = �
(k)
pi

on level k. The following lemma is easily proved by induction.

Lemma 4.1 Assume that the mappings Rk
k+1 : Sk+1 ! Sk, k = j � 1; : : : ; 0,

are monotone in the sense that

0 � R
k
k+1v(p) � v(p); p 2 Nk+1; (4.1)

holds for all non{negative v 2 Sk+1. Then, for a given smoothed iterate �u�j

and the initial defect obstacle  
(j)

= '�u�
j
� �u�j � 0, the recursive restriction

 
(k)

= R
k
k+1( 

(k+1)
� v

(k+1)); k = j � 1; : : : ; 0; (4.2)

provides local upper obstacles  l 2 Vl with the property (3.20) by the de�nition

 lik
=  

(k)
(pi)�

(k)
pi
; i = 1; : : : ; nk: (4.3)

As we are interested in multigrid convergence rates, we want to exclude the

trivial choice Rk
k+1 � 0 which would bring back the single grid relaxation.

Hence, we will now derive monotone restrictions Rk
k+1 satisfying

minfv(q) j q 2 Nk+1 \ int supp �(k)p g � R
k
k+1v(p); p 2 Nk; (4.4)

for non{negative v 2 Sk+1, instead of the weaker lower estimate in (4.1). It

will turn out later on that such quasioptimal restrictions provide asymptotic

multigrid convergence rates. Let us select a certain ordering of the edges

Ek = fe1; : : : ; esg with midpoints pe 2 Nk+1, e 2 Ek. Then the restriction

operator Rk
k+1 : Sk+1 ! Sk is de�ned by

R
k
k+1v = ISk �Res � : : : �Re1v; v 2 Sk+1: (4.5)
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Here ISk denotes the Sk{interpolation and the operators Re : Sk+1 ! Sk+1,

e 2 Ek, are of the form

Rev = v + v1�
(k+1)
p1

+ v2�
(k+1)
p2

; v 2 Sk+1; (4.6)

with p1; p2 2 Nk denoting the vertices of e = (p1; p2) 2 Ek. The scalars

v1; v2 2 R in (4.6) are chosen such that

Rev(p) � v(p); p = p1; pe; p2:

In particular, we set v1 = 0, if v(p1) � v(pe) or v(p1) + v(p2) � 2v(pe). In

the remaining case, v1 is determined by

v1 =

(
2v(pe)� v(p1)� v(p2); if v(p2) � v(pe) � v(p1);

v(pe)� v(p1); if v(pe) � v(p); p = p1; p2:

The value of v2 is obtained in a symmetrical way.

The following proposition can be checked by elementary considerations.

Proposition 4.1 For any �xed enumeration of Ek the de�nition (4.5) pro-

vides a quasioptimal upper restriction operator Rk
k+1 in the sense of (4.4).

We will now formulate Algorithm 3.2 as a multigrid V{cycle. For this reason,

we rewrite the computation of the correction v(k) from all local subproblems

(3.21) on a �xed level k as one step of a projected Gauss{Seidel{method. The

corresponding iteration operator for a bilinear form a = a(�; �), a right hand

side r, and obstacles  ,  is denoted by �Mk(a; r;  ;  ) : Sk ! Sk. Recall

thatMj : Sj ! Sj stands for the nonlinear single grid relaxation. Lower and

upper monotone restrictions will be denoted by Rk
k+1 and R

k

k+1, respectively.

Algorithm 4.1 (Standard Monotone Multigrid Method)

�ne grid smoothing: �u�j :=Mj(u
�
j )

local linearization: a�u�
j
:= a+ b�u�

j
, `�u�

j
:= ` + f�u�

j

coarse grid correction:

initialize:

bilinear form and residual: a(j) := a�u�
j
, r

(j) := `�u�
j
� a�u�

j
(�u�j ; �)

defect obstacles:  (j) := '
�u�j
� �u�j ,  

(j)
:= '�u�

j
� �u�j

global correction: v�j := 0

for k = j � 1 step �1 until 0 do

canonical restrictions: a(k) := a
(k+1)jSk�Sk , r

(k) := r
(k+1)jSk

quasioptimal restrictions:  (k) := R
k
k+1 

(k+1),  
(k)

:= R
k

k+1 
(k+1)
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coarse grid smoothing: v(k) := �Mk(a
(k)
; r

(k)
;  

(k)
;  

(k)
)(0)

update:

residual: r(k) := r
(k) � a

(k)(v(k); �)

defect obstacles:  (k) :=  
(k) � v

(k),  
(k)

:=  
(k)
� v

(k)

for k = 0 step 1 until j � 1 do

canonical interpolation: v�j := v
�
j + v

(k)

new iterate: u�+1j := �u�j + v
�
j

Note that Algorithm 4.1 contains a slightly improved variant of Mandels

method [23] for linear complementary problems as a special case. See [18]

for details.

We will now briey sketch that quasioptimal restrictions Rk
k+1, R

k
k+1 lead to

asymptotic multigrid convergence rates. It can be shown that for large � the

discrete phases of the iterates u�j are equal to the discrete phases N i
j (uj),

i = 0; : : : ; N , of the exact �nite element solution uj, if the discrete problem

(2.7) is non{degenerate in the sense that

p 2 N �

j (uj)) `(�(j)p )� a(uj; �
(j)
p ) 2 int @�j(uj)(�

(j)
p ): (4.7)

Let us assume for the moment that the discrete phases of uj are known. Then

it is easily checked that uj = u
�
j is the unique solution of the reduced linear

problem

u
�

j 2
�S�j : auj (u

�

j ; v) = `uj (v); v 2 S�j ; (4.8)

where the bilinear form auj and the linear functional `uj are de�ned in analogy

to (3.17), �S�j = fv 2 Sj j v(p) = uj(p); p 2 N �
j (uj)g and the reduced

subspace S�j � Sj is given by

S�j = fv 2 Sj j v(p) = 0; p 2 N �

j (uj)g: (4.9)

Observe that the reduced multilevel basis

��S = �S \ S
�

j (4.10)

generates a splitting of S�j in one{dimensional subspaces which in turn gives

rise to a corresponding multigrid method for (4.8). It is not di�cult to see

that for non{degenerate problems the undampened version of Algorithm 3.1

is asymptotically reducing to this multigrid method. The linearized Algo-

rithm 4.1 has the same property (i.e. it asymptotically coincides with the

\optimal" undampened Algorithm 3.1), if quasioptimal restrictions R
k

k+1,

R
k
k+1 (cf. (4.4)) are used.

As a consequence, we can derive asymptotic estimates of the convergence

rates of the nonlinear Algorithm 4.1 by investigating the corresponding re-

duced multigrid method for the linear problem (4.8). This can be done
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by using recent results of Kornhuber and Yserentant [22], Oswald [25], and

Griebel and Oswald [11].

Theorem 4.1 The standard monotone multigrid method described in Algo-

rithm 4.1 is globally convergent.

Assume that the discrete problem (2.7) is non{degenerate in the sense of

(4.7). Then the phases of the iterates (u�j )��0 converge to the phases of uj
and the error estimate

kuj � u
�+1
j k � (1 � c(j + 1)�4)kuj � u

�
jk (4.11)

holds, if � is large enough. The positive constant c < 1 depends only on the

ellipticity of a(�; �), on the maximal coe�cient bi, i = 0; : : : ; N , of �, and on

the initial triangulation T0.

We emphasize that the estimate (4.11) describes the worst case. Absolutely

no regularity assumptions on the continuous or discrete free boundary enter

the constant c. In addition, we have considered the most simple variant

of standard monotone multigrid methods. By repeating the (approximate)

optimization in the direction of the basis functions �(k)p on each level k =

j; � � � ; 0 in reversed order, we obtain a standard monotone multigrid method

with symmetric smoother. For this variant, we get a O(j2(log j)2) estimate.

We can further improve this bound by imposing regularity conditions on

a(�; �) (providing O(j2)) or by using L2{like projections instead of modi�ed

interpolation operators. In contrast to (4.11) the latter estimates also hold

in the case of more than two space dimensions. However, we then need a

certain regularity of the critical set N �
j (uj). A detailed discussion can be

found in [22, 25].

Let us now consider non{uniform re�nement. In this situation, the canonical

ordering of the multilevel nodal basis �S would contradict our requirement

that each multilevel relaxation should start with a �ne grid relaxation step.

Of course, one could rearrange �S in a suitable way. For the implementation

in an existing multigrid code it might be simpler to use the search directions

� = (�j;�S) instead of �S or, equivalently, to start with a complete �ne grid

relaxation and then linearize all corrections in direction of �l 2 �S . Both of

these algorithms have the convergence properties stated in Theorem 4.1. The

second algorithm will be used in our numerical experiment reported below.

13



5 Truncated Monotone Multigrid Methods

The standard multigrid method relies on the condition that the coarse grid

correction must not change the phases of the smoothed iterate �u�j . In par-

ticular, it must not change the values of �u�j at the critical nodes p 2 N
�
j (�u

�
j ).

Hence, all �l 2 �S n �j with the property

int supp �l \ N
�

j (�u
�
j ) 6= � (5.1)

must not contribute to the coarse grid correction of the standard multigrid

method. This leads to a poor representation of the low frequency parts of the

error. To improve the convergence rates by improved coarse grid transport,

we will now modify all �l 2 �S n �j with the property (5.1) according to

the actual guess of the free boundary. Again, it is su�cient to consider only

uniform re�nement. The non{uniform case can be treated in the same way

as described above.

We de�ne the modi�ed basis functions

~�(k)p = T
�
j;k�

(k)
p ; p 2 Nk; (5.2)

by using the truncation operators T �
j;k, k = 0; : : : ; j,

T
�
j;k = IS�

j
� : : : � IS�

k
: (5.3)

Here IS�
k
: Sj ! S�

k denotes the S�
k{interpolation, and the spaces S�

k � Sk,

S�
k = fv 2 Sk j v(p) = 0; p 2 N �

k g � Sk; (5.4)

are the reduced subspaces with respect to N �
k = Nk \N

�
j (�u

�
j ), k = 0; : : : ; j.

Replacing the multilevel nodal basis �S by the actual truncation ~��
S ,

~��
S =

�
�
(j)
p1
; : : : ; �

(j)
pnj
; ~�(j�1)p1

; : : : ; ~�(j�1)pnj�1
; : : : ; ~�(0)p1

; : : : ; ~�(0)pn0

�
; � � 0;

we can now derive a globally convergent truncated monotone multigrid method

by the same reasoning as described in the previous section. The resulting al-

gorithm can be implemented as a variant of the standard monotone multigrid

method. More precisely, in the neighborhood of the critical nodes p 2 N �
j (�u

�
j )

(cf. (3.9)) the restrictions and prolongations appearing in Algorithm 4.1 have

to be modi�ed as follows:
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Modi�cations of Algorithm 4.1 (Truncated Monotone MultigridMethod)

modi�ed restrictions of the bilinear form and of the residual:

treat all entries from the actual critical nodes N �
j (�u

�
j ) as zero

modi�ed quasioptimal restrictions of the upper (lower) defect obstacle:

treat all entries from the actual critical nodes N �
j (�u

�
j ) as 1 (�1)

modi�ed prolongations of the corrections:

prolongate zero to all critical nodes

Again, we can derive asymptotic estimates of the convergence rates by ana-

lysing the corresponding reduced method for the solution of the linear re-

duced problem (4.8). This time the reduced method is generated by the

one{dimensional subspaces spanned by the truncation ~��S � S�j with respect

to the exact critical set N �
j (uj). Related algorithms have been recently con-

sidered by Hoppe and Kornhuber [16],Bank and Xu [1, 2], and Kornhuber

and Yserentant [22].

Observe that ~�(k)p = �
(k)
p holds for all �(k)p 2 S�j , giving ��S �

~��S. Hence,

we can hope for improved asymptotic convergence rates of the truncated

multigridmethod as compared to the standard case. This is supported by the

numerical results reported below. However, the theoretical analysis su�ers

from the fact that there is no strengthened Cauchy{Schwarz inequality for

the spans of truncated basis functions ~�(k)p =2 Sk. Without any additional

regularity this leads to even more pessimistic estimates than for the standard

case.

Theorem 5.1 The truncated monotone multigrid method is globally conver-

gent.

Assume that the discrete problem (2.7) is non{degenerate in the sense of

(4.7). Then the phases of the iterates (u�j )��0 converge to the phases of uj
and the error estimate

kuj � u
�+1
j k � (1 � c(j + 1)�6)kuj � u

�
jk (5.5)

holds, if � is large enough. The positive constant c < 1 depends only on the

ellipticity of a(�; �), on the maximal coe�cient bi, i = 1; : : : ; N , of �, and on

the initial triangulation T0.

As in the standard case, we can derive various improvements of the worst{

case result (5.5). For example, we get a O(j3) estimate, if symmetric smoo-

thers are used.
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6 Numerical Experiments

We will now illustrate the numerical performance of monotone multigrid

methods in the framework of an adaptive algorithm. In this case, the under-

lying hierarchy of triangulations is resulting from the adaptive re�nement of

an initial triangulation T0. The adaptive re�nement strategy and stopping

criteria for the iterative solver on each re�nement level are based on a poste-

riori estimates of the approximation error ku� ~ujk and of the algebraic error

kuj � ~ujk of some given ~uj 2 Sj. A detailed description is contained in [20].

We consider the following model problem involving a jump discontinuity of

Stefan type together with an upper obstacle. We choose the bilinear form

a(�; �) and the functional ` according to

a(v;w) =

Z


(@1v@1w + @2v@2w) dx; `(v) =

Z


f v dx

with a peak source

f(x1; x2) = 3000x1x2(x1 � 1)(x2 � 1)exp
�
�10(0:5 � x1)

2(0:5� x2)
2
�
;

and 
 = (0; 1)� (0; 1). The scalar function � de�ned in (2.4) is given by the

parameters N = 1, �0 = �1, �1 = 0:5, �2 = 0:75, and b0 = 400, f0 = 200,

c0 = 50, b1 = 0, f1 = �100, c1 = �50.

The initial triangulation T0 is obtained by subdividing 
 in four congruent

triangles. We now apply the adaptive algorithm as described in [20], using

the truncated monotone multigrid method as iterativer solver. On each re-

�nement level j the discrete problem is solved up to an (estimated) accuracy

of 0:5% in order to obtain the approximate �nite element solution ~uj 2 Sj.

The whole adaptive algorithm stops as soon as the (estimated) approxima-

tion error ku� ~ujk is less than 5%.

This �nal accuracy is reached after 8 adaptive re�nement steps, providing

the triangulation T8 together with the approximate solution ~u8 as depicted

in Figure 6. Observe the occurrence of a \mushy" region where ~u8 � �1 and

of a contact zone where ~u8 � �2. Both are reected by the adaptively re�ned

mesh.

The complete approximation history is given in Table 6.1. Recall that the

re�nement depth is the maximal number of successive re�nements. The

e�ectivity index is the ratio of the a posteriori estimation and of a su�ciently

accurate approximation of the exact error (cf. e.g. [4, 20] ).
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Figure 6.1: Final Approximation ~u8 and Final Triangulation T8

Level Depth Nodes Iterations est. Approx. Error E�ectivity

0 0 1 2 7.6 % 0.22

1 1 5 2 16.8 % 1.21

2 2 25 2 14.7 % 1.24

3 3 77 2 13.0 % 1.42

4 4 277 3 10.4 % 1.69

5 5 733 3 8.33 % 1.90

6 6 2937 2 6.2 % 2.06

7 7 4413 2 5.6 % 2.06

8 7 7249 2 4.9 % 1.99

Table 6.1: Approximation History

From the moderate number of iterations on each re�nement level it can be

hardly perceived that we are dealing with a nonlinear problem. Only the

severe underestimation of the error on the initial level indicates that it may

be dangerous to start an adaptive algorithm from such a coarse mesh.

In order to compare the convergence properties of the standard monotone

multigrid method (STDKH) and of the truncated version (TRCKH), we now

consider the iterative solution of the discrete problem on the �nal triangu-

lation T8. Starting with the initial iterate u08 = 0, we obtain the algebraic

errors ku8 � u
�
8k, � = 0; : : : ; 20, as shown in Figure 6.

The overall convergence behavior can be divided into a transient phase, domi-

nated by the search for the (discrete) free boundary, and an asymptotic phase,

corresponding to the iterative solution of the reduced linear problem (4.8). As

compared to the standard method STDKH, the truncated version TRCKH
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Figure 6.2: Iteration History: Initial Iterate u0j = 0

exhibits a tremendous improvement of the asymptotic convergence rates,

giving a numerical justi�cation of the truncation of nodal basis functions.

Note that the transient convergence properties remain basically the same.

Replacing the arti�cial initial iterate zero by the interpolation from the pre-

vious level, the transient phase is eliminated from the convergence history.

This is illustrated by Figure 6.

Figure 6.3: Iteration History: Interpolated Initial Iterate

To study the convergence properties for increasing j, we introduce the asymp-

18



totic e�ciency rates �j,

�j =
�0

q
�
�0
j =�

0
j ; j = 0; : : : ; 21; (6.1)

where ��j denotes the algebraic error after � iteration steps and the triangu-

lations T9; : : : ;T21 are obtained by further adaptive re�nement. We choose

�0 such that ��0j < 10:�12. The results are shown in Figure 6.

Figure 6.4: Asymptotic E�ciency Rates

The asymptotic e�ciency rates for both multigrid methods seem to saturate

with increasing j. This is better than predicted by the theoretical results.

Even for the \bad" initial iterate zero, we observed uniform global bounds of

the convergence rates. A theoretical veri�cation of these experimental results

will be the subject of future research.
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