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1. Introduction

In the drift-di�usion model of semiconductor devices the free energy has turned out
to be a very useful quantity. Gajewski and Gröger [7] applied it in the analysis

of the transient initial-boundary value problem. Gajewski [3], [5] also used it to
control the step width in the time discretization. Considered as a functional of
the carrier densities, the free energy is a thermodynamic potential and a convex
functional. With both the properties the free energy becomes a very attractive
quantity. Moreover, as an integral quantity it is not too sensitive to local deviations
of either the carrier densities or the electric �eld. In the case of variable temperature,
however, the free energy is no convex functional.

The main topic of this paper is to set up a frame for an investigation of the energy
model of semiconductor devices in a similar way as H. Gajewski and K. Gröger
dealt with the drift-di�usion model. We formulate the energy model as a system
of balance equations for the carrier densities n and p and for the density u of the
total energy. The non-local electrostatic interaction of the carriers is described by

a boundary value problem for the Poisson equation which includes mixed boundary
conditions. Although function spaces are not speci�ed yet, the thermodynamic
calculus for a system of electrons and holes in a semiconductor device is developed
with regard to functional analysis. We proof, in particular, that the negative entropy
considered as a functional of the densities n, p and u is a convex thermodynamic
potential. The current densities jn and jp of carriers and ju of the total energy
are expressed in the conjugate variables Xn := �n=T , Xp := �p=T and Y :=

1=T , where T denotes the temperature and �n and �p denote the electro-chemical

potentials. In this formulation a Lyapunov function for the system of evolution
equations is de�ned, which is closely related to the negative entropy. The Lyapunov
function also works in the cases of time discretization or space discretization. The
intention to introduce a Lyapunov function forced us to describe quantities like
energy rather explicitly. With regard to the simulation practice, material laws like
e�ective masses are admitted to depend on the temperature. Both the variants, the
case of Boltzmann statistics and the Fermi case, are treated as well as the case of a
non-parabolic band structure.

The paper is organized as follows. Our basic notation is introduced in section
2. Moreover, the electrostatic energy of the system is speci�ed and its functional
derivatives are evaluated. In section 3 the total energy is de�ned starting from the
free energy or from an other suitable thermodynamic potential. Customary versions

of the energy model are derived from the energy balance equation. In section 4
the energy model is formulated in the variables �n=T , �p=T and 1=T , which we
consider as the natural ones. In section 5 a Lyapunov function related to the
entropy is constructed for the energy model. In section 6 the spatial discretization
is described. The calculus is quite analogous. In section 7 the case of a general
dispersion is studied. This case is a little bit di�erent from the cases of parabolic
band structure, because the state equations are more implicit. The convexity of
the potential U(n; p; s) is proved also in this case. In contrast to d2U the quadratic
form d

2
G of the conjugate potential G(�n;�p; T ) is the di�erence d

2
i
G� d

2
e
G of two

positive semide�nite quadratic forms.
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2. Notation. Electrostatic energy

The device occupies a bounded region 
 with the boundary @
 in the Euclidean
space of two or three dimensions. Let q, kB and T � denote the elementary charge, the

Boltzmann constant and a �xed reference temperature inKelvin. Let V = q =kBT
�

denote the (dimension-less) potential of a hole in the electrostatic potential  . Then
the Poisson equation in a semiconductor device with given completely ionized doping
pro�le qd reads

�r(�rV ) = d+ p � n;

where � denotes the scaled dielectric permittivity. The boundary conditions are the
Dirichlet condition V = VD on some part �D of the boundary, a boundary condition
of the third kind,

�@�V + �V = �VG;

on some other part �G of the boundary and the homogeneous Neumann conditions
everywhere else on the boundary. Although function spaces are not speci�ed yet
in this paper, we mention the space H1(
) of quadratic integrable functions which
have quadratic integrable derivatives and the space H1

0 := H
1
0 (
�
 n �D) of functions

� 2 H
1(
) which vanish on �D. The boundary value problem for the Poisson

equation is written as an variational equationZ
�rV � r�d
+

Z
�G

�V �d� =

Z
(d+ p � n)�d
 +

Z
�G

�VG�d�

(� 2 H
1
0 ) for a function V 2 VD +H

1
0 , where VD 2 H

1(
) represents the Dirich-
let data on �D. We assume that the dielectric permittivity is independent of the

temperature and that the heat capacities of the lattice and of the carrier densities
n and p do not depend on the electric �eld. Thus the total energy U of the device
model is a sum of its interior energy U i and of its electrostatic energy U e.

Quantities like energy are functionals of the state represented by a set of independent
state variables and of some parameters like d, VD or VG. In our discussions the
parameters are assumed to be �xed and thus the dependence of the quantities on
them is not indicated. The state can be described by several sets of state variables,
e.g. by n, p and T or by n, p and the entropy density s. Therefore we distinguish
the functionals by an index,

U � U(n; p; s) � U1(n; p; T ) = U
i

1(n; p; T ) + U
e(p� n):

The index is omitted at the thermodynamic potentials.

There are several possibilities to de�ne a functional U e. We prefer the choice

U
e(p � n) =

Z
V
�(p � n)d
 +

1

2

Z
�(rVp�n)

2
d
 +

1

2

Z
�G

�V
2
p�n

d�;

where V = V
� + Vp�n and where V� 2 H

1
0 denotes the solution ofZ

�rV� � r�d
 +

Z
�G

�V��d� =

Z
��d
 (� 2 H1

0 ):(2.1)
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Regarding this integral identity we have

U
e(p � n+ ��) = U

e(p� n) +

Z
V ��d
 +

Z
�(r��)2d
 +

Z
�G

�(��)2d�;

i.e.

hdU
e(p � n); ��i =

Z
V ��d
;

hd
2
U
e(p � n); ��1 
 ��2i =

Z
�rV��1 � rV��2d
 +

Z
�G

�V��1V��2d�:

Sometimes the physically intuitive formal notation with densities is used in the
paper, i.e. U e(p�n) =

R
u
e(p�n)d
 with the generalized density and its derivatives,

u
e(�) = V

�

� +
1

2
�(rV�)

2 +
1

2
�V

2
�
��G;

(ue)0(p� n) = V;

(ue)00(p � n)��1��2 = �rV��1 � rV��2 + �V��1V��2��G:

The di�erentiation of the density has a symbolic meaning only.

An alternative choice of the electrostatic energy would be

~U e(p � n) =

Z
�r(V �

1

2
Vp�n) � rVp�nd
 +

Z
�G

�(V �
1

2
Vp�n)Vp�nd�:

The second order derivative of this functional coincides with that of U e, but its �rst
order derivative contains an additional boundary term

hd ~U e(p� n); ��i =

Z
V ��d
 +

Z
�D

VD�@�V��d�:

Let��(T ) denote the Fermi level of the semiconductor device in the equilibrium state
at the constant temperature T . The electro-chemical potentials of the electrons or
holes are chosen as �d(1)+�n and �d(1)+�p, respectively, but the additive constant

�d(1) will be included into the potential V . The state equations are

n = Nc(T ) exp(�
Ec(T )

T
) exp (

�n + V

T
) =: N (T ) exp (

�n + V

T
);(2.2)

p = Nv(T ) exp(
Ev(T )

T
) exp (�

�p + V

T
) =: P(T ) exp (�

�p + V

T
):(2.3)

in the case B of Boltzmann statistics,

n := Nc(T )F1=2

�
�n + V � Ec(T )

T

�
;(2.4)

p := Nv(T )F1=2

�
�

�p + V �Ev(T )

T

�
:(2.5)

in the case F of Fermi statistics, and

n :=

Z
1

0

ac(!; T )

1 + exp [�
�n+V�Ec(T )

T
]
d!

p :=

Z
1

0

av(!; T )

1 + exp [
�p+V�Ev(T )

T
]
d!:



4 GÜNTER ALBINUS

in the case G of general dispersion. The state densities Nc and Nv are not neces-
sarily proportional to T 3=2, since the e�ective masses, in the case of parabolic band
structure, or the dispersions !c or !v, in general, may depend on T . Of course, the
band edges Ec, Ev and the other material functions may also explicitly depend on
the spatial coordinates. Such a dependence is caused, e.g., by the doping pro�le
or by a heterostructure. We will not indicate, however, such a dependence and use
also the notation Ec(T ) = E � T etc. The notation

F�(x) =
1

�(� + 1)
F�(x) =

1

�(� + 1)

Z
1

0

t
�

exp (t� x) + 1
dt

(� > �1) is used for the Fermi integrals such that F 0

�+1 = F� holds. In the case of

general dispersions the numerators of the integrands denote the surface areas

ab(!; T ) =

Z
!b(p;T )=!

d�(p) (b = c; v)

of the energy levels in the momentum space which are assumed to be �nite.

An upper index C = B; F or G distinguishes the Boltzmann case, the Fermi case
and the case of a general dispersion if a distinction is necessary. Some letters are
used with several meanings, e.g., the letter n denotes the density of electrons and

it is used as the lower index of state variables of the electrons. In section 6 the
letter n is also used as lower index and as upper index for the components of grid
vectors associated with the triangulation of the domain. We hope, however, that
this multiple use does not cause any confusion.

The potentials �n and �p here have the opposite sign as the quasi-Fermi levels 'n
and 'p in [14], [15]. Therefore the particle �uxes and the total heat �ux are

jn = �Dnn(r�n + PnrT );(2.6)

jp = Dpp(r�p � PprT );(2.7)

j
Q = ��rT + TPnjn + TPpjp;(2.8)

respectively, with the total thermal conductivity

� = �L + n(�n=T �DnP
2
n
T ) + p(�p=T �DpP

2
p
T ):

(cf. [14] or [15]). The heat �ux is, of course, primarily an expression in terms of the

thermodynamic forces, but it can be represented in the given form.

3. Free energy, total energy and the energy balance equation

We consider a system, which consists of electrons and holes and of a lattice with an
unspeci�ed density fL(T ) of its free energy. In analogy to the ideal gas the density
of the free energy of the system is given by

f
B(n; p; T ) = u

e(p � n) + fL(T )

+ nT log [n=N (T )] � nT + pT log [p=P(T )] � pT:

in the Boltzmann case. The third summand on the right-hand side and the �fth
one contain, in particular, the interaction terms nEc and pEv.
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In the Fermi case, one can start with the thermodynamic potential


(T; �) = �cT
5=2
F3=2(

�

T
);

of a Fermi gas (cf. [10],(56.6)). The density of the gas and the density of its free
energy are n = �@�
(T; �) and f(n; T ) = n� + 
(T; �). Accordingly, the density

of the free energy of our system is given by

f
F (n; p; T ) = u

e(p � n) + fL(T )

+ nTF
�1
1=2

[n=Nc(T )] � TNc(T )F3=2 � F
�1
1=2

[n=Nc(T )] + nEc(T )

+ pTF
�1
1=2

[p=Nv(T )] � TNv(T )F3=2 � F
�1
1=2

[p=Nv(T )] � pEv(T ):

The free energy F (n; p; T ) =
R
f(n; p; T )d
 as a functional of n, p and T is a

thermodynamic potential. Regarding (ue)0(p � n) = V etc, one straightforward
checks the usual thermodynamic relations like @nf = �n and @pf = ��p, meanwhile
@Tf = �s de�nes the entropy density, namely,

s
B

1 (n; p; T ) = �f
0

L
(T )� n log [n=N (T )] + n + nTN

0(T )=N (T )

�p log [p=P(T )] + p + pTP
0(T )=P(T );(3.1)

s
F

1 (n; p; T ) = �f
0

L
(T ) � nE

0

c
(T ) + pE

0

v
(T )

� nF
�1
1=2(n=Nc � T ) + (TNc � T )

0

F3=2 � F
�1
1=2(n=Nc � T )(3.2)

� pF
�1
1=2

(p=Nv � T ) + (TNv � T )
0

F3=2 � F
�1
1=2

(p=Nv � T ):

The (generalized) density of the total energy of the system is the partial Legendre
transform u(n; p; s) := f(n; p; T ) + Ts, but more familiar is the density given as a
function of n, p and T ,

u
B

1 (n; p; T ) := u
e(p � n) +

Z
T

cL + nT
2N

0(T )

N (T )
+ pT

2P
0(T )

P(T )
;

u
F

1 (n; p; T ) = u
e(p� n) +

Z
T

cL

+ n[Ec(T )� TE
0

c
(T )] + T

2
N
0

c
(T )F3=2 � F

�1
1=2

[n=Nc(T )]

� p[Ev(T )� TE
0

v
(T )] + T

2
N
0

v
(T )F3=2 � F

�1
1=2

[p=Nv(T )]

with the notation
R
T
cL := fL(T )� Tf

0

L
(T ) for the interior energy of the lattice.

Following Wachutka the �ux of total energy reads

ju = ��rT + (TPn + �n)jn + (TPp � �p)jp

and the balance of the total energy _u+r � ju = 0 for a thermodynamic process in
our system can be written as a heat equation

@Tu1(n; p; T ) _T � r � (�rT ) = H

with the right-hand side

H = �r � [(TPn + �n)jn + (TPp � �p)jp] � @nu1(n; p; T ) _n � @pu1(n; p; T ) _p

= �r � [(TPn + �n)jn + (TPp � �p)jp] + @nu1(n; p; T )(r � jn +R)

+ @pu1(n; p; T )(r � jp +R);
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where R denotes the net recombination rate.

The di�erential of the total energy for a �xed doping pro�le and �xed boundary
values can also be written as

du = du
i

1(n; p; T ) � V dn + V dp:

Thus the balance of the total energy becomes

@tfu
i

1[n(t); p(t); T (t)]g + V ( _p� _n) + r � ju = 0;

where fui1[n(t); p(t); T (t)]g indicates that the density of the interior energy of the
system during a thermodynamic process is considered as a function on space and
time. Regarding the continuity equations for the densities n and p we get just the
balance equation of the interior energy

@tfu
i

1[n(t); p(t); T (t)]g +

r � [��rT + (TPn + �n + V )jn + (TPp � �p � V )jp](3.3)

= rV � (jn � jp)

with the conventional Joule heating term �r � jel on the right-hand side. This
equation is in the spirit of [1] if the relations

PnT + �n + V = TfPn + log [n=N (T )]g;

PpT � �p � V = TfPp + log [p=P(T )]g

are regarded.

Remark 3.1. If the functional ~U e is chosen as the electrostatic energy, then an ad-
ditional boundary term

R
�D
VD�@�V _p� _n appears in the energy balance equation. As

far as we know such boundary terms are not used in energy balance equations yet.
The lack of the mentioned boundary terms might be a serious lack of the usual
energy balance equations. The functional U e is the correct one in connection with
the energy balance equations used in simulation practice.

4. Natural variables for the energy model

The fundamental thermodynamic identity

du = �ndn� �pdp + Tds(4.1)

(which is easily checked by applying the formulas u1 = f�T@Tf = f+Ts, @nf = �n

and @pf = ��p) o�ers the possibility to substitute the energy balance equation by
the entropy balance equation. This possibility looks attractively, since the gradients
of �n, �p and T are a basis in the space of thermodynamic forces and since s is a
density like n and p (cf intensive and extensive state variables). There are deeper
reasons to consider n, p and s together with �n, �p and T as `natural coordinates'
for the energy model. The coe�cient matrix, which assigns the vector of the current
densities with the components jn, jp and js to the vector of the gradients of �n,
��p and T , is symmetric positive semide�nite according to the Onsager symmetry.
Moreover, the thermodynamic potential U(n; p; s) is a convex functional (cf below).
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Proposition 4.1. If the state equations are regarded, the system of equations

_n +r � jn = �R

_p+r � jp = �R(4.2)

_u+r � ju = 0

is equivalent to the system of equations

_n+r � jn = �R

_p +r � jp = �R(4.3)

_s+r � js =
�n � �p

T
R +

1

T
(�r�n � jn +r�p � jp �rT � js);

where0
@ jn

jp

js

1
A = �

0
@ nDn 0 nDnPn

0 pDp pDpPp

nDnPn pDpPp
�

T
+ nDnP

2
n
+ pDpP

2
p

1
A
0
@ r�n

�r�p

rT

1
A :

Proof. The di�erentials in (4.1) may be substituted by the time derivatives of the
corresponding state variables in a thermodynamic process. Thus we get

_s =
1

T
( _u� �n _n+ �p _p)

=
1

T
[�r � ju + �n(r � jn +R) ��p(r � jp +R)]

=
R

T
(�n � �p)�r � [

1

T
(ju � �njn + �pjp)]

+
1

T
(r�p � jp �r�n � jn) +r(

1

T
) � (ju � �njn + �pjp):

The last identity is written as the entropy balance equation

_s+r � js =
�n � �p

T
R+

1

T
(�r�n � jn +r�p � jp �rT � js)

with the entropy �ux

js :=
1

T
j
Q

= �

�

T
rT + Pnjn + Ppjp:

Remark 4.1. Both the systems of evolution equations have to be supplemented by
initial conditions and by boundary conditions. Initial data might be n0, p0 and T0.
These data allow to evaluate u0 or s0. Concerning the boundary conditions we have

� � ja = 0 on @
 n �D (a 2 fn; p; u or sg)

in mind, meanwhile n, p and T are prescribed on �D by means of either ~�n, ~�p and
~T or ~Xn, ~Xp and ~Y , such that �n �

~�n 2 H
1
0 etc.

Remark 4.2. In the equivalent `entropy model' (4.3) the Onsager symmetry is per-
fectly re�ected. Moreover, the right-hand side of the entropy balance equation is
the sum of the entropy production rates due to the recombination and due to the
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�uxes. The entropy production rate of the �uxes can be written as the positive
semide�nite quadratic form

1

T

�
r�n �r�p rT

�
�0

@ nDn 0 nDnPn

0 pDp pDpPp

nDnPn pDpPp
�

T
+ nDnP

2
n
+ pDpP

2
p

1
A
0
@ r�n

�r�p

rT

1
A :

The entropy model provides an argument for choosing the opposite sign for the

electro-chemical potential. This is a reason why we have not worried about the
di�ering signs of our electro-chemical potentials and Wachutka's quasi-Fermi levels.
The entropy model contains terms with products of the gradients of the sought
functions. This seems to be a disadvantage of the entropy model compared with
the energy model, at least from the point of view of partial di�erential equations.
There is, however, the possibility to write also the energy model in a symmetric
form.

The state variables s and u can exchange their roles. The identity ds = (1=T )du�

(�n=T )dn+(�p=T )dp shows that the state variables ��n=T , �p=T and 1=T are the
conjugate variables of n, p and u. Choosing their gradients as a basis in the space
of thermodynamic forces we get a symmetric version of the energy model. We have,
indeed, 0

@ jn

jp

ju

1
A = Dr

0
@ ��n=T

�p=T

1=T

1
A(4.4)

with

D =

0
@ nTDn 0 nTDn(TPn + �n)

0 pTDp pTDp(TPp ��p)

nTDn(TPn + �n) pTDp(TPp � �p) D

1
A

and

D = T
2
�+ nTDn(TPn + �n)

2
+ pTDp(TPp � �p)

2
:

The following theorem is of interest, since the identity _u = �n _n � �p _p + T _s holds
for a thermodynamic process in our system. This identity makes the functionals
U(n; p; s) or S(n; p; u) be candidates for Lyapunov functions of the entropy model
(4.3) or of the energy model (4.2) in natural coordinates with the current densities
(4.4).

Theorem 4.1. The functional U = U(n; p; s) is convex and the functional S =

S(n; p; u) is concave.

Proof. The proofs of both the assertions are similar with the di�erence that energy
and entropy exchange their roles. We will prove that the 3� 3 matrix U = ((Uab)),

Uab = h@a@bU(n; p; s); �a
 �bi (a; b 2 fn; p; sg);

is positive semide�nite for any state (n; p; s) and arbitrary variations �n; �p; �s,
meanwhile the analogous matrix S is negative semide�nite. If no variation �a van-
ishes identically, the matrices are de�nite. The functionals U and S are given by
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the densities u1 = u
e+ui1 or s1 from the section 3, respectively, but in wrong coordi-

nates. We use the notation wa for the partial derivative with respect to a 2 fn; p; Tg
of any function w = w(n; p; T ) = w(x; t; n; p; T ). We have

dU = h(U e)0(p � n); �p� �ni+

Z
(ui1n�n+ u

i

1p�p+ u
i

1T�T )d
 =:

Z
�ud
;

�s = s1n�n+ s1p�p+ s1T�T:

Because of Ts1T = u1T the summand u1T�T in dU can be substituted by

u1T�T = T (�s� s1n�n� s1p�p)

and the summand s1T�T in dS can be substituted by

s1T�T =
1

T
[�u� u

i

1n�n� u
i

1p�p� V (�n� �p)]:

Substituting �T in this way we get the well known identities

dU =

Z
(�n�n� �p�p+ T�s)d
 =: Un + Up + Us

and

dS =

Z
(�

�n

T
�n+

�p

T
�p+

1

T
�u)d
 =: Sn + Sp + Su:

Considering dU and dS for �xed functions �n, �p, �s, or �u as functionals of n, p and
s or u, given in the coordinates n, p and T we calculate d2U and d2S in the same
way. As the coe�cients of �T are di�erent from u1T or s1T , we need the assumption

u1T > 0.

For a moment we consider the particular case that the band edges and the e�ective
masses do not depend on T . In this model case we have uB1T = cL(T )+

3
2
(n+p) > 0,

meanwhile 0 < u
F

1T is not so obvious, but it will be proved below in a lemma. In
general, u1T > 0 is a reasonable condition on N and P or on Nc, Ec, Nv, and
Ev, i.e. on the dependence of the band edges and of the e�ective masses from the
temperature, since u1T is the heat capacity of the system.

The calculations are straightforward excepted, maybe, the evaluation of an expres-
sion like h@n

R
V

T
�n; �ni, which arises in h@nSn; �ni. To explain the result

� h@n

Z
V

T
�n; �ni =

Z
1

T
�(rV�n)

2
d
 +

Z
�G

1

T
�(V�n)

2
d�;

we consider a di�erentiable map f : X 7! Y of a Banach space into a Banach space
and a linear map Au : Y 7! Z of Y into a Banach space (u might be a parameter
from another Banach space). The di�erential df(x) of f and the di�erential dg(x)

of the composite mapping g = Au � f for a �xed x are linear mappings from X into
Y or Z, respectively, for which hdg(x); �xi = hAu � df(x); �xi = hAu; hdf(x); �xii

holds. In our case, V 2 Y and Au(V ) =
R

�n

T
V d
.

We consider d2U(n; p; s; �n; �p; �s) as a quadratic form on the real three-dimensional
linear space which is spanned by �n, �p and �s.This form is represented by the 3�3
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matrix U,

U =

Z
1

s1T

0
@ (s1n�n)

2
s1n�ns1p�p �s1n�n�s

s1n�ns1p�p (s1p�p)
2

�s1p�p�s

�s1n�n�s �s1p�p�s (�s)2

1
A d


+

Z 0
@ �(rV�n)

2 + T

n
(�n)2 ��rV�n � rV�p 0

��rV�p � rV�n �(rV�p)
2 + T

p
(�p)2 0

0 0 0

1
Ad


+

Z
�G

�

0
@ V

2
�n

�V�nV�p 0

�V�pV�n V
2
�p

0

0 0 0

1
A d�:

The matrix U has obviously the structure

U =

0
@ xx+ uu+ �� xy � uv �xz

xy � uv yy + vv + �� �yz

�xz �yz zz

1
A

with three di�erent scalar products xy, �� and uv.

d
2
S and S are calculated quite analogously. The matrix has the same structure with

the opposite sign.

The proof will be �nished by the following lemma.

Lemma 4.1. The matrix U has nonnegative eigenvalues only.

Proof. The matrix can be considered as a quadratic form on the real three-
dimensional linear space spanned by �n, �p, and �s. Let us consider the restrictions
of the quadratic form on each two dimensional subspace.

At �rst we consider the subspace spanned by �n 6= 0 and �s 6= 0. The matrix
corresponding to this restriction is�

xx+ uu+ �� �xz

�xz zz

�
:

Their eigenvalues are positive, since

0 < xx+ uu+ �� + zz;

0 <
1

4
(xx+ uu+ �� � zz)2 + (xz)2

=
1

4
(xx+ uu+ �� + zz)

2
� (xx+ uu+ ��)zz + (xz)

2
;

(xz)
2
� (xx)(zz) < (xx+ uu+ ��)zz

=
1

4
(xx+ uu+ �� + zz)2 �

1

4
(xx+ uu+ �� � zz)2:

The same argument holds for the subspace spanned by �p 6= 0 and �s 6= 0.
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Finally we consider subspaces spanned by vectors satisfying

a�n+ b�p� �s = 0

for arbitrary �xed real a and b. The matrix corresponding to this restriction is

�

�
xx+ uu+ �� � 2axz + a

2
zz xy � uv � ayz � bxz + abzz

xy � uv � ayz � bxz + abzz yy + vv + �� � 2byz + b
2
zz

�

= �

�
(x� az; x� az) + uu+ �� (x� az; y � bz)� uv

(x� az; y � bz)� uv (y � bz; y � bz) + vv + ��

�
:

Similar arguments as in the �rst case hold again.

Remark 4.3. The assertions of the theorem also hold for

~U(n; p; s) :=

Z
~u1(n; p; T )d
 and ~S(n; p; ~u) :=

Z
s1(n; p; T )d
;

~u = ~u1(n; p; T ) = ~ue(p � n) + u
i

1(n; p; T ). Using the functions �u, �n and �p from
above we get

d ~U =

Z
�u+

Z
�D

VD�@�V�p��nd�;

d ~S(n; p; ~u; �n; �p; �u) = dS(n; p; u; �n; �p; �u) +

Z
�D

1

T
VD�@�V�p��nd�;

but d2 ~U = d
2
U and d2 ~S(n; p; ~u) = d

2
S(n; p; u).

In the Fermi case the partial derivative sF1T of sF1 with respect to T is

s
F

1T =
1

T
u
F

1T =
cL � T

T
� nE"c(T ) + pE"v(T )

+ (TNc � T )"F3=2 � F
�1
1=2

(n=Nc � T ) � T
(nN 0

c
� T )2

Nc(T )
3

1

F
�1=2 � F

�1
1=2

(n=Nc � T )

+ (TNv � T )"F3=2 � F
�1
1=2

(p=Nv � T ) � T
(pN 0

v
� T )2

Nv(T )3

1

F
�1=2 � F

�1
1=2

(p=Nv � T )
:

In the model case in which the band edges and the e�ective masses do not depend
on T the inequalities sF

T
> 0 and uF

T
> 0 follow from the next lemma with � = 1=2

and with the argument u = F
�1
1=2

(n=cnT
3=2), since

15

4

cnT
3=2

T
F3=2 � F

�1
1=2

(n=cnT
3=2) �

9

4

n
2

cnT
5=2

1

F
�1=2 � F

�1
1=2

(n=cnT 3=2)

=
9

4
cnT

1=2[
5

3
F3=2(u) �

F1=2(u)
2

F
�1=2(u)

]:

The proof of the following lemma has been given by my colleague H. Stephan.

Lemma 4.2. The inequality

(1 +
1

� + 1
)F�+1 �

F
2
�

F
0

�

> 0

holds everywhere on the real line for any � > �1.
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Proof. Since F 0

�
> 0 everywhere on the real line, the inequality is equivalent to

G(� + 1)G(� � 1) � G(�)2 > 0

with the function

G(�) = (�+ 1)

Z
1

0

t
�

et�u + 1
dt =

Z
1

0

t
�+1

e
t�u

1 + et�u
dt =

Z
dp�(t):

We observe G(k)(�) =
R
(log t)kdp�(t) for the k

th derivative with respect to �. The

Jensen inequality is applied with the convex function x2, i.e.

[

Z
log tdp�(t)=

Z
dp�(t)]

2
<

Z
(log t)2dp�(t)=

Z
dp�(t);

i.e. G(�)G"(�) > G
0(�)2. The function H(�) := log [G(�)] satis�es

H"(�) =
1

G"(�)2
[G(�)G"(�) �G

0(�)2] > 0;

i.e.

log [
G(�� 1)G(� + 1)

G(�)2
] > 0;

i.e. the assertion.

We �nish this section with a remark on Fermi integrals. The inequality of the lemma
can be written in the form

1

�+ 1
F�+1F

0

�
> F

2
�
�F�+1F

0

�
= F

2
�
[
F�+1

F�

]0

The sign of the di�erence on the right-hand side of the inequality is also of interest
(cf. [4]).

Lemma 4.3. The inequalities

F�(v)

F
0

�
(v)

>
F�(u)

F
0

�
(u)

(u < v)

hold for any Fermi integral F�, � > �1.

Proof. Let us consider the di�erence

A : = (�+ 1)e�u�v
Z

1

0

t
�
e
t�u

(1 + et�u)2
dt

Z
1

0

t
�
e
t�v

(1 + et�v)2
dt[
F�(v)

F
0

�
(v)

�

F�(u)

F
0

�
(u)

]

=

Z
1

0

t
�
e
t

(eu + et)2
dt

Z
1

0

t
�+1

e
t

(ev + et)2
dt �

Z
1

0

t
�
e
t

(ev + et)2
dt

Z
1

0

t
�+1

e
t

(eu + et)2
dt

=

Z
[(ev + e

x)2(eu + e
y)2 � (eu + e

x)2(ev + e
y)2]yd�

= (ev � e
u)

Z
(ey � e

x)yd� = (ev � e
u)

Z
y>x

(ey � e
x)(y � x)d� > 0

with the measures

d�(x; y) =
x
�
y
�
e
x+y

dxdy

(eu + ex)2(eu + ey)2(ev + ex)2(ev + ey)2
= d�(y; x)

and d�(x; y) = [(eu + e
v)(ey + e

x) + 2eu+v + 2ex+y]d�(x; y) on R2
+.
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Since F 0

�
(u) > 0 for any � > �1 the concavity of the functions F�1

�
� F�+1 is

rigorously proved for any � > �1.

5. A Lyapunov function for the energy model

In this section a Lyapunov function is constructed for the energy model (4.2) in
natural coordinates n, p, u and Xn = �n=T , Xp = �p=T , and Y = 1=T . To this

aim we need the conjugate potential H(Xn;Xp; Y ) of the entropy S(n; p; u). A state
variable like n will be denoted by ni, if we want to emphasize that it is considered
as a function of the intensive state variables (Xn;Xp; Y ). Sometimes it is more
convenient to indicate the dependence of a state variable upon the electrostatic
potential separately. The indicator will be the lower index 2, i.e.

n = ni(Xn;Xp; Y ) = n2[Xn;Xp; Y; Vi(Xn;Xp; Y )];

where Vi(:) 2 H
1
0 denotes the solution of the nonlinear Poisson equation

Z
�rW � r�d
+

Z
�G

�W�d� =

Z
[p2(:;W )� n2(:;W )]�d
 (� 2 H1

0 ):(5.1)

Remark 5.1. Let (H1
0 )
0 denote the dual space of H1

0 and let X and Y denote
unspeci�ed function spaces of either Xn or Xp and Y . The nonlinear operators
P2(Xn;Xp; Y; :) : H

1
0 7! (H1

0 )
0 de�ned by

hP2(:;W ); �i =

Z
f�rW � r�d
 + [n2(:;W )� p2(:;W )] �g d
 +

Z
�G

�W� d�

are strongly monotone operators. The nice properties also appear in the linearized
equations. The coe�cient of the additional term on the left-hand side in each
equation is a nonnegative function.

Remark 5.2. Let Pi � X �X �Y �H
1
0 denote the manifold of zeros of the map

P2 : X �X �Y � H
1
0 7! (H1

0 )
0. The projection �i : Pi 7! X �X � Y is a chart

map of the manifold and Hi = H2 � �
�1
i
.

Because of the identities

@ns(n; p; u) = �Xn; @ps(n; p; u) = Xp and @us(n; p; u) = Y
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the density of the conjugate potential H of S is de�ned by

h0 = �nXn + pXp + uY � s = �nXn + pXp + f=T ;

h
B = �n

B

i
� p

B

i
+ Y fL(1=Y ) + h

e
;

h
F
= �Nc(1=Y )F3=2[ Xn + Y (V

�

+ Vi � Ec(1=Y ))]

�Nv(1=Y )F3=2[�Xp � Y (V � + Vi �Ev(1=Y ))]

+ Y fL(1=Y ) + h
e
;

h
e = Y

�
1

2
�(rVi)

2 +
1

2
�V

2
i
��G � (pi � ni)Vi

�
:

Note that he also di�ers in both the cases B and F like ni, pi and also Vi do.

We want to check the relations

h@XnH; �Xni = �

Z
n�Xnd
; :::; h@YH; �Y i =

Z
u�Y d
:

We start with the identities

h@�H; ��i =

Z
�� @�h2[:; Vi(:)] d
 +

Z
h@�Vi; ��i @Vih2[:; Vi(:)] d


(� 2 fXn;Xp; Y g). The function

h@�Vi; ��i =: ��Vi(Xn;Xp; Y )

in H1
0 is the solution of the linearized Poisson equationZ
[�rW � r�+W@Vi(n2 � p2) �] d
 +

Z
�G

�W� d�

=

Z
�� @�(p2 � n2) � d
 (� 2 H1

0 ):(5.2)

Let us consider h@WH2(:;W ); �W i. SinceZ
�W@W

�
n
B

2 (:;W ) + p
B

2 (:;W )
�
d
 =

Z
�W Y

�
n
B

2 (:;W )� p
B

2 (:;W )
�
d


and Z
�W@W [NcF3=2(YW + :::) + NvF3=2(�YW � :::)] d


=

Z
�W Y

�
n
F

2 (:;W )� p
F

2 (:;W )
�
d
;

the identity

h@WH2(:;W ); �W i =

Z
�G

Y �W�W d�

Z
Y f�r�W � rW � �W@W [n2(:;W )� p2(:;W )] Wg d
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holds. The key of the proof is to understand that the variations ��Vi, which are
solutions of (5.2) also satisfy

h@ViH2(:; Vi); ��Vii =

Z
Y ��@� [n2(:; Vi)� p2(:; Vi)] Vi d


because of H = H2 � �
�1
i

lives on the manifold Pi. Then the relations follow easily
from

h@�H; ��i =

Z
�� f @�h2[:; Vi(:)] + Y @� [n2(:; Vi)� p2(:; Vi)] Vig d
:

Remark 5.3. We had to learn to deal with mappings into function spaces Z � Z�

living on the domain 
 as well as on a part of the boundary. The same situation
occurs, of course, with the generalized energy density u. The same situation also
occurs, if we start with the energy density ~u = u

i + ~ue. We know from section 2
and from the third remark in section 4 that

h@n
~U; �ni =

Z
�n�n�

Z
�D

VD�@�V�nd�:

In the case of the energy density ~u the corresponding electro-chemical potential ~�n

is a functional living partially on a part of the boundary. This construction looks

rather formally, of course, and one might be inclined to stick to the state variable
�n. Doing so, however, the thermodynamic calculus is left.

According to our de�nition of �n, �p and T the equilibrium state of our system is

��n = ��p = 0; �T = 1; or �Xn = �Xp = 0; �Y = 1:

The electrostatic potential of the system in the equilibrium state is �V = V
� + �Vi

with the solution �Vi of the nonlinear Poisson equation

Z
�rW � r� d
 +

Z
�G

�W� d� =

Z
[p2(�:;W )� n2(�:;W )]�d


=

Z
[�p2(:;W )� �n2(:;W )] � d


(� 2 H1
0 ). Note that

�V = �V C are di�erent in the cases C = B or F .

For boundary values of Xn, Xp and of Y on �D which are compatible with the
equilibrium state we set

�S�(n; p; u) :=

Z �
n(Xn �

�Xn)� p(Xp �
�Xp)� u(Y � �Y )

�
d


+H(Xn;Xp; Y )�H( �Xn;
�Xp;

�Y ):

This functional is nonnegative and convex. If a solution of the system (4.2) satis�es
boundary values on �D which are compatible with the equilibrium state then the
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estimate

d

dt
f �S�[n(t); p(t); u(t)]g

=

Z
f _n(t)[Xn(t)� �Xn]� _p(t)[Xp(t)� �Xp]� _u(t)[Y (t)� �Y )]g d


=

Z
fjn � r[Xn(t)� �Xn]�R[t][Xn(t)� �Xn]� jp � r[Xp(t)� �Xp]

+ R[t][Xp(t)� �Xp]� ju � r[Y (t)� �Y ]g d


= �

Z
r

0
@ �[Xn(t)� �Xn]

Xp(t)� �Xp

Y (t)� �Y

1
A �Dr

0
@ �[Xn(t)� �Xn]

Xp(t)� �Xp

Y (t)� �Y

1
A d


�

Z
R[t][Xn(t)� �Xn �Xp(t) + �Xp] d
 � 0

is ful�lled. Here we used the properties rXn(t) = r[Xn(t)� �Xn] and Xn(t)� �Xn 2

H
1
0 etc. The total dissipation rate on the right-hand side is the sum D = Df +Dr

of the dissipation rate Df due to the �ux and of that one due to the generation and

recombination of carriers. The density R[t][Xn(t)� �Xn �Xp(t)+ �Xp] of Dr already
appeared in the entropy balance equation. It denotes the entropy production rate
due to the recombination and generation of electrons and holes. Therefore the
term has to be nonnegative. This property is easily proved in the Boltzmann case
for typical net recombination rates like R = R0(np � NP). At least, if this net
recombination rate is written in the form R = R(exp (Xn �Xp) � 1) it has the
property in the Fermi case, too.

The right-hand side of the estimate is the negative sum of the dissipation rates due
to the �uxes and due to the recombination or generation of carriers. The estimate
can also be written in the form

�S�[n(t); p(t); u(t)]� �S�[n(0); p(0); u(0)] �

Z
t

0

D[n(� ); p(� ); u(� )] d�:(5.3)

The functional �S� can also be used in the case of time discretization. Let t0 = 0 <

t1 < ::: < tK be given. Let denote �k = 1=(tk � tk�1) and � := �k(t � tk�1). We
consider the system of equations

�k(nk � nk�1) +r � j
k

n
= �R

k

�k(pk � pk�1) +r � j
k

p
= �R

k(5.4)

�k(uk � uk�1) +r � j
k

u
= 0

for 0 < k � K with given initial data n0, p0 and u0 and with the current densities0
@ j

k

n

j
k

p

j
k

u

1
A = Dk

r

0
@ �(Xn)k

(Xp)k
Yk

1
A :(5.5)

The unknown new values (Xn)k ,..., uk are used as much as possible in the coe�cients
D

k and right-hand sides Rk of the equations, but we will be forced to use the already
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known values (Xn)k�1 ,..., uk�1 in much places. We interpolate the densities n, p
and u linearly, i.e. ~n(t) = nk�1 + � (nk � nk�1) � nk�1 + ��kn etc on the interval

Sk =]tk�1; tk]. From these state variables we obtain the other ones like ~Y by the state
equations (if we need these values at all!). We get, in particular, �S�[~n(t); ~p(t); ~u(t)].
This function satis�es

d

dt
f �S�[~n(t); ~p(t); ~u(t)]g

= �k

Z
f�kn[ ~Xn(t)� �Xn]��kp[ ~Xp(t)� �Xp]��ku[ ~Y (t)� �Y )]g d


� �k

Z
f�kn[(Xn)k � �Xn]��kp[(Xp)k � �Xp]��ku[Yk � �Y )]g d


=

Z
fj

k

n
� r[(Xn)k � �Xn]�R

k[(Xn)k � �Xn]� j
k

p
� r[(Xp)k � �Xp]

+ R
k[(Xp)k � �Xp]� j

k

u
� r[Yk � �Y ]g d
 =: �Dk

f
�D

k

r
� 0:

The �rst estimate is proved by a convexity argument, namely

~n(t)� nk = (� � 1)�kn

and thus

�k

Z
f�kn[ ~Xn(t)� (Xn)k]��kp[ ~Xp(t)� (Xp)k]��ku[ ~Y (t)� Yk]g d


= �

�k

1� �

Z
f[~n(t)� nk][ ~Xn(t)� �Xn]� [~p(t)� pk][ ~Xp(t)� �Xp]

� [~u(t)� uk][ ~Y (t)� �Y )]g d


=
�k

1� �
fh@Xn

~H [t]� @XnH
k
; ~Xn(t)� �Xni + h@Xp

~H[t]� @XpH
k
; ~Xp(t)� �Xpi

+ h@Y ~H[t]� @YH
k
; ~Y (t)� �Y ig � 0;

since the conjugate potential H of the concave potential S is also concave.

The estimates for �S�[t] and their discrete analogue are of interest in so far as
they show that the mathematical model re�ects the stability of the equilibrium
state in some way. Initial-boundary value problems for (4.2) with Dirichlet data

( ~Xn;
~Xp;

~Y ) 6= ( �Xn;
�Xp;

�Y ) are more realistic. In this case, the functional

~S�(n; p; u) :=

Z h
n(Xn �

~Xn)� p(Xp �
~Xp)� u(Y � ~Y )

i
d


+H(Xn;Xp; Y )�H( ~Xn;
~Xp;

~Y )
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satis�es the estimate

d

dt
f ~S�[n(t); p(t); u(t)]g

=

Z
f _n(t)[Xn(t)� ~Xn]� _p(t)[Xp(t)� ~Xp]� _u(t)[Y (t)� ~Y )]g d


=

Z
fjn � r[Xn(t)� ~Xn]�R[t][Xn(t)� ~Xn]� jp � r[Xp(t)� ~Xp]

+ R[t][Xp(t)� ~Xp]� ju � r[Y (t)� ~Y ]g d


= �

Z
r

0
@ �[Xn(t)� ~Xn]

Xp(t)� ~Xp

Y (t)� ~Y

1
A �Dr

0
@ �[Xn(t)� ~Xn]

Xp(t)� ~Xp

Y (t)� ~Y

1
Ad


�

Z
R[t][Xn(t)� �Xn �Xp(t) + �Xp] d


= �

Z
r

0
@ �[Xn(t)� ~Xn]

Xp(t)� ~Xp

Y (t)� ~Y

1
A �Dr

0
@ � ~Xn

~Xp

~Y

1
A d


+

Z
R[t][ ~Xn(t)� �Xn �

~Xp(t) + �Xp] d
:

The additional last term on the right-hand side is not de�nite in general, but linear

in the gradients of ~Xn etc. Thus one can try to get an estimate for it by the
dissipation rate. The chances that such an estimate hold are not so bad if the

stationary problem with the boundary values ( ~Xn;
~Xp;

~Y ) on �D has an unique

solution and if ( ~Xn;
~Xp;

~Y ) is just this solution.

Remark 5.4. The Scharfetter-Gummel procedure, which has been successfully ap-
plied in the drift-di�usion model, has an analogue for the system (5.4) coupled with
(5.1): The whole system at time tk can iteratively be solved, solving (5.4) with the
state equations n = n2(Xn; Y;W0) etc with frozen electrostatic potential in a �rst
part of one iteration step, but (5.1) with the new values of Xn, Xp, Y in a second
part.

6. Spatial discretization of the energy model discretized in time

We apply a box method to discretize the system of equations (5.4), (5.5) spatially.
We consider a triangulation S of the domain 
 with the grid points r1,..., rN . Let
Sn (1 � n � N) denote the ordered set simplices Sm 2 S which have one of their
corners in rn. Let Rn denote the set of all neighbours rl, i.e. the �nite line from rn

to rl is the edge of a simplex of the triangulation. Let

B
n := fr 2 
 : jr� rnj =

N

min
l=1

jr� rljg
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denote the box or Voronoj cell around rn. If the triangulation is su�cient regular (cf
Delaunay property) the boundary @Bn consist of plane parts Al

n
such that rl�rn =

dnln
l

n
with the exterior normal unit vector on Al

n
(rl 2 Rn). For a density u on 


we set Un =
R
Bn ud
. Thus we get

�k(U
n

k
� U

n

k�1) = �

Z
Bn

r � j
k

u
d
 = �

X
Rn

Z
Al
n

n
l

n
� j

k

u
dA �

X
Rn

dnlI
k

u
(nl):

for the last equation of the system (5.4). We need an expression for the current

I
k

u
(nl) in the edge from rn to rl during the k-th time step.

The one-dimensional current equation corresponding to (5.5) reads

aX
0

n
+ rY

0 = In

bX
0

p
+ sY

0 = Ip

rX
0

n
+ sX

0

p
+ cY

0 = Iu

with constant right-hand sides. A rough approximation arises if the coe�cients f
are substituted by the average �fk�1 � 1

2
(fk�1

n
+f

k�1
l

) of their values in the endpoints
of the edge at the time tk�1. A more re�ned approximation arises if the coe�cients
are considered as a�ne functions f(x) = fn + f

0
x (0 < x;�l) on the edge. The full

program0
@ �Xn

�Xp

�Y

1
A =

Z
l

0

1

abc� as2 � br2

0
@ bc� s

2
rs �br

rs ac� r
2
�as

�br �as ab

1
A dx �

0
@ In

Ip

Iu

1
A ;

however, will be too expensive. A lot of compromises can be suggested. Above all,
coe�cients with jfn � flj �

�f should be substituted by �f .

The coe�cients of the spatially discretized thermodynamic forces �Xn are state
variables, which depend on the state variables in the endpoints of the edge. We
have the possibility to choose the old values or the new unknown ones. A good
choice will be characterized by the properties that the new values are taken as often
as possible, but that the equations, which become nonlinear if unknown new values

are regarded in the coe�cients, have still a good behaviour. Summarizing all box
balance equations we get a �nite system of equations

�k

0
@ Nk �Nk�1

Pk � Pk�1

Uk � Uk�1

1
A+ ~D

k

0
@ �(Xn)k

(Xp)k
Yk

1
A =

0
@ � ~Rk

�
~Rk

0

1
A

(0 < k � K) for the grid vectors Nk, ..., Yk with given initial data N0, P0 and U0.

This system has to be completed by the discretized Poisson equation

PW = P �N(6.1)

at each time step k and by state equations for N , P and U .

For grid vectors W = (W n), Y with Y n
> 0 and Z let (W;Z), W � Z and W=Y

denote, respectively, the scalar product
P

n
W

n
Z
n and the grid vectors with the

components W n
Z
n or W n

=Y
n. Note that densities and functions have to be dis-

cretized. Accordingly, the discretized objects are extensive grid vectors like N or
intensive ones like T or n � N=jBj. The natural pairing is the scalar product of
an intensive grid vector and an extensive one. For functions from the preceding
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sections like p2 or ui1 let p := p2(Xp; Y;W ) or ui1(n; p; T ) denote the grid vectors
with the components p2(X

n

p
; Y

n
;W

n) or ui1(n
n
; p

n
; T

n) such that, e.g.,

N = jBj � n2[Xn; Y; Vi(Xn;Xp; Y )];

where Vi denotes the solution of the discretized nonlinear Poisson equation

PW = jBj � [p2(Xp; Y;W )� n2(Xn; Y;W )]:

The discretized electrostatic energy is de�ned by

U
e(p � n) = (V �

; P �N) +
1

2
(Vp�n;PVp�n);

where Vp�n denotes the solution W = P
�1(P � N) of the Poisson equation (6.1),

i.e.

U
e(p� n) = (V �

; P �N) +
1

2
(P �N;P

�1(P �N));

and

u
e(p� n) = V

�

� (p� n) +
1

2
(p� n) �P�1[jBj � (p � n)]:

Under these conventions the identities

hdS1(n; p; T ); �n� �p� �T i = (@ns1; �N) + (@ps1; �P ) + (jBj; @Ts1 � �T );

�T = [�u� V � (�p� �n)� @nu
i

1 � �n� @pu
i

1 � �p]=@Tu
i

1;

and

@Tu
i

1 = @Tu1 = @T (f � T@Tf) = �T@
2
T
f = T@Ts1

hold. Thus we get

hdS(n; p; u); �n� �p� �ui = (1=T; �U) +

(@ns1 � (@nu
i

1 � V )=T; �N) + (@ps1 � (@pu
i

1 + V )=T; �P )

= (�Xn; �N) + (Xp; �P ) + (Y; �U):

In the Boltzmann case, e.g.,

Xn = log

�
n

N (T )

�
� [V � +P�1(P �N)]=T; :::

�T=T = [�u=T � �n � an � �p � ap]=@Tu
iB

1 ;

with

an = T � N
0(T )=N (T )� V=T and ap = T � P

0(T )=P(T ) + V=T:

Therefore we have

h df� log[n=N (T )]; �N) + (V � +P�1(P �N); �N=T )

� log[p=P(T )]; �P )� (V
�

+P
�1
(P �N); �P=T ) + (1=T; �U) g ; �n� �p� �T i

= �(�N; �n=n) + (P�1(�P � �N); �n=T ) + (�T=T; an � �N)

� (�P; �p=p) � (P�1(�P � �N); �p=T ) + (�T=T; ap � �P )� (�T=T; �U=T );
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i.e.

d
2
S
B(n; p; u; �n; �p; �u)

= � (jBj; �n � �n=n+ �p � �p=p) � (P
�1
(�P � �N); (�P � �N)=(T � jBj))

� (jBj=@Tu
iB

1 ;
�
�n �p �u=T

�
� S

B
�

�
�n �p �u=T

�
0

)

with the matrix

S
B =

0
@ an � an an � ap �an

an � ap ap � ap �ap

�an �ap 1

1
A :

The conjugate potential

H(Xn;Xp; Y ) := �(Xn; N) + (Xp; P ) + (Y;U)� S(n; p; u)

reads in the Boltzmann case, e.g.,

H
B(Xn;Xp; Y ) : = (FL(1=Y ); Y )� (1 ; PB

2 [Xp; Y; Vi] +N
B

2 [Xn; Y; Vi] )

�

1

2
( P

B

2 [Xp; Y; Vi]�N
B

2 [Xn; Y; Vi] ; Vi � Y ):

The discrete analogue

�S�(n; p; u) := (N;Xn �
�Xn)� (P;Xp �

�Xp)(U; Y � �Y )

+H(Xn;Xp; Y )�H( �Xn;
�Xp;

�Y )

is a Lyapunov function for the problem discretized in time and space. The argu-
ments are completely analogous, such that we do not repeat them here. The spatial
discretization and the whole calculus can also be applied with continuous time.

7. General dispersion

The case C = G of general dispersions !b(x; p; T ) (b = c; v) is a little bit more
complicate. In this case, we will not write down the full program, but we only proof
the convexity of the potential U(n; p; s). We consider also the conjugate potential

G(�n;�p; T ), which is also convex. We are surprised that d2G is the di�erence of
two semide�nite forms, meanwhile d2U is a sum of semide�nite forms as in the cases
B and F .

We assume that the Lebesgue measure of the surfaces !b(x; :; T ) = ! in the mo-
mentum space are �nite, i.e.

ab(!; T ) � ab(x; !; T ) :=

Z
!b(x;p;T )=!

d�(p) < 1:

It will be convenient to introduce the chemical potentials Yb = �b+V � �b+V
�+V G

�

(b = n; p) and to abbreviate zn �
1
T
(Yn�Ec�!), zp �

1
T
(Yp�Ev+!). The carrier
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densities are

n = n
G

�
(�n;�p; T ) = n

G

3 [�n; T; V
G

�
(�n;�p; T )] = n

G(Yn; T );

p = p
G

�
(�n;�p; T ) = p

G

3 [�p; T; V
G

�
(�n;�p; T )] = p

G(Yp; T )

with

n
G(Yn; T ) =

Z
1

0

ac(!; T )

1 + exp [� 1
T
(Yn � Ec � !)]

d!;

p
G(Yp; T ) =

Z
1

0

av(!; T )

1 + exp [ 1
T
(Yp � Ev + !)]

d!;

where V G

�
is the solution of the nonlinear Poisson equation

Z
�rW � r� d
 +

Z
�G

�W � d�

=

Z �
p
G

3 (�p; T;W )� n
G

3 (�n; T;W )
�
� d


(� 2 H1
0 ) in H

1
0 . The expression

f
G(n; p; T ) := fL(T ) + 
n + Ynn+ 
p � Ypp + u

e(pG � n
G)

with these Yn, Yp, V and with the quantities


n(Yn; T ) = �T

Z
1

0

ac(!; T ) log [1 + exp
1

T
(Yn � Ec � !)]d!

and


p(Yn; T ) = �T

Z
1

0

av(!; T ) log [1 + exp
�1

T
(Yp � Ev + !)]d!

is the density of the free energy.

We notice that the potential V is �xed for �xed n and p. Thus the density of entropy
s is is de�ned by

@Tf
G(n; p; T ) = f

0

L
(T ) + @T
n + @Yn
n � (@TYn)n;p + n(@TYn)n;p

+ @T
p3 + @Yp
p3 � (@TYp)n;p � p(@TYp)n;p

= f
0

L
(T ) + @T
n(Yn; T ) + @T
p(Yp; T ) = �s

G(Yn; Yp; T ):
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The density u of the total energy is given by

u(n; p; s) = f(n; p; T ) � T@Tf(n; p; T ) = u
e(p � n) + fL(T )� Tf

0

L
(T )

+ 
n(Yn; T )� T@T
n(Yn; T ) + Ynn
G
(Yn; T )

+ 
p(Yp; T )� T@T
p(Yp; T )� Ypp
G(Yp; T )

� u
e(pG � n

G) + u
iG(Yn; Yp; T ) := u

e(pG � n
G) +

Z
T

cL

+ T
2

Z
1

0

log (1 + e
zn)@Tac(!; T )d! +

Z
1

0

Yn � T (zn + E
0

c
)

1 + e�zn
ac(!; T )d!

+ T
2

Z
1

0

log (1 + e
�zp)@Tav(!; T )d! �

Z
1

0

Yp � T (zp + E
0

v
)

1 + ezp
av(!; T )d!

The partial derivatives of the functional U(n; p; s) are calculated with the partial
derivatives of

u
G(Yn; Yp; T ) = u

e
�
p
G(Yn; T )� n

G(Yn; T )
�
+ u

iG(Yn; Yp; T )

by solving the linear system of di�erentials

n
G
YndYn + n

G

T
dT = dn;

p
G

Yp
dYp + p

G

T
dT = dp;

s
G

Yn
dYn + s

G

Yp
dYp + s

G

T
dT = ds:

The system is solvable if and only if its coe�cient determinant

D := n
G

Yn
[pG
Yp
s
G

T
� p

G

T
s
G

Yp
]� n

G

T
p
G

Yp
s
G

Yn
6= 0:

It is convenient to introduce the measures

d�b(!) =
e
��bzb

[1 + e��bzb]2
ab(!; T )d!

(�c = 1, but �v = �1) and the notation

M
(k)

b
=

Z
(znb + @TEb)

k
d�b; Mb =M

(0)

b
; M

0

b
=M

(1)

b
; Mb" =M

(2)

b
;

M
0

b
=M

0

b
� �bT

Z
1

0

@Tab(!; T )

1 + e
��bznb

d!;

Mb" =Mb"� T

Z
1

0

2(znb + @TEb)@Tab(!; T ) + ac(!; T )@
2
T
Eb

1 + e
��bznb

d!

+ T

Z
1

0

log (1 + e
�bznb )[2@Tab(!; T ) + T@

2
T
ab(!; T )]d!:
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In the model case in which neither ab(!) nor Eb depend on T , the determinant is

D = �

1

T 3
f cL � T

Z
0

d�c(!)

Z
0

d�v(!)

+ [

Z
0

z
2
p
d�v(!)

Z
0

d�v(!)� (

Z
0

zpd�v(!) )
2]

Z
0

d�c(!)

+ [

Z
0

z
2
n
d�c(!)

Z
0

d�c(!)� (

Z
0

znd�c(!) )
2]

Z
0

d�v(!) g < 0

because of Jensen's inequality.

Theorem 7.1. The functional

U = U(n; p; s) := U
e(p � n) +

Z
u
iG

3 (Yn; Yp; T ) d
;

where Yb � �b + V
� + V

G

�
(�n;�p; T ) (b = n; p) and T satisfy n = n

G(Yn; T ),

p = p
G(Yp; T ) and s = s

G(Yn; Yp; T ), is convex if the conditions

MbMb" > (M0

b
)2 (b = c; v)

are satis�ed.

Notice that the assumptions of the theorem are ful�lled in the model case.

Proof. We have

DdYn = (pY sT � pT sYp)dn+ sYpnTdp � pY nTds;

DdYp = pT sYndn+ (nY sT � sYnnT )dp � nY pTds;

DdT = �pY sYndn � sYpnY dp + nY pY ds:

(here the upper index G has been omitted and nYn � nY etc) and

@nu(n; p; s) = �V +
u
i

Yn

D

(pY sT � pT sYp) +
u
i

Yp

D

pT sYn �
u
i

T

D

pY sYn ;

@pu(n; p; s) = V +
u
i

Yn

D

nT sYp +
u
i

Yp

D

(nY sT � nTsYn)�
u
i

T

D

nY sYp;

@su(n; p; s) = �

u
i

Yn

D

nTpY �
u
i

Yp

D

nY pT �
u
i

T

D

nY pY :

The relations @nu(n; p; s) = �n = Yn � V etc. can be checked by straightforward
calculations. We calculate the 3 � 3 matrix U = ((Uab)) starting from

dU(n; p; s; �n; �p; �s) =

Z
(�n�n��p�p+ T�s) d


=

Z
(�V �n+ Yn�n+ V �p� Yp�p+ T�s) d
:
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The matrix has the same structure as in the proof of the Theorem 4.1 with the same
electrical part, but with

zz =

Z
1

T 2
jDj

(�s
p
McMv)

2
; ::: xx =

Z
1

T 2
jDj

(M0

c
�n)2;

�� =

Z
1

T 2
jDj

f MvcL(T ) + [MvMv" � (M0

v
)2] +

Mv

Mc

[McMc" � (M0

c
)2] g(�n)2:

The proof is �nished by Lemma 4.1.

Because the state variables (�n;�p; T ) are directly available, we consider the
conjugate potential of the energy. A generalized density g0 of it is de�ned by
g0 = n�n � p�p + Ts � u. Because of the Poisson equation (2.1), this general-
ized density with boundary terms can be substituted by an actual density. We
set

g
G

3 (Yn; Yp; T;W ) := �fL(T )� 
n(Yn; T )� 
p(Yp; T ) +
1

2
W [pG(Yp; T )� n

G(Yn; T )]

and

g
G
(�n;�p; T ) := g

G

3 [�n + V
�

+ V
G

�
;�p + V

�

+ V
G

�
; T; V

G

�
]:

The state variable GG(�n;�p; T ) =
R
g
G(�n;�p; T ) d
 is, indeed, the conjugate

potential of the total energy. The relations @�nG = n etc are checked similarly as

in section 4, e.g.,

h@T

Z
g
G
d
; �T i = �

Z
f�T@T(fL + 
n + 
p) + �TV

G

�
(@Yn
n + @Yp
p)g d


+
1

2

Z
f �TV

G

�
(pG � n

G) + V
G

�
[�T@T(p

G
� n

G) + �TV
G

�
(@Ypp

G
� @Ynn

G)] g d


=

Z
s
G
�T d
 +

1

2

Z
f�(p� n)�TV

G

�

+ V
G

�
[�TV

G

�
(@Ypp

G
� @Ynn

G) + �TV
G

�
@T (p

G
� n

G)] g d


=

Z
s
G
�T d
:

Thus we have

dG
G(�n;�p; T ; ��n; ��p; �T ) =

Z
fn

G[�n + V
� + V

G

�
; T ]��n

� p
G
[�p + V

�

+ V
G

�
; T ]��p + s

G[�n + V
� + V

G

�
;�p + V

� + V
G

�
; T ]�Tg d
:
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and

d
2
G = d

2
i
G + d

2
e
G with

d
2
i
G =

Z
(��n; ��p; �T )

0
@ @Y n 0 @Tn

0 �@Y p �@Tp

@Yns @Yps @Ts

1
A
0
@ ��n

��p

�T

1
A d


=

Z
1

T
(��n; ��p; �T )

0
@ Mc 0 �M

0

c

0 Mv �M
0

v

�M
0

c
�M

0

v
cL(T ) +Mc" +Mv"

1
A
0
@ ��n

��p

�T

1
A ;

d
2
e
G =

Z
(��n; ��p; �T ) d


0
@ @Y n @Y n @Y n

�@Y p �@Y p �@Y p

@Yns @Yps (@Yn + @Yp)s

1
A
0
@ �nV

G

�

�pV
G

�

�TV
G

�

1
A d
:

Because of (5.2) the electrical part is

d
2
e
G = �[�nV

G

�
+ �pV

G

�
+ �TV

G

�
; �nV

G

�
+ �pV

G

�
+ �TV

G

�
]

with the scalar product

[�;W ] :=

Z
[�r� � rW +

1

T
(Mc +Mv)�W ] d
 +

Z
�G

��Wd�:

The symmetricmatrixG which corresponds to the quadratic form generated by d2G
on the three-dimensional linear space spanned by the arbitrary, but �xed functions
��n, ��p, and �T is the di�erence of two positive de�nite symmetric matrices Gi

and Ge. As the functional G is the conjugate functional of the convex functional U ,
it is a convex functional, i.e. the quadratic form d

2
e
G is dominated by the quadratic

form d
2
i
G. The question is, whether this dominance is a trivial consequence of

well known a-priori estimates for solutions of elliptic boundary value problems or

whether the dominance is an particular type of an a-priori estimate.
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