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FOREWORD

This preprint contains the revised version of two papers presented at the BiOS Europe ' 95

held at Barcelona in September 1995 (to appear in Proc. SPIE 2626). Both papers are devoted

to inverse problems in optical tomography. The photon migration in highly scattering media is

decribed by the di�usion equation including some absorption term and by suitable initial and

boundary conditions. It represents a good approximation assuming scattering predominates over

absorption. Algorithms for solving these inverse problems are an essential part in developing

medical diagnostic methods based on transillumination of tissue.

In the �rst paper

R. Model, R. H�unlich, Parameter sensitivity in near infrared imaging, pp. 2{11

it is shown that the choice of boundary conditions sensitively a�ects the photon propagation

and the output uxes at the boundary of the object. A comparison between measurements1 of

the time{resolved transmittance of ps laser pulses and numerical simulations leads to the result,

that boundary conditions of the third kind must be used. Besides of the optical parameters the

corresponding boundary parameters have been identi�ed using an iteration method in analogy

to the image reconstruction algorithm.

The second paper

M. Orlt, M. Walzel, R. Model, Transillumination imaging performance using time

domain data, pp. 12-23

is concerned with the question of improving the image reconstruction algorithm itself. Improve-

ments in reconstruction results may be achieved in two ways, �rst by adapting the detector

arrangements and, secondly, by using a regularization strategy based on the Tikhonov regular-

ization. The e�ectiveness of these methods is demonstrated by instructive examples concerned

with the reconstruction of absorbers and scatterers, respectively.

R. H�unlich

1These measurements were performed by H. Rinneberg, U. Sukowski, H. Wabnitz,

"Medical Measuring Techniques" group of the PTB.
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ABSTRACT

To model the photon migration in highly scattering media, we use an approximation of the

Boltzmann equation, the di�usion equation. A prerequisite for handling the inverse problem

consists in solving the forward problem under realistic conditions. We discuss the inuence of

boundary conditions on the light propagation. The boundary conditions at the walls surround-

ing the object highly sensitively inuence the photon ux at the boundary which means that

the time{resolved transmittance is a�ected. An algorithm for the determination of boundary

parameters is introduced and demonstrated by an instructive example. We use the Finite Ele-

ment Method for the time{resolved case as a basic method in combination with a minimization

strategy. The boundary conditions are determined as conditions of the third kind, i.e. the

photon density is proportional to the outward photon ux at the boundary.

1 INTRODUCTION

Reconstruction algorithms for optical imaging are in general based on physical models for the

photon migration describing the relation between the measured values and the optical properties

of the object under investigation. The propagation of light in highly scattering media, such

as biological tissue may be described by the transport theory6. The Boltzmann equation is

in general di�cult to solve and too complex for parameter identi�cations. If the medium is

predominantly scattering and su�ciently thick, such that the photons are multiply scattered

inside it, the di�usion approximation is a good approach to the Boltzmann equation and widely

used in optical tomography. The resulting di�usion equation for the photon density � is the

following

@

@t
�(x; t) = div (D(x)grad�(x; t))� c �a(x)�(x; t) + s(x; t) ; x 2 
 ; 0 � t � T (1)
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where c is the speed of light in the medium and �a(x) the absorption coe�cient. The optical

di�usion coe�cient D(x) is given by

D(x) =
c

3 (�a(x) + �0
s
(x))

(2)

where �0s(x) is the transport scattering coe�cient. The light source may be described in two

ways, �rst by the photon source term s(x; t) in equation (1) and secondly by the initial function

�(x; 0) = �0(x); x 2 
, corresponding to a �-impulse in time. For ultrashort pulses, the results

are approximately the same.

Uniqueness of the solution of (1) is given if suitable conditions at the boundary @
 are

formulated. For the description of light propagation in random media, there are two ways of

considering the conditions at the surface. Following the �rst, it is stated that the walls perfectly

absorb the photons hitting them from inside, especially if the walls are black. With the argument

that all photons are absorbed at the boundary, the photon density vanishes and homogeneous

Dirichlet conditions (boundary conditions of the �rst kind)

�(x; t) = 0 ; x 2 @
 ; 0 � t � T (3)

are assumed11,3,4. This type is mostly used in reconstruction algorithms, but it seems to be

roughly simpli�ed.

A second approach as regards the boundary conditions is derived from Boltzmann's transport

equation, in the same way as it is done with the di�usion equation. Here, the di�use intensity,

approximated by the weighted sum of the photon density and the photon ux J in the outside

direction of the medium, must vanish6,7,6. The result is a boundary condition of the third kind

J (x; t) = � D
@�(x; t)

@n
= h �(x; t) ; x 2 @
 ; 0 � t � T : (4)

It can be approximated by theoretically shifting the boundary outward by a small distance and

using conditions of the �rst kind there7,8. If the Finite Element Method (FEM) is applied,

boundary conditions of the third kind can be easily realized without such manipulations. For

h = 0, the ux vanishes or, in other words, a total reection at the surface is described. This

boundary condition is called a condition of the second kind which is independent of the density

itself. For h ! 1, the ux must remain �nite, therefore �(x; t) = 0 must be true at the

boundary and (4) turns into the condition of the �rst kind. In reality, 0 < h <1 is valid, but

the exact value depends on the experimental setup. The time{resolved transmittance, assumed

to be proportional to J , very sensitively responds to changes at the boundary. It is, however,

the input for reconstruction procedures in the case of time{domain imaging. Careful modelling

of the situation at the object surface is therefore a prerequisite for handling the inverse problem.

In the next section, the forward simulation for a test structure, i.e. a cuvette containing

a di�usely scattering liquid and a movable ba�e, is explained. The inuence of the boundary

parameter h on J and on some related parameters is shown in section 3. A method for �tting

the boundary parameter based on given transmittance is described in section 4 and applied to

experimental data. Measurements of the time{resolved transmittance of ps laser pulses were

performed by the group "Medical Measuring Techniques" of the PTB using time{correlated

single photon counting (for details see4). These measurements were performed in a way which

allowed a quantitative comparison to be made with the simulations described below.
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2 THE FORWARD PROBLEM

The di�usion equation (1) is solved by a 2D FEM with adaptive grid re�nement and time

step size control which is an e�ective tool, in particular for complicated geometries and arbitrary

distributions of the optical properties.

- x
[mm]-81 105

6

y[mm]

0

40

xb

source

�

0

�

detector

ba�e

cuvette

hb

hc

c; �0s; �a

Fig. 1. Test structure. The source position is xs=0mm, ys=1mm, the detector position

is xd=0mm, yd=40mm, the left position of the ba�e xb is variable. Indicated are the

physical parameters c; �0s; �a describing the properties of the homogeneous medium inside

the cuvette, and hc; hb describing the absorption and reection properties of the wall of

the cuvette and of the ba�e, respectively.

In Fig. 1, the test structure is illustrated which is a cross section of a rectangular cuvette

with a movable ba�e inside. The parameters hc; hb of the boundary conditions

� D
@�(x; t)

@n
= hc �(x; t) on the wall of the cuvette,

(5)

� D
@�(x; t)

@n
= hb �(x; t) on the ba�e

may be di�erent. In the following example of a forward simulation we use the optical parameters4

c = 22:56 cm ns�1; �a = 0:0308 cm�1; �0s = 9:15 cm�1:

The boundary parameters hc and hb are both set to 7.5 cm ns�1. The ultrashort pulse is modeled

by the initial condition

�0(x; y) = Cs d(x; y); d(x; y) =

(
1 if

p
(x� xs)2 + (y � ys)2 < rs

0 else

setting Cs = 10 6 cm�3; rs = 0:1mm. For the same structure, simulations were done earlier

with homogeneous Dirichlet conditions4.
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Resulting surface plots of the photon density for di�erent times (t=0.2, 0.5, 1.0, 2.0, 3.0, 4.0

ns) are given in Fig. 2. Note that each of the plots is normalized to the maximum density of

the actual time which quickly decreases as indicated explicitly. It is clearly visible that the light

turns around the ba�e depending on time.

Fig. 3 shows isolines of the photon density for t = 2 ns and, in addition, the source position

and six detector positions (detector 5 corresponds to the only detector in Fig. 1) for which

the photon densities are compared in Fig. 4 . As expected, the inuence of the ba�e is most

remarkable for detector 6 which is reached by the smallest number of photons. However, there

is also an e�ect on the densities at the other detector positions. Because boundary conditions

of the third kind were used, the density is proportional to the photon ux and therefore to the

di�use transmittance.

t =0.02 ns

max.dens=1.36E3

t=0.5 ns

max.dens=1.00E1

t=1.0 ns

max.dens= 2.09E0

t=2.0 ns

max.dens=1.72E{1

t=3.0 ns

max.dens=3.07E{2

t=4.0 ns

max.dens= 7.02E{3

Fig. 2. Light propagation depending on time. Here the photon density surface is seen from

the detector side such that the ba�e is located on the left{hand side. The ba�e position is

xb = �6mm.
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Fig. 3. Photon density in the cross section of

the cuvette for t = 2.0 ns.

Fig. 4. Photon density [cm�3] as a function of

time at various detector positions.

3 PARAMETER SENSITIVITY

Now the inuence of the boundary parameters hc and hb on the light propagation inside the

cuvette and on the photon density at some detector position as a function of time is discussed.

We use the following characteristics of these photon density curves:

Imax = max. of photon density ; Itot =

Z
1

0

�(t) dt ;

tmax = time realizing Imax ; tmean =
1

Itot

Z
1

0

t�(t) dt ;

thalf = full width of half max. ; � =

�
1

Itot

Z
1

0

(t� tmean)
2 �(t) dt

�1=2
:

Fig. 5 shows these characteristics as a function of the ba�e position xb (from the most closed

position at {15 mm to the widest open position at 36 mm) for some selected values of hc and hb
where the other parameters c, �a, �

0
s remain unchanged as above. Source and detector are chosen

as shown in Fig. 1. Case 1 (with hc = hb = 10 c

3
) corresponds approximately to the boundary

condition of the �rst kind. Case 2 (with hc = hb =
c

3
) is the most realistic one, in cases 3 and 4

the reection increases. Case 5 and 6 consider di�erent boundary parameters on the wall and on

the ba�e, respectively. For example, in all cases the maximum value Imax decreases when the

ba�e is moved to more closed positions. In the case with the highest reection, the maximum

values are largest (curve 4) as expected. When the ba�e's inuence becomes greater, curve 6

di�ers from curve 4 due to the changed parameter hb. In general, the inuence of the ba�e

appears clearer at the higher moments. Note that tmax, tmean, thalf and � have a minimum at

a ba�e position between 0 mm and 5 mm.
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Imax [cm
�3] Itot [cm

�3 ns]

tmax [ns] tmean [ns]

thalf [ns] � [ns]

Fig. 5. Variation of the boundary parameters hc; hb [cm ns�1] and of the ba�e position xb [mm].

The following values of hc; hb have been used:

case 1: hc = 75:2 hb = 75:2

case 2: hc = 7:52 hb = 7:52 case 5: hc = 7:52 hb = 1:88

case 3: hc = 3:76 hb = 3:76

case 4: hc = 1:88 hb = 1:88 case 6: hc = 1:88 hb = 7:52 :
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From this it follows that the boundary parameters highly sensitively a�ect all characteristics.

The solution of reconstruction problems therefore seems to require a reliable knowledge of the

boundary parameters.

4 THE INVERSE PROBLEM

At �rst sight, the two parameters in the boundary conditions (5) for cuvette hc and ba�e hb
must be �tted. However, the optical properties �a and �0s are usually determined by comparing

experimental data with an analytical approximation for the solution of (1) using Dirichlet con-

ditions in a bounded domain11,9. For boundary conditions of the third kind (4), an analytical

solution in a bounded domain is not on hand, so �a and �0s are included in the inverse problem

as unkown parameters. Furthermore, sometimes the absolute number of photons of the laser

pulse entering the object and the exact start time of the pulse are not known either. A scaling

factor �I and a time shift tsh are therefore added to the set of unkowns. In addition, a given

response function of the experimental setup must be taken into account.

For the identi�cation of the six parameters, an iteration method was developed in analogy

to the image reconstruction method4,9{11. It is based on the minimization problem of the error

norm

pX
k=1

nX
i=1

jJ
s(xbi

; tk; hc; hb; �a; �
0

s;�I ; tsh) � J
m(xbi

; tk)j
2

(6)

=

npX
s=1

jFs(hc; hb; �a; �
0

s;�I ; tsh)j
2 = min!

where n is the number of ba�e positions, p the number of times, and the supercripts s and m

denote the simulated and measured values, respectively. The algorithm can easily be adapted

to other objects, for example to those without ba�e inside. The least squares problem (6) is

solved by a modi�ed Levenberg{Marquardt{Method.

The method was applied to experimental data, where a 2D situation was realized in the

experiment (see for details4,12). An earlier comparison between these experimental results and

numerical simulations using Dirichlet conditions at the boundaries had furnished unsatisfactory

results4. Even by a new identi�cation of the parameters �a, �
0
s, �I and tsh according to (6) (the

dependence on hc; hb is cancelled here), better agreement could not be achieved as can be seen

in Fig. 6. Note that a single curve normalized to its maximum compared with the corresponding

measurement data normalized to their maximum has led to good results. However, for more

than one ba�e position, a comparison is impossible.

Now, boundary conditions of the third kind are applied. Here six parameters including hc; hb
have been identi�ed according to (6). Excellent agreement is achieved as shown in Fig. 7. hc
is greater than hb which suggests that the ba�e reects the light more than does the wall of

the cuvette. But the uncertainty is estimated at about ten per cent, because the problem is

bad conditioned and has a at minimum. Higher precision may be reached when reliable values
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Fig. 6. Measured and computed transmittance for di�erent positions of the ba�e (xb =

36; 9; 6; 3; 0; �3; �6mm from top to bottom) using boundary conditions of the �rst kind.

Optimal values: �a = 0:028 cm�1, �0s = 8:96 cm�1.

Fig. 7. Measured and computed transmittance for di�erent positions of the ba�e (xb =

36; 9; 6; 3; 0; �3; �6mm from top to bottom) using boundary conditions of the third kind.

Optimal values: �a = 0:028 cm�1, �0s = 8:1 cm�1, hc = 8:99 cm ns�1, hb = 6:83 cm ns�1.
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of the optical parameters �a; �
0
s
are used which have been independently determined. Finally,

mention should be made of the fact that the identi�cation results are clearly inuenced by the

given response function. Some questions arise here which require further investigations.

5 CONCLUSIONS

The question about the correct determination of the boundary conditions in optical imaging

problems using the di�usion theory may be answered by a constructive method which allows

the boundary parameters to be determined as well. The assumption of the photon density's

vanishing at the boundary did not furnish a satisfactory result. The excellent agreement between

experimental and simulated data in the case of boundary conditions of the third kind strongly

suggests the application of this condition. Corresponding to the experimental data, optimal

boundary parameters are found which are di�erent for the glass wall and the metal ba�e.

This shows that the parameters also depend on the experimental setup. A reconstruction of

spatially dependent optical properties must therefore include the determination of the boundary

parameters. Because of the ill posedness of the resulting numerical problem, these parameters

should be obtained by an independent reference measurement avoiding convergence di�culties

in the reconstruction procedure itself.
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Transillumination imaging performance using time domain data

M. Orlt, M. Walzel, R. Model

Physikalisch-Technische Bundesanstalt,

Department of Medical Physics and Information Technology,

Abbestra�e 2{12, D-10587 Berlin, Germany

ABSTRACT

Light propagation in highly scattering media can be numerically simulated by solving the

di�usion equation by the Finite Element Method (FEM). Employing an iterative algorithm,

the FEM solution of the forward problem is applied to the inverse imaging problem. Good

test results were previously achieved when absorbers were searched in di�erent objects. Now

the reconstruction of scattering is also taken into account. Simulated measurement data are

used to test and evaluate the method at various objects with tissue-like properties. Resulting

problems are very ill posed. The algorithm is specially adapted to the illposedness of the

problem. Improvements in reconstruction results can be achieved in two ways, �rst by adapting

the detector arrangements and, secondly, by using a regularization strategy. The e�ectiveness

of these methods is demonstrated by instructive examples.

1 INTRODUCTION

When a laser light pulse is sent through tissue, the spatial and time-resolved measurement

of the output ux contains some information about the inner distribution of optical param-

eters.2,5,11{13 Light propagation in highly scattering media can be described by the di�usion

theory.6 The inverse imaging problem of the optical tomography then appears as a parameter

identi�cation problem of a partial di�erential equation. As there are e�ective numerical tools

to solve the di�usion equation even for inhomogeneous objects, for example the Finite Element

Method (FEM), we include it for application to the inverse problem.8,9

However, parameter identi�cation problems are ill posed in most cases, meaning that large

di�erences of the optical parameters cause only small di�erences in the measured or simulated

output ux. Basic numerical methods are known to handle such problems, but a lot of detailed

investigations are needed to apply them to the inverse imaging problem of optical tomography.

Algorithms must be developed which can use the full information contained in a spatial and

time-resolved measurement.

The algorithm is tested using simulated measurement data computed for 2D objects, several

centimeters in size and with tissue-like optical parameters. The performance of the reconstruc-
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tion algorithm is demonstrated by the fact that absorbers and scatterers of small dimensions

(several millimeters) and small parameter deviations (4{10 times of the underground) are found

in these test objects.

2 MATHEMATICAL MODEL

With certain restrictions which apply to the present problem, light propagation can be

described by the di�usion theory.6 In this case, the solution of a parabolic di�erential equation

@

@t
�(x; t)� div (D(x)grad�(x; t)) + c�a(x)�(x; t) = s(x; t) ; (x; t) 2 
� (0; T ) (1)

provides the spatial and time-dependent photon density �(x; t) in the object investigated. �a
and �0s are the spatially dependent optical parameters of absorption and reduced scattering.

The optical di�usion coe�cient D(x) is related to �a(x) and �0s(x) by the equation

D(x) =
c

3(�a(x) + �0s(x))
: (2)

The initial condition �(x; 0) = �0(x) for a known photon distribution �0(x) at the time t = 0

and the boundary condition

D(x)
@�

@n
(x; t) + h�(x; t) = 0 ; (x; t) 2 @
� (0; T ) (3)

complete the mathematical formulation of the forward model. The boundary condition of the

third kind (3) is derived applying the di�usion approximation to the general boundary condition

of Boltzmann's transport equation stating that no di�use intensity enters the medium from

outside.6,7 The constant h depends on the speed of light c and the experimental setup and

should be determined in advance by a reference measurement and a parameter identi�cation

procedure.10 The output photon ux

J(x; t) = �D(x)
@�

@n
(x; t)

����
@


(4)

is assumed to be proportional to the time-resolved measurements.

The Finite Element Method is an e�ective numerical tool to solve the problem (1){(4) even

for inhomogeneous distributions of the optical parameters and for complicated geometries and

boundary conditions. On the basis of a discretization in space and time, the unknown photon

density is approximated by a piecewise linear function.8 Figure 1 shows an example of the

discretization of a rectangular object. Because of the large gradients of the photon density in a

�rst short time interval, an additional re�nement is necessary to achieve an appropriate accuracy

of the numerical simulation.

In the inverse imaging algorithm, the (given) measured information about the time-resolved

transmittance Jmes = (Jmes
1 (x11; t111); : : : ; J

mes
i

(xij; tijk); : : :)) is used. The subscripts i, j, k

indicate the actual source, detector and time respectively such that one entry of the measurement

vector Jmes
i

(xij ; tijk) is the photon ux which can be detected at the position xij and the time
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Figure 1: FEM grid for the solution of the forward problems

within the reconstruction algorithm.

tijk if the source distribution �0i(x) has been applied to the object. This notation allows the

number of detectors and the detector positions to be chosen separately for each source and

di�erent times to be taken into account for each detector.

The model (1){(4) and its numerical solution allow a corresponding vector J sim(�a; �
0
s) to

be simulated on the assumption that �a(x) and �0s(x) are the actual spatially dependent optical
parameters of the object. The goal now is to �nd such �a(x) and �0s(x) which well �t the

simulated data J sim(�a; �
0
s) to the measured data Jmes. The basic strategy of the �t consists in

an iterative correction of the optical parameters and can be demonstrated in a formal procedure:

1. Choose a start approximation �a and/or �
0

s
.

2. Solve the forward problem, i.e. compute Jsim(�a; �
0

s
).

3. Compare J
sim

(�a; �
0

s
) and J

mes
,

if kJ
sim(�a; �

0

s
)� J

mes
k < � then go to 5.

4. Correct �a and/or �
0

s
go to 2.

5. end

(5)

With the choice of the l2-norm to compare the vectors of simulated and measured data, the
optimization problem (5) becomes a least squares problem.

kJ
sim

(�a; �
0

s
)� J

mes
k
2 =

lX
i=1

miX
j=1

nijX
k=1

��Jsim

i
(xij ; tijk ; �a; �

0

s
) � J

mes

i
(xij ; tijk)

��2 = min ! (6)
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In this paper, �a and �0s have been set piecewise constant on a special rectangular grid (see

Fig. 2) which must be interpolated to the FEM grid. As expected, this inverse problem is very

ill-conditioned. Large di�erences of the optical parameters cause only small di�erences in the

simulated output ux. This behaviour will be demonstrated in Figures 3{5. The implementation

of the Levenberg-Marquardt-Method from the IMSL program library was used to solve the

optimization problem (6). Because of its trust region approach3 it is appropriate to handle

badly conditioned problems.

50mm3020100-10
x �!

50

mm

30

20

10

0

-10

x??
y

source

inhomogeneity

Figure 2: Grid of the setup for the optical parameters �a and/or �
0
s and

source distribution used for the numerical tests.

Both numerical tools, the FEM code and the Levenberg-Marquardt algorithm for solving

the forward and the inverse problem, respectively required a lot of modi�cations and adaptions

of parameters when these methods were applied to the imaging problem. Many numerical tests

had therefore to be done before the following results were achieved.

3 RECONSTRUCTION RESULTS

3.1 Test object and measurement simulation

A two-dimensional rectangle with a size of 4cm� 4cm, an underground absorption of �a =

0:033cm�1 and a reduced scattering of �0s = 10cm�1 served as a test object. We approximated

the absorption or the reduced scattering on a rectangular grid with a pixel size of 2:67mm.
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For the test object and given inhomogeneities, the forward problem is solved in order to get

the time-resolved transmittance as a quasi measurement. The iterative reconstruction procedure

begins using constant optical parameters as the initial approximation and the quasi measurement

data as the input. In this way a step-by-step approach to the di�culties of imaging from real

measurement data is possible.

Two ways of improving the algorithm are discussed in our paper. The �rst strategy consists

in �nding an appropriate measurement con�guration. Four sources are located at the respective

middle point of the boundary pieces and moved into the object at a distance of 1mm (Fig. 2)

corresponding to the mean free path length. The aim is to determine a detector arrangement

and times for a good detection of inhomogeneities. The second way is the application of a

regularization method.

3.2 Arrangement of sources and detectors

In this section the inuence of the detector arrangement on the reconstruction result is

demonstrated by examples, and a method is presented to improve the detector arrangement.

The basic idea is to use as much as possible of the measurement information available while

taking into account as few measurement data as possible.

First we set a start con�guration (A) (32 detectors per source), where the detectors are dis-

tributed equidistantly on the boundary of the object (Fig. 3 right), and apply the reconstruction

algorithm. The right side of Figure 3 shows the reconstruction result as a grey level picture. It
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Figure 3: Arrangement (A) of detectors and reconstruction result after 6 iterations.
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has been achieved with this detector arrangement (A). In the example, the structure contains

3 absorbers (Fig. 2) 2:67mm � 2:67mm in size, with an absorption coe�cient �a = 0:165cm�1

(5 times the underground).

Using the reconstruction result, we simulate the output ux in additional test points between

the detectors and compare it with the corresponding additional quasi measurement data. In

other words, we test whether or not the simulated transmittance of the reconstruction result is

�tted to the \measurement" data in additional test points, too. Fig. 3 shows this investigation

for one of four sources at the position x = 1:0; y = 20:0 and the detectors and test points on

the lower left side of the right illustration. The numbers 1{7 at the detectors and test points

on the right side refer to the di�erence curves on the left side of the �gure. These curves are

normalized using the maximum of output ux at the detector denoted by 1.

If the di�erences between the output ux of the test object and the reconstructed structure

are considerably higher in the test points (curves 2, 4, 6 in Fig. 3 left) compared with those in

the previous detector points (curves 1, 3, 5, 7 in Fig. 3 left), it can be assumed that there is

some measurement information available at these test points, which has not yet been used in

the reconstruction. It may be expected that additional detectors in such regions can provide

more information and improve the reconstruction result. On the other hand, in regions where

the deviations between the simulated and measured transmittance in the test points are small,

detectors can be removed.

Deviation of simulated output ux
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Figure 4: Arrangement (B) of detectors and reconstruction result after 6 iterations.

The described correction of the detector arrangement leads to con�guration (B). As ex-

pected, this arrangement provides a better reconstruction result (see Figure 4). This con�g-

uration could be tested by repeating the procedure suggested above. It is summarized in the

following formal procedure:
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1. Choose a test object.

2. Choose a start con�guration of detectors.

3. Simulate measurements for this con�guration and

reconstruct the object from these \measurement" data.

4. Choose additional test points on the boundary between

the detectors and simulate measurement for these points.

5. Test if the simulated output ux of the reconstructed object

is well �tted to the \measurement" in the test points too.

If not, modify detector arrangement and go to 3.

6. end

Figure 5 shows another correction of the detector arrangement and the corresponding recon-

struction result. Now the behaviour of the deviation curves in the test points is very similar

to that in the detector points (Fig. 5 left). It is not to be expected that more detectors would

provide additional information and improve the reconstruction results.
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Figure 5: Arrangement (C) of detectors and reconstruction result after 6 iterations.

The right sides of Figures 4 and 5 (arrangements (B) and (C)) show the detectors for

only one of the four sources. However, the arrangement in relation to each source is the same.

Application of such a method requires the investigation of the output ux for all detectors and

test points for each source and various objects in order that a con�guration is obtained, which

is independent of a speci�c object. However, it is worthwhile for a �nal diagnostic measurement

con�guration.
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A similar procedure had to be followed with the sources to get an optimal measurement

con�guration. Contrary to the increase in the number of detectors, the addition of a source

leads to a considerable growth of the computation time. However, an analogous procedure

could be applied to the sources.

The improved measurement con�guration (C) was used to reconstruct a more complicated

structure of absorbers (Fig. 6), which could hardly be detected when only con�guration (A)

was used.
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Figure 6: Object (left) and reconstruction result after 6 iterations (right).

3.3 Improvement of the results using Tikhonov regularization

Regularization is a widely used stabilization strategy for algorithms handling ill-conditioned

problems. Here, the actual problem is replaced by a better conditioned problem which approx-

imates the original problem if some additional regularization parameters tend to zero. The

well-known Tikhonov regularization can be considered as the addition of penalty terms to the

error function (6)

F (�a; �
0

s) =
Jsim(�a; �

0

s)� J
mes

2 + �ak�ak
2 + �sk�

0

sk
2 : (7)

Each penalty term contains the norm of the optical parameter which must be reconstructed.

When Tikhonov regularization is used, the reconstruction results may be considerably im-

proved. Figure 7 shows an example where the measurement data have been simulated using the

test object of section 3.2 (compare Figure 2) with a �xed reduced scattering �0s = 10cm�1 and
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Figure 7: 0bject with 3 absorbers (top left) reconstruction result after 8 iterations without

regularization (top right), with regularization �a = 10�6 (left) and �a = 10�7 (right).

an underground absorption �a = 0:033cm�1. Unlike the example in section 3.2 (Fig. 3{5), the 3

absorbers shown in Figure 2 had only the 4-fold underground absorption. A comparison of the

grey level pictures in Figure 7 shows the e�ect of the regularization.

The dependence on the appropriate choice of the regularization parameter �a can be clearly

seen. Best results were achieved when the parameter �a was chosen so that the penalty term

and the error function were of the same order of magnitude in the �nal step of the iteration (5),

�ak�ak
2

� kJ
sim(�a)� J

mes
k
2 : (8)
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In the �rst tests the regularization parameter was determined from condition (8) using k�ak
2

and kJ sim(�a) � J
mes

k
2 of the corresponding unregularized reconstruction result. However, it

seems possible to include a strategy into the iteration procedure (5) by which the regularization

parameter can be determined automatically.

For the reconstruction of scatterers, �s is chosen in analogy. An example of the regularization

of reduced scattering is given in Figure 8.
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Figure 8: Object (top left) and reconstruction result after 12 iterations without regular-

ization (top right) and with regularization (bottom).
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4 CONCLUSIONS

The inverse imaging problem is ill-conditioned. Reconstruction results therefore very sensi-

tively depend both on the measurement data and on the choice of the reconstruction method

and the parameters controlling the algorithm. The development of appropriate algorithms makes

systematic numerical tests necessary.

The measurement con�guration, especially the arrangement of the detectors, has a great

inuence on the reconstruction result obtained. It is possible to improve the results using appro-

priate con�gurations. Regularization methods can improve the reconstruction results or reduce

the computation time because of faster convergence. An automatic control of the regularization

parameter should be included.

Tests with simulated measurement data are an e�ective tool for developing and improving

reconstruction algorithms. In a next step, the measurement simulation should be more realistic,

for example by addition of an arti�cial noise to the data. The test results achieved encourage

us to also take real measurements into consideration.
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