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Abstract: Standard large deviation estimates or the use of the Hubbard-Stratonovich transfor-

mation reduce the analysis of the distribution of the overlap parameters essentially to that of an

explicitly known random function �N;� on IRM . In this article we present a rather careful study of

the structure of the minima of this random function related to the retrieval of the stored patterns.

We denote by m�(�) the modulus of the spontaneous magnetization in the Curie-Weiss model and

by � the ratio between the number of the stored patterns and the system size. We show that there

exist strictly positive numbers 0 < a < c such that 1) If
p
� � a(m

�(�))2, then the absolute

minima of � are located within small balls around the points �m�e�, where e� denotes the �-th

unit vector while 2) if
p
� � c(m

�(�))2 at least a local minimum surrounded by extensive energy

barriers exists near these points. The random location of these minima is given within precise

bounds. These are used to prove sharp estimates on the support of the Gibbs measures.
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I. Introduction

Over the last few years the so-called Hop�eld model of an autoassociative memory [Ho], origi-

nally introduced by Figotin and Pastur [FP] as a simpli�ed model of a spin glass, has emerged as one

of the more interesting models for spin systems with strongly disordered interactions. (for a survey

mathematical results on this model and related topics, see the lecture notes of Petritis [P]). In a

series of recent papers we have, partly in collaboration with Pierre Picco, obtained a fairly complete

understanding of the thermodynamic properties of the Hop�eld model in the regime there the ratio

of the number of patterns M(N) and the number of neurons, N , tends to zero [BGP1,BG2], and

even if lim M
N = � > 0, for very small �, we have been able to prove the existence of disjoint Gibbs

states corresponding to the di�erent patterns at su�ciently low temperatures [BGP2]. Technically,

this relied on the analysis in some way or the other on large deviation estimates for the distribution

of the overlap parameters.

The purpose of the present note is to present a more re�ned analysis of these large deviation

estimates intended for a more detailed investigation of its critical points and its behaviour near

them in the case where � is strictly positive, though small. These are relevant not only for the

analysis of the Gibbs states (where only the absolute minima are important) but also for the

characterization of the long-time characteristics of the stochastic retrieval dynamics of the system.

From numerical experiments and the replica heuristic it is expected that local minima of the \free

energy functional" persist for considerably larger values of � than those for which they are absolute

minima [AGS]. The `storage capacity' is usually de�ned as the maximal value of � for which the

local minima near the patterns exist. Newman [N], in a seminal paper of 1988 has proven a lower

bound for the critical � for zero temperature (see also [KPa]). One of the main results of the present

paper is an extension of this �nding to positive temperatures. In particular, we give estimates on

the behaviour of the critical � as a function of the temperature that show the expected power law

behaviour near T = 1. Furthermore, we will compute rather precisely the exact (random) location

of these minima and we will show that, for T not too small, the rate function near the location of

the original patterns is locally convex, implying that there exists a unique local minimum near the

patterns. Moreover, we will show that the only macroscopic component of the overlap vector at

the minima is (at T � 0) shifted down from one by a term of order exp(�1=(2�)), as predicted in

[AGS].

Let us recall the de�nitions of the Hop�eld model and the main quantities of interest. Let

SN � f�1; 1gN denote the set of functions � : f1; : : : ; Ng ! f�1; 1g, and set S � f�1; 1gIN . We

call � a spin con�guration and denote by �i the value of � at i. Let (
;F ; IP) be an abstract

probability space and let ��i , i; � 2 IN , denote a family of independent identically distributed

random variables on this space. For the purposes of this paper we will assume that IP [��i = �1] = 1
2
,



but more general distributions can be considered. We will write ��[!] for theN -dimensional random

vector whose i-th component is given by �
�
i [!] and call such a vector a `pattern'. On the other

hand, we use the notation �i[!] for the M -dimensional vector with the same components. When

we write �[!] without indices, we frequently will consider it as an M � N matrix and we write

�t[!] for the transpose of this matrix. Thus, �t[!]�[!] is the M �M matrix whose elements arePN
i=1 �

�
i [!]�

�
i [!]. With this in mind we will use throughout the paper a vector notation with (�; �)

standing for the scalar product in whatever space the argument may lie. E.g. the expression (y; �i)

stands for
PM

�=1 �
�
i y�, etc.

We de�ne random maps m
�
N [!] : SN ! [�1; 1] through1

m
�
N [!](�) �

1

N

NX
i=1

�
�
i [!]�i (1:1)

Naturally, these maps `compare' the con�guration � globally to the random con�guration ��[!]. A

Hamiltonian is now de�ned as the simplest negative function of these variables, namely

HN [!](�) � �
N

2

M(N)X
�=1

(m�
N [!](�))

2

= �
N

2
kmN [!](�)k

2
2

(1:2)

where M(N) is some, generally increasing, function that crucially inuences the properties of the

model. k � k2 denotes the `2-norm in IRM , and the vector mN [!](�) is always understood to be

M(N)-dimensional.

Through this Hamiltonian we de�ne in a natural way �nite volume Gibbs measures on SN via

�N;� [!](�)�
1

ZN;�[!]
e��HN [!](�) (1:3)

and the induced distribution of the overlap parameters

QN;� [!] � �N;�[!] �mN [!]
�1 (1:4)

The normalizing factor ZN;� [!], given by

ZN;� [!] � 2�N
X
�2SN

e��HN [!](�) � IE�e
��HN [!](�) (1:5)

is called the partition function. We will frequently consider the non-normalized probabilities that

mN(�) lies in a ball in IRM of radius � centered at m,

ZN;�;�[!](m) � IE�e
��HN [!](�)1IfkmN [!](�)�mk2��g (1:6)

1 We will make the dependence of random quantities on the random parameter ! explicit by an added [!]

whenever we want to stress it. Otherwise, we will frequently drop the reference to ! to simplify the notation.



We are interested in the exponential asymptotics of these quantities, i.e. in the behaviour of the

functions

fN;�;�[!](m) � �
1

�N
lnZN;�;�[!](m) (1:7)

and in particular in the location of the critical points of these functions when N tends to in�nity,

since these determine not only the asymptotic properties of the Gibbs measures, but also the long-

time features of a stochastic dynamics (the so-called \retrieval dynamics") chosen such that the

Gibbs measures are their equilibrium distribution.

A study of these functions has been undertaken in a number of previous papers, using either the

so-called Hubbard-Stratonovich transformation [FP,K,BGP1], or standard large deviation estimates

[BG2]. In the Hubbard-Stratonovich approach, one considers instead of the measure QN;� itself

its convolution with a Gaussian measure on IRM of mean zero and variance (�N)�11I (where 1I

is the identity matrix). The resulting measure eQN;� is absolutely continuous and has a density

proportional to

exp (��N;� [!](z)) (1:8)

with respect toM -dimensional Lebesgue measure. The function �N;�(z) can be computed explicitly

and is given by

�N;� [!](z) =
1

2
kzk22 �

1

�N

NX
i=1

ln cosh �(�i; z) (1:9)

The results obtained in [BGP1,BGP2] on the concentration of the limiting Gibbs measures were

based on an analysis of the location of the absolute minima of the function �N;� . One may

notice that the measures eQN;� and QN;� are related by a convolution with a measure that is,

asymptotically as N " 1, concentrated sharply on a sphere of radius
p
�=�.

This allows to recover localization properties of the measure QN;� up to that precision from

those of eQN;� . An alternative approach using standard large deviation estimates can also be used

(see [BG2]) and reveals that as far as the analysis of the critical points of fN;�;�(m) is concerned,

this also boils down to the study of the same function �N;�. Notably, the lower large deviation

estimates can be obtained only for � �
p
2�, so that in this way virtually the same precision on

localization properties is obtained, and both approaches seem practically equivalent and may be

used alternatively according to what appears more convenient in a given situation.

We see that in any case, further progress relies on better estimates on the behaviour of this

function and it is the purpose of the present paper to provide a considerably more precise analysis of

them then those given in [BGP1]. In particular we get (up to constants) the conjectured behaviour

of the critical temperature as a function of �, for � small. Let us formulate our main results. We

denote here and in the sequel by m�(�) the largest solution of the equation m = tanh(�m). Note



that m�(�) is strictly positive for all � > 1, lim�"1m�(�) = 1, and lim�#1
(m�(�))2

3(��1) = 1. Let us

denote by B�(x) the ball of radius � centered at x in IRM . We denote by e� the �-th unit vector

in IRM . We will see that the relevant small parameter in our problem is always the ratio between
p
� and (m�(�))2. We will therefor use the general convention to set

p
� = (m�(�))2 and we

will treat  as our small parameter. Our main results can then be summarized in the following

theorems (which however do not contain all the precise estimates on constants that can be found

in the later sections).

Theorem 1: There exists a > 0 such that for all � > 1 for � � 2a(m
�(�))4 there exists

constants c0 < 1=2, c1 > 0 such that IP -almost surely for all but a �nite number of indices N for

all m 2
nS

(�;s)Bc0m�(sm�e�)
oc

,

�N;� [!](m)� �N;�[!](m
�e1) � c1(m

�)2 inf
(�;s)

km � sm�e�k22 (1:10)

Theorem 2: Let z(�) 2 IRM(N) denote the random vector whose �-th component is z
(�)
� �

1
N

PN
i=1 �

�
i �

�
i , if � 6= � and z

(�)
� � 0. There exists c > 0 such that for all � > 1 for � � 2c (m

�(�))4

there exists strictly positive constants c2; c3 such that IP -almost surely for all but �nitely many N ,

for all v such that kvk2 � c3m
� andv � z(�)

m�(�)

1� �(1� (m�)2)


2

� c2m
�(�)3=2

p
j ln j (1:11)

then

�N;� [!](m
�e� + v) > inf

kvk2�c3m�
�N;�[!](m

�e� + v) (1:12)

We obtain bounds on the various constants in the di�erent asymptotic regimes in the course of

the proofs. Our bound on the constant c will be considerably larger (of order 0:04 for � large)

than the one for a (of order 10�4), in accordance with the general expectation that the local

minima corresponding to the patterns persist for values of � where they are no longer the absolute

minima. Let us remark that a very similar analysis could also be carried out to prove the existence

of further local minima associated to so-called \mixed states" (see e.g. [N]), but we leave this to

the interested reader.

As a consequence of the previous theorems and the estimates entering their proofs we get the

following theorem on the Gibbs measures.

Theorem 3: For all � > 1 and � � 2a(m
�(�))4 there exists a constant c5 <

1
2a

such that

lim
N"1

�N;� [!]

0@8<: [
(�;s)

Bc5m
�(se�m�)

9=;
1A = 1; IP � a.s. (1:13)



Moreover, for any pair of indices �; �,

lim
N"1

1

N
ln

�
�N;� [!] (Bc5m

�(e�m�))

�N;� [!] (Bc5m�(e�m�))

�
= 0 IP � a.s. (1:14)

Remark: Theorem 3 sharpens the results of [BGP1] and [BGP2]. (1.14) guarantees that limiting

measures concentrated on a single ball can be constructed by applying an magnetic �eld aligned

on one of the patterns whose strength can be taken to zero after the limit N " 1 is taken. See

[BGP1] for a general discussion on limiting Gibbs measures. In a recent note [T2] Talagrand has

announced an estimate similar to (1.13) under some additional restrictions on �.

The remainder of this paper is structured as follows. The next section introduces a new very

sharp bound on the behaviour of the maximal eigenvalue of the random matrix �t�. While we

believe that this result has some interest in itself in that it provides considerably sharper bounds

than were previously available (the sharpest ones, to our knowledge, being due to Shcherbina and

Tirozzi [ST] were of the order exp(�N2=3) only), this introduces some of the basic `new' techniques

in a rather simple situation and can thus be seen as a warm up for what will follow. In section

3 we improve the estimates of [BGP1] by locating more precisely the absolute minima of �N;�

for very small �. Section 4 is the central part of this work. Here we control the precise location

of the local minima corresponding to the patterns and control the behaviour of �N;� near them.

The main di�culty we have to overcome here is that the function �N;� is random. The usual way

to get precise estimates on a function near its minima is to use a Taylor expansion. Due to the

randomness, there can be no uniform control over the remainder terms, but we have to deal with

the probabilities of large excursions. To estimate those, we need to control suprema of certain

random processes that are indexed by continuous parameters taking values in high-dimensional

sets. In this analysis we invoke techniques introduced in the analysis of the regularity of random

processes in Banach spaces (see [LT]). This rather long section is subdivided into three subsections:

In part 1 we prove the uniform upper and lower bounds on �. In part 2 these are used to localize

the position of the minima. Here we also prove the local convexity of �. In part 3 we localize the

value of the unique macroscopic component of the position of the minima and show that in the

limit � " 1 it di�ers from one by an term proportional to exp(�1=2�). In Section 5 we apply

the previous estimates to prove Theorem 3. An appendix contains the proof of a technical lemma

needed in Section 4.3.

Acknowledgements: We thank Michel Talagrand for sending us a copy of [T1] through which

we learned about Theorem 2.5. We are grateful to Barbara Gentz for helpful comments on earlier

drafts of this paper. A.B. thanks Dmitry Io�e for useful discussions on the proof of Lemma 4.18.



2. An exponential bound on random matrix norms

As a technical warm-up for what is to come, as well as a basic input for the remainder, we

will show how techniques of the types used in the analysis of random processes (for an exposition

see e.g. [LT]) and concentration of measure estimates (we refer explicitly to the recent paper [T1]

by M.Talagrand) can be used to get exponential bounds on the maximal eigenvalues of random

matrices that are relevant for our analysis. Note that subexponential bounds have been known for

a long time and were generally used in our previous analysis [ST,K,BG2,BGP1].

We are interested in the matrix AN � �t�
N
. (To simplify notation, we will frequently drop the

index N and write A for the matrix AN in the generic dimension N). We begin with the simplest

a-priori estimate on the corresponding quadratic form:

Lemma 2.1: For any non zero x 2 IRM and for all c > 0

IP
�
(x;ANx) � (1 + c)kxk22

�
� exp

�
�
N

2
(c� ln(1 + c))

�
(2:1)

Proof: We simply use the exponential Chebeychev inequality and the Hubbard Stratonovich

transformation [HS] to see that

P
�
(x;Ax) � (1 + c)kxk22

�
= IP

24 1

N

NX
i=1

 
1

kxk2

MX
�=1

x��
�
i

!2

> 1 + c

35
� inf

0<t<1=2
e�t(1+c)N

�
IEe

t
�

1
kxk2

PM

�=1
x��

�
1

�2�N
� inf

0<t<1=2
e�t(1+c)N

�
1

p
1� 2t

�N
(2:2)

Now the in�mum over t in the last line of (2.2) is taken on for t = 1
2

c
1+c and inserting this value in

(2.2) yields (2.1). }

Let us now introduce a family of gridsWM;r in IR
M with spacing rp

M
. We denote byWM;r(�)

the set of points x 2 WM;r such that kxk2 � �. We have

Lemma 2.2: Let Br(x) denote the ball of radius r centered at x. Then

(i) [x2WM;r(�)Br(x) � B�(0)

(ii) jWM;r(�)j � eM(ln+
�
r+c), for some constant c < 1.

Proof: Statement (i) follows since the length of the diagonal in a M -dimensional cube of side

length rp
M

equals r. Statement (ii) reects the fact that the volume of a ball of radius � in IRM is�
2�M�M

�
= (M�(M=2)). }



We will control the norm of the matrices A by using the de�nition of the matrix norm

kAk � sup
x:kxk2=1

(x;Ax) (2:3)

To estimate the probabilities of suprema over continuous sets of random variables, we will employ

a technique used by Ledoux and Talagrand for instance in their textbook [LT]. To this end we �x

a number a < 1 to be chosen later and chose a sequence rn = an. Then any x with norm one can

be written in some (possibly non-unique) way as

x =

n�+1X
n=1

x(n); (2:4)

where x(n) 2 WM;rn(rn�1) for n � n� and kx(n� + 1)k2 � rn� . We will abbreviate for simplicity

W(n) � WM;rn(rn�1). This gives that

sup
x:kxk2=1

(x;Ax) = sup
x(1)2W(1)

: : : sup
x(n�)2W(n�)

sup
x(n�+1):kx(n�+1)k2�rn�

 X
n

x(n); A
X
n

x(n)

!
(2:5)

To make good use of this formula, the following elementary lemma is of great help:

Lemma 2.3: Let bn, n � 1, be any absolutely summable sequence of real numbers. Then, for

all q2 > 0,  
n�+1X
n=1

bn

!2

� (1 + q2)

n�X
n=1

(1 + q�2)n�1b2n + (1 + q�2)n
�
b2n�+1 (2:6)

Of course this formula is useful only if b2n(1 + q�2)n�1 is summable.

Proof: The proof of this lemma follows by induction from the elementary observation that for all

q2 > 0, �rst

2x = 2qq�1x = q2 + q�2x2 � (q � q�1x)2 � q2 + q�2x2 (2:7)

and whence

(b+ c)2 = b2
�
1 + 2

c

b
+
c2

b2

�
� b2 + c2 + q2b2 + q�2c2 = b2(1 + q2) + c2(1 + q�2)

(2:8)

}

Lemma 2.3 allows us to write, for q to be chosen later, that

sup
x2IRM :kxk2=1

(x;Ax) � (1 + q2)

n�X
n=1

(1 + q�2)n�1 sup
x(n)2W(n)

(x(n); Ax(n))

+ (1 + q�2)n
�

sup
x(n�+1):kx(n�+1)k2�rn�

(x(n� + 1); Ax(n�+ 1))

(2:9)



But combining (2.1) with (ii) of Lemma 2.2, we get that

IP

"
sup

x(n)2W(n)

(x(n); Ax(n)) � (1 + c)a2(n�1)

#
� eM(j lnaj+1)�Ng(c) (2:10)

where we have set

g(c) � 1
2 fc� ln(1 + c)g (2:11)

Therefore,

IP

"
n�X
n=1

(1 + q2)(1 + q�2)n�1 sup
x(n)2W(n)

(x(n); Ax(n))� (1 + c)(1 + q2)

n�X
n=1

(1 + q�2)n�1a2(n�1)

#

�
n�X
n=1

IP

"
sup

x(n)2W(n)

(x(n); Ax(n))� (1 + c)kx(n)k22

#
� n�eM(j ln+ aj+1)�Ng(c)

(2:12)

On the other hand, it is a trivial matter to see that uniformly,

(1 + q�2)n
�
(x(n� + 1); Ax(n�+ 1)) �M(1 + q�2)n

�
kx(n� + 1)k22 �M((1 + q�2)a2)n

�
(2:13)

We thus obtain, combining our estimates,

IP

"
sup

x:kxk2=1

(x;Ax) � (1 + c)

�
(1 + q2)

1� (1 + q�2)a2
+M((1 + q�2)a2)n

�
�#

� n�eM(j lnaj+1)�Ng(c)

(2:14)

Of course the constants q and a have been assumed to satisfy (1 + q�2)a2 < 1. It remains now to

choose these constants as well as n�. Without attempting a strict optimization, a reasonable choice

turns out to be, for
p
� � 1=2,

q2 = a =
p
� (2:15)

With this choice, the remainder term (2.13) is bounded by 1=N if n� = ln(MN)=j ln
�
3
4

�
j. If we

moreover set c � g�1 (�(j ln�j=2 + 1) + �), � > 0, (2.14) �nally gives

IP

"
sup

x:kxk=1

(x;Ax) �
�

1 +
p
�

1� ��
p
�
+

1

N

��
1 + g�1 (�(j ln�j=2 + 1) + �)

�#
�

ln(MN)

j ln
�
3
4

�
j
e��N

(2:16)

This bound is not very good to determine the true norm of A, but it gives very good estimates

on probabilities of very large excesses. We will now bootstrap this result with the help of a general

`concentration of measure' theorem of M. Talagrand [T1]. To this end we need the following

properties of the norm of A as a function of �.

Lemma 2.4: Set �N(!) � supx:kxk=1(x;AN [!]x). Then



(i) The function �N(!) is a convex function of the random variables �(!).

(ii) �N(!) satis�es the Lipshitz bound

j�N(!)� �N(!
0)j �

p
2

p
N

p
�N(!) + �N(!0)k�(!)� �(!0)k2 (2:17)

Proof: To prove (i), note that (x;Ax) = 1
N

P
i(�i; x)

2 is a convex function of � for �xed x. But

the supremum of a family of convex functions is again convex.

To prove (ii), note �rst that����� sup
x:kxk=1

(x;A(!)x)� sup
x:kxk=1

(x;A(!0)x)

����� � sup
x:kxk=1

j(x;A(!)x)� (x;A(!0)x)j (2:18)

But

j(x;A(!)x)� (x;A(!0)x)j =

����� 1N X
i

�
(�i(!); x)

2� (�i(!
0); x)2

������
=

����� 1N X
i

(�i(!) + �i(!
0); x)(�i(!)� �i(!

0); x)

�����
�

s
1

N

X
i

(�i(!) + �i(!0); x)2

s
1

N

X
i

(�i(!)� �i(!0); x)2

(2:19)

Now
1

N

X
i

(�i(!) + �i(!
0); x)2 �

2

N

X
i

(�i(!); x)
2+

2

N

X
i

(�i(!
0); x)2 (2:20)

while

1

N

X
i

(�i(!)� �i(!
0); x)2 �

1

N

X
i

X
�

(�i(!)� �i(!
0))2

X
�

x2� =
1

N
k�(!)� �(!0)k22kxk

2
2 (2:21)

from which (2.19) follows.}

Theorem 2.5: ([T1]) Let f be a real valued function de�ned on [�1; 1]N. Assume that for each

real number a, the set ff � ag is convex. Suppose that on a convex set B � [�1; 1]N the restriction

of f to B satis�es for all x; y 2 B

jf(x)� f(y)j � lBkx� yk2 (2:22)

for some constant lB > 0. Let h denote the random variable h = f(X1; : : : ; XN).Then, if Mf is a

median of h, for all t > 0,

IP [jh�Mf j � t] � 4b+
4

1� 2b
exp

�
�

t2

16l2B

�
(2:23)



where b denotes the probability of the complement of the set B.

We see that due to Lemma 2.4 we are exactly in the situation where we may apply this theorem

with h being the norm of A.

This gives us the following

Theorem 2.6: Assume that � � 1=4. Then there exists a constant K = K(�) < 1 such that

for all x � 1

IP [jkAk � IEkAkj � x] � Ke�
Nx2

K (2:24)

The same result holds for A replaced by A� 1I.

Remark: From Theorem 2.5 we get an exponential estimate on jkAk �MkAkj. But it is easy

to see that this together with (2.19) in turn implies the exponential estimate (2.24) (with slightly

modi�ed constants).

From the known standard estimates on the eigenvalues ofA (the �rst reference to our knowledge

is [Ge]) we know that the median of kAk equals (1 +
p
�)2 and that of kA� 1Ik equals 2

p
� + �,

up to corrections that tend to zero with N rapidly.

Proof: Theorem 2.6 is a direct consequence of Lemma 2.4 and Theorem 2.5, together with the

estimate (2.16), used for some suitable small value of �. Since Lemma 2.4 holds also for the norm of

A� 1I, we get the same estimate for the norm of that matrix. The constant K(�) can be estimated

more precisely from our bounds, but its value will be of no particular importance for the rest of

this paper. }

Theorem 2.6 will be used heavily in the remainder of this paper. We introduce, for future

reference the sets


1(N) �
�
! 2 


��kAN [!]� 1Ik � rN(�)
	

(2:25)

and


1 � [N0�1 \N�N0

1(N) (2:26)

where rN(�) � 2
p
2 + � + �, for some arbitrarily small � (one may also take � that decrease with

N , e.g. � = C
p
lnN=N). Then one has that IP [
1(N)] � 1�K exp(�Ne2=K) and IP [
1] = 1.



3. Global minima

In this section we determine a regime in the �; � plane for which global minima away from the

Mattis states can be excluded. This will provide a more transparent proof and better estimates

on the parameters than previously obtained in [BGP1]. In particular, it will yield the correct

asymptotic behaviour of the maximal allowed � for � # 1 which agrees (up to constants) with the

�ndings from replica methods [AGS].

We �rst introduce the following subsets of IRM :

�� =
�
m
�� jkmk2 �m�j > �m�	 (3:1)

and

D�;� = �c�
\8<: [

(�;s)

B�(sm
�e�)

9=;
c

(3:2)

where the union runs over all (�; s) 2 f1; : : : ;Mg � f�1; 1g and where B�(m) denotes the ball of

radius � centered at m.

The central result of this section is the following theorem.

Theorem 3.1: There exists strictly positive constants a; c1; c2; �c such that for all 0 � � �

2a(m
�(�))4 there exists a set ~
 � 
 with IP [~
c] � e�c1N and a constant 0 < c4 <

1
2
, such that for

all ! 2 ~
 the function �N;�[!](m) satis�es the following:

(i) For all m 2 �1=35

�N;� [!](m)� �(m�) � 1
2
�c (m�)2 (kmk2 �m�)

2
(3:3)

and

(ii) For all m 2 Dc4m�;1=35,

�N;� [!](m)� �(m�) � c2 (m
�)4 (3:4)

In particular, all absolute minima of � lie in the union of the balls Bc4m�(�m�e�).

Remark: The proof of this theorem provides estimates on the constants ci that we have not tried

to optimize. The interested reader is invited to do this. The relation between the critical � and

� � 1 show however the expected correct power-law behaviour. Note that asymptotically, as � # 1,

m�(�)2 � 3(� � 1).

Proof: Let us �rst give a brief outline of the proof. We will treat separately the regions ��, D�;1=2

and the balls B1=2(sm
�e�). On the �rst two sets we will use that on the set 
1 de�ned in (2.26),

�(m)� �(m�) � �r(�)

2
kmk22 +

1
N

X
i

(� ((�i; m))� �(m�)) (3:5)



and prove a suitable lower bound on

1
N

X
i

(� ((�i; m))� �(m�)) (3:6)

To treat the balls B1=2(sm
�e�) we will, performing the change of variables m = sm�e� + v,

use that on 
1

�(m)� �(m�) � �r(�)

2
kvk22 �m�r(�)kvk2 + 1

N

X
i

(� ((�i; m))� �(m�)) (3:7)

to show that

1
N

X
i

(� ((�i; m))� �(m�)) � c0(�)kvk22 (3:8)

kvk2 >
m�r(�)

c0(�)�r(�)=2 then guarantees �(m) > �(m�). Of course this requires c0(�) > r(�)=2.

We start with the following preparatory lemmas

Lemma 3.2: Let

ĉ(�) �
ln cosh(�m�)

�(m�)2
�

1

2
(3:9)

Then for all � > 1 and for all z

�(z)� �(m�) � ĉ(�)(jzj �m�)2 (3:10)

Moreover ĉ(�) tends to 1
2
as � " 1, and behaves like 1

6
(m�(�))2, as � # 1.

Proof: Notice that the function �(z) is symmetric and has the property that z�000(z) � 0. Consid-

ering only the positive branch, we see that the constant ĉ(�) was chosen such that equality holds

in (3.10) at the points 0 and m�. To show that this implies that the quadratic function is a lower

bound is an exercise in elementary calculus.

The asymptotic behaviour of ĉ(�) follows form the fact that for small argument, ln cosh x �

x2=2, while for large arguments ln cosh x � jxj. }

Lemma 3.3: On 
1,

(i) If kmk2
p
1� r(�) > m�, then

1
N

NX
i=1

� ((�i; m))� �(m�) � ĉ(�)
�
kmk2

p
1� r(�)�m�

�2
(3:11)

and



(ii) if kmk2
p
1 + r(�) < m�, then

1
N

NX
i=1

� ((�i; m))� �(m�) � ĉ(�)
�
kmk2

p
1 + r(�)�m�

�2
(3:12)

Proof: Using Lemma 3.2, we see that

1
N

NX
i=1

� ((�i; m))� �(m�) � ĉ(�) 1
N

NX
i=1

�
(�i; m)2 �m�j(�i; m)j+ (m�)2

�
= ĉ(�)

h
k�mk2p

N
�m�

i2 (3:13)

where we used the Schwarz inequality. From here the lemma follows by using the bounds on the

norms of the random matrices �t�=N established in Section 2. }

Corollary 3.4: There exists a constant c1 > 0 such that if
p
� � c1(m

�)2, then there exists

� = �(�) �
p
2
p
�=ĉ(�) such that if m 2 �� then for all ! 2 
1,

�N;�[!](m)� �(m�) � 1
2
ĉ(�)(kmk2 �m�)2 (3:14)

Proof: This follows from the preceeding lemma by elementary algebra. }

This concludes our treatment of the region ��. The case of the region D�;1=2 and the balls

B1=2(sm
�e�) will be more involved. In particular, we will get a priori only probabilistic versions

of the analogs of Lemma 3.3, and thus we will have to estimate probabilities of suprema over m of

our functions �(m). Our �rst observation is thus that the function �(m) is Lipshitz continuous on


1 which will allow us to reduce the problem to an estimate of a lattice supremum. We have

Lemma 3.5: For all ! 2 
1 and for all �,

j�(m)� �(m0)j �
�
kmk2 + km0k2

2
+
p
1 + r(�)

�
km�m0k2 (3:15)

Proof: The proof of this lemma consists just in some applications of the Schwarz inequality. Note

that of course

kmk22 � km
0k22 = (m+m0; m�m0) � km+m0k2km�m0k2 (3:16)

On the other hand it follows from the mean value Theorem in IRM that for some 0 < � < 1,

1
�N

X
i

(ln cosh(�(�i; m))� ln cosh(�(�i; m
0)))

= 1
N

X
i

(�i; m�m0) tanh(�(�i; m
0 + �(m �m0)))

� km�m0k2
q

k�t�k
N

s
1
N

X
i

tanh2(�(�i; m0 + �(m �m0)))

(3:17)



Using the inequality j tanhxj � 1 and the bound on the norm of �t�=N on 
1, we arrive at (3.15).

}

Remark: The bound (3.15) is actually quite poor and can be improved considerably, in particular

for m and m0 near the critical points of � and if � is near one. We leave this as an exercise to the

reader. We can live with this simple bound on the expense of choosing a smaller lattice spacing,

and this does not substantially deteriorate our results.

Lemma 3.6: Let Xi � 0; i = 1; : : : ; N be positive i.i.d. random variables that satisfy IP [Xi �

z] � q. Then for all � � 0,

IP

"
1
N

NX
i=1

Xi � qz(1� �)

#
� exp

n
�Nq �

2

2

o
(3:18)

Proof: By the exponential Markov inequality we have that

IP

"
1
N

NX
i=1

Xi � qz(1� �)

#
� inf

t�0
etqz(1��)N

�
IEe�tX1

�N
� inf

t�0
etqz(1��)N

�
1 + q(e�tz � 1)

�N (3:19)

Choosing t = �=z and using the inequality

ln
�
1 + q(e�� � 1)

�
� �q� + q�2

2
(3:20)

one obtains (3.18).}

Lemma 3.6 will be used together with the following observation.

Lemma 3.7: Let 1 � t �M be a �xed integer. For any m 2 IRM set

m̂ � (m1; : : : ; mt; 0; : : : ; 0)

~m � (0; : : : ; 0; mt+1; : : : ; mM)
(3:21)

Then, for any 0 < d < 1,

IP
�
�((�1; m))� �(m�) � ĉ(�)(m�)2d2

�
�

1

2
�

1

4

kmk22 + (km̂k2 � k ~mk2)2

(1� d)2(m�)2
(3:22)

where ĉ(�) is the constant from Lemma 3.2.

Proof: Let us put X = (m̂; �1) and Y = ( ~m; �1). Note that X and Y are independent and

symmetric random variables. By Lemma 3.2 we have that

IP
�
�((�1; m))� �(m�) � ĉ(�)(m�)2d2

�
� 1� IP [jjX + Y j �m�j � dm�] (3:23)



Now

IP [jjX + Y j �m�j � dm�] � IP [jX + Y j � (1� d)m�] (3:24)

By the symmetry of X and Y ,

IP [jX + Y j � (1� d)m�] = 1
2
IP
�
jX + Y j � (1� d)m���X � 0; Y � 0

�
+ 1

2
IP
�
jX + Y j � (1� d)m���X � 0; Y < 0

�
� 1

2
+ 1

2
IP
�
jX + Y j � (1� d)m���X � 0; Y < 0

� (3:25)

For the last inequality we �nally use the Chebychev inequality. This gives

IP
�
jX + Y j � (1� d)m���X � 0; Y < 0

�
�

IEX2 + IEY 2 � 2IEjX jIEjY j
(1� d)2(m�)2

(3:26)

The announced result follows from here by the Khintchine inequality [Sz], which tells us that

IEjX j � km̂k2=
p
2. }

To make use of this lemma, one has to choose t in the decomposition (3.21) in such a way

that km̂k2 and k ~mk2 are as similar as possible. We may suppose without loss of generality that

m1 � jm2j � : : : � jmM j. Then the conditions jkmk2�m�j � �m� and km� e1m�k2 � 1
2
m� imply

that

m1 �
�
7
8
+ �+ �2

2

�
m� (3:27)

Without loosing anything, we can choose t = 1 as long as

m1 � m�
r
(1� �)2 �

�
7
8
+ �+ �2

2

�2
(3:28)

This gives the bound

(km̂k2 � k ~mk2)
2 � (m�)2

 �
7
8
+ �+ �2

2

�
�

r
(1� �)2 �

�
7
8
+ � + �2

2

�2!2

� g(�)(m�)2 (3:29)

If m1 is smaller than the value given in (3.28), then we must choose t larger. The point here is that

we can always �nd a t for which ���km̂k22 � k ~mk22��� � m2
1 (3:30)

and this implies, for these values of m1, an even smaller bound on (km̂k2 � k ~mk2)
2
than g(�)(m�)2.

Combining now (3.22) and (3.29) with Lemma 3.6, we arrive at the bound

IP

"
1
N

X
i

�((�i; m))� �(m�) � ĉ(�)(m�)2d2
h
1
2
� (1+�)2+g(�)
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#
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1
2
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�2
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� (3:31)



for arbitrary positive �. This bound looks somewhat complicated, and it is most reasonable to

make a choice for � and d. Numerically, it turns out that if we �x � = 1
35

and d � 0:102, then (3.31)

gives us the desired

Lemma 3.8: For all m 2 Dm�=2;1=35 and for any � � 0

IP

"
1

N

X
i

�((�i; m))� �(m�) �
ĉ(�)(m�)2(1� �)

352

#
� exp

�
�N

�2

32

�
(3:32)

We are left to treat the case of the balls B1=2(sm
�e�). W.l.g we will consider the ball

B1=2(m
�e1). We will prove:

Lemma 3.9: Assume that m 2 B1=2(m
�e1). Then,

IP

"
1

N

X
i

�((�i; m))� �(m�) � ~c(�) [1� r(�)� 0:5]km� e1m�k22
��
1

#
� exp

�
�
N

50

�
(3:33)

where ~c(�) = �(3m�=4)��(m�)
(7m�=4)2

(� 1
430

�4(m�)2, for � near 1).

Proof: Like in Lemma 3.2 it is clear that for z > �3
4
m�,

�(z)� �(m�) � ~c(�)(z �m�)2 (3:34)

if ~c(�) is chosen such that the parabola on the right intersects the function on the left at z =

�3m�=4. Thus we can use that

1
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X
i

�((�i; m))� �(m�) � ~c(�) 1
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X
i

�
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X
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�1i (�i; m)�m��2 (3:35)

But since on 
1, kA� 1Ik � r(�),

1
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X
i
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t�
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(m�m�e1)

�
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(3:36)

So that all we have to estimate is

IP

"
1
N

X
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1If(�̂i;m̂)<� 7
4
m��vg
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(�̂i; m̂) + v)

�2
> x
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(3:37)



where we set �1i (�i; m) � m� + v + (m̂; �̂i), m̂ � m�m1e1 and �̂�i � �1i �
�
i .

We now use the exponential Markov inequality and estimate the Laplace transform

IE exp

�
t1If(�̂i;m̂)<� 7

4
m��vg
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(�̂i; m̂) + v)

�2�
(3:38)

A rather straightforward computation with the choice t = g
2km̂k2

2

gives

IE exp

�
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Since under our assumptions km̂k22+v2 � 1
4(m

�)2 and km̂k22+(m�+v)2 � (1� 1
35 )

2(m�)2, we have

the bounds v � �
�
1
8
+ 1

2
[(1� 1

35
)2 � 1]

�
m� � �0:096836m� and km̂k22 � (m�)2=4, which gives

with g = 1
2
,

IE exp
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Using that km� e1m�k2 � km̂k2, we get from here
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(3:41)

Choosing y = 0:5 then gives the assertion of Lemma 3.7. }

We can now conclude the proof of Theorem 3.1. Note that statement (i) follows immediately

from Corollary 3.4, if c1 is su�ciently small to allow us to set �(�) = 1
35 and if �c satis�es ĉ(�) �

�c(m�)2.

Combining the estimates of Lemma 3.8 and 3.9, and choosing a constant c4 < 1=2, we get that

if only c1 (and thus r(�)) is su�ciently small,

IP
�
�(m)� �(m�) � ~c2(m

�)4
�
� e�~c3N (3:42)

for all m 2 Dc4m�;1=35 and for some strictly positive constants ~c2 and ~c3. It remains only to extend

this to an estimate of the supremum over all m 2 Dc4m�;1=35. Let us choose k > 2. Then as in

Section 2, we �nd get immediately that

IP

"
sup

m2Dc4m
�;1=35\WM;�k

�(m)� �(m�) � ~c2(m
�)4

#
� eN[�(kj ln�j+1)�~c3] (3:43)

But by Lemma 3.5 the supremum over Dc4m�;1=35 di�ers from the lattice supremum by no more

than 2�k, so that the claim (ii) of the theorem follows by slightly adjusting the constants ~c2 and

~c4. }}



4. Local minima of � near the `Mattis states'

We will now show that the large deviation function �(m) actually has a quadratic behaviour

in the neighborhood of the minima that correspond to the stored patterns. We already know that

for very small �, the absolute minima of � are located in the vicinity of these points. Here we will

compute the location of the minima more precisely, and we show that they exist for much larger

values of � than those for which our proof in the previous section worked. The proofs in this section

use some of the methods introduced in Section 2.

4.1. Upper and lower bounds on �

Let us for convenience consider the minimum at m(1;1). We set

m = e1m� + v (4:1)

We recall the notation A � �t�=N and B � A� 1I. We may write

�(m) = �1
2 (m;Bm) + 1
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X
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�
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X
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where z
(1)
1 = 0 and for � 6= 1, z

(1)
� = 1

N

P
i �

�
i �

1
i . Here m� � m�(�) is by assumption one of the

values at which �(x) attains its minimum. We have the following result on the function �

Lemma 4.1: Assume that jzj � �m�. Then, for all � > 1, there exists a constant 0 � c(�; �) < 1

such that

�(m� + z)� �(m�) �
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and
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�
(1� c(�; �)) (4:4)

c(�; �) satis�es lim�#1 c(�; �) �
�(1+�)

2 and lim�"1 c(�; �) = 0.

Moreover, for all values of z,

�(m� + z)� �(m�) � 0 (4:5)

and

�(m� + z)� �(m�) �
z2

2

�
1� � + � tanh2(�(m� + jzj))
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Proof: Taylor's formula with remainder gives that

�(m� + z)� �(m�)�
z2

2
�00(m�) = �000(~z)

z3
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(4:7)

for some ~z 2 [m�; m� + z]. Now

�00(~z) = 1� �(1� tanh2(�~z)) (4:8)

and

�000(~z) = 2�2
tanh(�~z)

cosh2(�~z)
(4:9)

Since m� = tanh(�m�) by de�nition, we get

�(m� + z)� �(m�) =
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For � close to 1, a good estimate is

������
2z�2 tanh(�~z)

cosh2(�~z)

6[1� �(1� (m�)2)]
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2 (4:11)

Since a simple calculation shows that to �rst order in � � 1, (m�(�))
2
= 3(� � 1), this gives the

desired estimate in the case � # 1. For � large, note �rst that m�(�) " 1, exponentially fast, and

so (1 � �(1 � (m�)
2
) � 1 � e��

cosh � tends to 1 exponentially fast. From this it is plain to see that

in that case the right hand side of (4.11) is of the order of �2= cosh2(�(m�(1� a)) which tends to

zero exponentially fast as � " 1.

(4.5) is trivial and (4.6) follows from Taylor's theorem with second order remainder and (4.8).

}

We would like to use the bounds from Lemma 4.1 in (4.2), and preferably the sharper bounds

(4.3) and (4.4). The problem here is that even under smallness conditions on v we cannot be sure

that for all i the quantities (�i; v) will have modulus smaller than a � �m�. We will �rst show how

to deal with this for the lower bound. The proof of the upper bound will be similar but slightly

more involved.



We get from Lemma 4.1 for �(m) the lower bound

�(m)� �(m�) � �1
2
(v; Bv)�m�

�
v; z(1)

�
+ 1

2N

�
1� �(1� (m�)2)

�
(1� c(�; �))

NX
i=1

1Ifj(�i;v)j<ag(�i; v)
2

= �1
2
(v; Bv)�m�

�
v; z(1)

�
+ 1

2N

�
1� �(1� (m�)2)

�
(1� c(�; �))

NX
i=1

(�i; v)
2

� 1
2N

�
1� �(1� (m�)2)

�
(1� c(�; �))

NX
i=1

1Ifj(�i;v)j�ag(�i; v)
2

= 1
2
(v; [1I� (1� c�(�; �))A]v)�m�

�
v; z(1)

�
� c�(�)

1
2N

NX
i=1

1Ifj(�i;v)j�ag(�i; v)
2

(4:12)

where we have set
�
1� �(1� (m�)2)

�
(1�c(�; �))� c�(�; �) The last line in this bound is the only

di�cult one to treat. We set

Xa(v) �
NX
i=1

(�i; v)
21Ifj(�i;v)j�ag (4:13)

Our problem will be to estimate the supremum of this quantity over all v in some ball. This problem

is reminiscent to what we did in Section 2 when we estimated norms of the matrices A, and we

will solve it in a very similar way. As we will see in the process of our analysis, we will also have

to consider simultaneously the related variables

Ya(v) � 1
N

NX
i=1

1Ifj(�i;v)j>ag (4:14)

As a starting point, we need estimates on the size of these random variables for �xed v. They are

given by the following lemma.

Lemma 4.2: Let �
�
i be independent centered Bernoulli random variables. De�ne pa(x) �

2 exp
�
� a2

2x2

�
. Then
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�
2
p
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x
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��
(4:15)

and for x � pa(kvk2)

IP [Ya(v) � x] � exp

�
�N

(x� pa(kvk2))2

3pa(kvk2)

�
(4:16)



Proof: We begin with the proof of (4.15). By the exponential Markov inequality we have that for

any positive t,

IP
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NX
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21Ifj(�i;v)j>ag � xN

#
� e�txN
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IEet(�i;v)

21Ifj(�i;v)j>ag
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(4:17)

To estimate the Laplace transform, we write

IEet(�i;v)
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2
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For t < 1=2kvk2 we have that
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Setting t = 1
4kvk2

2

we obtain (4.15).

To prove (4.16) we use again the exponential Markov inequality to get that for any positive t

IP [Ya(v) � x] �e�txN
�
IEet1Ifj(�1 ;v)j>ag

�N
=e�txN

�
(et � 1)IP (j(�1; v)j > a) + 1

�N (4:20)

Now

IP ((�1; v) > a) � e
� a2

2kvk2
2 (4:21)

Thus, since (�1; v) is a symmetric r.v. we get for x � pa(kvk2)

IP [Ya(v) � x] � inf
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�
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�
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�
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��	
= exp
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�NIpa(kvk2)(x)
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where Ip(x), for p 2 (0; 1) is the well-known entropy function

Ip(x) �

8<: x ln
�
x
p

�
+ (1� x) ln

�
1�x
1�p

�
, if x 2 [0; 1]

1 , if x > 1

(4:23)



Finally, we use that (see [BG1])

Ip(x) �
(x� p)2

3p
(4:24)

to arrive at (4.16).}

Just as in Section 2 we can extract trivially bounds over lattice suprema. We get

Lemma 4.3: Under the hypothesis of Lemma 4.2,

IP

"
sup

v2WM;r (�)

Xa(v) � 4�2
h
2
p
pa(�) + �(ln(�=r) + c)

i#
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and

IP

"
sup

v2WM;r (�)

Ya(v) � pa(�) +
p
3pa(�)�(ln(�=r) + c)

#
� exp f�N(c� 1)�g (4:26)

Proof: From Lemma 2.1 we have that
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"
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�
r+1) sup
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We use Lemma 4.2 and choose x su�ciently large that the resulting probability o�sets the expo-

nential prefactor. For this we set

x = 4�2
h
2
p
pa(�) + �(ln(�=r) + c)

i
(4:28)

This gives (4.25) immediately. (4.26) follows in the same way. }

Now let D � IRM be any bounded domain. Our aim is to get estimates on quantities like

supv2D Ya(v). As in Section 2 we note that v 2 D can be represented in the form

v =

1X
n=1

vn (4:29)

with vn 2 WM;rn(rn�1) � W(n) for n > 1 and v1 2 D \WM;r1 .

The following observation is crucial:

Lemma 4.4: Let a1 = a� d1, d1 � a be positive real constants. Then

Xa(v1 + �) � Xa1(v1) + 2
p
Xa1(v1)

p
(�; A�) + 2a21Yd1(�) + 3 (�; A�) (4:30)



and

Ya(v1 + �) � Ya1(v1) + Yd1(�) (4:31)

Proof: The proof is based on the trivial observation that

fj(�i; (v1 + �))j > ag

= fj(�i; v1)j � a1g \ fj(�i; (v1 + �))j > ag [ fj(�i; v1)j > a1g \ fj(�i; (v1 + �))j > ag

� fj(�i; v1)j � a1g \ fj(�i; �)j > d1g [ fj(�i; v1)j > a1g

(4:32)

This gives,

1Ifj(�i;(v1+�))j>ag (�i; (v1 + �))
2 � 1Ifj(�i;v1)j>a1g ((�i; v1) + (�i; �))

2
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2 + 2a211Ifj(�i;�)j>d1g

(4:33)

where some of the indicator functions have been dropped carelessly, and the inequality (a+ b)2 �

2a2 + 2b2 was used in the term that we anticipate as being small. Performing the summation over

i and using the Schwarz-inequality in the second term we arrive at (4.30). (4.31) is simpler and

follows in the same way. }

Corollary 4.5: Assume that D � IRM is su�ciently regular s.t. D �
S
x�WM;r1

\D Br1 (x),

where Br(x) is the ball of radius r centered at x and set Br � Br(0). Then

sup
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 r
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Xa1(v1) + r1
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and

sup
v2D

Ya(v) � sup
v1�WM;r1

\D
Ya1(v1) + sup

�2Br1
Yd1(�) (4:35)

Proof: This is an immediate consequence of the previous considerations and the fact that

sup�2Br1
(�; A�) � r21 kAk by the de�nition of the norm. }

Clearly, the representation of the supremum can serve as a starting point for an iteration. The

norm of the matrix A has been estimated in Section 2 and we know that it is close to one (for small

�) with probability exponentially close to one. The supremum over WM;r1 is a lattice supremum

and has already been estimated. The remaining term is a supremum over a much smaller domain

as before, and by repeated application of (4.35) will be shown to be very small. We formulate this

in the next lemma.



Lemma 4.6:
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Proof: This is an immediate consequence of Corollary 4.5 and Lemma 4.4.}

For the last term in the bound (4.36) we get the following

Lemma 4.7: Suppose that r1
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Proof: By the same type of considerations as above, using in particular (4.35), we get that

sup
�2Br1

Yd1(�) �
1X
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�k�W(k)

Ybk (�k) (4:38)

where bk is some decreasing sequence of positive numbers that satis�es
P1

k=2 bk = d1. Note that
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�N(j ln rk�1

rk
j+1)

, and so, using Lemma 4.2, we have
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At this point one can make some reasonable choice for the parameters rk, bk and �k. We will set

rk = �k�1r1
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To simplify our expressions we will assume in the sequel that
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and that � < 1=2. Then by a straightforward computation
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Form this, the Lemma follows immediately from the observation that the probability that a sum of

r.v.'s exceeds a given sum only if at least one of the r.v.'s exceeds the corresponding summand. }

Proposition 4.8: De�ne
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Then
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Proof: The proposition is just a combination of Lemma 4.7 and 4.8 and a somewhat arbitrary

choice of r1 and d1. If we set a1 = (1� �)a, d1 = �a and r1 = ��. Then
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Finally, we may choose � in such a way that �2

4�
(1�

p
�)2 = 1 and this together with the estimate

on the norm of A from Section 2 gives the proposition. }

We combine the previous results to get the desired lower bound

�(m�e1 + v)� �(m�) � 1
2
(v; B�(�)v)�m�(v; z(1)) (4:46)

with

B�(�) � c�(�; �)1I + (1I�A)(1� c�(�; �))� c�(�; �)�(a; �; �)1I (4:47)

We turn now to the derivation of the corresponding upper bound. The strategy to use will

depend on the value of �. If � � 1:5, then m�(�) � 0:5 and little is lost if we use instead of (4.6)

the rougher estimate

�(m� + z)� �(m�) �
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2
(4:48)



This then yields
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From the previous estimates on Xa(v) it then follows immediately that

�(m�e1 + v)� �(m�) � 1
2
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For � close to 1, this estimate is not very good. This can be seen from the fact that in the di�erence

between B� and B+ there occurs a term that is not proportional to (m�)2. To remedy the situation

we must proceed more carefully with the term tanh2 �(m�+ jzj) in (4.6), taking advantage, on the

other hand, of the fact that � is now strictly bounded.

Thus we replace (4.49) by
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With our previous bounds, we can replace the various X(v) by the bounds from Proposition 4.8

on their suprema over v with given norm . To simplify the resulting expressions, we will use that



for � � 0:1,
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p
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Moreover, we bound tanh2(�(m�(k + 1))) � �2(m�)2(k + 1)2. Thus we can bound
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where the numerical constant in the last bound was obtained under the hypothesis that � and �

are such that exp
�
�(1� 2
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It is easy to check that this is the case if
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Combining everything, we see that we get again the upper bound (4.50), but this time with

B+(�) � c+(�; �)1I + (1I� A)(1� c+(�; �))
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We summarize the results of this subsection in the following theorem.

Theorem 4.9: There exists a set ~
 � 
 of measure one such that for all but a �nite number of

values N , for any 0 < � < 1 and for all kvk2 � �,

�N;� [!](m
�e1 + v)� �(m�) � 1

2
(v; B�(�)v)�m�(v; z(1)) (4:59)

and

�N;�[!](m
�e1 + v)� �(m�) � 1

2
(v; B+(�)v)�m�(v; z(1)) (4:60)

where B�(�) is de�ned by (4.47) and B+(�) is given by (4.51) if � > 1:1 and by (4.58) if 1 < � �

1:1.



Proof: This theorem follows simply from our previous estimates and using the Borel-Cantelli

lemma. }

4.2. Localization of the minima

Theorem 4.9 contains the main information needed for the analysis of the structure of the

minima of the function �. As we will explain later, it also serves as a starting point for a more

re�ned analysis of that function.

Theorem 4.10: There exist �nite positive constants c1; c2; c3 such that the following holds for

almost all ! for all but a �nite number of values N : If
p
� � c1 (m

�(�))
2
then for all v such that

c2

p
�m�(�)

c�(�; �)
� kvk2 � c3m

�(�) (4:61)

and for all (�; s),

�N;�[!](sm
�e� + v) > �(sm�e�) (4:62)

Remark: Theorem 4.10 establishes the existence of a local minimum at a distance of order
p
�m�(�)
c�(�;�)

from the points sm�e�. We will soon localize them more precisely. This is a generalization of the

results of Newman [N] and Komlos and Paturi [KPa] to �nite temperatures. If we consider the

asymptotic regime where � � �c = 1 we have that m�(�) �
p
� � 1 and c�(�; �) � �2 � 1. The

condition on � is then of the form � � c(� � 1)2 and for su�ciently small c1 the upper bound is

seen to be a multiple of the lower one. Notice that this behaviour of the critical � as a function of

� near one is (up to the constants) the same as the one found by [AGS] using the replica method.

For large �, we have checked numerically that the constant c1 can be chosen at least as 0:04.

Proof: The proof of Theorem 4.10 relies on the lower bound (4.59) from Theorem 4.9 and the

following estimate on the norm of the vectors z(�).

Lemma 4.11: Let z
(�)
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P
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i , for � 6= � and z
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Proof: Note that for �xed �, z
(�)
� are independent for di�erent �. Moreover, for � 6= � and the

assumption of the Lemma, they are stochastically dominated by independent normal distributed

random variables z�. The bound (4.63) then follows by a simple application of the exponential

Markov inequality. }



To prove the proposition, we may now choose a in Proposition 4.8 in a suitable way. A

possible choice is a = m�=3. With this choice c�(�; �) � 4
9

�
1� �(1� (m�)2)

�
. For kvk2 satisfying

the upper bound in (4.61), we can make the terms e
� a2

K�2 appearing in �(a; �; �) as small as desired

by choosing c3 small, while the terms �(ln �=r + 2) can also be made small by choosing c1 small,

and also all the terms of order
p
� are small compared to c�(�; �) under the assumption on �.

Thus we get e�ectively a bound

�(se� + v)� �(m�) � 1
4
c�(�; �)kvk22 �

p
�(1 + �)kvk2 (4:64)

and this is strictly positive if v satis�es the lower bound in (4.61). Moreover, the lower bound in

(4.61) is smaller than the upper one if c1 is su�ciently small, so that our statement is not void.

}}

Theorem 4.10 will sharpened in the sense that we can locate more precisely the position of the

true local minima.

Lemma 4.12: For all � su�ciently small such that B�(�) is strictly positive we de�ne v(�) �

m�B+(�)
�1z(�). Then for all � and for all v such that

kv�v(�)k2 > m�p�(1+�)kB�1+ k
�p

kB�(�)�1k kB+(�)� B�(�)k+ 2kB�(�)�1k kB+(�)�B�(�)k
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and kvk2 � � one has that, for almost all !, for all but a �nite number of indices N ,

�N;�[!](e
�m� + v) > �N;�[!](e

�m� + v(�)) (4:66)

Proof: This lemma follows from Theorem 4.9 by some elementary algebra and Lemma 4.11. }

It remains to estimate the various norms appearing in (4.65). This is an elementary, but

somewhat painful, exercise and we will just consider the two asymptotic regimes � # 1 and � " 1.

We collect these bounds, which are easily obtained from our previous estimates without going into

the details of the proofs. We also, for sake of clarity, take the liberty to throw away all insigni�cantly

small corrections.

Lemma 4.13: Let us put
p
� = (m�)2. Then we have for 1 > � � 0 to be chosen later:

(i) To leading order in the limit � # 1

kB�1+ k � kB�1� k �
3

2

1

(m�)2
1

1� �(� + 1)=2� 3 � (1� �(� + 1)=2)�(�m�; �; �)
(4:67)

and

kB+ �B�k � (m�)2
�
�(� + 1)

3
+ 4�(�; �m�; �) + 2 + 300 exp

�
� (m�)2

4�2

��
(4:68)



(ii) If � " 1,

kB�1+ k � kB�1� k �
1

1� �(�; �; �)
(4:69)

and

kB+ �B�k � �(�; �; �) (4:70)

and to leading order in �, for � =
p
�,

�(�; �; �)� 8
p
2 exp

�
�

�2

4�2
(1� 2

p
�)2
�
+ �[j ln�j+ 2] (4:71)

Note that by Theorem 4.10 we only need to consider the ball of radius � = c2
m�p�
c�(�;�) . In case

(ii) we can choose � arbitrary close to one to get the result

kB+ � B�kkB�1� k � 8
p
2 exp

�
�

1

4�
(1� 2

p
�)

�2

+ 2�[j ln�j+ 2] (4:72)

In case (i) we still have to make our choice for the parameter � . Note that in that case c�(�; �) �
2
3
(m�)2(1��(�+1)=2) and, anticipating that we will chose � small, we have � � 2c2

3
m�. Inserting

this value in the bounds (4.67) and (4.68), we get
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p
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(4:73)

With the natural choice �2 =
32c22
9
2j lnj this gives

kB+ � B�kkB�1� k �
p
32

3
c2
p
j ln j+ 2 +O(2) (4:74)

If we notice further that the dominant part of the matrix B+ is a multiple of the identity, we arrive

at the following

Theorem 4.14: For any � > 1 set b(�) � m�(�)
1��(1�(m�)2) . There exists 0 > 0 such that for all

 � 0, for almost all !, for all but a �nite number of indices N , the following holds: for all v such

that kvk2 � c3m
� and v � b(�)z(�)


2
� c4m

�3=2
p
j ln j (4:75)

�N;� [!](m
�e� + v) > inf

kvk2�c3m�
�N;�[!](m

�e� + v) (4:76)

for some strictly positive constant c4 and where c3 is the same constant as in Theorem 4.10.

This theorem allows us to locate quite precisely the (random) position of the lowest minimum

of the function � in vicinity of any of the points m�e�. It is of interest to observe that in smaller



regions these minima are even unique, i.e. there are no other local minima in the immediate vicinity

of the `Mattis states'. This is the main content of the last theorem of this section.

Theorem 4.15: Assume that 1 < � < 1. Then there exists �0(�) and �(�) such that if

� � �0(�), with probability one for all but a �nite number of indices N , �N;�[!](m
�e1 + v) is a

twice di�erentiable and convex function of v for all v with kvk2 � �(�).

Proof: The di�erentiability for �xed N is no problem. The non-trivial assertion of the theorem is

the local convexity. We have that

D2�(m�e1 + v) = 1I�A+ 1
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NX
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t
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(4:77)

The point here is that

�00(x) = 1� �
�
1� tanh2(�x)

�
(4:78)

so that �00(x) � c if jxj � 1
� tanh

�1
�q

1� 1�c
�

�
. Moreover, for arbitrary x we have that �00(x) �

1��. Thus if we set � = 1
m��
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1�c
�

�
�1, denoting by �min

�
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�
the smallest

eigenvalue of D2�(m�e1 + v), we get that
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�
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Denoting by �min
�
D2�(m�e1 + v)

�
the smallest eigenvalue of D2�(m�e1 + v) What we need to do

is to estimate the norm of the last term in (4.79). Now,
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 1
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(4:80)

Using the trick to write

1Ifj(�i;v)j>�m�g(�i; w)
2 = 1Ifj(�i;v)j>�m�g(�i; w)

2
�
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so that

1
N

NX
i=1

1Ifj(�i;v)j>�m�g(�i; w)
2 = X�m�(v) +X�m�(w) (4:82)



by which token we are reduced to estimate the same quantities as before. We obtain therefore on


1 for all v with norm less than �,

�min
�
D2�(m�e1 + v)

�
� 1� (1� c)(1+ r(�))� (� � 1� c)�(�; �m�; �) (4:83)

which proves the theorem and allows to estimate the constants involved.}

Remark: Note that the estimates derived from (4.83) become quite bad if � is large. This is due

to the fact that the second derivative of � satis�es a poor uniform bound in this case. However,

this bad bound is realized only in a small region, so that a more careful analysis should allow to

replace (1� �) by a bounded constant.

4.3. The macroscopic component of the minima near the `Mattis states'

We have seen so far that the location of the minima of � is shifted away from the `Mattis states'

m�e� by a random vector z(�), up to error terms of small norm. The components of z(�) are all

\microscopic" i.e. of order 1p
N
. [AGS] found, on the basis of the replica method that the location

of the minimum associated to the pattern � undergoes a macroscopic shift of order exp
�
� 1

2�

�
of its

�-th component. We will show that from Theorem 4.14 such a result can be derived in a rigorous

form. Without restriction of generality, we consider a minimum with (� = 1; s = +1). We denote

the 1-component of the location of a minimum according to Theorem 4.14 by m1(N) and set

m1
+ � lim sup

N"1
m1(N) (4:84)

and

m1
� � lim inf

N"1
m1(N) (4:85)

Theorem 4.16: Assume that � satis�es the hypothesis of Theorem 4.14. Then there exists a

�nite constant c5 such that, IP -almost certainly,
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and
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A special case of this Theorem is the following

Corollary 4.17: In the limit � " 1, IP -almost surely

m1
+ � Erf

�
m1

+
+
p
�p
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�
+ c5

p
�j ln�je�

1

4�2j ln�j (4:88)

and
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� � Erf
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p
�p
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�
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p
�j ln�je�

1

4�2j ln�j (4:89)

where Erf(x) �
R x
0
dte�t

2

is the error function.

Remark: The bounds (4.89) can be evaluated numerically, but it is clear that (4.88) implies that

m1
+ � 1� O

�
e�1=�

�
and that for � small enough there exist m1

� of the same order which veri�es

(4.89). A numerical analysis of these inequalities shows that solutions near 1 exist up to values of

� of order 0:1, much larger than those for which the hypothesis of Theorem 4.16 can be proven.

Corollary (4.17) should be compared to the heuristically derived set of equations (4.5-7) of [AGS],

namely m1 = Erf(m1=
p
2�r), where r = (1� C)�2 and C =

p
2=��r exp(�(m1)2=2�r). They use

these to determine the critical storage capacity by �nding the maximal value � for which a non-zero

solution exists. The inequalities of Theorem 4.16 compare with the equations (5.5,6) of [AGS].

Proof: Letm be any minimum of � in the ball Bc4b(�)
p
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�
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�
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of the system of equations
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�
i tanh[�(�i; m)] ; � = 1; : : : ;M: (4:90)

Now we can writem = e1m1+m�z(1)+w where w1 � 0 and kwk2 � c4�b(�)
p
�. Then the equation

for the component m1 reeds

m1 = 1
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NX
i=1

tanh[�(m1 +m�(�̂i; z
(1)) + (�̂i; w))] (4:91)

where �̂i � �1i �i. For any a � 0 we can write
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(4:92)



where Ya(w) is de�ned in (4.14). Similarly

m1 � 1
N

NX
i=1

tanh[�(m1 +m�(�̂i; z
(1))� a)]� Ya(w) (4:93)

We should expect that the averages over i in the formulas (4.92) and (4.93) converge to expectations

with respect to some measure. This is indeed the case due to the following lemma.

Lemma 4.18: Let �x denote the Dirac-measure concentrated on x and let N0;� be the centered

Gaussian measure with mean zero and variance �. Then,

w � lim
N"1

1
N

NX
i=1

�(�̂i;z(1)) = N0;� IP -a.s. (4:94)

We will give the proof of this Lemma in the appendix.

We recall further that the quantity supw2B� Ya(w) is known from Lemma 4.7 and, by a simple

application of the Borel-Cantelli Lemma we obtain that, almost certainly,
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where
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Putting these observations together, we �nd that, almost surely,
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and

m1
� �

1
p
2��

Z
dxe�

x2

2� tanh[�(m1
� � a+m�x)]� e�(a; �;m�; ) (4:98)

Choosing a =
p
m� we obtain from here the claims of the theorem. }



5. Applications to the Gibbs measures: Proof of Theorem 3

Theorem 3 follows from the estimates in the last two sections in a fairly straightforward way

along the lines of [BGP1] and [BGP2]. We only give a rough outline in order to avoid repetitions.

In particular, we will only show how the results are obtained for the measures eQ and leave the

remaining step that can be copied from [BGP1] to the reader. To simplify our notation, let us set

B
(�)
� � B�(m

�e�) and R� � f[(�;s)B�(se
�m�)gc. Let us also introduce the integrals

I(�)� �
Z
B
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and
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Note that by symmetry, changing B
(�)
� to B�(�m�e�) in (5.1) does not change I

(�)
� . To simplify

our presentation, we will denote by 
2 the subset of 
 on which our various bounds on �(m) from

Sections 4 and 5 hold. All bounds stated in this section are true on 
2; recall that the probability

of 
2 is exponentially close to one.

By Theorem 4.9 we have that
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we get
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Using in addition to Theorem 4.9 the lower bounds on � from Section 4 we get on the other hand
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where VM � 2�M=2

�(M=2) denotes the surface area of the M -dimensional unit sphere and for some

constant ~c > 0. Now choose � = c5
p
�=m� = c5m

�. Set further kB�1� (�)k = ~c�=(m
�)2. Then the

above estimates combine to
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where c7 > 0 is some constant depending on c5, a and ~c+=~c�. Since clearly

eQ(R�) �
J�

I
(1)
�

(5:8)

eQ(Rc5m
�) obeys the same bound.

Next, to prove the second statement of Theorem 3, observe that
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�

=
h
ln I(�)� � IE ln I(�)�

i
�
h
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Noticing that the function �N;�[!](z) satis�es the Lipshitz bound

j�N;�[!](z)� �N;�[!
0](z)j � 1p

N
k�[!]� �[!0]k2kzk2 (5:10)

we can again use Theorem 2.5, without this time, using its full power, given that the Lipshitz

constant is bounded uniformly. This implies that for all x � 0
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1
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ln I(�)� � IE ln I(�)�
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> x
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� 4e

�N x2
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To complete the proof of Theorem 3 we show that with regard to the objects we consider, the

measures eQ and Q di�er only by exponentially small terms. More precisely

Lemma 5.1: Assume that � � 2a(m
�)4. Then on the set 
2,���QN;�(B

(�)
c5m�)� eQN;�(B

(�)
c5m�)

��� � e�c8�M (5:12)

Proof: From the fact that eQ is the convolution of Q with the Gaussian measure of mean zero and

variance �N it follows that

Q(B(�)
� ) � eQ(B(�)

�+�m�) + 2Me�
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4
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and
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On the other hand,
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�+�m�)� eQ(B(�)
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iM=2

e
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by the same type of computation than the one leading to (5.7). Choosing � = c9m
� with c9 > 1,

we obviously get (5.12) with c8 depending only on c5 and ~c+=~c�. }

From Lemma 5.1 and (5.7) and (5.8) follows the �rst assertion of Theorem 3. The second

follows from (5.9) and (5.11), provided
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as N " 1. But clearly eQ(B(�)
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(5:17)

The second term in the denominator is exponentially small by (5.7) while by (5.11)
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From here we get (5.16) and this concludes the proof of Theorem 3. }}



Appendix: Proof of Lemma 4.18

We introduce the abbreviation X� � X�(N) = 1p
N

PN
j=1 �

�
j . Lemma 4.18 can then be written

in the following form

Lemma A.1: Let �x denote the Dirac-measure concentrated on x and let N0;� be the centered

Gaussian measure with mean zero and variance �. Then,
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N"1

1
N

NX
i=1
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N�M=N = N0;� IP -a.s. (6:1)

Proof: To prove weak convergence, it is enough to prove the a.s. convergence on a measure

determining class. The main step in the proof is thus the following lemma.

Lemma A.2: Let f 2 C(2)(IR) be an increasing bounded function with bounded �rst and second

derivatives. Then
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Proof: Use the exponential Chebeychev inequality to get that
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where the last equality de�nes fIEx. The crucial point is now that the variables �i under the lawfIEx are negatively associated (see e.g.[JP,Lo]) and therefore
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where we have assumed, without loss of generality, that jf(x)j � 1. By the same hypothesis, the

term proportional to t2 in the last line is bounded by a constant, and we would immediately be

done if the term proportional to t was zero. While this is not exactly true, we will see that this is

virtually true on a set of values x which carry all but an exponentially small mass. Let us de�ne

F (x) � fIExf
�

1p
N

X
�
�
i x�

�
(6:5)

It is not di�cult to show, using for instance the Yurinskii-martingale technique [Yu], that F satis�es

a concentration estimate.

Lemma A.3: Le F be de�ned by (6.5) and let X = 1p
N

PN
i=1 �i. Then there exists a constant

0 < cf <1 such that for all � < �=2,
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Proof: Lemma A.3 is a concentration estimate for F regarded as function of the M independent

random variables X�. To get it, we will show that the derivative of F with respect to x� satis�es

appropriate bounds. We will use that the variables ��i under fIEx are independent for di�erent �

and that fIP x [�
�
i = �1] = 1
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This representation allows immediately to compute the derivative with respect to x� , and since f ,

f 0 and f 00 are assumed to be bounded, a simple computation shows that��� d
dx�

F (x)
��� � Cjx� j

N (6:9)

This bound allows to estimate the conditional expectations
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where �(X1; : : : ; X��1) denotes the sigma algebra generated by the variables X1; : : : ; X��1. Noting

that X� are close to normal (and recalling e.g. Lemma 2.1), we see that the last expectation is



bounded by const:=N2 as long as 2t=N < 1 These allow the use of the Yurinskii-Martingale method

(see e.g. [LT]; the speci�c computations used here will be similar to those in Chap 3 of [BGP2]) to

prove (6.6). We leave the details to the reader. }

As an immediate corollary of Lemma A.3 we get that except on a set of probability smaller

that cf exp(��2=2cf),
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for some �nite constant c0. Since for t su�ciently small we can choose �2 = 2tcf , we may in fact
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Inserting this bound in (6.3) and making, for � su�ciently small, the choice

t =
2

81cf
�2 (6:14)

we get that for some �nite constant C
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which for � su�ciently small is of order exp(�Nc�3). In much the same way we can also proof that
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Form this the lemma follows by the Borel-Cantelli Lemma.}

To conclude we have to identify limN"1 IEf
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the central limit theorem applied to the independent random variables
�
�
�
1 �

�
j

	
j�2;��1 shows that
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This together with Lemma A.2 implies Lemma A.1. }
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