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1. Introduction

Mean �eld models in statistical mechanics furnish nice examples for the interpretation of

thermodynamics as the theory of large deviation for Gibbs measures of microscopically de�ned

statistical mechanics systems [E]. Roughly speaking, in such models the Hamiltonian is only a

function of (extensive) `macroscopic' quantities (density, magnetization,etc.) of the system. In

the thermodynamic limit, the distribution of these quantities is expected to be concentrated on a

sharp value and to satisfy a large deviation principle. The corresponding rate functions are then

the thermodynamic potentials (free energy, pressure) that govern the macroscopic response of the

system to external (intensive) conditions. The classical paradigm of the theory is that the number

of relevant macroscopic variables is excessively small (order of 10) compared to the number of

microscopic variables (order of 1023) .

Over the last decade, the formalism of statistical mechanics and thermodynamics has found

increasing applications in systems in which the macroscopic behaviour is far more complex and

described by a `large' number of variables. Such systems can be found in biology (heteropolymers,

neural networks) but also in the domain of disordered solids, and in particular spin glasses. Some

fundamental aspects of these ideas are discussed in an interesting recent paper by Parisi [P]. For

such systems, many basic problems are not very well understood, and many technical aspects defy

a mathematical investigation at the present time. An interesting toy model (that nonetheless has

also practical relevance) where this situation can be studied and for which mathematical results

are available, is the Hop�eld model [FP1,Ho]. This model is a mean �eld spin system in the sense

explained above. However, the Hamiltonian, instead of being a function of few macroscopic variables

is a function of macroscopic variables that are random functions of the microscopic ones and those

number tends to in�nity with the size of the system in a controllable way. More speci�cally, the

model is de�ned as follows.

Let SN � f�1; 1gN denote the set of functions � : f1; : : : ; Ng ! f�1; 1g, and set S �
f�1; 1gIN . We call � a spin con�guration and denote by �i the value of � at i. Let (
;F ; IP )
be an abstract probability space and let �

�
i , i; � 2 IN , denote a family of independent identically

distributed random variables on this space. For the purposes of this paper we will assume that

IP [�
�
i = �1] = 1

2
, but more general distributions can be considered. We will write ��[!] for the

N -dimensional random vector whose i-th component is given by �
�
i [!] and call such a vector a

`pattern'. On the other hand, we use the notation �i[!] for the M -dimensional vector with the

same components. M will be chosen as a function of N and the function M(N) is an important

parameter of the model. We will generally set � � �(N) � M(N)
N

. When we write �[!] without

indices, we frequently will consider it as an N �M matrix and we write �t[!] for the transpose

of this matrix. Thus, �t[!]�[!] is the M �M matrix whose elements are
PN

i=1 �
�
i [!]�

�
i [!]. With
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this in mind we will use throughout the paper a vector notation with (�; �) standing for the scalar
product in whatever space the argument may lie. E.g. the expression (y; �i) stands for

PM
�=1 �

�
i y�,

etc.

We de�ne random maps m
�
N [!] : SN ! [�1; 1] through1

m
�
N [!](�) �

1

N

NX
i=1

�
�
i [!]�i (1:1)

Naturally, these maps `compare' the con�guration � globally to the random con�guration ��[!]. A

Hamiltonian is now de�ned as the simplest negative function of these variables, namely

HN [!](�) � �N

2

M(N)X
�=1

(m
�
N [!](�))

2
(1:2)

where M(N) is some, generally increasing, function that crucially in
uences the properties of the

model. With k � k2 denoting the `2-norm in IRM , (1.2) can be written in the compact form

HN [!](�) = �N

2
kmN [!](�)k22 (1:3)

Through this Hamiltonian we de�ne in a natural way �nite volume Gibbs measures on SN via

�N;�[!](�) �
1

ZN;�[!]
e��HN [!](�) (1:4)

and the induced distribution of the overlap parameters

QN;�[!] � �N;�[!] �mN [!]
�1 (1:5)

The normalizing factor ZN;� [!], given by

ZN;�[!] � 2�N
X
�2SN

e��HN [!](�) � IE�e
��HN [!](�) (1:6)

is called the partition function.

This model has been studied very heavily in the physics literature. As a basic introduction to

what is commonly believed about its properties, we refer to the seminal paper by Amit, Gutfreund

and Sompolinsky [AGS]. Over the last few years, a considerable amount of mathematically rigorous

results on these measures has been established [BG1,BGP1,BGP2,BGP3,K,N,KP,KPa,ST,PST]. It

is known that under the hypothesis that lim supN"1M(N)=N = 0 weak limits can be constructed

1
We will make the dependence of random quantities on the random parameter ! explicit by an added [!]

whenever we want to stress it. Otherwise, we will frequently drop the reference to ! to simplify the notation.
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for which the QN converge to Dirac measures in IR1 [BGP1]. Disjoint weak limits have also been

constructed in the case where lim supN"1M(N)=N = � > 0, for small � in [BGP3]. In this note we

restrict our attention to the case � = 0 and the question to what extent a large deviation principle

(LDP) for the distribution of the macroscopic overlaps can be proven.

A �rst step in this direction had been taken already in [BGP2]. There, a LDP was proven,

but only under the restrictive assumption M(N) < lnN
ln 2

, while only a weaker result concerning the

existence of the convex hull of the rate function was proven in the general case � = 0 in a rather

indirect way. The �rst LDP in the Hop�eld model was proven earlier by Comets [Co] for the case

of a �nite number of patterns. Here we prove a LDP under more natural, and probably optimal,

assumptions.

Since the overlap parameters form a vector in a space of unbounded dimension, the most

natural setting for a LDP is to consider the �nite dimensional marginals. Let I � IN be a �nite

set of integers and let IRI � IRIN denote the corresponding subspace and �nally let �I denote

the canonical projection from IRJ onto IRI for all J � IN such that I � J . Without loss of

generality we can and will assume in the sequel that I = f1; : : : ; jIjg. Let us introduce the maps

np : [�1; 1]2p ! [�1; 1]p through

np(y) � 2�p
2pX

=1

e
y
 (1:7)

where e
 , 
 = 1; : : : ; 2p is some enumeration of all 2p vectors in IRp whose components take values

�1 only. Given I � IN , we de�ne the set DjIj as the set

DjIj �
n
m 2 IRjIj j 9y 2 [�1;+1]2jIj : njIj(y) = m

o
(1:8)

Theorem 1: Assume that lim supN"1
M
N

= 0. Then for any �nite I � IN and for all 0 < � <1,

the family of distributions QN;�[!] � ��1I satis�es a LDP for almost all ! 2 
 with rate function

F I
� given by

F I
� ( ~m) = � sup

p2IN
sup

y2[�1;1]2p
�Inp(y)= ~m

"
1

2
knp(y)k22 � ��12�p

2pX

=1

I(y
)

#
+ sup

y2IR

�
1

2
y2 � ��1I(y)

�
(1:9)

where

I(y) �
�

1+y
2

ln(1 + y) + 1�y
2

ln(1� y) , if jyj � 1

+1 , otherwise
(1:10)

F I
� is lower semi-continuous, Lipshitz-continuous on the interior of DjIj, bounded on DjIj and equal

to +1 on Dc
jIj.

Remark: Note that F I
� is not convex in general.
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To prove Theorem 1 we will de�ne, for ~m 2 IRI

F I
N;�;�( ~m) � � 1

�N
ln�N;�[!] (k�ImN (�)� ~mk2 � �) (1:11)

and show that

i) If ~m 2 DjIj, then

lim
�#0

lim
N"1

F I
N;�;�( ~m) = F I

� ( ~m) (1:12)

almost surely and

ii) If ~m 2 Dc
jIj, then

lim
�#0

lim
N"1

F I
N;�;�( ~m) = +1 (1:13)

almost surely.

From these two equations it follows from standard arguments (see e.g. [DZ]) that for almost

all ! for all Borel-sets A � B(IRI)

� inf
~m2intA

F I
� ( ~m) � lim inf

N"1

1

�N
lnQN;� [!] � ��1I (A)

� lim sup
N"1

1

�N
lnQN;�[!] ���1I (A) � � inf

~m2clA
F I
� ( ~m)

(1:14)

where intA and clA denote the interior and the closure of the set A, respectively. The properties
of the rate function will be established directly from its explicit form (1.9).

An important feature is that the rate function is non-random. This means that under the

conditions of the theorem, the thermodynamics of this disordered system is described in terms of

completely deterministic potentials. From the thermodynamic point of view discussed above, this is

an extremely satisfactory result. Namely in these terms it means that although the Hamiltonian of

our model is a function of an unbounded number of random macroscopic quantities, we may select

any �nite subset of these in which we may be interested and can be assured that there will exist,

with probability one, in the in�nite volume limit, thermodynamic potentials that are functions of

these variables only and which are, moreover, completely deterministic. The sole condition for this

to hold is that the number of macroscopic variables goes to in�nity with a sublinear rate.

In the remainder of this article we will present the proof of Theorem 1. There will be three

important steps. First, we prove large deviation estimates for the mass of small balls in IRM ,

using fairly standard techniques. The resulting bounds are expressed in terms of a certain random

function. The crucial step is to show that in a strong sense this function is `self-averaging'. The

proof of this fact uses the Yurinskii martingale representation and exponential estimates. These are

�nally combined to obtain deterministic estimates on cylinder events from which the convergence

result (1.12) then follows rather easily.
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2. The basic large deviation estimates

In this section we recall exponential upper and lower bounds that have already been derived

in [BGP2]. They provide the starting point of our analysis.

Let us consider the quantities

ZN;�;�[!](m) � �N;�[!] (kmN (�)�mk2 � �)ZN;�[!] (2:1)

We �rst proof a large deviation upper bound.

Lemma 2.1:
1

�N
lnZN;�;�(m) � �N;�(m) + �(kt�k2 + kmk2 + �=2) (2:2)

where

�N;�(m) � inf
t2IRM

	N;�(m; t) (2:3)

with

	N;�(m; t) � �(m; t) +
1

2
kmk22 +

1

�N

NX
i=1

ln cosh�(�i; t) (2:4)

and t� � t�(m) is de�ned through 	N;�(m; t�(m)) = inft2IRM 	N;�(m; t), if such a t� exists, while

otherwise kt�k � 1.

Proof: Note that for arbitrary t 2 IRM ,

1IfkmN (�)�mk2��g � 1IfkmN (�)�mk2��ge
�N(t;(mN (�)�m))+��Nktk2 (2:5)

Thus

ZN;�;�(m) = IE�e
�N
2 kmN (�)k221IfkmN (�)�mk2��g

� inf
t2IRM

IE�e
�N 1

2 (kmk
2
2+2�kmk2+�2)e�N(t;(mN (�)�m))+�N�ktk2

� inf
t2IRM

e
�N
�
1
2kmk

2
2�(m;t)+ 1

�N

P
N

i=1
ln cosh(�(�i;t))

�
e�N�(kmk2+ktk2+�=2)

(2:6)

This gives immediately the bound of Lemma 2.1.}

Remark: Note that if a �nite t�(m) exists, then it is the solution of the system of equations

m� =
1

N

NX
i=1

�
�
i tanh�(�i; t) (2:7)

Next we prove a corresponding lower bound.

Lemma 2.2: For � �
q
2M
N
, we have that

1

�N
lnZN;�;�(m) � �N;�(m)� �(kmk2 + kt�(m)k2 � �=2)� ln 2

�N
(2:8)
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where the notations are the same as in Lemma 2.1.

Proof: The technique to prove this bound is the standard one to prove a Cram�er-type lower

bound (see e.g. [Va]). It is of course enough to consider the case where kt�k2 <1. We de�ne, for

t� 2 IRM , the probability measures ~IP on f�1; 1gN through their expectation ~IE�, given by

~IE�

��� � IE�e
�N(t�;mN (�))

���
IE�e�N(t�;mN(�))

(2:9)

We have obviously that

ZN;�;�(m) = ~IE�e
�N
2 kmN (�)k22��N(t�;mN(�))1IfkmN (�)�mk2��gIE�e

�N(t�;mN(�))

� e��N(t�;m)��N(�kt�k2� 1
2kmk

2
2+�kmk2��

2=2)IE�e
�N(t�;mN (�)) ~IE�1IfkmN (�)�mk2��g

= e
�N
�
1
2kmk

2
2�(t

�;m)+ 1
�N

P
N

i=1
ln cosh �(�i;t

�)
�
e��N�(kt�k2+kmk2��=2)

� ~IP � [kmN (�)�mk2 � �]

(2:10)

But, using Chebychev's inequality, we have that

~IP � [kmN (�)�mk2 � �] = 1� ~IP � [kmN (�)�mk2 � �]

� 1� 1

�2
~IE�kmN (�) �mk22

(2:11)

We choose t�(m) that satis�es equation (2.7). Then it is easy to compute

~IEkmN (�) �mk22 =
M

N

 
1� 1

N

NX
i=1

tanh2(�(�i; t
�(m)))

!
(2:12)

from which the lemma follows. }

In the following lemma we collect a few properties of �N;�(m) that arise from convexity. We set

� � �m 2 IRM j kt�(m)k2 <1	 where t�(m) is de�ned in Lemma 2.1, D � �m 2 IRM j �N;�(m) > �1	,
and we denote by riD the relative interior of D (see e.g. [R], page 44). We moreover denote by

I(x) � supt2IR(tx� ln cosh t) the Legendre transform of the function ln cosh t. A simple computa-

tion shows that I(x) coincides with the function de�ned in (1.10).

Lemma 2.3:

i)

�N;�(m) =
1

2
kmk22 � inf

y2IRN :mN (y)=m

1

�N

NX
i=1

I(yi) (2:13)

where for each m 2 IRM the in�mum is attained or is +1 vacuously.

ii)

D =
�
m 2 IRM j 9y 2 [�1; 1]Ns:t: mN(y) = m

	
(2:14)
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iii) �N;�(m) is continuous relative to riD

iv) � = intD, if det �
t�
N
6= 0.

v) If t� is de�ned as in Lemma 2.1 and y� realizes the in�mum in (2.13), then

�2
�
t�;

�t�

N
t�
�
=

1

N

NX
i=1

[I 0(y�i )]
2 (2:15)

Remark: Note that point i) of Lemma 2.3. provides an alternative formula for the variational

formula (2.3).

Remark: Under the condition det �
t�
N

6= 0 the relative interior in (iii) can be replaced by the

interior. In the situation where we want to apply the Lemma, this condition is satis�ed with

probability greater than 1� exp(�cN1=6).

Proof: Note that the function g(t) � 1
�N

PN
i=1 ln cosh�(�i; t) is a proper convex function on IRM .

Denoting by h(m) � supt2IRM f(m; t)�g(t)g its Legendre transform, it follows from standard results

of convex analysis (cf. [R], page 142, Theorem 16.3 and in particular the second illustration of that

theorem on page 144) that h(m) is a proper convex function on IRM and that

h(m) = inf
y2IRN :mN (y)=m

1

�N

NX
i=1

I(yi) (2:16)

where for each m 2 IRM the in�mum is either attained or is +1. This immediately yields i).

Denoting by domh � �x 2 IRM j h(m) < +1	 the e�ective domain of h, we have, by (1.10), that

domh equals the right hand side of (2.14) , and since kmk22 � 0, ii) is proven. iii) simply follows

from the fact that h being convex, it is continuous relative to ri (domh) ([R], page 82, Theorem

10.1). Finally, to prove iv), note �rst that the condition det �
t�
N
6= 0 implies that intD 6= ;. Thus

we can make use of the following two results of convex analysis ([R], page 218, Theorem 23.5).

First, the subgradient of h at m, @h(m), is a non empty set if and only if m belongs to the interior

of domh, i.e., m 2 intD. @h(m) is moreover a bounded convex set. Next, (m; t)� g(t) achieves its

supremum at t� � t�(m) if and only if t� 2 @h(m). To prove v) we only have to consider the case

where t� exists and consequently jy�i j < 1 for all i. To prove (2.15), introduce Lagrange multipliers

t 2 IRM for the constraint variational problem in (2.13). The corresponding Euler equations are

then
1

�
I 0(yi) = (�i; t); i = 1; : : : ; N

m
�
N (y) = m�; � = 1; : : : ;M

(2:17)

Using the fact that I 0(x) = tanh�1(x) one sees that the t� that solves these equations is identical

to the solution of (2.7); from this formula (2.15) follows immediately. This concludes the proof of

the lemma. }
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We see that as long as � can be chosen as a function of N that tends to zero as N goes to in�nity,

Lemma 2.1 and Lemma 2.2 seem to provide asymptotically coinciding upper and lower bounds, at

least for such m for which t�(m) is bounded. The unpleasant feature in these bounds is that 	N;�

is a rather complicated random function and that the �N;� is de�ned through an in�mum of such

a function. In the next section we analyse this problem and show that this function is essentially

non-random.
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3. Self averaging

We show now that the random upper and lower bounds derived in the last section are actually

with large probability independent of the realization of the randomness. In fact we will prove this

under the restriction that m should be such that, at least on a subspace of full measure, t�(m) has a

uniformly bounded `2-norm. With this in mind the result will follow from the next proposition. Let

in the sequel 
1 � 
 denote the subspace for which k�t[!]�[!]=N = k�[!]�t[!]=Nk � (1+
p
�)2(1+�)

holds for some �xed small � (� = 1 will be a suitable choice). Recall that � � M
N
. By Theorem 2.4

of [BGP1] (see also [ST,BG1]) IP [
1] � 1� 4Ne��N
1=6

.

Proposition 3.1: For any R < 1 there exists 0 < � < 1=2 and a set 
2 � 
 with IP [
2] �
1� e�N�1�2�=R, such that for all ! 2 
1 \ 
2,

sup
t: ktk2�R

j	[!](m; t)� IE	(m; t)j � �1=2��(6 + 2kmk2) (3:1)

Remark: The subspace 
2 does not depend on m.

Note that an immediate corollary to Proposition 3.1 is that, under its assumptions,

���� inf
t: ktk2�R

	[!](m; t)� inf
t: ktk2�R

IE	(m; t)

���� � �1=2��(6 + 2kmk2) (3:2)

Remark: An obvious consequence of (3.2) is the observation that if m 2 IRM and ! 2 
1 \ 
2

are such that

inf
t2IRM

	[!](m; t) = inf
t :ktk2�R

	[!](m; t) (3:3)

and

inf
t2IRM

IE	(m; t) = inf
t :ktk2�R

IE	[!](m; t) (3:4)

then ����[!](m)� inf
t
IE	(m; t)

��� � c�1=2�� (3:5)

Proof: The proof of the proposition follows from the fact that for bounded values of t, 	(m; t)

di�ers uniformly only little from its expectation. This will be proven by �rst controlling a lattice

supremum, and then using some a priori Lipshitz bound on 	(m; t). We prove the Lipshitz bound

�rst.

Lemma 3.2: Assume that ! 2 
1. Then

j	[!](m; t)�	[!](m; s)j � �(1 +p�)(1 + �) + kmk2
� kt� sk2 (3:6)
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Proof: Note that

j	(m; t)�	(m; s)j �
������(m; t� s) +

1

�N

X
i

[ln cosh(�(�i; t))� ln cosh(�(�i; s))]

�����
� kmk2kt� sk2 +

����� 1

�N

X
i

[ln cosh(�(�i; t))� ln cosh(�(�i; s))]

�����
(3:7)

On the other hand, by the mean-value theorem, there exists ~t such that����� 1

�N

X
i

[ln cosh(�(�i; t))� ln cosh(�(�i; s))]

����� =
�����
 
t� s;

1

N

X
i

�i tanh(�(�i; ~t))

!�����
=

����� 1N
X
i

(t� s; �i) tanh(�(�i; ~t))

�����
(3:8)

Using the Schwartz inequality, we have that����� 1N
X
i

(t� s; �i) tanh(�(�i; ~t))

����� � 1

N

sX
i

(t� s; �i)2
sX

i

tanh2(�(�i; ~t))

�

vuut (s� t;
X
i

�ti�i

N
(s� t))

!

�
s



�t�N





kt� sk2

(3:9)

But this implies the lemma.}

Let us now introduce a latticeWN;M with spacing 1=
p
N in IRM . We also denote byWN;M (R)

the intersection of this lattice with the ball of radius R. The point is that �rst, for any t 2 IRM ,

there exists a lattice point s 2 WN;M such that ks� tk2 �
p
�, while on the other hand

jWN;M(R)j � e�N(ln(R=�)) (3:10)

Lemma 3.3:

IP

"
sup

t2WN;M (R)

j	(m; t)� IE	(m; t)j > x

#
� e

�N
�
x2

R
(1� 1

2 e
x=R)�� ln(R=�)

�
(3:11)

Proof: Clearly we only have to prove that for all t 2 WN;M(R)

IP [j	(m; t)� IE	(m; t)j > x] � e�N
x2

R
(1� 1

2 e
x=R) (3:12)
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To do this we write 	(m; t)� IE	(m; t) as a sum of martingale di�erences and use an exponential

Markov inequality for martingales. Note �rst that

	(m; t)� IE	(m; t) =
1

�N

NX
i=1

(ln cosh(�(�i; t))� IE ln cosh(�(�i; t))) (3:13)

We introduce the decreasing sequence of sigma-algebras Fk;� that are generated by the random
variables f��i g1���Mi�k+1 [ f��k g

���
. We set

~f
(k;�)
N � IE

"
��1

X
i

ln cosh(�(�i; t))
��Fk;�

#
� IE

"
��1

X
i

ln cosh(�(�i; t))
��F+

k;�

#
(3:14)

where for notational convenience we have set

F+
k;� =

�Fk;�+1; if � < M

Fk+1;1 if � =M
(3:15)

Notice that we have the identity

	(m; t)� IE	(m; t) � 1

N

NX
k=1

MX
�=1

~f
(k;�)
N (3:16)

Our aim is to use an exponential Markov inequality for martingales. This requires in particular

bounds on the conditional Laplace transforms of the martingale di�erences (see e.g. [LT], Chap.

1.3, Lemma 1.5). Namely,

IP

"�����
NX
k=1

MX
�=1

~f
(k;�)
N

����� � Nx

#
� 2 inf

u2IR
e�jujNxIE exp

(
u

NX
k=1

MX
�=1

~f
(k;�)
N

)

= 2 inf
u2IR

e�jujNxIE
h
IE
h
: : : IE

h
eu

~f
(1;1)

N

��F+
1;1

i
eu

~f
(1;2)

N

��F+
1;2

i
: : : eu

~f
(N;M)

N

��F+
N;M

i (3:17)

where the �rst inequality is nothing but the exponential Markov inequality. Now notice that

~f
(k;�)
N = IE[��1

X
i

ln cosh(�(�i; t))jFk;�]� IE[��1
X
i

ln cosh(�(�i; t))jF+
k;�]

= IE[��1 ln cosh(�(�k; t))jFk;�]� IE[��1 ln cosh(�(�k; t))jF+
k;�]

= IE[��1 ln cosh(�

0
@X
�6=�

�
�
k t� + ��k t�

1
A)jFk;�]� IE[��1 ln cosh(�

0
@X
�6=�

�
�
k t� + ��k t�

1
A)jF+

k;�]

=
1

2
��1IE

2
4ln cosh(�

0
@X
�6=�

�
�
k t� + ��k t�

1
A)� ln cosh(�

0
@X
� 6=�

�
�
k t� � ��k t�

1
A)��Fk;�

3
5

(3:18)

Now we use the fact that

cosh(a+ b)

cosh(a� b)
=

1 + tanh a tanh b

1� tanh a tanh b
� 1 + tanh jbj

1� tanh jbj � e2jbj (3:19)
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to deduce from (3.18) that

j ~f (k;�)N j � jt�j (3:20)

Using the standard inequalities ex � 1 + x+ x2

2
ejxj and 1 + y � ey we get therefore

IE
h
eu

~f
(k;�)

N
( ~m)
��F+

k;�

i
� exp

�
u2

2
t2�e

jujjt�j
�

(3:21)

From this and (3.17) we get now

IP [j	(m; t)� IE	(m; t)j > x] � 2 inf
u
e�uNx+u2

2 Nktk22e
jujktk1

�
(
2e
�N x2

ktk2
2
(1� 1

2 e
x=ktk2)

; if ktk2 � 1

2e�Nx2(1� 1
2e

x); if ktk2 < 1

(3:22)

where the last inequality is obtained by choosing u = x=ktk22 in the �rst and u = x=ktk2 in the

second case. This gives the lemma. }

We can now continue the proof of Proposition 3.1. Choose 0 < � < 1=2 and de�ne 
2 to be

the set of ! 2 
 for which

sup
t2WN;M (R)

j	(m; t)� IE	(m; t)j � �1=2�� (3:23)

By Lemma 3.3,

IP [
2] � 1� exp

�
�N �1�2�

R
(1� 1

2
e�

1=2��=R) +N� ln(R=�)

�
= 1� exp

��NO(�1�2�=R)
� (3:24)

Combining Lemma 3.2 with (3.23) and taking into account the remark preceeding Lemma 3.3, we

see that on 
1 \ 
2,

sup
t :ktk2�R

j	(m; t)�IE	(m; t)j � �1=2��+2
p
�(kmk2+(1+

p
�)(1+�)) � �1=2��(6+kmk2) (3:25)

for � small, which proves Proposition 3.1.}
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4. Proof of the Theorem

The results of Sections 2.1 and 3.1 can now be combined to get a large deviation principle in

the product topology. The point here is that, apart from the possibility that t�(m) may become

unbounded, the estimates in Lemma 2.1 and Lemma 2.2 together with Proposition 3.1 tell us

that up to corrections that tend to zero with N , the quantity (�N)�1 lnZN;�;�(m) is given by the

in�mum over t of the completely non-random function IE	N;�(m; t). We will �rst prove that for

all ~m 2 DjIj (1.12) holds. The main step in the proof of this fact is the following theorem.

Theorem 4.1: Assume that lim supN"1
M(N)

N
= 0 and that 0 < � < 1. Then there exists a

set ~
 � 
 with IP [~
] = 1 such that for all �nite subsets I � IN and for all ~m 2 [�1; 1]I such that

for all � > 0 there exists c = c( ~m; �) <1, 9N0 � 1,8N � N0,

sup
m:k�Im� ~mk2��

inf
t2IRM

IE	N;�(m; t) = sup
m:k�Im� ~mk2��

inf
t2IRM : ktk2�c

IE	N;�(m; t) (4:1)

it holds that for all ! 2 ~
,

lim
�#0

lim
N"1

F I
N;�;�[!]( ~m)

= � sup
p2IN

sup
y2[�1;1]2p
�Inp(y)= ~m

"
1

2
knp(y)k22 � ��12�p

2pX

=1

I(y
)

#
+ sup

y2IR

�
1

2
y2 � ��1I(y)

�
(4:2)

Remark: The assumption in Theorem 4.1 looks horrible at �rst glance. The reader will observe

that it is made in order to allow us to apply the self-averaging results from the last section. We will

show later, however, that the set of values ~m for which it is satis�ed can be constructed explicitly

and is nothing else than DjIj.

Proof: We will �rst establish an upper bound for the quantity

ZI
N;�;�[!]( ~m) � �N;�[!] (k�ImN(�) � ~mk2 � �)ZN;�[!] (4:3)

To do so, notice that on 
1, kmN (�)k2 � (1 +
p
�)
p
(1 + �) < 2 for all �. We may cover the ball

of radius 2 with balls of radius � >
p
�, centered at the lattice points in WN;M (2). We then have

that on 
1,

ZI
N;�;�[!]( ~m) �

X
m2WN;M (2)

k�Im� ~mk2��

ZN;�;�[!](m)

� sup
m2WN;M (2)

k�Im� ~mk2��

ZN;�;�[!](m)
X

m2WN;M (2)

k�Im� ~mk2��

1

� sup
m: kmk2<2

k�Im� ~mk2��

ZN;�;�[!](m)e�N(ln 2=�)

(4:4)
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As long as � # 0, the factor e�N(ln 2=�) in the upper bound is irrelevant for the exponential asymp-

totic, as is the di�erence between � and �� �. Using the estimates used in the proof of Lemma 2.1,

we can replace ZN;�;�[!](m) in (4.4) by its upper bound in terms of the function 	. Namely,

1

�N
lnZI

N;�;�[!]( ~m) � sup
m: kmk2<2

k�Im� ~mk2��

inf
t2IRM
ktk2�c

	N [!](m; t) + �(c+ 2 + �=2) + ��1� ln 2=� (4:5)

Finally, combining (4.5) with (3.2), we get that, for ! 2 
1 \ 
2 and for any c,

1

�N
lnZI

N;�;�[!]( ~m) � sup
m: k�Im� ~mk2��

inf
t2IRM
ktk2�c

IE	N (m; t) + 10�1=2�� + �(c+ 2 + �=2) + ��1� ln 2=�

(4:6)

By assumption, there exists a value c <1, such that the true minimax over IE	N(m; t) is taken

for a value of t with norm bounded uniformly in N by some constant c. The constant c in (4.6)

is then chosen as this same constant, and then the restriction ktk2 � c is actually void, and the

minimax is taken for some values (m�; t�) which depend only on ~m and �. This is already essentially

the desired form of the upper bound.

We now turn to the more subtle problem of obtaining the corresponding form of the lower

bound. Trivially,

ZI
N;�;�+�[!]( ~m) � ZN;�;�[!](m

�) (4:7)

We will modify slightly the derivation of the lower bound for ZN;�;�[!](m
�). Namely, instead of

de�ning the shifted measure ~IP with respect to the random value of t that realizes the in�mum of

	N [!](m
�; t), we do this with the deterministic value t� that realizes the in�mum of IE	N(m

�; t).

This changes nothing in the computations in (2.10) and (2.11). What changes, is however the

estimate on ~IE�kmN (�) � m�k22, since t� does not satisfy (2.7) but is instead solution of the

equations

m�
� = IE�

�
1 tanh(�(�1; t

�)) (4:8)

Thus in place of (2.12) we get

~IE�kmN (�)�m�k22 =
IE�

QN
i=1 e

�(t� ;�i�i)
P

�

�
N�2P

j;k �
�
j �

�
k�j�k � 2m�

�N
�1P

j �
�
j �j + (m�

�)
2
�

QN
i=1 cosh�(�i; t

�)

=
1

N2

X
�

X
j

1 +
1

N2

X
�

X
j 6=k

tanh(�(t�; �j)) tanh(�(t
�; �k))�

�
j �

�
k

� 2
1

N

X
j

X
�

m�
� tanh(�(t

�; �j))�
�
j +

X
�

(m�
�)

2

=
M

N

 
1� 1

N

X
i

tanh2(�(t�; �i))

!
+
X
�

 
1

N

X
i

��i tanh(�(t
�; �i))�m�

�

!2

(4:9)
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The �rst summand in (4.9) is bounded by �, and we have to control the second. To do so we use

(4.8) to write

X
�

 
1

N

X
i

��i tanh(�(t
�; �i))�m�

�

!2

=
X
�

 
1

N

X
i

��i tanh(�(t
�; �i))� IE��1 tanh(�(�1; t

�))

!2

=
X
�

 
1

N

X
i

��i tanh(�(t
�; �i))� IE

1

N

X
i

��i tanh(�(t
�; �i))

!2

� GN (t
�)

(4:10)

We will now prove, in analogy to Proposition 3.1, that GN(t) is actually small with large probability.

This will be slightly more complicated than in Proposition 3.1 and will, in fact consist of two steps.

The �rst is a fairly crude bound on GN (t) that in a second step will be used to obtain a re�ned

one.

Lemma 4.2: For all ! 2 
1,

GN [!](t) � 6 (4:11)

Proof: Let us for notational simplicity set Ti � tanh(�(�i; t)). We have that

GN(t) � 2

MX
�=1

0
@
"
1

N

X
i

�
�
i Ti

#2
+

"
1

N

X
i

IE�
�
i Ti

#21A

=
2

N2

MX
�=1

X
i;j

�
�
�
i �

�
j TiTj + IE(�

�
i Ti)IE(�

�
j Tj)

� (4:12)

For the �rst term, we can use simply that

2

N2

MX
�=1

X
i;j

�
�
i �

�
j TiTj � 2





��tN





 
1

N

X
i

T 2
i

!
� 2





��tN




 (4:13)

But on 
1, the norm in the last line is bounded by (1+
p
�)2(1 + �). To bound the second term in

(4.12), we use the independence of both �
�
i and Ti for di�erent indices i to write

2

N2

MX
�=1

X
i;j

IE(�
�
i Ti)IE(�

�
j Tj) =

2

N2

MX
�=1

X
i;j

IE
�
�
�
i Ti�

�
j Tj
�

+
2

N2

MX
�=1

X
i

�
(IE�

�
i Ti)

2 � IE(Ti)
2
�

� 2IE





��tN




+ 2M

N

� 2�+ 2(1 +
p
�)2(1 + �)

(4:14)
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Combining these two bounds we get (4.11).}

Lemma 4.2 tells us that GN(t) is bounded, but not yet that it is small. To do this, we observe

�rst that its mean value is small.

Lemma 4.3:

0 � IEGN(t) � � (4:15)

Proof:

IEGN(t) =

MX
�=1

IE

"
1

N

X
i

��i tanh(�(t; �i))� IE
1

N

X
i

��i tanh(�(t; �i))

#2

=

MX
�=1

0
@IE

"
1

N

X
i

��i tanh(�(t; �i))

#2
�
"
1

N

X
i

IE��i tanh(�(t; �i))

#21A

=

MX
�=1

 
1

N2

X
i

IE tanh2(�(t; �i))� 1

N2

X
i

[IE��i tanh(�(t; �i))]
2

!

� M

N

(4:16)

where we have used the independence of the summands for di�erent indices i. }

In the sequel we will need that the mean value ofGN (t) does not di�er much from its conditional

expectation relative to 
1. Namely,

jIEGN(t)� IE[GN(t)j
1]j � 2Me��N
1=6

(4:17)

is arbitrarily small.

Finally, we will show that on 
1, with large probability, GN(t) di�ers only little from its

conditional expectation relative to 
1.

Lemma 4.4: Assume that x� (lnN)=
p
N . Then,

IP
�jGN (t)� IE[GN (t)j
1]j � x

��
1

� � e�b
p
Nx (4:18)

for some positive constant b.

Proof: Basically the proof of this lemma relies on the same technique as that of Proposition 3.1.

However, a number of details are modi�ed. In particular, we use a coarser �ltration of F to de�ne

our martingale di�erences. Namely, we denote by Fk the sigma algebra generated by the random

16



variables f��i g�2INi�k . We also introduce the trace sigma algebra ~F � F \ 
1 and by ~Fk � Fk \ 
1

the corresponding �ltration of the trace sigma algebra. We set

f
(k)
N � IE

h
GN(t)j ~Fk

i
� IE

h
GN(t)j ~Fk+1

i
(4:19)

Obviously, we have for ! 2 
1

GN [!](t)� IE[GN(t)j
1] =

NX
k=1

f
(k)
N (4:20)

Thus the lemma will be proven if we can prove an estimate of the form (4.18) for the sum of

the f
(k)
N . This goes just as in the proof of Proposition 3.1, i.e. relies on uniform bounds on the

conditional Laplace transforms

IE
h
euf

(k)

N

�� ~Fk+1

i
(4:21)

The strategy to get those is very similar to the one used in [BGP3] and [B]. We introduce

G
(k)
N (t; z) �

X
�

0
@ 1

N

X
i6=k

�
�
i Ti � IE

1

N

X
i

�
�
i Ti +

z

N
�
�
kTk

1
A

2

(4:22)

and set

gk(z) � G
(k)
N (t; z)�G

(k)
N (t; 0) (4:23)

We then have that

f
(k)
N = IE

h
gk(1)j ~Fk

i
� IE

h
gk(1)j ~Fk+1

i
(4:24)

since G
(k)
N (t; 0) is independent of the random variables �k. On the other hand,

gk(1) =

Z 1

0

dz g0k(z) (4:25)

and

g0k(z) = 2

MX
�=1

2
4 1

N

X
i6=k

��i Ti � IE
1

N

X
i

��i Ti +
z

N
��kTk

3
5 1

N
��kTk (4:26)

Let us �rst get a uniform bound on jf (k)N j on 
1. From the formulas above it follows clearly that

jf (k)N j � 2 sup
z
jg0k(z)j (4:27)

But using the Schwartz inequality,

jg0k(z)j �
2

N

X
�

������
1

N

X
i6=k

��i Ti � IE
1

N

X
i

��i Ti +
z

N
�
�
kTk

������
� 2

N

p
M

vuuutX
�

2
4 1

N

X
i6=k

��i Ti � IE
1

N

X
i

��i Ti +
z

N
�
�
kTk

3
5
2

=
2
p
M

N

q
G
(k)
N (t; z)

(4:28)
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But on 
1 it is trivial to check that G
(k)
N (t; z) satis�es, for z 2 [0; 1], the same bound as GN(t). So

that on 
1,

jg0k(z)j �
12
p
M

N
(4:29)

Now we turn to the estimation of the conditional Laplace transform. Using the standard inequality

ex � 1 + x+
1

2
x2ejxj (4:30)

we get

IE
h
euf

(k)

N

�� ~Fk+1

i
� 1 +

1

2
u2IE

��
f
(k)
N

�2
ejujjf

(k)

N
j
�� ~Fk+1

�

� 1 +
1

2
u2ejuj

12
p
M

N IE

��
f
(k)
N

�2 �� ~Fk+1

� (4:31)

A simple computation (see [BGP3]) shows that

IE

��
f
(k)
N

�2 �� ~Fk+1

�
� IE

h
(gk(1))

2
�� ~Fk+1

i

= IE

"�Z 1

0

dz g0k(z)

�2 �� ~Fk+1

#

� IE

�Z 1

0

dz (g0k(z))
2 �� ~Fk+1

�

� sup
0�z�1

IE
h
(g0k(z))

2 �� ~Fk+1

i
(4:32)

Let us write

g0k(z) = 2

MX
�=1

"
1

N

X
i

��i Ti � IE
1

N

X
i

��i Ti

#
1

N
��kTk

+ 2

MX
�=1

z � 1

N2
T 2
k

(4:33)

Thus

(g0k(z))
2 � 8

 
MX
�=1

"
1

N

X
i

��i Ti � IE
1

N

X
i

��i Ti

#
1

N
��kTk

!2

+ 8T 4
k (z � 1)2

M2

N4

(4:34)

Let us abbreviate the two summands in (4.34) by (I) and (II). The term (II) is of order �2N�2 and

thus can simply be bounded uniformly. We have to work a little more to control the conditional

expectation of the �rst. We write

IE
h
(I)
�� ~Fk+1

i

=
8

N2
IE

"X
�;�

�
�
k �

�
kT

2
k

"
1

N

X
i

�
�
i Ti � IE

1

N

X
i

�
�
i Ti

# "
1

N

X
i

��i Ti � IE
1

N

X
i

��i Ti

# �� ~Fk+1

#

(4:35)
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We observe that under the expectation conditioned on ~Fk+1 we may interchange the indices of

1 � j � k and use this to symmetrize the expression (4.35).(Notice that this is the reason why we

separated the z-dependent contribution in (4.34)).This gives

IE
h
(I)
�� ~Fk+1

i

=
8

N2
IE

2
4X
�;�

kX
j=1

�
�
j �

�
j

k
T 2
j

"
1

N

X
i

�
�
i Ti � IE

1

N

X
i

�
�
i Ti

#"
1

N

X
i

��i Ti � IE
1

N

X
i

��i Ti

# �� ~Fk+1

3
5

� 8

N2
IE

2
4








kX
j=1

�j�
t
j

k
T 2
j








MX
�=1

"
1

N

X
i

�
�
i Ti � IE

1

N

X
i

�
�
i Ti

#2 ��� ~Fk+1

3
5

(4:36)

But by Lemma 4.2, on 
1,

MX
�=1

"
1

N

X
i

�
�
i Ti � IE

1

N

X
i

�
�
i Ti

#2
= GN(t) � 6 (4:37)

and since 






kX

j=1

�j�
t
j

k
T 2
j







 �








kX
j=1

�j�
t
j

k







 � kB(k)k (4:38)

we get that

IE
h
(I)
�� ~Fk+1

i
� 48

N2
IE
�kB(k)k ��
1

� � 48

N2
IEkB(k)k=IP [
1] (4:39)

It is easy to show that (see [B]) that

IEkB(k)k � c
�
1 +

p
M=k

�2
(4:40)

for some constant 2 > c > 1. Collecting our estimates and using that 1 + x � ex we arrive at

IE
h
euf

(k)

N

�� ~Fk+1

i
� exp

�
1

2
u2ejuj12

p
M=NN�2

h
8�2 + 76(1 +

p
M=k)2

i�
(4:41)

Since
NX
k=1

(1 +
p
M=k)2 = N +

p
MN +M lnN = N(1 + 4

p
�+ � lnN) (4:42)

this yields that

IP

"
NX
k=1

f
(k)
N � x

��
1

#
� inf

u
exp

�
�ux+ u2

2N
ejuj12

p
M=N

�
8�2 + 76 + 304

p
�+ 76� lnN

��
(4:43)

In order to perform the in�mum over u in (4.43) we must distinguish two cases. First, if � � 1= lnN ,

we may chose u =
p
N which yields

IP

"
NX
k=1

f
(k)
N � x

#
� e�

p
Nx+c1 (4:44)
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for some positive constant c1. If now � goes to zero with N more slowly than 1= lnN , a good

estimate of the in�mum is obtained by choosing u = N=12
p
M . This gives

IP

"
NX
k=1

f
(k)
N � x

#
� e

�
p
N x

12
p
� exp

�
e

36

�
�+

12

�
+

48p
�
+ 2 lnN

��

� e�
p
Nx=12+c2 lnN

(4:45)

for some positive constant c2. From here the lemma follows immediately. }

Corollary 4.5: There exists a set 
3(t
�) � 
1 with IP [
1n
3] � e�bN

1=4

such that for all

! 2 
3(t
�)

~IP �

h
kmN(�)�m�k2 � [2(2� +N�1=4)]1=2

i
� 1

2
(4:46)

Proof: This follows from combining (4.9) and (4.10) with Lemmas 4.2, 4.3 and 4.4 and choosing

x = N�1=4 in the latter.}

To be able to use this Corollary, we will choose from now on � > [2(2� +N�1=4)]1=2.

Now except on a subspace 
c
4 of probability smaller than 4Ne�cN

1=6

, k�t�=N � 1Ik � p
�(2 +

p
�)(1 + c) (see the appendix of [BGP1]) which implies in particular that on O4 det�t�=N 6= 0.

Thus on 
4 Lemma 2.3, (iv) implies that if kt�k2 is bounded, than m� 2 intD, that is there exists

y� 2 [�1; 1]N such that m� = mN (y
�). But kmN (y

�)k22 � k�t�=Nkky�k22
N

� k�t�=Nk. Since by

assumption kt�k2 < c, we see that on 
1 \ 
4, km�k2 � 2. As a consequence, putting together

Proposition 3.1, Corollary 4.5 and (2.10), we �nd that on 
3(t
�),

1

�N
lnZI

N;�;�+�[!]( ~m) � IE	N (m
�; t�)� 10�1=2�� � �(c+ 2� �=2)� ln 2

�N
(4:47)

Which is the desired form of the lower bound.

Finally, by a simple Borel-Cantelli argument, it follows from the estimates on the probabilities

of the sets 
1;
2 and 
3(t
�) that there exits a set ~
 of measure one on which

lim sup
N"1

1

�N
lnZI

N;�;�[!]( ~m) � lim sup
N"1

sup
m:k�Im� ~mk2��

inf
t2IRM

IE	N (m; t) (4:48)

and

lim inf
N"1

1

�N
lnZI

N;�;�[!]( ~m) � lim inf
N"1

sup
m: k�Im� ~mk2����

inf
t2IRM

IE	N (m; t) (4:49)

It remains to show that the limsup and the liminf's on the right-hand sides of (4.48) and (4.49)

coincide. From here on there is no di�erence to the procedure in the case M < lnN= ln 2 that was
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treated in [BGP2]. We repeat the outline for the convenience of the reader. We write IE	N(m; t)

in its explicit form as

IE	N(m; t) =
1

2
kmk22 � (m; t) + ��12�M

2MX

=1

ln cosh(�(e
 ; t)) (4:50)

where the vectors e
 , 
 = 1; : : : ; 2M form a complete enumeration of all vectors with components

�1 in IRM . They can be conveniently chosen as

e�
 = (�1)[
21��] (4:51)

where [x] denotes the smaller integer greater or equal to x. Note that IE	N(m; t) depends on N

only through M(N). We may use Lemma 2.3 to show that

inf
t2IRM

IE	N (m; t) =
1

2
kmk22 � inf

y2IR2M :nM (y)=m

��12�M
2MX

=1

I(y
) (4:52)

and hence

sup
m: k�Im� ~mk2��

inf
t2IRM

IE	N(m; t) = sup
y2IR2M : k�InM (y)� ~mk2��

1

2
knM (y)k22 � ��12�M

2MX

=1

I(y
)

(4:53)

To prove that this expression converges as N (or rather M) tends to in�nity, we de�ne, for any

integers d; p with d � p, the sets

Ap
d �

n
y 2 [�1; 1]2p

�� y
 = y
+2d

o
(4:54)

Obviously,

Ap
0 � Ap

1 � : : :Ap
p�1 � Ap

p = [�1; 1]2p (4:55)

The de�nition of these sets implies the following fact: If y 2 Ap
d with d < p, then

(i) n�p(y) = 0, if � > d and

(ii) n�p (y) = n
�
d(y), if � � d.

Let us set

�p(y) =
1

2
knp(y)k22 � ��12�p

2pX

=1

I(y
) (4:56)

and

�p;�( ~m) = sup
y2App

k�Inp(y)� ~mk2��

�p(y) (4:57)
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Therefore, for y 2 Ap
d, �p(y) = �d(y), while at the same time the constraint in the sup is satis�ed

simultaneously w.r.t. np or nd, as soon as d is large enough such that I � f1; : : : ; dg. Therefore,

�p;�( ~m) � sup
y2Ap

d
k�Inp(y)� ~mk2��

�p(y) = sup
y2Ad

d
k�Ind(y)� ~mk2��

�d(y) = �d;�( ~m) (4:58)

Hence �p;�( ~m) is an increasing sequence in p; moreover,�p;�( ~m) � sup y2App
k�Inp(y)� ~mk2��

1
2
knp(y)k22 � 1

and so being bounded from above, converges. Thus

lim
N"1

sup
m:k�Im� ~mk2��

inf
t2IRM

IE	N(m; t) = lim
N"1

�M;�( ~m)

= sup
p
�p;�( ~m)

(4:59)

It remains to consider the limit � # 0. It is clear that supp�p;�( ~m) converges to a lower-semicontinuous

function and that

lim
�#0

sup
p
�p;�( ~m) = lim

�#0
sup

m: k�Im� ~mk2��
sup
p
�p;0(m) (4:60)

Thus if supp�p;0( ~m) is continuous in a neighborhood of ~m, we get

lim
�#0

sup
p
�p;�( ~m) = sup

p
�p;0( ~m) (4:61)

as desired. But, as has been shown in [BGP2], from the explicit form of � one shows easily that

supp�p;0( ~m) is Lipshitz continuous in the interior of the set on which it is bounded. This proves

Theorem 4.1 }

We will show next that a su�cient condition for condition (4.1) to hold is that ~m belongs to

DjIj. While this appears intuitively `clear', the rigorous proof is surprisingly tedious. Let us �rst

introduce some notation and results.

Let Ep be the 2p � p-matrix whose rows are given by the vectors e
 , 
 = 1; : : : ; 2p, which,

for convenience, are ordered accordingly to (4.51). We will denote by e�, � = 1; : : : ; p the column

vectors of Ep and by Et
p its transpose. It can easily be veri�ed that

2�p(e�; e�) =
n
1 if � = �

0 otherwise
(4:62)

Thus, the 2p � 2p-matrix 2�pEpE
t
p is a projector that projects on the subspace spanned by the

orthogonal vectors fe�gp�=1, and 2�pEt
pEp is the identity in IRp. Given a linear transformation A

from Rp to Rq, we de�ne

AC = fAx j x 2 Cg for C � IRp (4:63)

With this notations the vector np(y) and the set Dp, de�ned in (1.7) and (1.8), can be rewritten as

np(y) = 2�pEt
py

Dp = 2�pEt
p[�1; 1]2

p (4:64)
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Moreover, for any set I � f1; : : : ; pg, we have the following property,

�IDp = DjIj (4:65)

Finally, let us remark that of course the statements of Lemma 2.3 apply also to the deterministic

function inft2IRM IE	N;�(m; t). All references to Lemma 2.3 in the sequel are to be understood as

referring to properties of this latter function, tha tis given explicitly in (4.52).

By Lemma 2.3, the condition (4.1) of Theorem 4.1 is satis�ed if and only if the supremum in

the l.h.s of (4.1) is taken on at a point m in intDM . More precisely, by (2.15), this condition is

equivalent to demanding that for all � > 0 and all p, the supremum over y s.t. k�Inp(y)� ~mk2 � �

of �p(y) is taken on at a point y� such that

2�p
2pX

=1

�
I 0(y�
)

�2 � c (4:66)

We set

A�( ~m) �
n
y 2 [�1; 1]2M : k�InM (y)� ~mk2 � �

o
(4:67)

Lemma 4.6: Assume that 0 < � <1. Then for all ~m 2 DjIj and � > 0 there exists c( ~m; �) <1
such that for all p � jIj

sup
y2[�1;1]2p

�Inp(y)2B�( ~m)

�p(y) = �p(y
�) (4:68)

where

Tp(y
�) � 2�p

2pX

=1

�
I 0(y�
)

�2 � c( ~m; �) (4:69)

Proof: The proof proceeds by showing that if y does not satisfy condition (4.69), then we can �nd

a �y such that y+ �y 2 A�( ~m) and �p(y+ �y) > �p(y), so that y cannot be the desired y
�. Let us

�rst note that

�p(y + �y) ��p(y) =
1

2

�knp(y + �y)k22 � knp(y)k22
�
+ 2�p��1

2pX

=1

[I(y
)� I(y
 + �y
)] (4:70)

Using the properties of the matrix Ep and the fact that y 2 [�1; 1]2p we can bound the di�erence

of the quadratic terms as follows

knp(y + �y)k22 � knp(y)k22 =knp(�y)k22 + 2�p+1(�y; 2�pEpE
T
p y)

�� 2�p=2+1k�yk2
(4:71)

23



Thus we can show that �p(y + �y) > �p(y) holds by showing that

2�p��1
2pX

=1

[I(y
)� I(y
 + �y
)] > 2�p=2k�yk2 (4:72)

De�ne the map Y from [�1; 1]2p to [�1; 1]2jIj by

Y
(y) � 2�p+jIj
2p�jIj�1X

~
=0

y
+~
2jIj ; 
 = 1; : : : ; 2jIj (4:73)

Using (4.64) we get that

�jIjnp(y) = 2�jIjEt
jIj

0
@2�p+jIj 2

p�jIjX

=1

�f(
�1)2jIj+1;:::;
2jIjgy

1
A = 2�jIjEt

jIjY (y) (4:74)

Therefore, the property that y 2 A�( ~m) depends only on the quantity Y (y).

Notice that if ~m 2 DjIj and � > 0, then there existsX 2 (�1; 1)2jIj such that knI(X)� ~mk2 � �.

This implies that for any p, the vector x 2 IR2p with components x
 � X
mod 2jIj lies also inA�( ~m).

Moreover,

max


jx
 j = max



jX
 j � 1� d < 1 (4:75)

and therefore

Tp(x) � [I 0(1� d)]
2

(4:76)

is some �nite p-independent constant. We will use this fact to construct our �y. We may of course

choose an optimal X, i.e. one for which d is maximal. In the sequel X and x will refer to this

vector. Let now y be a vector in A�( ~m) for which Tp(y) > c for some large constant c. We will

show that this cannot minimize �p. We will distinguish two cases:

Case 1: Let us introduce two parameters, 0 < � � d and 0 < � < 1, that will be appropriately

chosen later. In this �rst case we assume that y is such that

2pX

=1

1Ifjy
 j�1��g � (1� �)2p�jIj (4:77)

and we choose

�y � �(x� y) (4:78)

where 0 < � < 1 will be determined later. It then trivially follows from the de�nition of x and the

convexity of the set A� that y+ �(x� y) 2 A� and that y+ �(x� y) 2 [�1 + �d; 1� �d]2
p

. If Thus

if we can show that with this choice, and with a � such that �d > �, (4.72) holds, we can exclude

that the in�mum is taken on for such a y.
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Let us �rst consider components y
 such that jy
 j > 1 � d. Since jx
 j � 1 � d we have, for

those components, sign�y
 = �signy
 and thus I(y
) � I((y + �y)
) > 0. This fact together with

(4.77) entails

2�p
2pX

=1

[I(y
)� I((y + �y)
)]1Ifjy
 j�1�dg �2�p
2pX

=1

[I(y
)� I((y + �y)
)]1Ifjy
 j�1��g

� inf
jy
 j�1��
jx
 j�1�d

(1� �)2�jIj[I(y
)� I((y + �y)
)]

(4:79)

Note that I(z) is symmetric with respect to zero and is a strictly increasing function of z for z > 0.

Thus I((y + �y)
) is maximized over jx
 j � 1� d for x
 = (1� d)signy
 . From this we get

inf
jx
 j�1�d

[I(y
)� I((y + �y)
)] � [I(y
)� I(jy
 j+ �((1 � d)� jy
 j))] (4:80)

and the in�mum over jy
 j � 1�� in the r.h.s. of (4.80) is easily seen to be taken on for jy
 j = 1��.
Thus

inf
jy
 j�1��
jx
 j�1�d

(1� �)2�jIj[I(y
)� I((y + �y)
)] �(1� �)2�jIj[I(1 � �)� I(1� � � �(d� �))]

�(1� �)2�jIj�(d� �)I 0(1� � � �(d� �))

�(1� �)2�jIj�(d� �)
1

2
j ln(� + �(d� �))j

(4:81)

where we have used the convexity of I and the bound, I 0(1� x) � 1
2
j lnxj for 0 < x < 1.

We now have to consider the components y
 with jy
 j � 1 � d. Here the entropy di�erence

I(y
)�I((y+�y)
) can of course be negative. To get a lower bound on this di�erence we use (4.80)

and perform the change of variable jy
 j = (1� d)� z
 to write

inf
jy
 j�1�d
jx
 j�1�d

[I(y
)� I((y + �y)
)] = inf
0�z
�1�d

I((1 � d)� z
 + �z
)� I((1� d)� z
)

� inf
0�z
�1�d

��z
I 0((1� d)� z
 + �z
)

= inf
0�z
�1�d

��z
 1
2
ln

�
2� d� z
 + �z


d+ z
 � �z


�

�� �(1� d)
1

2
ln

�
2� d

d

�

�� �

2
ln

2

d

(4:82)

and putting together (4.82) and (4.77) yields

2�p
2pX

=1

[I(y
)� I((y + �y)
)]1Ifjy
 j<1�dg � �(1� (1� �)2�jIj)
�

2
ln

�
2

d

�
(4:83)
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Therefore, (4.83) together with (4.79) and (4.81) give

��12�p
2pX

=1

[I(y
)� I((y + �y)
)]

���1�
�
(1� �)2�jIj(d� �)

1

2
j ln(� + �(d� �))j � (1� (1� �)2�jIj)

1

2
ln

�
2

d

�� (4:84)

On the other hand, we have

2�p=2k�yk2 � 2� (4:85)

Consequently, (4.72) holds if we can choose �, �, and � so that the following inequality holds,

��1
�
(1� �)2�jIj(d� �)

1

2
j ln(� + �(d� �))j � (1� (1� �)2�jIj)

1

2
ln

�
2

d

��
> 2 (4:86)

But this is always possible by taking e.g. � < 1, � � �d=2 and � � dK where K � K(d; jIj; �) > 1

is chosen su�ciently large as to satisfy

(1� �)2�jIjd(1� dK=2)
K + 1

2
j lndj > 4 +

1

2
j lndj (4:87)

Case 2: We will assume that � < 1, and that �, and � are chosen as in the case 1. We can then

assume that
2pX

=1

1Ifjy
 j�1��g < (1� �)2p�jIj (4:88)

We assume further that

Tp(y) > c (4:89)

for c su�ciently large to be chosen later. Here we will choose �y such that

Y (�y) � 0 (4:90)

so that trivially y + �y 2 A�( ~m). Let us introduce a parameter 0 < � < �, that we will choose

appropriately later, and let us set, for 
 2 f1; : : : ; 2jIjg,

K+

 � f~
 2 f1; : : : ; 2p�jIjg

�� jy
+(~
�1)2jIj j � 1� �g (4:91)

and

K�
 � f~
 2 f1; : : : ; 2p�jIjg
�� jy
+(~
�1)2jIj j � 1� �g

For all indices 
 such that K+

 = ;, we simply set �y
+(~
�1)2jIj � 0 for all ~
 2 f1; : : : ; 2p�jIjg. If

K+

 were empty for all 
, then Tp(y) � [I 0(1 � �)]2 which contradicts our assumption (4.89), for

suitably large c (depending only on �). Thus we consider now the remaining indices 
 for which

K+

 6= ;.
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First note that (4.88) implies that jK+

 j < (1��)2p�jIj and that K�
 > �2p�jIj so that choosing

1 > � > 1
2
, we have jK+


 j < jK�
 j. Our strategy will be to �nd �y in such a way as to decrease the

moduli of the components in K+

 at the expense of possibly increasing them on K�
 in such a way

as to leave Y (y + �y) = Y (y).

We will in the sequel consider the case where there is only one index 
, e.g. 
 = 1, for which

K+

 is nonempty. The general case is treated essentially by iterating the same procedure. We will

use the simpli�ed notation y1+2jIj~
 � y~
 , �y1+2jIj~
 � �y~
 and also set K�1 � K�. We will assume

moreover that all components y~
 are positive, as this is the worst situation. We will chose �y such

that �y~
 = 0, if ~
 2 fK+ [ K�gc and �y~
 < 0 if ~
 2 K+. For each ~
 2 K+ we will choose in a

unique and distinct ~
0 2 K� and set �y~
0 = ��y~
 . This ensures that Y (�y) = 0. We will also make

sure that for all ~
, j�y~
 j � �=2� �.

We have to construct �y~
 for ~
 2 K+. In this process we have to consider the following three

functionals:

(1) The change in the quadratic term of �p. This is bounded by

�E(�y) � 2�p=2+1

s
2
X
~
2K+

�y2~
 (4:92)

(2) The change in the entropy term,

�I(�y) � 2�p
X
~
2K+

(I(y~
 + �y~
)� I(y~
))

+ 2�p
X
~
2K�

(I(y~
 + �y~
)� I(y~
))

� 2�p
X
~
2K+

j�y~
 jI 0(y~
 + �y~
)� 2�p
X
~
2K�

�y~
 j ln �j=2

= 2�p
X
~
2K+

j�y~
 j (I 0(y~
 + �y~
)� j ln �j=2)

� 2�p�1
X
~
2K+

j�y~
 jI 0(y~
 + �y~
)

(4:93)

where we have used that for 1 � jxj � jyj � 0:9, I(x) � I(y) � jx � yjj ln(1 � y)j and that

under our assumption, for ~
 2 K+, y~
 + �y~
 � 1� �=2.

(3) Finally, we have that

Tp(y + �y) � 2�p
X

 62K+

[I 0(y~
 + �y~
)]
2 + 2�p

X
~
2K+

[I 0(y~
 + �y~
)]
2

� [I 0(1� �=2)]2 + 2�p
X
~
2K+

[I 0(y~
 + �y~
)]
2

(4:94)
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Looking at these three functionals suggests to choose �y~
 for ~
 2 K+ as the solution of the

equation

��y~
 = �I 0(y~
 + �y~
) (4:95)

The point is that with this choice (4.94) yields (we set for simplicity �E(�y(�)) � �E(�), etc.)

�I(�) � 1

8�
(�E(�))2 (4:96)

while

Tp(�) � [I 0(1� �)]2 + ��2(�E(�))2 (4:97)

Thus we can ensure that the entropy gain dominates the potential loss in the quadratic term

provided we can choose � < �E(�)=8. However, we know that Tp(�) is a continuous function of t

and Tp(0) � c. Thus there exists �0 > 0 such that for all � � �0, Tp(�) � c=2, and so by (4.97),

��1�E(�) �
p
c=2� [I 0(1� �)]2 (4:98)

which inserted in (4.97) yields that

�I(�) � ln 2

4

p
c=2� [I 0(1� �)]2�E(�) (4:99)

It is clear that if c is chosen large enough (`large' depending only on �), this gives �I(t) > �E(t), as

desired. Finally, it is easy to see that j�y~
 j is bounded from above by the solution of the equation

x = �I 0(1� x) (4:100)

which is of the order of x � � j ln � j. If � is chosen e.g. � = �=4, we see from this that for small

enough � , j�y~
 j � �=2 � �, so that all our conditions can be satis�ed. Thus, there exist c < 1
depending only on � (which in turn depends only on ~m and �) such that any y that satis�es the

assumptions of Case 2 with this choice of c in (4.89) cannot realize the in�mum of �p. The two

cases combined prove the lemma. }

To conclude the proof of Theorem 1 we show that for ~m 2 Dc
I (1.13) holds. This turns out to

be rather simple. The main idea is that if ~m 2 Dc
jIj, then on a subset of 
 of probability one, for

N large enough and � small enough, the set f� 2 SN j k�ImN (�)� ~mk2 � �g is empty.

To do so we will �rst show that uniformly in the con�gurations �, the vector �ImN(�) can be

rewritten as the sum of a vector in DjIj and a vector whose norm goes to zero as N goes to in�nity.

Let e
 , 
 = 1; : : : ; 2jIj, be the column vectors of the matrix Et
jIj. We set

v
 �
�
i 2 f1; : : : ; Ng j ��i = e�
 ; 8� 2 I

	
(4:101)
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These sets are random sets, depending on the realization of the random variables �
�
i . Their cardi-

nality, however, remains very close to their mean value. More precisely let �
 denote the 
uctuation

of jv
 j about its mean,
�
 � 2jIjN�1

���jv
 j � 2�jIjN
��� (4:102)

There exists a subset 
4 2 
 of probability one and a function, �N , tending to zero as N tends to

in�nity, such that for all but a �nite number of indices,

j�
 j < �N ; 
 = 1; : : : ; 2jIj (4:103)

This fact has been proven in [G]. Using (4.101), �ImN(�) can be rewritten as

�ImN (�) = 2�jIjEt
jIj(X(�) + �X(�)) (4:104)

where X(�) and (�X)(�) are respectively the vectors with components X
(�) � jv
 j�1
P

i2v
 �i 2
[�1; 1], (�X)
 (�) � �
X
(�), 
 = 1; : : : ; 2jIj. It then follows from the properties of the matrix Et

jIj

and (4.103) that, on 
4, 

�ImN (�)� njIj(X(�))



2
< �N (4:105)

Now, by assumption, ~m 2 Dc
jIj, i.e. there exists ~� > 0 such that fx 2 IRjIj j kx� ~mk2 � ~�g ��

DjIj
�c
. Therefore, since njIj(X(�)) 2 DjIj, we have knjIj(X(�))� ~mk2 > ~�. From this and (4.105)

it follows that on 
4, k�ImN(�)� ~mk2 > ~�� �N . Finally, for N large enough and � small enough

we get

f� 2 SN j k�ImN (�)� ~mk2 � �g = ; (4:106)

From this, Eq. (1.13) easily follows. This concludes the proof of Theorem 1.
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