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1. Introduction

Mean field models in statistical mechanics furnish nice examples for the interpretation of
thermodynamics as the theory of large deviation for Gibbs measures of microscopically defined
statistical mechanics systems [E]. Roughly speaking, in such models the Hamiltonian is only a
function of (extensive) ‘macroscopic’ quantities (density, magnetization,etc.) of the system. In
the thermodynamic limit, the distribution of these quantities is expected to be concentrated on a
sharp value and to satisfy a large deviation principle. The corresponding rate functions are then
the thermodynamic potentials (free energy, pressure) that govern the macroscopic response of the
system to external (intensive) conditions. The classical paradigm of the theory is that the number
of relevant macroscopic variables is excessively small (order of 10) compared to the number of

microscopic variables (order of 10%3) .

Over the last decade, the formalism of statistical mechanics and thermodynamics has found
increasing applications in systems in which the macroscopic behaviour is far more complex and
described by a ‘large’ number of variables. Such systems can be found in biology (heteropolymers,
neural networks) but also in the domain of disordered solids, and in particular spin glasses. Some
fundamental aspects of these ideas are discussed in an interesting recent paper by Parisi [P]. For
such systems, many basic problems are not very well understood, and many technical aspects defy
a mathematical investigation at the present time. An interesting toy model (that nonetheless has
also practical relevance) where this situation can be studied and for which mathematical results
are available, is the Hopfield model [FP1,Ho]. This model is a mean field spin system in the sense
explained above. However, the Hamiltonian, instead of being a function of few macroscopic variables
is a function of macroscopic variables that are random functions of the microscopic ones and those
number tends to infinity with the size of the system in a controllable way. More specifically, the

model is defined as follows.

Let Sy = {—1,1}" denote the set of functions o : {1,...,N} — {-~1,1}, and set S =

{~1,1}N. We call o a spin configuration and denote by o; the value of o at i. Let (Q,F, IP)

be an abstract probability space and let ¥, i, € IN, denote a family of independent identically
distributed random variables on this space. For the purposes of this paper we will assume that
IP[¢! = +1] = 1, but more general distributions can be considered. We will write {#[w] for the
N-dimensional random vector whose i-th component is given by ¢¥[w] and call such a vector a
‘pattern’. On the other hand, we use the notation &;|w] for the M-dimensional vector with the

same components. M will be chosen as a function of N and the function M (N) is an important

M(N)
N

indices, we frequently will consider it as an N x M matrix and we write £*[w] for the transpose
of this matrix. Thus, £[w]é[w] is the M x M matrix whose elements are 30 £ [w]¢? [w]. With

parameter of the model. We will generally set a = a(N) = . When we write &[w] without



this in mind we will use throughout the paper a vector notation with (-,-) standing for the scalar
product in whatever space the argument may lie. E.g. the expression (y, §;) stands for Zz/lzl 'y,

etc.

We define random maps m’y[w] : Sy — [—1,1] through!

1 N
my[wl(o) = 5 Zéé‘MGi (1.1)

Naturally, these maps ‘compare’ the configuration o globally to the random configuration £#[w]. A

Hamiltonian is now defined as the simplest negative function of these variables, namely

M(N)

Hylol(o) = o 3 (miwl())’ (12)

where M (N) is some, generally increasing, function that crucially influences the properties of the

model. With || - |2 denoting the £y-norm in IRM (1.2) can be written in the compact form

Hylu](0) = 2 ml](o)]3 (13)

Through this Hamiltonian we define in a natural way finite volume Gibbs measures on Sy via

1 -8HNI() (1.4)

pnplwl(o) = Zn 5]

and the induced distribution of the overlap parameters
On,plw] = pnplw] o my[w] ™! (1.5)
The normalizing factor Zy glw], given by

Inpl) = 27N T e PHNIE) = [ BTN (1.6)
ocESN

is called the partition function.

This model has been studied very heavily in the physics literature. As a basic introduction to
what is commonly believed about its properties, we refer to the seminal paper by Amit, Gutfreund
and Sompolinsky [AGS]. Over the last few years, a considerable amount of mathematically rigorous
results on these measures has been established [BG1,BGP1,BGP2,BGP3,K,N,KP,KPa,ST,PST]. It
is known that under the hypothesis that lim suppy4., M(N)/N = 0 weak limits can be constructed

1 We will make the dependence of random quantities on the random parameter w explicit by an added [w]

whenever we want to stress it. Otherwise, we will frequently drop the reference to w to simplify the notation.
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for which the Qn converge to Dirac measures in IR> [BGP1]. Disjoint weak limits have also been
constructed in the case where lim supy 4., M(N)/N = a > 0, for small a in [BGP3]. In this note we
restrict our attention to the case a = 0 and the question to what extent a large deviation principle

(LDP) for the distribution of the macroscopic overlaps can be proven.

A first step in this direction had been taken already in [BGP2]. There, a LDP was proven,

but only under the restrictive assumption M (N) < 24 while only a weaker result concerning the
existence of the convex hull of the rate function was proven in the general case @ = 0 in a rather
indirect way. The first LDP in the Hopfield model was proven earlier by Comets [Co] for the case
of a finite number of patterns. Here we prove a LDP under more natural, and probably optimal,

assumptions.

Since the overlap parameters form a vector in a space of unbounded dimension, the most
natural setting for a LDP is to consider the finite dimensional marginals. Let I C IN be a finite
set of integers and let IRT ¢ IR™ denote the corresponding subspace and finally let II; denote
the canonical projection from IR’ onto IR for all J C IN such that I C J. Without loss of

generality we can and will assume in the sequel that I = {1,...,||}. Let us introduce the maps
ny : [~1,1]*" — [~1,1]P through
2P
ny(y) =27P Z eyYy (1.7)
y=1
where e,, vy =1,...,2P is some enumeration of all 2P vectors in IR” whose components take values

+1 only. Given I C IN, we define the set D7 as the set

Din={mem" [Iye-1+1" ny() =m} (18)

Theorem 1: Assume that limsupp, % = 0. Then for any finite I C IN and for all0 < 8 < oo,
the family of distributions Qn glw] o HI_1 satisfies a LDP for almost oll w € Q with rate function
Fé given by

+ sup (%yz — ﬂ‘lI(y)> (1.9)

op
- 1 le—
Fj(m) = —sup  sup [§|Inp(y)||§—ﬁ 277y " 1(yy)
pEIN ye[-1,1]2P =1
HInp(y):'r'h

where

+00 , otherwise

Fé' is lower semi-continuous, Lipshitz-continuous on the interior of Dy, bounded on Dy and equal

to +00 on D|CI|.
Remark: Note that FBI is not convex in general.
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To prove Theorem 1 we will define, for m € IR!

Fy ,(m) = —ﬁLN Inp plw] (ITIymy () — mlls <e) (1.11)
and show that
i) If 7 € Dyy|, then
lim lim Fyy g..() = Fj (1) (1.12)
almost surely and
ii) If 7 € Dfy, then
lim lim Fg (M) = +00 (1.13)

almost surely.

From these two equations it follows from standard arguments (see e.g. [DZ]) that for almost
all w for all Borel-sets A C B(IR')
1
— inf Fi(m) < liJI\}}rioIolfﬁ—N In Qn glw] o TI; ! (A)

mé€int A
o (1.14)

1
< limsup —— In wloll7L(A) < — inf Fl(m
< limsup 75 On,plw] o7~ (A) nf 5 (m)
where int A and cl A denote the interior and the closure of the set A, respectively. The properties

of the rate function will be established directly from its explicit form (1.9).

An important feature is that the rate function is non-random. This means that under the
conditions of the theorem, the thermodynamics of this disordered system is described in terms of
completely deterministic potentials. From the thermodynamic point of view discussed above, this is
an extremely satisfactory result. Namely in these terms it means that although the Hamiltonian of
our model is a function of an unbounded number of random macroscopic quantities, we may select
any finite subset of these in which we may be interested and can be assured that there will exist,
with probability one, in the infinite volume limit, thermodynamic potentials that are functions of
these variables only and which are, moreover, completely deterministic. The sole condition for this

to hold is that the number of macroscopic variables goes to infinity with a sublinear rate.

In the remainder of this article we will present the proof of Theorem 1. There will be three
important steps. First, we prove large deviation estimates for the mass of small balls in IRM,
using fairly standard techniques. The resulting bounds are expressed in terms of a certain random
function. The crucial step is to show that in a strong sense this function is ‘self-averaging’. The
proof of this fact uses the Yurinskii martingale representation and exponential estimates. These are
finally combined to obtain deterministic estimates on cylinder events from which the convergence

result (1.12) then follows rather easily.



2. The basic large deviation estimates

In this section we recall exponential upper and lower bounds that have already been derived

in [BGP2]. They provide the starting point of our analysis.

Let us consider the quantities

Zn.p.plwl(m) = pn plw] (mn (o) —mll2 < p) Zn plw] (2.1)

We first proof a large deviation upper bound.

Lemma 2.1:

1 «
AN InZn.g,0(m) < @ng(m) + p([|t"||2 + |m[l2 + p/2) (2.2)
where
@N,g(m) = inf \IIN,ﬁ(m,t) (23)
teIRM
with N
1 1
Wnp(m, 1) = —(m, 1) + 5lml3 + 55 > Incosh (6, 1) (2.4)
i=1

and t* = t*(m) is defined through ¥y g(m,t*(m)) = inf,c g Yy g(m,t), if such a t* exists, while
otherwise ||t*|| = oo.
Proof: Note that for arbitrary ¢ € IRM,

Ty (o) =mlls<p} < Tfljmn (o)=mla<pye” " NI mm)+pON ]2 (2.5)

Thus on ,
ZNnpp(m) = Bye > ImNOR T o) mila<o

< inf 1B,V E(ImIZ+2plmllats?) N (t(ma (o) —m)+BN el

< inf AN [BImIE—(mt)+ gy DO Incosh(B(E: )] BN p(lmlla+tl]2+0/2)
T teIRM
This gives immediately the bound of Lemma 2.1.$

Remark: Note that if a finite ¢*(m) exists, then it is the solution of the system of equations
| N
m = Zl ¢ tanh B(£;,t) (2.7)

Next we prove a corresponding lower bound.

Lemma 2.2: Forp> /2

(m) = ®n,g(m) — p(lmll2 + [[t*(m)ll2 — p/2) — —= (2.8)



where the notations are the same as in Lemma 2.1.

Proof: The technique to prove this bound is the standard one to prove a Cramer-type lower
bound (see e.g. [Va]). It is of course enough to consider the case where |[t*||s < co. We define, for

t* € ZRM, the probability measures IP on {—1,1}¥ through their expectation 1~E(,, given by

~ _lEa_eﬂN(t*va(”)) ()

15,() = 5 anE @) (2.9)

We have obviously that

B,e7 Imn(@)l3 - my (o *,mny(o
Zn.p,p(m) = [Bye s Imn @ mBNEm N o)y < pp BN ()

> ¢~ AN( m)=BN (plt"lla=HIimIB+olmls=r*/2) 173 ANG (o) 2, Ty

—-m|2<p}
_ AN (B ImIE= (" m)tgy 30 Incosh BEit”)) ,—BNp(llt* 12 +lmll2—p/2)
x IP, [[lmn(0) — m||z < p]
(2.10)
But, using Chebychev’s inequality, we have that
P, [[|mn(0) —mllz < p] =1 — IP, [[Imn (o) — mll2 > p]
> 1 5318, (o) il 1
We choose t*(m) that satisfies equation (2.7). Then it is easy to compute
- M 1
Blmy(o) ~ml3 = 5 (1 - ;tanhz(ﬁ(fi,t*(m)))> (212)

from which the lemma follows.

In the following lemma we collect a few properties of ® 5 g(m) that arise from convexity. We set
r={me IRM | ||t*(m)|2 < 00} where ¢*(m) is defined in Lemma 2.1, D = {m € IRM | ®n 5(m) > —o0},
and we denote by riD the relative interior of D (see e.g. [R], page 44). We moreover denote by
I(z) = sup,c p(tx — Incosht) the Legendre transform of the function Incosh¢. A simple computa-

tion shows that I(z) coincides with the function defined in (1.10).

Lemma 2.3:

i

N
1 1
o m) = =|lml|% — inf — I(y; 2.13
walm) = glimlf = int oy D Tw) (213)
where for each m € IRM the infimum is attained or is +o0o vacuously.
D={meR"|3yec[-1,1)"st. mn(y) =m} (2.14)
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iii) ®n g(m) is continuous relative to riD
. . . t
i) I' =intD, if det% £ 0.

v) If t* is defined as in Lemma 2.1 and y* realizes the infimum in (2.13), then
N

8 (550 ) = & e (2.15)

=1

Remark: Note that point i) of Lemma 2.3. provides an alternative formula for the variational
formula (2.3).

Remark: Under the condition det% # 0 the relative interior in (iii) can be replaced by the
interior. In the situation where we want to apply the Lemma, this condition is satisfied with

probability greater than 1 — exp(—cN'/6).

Proof: Note that the function g(t) = BLN vazl In cosh B3(€;,t) is a proper convex function on IRM.
Denoting by h(m) = sup,c g {(m,t)—g(t)} its Legendre transform, it follows from standard results
of convex analysis (cf. [R], page 142, Theorem 16.3 and in particular the second illustration of that

theorem on page 144) that h(m) is a proper convex function on IRM and that
N

h(m)= inf (D (2.16)

yeRNimx (y)=m BN

where for each m € IRM the infimum is either attained or is +oco. This immediately yields i).
Denoting by domh = {z € IRM | h(m) < +00} the effective domain of h, we have, by (1.10), that
domh equals the right hand side of (2.14) , and since ||m||2 > 0, ii) is proven. iii) simply follows
from the fact that h being convex, it is continuous relative to ri(domh) ([R], page 82, Theorem
10.1). Finally, to prove iv), note first that the condition detEtWE # 0 implies that int D # (. Thus
we can make use of the following two results of convex analysis ([R], page 218, Theorem 23.5).
First, the subgradient of h at m, Oh(m), is a non empty set if and only if m belongs to the interior
of domh, i.e., m € intD. Oh(m) is moreover a bounded convex set. Next, (m,t) — g(t) achieves its
supremum at t* = t*(m) if and only if t* € Oh(m). To prove v) we only have to consider the case
where t* exists and consequently |y| < 1 for all s. To prove (2.15), introduce Lagrange multipliers
t € IRM for the constraint variational problem in (2.13). The corresponding Euler equations are

then

1 T(nr) — (£. ) =
gl ) =€t i=1....N (2.17)

mMN(y):mu’ l’ll:]‘""’M
Using the fact that I'(z) = tanh™'(z) one sees that the t* that solves these equations is identical
to the solution of (2.7); from this formula (2.15) follows immediately. This concludes the proof of

the lemma.



We see that as long as p can be chosen as a function of N that tends to zero as IV goes to infinity,
Lemma 2.1 and Lemma 2.2 seem to provide asymptotically coinciding upper and lower bounds, at
least for such m for which ¢*(m) is bounded. The unpleasant feature in these bounds is that ¥ g
is a rather complicated random function and that the ®x g is defined through an infimum of such

a function. In the next section we analyse this problem and show that this function is essentially

non-random.



3. Self averaging

We show now that the random upper and lower bounds derived in the last section are actually
with large probability independent of the realization of the randomness. In fact we will prove this
under the restriction that m should be such that, at least on a subspace of full measure, t*(m) has a
uniformly bounded £5-norm. With this in mind the result will follow from the next proposition. Let
in the sequel 2; C 2 denote the subspace for which ||£![w]¢[w]/N = ||€[w]ét[w]/N|| < (14++/@)?(1+¢€)
holds for some fixed small € (e = 1 will be a suitable choice). Recall that & = 2. By Theorem 2.4
of [BGP1] (see also [ST,BG1]) IP[Q;] > 1 — 4Ne~N"°,

Proposition 3.1: For any R < oo there erists 0 < § < 1/2 and a set Qy C Q with IP[Qs] >

1-— e_Nal_ZJ/R, such that for all w € Q1 N Qy,
sup | U[w](m, 1) — IE¥(m, 1) < a'/*72(6 + 2||jm||5) (3.1)
t: |t <R

Remark: The subspace Q25 does not depend on m.

Note that an immediate corollary to Proposition 3.1 is that, under its assumptions,

il <R wl(m, ) b el <R (m,t)| < a (6 + 2[|mf2) (3.2)

Remark: An obvious consequence of (3.2) is the observation that if m € IRM and w € ;N Qy

are such that

inf W ty= inf U t 3.3
Jnf  Wlw](m,?) s [w](m, 1) (3.3)

and
inf IEW(m,t)= inf IEU ,t 3.4
,nf, (m,1) s [w](m, 1) (3.4)

then
®[w](m) — inf BV (m, ) < cal/?78 (3.5)

Proof: The proof of the proposition follows from the fact that for bounded values of ¢, ¥(m,t)
differs uniformly only little from its expectation. This will be proven by first controlling a lattice
supremum, and then using some a priori Lipshitz bound on ¥(m,t). We prove the Lipshitz bound

first.

Lemma 3.2: Assume that w € Q1. Then

| Tw](m, t) — Tlw](m, s)|] < ((1+ Vo)1 +€) + [Imll2) [It — ]2 (3.6)
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Proof: Note that

¥(mt) = W(m,5)| < |~(m,t = 5) + 55 3 ncosh(B(6: 1)) — Incosh(B(¢:, s))]‘
’ (3.7)
1
< lmllzlle = sll2 + |25 Z [Incosh(B(&i, t)) — Incosh(B(&:, 8))]‘
On the other hand, by the mean-value theorem, there exists ¢ such that
ﬁiN Z [In cosh(B(&:,t)) — Incosh(B(&;, s))]‘ = ‘ <t — s, % Z & tanh(B(&, f))) ‘
’ ’ (3.8)

1 )
¥ 2= 5.6 tanh (3 t))‘

Using the Schwartz inequality, we have that

K3

1 )
‘N S (¢ - 5,&) tanh(8(&, 1))

< % JZ“ — s,si)z\/z tanh®(B(&;, 1))

< ((s —t, Z %(s - t))) (3.9)

Hété

IN

N H [t — s>
But this implies the lemma.<

Let us now introduce a lattice Wy ar with spacing 1//N in IRM . We also denote by W, m(R)
the intersection of this lattice with the ball of radius R. The point is that first, for any ¢t € IRM,
there exists a lattice point s € Wy ar such that ||s — t||2 < /o, while on the other hand

Wi m(R)| < eaNUn(E/) (3.10)

Lemma 3.3:

- 22 (1_142/R)_q1n @
IP sup  |¥(m,t) — IE¥(m,t)| >z| <e N(% (-3e/M)—ain(B/a)) (3.11)
tEWN,M(R)
Proof: Clearly we only have to prove that for all ¢ € Wx a(R)
ﬂ'.‘z xr
P[|¥(m,t) — [EV(m,t)| > 2] < e VR3¢ (3.12)
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To do this we write ¥(m,t) — [EV¥(m,t) as a sum of martingale differences and use an exponential

Markov inequality for martingales. Note first that

U(m,t) — IEV(m,t) = N Zlncosh B(&:,t)) — IE Incosh(B(&;, 1)) (3.13)

We introduce the decreasing sequence of sigma-algebras Fy, ., that are generated by the random

variables {{;‘}jf,’:flM U {5;:}”2”. We set

f](\;c,n) = IE /8_1 ZIDCOSh é'“ ‘fk n] — IF [/6_1 ZlnCOSh 6,, ‘fk K (314)

where for notational convenience we have set

a ife <M
+ ,k+1,
fk,n = {fk+1,1 fo=M (3.15)

Notice that we have the identity

N M
_1 ZZ 7 (k)
\If(m,t) E‘I’ m,t = Nk_ s f (316)

Our aim is to use an exponential Markov inequality for martingales. This requires in particular
bounds on the conditional Laplace transforms of the martingale differences (see e.g. [LT], Chap.

1.3, Lemma 1.5). Namely,

[ZZf(k ") >N93] <2ulélf e |“|NzlEexp{UZZJL-(’e ﬁ)}

k=1r=1 k=1r=1 (3.17)
F(1,1) 7(1,2) F(N, M)
=2 jaf N [ [ [ R | B B

where the first inequality is nothing but the exponential Markov inequality. Now notice that

) = 1™ 2 Incosh (8163, )1 P — 154 3 Incosh(B(6: )17,

= IE[B™ 11ncosh(ﬁ(§k, )| Fr,x] — E[B™ 11ncosh(ﬂ(§k, )N F

= B[ Incosh(8 | > &ty + &ftw | )| Frw] — IB[B " Incosh(B | Y &bty + &ite |)IFT]
BFER BFEE

1 ” 5
= §ﬁ 'IE |Incosh(3 Z{Ztu—i—fktﬁ ) — Incosh(8 Zﬁftu —&xt | )| Feyn
p#ER BER
(3.18)

Now we use the fact that

cosh(a +b) 1+ tanhatanhbd L1t tanh |b| < 20l

= 3.19
cosh(a —b) 1—tanhatanhbd — 1 —tanh|b] — (3.19)

11



to deduce from (3.18) that
N1 < Tl (3.20)

Using the standard inequalities e® < 1+ = + %e'” and 1+ y < e¥ we get therefore
ufie" () |+ U 2 fulle|
IE [ FE ] < exp S-tzellte (3.21)
From this and (3.17) we get now
uz ull||t] oo
P[|U(m,t) — BV (m,t)| > z] < 2infe Vot Nlltizel 1!

{ N =2 (1-Len/ltl2) (3.22)

2 VTR el > 1
2e~Ne*(1-3¢") if [[t]), < 1

<

where the last inequality is obtained by choosing u = z/|t||3 in the first and u = z/||t||> in the

second case. This gives the lemma. <

We can now continue the proof of Proposition 3.1. Choose 0 < § < 1/2 and define 5 to be
the set of w € 2 for which

sup  |¥(m,t) — IEU(m,t)| < a'/?79 (3.23)
tEWN,M(R)
By Lemma 3.3,
P[] > 1 ( Nal_%(l Lo IRY 4 Naln(R/ ))
— €ex — — —€ ain (6]
2= P R 2 (3.24)

=1—exp (—~NO(a'"?*/R))

Combining Lemma 3.2 with (3.23) and taking into account the remark preceeding Lemma 3.3, we
see that on Q1 N Q,

sup |¥(m,t)—IEV(m,t)| < a1/2_5+2\/a(||m||2+(1+\/a)(1+e)) < a1/2_5(6+||m||2) (3.25)
ti|tl2 <R

for a small, which proves Proposition 3.1.<$>
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4. Proof of the Theorem

The results of Sections 2.1 and 3.1 can now be combined to get a large deviation principle in
the product topology. The point here is that, apart from the possibility that ¢*(m) may become
unbounded, the estimates in Lemma 2.1 and Lemma 2.2 together with Proposition 3.1 tell us
that up to corrections that tend to zero with N, the quantity (8N)™'In Zy g ,(m) is given by the
infimum over ¢ of the completely non-random function IEV y g(m,t). We will first prove that for

all m € D)y (1.12) holds. The main step in the proof of this fact is the following theorem.

Theorem 4.1: Assume that limsupp., % = 0 and that 0 < B < co. Then there exists a

set Q0 C Q with IP[Q)] = 1 such that for all finite subsets I C IN and for all m € [—1,1]! such that
for all € > 0 there ezists ¢ = ¢(m,€) < 0o, ANy < 00,VN > Ny,

sup inf [E¥y g(m,t) = sup inf IEY N g(m,t) (4.1)
m: |[[ym—rn||; <e tERM o ms [[Tym—rm |, <e tERM: [t|l2<c o

it holds that for all w € Q,

lim lim F} 7
im lim Fy g [w](m)

2P
1 e
=—sup sup | -lny(y)llz—B7"2 Py 1(y,)

PEIN ye[-1,1)2P =
Oynp(y)=m =1

+ sup (%yz — ﬁ_ll(y)> 2

yelR

Remark: The assumption in Theorem 4.1 looks horrible at first glance. The reader will observe
that it is made in order to allow us to apply the self-averaging results from the last section. We will
show later, however, that the set of values m for which it is satisfied can be constructed explicitly

and is nothing else than D)y

Proof: We will first establish an upper bound for the quantity
Z3,p,lw) (1) = pnglw] (IMrmy (o) — @2 <€) Zn glw] (4.3)

To do so, notice that on Qq, |[mn(0)|l2 < (1 ++va)y/(1+¢€) < 2 for all o. We may cover the ball
of radius 2 with balls of radius p > y/«, centered at the lattice points in Wy pr(2). We then have

that on Qy,
Zhp @) < Y Zngplwl(m)

meEWnN, a(2)
[[Mpm—r|z<e

< sup Zngelwlm) ) 1 (4.4)

meEWN pr(2)
5 mew (2)
Impm—a<e 1Ty m s <e
aN(ln 2/a)
< sup  Zng,lw|(m)e
m: ||y <2
T pm—rmlg<e
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As long as a | 0, the factor e*¥(22/2) in the upper bound is irrelevant for the exponential asymp-
totic, as is the difference between € and € — p. Using the estimates used in the proof of Lemma 2.1,
we can replace Zn g ,[w](m) in (4.4) by its upper bound in terms of the function ¥. Namely,
1 I - . -1
3N InZy 5 [w](m) < N HS:11£<2 telgfl'u Un[w](m,t) +plc+2+p/2) + 7 aln2/a (4.5)

IT;m—ml|y<e lltlz2<e

Finally, combining (4.5) with (3.2), we get that, for w € Q; N Qs and for any ¢,
1

——InZk 4 [w]() < sup inf IEWN(m,t) + 100?27 + p(c+ 2+ p/2) + 8 'aln2/a
BN m: [Mpm—rills <e (ERY
(4.6)

By assumption, there exists a value ¢ < oo, such that the true minimax over IEW y(m,t) is taken
for a value of ¢t with norm bounded uniformly in N by some constant ¢. The constant ¢ in (4.6)
is then chosen as this same constant, and then the restriction ||t||2 < ¢ is actually void, and the
minimax is taken for some values (m*,¢t*) which depend only on 7 and €. This is already essentially

the desired form of the upper bound.

We now turn to the more subtle problem of obtaining the corresponding form of the lower
bound. Trivially,
Z g et plW)(R) > Zn g plw] () (4.7)

We will modify slightly the derivation of the lower bound for Zy g ,lw]|(m*). Namely, instead of
defining the shifted measure IP with respect to the random value of ¢ that realizes the infimum of
Uy [w](m*,t), we do this with the deterministic value ¢* that realizes the infimum of IEW y(m*, ).
This changes nothing in the computations in (2.10) and (2.11). What changes, is however the
estimate on IE,|my(c) — m*||2, since t* does not satisfy (2.7) but is instead solution of the

equations
my, = IEE) tanh(B(£1,t%)) (4.8)

Thus in place of (2.12) we get
B, |my(o) —m*|5 =
I, [, #¢ o0 %, (N2 %, €18k ojon — 2mi N2 Y, €0 + (m))?)
[T cosh B(&:, )

S LSS tanh(8(, &) tanh (3¢ )€ (19
v j v j#k |

— 2037 Y tanh (8", )€ + Y (m)?

M 1 2 * 1 v * * i
=¥ <1 - ;tanh (B(t ,fﬂ)) + ; <N 2}51 tanh(B(t*,&;)) — mu>
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The first summand in (4.9) is bounded by «, and we have to control the second. To do so we use

(4.8) to write

> % Z ¢ tanh(B(t*, &;)) — mi)

v

_ z % Z ¢ tanh(B(t", &) — IEEY tanh(B(4:, t*>>> (4.10)

=y % Z ¢¥ tanh(B(t*, &) — E% Zéi” tanh(ﬁ(t*,&-))>

= Gn(t")
We will now prove, in analogy to Proposition 3.1, that G (¢) is actually small with large probability.
This will be slightly more complicated than in Proposition 3.1 and will, in fact consist of two steps.
The first is a fairly crude bound on Gy (t) that in a second step will be used to obtain a refined

one.

Lemma 4.2: For all w € Qq,
Gn[w](t) <6 (4.11)

Proof: Let us for notational simplicity set 7; = tanh(3(;,t)). We have that

M 2 2
) <2y [% > et % > IEElT,
p=1 i i

_l’_
b (4.12)
2
= N2 Z Z (EreETT; + IE(ELT)IE(ES TS))
p=1 i,
For the first term, we can use simply that
M
2 ¢ (L ¢¢t
Beprpop, S>> - 2 S>>
%y Tagnn <25 (F ) <% (413

But on Q;, the norm in the last line is bounded by (1 + 1/a)?(1 +¢). To bound the second term in
(4.12), we use the independence of both ¢! and T; for different indices ¢ to write

Y BT = 2 Y Y (e

u=1l i,j p=1 i,j
9 M
t+ 573 2 D (BEFT)? — IE(T;)?) (4.14)
pu=1 1
éét
<2IF T

g2a+2(1+\/5) (14¢)
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Combining these two bounds we get (4.11).$

Lemma 4.2 tells us that Gn(t) is bounded, but not yet that it is small. To do this, we observe

first that its mean value is small.

Lemma 4.3:

0 < IEGN(t) < o (4.15)

Proof:

p%g

IEGN(t

[ D& tanh(B(2, &) — By D& tanh(B(t, s,-))]

N
Il
-

2

p"qg

Zg"tanh tsm] —[%ZlEéi”tanh(ﬁ(t,&))]

S
Il
-

(4.16)

p%g

<N2 B tan® (B4, 6) — 7 Y [BE tanh(4(, 5,-»12)

N
Il
-

A
SIS

where we have used the independence of the summands for different indices 7.

In the sequel we will need that the mean value of G (t) does not differ much from its conditional

expectation relative to 2;. Namely,
IIEGy(t) — IE[GNn(1)|Q]] < 2Me=N'"° (4.17)

is arbitrarily small.

Finally, we will show that on Q;, with large probability, Gxn(t) differs only little from its

conditional expectation relative to £2;.

Lemma 4.4: Assume that > (InN)/v/N. Then,
P [|Gn(t) — B[GN ()] > 2|Q] < e ?VNe (4.18)

for some positive constant b.

Proof: Basically the proof of this lemma relies on the same technique as that of Proposition 3.1.
However, a number of details are modified. In particular, we use a coarser filtration of F to define

our martingale differences. Namely, we denote by Fj the sigma algebra generated by the random

16



variables {§f}i‘§,§N We also introduce the trace sigma algebra F = FNQ; and by F, = F, N

the corresponding filtration of the trace sigma algebra. We set

V) = B [On(0)| 5] - B [On(0)|Fir] (4.19)

Obviously, we have for w €

N
Glw)(t) — BGN®I] = 3 1 (4.20)
k=1

Thus the lemma will be proven if we can prove an estimate of the form (4.18) for the sum of
the f](\f). This goes just as in the proof of Proposition 3.1, i.e. relies on uniform bounds on the
conditional Laplace transforms

PO

E [e“ N \J?"Hl] (4.21)

The strategy to get those is very similar to the one used in [BGP3| and [B]. We introduce
2

1
GW(t2) = 5 S T - B Zg"T + g,’;Tk (4.22)
©w i#£k
and set
ar(2) = GV (t,2) — ¥, 0) (4.23)
We then have that
) = B [9.(0)|1 7] - B [96(1)| Fira (4.24)
since G%c)(t, 0) is independent of the random variables €. On the other hand,
1
au(1) = [ dzgi2) (4.25)
0
and
l 1
=2)" Z &T; — IE— z VT + g,:Tk & T (4.26)
v=1 z;ék

Let us first get a uniform bound on |f N)| on Q;. From the formulas above it follows clearly that

17| < 25up gk ()] (4.27)

But using the Schwartz inequality,

) < % | S ET - B Z§VT+ Z vy

Iz i#k
’ (4.28)
2 1 :
SN‘/M ; N#Zkgv:r E— Z{”T+ ~ et
:2‘/_ a®t,2)
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But on Q; it is trivial to check that G%c)(t, z) satisfies, for z € [0, 1], the same bound as G (t). So
that on Q,

12v M
gh()] < (4:29)
Now we turn to the estimation of the conditional Laplace transform. Using the standard inequality

L 2 Jal
e’ <1+x+2xe (4.30)

we get
(k) | =~ 1 (k)
zE[e“fN \fk+1] <1+ u’lB [( ,(f’) ull x| k+1]

1 2~
v e [ (0 5
A simple computation (see [BGP3]) shows that

IE [( 1(\?))2 ‘ﬁk+1] <IE k(1))

(o],

<[ 'z (gh()’ Fun]

< sup IE [(gi(z»2 ‘]}kﬂ}

0<z<1

(4.31)

—

? | F]

Let us write

M
= [ Zg"T E— Z{” %éZTk
; (4.33)
Z
=1
Thus
M 1 1 ?
(gr(2))" <8 (; [N ZST —JEN;&-”TZ- Tk> (430
+8T3 (2 = 1)*

Let us abbreviate the two summands in (4.34) by (I) and (IT). The term (II) is of order «®? N2 and
thus can simply be bounded uniformly. We have to work a little more to control the conditional

expectation of the first. We write

E [(I)mﬂ]

[Z 3134

‘-7:19+1]

(4.35)

ZgﬂT IE— ZgﬂT Zg"T IE— Zg"
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We observe that under the expectation conditioned on Fj4; we may interchange the indices of
1 < j < k and use this to symmetrize the expression (4.35).(Notice that this is the reason why we
separated the z-dependent contribution in (4.34)).This gives

1 |(D)|Fisa

§7 €5
- NzlE ZZ T

| pov j=1

—Zs“T 7R Zs"T iZs"T jioas Zs” Fn

M
8 J 2 1 © 1 Iz T
< o lE Ezj 2T ijl lﬁgjsm—ﬂﬂﬁg:@ﬂ .
(4.36)
But by Lemma 4.2, on ),
e 1 ’
> [N DT —IE Y €| =Gn(t) <6 (4.37)
p=1 A %
and since
5] 7 m2 k é]é-t
T7 || < 221 = ||B 4.
S 5572 < 555 < mon) (4.38)
=1 =1
we get that
B [(1)|Finr| < 1 B (1BW 9] < 15 BIBE/Pl] (4.39)
N2 N2
It is easy to show that (see [B]) that
2
B B(k)|| < ¢ (1+v/M]k) (4.40)
for some constant 2 > ¢ > 1. Collecting our estimates and using that 1+ z < e” we arrive at
E [eUffv’“) \ﬁw] < exp <2u elul12VM/N =2 [8a2 +76(1 + \/M/k)zD (4.41)
Since
N
> (1 +/M/k)> =N +VMN +MInN = N(1 +4ya+alnN) (4.42)
k=1

this yields that

N
P [Zfz(\f) > x|y

k=1

ginfexp( ux+2N elu12VM/N 7542 +76+304\/_+76a1nN]> (4.43)

In order to perform the infimum over u in (4.43) we must distinguish two cases. First, ifa < 1/In N,
we may chose v = v/ N which yields

N
ZP[ZL&PE&:

k=1

e~ VNwter (4.44)
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for some positive constant ¢;. If now a goes to zero with N more slowly than 1/Iln N, a good
estimate of the infimum is obtained by choosing v = N/12v/ M. This gives

N e 12 48
iy [Zfl(\f) 2:5] Se_mmexp{— [a+;+—a+21nN]}

Pt 36 Ve (4.45)

< e—\/N:l:/12+cz In N

for some positive constant co. From here the lemma follows immediately. <

Corollary 4.5: There ezists a set Q3(t*) C Q1 with IP[Qq\Q3] < e~*N""" such that for all
w € Qg(t*)
(4.46)

DN | =

P, [Imx(0) —m*|, < [2(2a + N"/49112] >

Proof: This follows from combining (4.9) and (4.10) with Lemmas 4.2, 4.3 and 4.4 and choosing
z = N~1/% in the latter.

To be able to use this Corollary, we will choose from now on p > [2(2a + N ~1/4)]1/2,

Now except on a subspace Q5 of probability smaller than ANe=N""°, € ¢/N — 1| < a2+
va)(1 + c) (see the appendix of [BGP1]) which implies in particular that on O, deté*¢/N # 0.
Thus on Q4 Lemma 2.3, (iv) implies that if ||¢*||2 is bounded, than m™* € int D, that is there exists
y* € [-1,1]V such that m* = my(y*). But |[my(y*)|3 < Hftf/NH% < ||€*¢/N]|. Since by
assumption [|[t*]|2 < ¢, we see that on Q1 N Qy, [|m*||]2 < 2. As a consequence, putting together
Proposition 3.1, Corollary 4.5 and (2.10), we find that on Q3(¢*),

1

i InZY 5 i plw]() > IEW N (m*,t*) —10a27% — p(c +2 — p/2) —

In2
— 4.4
v (44D
Which is the desired form of the lower bound.

Finally, by a simple Borel-Cantelli argument, it follows from the estimates on the probabilities

of the sets 1,9 and Q3(¢*) that there exits a set Q of measure one on which

1
lim sup — In Z4 Jw](m) < limsup sup inf IEVN(m,t 4.48
msup 75 N,g.ew](m) D e et (m,1) (4.48)
and
1
liminf — In ZX 5 .[w]() > lim inf sup inf IEVxN(m,t 4.49
T gy 2 W0 2 pind sup it Bn(m) (445)

It remains to show that the limsup and the liminf’s on the right-hand sides of (4.48) and (4.49)

coincide. From here on there is no difference to the procedure in the case M < In N/In2 that was
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treated in [BGP2]. We repeat the outline for the convenience of the reader. We write IEV y(m,t)

in its explicit form as

2M
1
IEV 5 (m, t) = 5||my|§ (m,t) + 8727 " Incosh(B(e,, t)) (4.50)
y=1
where the vectors ey, v = 1,... ,2M form a complete enumeration of all vectors with components
+1 in IR™. They can be conveniently chosen as
et = (—1)P2"] (4.51)

where [z] denotes the smaller integer greater or equal to z. Note that IEW y(m,t) depends on N
only through M(N). We may use Lemma 2.3 to show that

2
inf IEVyN(m,t) = —||m||2 — inf B7R27MN " I(y,) (4.52)
telRM ’ yeR* inps(y)=m Z !
and hence
1 2
sup inf IEY n(m,t) = sup 2 HnM(y)Hg — gt M Z I(yy)
m: [lLrm =], <e TR yEIR?™M 1 [T n s (y) — ||, <e

(4.53)
To prove that this expression converges as N (or rather M) tends to infinity, we define, for any

integers d,p with d < p, the sets

Ay =Ly € =117 gy = yyae | (4.54)
Obviously,
AbC AR C L AP C AR =[-1,1]" (4.55)
The definition of these sets implies the following fact: If y € A% with d < p, then

(i) ny(y) =0, if v > d and

(i) n#(y) = n4(y), if p < d.
Let us set

0p(y) = 5 Imy (w2 — 672" PZI ) (4.56)

and
Tpe(n) = sup ©p(y) (4.57)

yeAD
ITpnp(y)—mmllzg<e
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Therefore, for y € A%, ©,(y) = O4(y), while at the same time the constraint in the sup is satisfied

simultaneously w.r.t. n, or ng, as soon as d is large enough such that I C {1,...,d}. Therefore,
Tp,e(mh) > sup Op(y) = sup ©a(y) = Ya,e(mn) (4.58)
yE.AZ yEAg
ITrnp(y)—rmllp <e ITzng(y)—mliz<e
Hence Y, () is an increasing sequence in p; moreover, Y, () < sup vear z ||np(y)||§ <1

M np(y)—mllz<e
and so being bounded from above, converges. Thus

lim sup inf IEV¥N(m,t) = lim Yy (M)
N1o© . || ym—rin ||, <e tEIRM Ntoo (£.59)
=sup Y (1)

P

It remains to consider the limit € | 0. It is clear that sup, Y}, (/) converges to a lower-semicontinuous

function and that

limsup Y, () = lim sup sup Y, 0(m) (4.60)
0 p 0 m: ||[[I;m—m|2<e P

Thus if sup, T}, () is continuous in a neighborhood of 7, we get

limsup Y, () = sup Y, o(m) (4.61)
0 p P

as desired. But, as has been shown in [BGP2|, from the explicit form of T one shows easily that
sup,, Yp 0(mm) is Lipshitz continuous in the interior of the set on which it is bounded. This proves
Theorem 4.1

We will show next that a sufficient condition for condition (4.1) to hold is that m belongs to
D,r. While this appears intuitively ‘clear’, the rigorous proof is surprisingly tedious. Let us first

introduce some notation and results.

Let E, be the 2P x p-matrix whose rows are given by the vectors e,, v = 1,...,2P, which,
for convenience, are ordered accordingly to (4.51). We will denote by e, u = 1,...,p the column
vectors of E, and by EIt, its transpose. It can easily be verified that

27 ) = {) oihorne (1.62
Thus, the 2P x 2P-matrix 2_”EpEIt, is a projector that projects on the subspace spanned by the
orthogonal vectors {e*}"_,, and 27PE} E, is the identity in IR. Given a linear transformation A
from RP to R?, we define

AC ={Az |z € C} for C CIR? (4.63)
With this notations the vector n,(y) and the set D,,, defined in (1.7) and (1.8), can be rewritten as

np (y) = 2_pE;t)y

i (4.64)
D, =27?E[-1,1]?
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Moreover, for any set I C {1,...,p}, we have the following property,

;D, = Dy (4.65)

Finally, let us remark that of course the statements of Lemma 2.3 apply also to the deterministic
function inf,c pu IEW y g(m, t). All references to Lemma 2.3 in the sequel are to be understood as

referring to properties of this latter function, tha tis given explicitly in (4.52).

By Lemma 2.3, the condition (4.1) of Theorem 4.1 is satisfied if and only if the supremum in
the Lh.s of (4.1) is taken on at a point m in intDjy;. More precisely, by (2.15), this condition is
equivalent to demanding that for all € > 0 and all p, the supremum over y s.t. ||II;n,(y) —m|2 <€

of ©,(y) is taken on at a point y* such that

2PN [I'(y2)]* < e (4.66)
We set
A () = {y e[~ 12" ¢ |na(y) — mls < e} (4.67)

Lemma 4.6: Assume that 0 < 8 < co. Then for allm € D|r| and € > 0 there exists c(m, €) < oo
such that for all p > |1
sup  ©,(y) = 6,(y") (4.68)
ve[-1,1]2P

HI"p(y)eBe(ﬁl)

where

T,(y") =277 [I'(y%)]" < clrm,e) (4.69)

Proof: The proof proceeds by showing that if y does not satisfy condition (4.69), then we can find
a 0y such that y 4+ dy € A.(m) and O,(y + Jy) > O,(y), so that y cannot be the desired y*. Let us
first note that

N | =

Op(y +8y) — Op(y) = 5 [Inp(y + 6y)I5 — Inp@)I3] +27787 D [1(37) — I(yy +6y,)]  (4.70)

Using the properties of the matrix E, and the fact that y € [—1, 1]2,, we can bound the difference
of the quadratic terms as follows
Inp(y + 6913 — Inp ()13 =llnp (9)II3 + 2771 (6y, 27 P E, By y)

(4.71)
> — 272246y
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Thus we can show that ©,(y + dy) > ©,(y) holds by showing that
P
277871 " [T(yy) — I(yy + 6y)] > 277716yl (4.72)
y=1

Define the map Y from [—1, 1]2,, to [—1, 1]2‘” by

21’—\“_1
Y’Y(y) = 2—p+|1| Z Yy4q2111 5 Y = 17 s 72|I| (473)
=0
Using (4.64) we get that
op—I1|
Mpnp(y) = 27 BL [ 27770 T mnyain,.p2iyy | =27 1B Y () (4.74)
v=1

Therefore, the property that y € A.(m) depends only on the quantity Y (y).

Notice that if m € D7 and € > 0, then there exists X € (-1, 1)2‘“ such that ||n;(X)—m||2 <e.
This implies that for any p, the vector z € IR?" with components Ty = X, mod o lies also in A ().
Moreover,

max [z,| =max|X,|=1-d<1 (4.75)
v v

and therefore
Tp(2) < [I'(1 - d)]* (4.76)

is some finite p-independent constant. We will use this fact to construct our Jy. We may of course
choose an optimal X, i.e. one for which d is maximal. In the sequel X and z will refer to this
vector. Let now y be a vector in A.(m) for which T,(y) > ¢ for some large constant c. We will

show that this cannot minimize ©,. We will distinguish two cases:

Case 1: Let us introduce two parameters, 0 < n < d and 0 < A < 1, that will be appropriately
chosen later. In this first case we assume that y is such that

2P

D Ly z1-ny > (1= A)207 M (4.77)

v=1
and we choose

oy = p(z —y) (4.78)

where 0 < p < 1 will be determined later. It then trivially follows from the definition of # and the
convexity of the set A, that y 4+ p(z —y) € A, and that y + p(z —y) € [~1 + pd, 1 — pd]?". If Thus
if we can show that with this choice, and with a p such that pd > 7, (4.72) holds, we can exclude

that the infimum is taken on for such a y.
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Let us first consider components y., such that |y,| > 1 —d. Since |z,| < 1 — d we have, for
those components, signdy., = —signy, and thus I(y,) — I((y + dy),) > 0. This fact together with
(4.77) entails

270> [Hyy) = 1 + 89)y) gy, 1212y 2277 3 () = 1y + 09)y)I g1y, 121-0)
y=1 y=1 (479)
> inf (1= 2027 (ys) ~ 1((y +9)y)]
loyl<1—d

Note that I(z) is symmetric with respect to zero and is a strictly increasing function of z for z > 0.
Thus I((y + 0y)) is maximized over |z,| <1 —d for z, = (1 — d)signy,. From this we get

inf  [I(yy) — I((y +6y)y)] = [I(yy) — I(Jyy| + p((1 = d) — [y4]))] (4.80)

lzy|<1—d

and the infimum over |y,| > 1—7 in the r.h.s. of (4.80) is easily seen to be taken on for |y,| = 1—n.
Thus

inf (1= 227 () = T(y + 6y),)] 2 (1 = )27 = n) = 1(1 =0 = p(d = ))]
oy|<1-d

(L=N2 Mpd—n) '@ —n—p(d—mn)  (481)

>(1 = 22V lo(d —n) g In(n + p(d — )

v

where we have used the convexity of I and the bound, I'(1 —z) > 1|Inz| for 0 < z < 1.

We now have to consider the components y, with |y,| < 1 —d. Here the entropy difference
I(yy)—I((y+dy)~) can of course be negative. To get a lower bound on this difference we use (4.80)

and perform the change of variable |y,| = (1 — d) — 2z, to write

St ) = I+ 09),)) = _inf (1= d) — 2+ pzm) ~ (1~ d) — z,)
loy|<1-d

> inf  —pz, I'((1 — d) — 2y + pzy)

T 0<z,<1-d
2—d—2z,+ pz7>

inf 11
= m — P2~y — 1N
0<sngi-d 73 d+ 2z, — pzy

(4.82)

and putting together (4.82) and (4.77) yields

272 S10(0) ~ 1+ 80 g peamay =~ - =028 (%) @s)

y=1
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Therefore, (4.83) together with (4.79) and (4.81) give

gter Z[I(yv) —I((y + dy)4)]
=1 (4.84)

1 1 2
2671 { (1= N2 1@ = n) o + old = )] - (1 - (1= 23 ()}
On the other hand, we have
2772 ||5yll» < 2p (4.85)

Consequently, (4.72) holds if we can choose A, 7, and p so that the following inequality holds,
-1 — |I| 1 —|I| 1 2
g7 4 (= X2 — ) in(n + p(d—m)| — (1= (1= 2272 (2) L s o (ase)

But this is always possible by taking e.g. A < 1, n = pd/2 and p = d¥ where K = K(d, |I|,\) > 1

is chosen sufficiently large as to satisfy

K+1 1
(1 —A)2_|I|d(1—dK/2)T+|lnd| >4+ |Ind (4.87)

Case 2: We will assume that A < 1, and that n, and p are chosen as in the case 1. We can then

assume that
217

Y Ly z1ony < (L= A)2e7 ! (4.88)

y=1
We assume further that
T,(y) >c (4.89)

for ¢ sufficiently large to be chosen later. Here we will choose §y such that
Y(y) =0 (4.90)

so that trivially y + dy € A(™). Let us introduce a parameter 0 < { < 7, that we will choose
appropriately later, and let us set, for v € {1,...,2/'1},

Ki={Fe{t,..., 227"y |y, 5o | > 1- ¢} (4.91)

and
’C; = {’7 S {1, c ,2p—|1|} ‘ |y7+(;,_1)2m| <1- 77}

For all indices 7 such that IC? = 0, we simply set 6y, (y_1)2i1 =0 for all ¥ € {1,... ,2p= Iy If
K3 were empty for all v, then Tp(y) < [I'(1 — ¢)]*> which contradicts our assumption (4.89), for

suitably large ¢ (depending only on ¢). Thus we consider now the remaining indices v for which
K+ #0.
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First note that (4.88) implies that || < (1 — )27~ and that K5 > 2P~ 1l 5o that choosing
1> X> 1, we have IKI| < |K5|. Our strategy will be to find dy in such a way as to decrease the
moduli of the components in IC? at the expense of possibly increasing them on K7 in such a way
as to leave Y (y + dy) = Y (y).

We will in the sequel consider the case where there is only one index v, e.g. v = 1, for which
ICJ/L is nonempty. The general case is treated essentially by iterating the same procedure. We will
use the simplified notation y; o115 = Y5, dy; 121115 = dy5 and also set ICli = K*. We will assume
moreover that all components y5 are positive, as this is the worst situation. We will chose dy such
that dy; = 0, if ¥y € {KT UK~} and dy; < 0if ¥ € K*. For each ¥ € Kt we will choose in a
unique and distinct 4’ € K~ and set dy;» = —dy5. This ensures that Y (dy) = 0. We will also make
sure that for all 4, [dy5| < n/2 — (.

We have to construct dy; for ¥ € K*. In this process we have to consider the following three

functionals:

(1) The change in the quadratic term of ©,. This is bounded by

SE(6y) =27P/2F 2. )" 612 (4.92)
Fek+

(2) The change in the entropy term,

SI(6y) =277 Y (I(ys + dys) — I(y3))

yeK+
4+ 927P Z (I(y:, + 5y;,) — I(y’y))
YEK—
>27P N |6y | (y5 + Sy5) — 277 Y bys/lnn|/2 (4.93)
Fek+ yeK-
— 9P Z |6ys| (I'(y5 + dy5) — | Inn|/2)
Fek+
>27770 Y [dys I (y5 + 0ys)
SR+

where we have used that for 1 > |z| > |y| > 0.9, I(z) — I(y) = |z — y||In(1 — y)| and that
under our assumption, for ¥ € KT, y5 + dy; > 1 —n/2.

(3) Finally, we have that

Tp(y +0y) <277 Y [I'(ys +6y5))> +277 > [I'(ys + 6ys)]?
g+ seK+

SI'A—n/2)P +277 Y [I'(ys +0y3)°
yeK+

(4.94)

27



Looking at these three functionals suggests to choose dy5 for ¥ € KT as the solution of the
equation

—0y5 = 7I'(y5 + y5) (4.95)

The point is that with this choice (4.94) yields (we set for simplicity 6 E(dy(7)) = 6E(7), etc.)

51(r) > %(51@(7))2 (4.96)
while

T,(t) <[I'(1 = O + 7 %(0E(7))? (4.97)

Thus we can ensure that the entropy gain dominates the potential loss in the quadratic term
provided we can choose 7 < §E(7)/8. However, we know that T},(7) is a continuous function of ¢
and T,(0) > c. Thus there exists 79 > 0 such that for all 7 < 7y, T,(7) > ¢/2, and so by (4.97),

B 2 Vel2— [T - O (4.98)

which inserted in (4.97) yields that

51(r) > lrjTQ\/c/z —[I'(1 = Q)PP8E(r) (4.99)

It is clear that if ¢ is chosen large enough (‘large’ depending only on (), this gives §I(t) > §E(t), as

desired. Finally, it is easy to see that |dy;| is bounded from above by the solution of the equation
r=1I'(1—x) (4.100)

which is of the order of z ~ 7|ln7|. If  is chosen e.g. ( = n/4, we see from this that for small
enough 7, |dyy| < n/2 — (, so that all our conditions can be satisfied. Thus, there exist ¢ < oo
depending only on 7 (which in turn depends only on 7 and €) such that any y that satisfies the
assumptions of Case 2 with this choice of ¢ in (4.89) cannot realize the infimum of ©,. The two

cases combined prove the lemma. <

To conclude the proof of Theorem 1 we show that for m € D¢ (1.13) holds. This turns out to
be rather simple. The main idea is that if m € D|°I|, then on a subset of Q of probability one, for

N large enough and e small enough, the set {o € Sy | ||[IIymyn (o) — m|2 < €} is empty.

To do so we will first show that uniformly in the configurations o, the vector IIymy(c) can be
rewritten as the sum of a vector in D|;; and a vector whose norm goes to zero as N goes to infinity.
Let ey, v =1,... .27l be the column vectors of the matrix Efn- We set

vy={ie{l,...,N} | & =e"

vy ?

Vp eI} (4.101)

28



These sets are random sets, depending on the realization of the random variables ¢/, Their cardi-
nality, however, remains very close to their mean value. More precisely let A, denote the fluctuation

of |vy| about its mean,
Ay =2l IN" o, | — 271N (4.102)

There exists a subset 24 € Q of probability one and a function, §n, tending to zero as N tends to

infinity, such that for all but a finite number of indices,
A <don , y=1,...,2!0 (4.103)
This fact has been proven in [G]. Using (4.101), II;my (o) can be rewritten as
Iymy (o) = 2" Ef (X (0) + 6X(0)) (4.104)

where X (o) and (6X)(o) are respectively the vectors with components X, (o) = |vy|™! ZiEU-Y o; €
[—1,1], (6X),(0) = A, X, (0), ¥ = 1,...,2lIl. Tt then follows from the properties of the matrix E|t[|
and (4.103) that, on Qy,

HH[TTLN(O') — n|1|(X(a))H2 < on (4.105)

Now, by assumption, 7 € Df, i.e. there exists € > 0 such that {e e R | ||z —m|, <& C
(D|[|)c. Therefore, since n|;|(X (o)) € D[, we have ||n| (X (o)) —m]|2 > € From this and (4.105)
it follows that on Qq, ||IIymy(c) — M2 > € — dn. Finally, for N large enough and e small enough
we get

{oc €SN | |lIymn(o) — |2 <e} =0 (4.106)

From this, Eq. (1.13) easily follows. This concludes the proof of Theorem 1.
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