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Abstract

We consider an indirect boundary integral equation formulation for the mixed Dirichlet-

Neumann boundary value problem for the Laplace equation on a plane domain with a

polygonal boundary. The resulting system of integral equations is solved by a collocation

method which uses a mesh grading transformation and a cosine approximating space. The

mesh grading transformation method yields fast convergence of the collocation solution

by smoothing the singularities of the exact solution. A complete stability and solvability

analysis of the transformed integral equations is given by use of a Mellin transform technique,

in a setting in which each arc of the polygon has associated with it a periodic Sobolev space.

1 Introduction

Consider the mixed Dirichlet-Neumann boundary value problem for the Laplacian in a simply

connected region 
 with piecewise-smooth boundary � = �D [ �N : For given f on �D, g on

�N , �nd u in 
 such that

�u = 0 in 
;

u = f on �D; (1.1)
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@u

@n
= g on �N ;

where @u
@n

denotes the derivative of u with respect to the outward normal vector n.

We use the single layer potential for the representation of u,

u(P ) = � 1

�

Z
�
log jP �Qjz(Q)dSQ; P 2 
; (1.2)

where jP �Qj is the Euclidean distance between P and Q, and dSQ the element of arc length.

From the well known jump condition for the normal derivative of the single layer potential at

the boundary, we then have the following boundary integral equations:

� 1

�

Z
�
log jP �Qjz(Q)dSQ = f(P ); P 2 �D ;

z(P )� 1

�

Z
�

@ log jP �Qj
@nP

z(Q)dSQ = g(P ); P 2 �N ;
(1.3)

where the density function z is sought on �. Throughout the paper we make the following

assumption.

(A1) Equation (1.3) with f = g = 0 has in Lp(�) a unique solution z � 0 for any p > 1.

De�ning zD := zj�D and zN := zj�N , (1.3) can be rewritten as a 2� 2 matrix integral equation

system, where zD and zN are sought:

� 1

�

Z
�D

log jP �QjzD(Q)dSQ�
1

�

Z
�N

log jP �QjzN (Q)dSQ = f(P ); P 2 �D;

� 1

�

Z
�D

@ log jP � Qj
@nP

zD(Q)dSQ+zN (P )�
1

�

Z
�N

@ log jP �Qj
@nP

zN(Q)dSQ = g(P ); P 2 �N :

(1.4)

Even for smooth boundary data f , g, the solutions zD and zN may not be smooth. Let

fP0; P1g be the interface points (i.e., Pi 2 �D \ �N , i = 0; 1). Let us assume the polygon �

forms an interior angle !i at Pi. Then by [3],

u(P ) = C(�)r�=2!i + smoother terms; P 2 
; (1.5)

where (r; �) are the polar coordinates centered at Pi. We may use (1.2) to de�ne a potential

not only in the interior region 
 but also in the exterior domain IR2n
. Then the single layer

density z is the di�erence between the normal derivatives of the solution of (1.1) and of u in

the exterior domain IR2n
. Thus we have

z(P ) = Crsi + smoother terms; si = minf �

2!i
;

�

2(2� � !i)
g � 1; P 2 � (1.6)

near Pi. Thus zD and zN have this behaviour near Pi, possibly with di�erent constants.

For integral equations with solutions having weaker singularities than in (1.6), the mesh

grading transformation method has often been applied to obtain a rapidly convergent numerical
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method [6], [9], [10], [11]. In the following we use a slightly di�erent form of mesh grading

analysis, and apply it to the mixed boundary value problem. The idea of the mesh grading

transformation is this: if we make a mesh grading �(x) � Cxq near Pi, then instead of z, with

the behaviour seen in (1.6), we have to consider

~z(x) := z(�(x))�0(x) = Cxq(1+si)�1 + smoother terms: (1.7)

Now ~z(x) is smooth for large q, and ~z(x) can be approximated by an evenly spaced high order

spline or a trigonometric function. Moreover, without a mesh grading transformation, the

analysis of (1.4) is only possible in a weighted L2 space or in a Sobolev space of negative order

(e.g. H�1=2) because of the regularity result (1.6). With a mesh grading transformation, an

analysis in the L2 space is possible.

In this paper we assume for simplicity that �D and �N are smooth arcs. (In the analysis

we shall make the stronger assumption, that each arc is straight in some neighbourhood of the

corners. This is believed to be an inessential restriction.) The restrictions of ~z to �D and �N
are each approximated by a trigonometric cosine function, with the approximation determined

at equally spaced points with respect to the parameter x on each arc. (For a polygon � with

more than two corners the mesh grading transformation would be carried out for each corner,

and the restriction of ~z to each smooth arc expressed by a di�erent cosine series.)

The analysis has a feature that seems to us unusual, and that perhaps will be useful for

other problems. It is that to each smooth arc (after parametrisation as above) we associate a

separate periodic Sobolev space. The periodic setting is obtained by extending a function on a

given arc (after parametrisation) to twice the natural range of the variable x, by requiring the

function to be even about each endpoint. This is an approach which has proved useful in the

past for single open arcs (see [13]), and indeed there is a sense in which our �rst approximation

is to treat each arc (after the mesh grading transformation) as an isolated arc.

In working through the analysis, it is important not to be misled into thinking of the

above-mentioned extension to an even function as carrying a function de�ned on one arc of

the polygon across to an adjacent arc: rather, the extension to a periodic function carries the

parametrisation function �(x) (and hence also every function of �(x)) back along the same

arc. Pictorially, it is useful to think of each arc of the polygon as in some sense a attened

and deformed circle. (The authors understand well the seductiveness of that false view, having

often fallen into the trap themselves.)

The paper is organised in the following way. In x2, we introduce the mesh grading transfor-

mation, and the mid-point cosine collocation method for the transformed equation is de�ned.

In x4, some preliminary mathematical results regarding the Hilbert transform, a collocation

projection on even periodic functions, and the Mellin transform are introduced. The colloca-

tion projection is the mid-point collocation, which overcomes an unsymmetric feature of the

collocation projection introduced in [1]. In x5, a complete ellipticity and solvability analysis for

the mesh-grading-transformed equations arising from (1.4) is given in the L2 space. In x6 an

error analysis for the mid-point collocation method is given.
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2 A numerical method

Let us �rst consider a piecewise-smooth parameterisation ~� : [0; 2] ! � such that on each

smooth arc j~�0j is bounded above and below by positive constants, and

~�([0; 1])� �D; and ~�([1; 2])� �N :

Let us consider a mesh grading transformation  such that, for some � satisfying 0 < � < 1=2

and some q � 1 ,

(x) =

(
xq; 0 � x � �

1� (1� x)q; 1� � � x � 1:
(2.1)

The parameter q is the order of the mesh grading. For an example of a good mesh grading

transformation, see [11]. Then we consider a new mesh graded parameterisation,

�(x) :=

(
~�((x)); 0 � x � 1

~�(1 + (x� 1)); 1 � x � 2:
(2.2)

We now de�ne

~z(x) = z(�(x))j�0(x)j; (2.3)

and take

z1(x) = ~z(x); 0 � x � 1;

z2(x) = ~z(x); 1 � x � 2;
(2.4)

so that z1 and z2 correspond to the unknown functions on �D and �N respectively. Substituting

P = �(x) and Q = �(y), and multiplying the second equation of (1.4) by j�0(x)j, we obtain

� 1

�

Z 1

0
log j�(x)� �(y)jz1(y)dy �

1

�

Z 2

1
log j�(x)� �(y)jz2(y)dy = f(x); 0 � x � 1; (2.5)

and

� 1

�

Z 1

0

j�0(x)j(�(x)� �(y); nx)
j�(x)� �(y)j2 z1(y)dy (2.6)

+z2(x)�
1

�

Z 2

1

j�0(x)j(�(x)� �(y); nx)
j�(x)� �(y)j2 z2(y)dy = g(x); 1 � x � 2;

where f(x) := f(�(x)), g(x) := g(�(x))j�0(x)j, nx := n�(x) and (�; �) denotes the Euclidean

inner product in IR2.

The numerical method is simply to approximate z1 and z2 by

zhj (x) =
N�1X
l=0

ajl cos(�lx); j = 1; 2; (2.7)

and then to collocate equations (2.5) at the `midpoints' kh + h=2 for 0 � k � N � 1, and

equation (2.6) at the points kh+ h=2 for N � k � 2N � 1, where h := 1=N .
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3 The periodic function space setting

As indicated in the introduction, the �rst step in the analysis is to introduce a periodic function

space setting, in which each arc has associated with it its own periodic Sobolev space. The

total function space in which the problem is analysed is then the product of these spaces, with

as many spaces in the product as there are arcs (two in the present analysis).

Appropriate Sobolev spaces will be de�ned in the next section. Here we rewrite the boundary

integral equation (2.6) so that it has an appropriate periodic structure.

Recall that the parametrisation function �, de�ned by (2.2), has values on �D for 0 � x � 1,

and values on �N for 1 � x � 2. Let us de�ne the corresponding 2-periodic functions:

�1(x) :=

(
�(x); 0 � x � 1;

�(�x); �1 � x � 0;
(3.1)

�2(x) :=

(
�(x); 1 � x � 2;

�(2� x); 0 � x � 1;
(3.2)

together with

�j(x) = �j(x+ 2); j = 1; 2: (3.3)

Thus �1 is the transformation function corresponding to �D , and �2 the transformation function

corresponding to �N . (We would have to de�ne further functions �3, : : : if � contained further

arcs.) Both �1 and �2 are even and 2-periodic. (The reader might �nd it helpful to observe

that an even 2-periodic function F is necessarily even about each integer n, since F (n + x) =

F (�n + x) = F (n� x).)

In a similar way we extend z1 and z2 (the parts of the solution corresponding to �D and

�N respectively) to be even 2-periodic functions:

z1(x) = z1(�x); �1 � x � 0; (3.4)

z2(x) = z2(2� x); 0 � x � 1; (3.5)

zj(x) = zj(x+ 2); j = 1; 2: (3.6)

Then (2.5) and (2.6) can be written as

� 1

�

Z 1

0
log j�1(x)� �1(y)jz1(y)dy �

1

�

Z 2

1
log j�1(x)� �2(y)jz2(y)dy = f(x); x 2 IR; (3.7)

� 1

�

Z 1

0

j�02(x)j(�2(x)� �1(y); nx)

j�2(x)� �1(y)j2
z1(y)dy (3.8)

+z2(x)�
1

�

Z 2

1

j�02(x)j(�2(x)� �2(y); nx)

j�2(x)� �2(y)j2
z2(y)dy = g(x); x 2 IR:

Note that the integrals, here and generally in this paper, extend over only half of the period.

Further, to avoid unnecessary confusion we have left the intervals of integration as the `natural'

intervals occurring in (2.5) and (2.6). Thus the periodic extensions of each of our solution
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functions z1 and z2 have little e�ect on the appearance of the equations, while allowing us later

a simpli�ed analysis that is only possible in periodic spaces.

Let E denote temporarily the space of 2-periodic, even, complexed-valued measurable func-

tions without regard to smoothness. Then we may de�ne operators V11, V12, K21, K22,

V11z1(x) = � 1

�

Z 1

0
log j�1(x)� �1(y)jz1(y)dy; (3.9)

V12z2(x) = � 1

�

Z 2

1
log j�1(x)� �2(y)jz2(y)dy; (3.10)

K21z1(x) = � 1

�

Z 1

0

j�02(x)j(�2(x)� �1(y); nx)
j�2(x)� �1(y)j2

z1(y)dy; (3.11)

K22z2(x) = � 1

�

Z 2

1

j�02(x)j(�2(x)� �2(y); nx)
j�2(x)� �2(y)j2

z2(y)dy; (3.12)

each of which manifestly maps E to E, and then write our boundary integral equations as

Bz =

"
V11 V12
K21 I +K22

# "
z1
z2

#
=

"
f

g

#
; (3.13)

with B an operator from E � E to E �E.
The collocation equations can be written in terms of the operators V11, V12, K21, K22 as

(V11z1 + V12z2) (kh+ h=2) = f(kh+ h=2); k = 0; : : : ; N � 1; (3.14)

(K21z1 + z2 +K22z2) (kh+ h=2) = g(kh+ h=2); k = N; : : : ; 2N � 1: (3.15)

4 Spaces and mapping properties

4.1 Sobolev spaces and key operators

Let Hs, s 2 IR, be the Sobolev space of 2-periodic functions with norm

kfk2s =
X
m2ZZ

maxf1; jmjg2sjf̂(m)j2; (4.1)

where

f̂(m) =
1

2

Z 1

�1
f(x)e�i�mxdx; (4.2)

so that

f(x) �
X
m2ZZ

f̂(m)ei�mx: (4.3)

Following [13], an important role will be played byHs
e , the subspace of even 2-periodic functions.

Similarly, Hs
o denotes the subspace of odd 2-periodic functions, so that

Hs = Hs
e �Hs

o ; (4.4)
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expressing the fact that u 2 Hs can be written uniquely in the form u = ue + uo, with ue 2 Hs
e

and uo 2 Hs
o .

Now letH be the well-known Hilbert transform onHs, de�ned by the principal value integral

Hu(x) = �1

2
pv

Z 1

�1
cot(

�

2
(x� y))u(y)dy

= i
X
m2ZZ

(signm)û(m)ei�mx (4.5)

if

u(x) �
X
m2ZZ

û(m)ei�mx: (4.6)

It is clear from (4.5) that H : Hs ! Hs is isometric, i.e., kHuks = kuks, that it maps even

functions to odd functions and vice versa,

H : Hs
e ! Hs

o ; H : Hs
o ! Hs

e ; (4.7)

and that

H2 = �I: (4.8)

Now let A be the single-layer operator for an appropriately parametrised circle of radius

e�1=2,

Au(x) = � 1

�

Z 1

�1
log j2e�1=2 sin(�

2
(x� y))ju(y)dy: (4.9)

It is well known (see [1], [13]) that A is expressible as

Au(x) = 1

�

X
m2ZZ

û(m)

maxf1; jmjge
i�mx (4.10)

if u has the Fourier representation (4.6), from which it is clear that

A : Hs ! Hs+1 (4.11)

is an isometric operator, apart from an unimportant constant factor. From the Fourier repre-

sentation it is also clear that

DA = AD = H;
where D is the operator of di�erentiation. From this we recover, on recalling (4.8) and (4.10),

A�1 = �DH + T = �HD + T ; (4.12)

where T = �
R 1
0 u(y)dy.

The Hilbert transform (4.5) can be written, using only properties of the trigonometric

functions, as

Hu(x) =
1

2

Z 1

�1

sin(�x) + sin(�y)

cos(�x)� cos(�y)
u(y)dy

=
1

2

Z 1

�1

sin(�x)

cos(�x)� cos(�y)
u(y)dy +

1

2

Z 1

�1

sin(�y)

cos(�x)� cos(�y)
u(y)dy

=: Heu(x) +Hou(x); (4.13)
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where (because the kernel of He is even in y, and the kernel of Ho is odd in y), if u = ue + uo
with ue 2 Hs

e and uo 2 Hs
o , then

Heuo = 0; Heue = Hue; Houe = 0; Houo = Huo: (4.14)

Also important to us is the restriction of A to Hs
e . If ue 2 Hs

e then because ue is even we

have, from (4.9),

Aue(x) = � 1

2�

Z 1

�1

�
log j2e�1=2 sin(�

2
(x� y))j+ log j2e�1=2 sin(�

2
(x+ y))j

�
ue(y)dy

= � 1

�

Z 1

0
log j2e�1(cos(�x)� cos(�y)jue(y)dy

=: Aeue(x): (4.15)

From (4.10) we then have

Aeu(x) =
2

�

X
m2ZZ

+

0 û(m)

maxf1; mg cos(�mx); (4.16)

where, from (4.6),

ue(x) � 2
X

m2ZZ
+

0

ûe(m) cos(�mx); (4.17)

and ZZ+ = f0; 1; 2; : : :g, and the prime indicates that the m = 0 term is to be multiplied by 1=2.

Finally, we see from (4.12), (4.14), (4.15) that, as an operator on Hs
e ,

A�1
e = �DHe + T = �HoD + T : (4.18)

The last relation will play an important role in the subsequent analysis.

4.2 The collocation projection

Let us de�ne a space of 2-periodic cosine functions of degree N � 1,

Te;h = spanfcos(�mx) : 0 � m � N � 1g: (4.19)

From here on, we set  m(x) := cos(�mx).

We introduce a collocation projection Ph from Hs
e (with s > 1=2) to Te;h, that is similar

but not identical to the one introduced in [1]:

Phf = 2
N�1X
k=0

0(f;  k)h k; (4.20)

where

(f; g)h = h
N�1X
k=0

(f � g)(kh+ h=2):

In the next lemma, we introduce several interesting properties of Ph. It turns out that Ph is an

interpolatory projection operator.
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Lemma 4.1 The operator Ph satis�es the following properties as an operator on Hs
e , s > 1=2.

Let f 2 Hs
e with s > 1=2. Then

(1) (Phf;  )h = (f;  )h;  2 Te;h.

(2) P 2
h = Ph.

(3) Phf(kh+ h=2) = f(kh+ h=2); k = 0; � � � ; N � 1, h = 1=N .

(4)

kf � Phfkt � Chs�tkfks for s > 1=2; s � t � 0: (4.21)

Proof. The property (1) follows from the de�nition of Phf and the easily veri�ed `discrete-

orthogonality' property

( k;  j)h = ak�kj for 0 � k; j � N � 1; (4.22)

with a0 = 1 and ak = 1=2 for 1 � k � N � 1. Property (2) follows from property (1). To prove

(3) it is useful to de�ne �rst the N �N matrix M with elements

mkl =

( p
h if k = 0;p

2h k(lh+ h=2) if 1 � k � N � 1;

and 0 � l � N�1. Then (4.22) is equivalent toMM� = I , from which it follows thatM�M = I ,

or

2
N�1X
k=0

0 k(lh+ h=2) � k(l
0h+ h=2) = �ll0 : (4.23)

(This identity can of course also be established directly.) The property (3) follows immediately

from (4.23). The approximation property (4) is standard, see [1]. 2

Remark 1 The projection in [1] is also a collocation projection at evenly spaced node points,

but in that work the nodes are not located symmetrically on [0; 1], because whereas 0 is a node,

1 is a `midpoint'. Here our collocation is a simple midpoint collocation, and the nodes are

symmetrically located.

With the help of the projection Ph, the collocation method of this paper can be expressed

as: �nd zh1 ; z
h
2 2 Te;h such that

Ph(V11zh1 + V12zh2 ) = Phf; (4.24)

PhK21z
h
1 + zh2 + PhK22z

h
2 = Phg: (4.25)
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4.3 Mellin convolution operators

We recall some results on Mellin convolution operators de�ned on the half axis or on the unit

interval. These are based on [3], [4], [5] and [7].

(i) The Mellin transform bv of a function v : IR+ ! C is de�ned as

bv(z) = Z
1

0
siz�1v(s)ds:

The operator v ! bv is an isometric isomorphism of L2(IR
+) onto L2(fIm z = �1=2g),

and its inverse is

v(s) =
1

2�

Z
Im z=�1=2

s�iz bv(z)jdzj:
(ii) If K is a Mellin convolution operator, i.e

Kv(t) =
Z
1

0
K(

t

s
)
v(s)

s
ds (4.26)

with kernel s�1=2K(s) 2 L1(IR+), then cKv(z) = cK(z)�bv(z), andK is a continuous operator

on L2(IR
+) with norm bounded by

kKk0 � sup
Im z=�1=2

jcK(z)j: (4.27)

Note that this extends to more general operators of the form (4.26) provided the Mellin

transform is bounded on Im z = �1=2; cf. e.g. the operators eHo and eHe de�ned below

in (5.4).

From here on, we abuse notation by de�ning:

bK(z) := symbol(K) = cK(z):

If K and L are Mellin convolution operators with bounded symbols on Im z = �1=2, thendKL(z) = bK(z) � bL(z) .
(iii) The symbol bK(z) of the Mellin convolution operator (4.26) is said to be of class ��1

�;� ,

� < �1=2 < �, if it is analytic in the strip � < Im z < � and if the estimates

bK(z) = O((1 + jzj)�k); jzj ! 1; k 2 ZZ
+

hold uniformly in each substrip �0 < Im z < �0, � < �0 < �1=2 < �0 < �. Then the

kernel function K(s) of K satis�es the estimates

sup
s2IR+

jsk��DkK(s)j <1; k 2 ZZ
+; � < � < �: (4.28)

In particular, (4.28) implies s�1=2K(s) 2 L1(IR
+) so that K is a bounded operator on

L2(IR
+) satisfying the estimate (4.27).
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(iv) Let � be a smooth function with supp(�) � [0; 1], and let  be a bounded function such

that supp( ) � [0; 1] and  (s) = 0; s 2 [0; �], for some � 2 (0; 1). If bK 2 ��1

�;� for some

� < �1=2 < � and K is the corresponding Mellin convolution operator (4.26), then the

operators �K �K�I and  K are Hilbert{Schmidt and hence compact on L2(IR
+).

We �nally recall standard results on the invertibility of a convolution operator I +K restricted

to the unit interval and on the stability of a corresponding �nite section method. Note that,

with the isometry J : L2(0; 1) ! L2(IR
+) de�ned by (J v)(t) = v(e�t)e�t=2, JKJ�1 is a

Wiener{Hopf integral operator with kernel function e�t=2K(e�t) 2 L1(IR). Thus the following
assertions are easily checked via known results on Wiener{Hopf operators ([8]).

(v) Let � and �r, 0 < r < 1, be the characteristic functions of the intervals (0; 1) and (r; 1),

respectively. Suppose the conditions s�1=2K(s) 2 L1(IR+) and

1 + bK(�i=2 + y) 6= 0; y 2 IR; farg(1 + bK(�i=2 + y))g1�1 = 0

are satis�ed, where farg�g1
�1

denotes the variation of the argument when y runs from

�1 to 1. Then the Mellin convolution operator �(I +K)� is continuously invertible on

L2(0; 1) and the corresponding �nite section operators �r(I + K)�r are stable, i.e., there
is an r0 > 0 and a c > 0 such that

k�r(I + K)�rvk0 � ck�rvk0; v 2 L2(0; 1);

for any r � r0.

5 Mapping properties of integral operators and Mellin tech-

niques

Write (3.13) in the form:

Bz = (A+K) z = f; (5.1)

where

A =

"
Ae V12
0 I

#
; K =

"
V11 �Ae 0

K21 K22

#
; (5.2)

and

z =

"
z1
z2

#
; f =

"
f

g

#
: (5.3)

Note that K22 is a compact operator mapping even functions to even functions since it has a

continuous kernel.

In this section we analyse the operators in (5.2) by use of localization and Mellin transfor-

mation techniques.

The key to the analysis that follows is the recognition that the di�culties with the integral

equation (5.1) (which in explicit form is (3.7), (3.8)) arise only when x and y are both near 0, or

11



both near 1, i.e. the values of the parameter that correspond to junctions between the arcs �D
and �N . In such a neighbourhood the kernels of each operator behave like a Mellin convolution.

Therefore cut-o� functions are introduced, which allow the operator to be separated into Mellin

convolutions, describing all corner e�ects, and smooth remainders.

Let us introduce smooth cut-o� functions �0, �1 on [0; 1] and �0, �1 on [1; 2], such that for

some 0 < � < 1=2,

�0(x) = 1; x 2 [0; �]; supp(�0) � [0; 1=2); �1(x) = 1; x 2 [1� �; 1]; supp(�1) � (1=2; 1];

�1(x) = 1; x 2 [1; 1+ �]; supp(�1) � [1; 3=2); �0(x) = 1; x 2 [2� �; 2]; supp(�0) � (3=2; 2]:

Each of �0, �1, �0 and �1 is extended to a 2-periodic even function by expressions analogous to

(3.4){(3.6).

We also introduce certain Mellin convolution operators on the half axis (0;1). (For further

discussion of the Mellin transform and Mellin convolution operators, see [3], [5], [6].) Let us

de�ne

eHou(x) =
1

�

Z
1

0
Ho(

x

y
)
u(y)

y
dy;

eHeu(y) =
1

�

Z
1

0
He(

x

y
)
u(y)

y
dy; (5.4)

eL!u(x) =
1

�

Z
1

0
L!(

x

y
)
u(y)

y
dy;

eK!u(x) =
1

�

Z
1

0
K!(

x

y
)u
u(y)

y
dy;

where

Ho(t) =
2

1� t2 ; He(t) =
2t

1� t2 ;

L!(t) = � qtq�1(tq � cos(!))

t2q � 2tq cos(!) + 1
; K!(t) = � qtq�1 sin(!)

t2q � 2tq cos(!) + 1
:

It is worth noting that if q = 2 then eL0 = eHe.

It is convenient to extend the kernels of these operators to the whole real line in the following

way: He and L! are extended to be odd functions, and Ho and K! are extended to even

functions. It is then clear that eHeu and eL!u are odd, while eHou and eK!u are even.

The symbols of these Mellin operators are (see [3], [6])

ceHo(z) = i coth(�
z

2
);

ceHe(z) = i coth(�
z + i

2
);

ceL!(z) = i
cosh((� � !)(z + i)=q)

sinh(�(z + i)=q)
; (5.5)

ceK!(z) =
sinh((� � !)(z + i)=q)

sinh(�(z + i)=q)
:

12



The integral operators in (5.2) can now be expressed as in the following lemma. In this

lemma, and throughout the paper, E denotes a generic compact operator, which may be di�erent

in its di�erent appearances. In the �rst term of the �rst result, property (1), it is understood

that the domains of the Mellin operators eL0 and eHe are restricted to a �nite interval in the

natural way. In the second term of property (1) the double tilde on
feL0 indicates that the

transformations x 7! 1 � x and y 7! 1 � y are to be carried out, corresponding to the fact

that in this term the singularity is not at x = 0 and y = 0 but at x = 1 and y = 1. The

double-tilde notation in the remaining terms is to be understood in an analogous way, with the

precise transformations in each case being apparent from the proofs.

Lemma 5.1 As operators on even functions,

(1)

D(V11 �Ae) = �0( eL0 � eHe)�0 � �1(
eeL0 � eeHe)�1 + E ;

(2)

DV12 = �0
eeL!0�0 � �1 eeL!1�1 + E ;

(3)

K21 = �0
eeK!0�0 + �1

eeK!1�1 + E :

And as an operator on odd functions,

(4)

Ho = �0 eHo 0 � �1
eeHo 1 +Ho(1� �0 � �1) + E ;

where  0 and  1 are suitable cut-o� functions such that  0�0 = �0,  1�1 = �1,  0�1 = 0 and

 1�0 = 0.

Proof. The results all follow from the asymptotic behaviour of the kernel of the integral

operators. First, by the de�nition of �, �1 and �2 in (2.1), (2.2) and (3.1){(3.3) we can assume

that 8>>><>>>:
�1(x)� �1(0) = C0x

q; 0 � x � �;

�2(x)� �2(0) = C0e
i!0(2� x)q; 2� � � x � 2;

�1(x)� �1(1) = C1(1� x)q; 1� � � x � 1;

�2(x)� �2(1) = C1e
�i!1(x� 1)q; 1 � x � 1 + �;

(5.6)

where !0 and !1 are the interior angles at the corners corresponding to x = 0 and x = 1

respectively and C0 and C1 are complex constants. (Points in IR2 are here identi�ed with

complex numbers in the usual way.) Then for � 2 H0
e we have, from (3.9) and (4.15),

D(V11 � Ae)�(x) = � 1

�

Z 1

0
Re

�
(�1(x)� �1(y); �01(x))
j�1(x)� �1(y)j2

+
� sin(�x)

cos(�x)� cos(�y)

�
�(y)dy:
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Noting that the apparent singularities at x = y in the two terms of the kernel cancel, we see

that

D(V11 �Ae)�(x) = � 1

�

Z �

0
�0(x)�0(y)

 
qxq�1

xq � yq �
2x

x2 � y2

!
�(y)dy

+
1

�

Z 1

1��
�1(x)�1(y)

 
q(1� x)q�1

(1� x)q � (1� y)q
� 2(1� x)

(1� x)2 � (1� y)2

!
�(y)dy

+ smoother terms

= � 1

�

Z
1

0
�0(x)�0(y)

 
qxq�1

xq � yq �
2x

x2 � y2

!
�(y)dy

+
1

�

Z
1

0
�1(x)�1(y)

 
q~xq�1

~xq � ~yq
� 2~x

~x2 � ~y2

!
�(1� ~y)d~y

�����
f~x=1�x; ~y=1�yg

+ smoother terms.

Then (1) follows.

By the same argument,

DV12�(x) = � 1

�

Z 2

1
Re

�
(�1(x)� �2(y); �01(x))
j�1(x)� �2(y)j2

�
�(y)dy

=
1

�

Z 1+�

1
�1(x)�1(y)

q(1� x)q�1((1� x)q � (y � 1)q cos(!1))

(1� x)2q � 2(1� x)q(y � 1)q cos(!1) + (y � 1)2q
�(y)dy

� 1

�

Z 2

2��
�0(x)�0(y)

qxq�1(xq � (2� y)q cos(!0))

x2q � 2xq(2� y)q cos(!0) + (2� y)2q�(y)dy

+ smoother terms

=
1

�

Z
1

0
�1(x)�1(y)

q~xq�1(~xq � ~yq cos(!1))

~x2q � 2~xq~yq cos(!1) + ~y2q
�(~y + 1)d~y

�����
f~x=1�x; ~y=y�1g

� 1

�

Z
1

0
�0(x)�0(y)

q~xq�1(~xq � ~yq cos(!0))

~x2q � 2~xq~yq cos(!0) + ~y2q
�(2� ~y)d~y

�����
f~x=x; ~y=2�yg

+ smoother terms;

which proves (2). Similarly, to prove (3),

K21�(x) = � 1

�

Z 1

0
Re

� j�02(x)j(�2(x)� �1(y); nx)
j�2(x)� �1(y)j2

�
�(y)dy;

= � 1

�

Z �

0
�0(x)�0(y)

q(2� x)q�1yq sin(!0)
(2� x)2q � 2(2� x)qyq cos(!0) + y2q

�(y)dy

� 1

�

Z 1

1��
�1(x)�1(y)

q(x� 1)q�1(1� y)q sin(!1)

(x� 1)2q � 2(x� 1)q(1� y)q cos(!1) + (1� y)2q�(y)dy

+ smoother terms

= � 1

�

Z
1

0
�0(x)�0(y)

q~xq�1~yq sin(!0)

~x2q � 2~xq~yq cos(!0) + ~y2q
�(~y)d~y

�����
f~x=2�x; ~y=yg
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� 1

�

Z
1

0
�1(x)�1(y)

q~xq�1~yq sin(!1)

~x2q � 2~xq~yq cos(!1) + ~y2q
�(1� ~y)d~y

�����
f~x=x�1; ~y=1�yg

+ smoother terms:

The proof of (4) follows in the same way as above, using the fact that the commutator of

�I and Ho is an integral operator with smooth kernel for any smooth 2-periodic even function

�. 2

Remark 2 It is easily seen from (5.5) that the symbols of the Mellin convolution operatorseL0 � eHe and eL!, eK!, 0 < ! < 2�, are of class ��1

�1;0. For q � 2, these symbols even belong to

��1

�1;1.

Lemma 5.2 The operator A de�ned in (5.2) is an isomorphism of H0
e �H0

e onto H1
e � H0

e ,

with inverse given by

A�1 =

264 A�1
e �A�1

e V12
0 I

375 : (5.7)

Proof. By Lemma 5.1 (2), Remark 2 and x4.3(iii), V12 : H0
e ! H1

e is bounded. Hence (5.7)

is a bounded operator of H1
e �H0

e into H0
e �H0

e , which is easily seen to be the inverse of A. 2

To investigate the solvability of Equation (5.1), we consider the operator

A�1B = I+M; M :=A�1K =

"
M E
K21 K22

#
; (5.8)

where

M =: A�1
e (V11 � Ae)� A�1

e V12K21; E := �A�1
e V12K22: (5.9)

Note thatM and K21 are bounded operators on H0
e while E and K22 are compact; see Lemma

5.1, Remark 2 and x4.3(iii). With the notation of Lemma 5.1 (except that we now put aside

the double tilde notation), we have:

Lemma 5.3 As an operator on even functions,

M = �0 fM0�0 + �1 fM1�1 + E ; (5.10)

where the symbols of the Mellin convolution operators fMj, j = 0; 1, take the form

dfMj(z) = �ceHo(z)[
ceL0(z)� ceHe(z)] +

ceHo(z)
deL!j(z)deK!j(z) (5.11)

and are of class ��1

�1;0.
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Proof. From (4.18) and Lemma 5.1, (1) and (4), we obtain

A�1
e (V11 �Ae) = �HoD(V11 �Ae) + E

= �Ho[�0( eL0 � eHe)�0 � �1( eL0 � eHe)�1 + E ] + E
= ��0 eHo( eL0 � eHe)�0 � �1 eHo( eL0 � eHe)�1 + E ;

where we have used the compactness results of x4.3(iv). Analogously,

A�1
e V12K21 = �HoDV12K21 + E

= �Ho[�0 eL!0�0 � �1 eL!1�1 + E ][�0 eK!0�0 + �1 eK!1�1 + E ] + E
= ��0 eHo

eL!0 eK!0�0 � �1 eHo
eL!1 eK!1�1 + E ;

where we have used (4.18), Lemma 5.1, (2), (3) and (4), and the compactness results of x4.3(iv).
Combining the above relations with (5.4), (5.5) and (5.9), we get (5.10) and (5.11). The last

assertion of the lemma follows from Remark 2 and the fact that
ceHo(z) is analytic and (together

with all its derivatives) bounded on each strip �1 + � < Im z < ��, � 2 (0; 1=2). 2

Lemma 5.4 For q � 2, I +M is a Fredholm operator of index 0 on H0
e .

Proof. Let �0 and �1 denote the characteristic functions of the intervals (0,1/2) and (1/2,1),

respectively, extended to 2-periodic even functions. From (5.10) and x4.3(iv), we obtain the

representation

I +M = �0(I + fM0)�0 + �1(I + fM1)�1 + E : (5.12)

To prove the assertion, it is obviously su�cient to verify the invertibility of the Mellin convo-

lution operators �0(I + fM0)�0 and �1(I + fM1)�1 on L2(0; 1=2) and L2(1=2; 1), respectively,

and we shall do this for the �rst term without loss of generality. In view of x4.3(v) we have to
show that

farg(1 + dfM0(y � i=2))g1�1 = 0: (5.13)

From (5.11) and the identity
ceHo
ceHe = �1, we have

1 +
dfM0(z) = �ceHo(z)

ceL0(z)[1� deL!0(z)ceL0(z)�1deK!0(z)]:

To check (5.13), it is now enough to prove the estimates

Ref�ceHo(z)
ceL0(z)g � c > 0; Im z = �1=2; (5.14)

jdeL!0(z)ceL0(z)�1deK!0(z)j � C < 1; Im z = �1=2: (5.15)

By a simple calculation,

�(ceHo
ceL0)(y � i=2) =

sinh(�y) + i

cosh(�y)
� sinh(2�y=q)� i sin(�=q)

cosh(2�y=q)� cos(�=q)
;

Ref�(ceHo
ceL0)(y � i=2)g =

sinh(�y) sinh(2�y=q) + sin(�=q)

cosh(�y)(cosh(2�y=q)� cos(�=q))
;
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which implies (5.14) for any q > 1. To prove (5.15), we observe that

ceL!(z)ceL0(z)�1ceK!(z) =
cosh((� � !)(z + i)=q)

cosh(�(z + i)=q)
� sinh((� � !)(z + i)=q)

sinh((�(z + i)=q)
= a(2(z + i)=q);

where a(z) := sinh((� � !)z)= sinh(�z) is the symbol of the double layer potential in case of

the arc-length parametrisation, which satis�es (see [3], [2])

sup
y2IR

ja(i + y)j < 1 for jj � 1=2:

Thus we obtain the desired result whenever q � 2. 2

Corollary 5.5 Assume (A1) and q � 2. Then the operator B : H0
e � H0

e ! H1
e � H0

e has a

bounded inverse.

Proof. First we observe that the operator

I+M =

"
I +M E
K21 I + K22

#
: H0

e �H0
e ! H0

e �H0
e

is Fredholm with index 0, using Lemma 5.4 and the compactness of E and K22. Thus, by

Lemma 5.2, B is a Fredholm operator with index 0. So it su�ces to show that Bz = 0 and

z 2 H0
e �H0

e imply z = 0. We now proceed as in the proof of Theorem 2 in [6] and consider

the function

Z(P ) := j(��1)0(P )jz(��1)(P )); P 2 �;

where ��1 : � ! [0; 2] is the inverse transformation of (2.2). Then Z solves the homogeneous

version of the original integral equations (1.4) and satis�es (cf. [6]) Z 2 Lp(�) for some p > 1

su�ciently close to 1. Hence Z = 0 by (A1), which implies z = 0. 2

Finally, for the convergence analysis of x6, we need a stability result for a �nite section

method applied to the operator I+M de�ned in (5.8). Introduce, for v 2 H0
e and 0 < r < 1=2,

the truncation Trv as the 2-periodic even extension of

Trv(x) =

(
v(x); x 2 (r; 1� r)

0; x 2 (0; r)[ (1� r; 1):
(5.16)

The �nite section approximation to M is then de�ned to be

Mr =

"
MTr E
K21Tr K22

#
:

Lemma 5.6 There exists r0 > 0 such that

k(I+Mr)vkH0
e�H

0
e
� ckvkH0

e�H
0
e
; v 2 H0

e �H0
e ;

for any r � r0.
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Proof. Using (5.12), we may write Mr = Nr + Fr, where

Nr =

"
NTr 0

K21Tr 0

#
; Fr =

"
ETr E
0 K22

#
;

N = �0 fM0�0 + �1 fM1�1:

Note that I +N is invertible on H0
e (cf. the proof of Lemma 5.4) while I+M is invertible on

H0
e �H0

e by Corollary 5.5 and Lemma 5.2. Further, since Tr converges strongly to the identity

as r ! 0 and the operators E and K22 are compact, a standard perturbation result (cf. [12],

Chap. 17.1) reduces the assertion of the lemma to the corresponding stability estimate for the

operators I+Nr. The latter is equivalent to showing that I+NTr and hence that Tr(I+N )Tr
is stable on H0

e (cf. [6], Theorem 6).

Finally, we note that the stability of Tr(I +N )Tr obviously follows from the stability of the

�nite section operators Tr�0(I+ fM0)�0Tr and Tr�1(I+ fM1)�1Tr on L2(0; 1=2) and L2(1=2; 1),

respectively, and it remains to apply the stability result of x4.3(v), using (5.13). 2

6 Error Analysis

In this section, we study the stability of the collocation method (3.14), (3.15) and give an error

estimate in the L2 norm. Using (5.1)-(5.3) and the collocation projection

Ph =

"
Ph 0

0 Ph

#
;

with Ph de�ned in (4.20), Equations (3.14), (3.15), or equivalently (4.24), (4.25), can be written

PhBzh = Ph(A+K)zh = Phf; zh 2 Te;h � Te;h: (6.1)

However, the stability can only be proved by allowing the possibility that the method be

modi�ed slightly, i.e. by cutting o� around the corners at x = 0 and x = 1. Let Ti�h be

the truncation operator introduced in (5.16) with r = i�h, and instead of (6.1), consider the

modi�ed collocation method

Ph(A+Ki�h)zh = Phf; zh 2 Te;h � Te;h; (6.2)

where

Ki�h =

"
(V11 �Ae)Ti�h 0

K21Ti�h K22

#
: (6.3)

Lemma 5.2 allows us to rewrite (5.1) as the (formally second-kind) equation

(I+M)z = e; withM = A�1K; e =A�1f: (6.4)

We now attack the stability of (6.2) by writing this method as a non-standard projection method

for (6.4). For any z 2 H0
e �H1

e , let Rhz 2 Te;h � Te;h solve the collocation equations

PhARhz = PhAz: (6.5)

The following lemma shows that Rh is a well de�ned projection operator with range Te;h�Te;h.
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Lemma 6.1 For any z 2 H0
e �H1

e , the unique solution to (6.5) is given by

Rhz =

264 Rh Qh

0 Ph

375 z;
Rh = A�1

e PhAe; Qh = A�1
e PhV12(I � Ph): (6.6)

Moreover, for any z 2 Hm
e �Hm

e , m � 1, we have the error estimate

k(I�Rh)zkH0
e�H

0
e
� chmkzkHm

e �Hm
e
: (6.7)

Proof. Since Ph commutes with Ae on Te;h, the unique solution to (6.5) is (cf. Lemma 5.2)

Rhz =

"
A�1
e �A�1

e PhV12
0 Ph

#
Ph

"
Ae V12
0 I

#
z;

which gives (6.6). Moreover, using (4.21) we obtain

k(I�Rh)zkH0
e�H

0
e

� cfk(I � Rh)z1k0 + k(I � Ph)z2k0 + kQhz2k0g
� ck(I � Ph)Aez1k1 + ck(I � Ph)z2k0
� chmfkAez1km+1 + kz2kmg
� chmkzkHm

e �Hm
e
:

2

Using Lemma 6.1, it is easily seen that zh solves (6.2) if and only if

zh +RhMi�hzh = Rhe; (6.8)

where (cf. (5.8), (5.9), (6.3))

Mi�h = A�1Ki�h =

"
MTi�h E
K21Ti�h K22

#
: (6.9)

The following lemma is crucial for the stability of (6.8).

Lemma 6.2 Assume q � 2. For each � � 0, there exists i� � 1 independent of h such that

k(I�Rh)Mi�hzkH0
e�H

0
e
� �kzkH0

e�H
0
e
; z 2 H0

e �H0
e ; (6.10)

for all h su�ciently small.
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Proof. From (6.6) and (6.9) we obtain for all z 2 H0
e �H0

e

k(I�Rh)Mi�hzkH0
e�H

0
e
� k(I �Rh)MTi�hz1k0 + ck(I � Ph)K21Ti�hz1k0

+ k(I �Rh)Ez2k0 + ck(I � Ph)K22z2k0: (6.11)

Here we have used the uniform boundedness of A�1
e PhV12 on H0

e which is a consequence of

estimate (4.21). Furthermore, since Rh converges strongly to the identity on H0
e and since K22

is a bounded operator of H0
e into H1

e for q � 2, we have

k(I �Rh)Ez2k0 + ck(I � Ph)K22z2k0 � �kz2k0 (6.12)

for all su�ciently small h. To estimate the �rst two terms on the right side of (6.11), we observe

that (4.21) (with t = 0, s = 1) and (6.7) imply the estimate

k(I � Ph)zk0 + k(I � Rh)zk0 � chkDzk0; z 2 H1
e ;

since I � Ph and I � Rh annihilate the constants. Together with (5.9) and (4.18), we then

obtain for any z 2 H0
e

k(I � Rh)MTi�hzk0 + k(I � Ph)K21Ti�hzk0 � chkDMTi�hzk0 + chkDK21Ti�hzk0
� chfkD2(V11 � Ae)Ti�hzk0 + kD2V12K21Ti�hzk0

+kDK21Ti�hzk0g: (6.13)

An inspection of the proofs of Lemmas 5.1 and 5.3 shows that, for q � 2, each of the operators

D(V11 �Ae), DV12K21 and K21 takes the form

�0 eK0�0 +R�0 eK1�0R+ E ; (6.14)

where eK0, eK1 are Mellin convolution operators on IR+ with symbols of class ��1

�1;1, R is the

reection operator de�ned by (Rz)(x) = z(1� x), and E is a bounded operator of H0
e into H1

e .

We are now left with proving the following fact. Let K be a Mellin convolution operator of

the form (4.26) with kernel function K and symbol cK 2 ��1

�1;1. Then the estimate

kDK�rvk0 � (c=r)kvk0; v 2 L2(0; 1); 0 < r < 1 (6.15)

holds, where �r is the characteristic function of (r; 1) and the constant c does not depend on v

and r.

Indeed, combining the estimates (6.11)-(6.13) and applying (6.15) with r = i�h and i�

su�ciently large to the corresponding operators of the form (6.14) in (6.13), we obtain (6.10).

To prove (6.15), we observe that

jDK�rv(x)j �
Z 1

r
jDxK(x=y)jy�1jv(y)jdy �

Z 1

r
jK0(x=y)jy�2jv(y)jdy

� r�1
Z 1

0
jK0(x=y)jy�1jv(y)jdy; x 2 (0; 1): (6.16)

Since cK 2 ��1

�1;1, the kernel estimates (4.28) (with k = 1 and �1 < � < 1) imply that the

Mellin convolution kernel jK0(x=y)jy�1 satis�es x�1=2jK0(x)j 2 L1(IR+). Therefore, taking L2
norms in (6.16) and applying x4.3(ii), gives the result. 2

We are now in the position to prove our convergence result for the collocation method (6.2).
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Theorem 6.3 Assume (A1) and q � 2, and suppose that i� is su�ciently large. Then, for all

h su�ciently small and all f 2 Hs
e �Hs

e , s > 1=2, there is a unique solution zh 2 Te;h � Te;h of

(6.2). Moreover, if for some m � 1 the exact solution z of (5.1) satis�es

z = [x(1� x)]mv; with z 2 Hm
e �Hm

e ; v 2 H0
e �H0

e ; (6.17)

then we have the error estimate

kz� zhkH0
e�H

0
e
� chm(kzkHm

e �Hm
e
+ kvkH0

e�H
0
e
): (6.18)

Remark 3 It can be proved that the solution z of (5.1) takes the form (6.17) with arbitrarily

large m if the functions f and g in (1.1) are su�ciently smooth and the grading exponent in

(2.1) is large enough: see (1.6).

Proof of Theorem 6.3. First, from Lemmas 6.2 and 5.6, we immediately obtain the stability

of the equivalent method (6.8), i.e. the estimate

k(I+RhMi�h)zhkH0
e�H

0
e
� ckzhkH0

e�H
0
e
; zh 2 Te;h � Te;h; (6.19)

as h ! 0 whenever i� is su�ciently large. This gives the �rst assertion since the right side of

(6.2) is well de�ned for f 2 Hs
e �Hs

e , s > 1=2.

To prove the error estimate (6.18), we note that

kz� zhkH0
e�H

0
e
� k(I�Ph)zkH0

e�H
0
e
+ kzh �PhzkH0

e�H
0
e
;

where the �rst term is of order hm by (4.21) and (6.17).

Furthermore, using (6.19) and then (6.8) with (6.4) and (6.7), we obtain

kzh �PhzkH0
e�H

0
e

� ck(I+RhMi�h)( zh � Phz)kH0
e�H

0
e

= ckRh[(I+M)z� (I+Mi�h)Phz]kH0
e�H

0
e

� ck(Rh �Ph)zkH0
e�H

0
e
+ ckRhMz�RhMi�hPhzkH0

e�H
0
e

� chmkzkHm
e �Hm

e
+ ckMz �Mi�hPhzkH0

e�H
0
e

+chkD(Mz�Mi�hPhz)kH0
e�H

0
e
: (6.20)

Using (4.21) and (6.17), the second term on the right side of (6.20) can now be estimated by

kMz �Mi�hPhzkH0
e�H

0
e

� kMi�h( I� Ph)zkH0
e�H

0
e
+ k(M�Mi�h)zkH0

e�H
0
e

� ck(I�Ph)zkH0
e�H

0
e
+ ck(I � Ti�h)z1k0

� chm(kzkHm
e �Hm

e
+ kvkH0

e�H
0
e
):

Note thatMi�h is uniformly bounded sinceM is bounded onH0
e�H0

e (see x5) and the truncation
operator Ti�h is uniformly bounded on H0

e .
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It remains to show that the last term of (6.20) is of order hm. Using (6.9) and (4.21), we

have

kD(Mz�Mi�hPhz)kH0
e�H

0
e

� kD(M�MTi�hPh)z1k0 + kD(K21 �K21Ti�hPh)z1k0
+kDE(I � Ph)z2k0 + kDK22(I � Ph)z2k0

� chmkz2km + kDMTi�h(I � Ph)z1k0 + kDK21Ti�h(I � Ph)z1k0
+kDM(I � Ti�h)z1k0 + kDK21(I � Ti�h)z1k0:

From the proof of Lemma 6.2 we see that the second and the third term can be bounded by

(c=i�h)k(I � Ph)z1k0 � chm�1kz1km:

To estimate the last two terms, we again proceed as in Lemma 6.2 and are left with proving

the estimate

kDK rxmvk0 � crm�1kvk0; v 2 L2(0; 1); 0 < r < 1;

where  r is the characteristic function of (0; r) and K is a Mellin convolution operator with

kernel K and symbol of class ��1

�1;1. We have

jDK rxmv(x)j �
Z r

0
jDxK(x=y)jym�1jv(y)jdy

=

Z r

0
jK0(x=y)jy�1jym�1v(y)jdy

� rm�1
Z 1

0
jK 0(x=y)jy�1jv(y)jdy; x 2 (0; 1);

and as in the proof of (6.15) we obtain the result. 2

Acknowledgments

The work of Y. Jeon was carried out while he was a Research Associate in the School of

Mathematics of the University of New South Wales. The work of E. P. Stephan was carried out

while he was Visiting Professor in the School of Mathematics of the University of New South

Wales. The work of J. Elschner began while he was visiting the University of New South Wales

and the University of Queensland. The support of the Australian Research Council is gratefully

acknowledged by all authors.

References

[1] K.E. Atkinson and I.H. Sloan(1991), The numerical solution of �rst-kind logarithmic-kernel

integral equations on smooth open arcs, Math. Comp., 56, pp. 119-139

[2] G.A. Chandler and I.G. Graham(1988), Product integration collocation methods for non-

compact integral operator equations, Math. Comp., 50, pp. 125-138

22



[3] M. Costabel and E.P. Stephan(1985), Boundary integral equations for mixed boundary

value problems in polygonal domains and Galerkin approximation, Mathematical Mod-

els and Methods in Mechanics, Banach Center Publications, 15, PWN-Polish Scienti�c

Publishers, Warsaw, pp. 175-251

[4] M. Costabel and E.P. Stephan(1987), On the convergence of collocation methods for bound-

ary integral equations on polygons, Math. Comp., 49, pp. 461-478

[5] J. Elschner(1990), On spline approximation for a class of non-compact integral equations,

Math. Nachr., 146, pp. 271-321

[6] J. Elschner and I.G. Graham(1995), An optimal order collocation method for �rst kind

boundary integral equations on polygons, Numer. Math., 70, pp. 1-31

[7] G.I. Eskin(1981), Boundary Value Problems for Elliptic Pseudodi�erential Equations,

American Mathematical Society, Providence

[8] I. Gohberg and I.A. Feldman(1974), Convolution Equations and Projection Methods for

their Solution, American Mathematical Society, Providence

[9] Y. Jeon(1993), A Nystr�om method for boundary integral equations on domains with piece-

wise smooth boundary, J. Integral Eqns Appl., 5, pp. 221-242

[10] Y. Jeon(1994), A quadrature method for the Cauchy singular integral equations, submitted

[11] R. Kress(1990), A Nystr�om method for boundary integral equations in domains with cor-

ners, Numer. Math., 58, pp. 145-161

[12] S.G. Mikhlin and S. Pr�ossdorf(1986), Singular Integral Operators, Springer-Verlag, Berlin

[13] Y. Yan and I.H. Sloan(1988), On integral equations of the �rst kind with logarithmic

kernels, J. Integral Eqns Appl., 1, pp. 549-579

23


