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Abstract

There are still many open questions concerning the relationship between (steady)

kinetic equations, random particle games designed for these equations, and tran-

sitions, e.g. to uid dynamics and turbulence phenomena. The paper presents

some �rst steps into the derivation of models which on one hand may be used

for the design of e�cient numerical schemes for steady gas kinetics, and on the

other hand allow to study the interplay between particle schemes and physical

phenomena.

Key words: stationary kinetic equation, numerical schemes.

1 Introduction

Numerics for nonlinear kinetic equations is dominated by Monte Carlo simulation schemes

- at least in the cases when complex realistic situations are to be evaluated [1]. This

is due to the fact that the Boltzmann collision operator is an at least �ve-dimensional

integral which in each iteration step has to be calculated at each point in a discretized

six-dimensional phase space. This is a task which seems to be too time and memory

consuming (even on any of the present supercomputers) to be solved by application of

any of the classical numerical discretization schemes. A way out is given by stochastic

integration methods. Such methods seem to be superior to classical schemes whenever

a function to be integrated is either high-dimensional or irregular (or both) [2] - a sit-

uation which is typical for the Boltzmann collision integral. Such schemes are robust,

allow in a natural way to model a lot of physical phenomena and are well-understood

from a mathematical view point - as far as time evolution problems are concerned [3, 4].

On the other hand, Monte Carlo schemes are still not well understood for the calcu-

lation of stationary - in particular interior ows. There are many open questions ranging

from systematic errors due to the nonlinearity of the collision operator [5] to the question

whether certain features observed at numerical simulations are related to physical e�ects

like turbulence or are arti�cial e�ects inherent to Monte Carlo schemes [6]. (However,

such schemes have certain similarities to other random games which are designed to

describe features of physical turbulence, see [7].) Further, random algorithms for gas

kinetics may not be expected to yield the precision and resolution obtained nowadays

for example in continuum ow calculations. Besides the fact that there are always uc-

tuations in the order of magnitude of the inverse square root of the (local) number of

particles, the major drawback is that the use of many modern numerical techniques is

prohibited. For example, features like multigrid and adaptive grid techniques are very

unlikely to be applied e�ciently to particle simulations.

Computer capacities have been rapidly increased during recent decades. In the

�eld of numerics for the Navier Stokes equations, this development was accompanied

by a tremendous progress. E.g., according to [8], a minimal (necessary, not su�cient)

requirement for a code to be taken serious is that it properly resolves a Karman vortex

street. A similar success for numerics of gas kinetics is in our opinion in the long

run only possible, if alternatives (or better: supplements) to Monte Carlo schemes are
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found. This paper is intended to provide some impulses into this direction for stationary

equations. The scope is

� Find an appropriate way for the decoupling of free ow and collision operators. A

lot of calculational e�ort in Monte Carlo schemes corresponds to the preprocessing

of data for collisions which do not take place (e.g. the sorting of particles in

physical space, the choice of collision partners and the calculation of collision

probabilities for all particles, although only a small fraction of particles su�er

collisions). This should be avoided in an e�cient scheme.

� Find a way to discretize the collision integral. Due to the de�nitions of collision

relations this is not straightforward. We propose an ansatz yielding a compromise

between strongly simplifying models like BGK models (which are mainly used for

deterministic numerical schemes, see e.g. [9] and the references cited there) and

the original operator. The general framework presented here contains features of

two-particle interactions and gives way to the hope that a hierarchy of models can

be derived which on one end of the scale are quite coarse and rigorously tractable

with the chance of studying features like turbulence and the uid-dynamic limit,

and on the other end can be re�ned enough to serve as a basis for a realistic kinetic

equation which can be solved by an e�cient numerical scheme.

� Develop a basis on which it is possible to compare results from di�erent numerical

schemes and to gain more insight in particular into random games and Monte

Carlo simulations.

2 Stationary boundary value problems

2.1 A �xed point equation for stationary solutions

We consider the boundary value problem for f = f(x; v)

vx � rxf = J(f; f); f+(a; v) =  (a; v) (2.1)

on 
� lRp, where 
 � lRq, q � p, is a bounded convex domain with smooth boundary

@
 (i.e. the inner normal n(a) on @
 exists for all a 2 @
). vx 2 lRq denotes the

projection of v 2 lRp onto the subspace spanned by 
. With

@�+ := f(a; v) : a 2 @
; hn(a); vxi > 0g; (2.2)

f+ = f j@�+ represents the ow through @
 into 
 and is prescribed by the �xed function

 . In many cases of interest, f+ is given by some reection law at the boundary, and

thus  depends on the outgoing ow f�. We do not consider this in the present paper.

The collision operator J(:; :) is de�ned as

J(f; f)(v) = J+(f)(v)� �f(v) (2.3)
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with the density � de�ned by

�(x) =

Z
lRp

f(x; v)dv (2.4)

and the gain term J+(:) given by

J+(f)(v) =

Z
lRp

Z
B

f(v0)f(w0)d�dw: (2.5)

Here, B is the surface of the unit sphere in lRp with the normalized surface measure

d�, and (v0; w0) is obtained from (v;w) via a continuous transform T : B � lRp
� lRp

!

lRp
� lRp,

(v0; w0) = T�(v;w) =: (T (1)
�

(v;w); T (2)
�

(v;w)); (2.6)

satisfying T 2
�

= id for all � 2 B. From the convexity of 
 follows the existence of unique

mappings

�(x; v) : (
� lRp) [ @�+ �! @
 (2.7)

and

� : 
 � lRp
�! lR+ (2.8)

such that x = �(x; v) + � (x; v) � vx. With this de�nition, mild solutions of the boundary

value problem are de�ned as solutions of the �xed point equation

f(x; v) =  (�(x; v); v) � exp

 
�

Z
�(x;v)

0
�(x� svx)ds

!
+

Z
�(x;v)

0
J+(f)(x � sv; v) � exp

�
�

Z
s

0
�(x� �vx)d�

�
ds (2.9)

(see, e.g., [10]).

2.2 An iteration scheme

There are many ways to try to design iterative schemes for the numerical approximation

of the �xed-point problem. E. g. one may attempt in the spirit of [11] to construct

monotone sequences of upper and lower solutions converging to a solution. The study

of convergent sequences is not the main objective of this paper. Therefore we restrict

to the simplest iterative scheme which converges for the examples presented in the �nal

section. It is given by

f (n+1)(x; v) =  (�(x; v); v) � exp

 
�

Z
�(x;v)

�(n)(x� svx)ds

!
+

Z
�(x;v)

0
J+(f (n))(x� svx; v) � exp

�
�

Z
s

0
�(n)(x� �vx)d�

�
ds(2.10)
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with an appropriate choice for the initial guess f (0). It is reasonable to believe that in

many situations such a scheme indeed converges to a stationary solution of the Boltz-

mann equation. In fact, for one-dimensional problems and with the density �xed at

� � 1 (which may be achieved through a transformation of the one-dimensional space

variable), a Monte Carlo version of this iteration was tested in [12], with evidence of

convergence.

It is useful to decouple the iteration into two problems of the following type:

� Problem 1: Given (for each x) a function f = f(v), solve

g = A[f; f ] (2.11)

with a given bilinear operator A[:; :].

� Problem 2: Given functions g = g(x; v) and � = �(x), solve

f(x; v) =  (�(x; v); v) � exp

 
�

Z
�(x;v)

�(x� svx)ds

!
+

Z
�(x;v)

0
g(x� svx; v) � exp

�
�

Z
s

0
�(x� �vx)d�

�
ds (2.12)

For A[:; :] we choose a modi�cation of the collision gain term J+, as will be described

in section (3.2). The second integral at the right hand side of (2.12) becomes singular for

vx ! 0. Therefore we continue discussing properties of A[:; :] for which the function f

in problem 2 is well-de�ned. For simplicity, we restrict to the spatially one-dimensional

case: 
 := [0; 1]. For v 2 lRp denote by v? the part of v orthogonal to vx such that

v = (vx; v?). De�ne the space L1;1 := L1([0; 1]; L1(lRp)) with corresponding norm

k:k1;1, and W as the Banach space of functions f 2 L1 with

kfkW := sup
jvxj�1

jPkf(vx)j+ kfkL1 <1; (2.13)

where

Pkf(vx) :=

Z
f(vx; v?)dv? 2 L

1(lR) (2.14)

is the projection of f into vx-direction.

Theorem 1: Suppose A : L1
� L1

! W is a bounded bilinear operator. If f 2 L1;1 is

nonnegative, if g(x; v) = A[f(x; :); f(x; :)](v), and if

h(x; v) =  (�(x; v); v) � exp

 
�

Z
�(x;v)

0
�[f ](x� svx)ds

!
+

Z
�(x;v)

0
g(x� svx; v) � exp

�
�

Z
s

0
�[f ](x� �vx)d�

�
ds (2.15)
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(where �[f ] is the density related to f), then h 2 L1;1, h is nonnegative, and there

exists a constant � such that

khk1;1 � k�k1 + � � kfk2
1;1: (2.16)

An immediate consequence is the boundedness of the recursive scheme at least for small

data. Further, in the case of convergence we obtain a classical solution.

Corollary: De�ne the sequence f (n) by equation (2.15) (with the replacements f !

f (n), h! f (n+1)).

a) If If k�k1 � 1=4� and if f (0) is nonnegative with f (0) � 1=2� then the sequence

f (n) is also nonnegative and bounded by 1=2�.

b) If f (n) converges in W , then the limit is a classical solution of the �xed point

problem.

P r o o f of Theorem 1: The case  � 0 is trivial and is not discussed here. Because

of the boundedness of A[:; :] we have

sup
x2[0;1]

kg(x; :)kW � kAk � kfk2
1;1: (2.17)

Suppose vx 6= 0. We may assume vx > 0. Then � (x; v) = x=vx, and

h(x; v) =  (0; v) � exp

�
�

1

vx

Z
x

0
�[f ](s)ds

�
+

1

vx

Z
x

0
g(s; v) � exp

�
�

1

vx

Z
x

s

�[f ](�)d�

�
ds:

De�ne �max := sup
x2[0;1] kf(x; :)kL1. Then

h(x; v) � h0(x; v) :=  (0; v) � exp

�
�
x � �max

vx

�
�  (0; v) � exp

�
�
�max

vx

�
: (2.18)

We conclude the existence of a �min > 0 such that �[h](x) � �min. This yields

h(x; v) � �(0; v) +
1

vx

Z
x

0
g(s; v) � exp

 
�

(x� s) � �min

vx

!
ds: (2.19)

A simple estimate shows that for arbitrary �; � > 0

1

�
exp

 
�
�

�

!
�

1

� + �
: (2.20)

It follows

h(x; v) � �(0; v) +

Z
x

0
g(s; v) �

1

vx + (x� s) � �min

ds (2.21)

and

Pkh(x; vx) � Pk�(0; vx) + sup
x2[0;1]

kg(x; :)kW �

Z 1

0

1

jvxj+ t � �min

dt (2.22)
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if vx � 1. The same estimate with �(0; :) replaced by �(1; :) holds for �1 � vx < 0.

Since

vx �!
Z 1

0

1

jvxj+ t � �min

dt (2.23)

de�nes a function in L1
loc

(lR), the estimate (2.22) controlls h(x; v) for jvxj � 1. A controll

for jvxj > 1 is straightforward (just ignore the exponentials and 1=vx in (2.19)), and the

theorem is proven. 2

We are going to discuss numerical schemes for these problems. Certainly, problem 2

may be attacked by a classical integration scheme. Problem 1 is not straightforward if

we want to work on a �xed grid in velocity space. Therefore we develop an ersatz model

reecting the correct evolution of certain moments due to two-particle interactions.

3 A model gain term

3.1 Basic ideas

There are a lot of possibilities to model gain terms for kinetic collision operators. The

spectrum ranges from the Boltzmann gain term, which is the best founded one in the

setting of mesoscopic descriptions, and of which a special case has been introduced in

section 2.1, to descriptions like those given by BGK-like models. While the �rst ones

are based on two-particle collisions providing physical conservation laws like momentum

and energy conservation, the latter ones give merely a rough description based on local

equilibria, where particles "forget" their pre-collision velocities during a collision. Such

models cannot be based on two-particle mechanics.

Discrete velocity models like those surveyed in [13] are also based on two-particle

mechanics; however, in general it is hard to �nd a "smooth" link between these models

and the continuous velocity setting just by increasing the discrete-velocity domain. An

exception is [14], where a discrete velocity model is derived as a �nite di�erence scheme

for the continuous setting.

In the long run, our aim is to formulate in a general setting a large class of two-

particle collision models with velocities on a regular grid which serve as a bridge between

theory and numerics for realistic applications. Our approach chosen here is somewhere

between the original Boltzmann collision operator and BGK models. It is based on a

probabilistic description of two-particle interactions which provides a correct treatment

of certain physical quantities in the mean, but not for each realization.

In our opinion, such a description allows for a broad range of models starting from

very crude discrete velocity models (which can be e�ciently treated theoretically) to

more and more re�ned models which come arbitrarily close to physical 00reality00 and

which can nevertheless be treated with numerical e�ciency. Our models are based on a

weak formulation which is shortly introduced in the following section.
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3.2 Model gain terms leaving invariant certain moments

With A[f; f ] = J+(f), Problem 1 of section 2.2 reads: Given the absolutely continuous

measure f(v)dv, calculate g(v)dv as solution of the equation

g(v) =

Z
lRp

Z
B

f(v0)f(w0)d�d2w: (3.24)

Exploiting the symmetry properties of the collision kernel (in particular the fact that

T� is an involution), we end up with the following weak formulation (see [3]). Suppose

that V is the set of continuous bounded test functions on lR2. Multiplication of (3.1)

with � 2 V , integration and integral transformation (using dv0dw0 = dvdw) leads to

Z
lR2
�(v)g(v)dv =

Z
lR2

Z
lR2

Z
B

�(T (1)
�

(v;w))d!(�)f(v)d2vf(w)d2w for � 2 V: (3.25)

Our intention is now to replace the right hand side by one that leaves the integral

invariant for � out of a �nite dimensional space. Denote

VH := span(�i; i = 1; : : : N) (3.26)

for a �xed set H = f�i; i = 1; : : : ; Ng of (not necessarily bounded) test functions. For

a continuous mapping S : Z � lRp
� lRp

! lRp (with an appropriate set Z) and a

probability measure d� on Z we call an equation

Z
lR2
�(v)g(v)dv =

Z
lR2

Z
lR2

Z
Z

�(S(z; v; w))d�(z)f(v)d2vf(w)d2w; � 2 V (3.27)

a "VH -invariant" model problem for (3.1), if

Z
Z

�(S(z; v; w))d�(z) =

Z
B

�(T (1)
�

(v;w))d!(�) (3.28)

for all v;w 2 lRp, � 2 VH . It is this equation which is readily discretized if S is chosen

appropriately. Let us point out that this formulation of a model problem preserves

nonnegativity and the L1-norm of the original collision operator.

3.3 Discretized velocity space

We discuss a discretized model problem in a two-dimensional velocity space. For v =

(vx; vy)
T denote �0 :� 1, �1(v) := vx, �2(v) := vy, �3(v) := v2

x
, and �4(v) := v2

y
. We

develop a discretized model gain term leaving invariant these quantities. Using the

explicit formula

T (1)
�

(v;w) = v � hv �w; �i � �; (3.29)

straightforward integrations show thatZ
B

�0(T
(1)
�

(v;w))d!(�) = 1; (3.30)
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Z
B

�1(T
(1)
�

(v;w))d!(�) =
vx + wx

2
; (3.31)

Z
B

�2(T
(1)
�

(v;w))d!(�) =
vy + wy

2
; (3.32)

Z
B

�3(T
(1)
�

(v;w))d!(�) =
1

2
(v2

x
+ w2

x
) +

1

8

�
(vy �wy)

2
� (vx � wx)

2
�
; (3.33)

Z
B

�4(T
(1)
�

(v;w))d!(�) =
1

2
(v2

y
+ w2

y
) +

1

8

�
(vx � wx)

2
� (vy � wy)

2
�
: (3.34)

De�ne the index set G := f(i; j); i; j = ��; : : : ;�g for some 0 < � 2 lN and suppose that

the velocity space lR2 is discretized to the �nite regular grid Gh := fh � (i; j); (i; j) 2

Gg. (Since it should not cause any confusion, we identify elements of G with the

corresponding ones in Gh.) Suppose given two velocities v;w on the grid, v = (i; j),

w = (k; l). According to (3.30) to (3.34) we have to de�ne a non-negative valued function

Sijkl on the grid such that

�X
m;n=��

Sijkl(m;n) = 1; (3.35)

�X
m;n=��

m � Sijkl(m;n) =
i+ k

2
; (3.36)

�X
m;n=��

n � Sijkl(m;n) =
j + l

2
; (3.37)

�X
m;n=��

m2Sijkl(m;n) =
i2 + k2

2
+

1

8

�
(j � l)2 � (i� k)2

�
; (3.38)

�X
m;n=��

n2Sijkl(m;n) =
j2 + l2

2
+

1

8

�
(i� k)2 � (j � l)2

�
: (3.39)

The simplest possible choice is to seek for a function factorizing in x� and y�direction,

i.e. Sijkl(m;n) := Qijkl(m)Rijkl(n) with the symmetry property Rijkl(n) = Qjkli(n).

This reduces the equations (3.12) to (3.16) to the three conditions

�X
m=��

Qijkl(m) = 1; (3.40)
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�X
m=��

m �Qijkl(m) =
i+ k

2
; (3.41)

�X
m=��

m2Qijkl(m) =
i2 + k2

2
+

1

8

�
(j � l)2 � (i� k)2

�
: (3.42)

E.g. for � = 1 (i.e. for a nine-velocity model) this leads to a well-posed linear system

of equations with the solution

Qijkl(�1) =
b� a

2
; (3.43)

Qijkl(0) = 1� b; (3.44)

Qijkl(1) =
a+ b

2
(3.45)

where a and b are the right hand sides of (3.41) and (3.42). Unfortunately, this solution

may become negative for a few indices which makes slight modi�cations necessary (see

section 5.1).

4 Discretization and a deterministic scheme

4.1 Well-posedness of the collision operator

In the course of section 3.2, problem 1 (solution of (2.11)) was changed into the modi�ed

version

� Problem 1': Suppose S : Z � lRp
� lRp

! lRp su�ciently regular, and d�(z) a

probability measure on Z. Given f = f(v) in a suitable function space V , �nd

g 2 V such that for all � in the dual spave V �

Z
�(v)g(v)dv =

Z Z Z
�(S(z; v; w))d�(z)f(v)dvf(w)dw =: Tf�: (4.1)

By changing to the space of Borel measures, we can easily prove the well-posedness

of the problem.

Theorem 2: Suppose S is Borel measurable, and d� is a �nite Borel measure on lRp.
Then there exists a unique �nite Borel measure d� on lRp satisfyingZ

lRp

�(v)d�(v) =

Z
lRp

Z
lRp

Z
Z

�(S(z; v; w))d�(z)d�(v)d�(w) (4.2)

for arbitrary continuous and bounded functions �.
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P r o o f : Since����
Z
lRp

Z
lRp

Z
Z

�(S(z; v; w))d�(z)d�(v)d�(w)

���� � k�k1 � (�(lRp))
2
; (4.3)

and since for nonnegative � the integral is nonnegative, the mapping

T� : � �!
Z
lRp

Z
lRp

Z
Z

�(S((z; v; w))d�(z)d�(v)d�(w) (4.4)

is a positive functional on C0
0(lRp). Therefore (see, e.g. [15, �U 4.9]) there exists a �-�nite

measure d� satisfying T�� =
R
�d�. Since T�� <1 for � 2 L1(lRp), d� is �nite. From

classical results follows that d� is unique (see for example the Portmanteau theorem,

[16]). 2

For cases of collision kernels described by transition densities K(:jv;w), we obtain again

a classical model gain term. SupposeZ
�(S(z; v; w))d�(z) =

Z
�(v0)K(v0jv;w)dv0 (4.5)

for all test functions �, and v;w 2 lRp; then d� is absolutely continuous, and the solution

of (4.1) is given by

g(v) =

Z Z
K(vjv0; w0)f(v0)dv0f(w0)dw0: (4.6)

Since K(:jv;w) is then a probability density for all v;w, we �nd that g 2 L1(lRp). In

particular we conclude

Corollary: Under the assumption (4.5), problem 1' is uniquely solvable in V = L1(lRp),

with the solution g given by (4.6).

4.2 The discretized problem

Of course, the discretized case is included in Theorem 1. A formal discretization is

obtained as follows. Denote the index set G and the grid Gh as in section 3.3. (We

again identify elements � = (i; j) 2 G with the corresponding elements in Gh.) Replace

in equation (4.1) f by a corresponding function on G; replace S : Z� lR2
� lR2

! lR2 by

a discrete version Sd : Z�G�G! G. Choose as the set of test functions the functions

 on G. Then the right hand side of equation (4.1) turns into

X
�;�2G

Z
Z

 (Sd(z; �; �))d�(z)f�f�: (4.7)

With ���() := �(fz 2 Z : Sd(z; �; �) = g), we obtain

Z
Z

 (Sd(z; �; �))d�(z) =
X


���(): (4.8)
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Using the basis f�;  2 Gg of the test function space, the discretized version of

problem 1' reads: Find the function g on G satisfying

g =
X

�;�2G

���()f�f�: (4.9)

Like equation (4.6), this is an explicit formula for the solution g. Here, we do not discuss

any convergence properties in the limit of the grid constant h! 0. This will be studied

in a future paper.

Let the one-dimensional physical space be given as the unit interval [0; 1]. Choose

v 2 lRp �xed, and � := vx. Let's assume � � 0. The iteration scheme of the preceding

section leads to an integral equation of the form

f(x) = ~ � exp

�
�

1

�

Z
x

0
�(s)ds

�
+

Z
x=�

0
g(x� s�) � exp

�
�

1

�

Z
x

s

�(�)d�

�
ds (4.10)

with ~ and g given. A discretized version is given immediately as follows. Choose N 2 lN

and denote h := 1=N and xi := i � h for i = 0; : : : N . Write fi as the approximation of

f(v) at xi. Then f0 = ~ ; in a straightforward manner, a conservative �rst order upwind

scheme is derived which leads to the recursive formula

fk =

 
1�

h � �k�1

�

!
� fk�1 +

h

�
� gk�1: (4.11)

(Of course, for � < 0, fk is determined from the values at k + 1 rather than at k � 1.)

5 Numerical experiments

5.1 The setting

We consider the nine-velocity model (i.e. � = 1, see section 3.3) on the slab 
 = [0; 1].

The transition probability of a velocity (i; j) due to the inuence of a "collision partner"

(k; l) is given by the factorizing terms Sijkl with Qijkl de�ned by (3.19) to (3.21). These

formulas do not guarantee nonnegativity. Therefore in all cases, for which one of the

terms on the right hand side of (3.19) to (3.21) is negative, we modify into

� Model 1: Qijkl(m) := �im;

this means that changes of some velocity components are simply ignored.

� Model 2: Qijkl(m) := 1=3 for m = �1; 0; 1;

this introduces a slight smearing out in the velocity space.

Of course this modi�cation could be avoided by a more elaborate discrete collision model.

We leave this for a future paper.

For the discretization, the step size in the position space is chosen to coincide with

the parameter h in velocity space.
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We compare a deterministic numerical scheme with a Monte Carlo simulation scheme.

The deterministic scheme is obtained in a straightforward way by combining (4.9) (prob-

lem 1') with (4.11) (problem 2). The Monte Carlo scheme is a time evolution algorithm

based on time-splitting of free ow and collisions. For the simulation of the collisions we

use Nanbu's scheme with the modi�cation of [17] which was mathematically analyzed

in [3]. The stationary approximation is obtained by time-averaging.

5.2 Numerical results

We perform three numerical experiments: The calculation of an equilibrium for the

homogeneous Boltzmann equation, and steady slab solutions for a zero-gradient and a

non-zero gradient velocity �eld - both for the deterministic and for the Monte Carlo

scheme.

1. Equilibrium solution: First, we calculate the homogeneous zero mean velocity equi-

librium state with density 1. The deterministic iteration converges for both model

1 and 2. As expected for reasons of symmetry, the occupation densities p(i; j) for

the velocities (i; j) depend only on jij+ jjj.

jij+ jjj (1) (2) (3) (4)

0 0.2180 0.2136 0.2136 0.2196

1 0.1160 0.1224 0.1225 0.1215

2 0.0795 0.0742 0.0741 0.0736

Tab 1: Equilibrium p(i; j)

The Monte Carlo scheme exhibits a seemingly strange behaviour for model 1, since

after a couple of time steps all particles are concentrated in merely one (or a few)

velocity state. This state is random, but �xed once occupied by all particles.

Though seemingly surprising, this e�ect has already been observed for Nanbu's

scheme [18] and is due to the e�ect that because of momentum uctuations the

particle system drifts from a zero mean velocity state into a random non-zero

state and freezes there. Tab. 1 shows the deterministic results for model 1 (1)

and model 2 (2), and MC results for model 2 for numbers of particles per velocity

state N = 180 (3) and N = 18 (4).

2. Zero gradient �eld: For inow conditions at x = 0 and x = 1 given by this equilib-

rium state, a stationary solution is given which is constant along the interval [0; 1].

This solution is obtained by the deterministic calculation. For the Monte Carlo

scheme the situation is di�erent. We ran test cases with up to 20 particles per

velocity state (i.e. 180 particles per spatial cell). As inow we chose a constant i.e.

non-uctuating number of particles. As a result, we observed an approximatingly

constant state in the interiour, however boundary layers at the boundaries x = 0

and x = 1 (see Fig. 1 for the density pro�le). For model 1, the simulation result

uctuates - apart from the boundary layers - with an error of roughly 1 % (Fig.
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1, solid line). The approximating 4-th order polynomial (dotted line) even lies

within 0.3 % error. The error within the boundary layers increases to 2 %. For

model 2, the situation is similar, however the constant state in the interior is 2 %

too high. (The auxiliary lines in Fig. 1 indicate the solution � � 1 and the 2.5 %

error bounds.)

Fig.1: Equilibrium density pro�le from Monte Carlo simulation

3. Non-zero gradient �eld: By modifying the inow conditions, we generate a sym-

metric vy-velocity gradient. Fig. 2 shows the pro�le of the �rst moment � � vy
obtained from deterministic computations for di�erent Knudsen numbers. We

recognize an almost constant slope for large Knudsen numbers (dotted line) and a

constant (equilibrium) state in the interior with boundary layers for small Knudsen

numbers (solid line). Fig. 3 reveals signi�cant di�erences between the determin-

istic calculation (dotted line) and Monte Carlo simulations with 180 particles per

cell (solid line).

5.3 Some concluding remarks

Ways to numerical high-resolution solutions are very restricted as long as one has to

rely on Monte Carlo schemes. Deterministic schemes for model problems might be an

alternative. Since existence and uniqueness results for steady solutions are very rare,

both kinds of simulations should contribute to increase our knowledge and understand-

ing in these cases. There is a need for high-resolution solutions, which in the future

may perhaps be designed from deterministic model problems. On the other hand, a

systematic investigation of random particle games may help to understand a lot more

about physical phenomena connected to uctuations.
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Fig.2: Pro�les of �rst moments for di�erent Knudsen numbers

Fig.3: Deterministic results vs. Monte Carlo results
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