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Abstract. This paper discusses the convergence of the qualocation method for

Symm's integral equation on closed polygonal boundaries in IR2. Qualocation is a

Petrov{Galerkin method in which the outer integrals are performed numerically by

special quadrature rules. Before discretisation a nonlinear parametrisation of the

polygon is introduced which varies more slowly than arc{length near each corner

and leads to a transformed integral equation with a regular solution. We prove

that the qualocation method using smoothest splines of any order k on a uniform

mesh (with respect to the new parameter) converges with optimal order O(hk).

Furthermore, the method is shown to produce superconvergent approximations to

linear functionals, retaining the same high convergence rates as in the case of a

smooth curve.

1. Introduction

Symm's integral equation for a closed curve �,

�

1

�

Z
�
log jx� �ju(�)d�(�) = f(x) ; x 2 � ; (1.1)

is a boundary integral equation of central importance for elliptic boundary value

problems in the plane. Here f : � ! IR is given, and the problem is to �nd

u : � ! IR, or perhaps certain functionals of u. Equation (1.1) is closely related to

the singular integral equation with Hilbert kernel for which the L2{theory has been

developed by S.G. Mikhlin in his fundamental paper [15]. We assume throughout

the paper that the trans�nite diameter of � is not equal to 1, so that (1.1) is uniquely

solvable.

Many numericalmethods have been proposed, but only for the Galerkin method

is the theory wholly satisfactory. A number of numerical methods, among them the

qualocation method [24, 26, 5], have aimed to achieve the high rate of convergence

of the Galerkin method but with less computational e�ort. However, until now

rigorous results for the qualocation method have been available only for a smooth

curve �. The aim of this paper is to give a convergence theory for the qualocation

method on a polygon. (The arguments can be extended without di�culty to the

case of a curved polygon without cusps.)

The convergence theory will be established by appealing to a theory recently

presented by Elschner and Graham [9] for the collocation method for Symm's in-

tegral equation on a polygon. In this approach the �rst step is to introduce a

parametrisation of the curve � which has the e�ect of smoothing out the singular-

ities at the corners, and then to apply the collocation method on a mesh which is

uniform with respect to the new parameter. From the point of view of the curve �,
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the e�ect of this is to squeeze the mesh at the corners. The Elschner and Graham

results will be described and extended to the qualocation method in Section 3.

In Section 4 we prove a superconvergence result for the error in approximating

linear functionals of the solution to (1.1), showing that in most cases the qualocation

method for the polygon achieves the same order of convergence as it does on a smooth

curve. Section 5 contains some auxiliary spline approximation results, which are also

of independent interest.

The present work arose from the realisation that the arguments of [9] are not

restricted to the collocation method, but extend also to other methods expressible

as projection methods with appropriate properties. In the next section we shall see

that the qualocation method is a projection method in this sense.

It should be mentioned that various fully discrete versions of the qualocation

method have been proposed in recent times [25, 21, 19, 14]. These are not projection

methods, so the arguments used in the present paper are not directly applicable.

There is one unfortunate aspect of the analysis of Elschner and Graham [9],

shared with many other recent papers on boundary integral equations [3, 4, 7, 8, 6,

13, 17, 12], and now extended to this paper. It is that the stability of the method can

only be proved if the possibility is allowed of modifying the approximate solution

over some number of intervals near each corner. In practice such modi�cations have

so far never been needed, but the possibility remains that they will be found to be

needed in some situations in the future. The superconvergence results in Section 4

generally require that stability holds without any corner modi�cations.

2. The qualocation method

The �rst step in implementing the qualocation method, and any of the other

methods mentioned here, is to introduce a parametrisation 
 : [�; �] ! � of the

curve �, so that (1.1) then becomes

�

1

�

Z
�

��

log j
(s)� 
(�)jw(�)d� = g(s) ; s 2 [��; �] ; (2.1)

or

Kw = g (2.2)

where

w(�) = j

0(�)ju(
(�)) ; g(s) = f(
(s)) ; (2.3)

so that the Jacobian of the transformation has been absorbed into the new unknown

function w. If the curve � is smooth then 
 should be chosen to be smooth, and to

be such that j
0j > 0 on �. We defer until the next section the choice of 
 if � has

corners.

For n a natural number, we now introduce a uniform mesh on [��; �], de�ned

by

si = �� + ih ; i = 0; :::; n with h = 2�=n :

The qualocation method is like the Petrov{Galerkin method, in that it employs

both a trial space Vh (the space in which the approximate solution is sought), and
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a test space V 0
h
. We take these to be spline spaces of orders k and k0 respectively.

Thus for k � 1, let Vh = V
k

h
be the space of 2�{periodic (smoothest) splines of

order k on the mesh fsig. That is, v 2 Vh if and only if v is 2�{periodic, is

a polynomial of degree at most k � 1 on each subinterval [si�1; si], and has k � 2

continuous derivatives. Similarly, for k0 � 1 let V 0
h
= V

k
0

h
be the space of 2�{periodic

(smoothest) splines of order k0 on the same mesh.

It is convenient to de�ne �rst the Petrov{Galerkin method for this pair of spaces.

Letting (u; v) denote the L2 inner product

(u; v) :=

Z
�

��

u(s)v(s)ds ; (2.4)

the Petrov{Galerkin method for (2.2) is: �nd wh 2 Vh such that

(Kwh; �) = (g; �) 8� 2 V
0

h
: (2.5)

The qualocation method di�ers from the Petrov{Galerkin method only to the

extent that the inner product (2.4) is replaced by a discrete equivalent (u; v)h,

(u; v)h := Qh(uv) ; (2.6)

where

Qh(g) = h

n�1X
i=0

JX
j=1

wjg(si + h�j) (2.7)

with

0 � �1 < �2 < ::: < �j < 1 ;
JX

j=1

wj = 1 ; wj > 0 : (2.8)

Note that Qh is just the composition of the simple J{point rule

Q(g) :=
JX

j=1

wjg(�j) : (2.9)

However, we shall see that the recommended rules are not any of the familiar quad-

rature rules (Gaussian, Simpson, etc.). The reason is that the integrand (Kwh)� on

the left of (2.5) is not smooth on each subinterval, even if � is a smooth curve.

Once the points and weights of the J{point quadrature rule (2.9) are deter-

mined, the qualocation method for (2.2) is de�ned by: �nd wh 2 Vh such that

(Kwh; �)h = (g; �)h 8� 2 V
0

h
: (2.10)

An important special case is the collocation method. Suppose that we take V 0

h
= Vh,

and for some number " 2 [0; 1), choose the rule Q in (2.9) to be the 1{point rule

Qg = g(") :

Then it is easily seen, by introducing a basis of V 0
h
= Vh in (2.10), that (2.10) is in

this case equivalent to the "{collocation method

Kwh(ti) = g(ti) ; i = 0; :::; n� 1 ;

where

ti = si + "h ; i = 0; :::; n� 1 :
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For the case of a smooth curve it is well known [23] that this method is stable for k

even provided " 6= 1=2, and for k odd provided " 6= 0.

Since the "{collocation method is known to be unstable for the two exceptional

cases indicated above, it is natural for us to exclude them in what follows. We shall

also insist that k and k
0 (the orders of Vh and V

0

h
) have the same parity, because

it is only in this case that stability results are known for either the qualocation or

Petrov{Galerkin methods.

Assumption (A). We assume that k and k0 (the orders of Vh and V 0
h
respec-

tively) are either both even, or both odd.

Assumption (B). In the rule Q, with J � 1 and points and weights satisfying

(2.8), the following two cases are excluded:

i) J = 1, k and k0 even, �1 = 1=2,

ii) J = 1, k and k0 odd, �1 = 0.

Under these assumptions the next result asserts that the qualocation solution

exists, and has convergence properties at least as good as those of the basic col-

location method ([1] for the case k even with " = 0, [22] for the case k odd with

" = 1=2). Of course the interesting versions of the qualocation method, as we have

indicated already, have faster convergence than the collocation method, but it is

useful to establish �rst that at least nothing is lost in going to the more general

qualocation method.

Here and in what follows H t, t 2 IR, refers to the periodic Sobolev space of

order t on [��; �], with norm given by

jjvjj
2
t
:= jv̂(0)j2 +

X
m6=0

jmj
2t
jv̂(m)j2 ; (2.11)

where the Fourier coe�cients of v are de�ned by

v̂(m) = (v; exp(�ms))=(2�)1=2 :

It is well known (see e.g. [27]) that, for smooth �, the operator K de�ned in (2.2)

takes the form K = A+ T , where

Av(s) := �

1

�

Z
�

��

log j2e�1=2 sin(s� �)=2jv(�)d�

= (2�)�1=2

0
@X

m6=0

v̂(m)jmj�1 exp(�ms) + v̂(0)

1
A

(2.12)

is an isometry from H
t to H t+1 for any t 2 IR, and T is an integral operator with

smooth (periodic) kernel. Note that if � is the circle given by the parametrisation


(s) = r exp(�s) then T is simply the linear functional v! �(1+2 log r)v̂(0)=(2�)1=2.

The following result incorporates both the stability theorem of [5, Theorem 3],

and a simple version of the convergence theorem of [5, Theorem 2]. (The fact that

for � a circle the result holds for all h, not just for h su�ciently small, is clear
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from the proof of [5, Theorem 2]: the restriction to h su�ciently small enters the

argument only when we consider perturbations from the case of a circle.)

Theorem 2.1. Let assumptions (A) and (B) hold, and assume that � is smooth.
Then, given g 2 H

t+1 for t > �1=2, a unique solution wh 2 Vh of (2:10) exists for
all h su�ciently small. If � is a circle of radius not equal to 1 and j


0
j = constant

then wh exists and is unique for all h. For all s; t satisfying

s < k � 1=2 ; t > �1=2 ; �1 � s � t � k ;

we have

jjw � whjjs � ch
t�s
jjwjjt :

In particular, the maximal order of convergence given by Theorem 2.1 is

jjw � whjj�1 � ch
k+1

jjwjjk :

Saranen [20] established that for k odd the convergence rate of the mid{point collo-

cation method (i.e., "{collocation with " = 1=2) is generally faster than the O(hk+1)

rate allowed by Theorem 2.1 (it can reach O(hk+2) if w is su�ciently smooth).

From our present perspective it is convenient to consider the mid{point collocation

method as a special case of the qualocation method: according to [5], Saranen's

result is recovered whenever the quadrature rule Q in (2.9) is symmetric. The ex-

plicit qualocation methods for k considered later have this property, but achieve still

higher orders of convergence than the mid{point collocation method.

In [5] it is shown that faster convergence can be achieved for certain special

choices of the points f�jg and weights fwjg, the crucial consideration being the

behaviour near zero of a certain function E : [�1=2; 1=2] ! IR,

E(y) :=
X
j

wj
(�j; y)(1 + �0(�j; y)) ; (2.13)

where


(�; y) = jyj
k+1

F
�

k+1(�; y) ;

�0(�; y) = y
k0

F
�

k0
(�; y) ;

F
+
m
(�; y) =

X
l6=0

1

jl+ yjm
exp(�l�) ;

F
�

m
(�; y) =

X
l6=0

sign l

jl+ yjm
exp(�l�) ;

(2.14)

with the + sign holding in (2.14) if k and k0 are even, and the � sign if k and k0 are

odd.

De�nition. The qualocation method (2.10) is of order k + 1 + b if b (the

additional order) is the largest non{negative integer such that

E(y) = O(jyjk+1+b) ; y 2 [�1=2; 1=2] :
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We see from (2.13) and (2.14) that the method (2.10) is of order � k+1 without

any special choice of the qualocation rule. Some simple rules of order > k + 1 are

shown in Table 1, extracted from [5].

k k
0

�1 w1 �2 w2 b order

1 1 1/2 1 { { 1 3

1 1 0 3/7 1/2 4/7 3 5

1 3 0.2308296503 1/2 1 � �1 1/2 3 5

2 2 0 1 { { 0 3

2 2 0 3/7 1/2 4/7 2 5

2 2 0.2308296503 1/2 1 � �1 1/2 2 5

Table 1. Some interesting qualocation methods

Note that the �rst entry in the table is the mid{point collocation method for

piecewise constant basis functions, which (as shown by Saranen [20]), achieves an

order of 3. The next item in the table, however, is a qualocation method with

piecewise constant trial and test functions that achieves an order of 5, two higher

than the mid{point collocation method. The fourth entry in the table is again a

collocation method, this time collocation at the breakpoints with piecewise linear

functions. It too is followed by higher order qualocation methods based on piecewise

linear trial functions, again with test functions of the same degree.

The signi�cance of the order is seen in the following theorem, also taken from

[5].

Theorem 2.2. If the qualocation method (2.10) is of order k + 1 + b with b � 0,
and if the assumptions of Theorem 2.1 hold, then for all s; t satisfying

s < k � 1=2 ; t > �1=2 ;�1 � b � s � t � k

we have

jjw � whjjs � ch
t�s
jjwjjt+max(�1�s;0) :

In particular, the fastest order of convergence is seen by setting s = �1� b and

t = k, to give

jjw � whjj�1�b � ch
k+1+b

jjwjjk+b :

Thus the "order", as de�ned above, is the fastest order of convergence obtainable

with the particular qualocation method. As a particular example, we �nd for the

second entry in Table 1 the result

jjw � whjj�4 � ch
5
jjwjj4 :

For the application later in this paper we need to write the qualocation approx-

imation as a projection method. Thus we de�ne:

�h : H
1
! Vh : (�hv; �)h = (v; �)h 8v 2 H

1
; 8� 2 V

0

h
: (2.15)

Proposition 2.1. If Assumptions (A) and (B) hold then �h is a well de�ned pro-

jection operator with range Vh.
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Proof. To show that �hv is uniquely determined by (2.15) it is only necessary to

introduce bases fvig and fv
0

i
g for Vh and V

0

h
, and then to show that the matrix

((vi; v
0

j
)h) is non{singular. But this follows immediately from Theorem 3 of [5]

(which proves stability of the qualocation method for an operator L0), on taking the

legitimate special case L0 = I, the identity. If v 2 Vh then �hv = v satis�es (2.15),

thus �h is a projection with range Vh. 2

It then follows, if Assumptions (A) and (B) hold, that the qualocation approx-

imation (2.10) can be written as: �nd wh 2 Vh such that

�hKwh = �hg : (2.16)

Next we introduceRh, a solution operator for the qualocation equation. Writing

w = K
�1
g, so that w is the exact solution of the equation Kw = g, the solution of

the qualocation equation (2.16) may be written as wh = Rhw, where Rh is a linear

operator. As a special case of Theorem 2.2 we obtain the following result, needed

in the subsequent arguments.

Proposition 2.2. If � is a circle of radius not equal to 1 and j
0j = constant then
Rh exists as an operator from H

0 to H0, and satis�es

jj(I �Rh)wjjs � ch
t�s
jjwjjt+max(�1�s;0) (2.17)

for all s; t such that s < k � 1=2, t > �1=2 and �1 � b � s � t � k, with c

independent of h.

3. The qualocation method for polygonal �

Let � be a closed polygon enclosing a simply connected bounded domain in IR2.

Suppose that � has corners x0;x1; :::;xr�1 and that, for each j, the interior angle

at xj is (1 � �j)�, 0 < j�jj < 1. The side joining xj to xj+1 is denoted �j and j�jj

denotes its length. j�j is the length of �.

We �rst introduce a nonlinear parametrisation 
 : [��; �] ! � which varies

more slowly than arc{length parametrisation in the vicinity of each corner of �. By

forcing 
 to vary slowly enough near each corner, the solution w of the transformed

equation (2.2) then can be made as regular as desired on [��; �] (provided f is

smooth), and hence w can be optimally approximated by splines of any order k on

the uniform grid

si = �� + ih ; i = 0; :::; n ; h := 2�=n : (3.1)

To de�ne the parametrisation 
, choose a grading exponent q 2 IN and introduce

r + 1 points given by:

�� < S0 < S1 < ::: < Sr�1 < � ; Sr = S0 + 2� ;

with their di�erences having the values

Sj+1 � Sj = 2�j�jj
1=q

� r�1X
m=0

j�mj
1=q
; j = 0; :::; r� 1 : (3.2)

These will be preimages of the corner points xj under 
. For notational convenience

we extend si, Sj and xj to i; j 2 ZZ by requiring xj to be r{periodic in j and by

7



de�ning Srm+j = Sj + 2m�, j = 0; :::; r � 1, snm+i = si + 2m�, i = 0; :::; n � 1,

m 2 ZZ. Then we will be concerned with parametrisations 
 : [��; �] ! � which

(for all j) satisfy the assumptions:

(A1) 
(Sj) = xj;

(A2) (s� Sj)
�q(
(s)� xj), (Sj+1 � s)�q(
(s)� xj+1) 2 C

1[Sj; Sj+1];

(A3) j
0(s)j > 0, s 2 (Sj; Sj+1);

(A4) lims!Sj
j
(s)� xjj=js� Sjj

q = j�j j=(Sj+1 � Sj)
q.

Note that by (3.2) the limit in (A4) does not depend on j. Furthermore, the

image of the mesh (3.1) under 
 is graded with exponent q to the corner points xj,

but the corner points are not necessarily images of mesh points under 
.

Example 3.1. Following [9], choose any � in the range

0 < � < (1=2)minfSj+1 � Sj : j = 0; :::; r � 1g :

Then, for j = 0; :::; r� 1, set


(s) =

8>>>>><
>>>>>:

xj �

 
Sj � s

Sj � Sj�1

!
q

(xj � xj�1) ; s 2 [Sj � �; Sj] ;

xj +

 
s� Sj

Sj+1 � Sj

!
q

(xj+1 � xj) ; s 2 [Sj; Sj + �] :

The gaps on [��; �] can be �lled , in principle, by introducing monotonically in-

creasing C1 connecting functions.

The next example gives a more practical construction, following [13, 6].

Example 3.2. For j = 0; :::; r� 1, de�ne


(s) = xj +
(s� Sj)

q

(s� Sj)q + (Sj+1 � s)q
(xj+1 � xj) ; s 2 [Sj; Sj+1] ;

where the usual periodicity convention 
(s + 2�) = 
(s) is adopted. If q = 1 we

have


(s) = xj +
s� Sj

Sj+1 � Sj
(xj+1 � xj) ; s 2 [Sj; Sj+1] ;

and condition (3.2) means that (Sj+1�Sj)=j�j j = 2�=j�j for all j, so the parametri-

sation is then proportional to arc{length.

More general constructions of 
, allowing also di�erent grading exponents at

the corners, can be found in [9, 10, 11].

Following [27], we rewrite (2.2) as the second kind equation

(I +M)w = e ; with M = A
�1(K �A) ; e = A

�1
g ; (3.3)

where A : H0
! H

1 is the isometric isomorphism de�ned in (2.12). Recall that A

coincides with K when � is the circle of radius e�1=2. Since it is a standard result

[15, 18] that A�1 = �HD + J , where D is the (periodic) di�erentiation operator,

H is the Hilbert transform

Hv(s) = �

1

2�
p:v:

Z
�

��

cot

�
s� �

2

�
v(�)d�
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and J is the linear functional v! (v; 1)=2�, we further have

M = HD(A�K) + J(K �A) : (3.4)

It turns out that M is a Mellin convolution operator local to each corner; see [27]

for q = 1 and [9] in the general case.

We now recall some analytical results on Equations (2.2) and (3.3) which are

needed in the convergence analysis of the qualocation method. The �rst theorem

follows from [9, Theorem 2 and Lemma 7] when the parametrisation 
 takes the

simple form of Example 3.1. Combining this with the perturbation arguments in

[10], one obtains the result for parametrisations satisfying (A1){(A4).

Theorem 3.1. The operators

I +M : H0
! H

0 and K : H0
! H

1

are continuously invertible, and we have the strong ellipticity estimate

Re((I +M + T )v; v) � cjjvjj
2
0 8v 2 H

0
;

where T is some compact operator on H0.

The next result, which follows from [9, Corollary 5], shows that the unique

solution w of (2.2) is smooth provided the right side f of (1.1) is smooth and the

grading exponent q is large enough. For l > 0, H l(�) is de�ned as the restriction of

the usual Sobolev space H l+1=2(IR2) to �.

Theorem 3.2. Let l 2 IN, q > (l+1=2)maxj(1+ j�jj), and suppose f 2 H l+5=2(�).

Then the unique solution of (2.2) satis�es w 2 H
l and, for all j,

D
m
w(s) = O(js� Sjj

l�m�1=2) as s! Sj ; m = 0; :::; l : (3.5)

The following result, taken from [11], describes the properties of the kernel

function

�(s; �) :=
1

�
log

����� 
(s)� 
(�)

2e�1=2 sin(s� �)=2

����� (3.6)

of the integral operator A � K. Note that less precise kernel estimates have been

given in [9, 10].

Theorem 3.3. On each compact subset of IR�IRnf(Sj; Sj) : j 2 ZZg, the derivatives
D

i

s
D

m

�
�(s; �) of order i+m � q are bounded and 2�{periodic. Moreover, for each j

and su�ciently small � > 0, for s; � 2 [Sj � �; Sj + �]nfSjg we have the estimates

j�(s; �)j � cj log(js� Sj j+ j� � Sjj)j ;

jD
i

s
D

m

�
�(s; �)j � c(js� Sj j+ j� � Sjj)

�i�m
; 1 � i+m � q :

We now consider the qualocation method (2.10) for the approximate solution of

Equation (2.2) with right side g 2 H
1 assuming throughout that Assumptions (A)

and (B) hold. De�ne the projection operator Rh : H0
! V

k

h
by letting Rhv 2 V

k

h

solve the qualocation equation �hA(Rhv) = �hAv. That is to say, Rh is the solution

operator of the qualocation method for the particular case of a circle of radius e�1=2.

Using (3.3) and Proposition 2.1, it is easily seen that (2.10) may be written �hA(I+

M)wh = �hAe. Hence wh solves (2.10) if and only if �hAwh = �hA(e �Mwh),

9



and by the de�nition of Rh, this is equivalent to wh = Rh(e�Mwh). Hence (2.10)

is equivalent to the following non{standard projection method for the second kind

equation (3.3):

(I +RhM)wh = Rhe : (3.7)

As is usual for Mellin convolution equations, we are only able to prove stability

for a slightly modi�ed method. Introduce, for � su�ciently small, the truncation

operator

T
�
v(s) =

(
0 ; s 2 [Sj � �; Sj + � ] ; j = 0; :::; r� 1 ;

v(s) ; otherwise:

Then for any �xed natural number i� and for n su�ciently large, de�ne

K
i
�
h = A+ (K �A)T i

�
h
;

and consider the modi�ed qualocation method

�hK
i
�
h
wh = �hg : (3.8)

If i� = 0 then (3.8) is equivalent to (2.10) (or (2.16)). Otherwise, (3.8) can be

obtained from (2.5) by a slight change to the coe�cient matrix of the corresponding

linear system. By mimicking the derivation of (3.7) from (2.10), it is easily seen

that (3.8) is equivalent to

(I +RhMT
i
�
h)wh = Rhe : (3.9)

The following theorem, which is the main result of this section, establishes the

convergence of the (modi�ed) qualocation method with optimal order in the L2
norm.

Theorem 3.4. Suppose that q > (k+1=2)maxj(1+ j�jj) and f 2 H
k+5=2(�). Then

there exists i� such that (3.8) has a unique solution for all h su�ciently small and

jjw � whjj0 � ch
k
; (3.10)

where c is a constant which depends on w and i� but is independent of h.

Proof. Following [9, Theorem 9] we �rst verify the stability of (3.9), that is the

estimate

jj(I +RhMT
i
�
h)vhjj0 � cjjvhjj0 8vh 2 V

k

h
(3.11)

for all h su�ciently small, where i� is large enough and c does not depend on h.

Since, by Theorem 3.1, I +M is invertible and strongly elliptic, we obtain stability

of the �nite section operators T �(I +M)T � , � ! 0 (see e.g. [16] or [18, page 33]),

which implies the estimate (cf. [9, Theorem 6])

jj(I +MT
� )vjj0 � cjjvjj0 8v 2 H

0
; 8� � �0 : (3.12)

Now (3.11) is obtained with the aid of (3.12) and the following perturbation result:

For each � > 0, there exists i� � 1 such that for all h su�ciently small

jj(I �Rh)MT
i
�
h
jj0 < � : (3.13)

10



A proof of this is given in [9, Lemma 8], for the case of the basic collocation method.

The arguments there use quasi{interpolants and are based on kernel estimates for

M and on the bounds

jjRhjj0 � c ; jjI �RhjjH1
!H0 � ch 8h > 0 ; (3.14)

following from Proposition 2.2. Thus the assertion extends immediately to the

general case of the qualocation method.

A simpler proof of (3.13), which employs Theorem 3.3 and (3.14) but avoids

the use of quasi{interpolants, can be found in [11].

To prove the error estimate (3.10), we observe that

jjw � whjj0 � jj(I �Rh)wjj0 + jjwh �Rhwjj0 ;

where the �rst term is of order hk by Proposition 2.2 (with s = 0, t = k) and

Theorem 3.2 (with l = k).

Furthermore, using (3.11) and then (3.9) with (3.3) and the �rst inequality of

(3.14), we obtain

jjwh �Rhwjj0 � cjj(I +RhMT
i�h)(wh �Rhw)jj0

= jjRh[(I +M)w � (I +MT
i�h)Rhw]jj0

� cjj(I +MT
i�h)(I �Rh)w +M(I � T

i�h)wjj0

� cjj(I �Rh)wjj0 + cjj(I � T
i�h)wjj0 :

It remains to verify that the last term is of order hk. Now by the choice of q stated

in the hypothesis we have from (3.5)

w(s) = O(js� Sj j
k�1=2) ; s! Sj ;

for all j, which yields the assertion. 2

The approximation wh to w de�ned in (3.9) may be used to construct a cor-

responding approximation uh to the solution u of the original boundary integral

equation (1.1):

uh(
(�)) = j

0(�)j�1wh(�) :

Then, under the assumptions of the preceding theorem, this approximation con-

verges to u with order O(hk) in a certain weighted L2 norm, where the weight

vanishes with order O(js� Sjj
1�1=q) as s! Sj for any j; see [9].

In other situations integral functionals of u may be required, such as those

representing the solutions of boundary value problems by interior potentials. These

may be written as smooth linear functionals of the solution w of (2.2):Z
�
u~vd� =

Z
�

��

w(�)v(�)d� = (w; v) ; (3.15)

where v = ~v � 
 and ~v 2 C
1(�), ~v real. Since

j(w; v)� (wh; v)j � jjw � whjj�1jjvjj1 ;

the following corollary is then of interest. Its proof is entirely analogous to that of

Theorem 8 in [12].

11



Corollary 3.1. Under the hypotheses of Theorem 3.4,

jjw �whjj�1 � ch
k+�

;

where � = 1 if i� = 0, and � = 1=2 if i� � 1.

In the next section we shall obtain faster convergence rates for the approxima-

tion (wh; v) to (3.15), using certain special qualocation methods, under the assump-

tion that the method is stable with i� = 0.

4. Superconvergence results for linear functionals

Let � be a simple closed polygon as in the preceding section, and suppose that

the qualocation method (2.10) satis�es Assumptions (A) and (B) and is of order

k + 1 + b, b � 0. We further assume that (2.10), or equivalently (3.9) with i� = 0,

is stable in H0 so that, given g 2 H1, a unique solution wh 2 V
k

h
of (2.10) exists for

all h su�ciently small.

The following theorem establishes superconvergence of the qualocation approx-

imation to the functional (3.15).

Theorem 4.1. Suppose the hypothesis of Theorem 3.2 holds with l = min(2k; k+b),
and that ~v := v � 


�1
2 C

1(�). Suppose also that Theorem 3.4 holds with i� = 0.
Then we have the error estimate

j(w � wh; v)j = O(hl+1) as h! 0 : (4.1)

In particular, Theorem 4.1 shows that linear functionals of the mid{point col-

location method with splines of odd order k can achieve an order of k+2, as shown

by Saranen [20] for smooth �. This con�rms the O(h3) convergence of the piecewise

constant collocation observed in the numerical experiments of [9]. More interesting-

ly, we see that the last two qualocation methods in Table 1 can yield an order of 5 in

the polygonal case, just as for smooth �. The order is only 3 for the second and the

third methods in the table, since the convergence rate established in (4.1) is never

better than the O(h2k+1) rate achieved by the corresponding Galerkin method. Fi-

nally, we note that all other higher order qualocation methods contained in Tables

1 and 4 of [5] achieve the same orders of convergence as in the smooth case.

Proof of Theorem 4.1. Let z be the unique solution of Kz = v. Since by assumption

v � 

�1

2 C
1(�), Theorem 3.2 implies z 2 H

l. Furthermore, since K = A(I +M)

and A and K are self{adjoint with respect to the scalar product (2.4), we obtain

(w � wh; v) = (w �wh;Kz) = ((I +M)(w � wh); Az)

= ((I �Rh)(I +M)(w � wh); Az) (4.2)

= ((I �Rh)w;Az) + ((I �Rh)M(w � wh); Az) ;

where we used (3.3) and (3.7) to obtain the third equality.

We now estimate the �rst term on the right side of (4.2). Setting

k1 = min(k; b) = l � k ;

12



Proposition 2.2 (with s = �k1 � 1, t = k) gives

j((I �Rh)w;Az)j � jj(I �Rh)wjj�1�k1 jjAzjj1+k1

� jj(I �Rh)wjj�1�k1 jjzjjl � ch
k+k1+1

jjwjjk+k1 � ch
l+1

since w 2 H
l by Theorem 3.2. It remains to �nd an analogous bound for the last

term in (4.2). By Proposition 2.2 (with s = �1, t = 0) and by duality, we have

j(I �Rh)M(w � wh); Az)j = j(M(w � wh); (I �R
�

h
)Az)j

� jjM(w �wh)jj0jj(I �R
�

h
)Azjj0 � chjjAzjj1jjM(w � wh)jj0

� chjjM(w � wh)jj0 :

So it su�ces to establish the estimate

jjM(w � wh)jj0 = O(hl) :

Comparing (3.3) and (3.7) again, we get RhM(w � wh) = wh �Rhw, hence

(I +MRh)M(w � wh) =M(w � wh) +M(wh �Rhw) =M(I �Rh)w :

Together with the stability of (3.7), this implies the estimate

jjM(w � wh)jj0 � cjjM(I �Rh)wjj0 :

To complete the proof of (4.1), it now remains to show

jjM(I �Rh)wjj0 = O(hl) :

In order to do so, we shall prove that

jjM(I � Ph)wjj0 = O(hl) (4.3)

and

jj(Ph �Rh)vjj0 � ch
l
jjvjjl 8v 2 H

l
; (4.4)

where Ph denotes the orthogonal projection of H0 onto V k

h
with respect to the L2

inner product (2.4). The proof of (4.4) is postponed to the next section; see Corollary

5.1 with � = �1.

Since M takes the form (3.4), relation (4.3) follows from the estimate

jjD(A�K)(I � Ph)wjj0 + jj(A�K)(I � Ph)wjj0 = O(hl) : (4.5)

To verify this, we use the following localisation procedure. Choose � > 0 su�ciently

small and let  j be 2�{periodic non{negative C
1 cut{o� functions such that  j � 1

in some neighbourhood of Sj and supp  j � [Sj � �; Sj + �]. Then we have

D(A�K)w =
X
j

 jD(A �K) jw + Tw (4.6)

where, in view of Theorem 3.3, the kernel functions of the integral operator T and

its L2 adjoint T � have bounded derivatives of order � q � 1 on [��; �]� [��; �].

Since by assumption q > (l + 1=2)maxj(1 + j�jj), and hence q � k + 1, T � is a

bounded operator of H0 into Hk. Therefore, its L2 adjoint T is a bounded map of

H
�k into H0 and we obtain

jjT (I � Ph)wjj0 � cjj(I � Ph)wjj�k � ch
2k
jjwjjk � ch

2k
; (4.7)

using a standard spline approximation result; see e.g. [18, Corollary 1.36].
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Now we look at the jth term in the sum (4.6) representing D(A � K) local

to the jth corner. Without loss of generality we can assume that this is situated

at Sj = 0 and write  instead of  j for convenience. By Theorem 3.3 the kernel

function b(s; �) of the integral operator Bv :=  D(A�K) v satis�es the estimates

jD
i

s
D

m

�
b(s; �)j � c(jsj+ j�j)�i�m�1 ; i+m � l � k ;

s; � 2 [��; �]nf0g :

(4.8)

Furthermore, Theorem 3.2 implies that the exact solution of (3.2) multiplied by a

suitable cut{o� function satis�es

s
m�l

D
m
w 2 H

0
; m = 0; :::; k : (4.9)

Noting that the same type of arguments (with even better kernel estimates) applies

to the operator A �K, we �nally obtain (4.5) with the aid of (4.6){(4.9) and the

theorem below. 2

Theorem 4.2. Suppose that the kernel function of the operator

Bv(s) =

Z
�

��

b(s; �)v(�)d�

satis�es (4.8), and assume that (4.9) holds. Then we have

jjB(I � Ph)wjj0 = O(hl) :

In the case of rather general Mellin convolution operators B, approximation

results of this type have been obtained in [4, 7] for (discontinuous) piecewise poly-

nomials, whereas [8] contains a partial result for smoothest splines which, however,

does not cover the above result. Modifying the approach of [8] slightly, we are able

to give the

Proof of Theorem 4.2. Following [2] and [8], we �rst introduce suitable quasi{

interpolants, leading to local spline approximation results. Let � be the (k � 1)

fold convolution of k copies of the characteristic function of (0; 1), and de�ne the

B{spline Bi(s), s 2 IR, i 2 ZZ, as the 2�{periodic extension of �(h�1(s + �) � i).

Note that fBi : i = 0; :::; n � 1g is a basis of V k

h
if n � k, and for any element

v =
P

i �iBi 2 V
k

h
, the inequalities

c
�1
h

X
i

j�ij
2
� jjvjj

2
0 � ch

X
i

j�ij
2 (4.10)

hold (see e.g. [2, Chap. 4, Theorem 2.5]), where here and in what follows c is some

positive constant independent of h.

Let fsig be the uniform mesh introduced in the preceding section. Furthermore,

let Ii = (si; si+1) and ~Ii = (si+1�k; si+k), and for n su�ciently large introduce the

set

J = fi 2 ZZ : ~Ii \ (�h; h) = ;g :
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For any v 2 H0 we now de�ne the quasi{interpolant ~Phv 2 V
k

h
by

~Phv(s) :=
X
i2J

fh
�1
Z
IR
v(t)�(h�1(t+ �)� i)dtg�(h�1(s+ �)� i)

=
X

i2J ;0�i<n

fh
�1
Z
Ii

v(t)�(h�1(t+ �)� i)dtgBi(s) ; (4.11)

where � is a bounded function on IR satisfying supp � = [0; 1],
R
IR �(s)ds = 1, and

if k > 1, Z
IR

Z
IR
�(s)�(�)(s � �)jdsd� = 0 ; 1 � j � k � 1 :

For instance, � can be chosen as the product of the characteristic function of (0; 1)

with a uniquely determined polynomial of degree k � 1 (see [2, Chap. 4, proof of

Theorem 2.4]). Note that the equality in (4.11) is clear from the 2�{periodicity

of v. Thus (4.11) is a slight modi�cation of the spline approximations considered

in [2, Chap. 4], ensuring that ~Phv = 0 on (�h; h). Moreover, (4.11) reproduces

polynomials locally in the sense that if v is a polynomial of degree � k � 1 on an

interval ~Ii then ~Phv(s) = v(s) for all s 2 Ii, any i 2 J with 0 � i � n � 1 (see

[2, Chap. 4, Remark 3.1]), and for these i we have the local error estimates (see [2,

Chap. 4, Theorem 3.1])

Z
Ii

jv � ~Phvj
2
ds � ch

2m
Z
~Ii

jD
m
vj
2
ds 8v 2 H

m
; m = 1; :::; k : (4.12)

By virtue of (4.10), the estimate

Z
Ii

jv � ~Phvj
2
ds � c

Z
~Ii

jvj
2
ds 8v 2 H

0 (4.13)

is valid for any 0 � i � n� 1.

Since we may write

B(I � Ph)w = B(I � Ph)s
l�k
s
k�l(I � ~Ph)w ;

Theorem 4.2 is now a consequence of the estimates

jjs
k�l(I � ~Ph)wjj0 = O(hk) ; (4.14)

jjB(I � Ph)s
l�k
vjj0 � ch

l�k
jjvjj0 8v 2 H

0
;

where by duality the latter is equivalent to

jjs
l�k(I � Ph)B

�
vjj0 � ch

l�k
jjvjj0 8v 2 H

0
; (4.15)

B
� being the integral operator with kernel b(�; s).

To establish (4.14), we observe that (4.12) (with m = k) implies
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Z
Ii

js
k�l(I � ~Ph)wj

2
ds � jsij

2(k�l)
ch

2k
Z
~Ii

jD
k
wj

2
ds

� j(si+k=si)j
2(l�k)

ch
2k
Z
~Ii

js
k�l
D

k
wj

2
ds � ch

2k
Z
~Ii

js
k�l
D

k
wj

2
ds

(4.16)

for all i 2 J with 0 � i � n� 1. Analogously, by (4.13) we have for any i satisfying

Ii \ f(�(k + 1)h;�3h=2) [ (3h=2; (k + 1)h)g 6= ;Z
Ii

js
k�l(I � ~Ph)wj

2
ds � c

Z
~Ii

js
k�l
wj

2
ds � ch

2k
Z
~Ii

js
�l
wj

2
ds : (4.17)

Finally, combining the estimateZ
h

�h

js
k�l(I � ~Ph)wj

2
ds =

Z
h

�h

js
k�l
wj

2
ds � ch

2k
Z

h

�h

js
�l
wj

2
ds ;

with (4.16) and (4.17), we obtain

jjs
k�l(I � ~Ph)wjj

2
0 � ch

2k
fjjs

k�l
D

k
wjj

2
0 + jjs

�l
wjj

2
0g

which with the aid of (4.9) gives (4.14).

To prove (4.15), we write

s
l�k(I � Ph)B

�
v = s

l�k(I � Ph)(1 � �h)(I � ~Ph)B
�
v + s

l�k(I � Ph)�hB
�
v ;

where �h denotes the characteristic function of (�h; h); recall that �h
~Phv = 0 for

any v 2 H0. Now Lemma 4.1 below (with % = l � k) implies the estimates

jjs
l�k(I � Ph)�hB

�
vjj0 � ch

l�k
jjB

�
vjj0 � ch

l�k
jjvjj0 ;

jjs
l�k(I � Ph)(1� �h)(I � ~Ph)B

�
vjj � cjjs

l�k(I � ~Ph)B
�
vjj0

for all v 2 H0. Thus it remains to verify the inequality

jjs
l�k(I � ~Ph)B

�
vjj0 � ch

l�k
jjvjj0 8v 2 H

0
: (4.18)

Using the facts that (4.8) is also valid for the kernel of B� and that an integral

operator with Mellin convolution kernel jsj%(jsj + j�j)�%�1, % � 0, is bounded on

L2(��; �) (see e.g. [4, 7]), we now obtain that smDm
B
� are bounded operators on

H
0 for m = 0; :::; l� k. Using (4.12) (with m = l � k) and arguing as in the proof

of (4.16), we get Z
Ii

js
l�k(I � ~Ph)B

�
vj
2
ds

� j(si+1=si+1�k)j
2(l�k)

ch
2(l�k)

Z
~Ii

js
l�k
D

l�k
B
�
vj
2
ds (4.19)

� ch
2(l�k)

Z
~Ii

js
l�k
D

l�k
B
�
vj
2
ds

for any i 2 J with 0 � i � n� 1. Furthermore, we have the obvious estimateZ (1+k)h

�(1+k)h
js

l�k(I � ~Ph)B
�
vj
2
ds � ch

2(l�k)
jj(I � ~Ph)B

�
vjj

2
0 � ch

2(l�k)
jjB

�
vjj

2
0 ;
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and combining this with (4.19) yields

jjs
l�k(I � ~Ph)B

�
vjj

2
0 � ch

2(l�k)
fjjs

l�k
D

l�k
B
�
vjj

2
0 + jjB

�
vjj

2
0g

� ch
2(l�k)

jjvjj
2
0

which completes the proof of (4.18). 2

To complete the proof of Theorem 4.2, we need the following lemma. Its proof

is based on the technique introduced in [8, Lemma 3.3].

Lemma 4.1. If % � 0 then, for all v 2 H0 and h > 0,

(i) jj jsj
%
Ph(1 � �h)vjj0 � cjj jsj

%
vjj0,

(ii) jj jsj%Ph�hvjj0 � ch
%
jjvjj0.

Proof. (i) Let fBi : i = 0; :::; n � 1g be the basis of V k

h
de�ned above, and let

G
�1
n

= (gij)
n�1
i;j=0 be the inverse of the Gram matrix Gn = ((Bj; Bi))

n�1
i;j=0. Then the

orthogonal projection Ph onto V k

h
takes the form

Phv(s) =
X
i

8<
:
X
j

gij(v;Bj)

9=
;Bi(s) : (4.20)

We now �x an integer i0 � 1 which will be chosen su�ciently large later on, and set

ti = jsij when supp Bi \ (�i0h; i0h) = ; and ti = i0h otherwise. Observe that (4.20)

can be written

Phv = FnHnMnv ; (4.21)

where the mappings Mn : L
%

2 ! Cn, Hn : C
n
! Cn and Fn : C

n
! L

%

2 are given by

Mnv = (t
%

ih
�1=2(v;Bi))

n�1
0 ;

Hn(�i)
n�1
0 =

0
@ht%

i

X
j

gijt
�%

j
�j

1
A
n�1

i=0

;

Fn(�i)
n�1
0 =

X
i

t
�%

i h
�1=2

�iBi :

Here L
%

2 denotes the weighted L2 space with norm jj jsj
%
vjj0, and C

n refers to the

n{dimensional Euclidean space equipped with the standard scalar product h�; �i and

the corresponding norm j � j.

To prove (i), we check that the operators Fn, Mn(1��h) and Hn are uniformly

bounded in n provided i0 is appropriately chosen. Since the second estimate of

(4.10) easily gives

jj jsj
%
X
i

�iBijj
2
0 � ch

X
i

t
2%
i j�ij

2
;

we �rst obtain, for all n and (�i)
n�1
0 2 Cn,

jj jsj
%
Fn(�i)

n�1
0 jj

2
0 � c

X
i

j�ij
2
; (4.22)
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hence the result for Fn. To verify the uniform boundedness ofMn(1��h) : L
%

2 ! Cn,

we note that for any v 2 L
%

2, 0 � i � n � 1 and i0 � 1

jt
%

i
h
�1=2((1 � �h)v;Bi)j

2
� t

2%
i
h
�1
Z

si+k

si

jsj
2%
jvj

2
ds

Z
si+k

si

jsj
�2%

j(1� �h)Bij
2
ds

� ch
�1
jjBijj

2
0

Z
si+k

si

jsj
2%
jvj

2
ds

which gives

jMn(1 � �h)vj
2 =

X
i

jt
%

i
h
�1=2((1 � �h)v;Bi)j

2
� cjj jsj

%
vjj

2
0 : (4.23)

Thus it remains to prove

jjHnjjCn!Cn � c 8n � i0 (4.24)

for i0 large enough. De�ning the diagonal matrix

Dn = diag ft
%

i
; i = 0; :::; n� 1g

and setting

Jn = h
�1
Gn ; Kn = h

�1
DnGnD

�1
n
� Jn ;

we observe that

Hn = hDnG
�1
n
D
�1
n

= (Jn +Kn)
�1
:

Therefore, (4.24) follows from the relations

jjJnjjCn!Cn � c ; jjJ
�1
n
jjCn!Cn � c 8n 2 IN (4.25)

and

8� > 0 9i0 : jjKnjjCn!Cn � � 8n � i0 : (4.26)

To prove (4.25), we note that (4.10) implies

c
�1
hGn(�i); (�i)i � hj(�i)j

2
� chGn(�i); (�i)i 8(�i) 2 C

n
;

and hence

c
�1
j(�i)j

2
� hJn(�i); (�i)i � cj(�i)j

2
;

which gives the result. It remains to verify (4.26). The elements kij of Kn take the

form

kij = h
�1
t
%

i
Gijt

�%

j
� h

�1
Gij ; Gij = (Bj; Bi) :

Thus we have for all i; j

jkijj � h
�1
Gij sup j1 � (tl=tm)

%
j ;

where the supremum is taken over all indices l;m satisfying jl�mj � k� 1. Conse-

quently, by the de�nition of ti, this supremum can be made as small as desired for

all n � i0 if i0 is chosen su�ciently large, and we now obtain (4.26) with the aid of

the �rst inequality in (4.25).

(ii) By virtue of (4.21), (4.22) and (4.24), it su�ces to show the estimate

jMn�hvj
2 =

X
i

t
2%
i h

�1
j(�hv;Bi)j

2
� ch

2%
jjvjj

2
0 8v 2 H

0
; 8n 2 IN :

The latter is true because ti � ch for all i satisfying supp Bi \ (�h; h) 6= ;. 2

18



5. Some spline approximation results

The superconvergence results depend on proving the estimate (4.4) for the op-

erator Ph � Rh, where Ph is the orthogonal projection of H0 onto the set Vh of

smoothest 2�{periodic splines of order k on a uniform mesh, with mesh spacing

h = 2�=n, and Rh denotes the solution operator of the qualocation method (2.10)

for the circle. This will now be established, in a more general setting, as a corollary

of two spline approximation results which also seem to be of independent interest.

With 'm(s) := e
�ms
=(2�)1=2, let

Th := f'm : �n=2 < m � n=2g :

Furthermore, let ph : L2 = H
0
! Vh be the projection de�ned by

phg 2 Vh ; (phg; �) = (g; �) 8� 2 Th : (5.1)

Note that the orthogonal projection Ph is de�ned by

Phg 2 Vh ; (Phg; �) = (g; �) 8� 2 Vh : (5.2)

Theorem 5.1. For 0 � t � 2k,

jjPhg � phgjj0 � ch
t
jjgjjt ;

if g 2 H t.

Proof. As usual, de�ne

�h = fm 2 ZZ : �n=2 < m � n=2g ; ��
h
= �hnf0g ;

and

 � =

8<
:
'0 if � = 0 ;P
m��

�
�

m

�k
'm if � 2 ��

h
;

so that f � : � 2 �hg is a basis for Vh. Here and elsewhere m � � means m � �

(mod n). Then phg has the explicit formula

phg =
X
�2�h

ĝ(�) � ; (5.3)

since we easily verify that (5.1) is then satis�ed, using the easily proved relation

( �; '�) = ��� ; for �; � 2 �h :

On the other hand Phg has the explicit formula

Phg = ĝ(0) 0 +
X
�2��

h

P
m��

�
�

m

�k
ĝ(m)

( �;  �)
 � ; (5.4)

since we then have (Phg;  0) = ĝ(0) 0 = (g;  0), and for � 2 ��
h
,

(Phg;  �) =
X
m��

�
�

m

�
k

ĝ(m) = (g;  �) ;

so that (5.2) is satis�ed. The denominator ( �;  �) in (5.4) can be written, for

� 2 ��
h
, as
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( �;  �) =

 X
m��

�
�

m

�
k

'm ;
X
m��

�
�

m

�
k

'm

!
=
X
m��

�
�

m

�2k

=
1X

l=�1

 
�=n

l + �=n

!2k
= D

�(�=n) ;

(5.5)

where for jyj � 1=2

D
�(y) :=

1X
l=�1

 
y

l + y

!2k
= 1 + E

�(y) (5.6)

and

E
�(y) := y

2k
X
l6=0

1

(l + y)2k
� cy

2k
: (5.7)

Thus

Phg � phg =
X
�2��

h

1

D�(�=n)

"X
m��

�
�

m

�k
ĝ(m)�

�
1 + E

�

�
�

n

��
ĝ(�)

#
 �

=
X
�2��

h

1

D�(�=n)

"
�E

�

�
�

n

�
ĝ(�) +

X
m��

0

�
�

m

�
k

ĝ(m)

#X
p��

 
�

p

!k

'p ;

giving

jjPhg � phgjj
2
0 =

X
�2��

h

X
p��

1

D�(�=n)2

������E�
�
�

n

�
ĝ(�) +

X
m��

0

�
�

m

�
k

ĝ(m)

�����
2  

�

p

!2k

=
X
�2��

h

1

D�(�=n)

������E�
�
�

n

�
ĝ(�) +

X
m��

0

�
�

m

�
k

ĝ(m)

�����
2

� 2
X
�2��

h

����E�
�
�

n

�
ĝ(�)

����2 + 2
X
�2��

h

�����
X
m��

0

�
�

m

�
k

ĝ(m)

�����
2

=: A+B ;

where we have used D�(y) � 1, (a+ b)2 � 2(a2 + b
2) and the notation

X
m��

0

=
X
m��

m6=�

:

Now for 0 � t � 2k, by (5.7)

A � c
X
�2��

h

�����
n

����
4k

jĝ(�)j2 � c
X
�2��

h

�����
n

����
2t

jĝ(�)j2

= ch
2t
X
�2��

h

j�j
2t
jĝ(�)j2 � ch

2t
jjgjj

2
t
;
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and

B � 2
X
�2��

h

j�j
2k

 X
m��

0 1

jmjk
jĝ(m)j

!2

� cn
2k
X
�2��

h

 X
m��

0 1

jmjk+t
jmj

t
jĝ(m)j

!2

� cn
2k
X
�2��

h

 X
m��

0 1

jmj2(k+t)

! X
p��

0

jpj
2t
jĝ(p)j2

!
:

Because 2(k + t) > 1 we have

X
m��

0 1

jmj2(k+t)
=
X
l6=0

1

j�+ lnj2(k+t)
=

1

n2(k+t)

X
l6=0

1

jl+ �=nj2(k+t)
�

c

n2(k+t)
;

so

B � ch
2t
X
�2��

h

X
m��

0

jmj
2t
jĝ(m)j2 � ch

2t
jjgjj

2
t
:

Putting the results together, we obtain

jjPhg � phgjj
2
0 � ch

2t
jjgjj

2
t
;

for 0 � t � 2k. 2

Now let L be the (periodic) pseudo{di�erential operator of real order � de�ned

by

Lv = v̂(0)'0 +
X
m6=0

jmj
�
v̂(m)'m ;

or by

Lv = v̂(0)'0 +
X
m6=0

signmjmj�v̂(m)'m :

In the former case L is "even", in the latter case it is "odd". With V 0
h
denoting the set

of smoothest splines of order k0 on the same mesh as above, we de�ne gh = Rhg 2 Vh

to be the solution of the qualocation equation (cf. (2.10):

(Lgh; �)h = (Lg; �)h 8� 2 V
0

h
; (5.8)

where the qualocation method is assumed to be (in the sense of [5]) both stable and

of order k � � + b: that is to say, the "additional order of convergence" is b � 0.

We also need to assume that the qualocation method is "well de�ned", i.e. (see

[5, (2.12), (2.13)]) either k > � + 1, or k > � + 1=2 and the breakpoints are not

quadrature points.

Theorem 5.2. If gh 2 Vh is the solution of the well de�ned qualocation method
(5.8), assumed to be stable and to have additional order of convergence b, then for

0 � t � k � � + b and t > � + 1=2

jjgh � phgjj0 � ch
t
jjgjjt+max(�;0)

if g 2 H t+max(�;0).
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Proof. Since gh 2 Vh we have

gh =
X
�2�h

ĝh(�) � ;

which together with (5.3) gives

gh � phg =
X
�2�h

(ĝh(�)� ĝ(�)) �

= (ĝh(0)� ĝ(0)) 0 +
X
�2��

h

(ĝh(�)� ĝ(�))
X
m��

�
�

m

�
k

'm ;

and hence

jjgh � phgjj
2
0 = jĝh(0) � ĝ(0)j2 +

X
�2��

h

X
m��

jĝh(�)� ĝ(�)j2
���� �
m

����
2k

� jĝh(0) � ĝ(0)j2 + c
X
�2��

h

jĝh(�)� ĝ(�)j2 :

Now [5, (3.4)] gives

ĝh(0) � ĝ(0) =
X
j

wj

X
m�0

0

[m]�ĝ(m)'m=n(�j) ;

with (for m 6= 0)

[m]� =

(
jmj

� if L is even

signmjmj� if L is odd:

Thus with � := t+max(�; 0)

jĝh(0)� ĝ(0)j2 �

 X
m�0

0

jmj
�
jĝ(m)j

!2
=

 X
m�0

0

jmj
���

jmj
�
jĝ(m)j

!2

�

X
m�0

0

jmj
2(���)

X
m�0

0

jmj
2�
jĝ(m)j2

� ch
2(���)

jjgjj
2
�
� ch

2t
jjgjj

2
�
;

because � � � � t� � > 1=2 and � � � � t. And also from [5, (3.4)], for � 2 ��
h
,

ĝh(�)� ĝ(�) = �

E(�=n)

D(�=n)
ĝ(�) +Rn(�) ;

where because the method is stable inf jD(y)j > 0, and because the method is of

additional order b,

jE(y)j � cjyj
k��+b for jyj � 1=2 ;

and

Rn(�) = D

�
�

n

�
�1X

j

wj

X
m��

0

"
m

�

#
�

ĝ(m)'m��

n
(�j)(1 + �0

�
�j;

�
�

n

��
;

where from [5, Lemma 1 (iv)] j�0(x; y)j � c for x 2 [0; 1] and jyj � 1=2, giving

X
�2��

h

jĝh(�)� ĝ(�)j2 � c

X
�2��

h

�����
n

����2(k��+b) jĝ(�)j2 + c

X
�2��

h

jRn(�)j
2 =: Y + Z :
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Because t � k � � + b and t � � ,

Y = c

X
�2��

h

�����
n

����
2(k��+b)

jĝ(�)j2 � c

X
�2��

h

�����
n

����
2t

jĝ(�)j2

= ch
2t
X
�2��

h

j�j
2t
jĝ(�)j2 � ch

2t
jjgjj

2
t
� ch

2t
jjgjj

2
�
;

and

Z = c

X
�2��

h

jRn(�)j
2
� c

X
�2��

h

0
@X

m��

0

�����m�
�����
�

jĝ(m)j

1
A
2

� c

X
�2��

h

j�j
�2�

 X
m��

0

jmj
���

jmj
�
jĝ(m)j

!2

� c

X
�2��

h

j�j
�2�

X
m��

0

jmj
2(���)

X
p��

0

jpj
2�
jĝ(p)j2

� ch
2(���)

X
�2��

h

j�j
�2�

X
m��

0

jmj
2�
jĝ(m)j2 :

Now

j�j
��

�

(
1 if � > 0

n
�� if � � 0

= n
��+max(�;0)

:

Thus

Z � ch
2t+2(max(�;0)��)

n
2(max(�;0)��)

X
�2��

h

X
m��

0

jmj
2�
jĝ(m)j2 � ch

2t
jjgjj

2
�
:

Thus on combining terms, we �nd

jjgh � phgjj
2
0 � ch

2t
jjgjj

2
�
= ch

2t
jjgjj

2
t+max(�;0) :

2

Corollary 5.1. Let gh be as in Theorem 5.2, with � � 0. Then for 0 � t �

min(2k; k � � + b), t > � + 1=2,

jjPhg � ghjj0 � ch
t
jjgjjt :

In particular, applying the last result to the pseudodi�erential operator (2.12)

which is of order �1, we obtain an estimate which implies (4.4).
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