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1. Introduction

The investigation of nonlinear reaction{di�usion systems of the form

@u

@t
�r �D(u)ru = f(u;ru) (1.1)

has received much attention in recent years [Am]. Here, u = (u1; :::; un) represents the
concentrations of n species, D = (D1; :::;Dn) is the corresponding set of di�usion co-

e�cients and f describes external sources and reactions. If transport includes drift in

addition to di�usion, the 
ow J = �Dru has to be replaced by J = �Dru+ v, where

v is the convection 
ow. If the species are electrically charged, a drift is selfconsistently

caused by the electrical �eld v = �crv0, where v0 is the electrostatic potential satisfying
Poisson's equation with the charge density as right-hand side. (The notation v0 for the
electrostatic potential will be convenient later on.) Drift{di�usion processes of charged

species play an important rôle in many branches of modern natural sciences and technol-

ogy. Especially in microelectronics, drift{di�usion models have fundamental signi�cance

for process simulation as well as for device simulation (see [Se]).

In this paper we state some basic facts about reaction{di�usion equations for charged

species. Unlike the usual approach in device simulation, including only electrons and

holes, we admit an arbitrary number of charged species. Our main aim is to show, that

regardless of its complexity, the system of partial di�erential equations governing drift,

di�usion and reaction of charged species has a convenient mathematical structure. Thus,

following the ideas of S.G. Michlin [Mi], variational methods can be applied for proving

global existence and uniqueness results. The key is a convex functional which can be

interpreted from the viewpoint of thermodynamics as free energy. In particular, this

functional turns out to be a Lyapunov function of the system and ensures exponential

decay of arbitrary perturbations of thermal equilibria. We have to admit, however, that

our existence results are based on additional assumptions restricting the growth of the

source terms caused by chemical reactions.

The plan of the paper is following: First we discus some physical models for the drift{

di�usion approach. Section 3 is devoted to the precise statement of the mathematical

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications Server of the Weierstrass Institute for Applied Analysis and Stochastics

https://core.ac.uk/display/198237896?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


problem. The Lyapunov function is introduced in Section 4 and some a priori estimates

are derived. An existence result is stated and a proof is sketched in Section 5. Section 6

deals with the question of uniqueness. Finally, in Section 7, we study the stationary

problem and the asymptotic behaviour of transient solutions.

2. Mathematical modeling

The now classical drift{di�usion model of charged carrier transport in semiconductors

was established by van Roosbroeck [vR] 1950. It consists of a Poisson equation for the

electrostatic potential v0 and continuity equations for the densities u1; u2 of electrons and

holes, respectively:

�r � ("rv0) = f +
2X

i=1

qiui;

@ui

@t
+r � Ji +R = 0; i = 1; 2:

Here " is the dielectric permittivity, q1; q2 are the charges of electrons and holes, respec-

tively, f denotes the net concentration of electrical active dopants, and R is the reaction

(recombination/generation) term. The �rst equation expresses the Gauss law, the lat-

ter two local carrier conservation. Van Roosbroeck's equations are completed by current

relations. It turns out to be useful both from the physical and from the mathematical

point of view to introduce the electrochemical potentials (quasi Fermi potentials) �1; �2
of electrons and holes, respectively, by

�i = qiv0 + vi; i = 1; 2; (2.1)

where v1; v2 are the chemical potentials (which are known functions of the densities u1; u2,

cf. (2.3), (2.4) below). According to Ohm's law, the gradient of the electrochemical

potential is postulated to be the driving force for the 
ow

Ji = ��i uir�i; (2.2)

here �i is the mobility. The notation drift{di�usion model becomes clear by inserting

(2.1) into (2.2). If a magnetic �eld B is present, in (2.2) a term due to the Lorentz power

has to be added:

Ji � �i � Ji = ��i uir�i;

where �i = �iriB (ri is the so called Hall factor). Although the drift{di�usion model has

proved to be of fundamental signi�cance for the analysis and the numerical simulation

of carrier transport in semiconductors, there are serious physical restrictions. First of

all, the temperature is treated as a constant parameter. In order to model thermal

e�ects the system has to be extended by an energy balance equation. Moreover, the

trend to miniaturization forces modeling to become more microscopic and to take into

account kinetic and even quantum mechanical transport e�ects. Some recent versions

2



of the drift{di�usion model try to incorporate such e�ects via a careful and consistent

choice of the physical model parameters. This approach is based on the fact that the

drift{di�usion equations can be derived rigorously from kinetic models (Vlasov{Poisson{

Boltzmann system) [P].

The drift{di�usion model describes electrons and holes in one semiconductor material

(e.g. silicon) reacting via recombination and generation processes. In many situations

di�erent substances have to be taken into account and ionization as well as other chemical

reactions occur. In process modeling, for instance, silicon as semiconductor and boron and

phosphorus as dopants may be involved and may react according to di�erent mechanisms

(e.g. Frank{Turnbull, kick out [GGH, HS]).

In what follows we shall admit n species with densities ui and speci�c charges qi. We

discuss the physical model parameters from a more or less mathematical point of view.

That means, we look for mathematically reasonable relations expressing carrier densities,

mobilities and reaction rates in terms of the potentials to be determined as solutions of

the equations. Fortunately, there is a correspondence between the mathematical and the

physical point of view. As to the physical background we refer to [Se, SF].

Carrier densities

The introduction of a discrete number of charged species in a semiconductor is based

on the energy band model of solid state physics and the e�ective mass approximation.

Nonequilibrium situations are described by Fermi levels associated to the discrete energy

bands. This means in particular that intraband relaxation processes are assumed to

be much faster then interband ones. The standard drift{di�usion model distinguishes

only two species, electrons and holes, associated to the conduction and valence band,

respectively.

Frequently Boltzmann statistics is used for calculating the carrier distribution with

respect to energy. Accordingly, carrier densities ui and chemical potentials vi are related
by

ui = u�
i
exp (vi); (2.3)

where u�
i
is a reference density that generally depends on position because of doping or

heterogeneous materials. Note that the chemical potential vi is assumed to be scaled due to

the fact that only isothermal processes are considered. In some situations (degeneration),

e.g. at high doping levels, Boltzmann statistics has to be replaced by Fermi{Dirac statistics

leading to

ui = u�
i
F1=2(vi); F1=2(s) =

2
p
�

Z
1

0

p
t dt

1 + exp(t� s)
: (2.4)

We shall cover both options by assuming

ui = u�ei(vi) (2.5)

with functions ei satisfying mild conditions stated in the next section.

Mobilities

Mobility models have to account for di�erent scattering mechanisms and high �eld e�ects.
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In particular, carrier{impurity scattering leads to an explicit space dependency of the

mobilities. Carrier{carrier scattering can be modeled via a dependency of �i on the

chemical potentials vi.

The drift{di�usion model is mainly based on the linearized Boltzmann equation. At

higher electric �elds the carriers are able to accelerate and to heat up. Thus, linearization

is no longer justi�ed and a dependency of the mobilities on the gradients of the quasi Fermi

potentials has to be admitted. In order to include the physical e�ects just mentioned and,

possibly, a magnetic �eld, we assume that

Ji = �di(�; vi;r�i); (2.6)

where the properties of the functions di are stated in the next section.

Reactions

Reactions between charged species are often recombination and generation processes. Re-

combination can happen e.g. via deep levels in the gap between conduction and valence

band or as band{to{band transition. Which mechanism dominates depends on mate-

rial properties and operation conditions. The most important recombination/generation

models for electrons and holes are due to Shockley-Read-Hall and Auger:

Rsrh =
exp (�1 + �2)� 1

�2(u1 + r1) + �1(u2 + r2)
;

Raug = (exp (�1 + �2)� 1)(a1u1 + a2u2);

where the parameters �i; ri and ai may depend on position x.

Generalizing these recombination models, we consider mass action type reactions of

the form:

�1X1 + :::+ �nXn
*) �1X1 + :::+ �nXn; (�; �) 2 R;

where X1; : : : ;Xn denote the species with the concentrations u1; : : : ; un, respectively, and
(�; �) is a pair of vectors (�1; : : : ; �n); (�1; : : : ; �n) of stoichiometric coe�cients charac-

terizing the reaction leading from
P

n

i=1 �iXi to
P

n

i=1 �iXi and its converse reaction. We

assume that the rates of these reactions are of the form r��(�; v; � � �) and r��(�; v; � � �),
respectively, where v := (v0; : : : ; vn) and

� := (�1; : : : ; �n); �i := qiv0 + vi; i = 1; : : : ; n; (2.7)

is the vector of electrochemical potentials �i consisting of the electrostatic part qiv0 (qi the

speci�c charge of Xi) and the chemical part vi (i = 1; : : : ; n). The assumption with respect

to r�� re
ects the fact that the scalar product (�� �) � � is supposed to be driving force

for the reactions. Correspondingly,

Ri =
X

(�;�)2R

(r��(�; v; � � �)� r��(�; v; � � �))(�i � �i): (2.8)
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The �nite setR denotes the set of reactions actually taking place in the volume 
 occupied

by the species. Besides the reactions in the volume 
 further reactions may occur on the

boundary � of 
. In analogy to (2.8) we may assume that

R�
i
=

X
(�;�)2R�

(r�
��
(�; v; � � �)� r�

��
(�; v; � � �))(�i � �i) (2.9)

is the contribution of these reactions to the balance of speciesXi (which must be accounted

for in the boundary conditions). HereR� is a �nite set of pairs of vectors of stoichiometric

coe�cients, and the functions r�
��

model the surface reaction rates.

By specifying the coe�cients of the reactions as

r��(�; v; s) = c��(�; v) exp(s);

it becomes clear, that standard mass action rates as well as the recombination models

considered above are included as special cases.

Now we want to combine the physical models to get our �nal system of partial dif-

ferential equations. To this end let 
 be a bounded domain in IRN , N � 2, and @
 = �.

We denote by �(x0) the outer unit normal at x0 2 �. Then the initial boundary value

problem we are interested in reads as follows:

�r � ("rv0) = f +
nP
i=1

qiui

@ui
@t +r � Ji +Ri = 0; i = 1; : : : ; n;

9>>=
>>; on IR+ � 
; (2.10)

� � ("rv0) + �v0 = f�; � � Ji +R�
i
= 0; i = 1; : : : ; n on IR+ � �; (2.11)

ui(0; �) = u0
i
; i = 1; : : : ; n; on 
: (2.12)

Here the densities ui, the 
ows Ji, and the reaction terms Ri; R
�
i
are given by (2.5)

{ (2.9). The functions f and f� are �xed source terms (representing e.g. the charge

density of dopants). The function � represents a capacity of the boundary. The system

(2.5) { (2.12) is to be regarded as an initial boundary value problem for the unknown

vector v = (v0; v1; : : : ; vn) of potentials and the corresponding vector u = (u0; : : : ; un) of
densities. Here u0 :=

P
n

i=1 qiui is the charge density caused by the mobile species.

Remark 2.1. An essential feature of the problem (2.5) { (2.11) is the fact that it allows so

called thermal equilibria, i.e. steady states with vanishing driving forces. The results on

steady states and asymptotic behaviour stated in Section 7 rest heavily on this property.

All the other results remain true also in more general situations, for example, if Dirichlet

conditions are posed on a part of the boundary �.

3. Precise statement of the problem

In this section we want to state precisely the problem discussed in the preceding section.

We start with the formulation of basic hypotheses with respect to the data of the problem.
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These hypotheses read as follows:


 is a bounded Lipschitzian domain in IRN ; N � 2; and � := @
; (3.1)

" 2 L1(
); " � "0 > 0; � 2 L1(�); � � 0; � 6= 0; f 2 L1(
); f� 2 L1(�); (3.2)

u�
i
2 L1(
); u�

i
� � > 0; u0

i
2 L1(
); u0

i
� � > 0; i = 1; : : : ; n; (3.3)

q = (q1; : : : ; qn) 2 IRn; u00 :=
nX
i=1

qiu
0
i
; u0 := (u00; u

0
1; : : : ; u

0
n
); (3.4)

ei 2 C1(IR) is strictly increasing, lim
y!�1

ei(y) = 0; lim
y!1

ei(y) = +1

e0
i
� ei;

0R
�1

ei(y)dy <1; i = 1; : : : ; n;

9>>=
>>; (3.5)

di : 
 � IR� IRN �! IRN satis�es the Carath�eodory conditions,

(di(x; y; �)� di(x; y; �)) � (� � �) � �e0
i
(y)j� � �j2; di(x; y; 0) = 0;

jdi(x; y; �)� di(x; y; �)j � 1
�
ei(y)j� � �j

for x 2 
; y 2 IR; �; � 2 IRN ; i = 1; : : : ; n; and some � > 0;

9>>>>>=
>>>>>;

(3.6)

R and R� are �nite subsets of 6Zn+ � 6Zn+;

8(�; �)2R : r�� :
�IRn+1�IR�! IR+ satis�es the Carath�eodory conditions,

r��(x; v; �) is strictly increasing, r��(x; v; y) � c0 exp(y)

for x 2 
; y 2 IR; and some constant c0;

8(�; �)2R�: r�
��
:��IRn+1�IR�! IR+ satis�es the Carath�eodory conditions,

r�
��
(x; v; �) is strictly increasing, r��(x; v; y) � c0 exp(y)

for x 2 �; y 2 IR; and some constant c0;

8(�; �) 2 R [R� : � � q = � � q:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

(3.7)

(As usual, 6Z+ := fm 2 6Z : m � 0g and IR+ := fy 2 IR : y � 0g:) The requirements

� � q = � � q for (�; �) 2 R [ R� express the fact that electrical charges are conserved

during the reaction processes.

Throughout the paper we shall assume that (3.1) { (3.7) are satis�ed without men-

tioning this explicitly in our theorems. Further assumptions will be formulated later on

in connection with existence and uniqueness results.

Let

V := H1(
; IRn+1); H := L2(
; IRn+1); W := V \ L1(
; IRn+1):

We de�ne E : W �! V � and A :W � V �! V � as follows:

hEw; �vi :=
Z



�
"rw0 � r�v0� f�v0 +

nX
i=1

u�
i
ei(wi)�vi

�
dx+

Z
�
(�w0 � f�)�v0d�;

hA(w; v); �vi :=

Z



� nX
i=1

di(�; wi;r�i) � r��i

+
X

(�;�)2R

(r��(�; w; � � �)� r��(�; w; � � �))(� � �) � ��
�
dx
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+

Z
�

X
(�;�)2R�

(r�
��
(�; w; � � �)� r�

��
(�; w; � � �))(�� �) � ��d�;

where w = (w0; : : : ; wn) 2 W; v = (v0; : : : ; vn) 2 V; �v = (�v0; : : : ; �vn) 2 V ,

� := (�1; : : : ; �n); �� := (��1; : : : ; ��n); � := (�1; : : : ; �n);

�i := qiv0 + vi; ��i := qi�v0 + �vi; �i := qiw0 + wi; i = 1; : : : ; n:

Before we can formulate the initial boundary value problem to be solved we have

to introduce some notation in connection with functions of time. Let Y be any Banach

space and S any (bounded or unbounded) interval in IR. Then Lp(S;Y ) (resp. L
p

loc
(S;Y )),

p 2 [1;1]; means the space of equivalence classes of Bochner measurable functions

u : S �! Y such that ku(�)k2Lp(S) (resp. ku(�)k 2 Lp

loc
(S)). This space will be equipped

with its standard norm (resp. the usual seminorms). H1(S;Y ) is de�ned as the space of

all u 2 L2(S;Y ) such that u0 2 L2(S;Y ), where u0 denotes the derivative of u in the sense

of Y {valued distributions. H1
loc
(S;Y ) is de�ned analogously.

Now the problem we want to solve can be stated as follows: Find (u; v) such that

u 2 H1
loc
(IR+;V

�); v 2 L2
loc
(IR+;V ) \ L1(IR+;L

1(
; IRn+1))

u0 +A(v; v) = 0; u = Ev; u(0) = u0:

9=
; (P)

Here and afterwards A(v; v) and Ev mean the (equivalence classes of the) functions on

IR+ with the values A(v(t); v(t)) and Ev(t), respectively.

Remark 3.1. Standard arguments show that a pair (u; v) of smooth functions solves (P)

if and only if u and v satisfy the equations (2.5) { (2.12). In particular, by means of test

functions of the form (�v0;�q1�v0; : : : ;�qn�v0) it is easy to check that for any solution (u; v)

to (P) it holds u0 =
nP
i=1

qiui.

Remark 3.2. Let (u; v) be a solution to Problem (P). As an element of H1
loc
(IR+;V

�)

the function u is a continuous mapping from IR+ into V �. Using the boundedness of the

functions vi and the properties of the functions ei, i = 1; : : : ; n; it is easy to show that

t 7�! u(t) is continuous from IR+ to L1(
; IRn+1), equipped with its weak� topology.

4. Physically motivated estimates and invariants

In this section we assume that we are given a solution to Problem (P). We shall show

that physically motivated arguments lead to a priori estimates for the solution which are

important for the proof of existence of solutions. In addition, we shall exhibit some in-

variants of the solution re
ecting the \stoichiometric nature" of the reaction terms. These

invariants will play a rôle in connection with the large time behaviour of the solution.

The boundary conditions introduced in Section 2 model a dissipative interaction of the

physical system under consideration with its surrounding. Since we consider isothermic
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processes only we may expect that the free energy decreases along the solutions to (P). We

are going to show that this is indeed the case. Moreover, giving an explicit expression for

the free energy, we prove that this leads to interesting a priori estimates for the solutions

to Problem (P).

In view of (3.5) it makes sense to de�ne 'i 2 C(IR) and  i 2 C(IR+); i = 1; : : : ; n, by

'i(v) :=
Z

v

0
ei(y)dy for v2 IR;  i(u) :=

Z
u

ei(0)
e�1
i
(z)dz for u 2 IR+; i=1; : : : ; n: (4.1)

Next we introduce two convex functionals, namely

�(v) :=
Z



�1
2
"jrv0j2 � fv0 +

nX
i=1

u�
i
'i(vi)

�
dx +

Z
�
(
1

2
�v20 � f�v0)d�; v 2 V; (4.2)

and its conjugate

	(u) := sup
v2V

fhu; vi � �(v)g ; u 2 V �: (4.3)

Note that the values �(v) and 	(u) may be +1. Since �(0) = 0 we have 	(u) � 0 for

every u 2 V �. We refer to Ekeland{Temam [ET] for the basic notions and results from

convex analysis.

The functional � is strictly convex. Hence for every v 2 V its subdi�erential @�(v)

contains at most one element. If v 2 W then, as is easily checked, @�(v) = fEvg:

A simple calculation shows that

	(u) =
Z



�1
2
"jrv0j2 +

nX
i=1

u�
i
 i(ui=u

�

i
)
�
dx+

Z
�

1

2
�v20d�; (4.4)

provided that u 2 V �; ui 2 L2(
); ui � 0; i = 1; : : : ; n; and that v0 is de�ned by

8�v0 2 H1(
) :
Z


("rv0 � r�v0 � f�v0)dx+

Z
�
(�v0 � f�)�v0d� = hu0; �v0i : (4.5)

The value 	(u) is to be interpreted as the free energy of the state u. Therefore one is led
to investigate the behaviour of this functional along solutions to Problem (P).

Theorem 4.1. Let (u; v) be a solution to Problem (P) and let 	 be the functional de�ned

above. Then, for 0 � s � t;
	(u(t)) � 	(u(s)) <1; (4.6)

i.e., 	 is decreasing along any solution to Problem (P). Moreover,

kv0kL1(IR+;H1(
)) +
nX
i=1

k i(ui=u
�

i
)kL1(IR+;L1(
)) � c; (4.7)

and
nX
i=1

ke0
i
(vi)jr�ij2kL1(IR+;L1(
))

+
X

(�;�)2R

k(r��(�; v; � � �)� r��(�; v; � � �))(�� �) � �k
L1(IR+;L1(
))

(4.8)

+
X

(�;�)2R�




(r�
��
(�; v; � � �)� r�

��
(�; v; � � �))(�� �) � �





L1(IR+;L1(�))

� c:
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where c is a constant depending on the data of the problem. As before, � = (�1; : : : ; �n) is

de�ned by �i := qiv0 + vi; i = 1; : : : ; n.

Proof.

1. First we mention that, for every w 2 W ,

hA(w;w); wi � �
nX
i=1

ke0
i
(wi)jr�ij2kL1(
)

+
X

(�;�)2R

k(r��(�; w; � � �)� r��(�; w; � � �))(�� �) � �k
L1(
)

(4.9)

+
X

(�;�)2R�




(r�
��
(�; w; � � �)� r�

��
(�; w; � � �))(�� �) � �





L1(�)

;

where � := (�1; : : : ; �n); ; �i := qiw0 +wi ; i = 1; : : : ; n: This is an immediate consequence

of the de�nition of A (cf. (3.6), (3.7)).

2. Let (u; v) be a solution to (P). Then, for a.e. t 2 IR+,

u(t) = Ev(t) 2 @�(v(t)):

According to a standard result of convex analysis this implies that

v(t) 2 @	(u(t)); for a.e. t 2 IR+:

Therefore, if 0 � s � t; then (cf. Br�ezis [B], Lemma 3.3)

	(u(t))�	(u(s)) =
Z

t

s

hu0(� ); v(� )id�:

(Note that 	(u(t)) is �nite for every t 2 IR+, cf. Remark 3.2 and (4.4).) Since (u; v) is a
solution to (P) we obtain

	(u(t))�	(u(s)) =
Z

t

s

h�A(v(� ); v(� )); v(� )id� � 0: (4.10)

The last inequality follows from (4.9). Hence (4.6) holds.

3. The estimate (4.7) is an immediate consequence of (4.6) and (4.4). The assertion (4.8)

follows from Z
1

0
hA(v(t); v(t)); v(t)idt � 	(u0)

and the relation (4.9). 2

Remark 4.1. The following theorem shows how to use (4.7) and (4.8) to get further

information about a solution (u; v) to Problem (P).

Theorem 4.2. Let (u; v) be a solution to Problem (P). Then

ui log(ui) 2 L1(IR+;L
1(
)); i = 1; : : : ; n: (4.11)
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If N = 2 then v0 2 L1(IR+;L
1(
)): The same is true if

lim sup
y!1

ei(y)y
�1=(p0�1) <1 for some p0 >

N

2
; i = 1; : : : ; n: (4.12)

In that case we have also ui 2 L1(IR+;L
p0(
)); i = 1; : : : ; n.

Remark 4.2. The condition (4.12) is satis�ed for N = 3 with p0 = 5=3 if the functions

ei are given according to the Fermi{Dirac statistics (cf. (2.4)).

Proof of Theorem 4.2.

1. The relation e0
i
(y) � ei(y); y 2 IR; implies that e(y) � e(0) exp(y) for y � 0. Conse-

quently, for u � ei(0),

 i(u) =
Z

u

ei(0)
e�1
i
(z)dz �

Z
u

ei(0)
log(z=ei(0))dz �

1

2
u log(u)� c: (4.13)

An estimate of this form is true also if 0 < u < ei(0): Therefore the assertion (4.11) follows

from (4.7).

2. Let N = 2. The �rst part of the proof shows that for u0 =
nP
i=1

qiui it holds

ju0j log(ju0j) 2 L1(IR+;L
1(
)). Since v0 satis�es (4.5) the property v0 2 L1(IR+;L

1(
))

follows from the results in [G2].

3. Let N > 2, and let p0 >
N
2 be given such that (4.12) holds. Then ei(y) � c0y

1=(p0�1)

for su�ciently large y and a suitable constant c0. Consequently,

e�1
i
(z) � (z=c0)

p0�1 for su�ciently large z

and, for every u � 0,

 i(u) =
Z

u

ei(0)
e�1
i
(z)dz � c1u

p0 � c2;

where c1 > 0. Therefore (4.7) implies that ui 2 L1(IR+;L
p0(
)). The assertion with

respect to v0 now follows from a standard result on elliptic boundary value problems (see

[LU]). 2

Next we shall discuss the invariants of the process mentioned in the beginning of this

section. The space

S := span
n
� � � : (�; �) 2 R [ R�

o
(4.14)

will be called the stoichiometric subspace of IRn associated to the system under consider-

ation. By 1 we denote the function on 
 with the constant value 1. We de�ne

U :=
n
u 2 V � : u0 =

nX
i=1

qiui; (hu1;1i ; : : : ; hun;1i) 2 S:
o

(4.15)

(Note that hui;1i =
R

 uidx if u 2 V � \ L1(
; IRn+1):) The introduction of U is justi�ed

by the following

10



Theorem 4.3. Let (u; v) be a solution to Problem (P). Then

8t 2 IR+ : u(t) 2 U + u0:

Proof. Let

U? := fv 2 V : r� = 0; � 2 S?; where � := (q1v0 + v1; : : : ; qnv0 + vn)g: (4.16)

Here and afterwards S? means the orthogonal complement of S in IRn. From the de�nition

of U? and that of the operator A it follows immediately that, for arbitrary w 2 W and

v 2 V , we have
8�v 2 U? : hA(w; v); �vi = 0:

In particular, if (u; v) is a solution to (P), then hA(v(s); v(s));�vi = 0 for every �v 2 U?.
Hence

8�v 2 U? :
D
u(t)� u0; �v

E
=

Z
t

0
hu0(s); �vi ds = �

Z
t

0
hA(v(s); v(s)); �vi ds = 0:

It is easy to check that U = fu 2 V � : hu; vi = 0 for every v 2 U?g. Therefore, the

preceding equality proves the assertion of Theorem 4.3. 2

Remark 4.3. It may well happen that the stoichiometric subspace S equals IRn. In that

case Theorem 4.3 reduces to the observation that u0 =
P

n

i=1 qiui (cf. Remark 3.1).

5. Existence

As mentioned in the introduction we can prove existence only under additional restrictive

hypotheses with respect to the reaction terms. We shall assume that

8v 2 IRn+1; 8(�; �) 2 R; 8i 2 f1; : : : ; ng :

(r��(�; v; � � �)� r��(�; v; � � �))(� � �)i � c(v0)
nP

j=1
jej(vj)j1+

2
N + c(v0);

9>=
>; (5.1)

8v 2 IRn+1; 8(�; �) 2 R�; 8i 2 f1; : : : ; ng :

(r�
��
(�; v; � � �)� r�

��
(�; v; � � �))(� � �)i � c(v0)

nP
j=1

jej(vj)j1+
1
N + c(v0);

9>=
>; (5.2)

here �i := qiv0 + vi; i = 1; : : : ; n:

The conditions (5.1) and (5.2) impose restrictions only on the source terms whereas

the sink terms may be large.

Theorem 5.1. Suppose that (5.1) and (5.2) hold. Let N = 2 or let (4.12) and the fol-

lowing additional assumptions be satis�ed:

" is constant ;

di(x; y; �) = �i(y)� for x 2 
; y 2 IR; � 2 IRN ; where �e0
i
� �i �

1

�
ei for some � > 0:

Then there exists a solution (u; v) to Problem (P).

11



We shall not give a complete proof of Theorem 5.1 but only sketch the main ideas.

The �rst idea is to investigate a \regularized" problem which arises from (P) by

cutting o� the nonlinearities in a suitable way at a certain level. Later one provides a

priori estimates which are independent of that level. As a consequence a solution to the

regularized problem will be a solution to the original problem (P) if only the cut o� level

is chosen su�ciently large.

Let M > 0 be a �xed number such that

u�
i
ei(�M) � u0

i
� u�

i
ei(M); i = 1; : : : ; n: (5.3)

This number will play the rôle of the cut o� level. By PM we denote the convex projection

from IR onto [�M;M ], i.e., the mapping given by

PM (y) :=

8>><
>>:

M , if y > M ,

y, if �M � y �M;

�M , if y < �M .

We de�ne EM : V �! V � and AM : V � V �! V � by

hEMv; �vi :=
Z



�
"rv0 � r�v0� f�v0 +

nX
i=1

u�
i
ei(PMvi)�vi

�
dx +

Z
�
(�v0 � f�)�v0d�

and (with the same notation as that used for the de�nition of A)

hAM (w; v); �vi :=
nX
i=1

� Z



�
di(�; PMwi;r�i) � r��i + (�i � PM (qiw0)� PMwi)��i

+ �M (w)
X

(�;�)2R

(r��(�; v; � � �)� r��(�; v; � � �))(�� �) � ��
�
dx

+

Z
�
�M (w)

X
(�;�)2R�

(r�
��
(�; v; � � �)� r�

��
(�; v; � � �))(�� �) � ��d�

�
;

where �M is a �xed function in C(IRn+1; [0; 1]) such that

�M (�) :=

(
0 , if j�j1 �M ,

1 , if j�j1 �M=2
; j�j1 := maxfj�0j; : : : ; j�njg:

The de�nitions of the operators EM and AM are made in such a way that the essential

properties of E and A are conserved. The regularized problem announced above reads as

follows: Find (u; v) such that

u 2 H1
loc
(IR+;V

�); v 2 L2
loc
(IR+;V )

u0 +AM(v; v) = 0; u = EMv; u(0) = u0:

9=
; (PM)

12



Remark 5.1. Let (u; v) be a solution to Problem (PM ). Then ui = u�
i
ei(PMvi); i =

1; : : : ; n; and u0 =
nP
i=1

qiui (cf. Remark 3.1). If

kvikL1(IR+;L1(
)) �
M

2
and (1 + jqij)kv0kL1(IR+;L1(
)) �

M

2
; i = 1; : : : ; n;

then (u; v) is a solution to (P).

The solvability of Problem PM can be proved by the investigation of systems which

result from (PM ) by a discretization of time. To describe these systems we �x a sequence

(�k) of time steps converging to 0. Let S
j

k
:= ](j � 1)�k; j�k]; j 2 IN: If Y is any Banach

space we denote by Ck(IR+;Y ) the space of all functions u : IR+ �! X, which are constant

on each of the intervals S
j

k
; j 2 IN. We write uj for the value of u 2 Ck(IR+;X) on S

j

k
.

We de�ne �k as a mapping from Ck(IR+;H) into itself by

(�ku)
j :=

1

�k
(uj � uj�1); j 2 IN; (5.4)

where u0 is the initial value introduced in (3.4). The problem

�kuk +AM(vk; vk) = 0; uk = EMvk; vk 2 Ck(IR+;V ); (PMk)

which can be written more explicitly as

1

�k
(uj

k
� uj�1

k
) +AM(vj

k
; vj

k
) = 0; uj

k
= EMv

j

k
; j 2 IN; u0

k
= u0; (5.5)

is to be considered as the discrete version of (PM ) corresponding to the time step �k.

One can prove that for every k 2 IN there exists a solution (uk; vk) to Problem (PMk )

using a result on operators of variational type in the sense of Lions [L], Ch. 2, Sect. 2.5.

Furthermore, one can �nd a priori estimates (depending onM) allowing to go to the limit

as k �!1. In this way one �nds a solution to (PM ). We don't want to go into to details

here. For similar considerations in a special case we refer to [GG2].

Next for a solution (u; v) to Problem (PM) one has to derive a priori estimates which

are independent of M . This is the most di�cult part of the proof.

The operator EM is de�ned in such a way that it is the Gâteaux derivative of a

functional �M : V �! IR, where �M � � (for the de�nition of � cf. (4.2)). The

conjugate functional 	M to �M satis�es 	M � 	, where 	 denotes again the conjugate

of �. In the same way as the corresponding result for 	 in Section 4 one can prove that

	M decreases along the solutions to (PM). Since by the choice of M the initial value

	M (u0) is independent of M , this leads to a priori estimates independent of M for the

following norms:

kv0kL1(IR+;H1(
)); kv0kL1(IR+;L1(
));
nP
i=1

kui log(ui)kL1(IR+;L1(
)) if N = 2;
nP
i=1

kuikL1(IR+;L
p0(
)) if N > 2:

9=
; (5.6)
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A priori bounds for the norms (5.6) are not su�cient for our purposes. What is needed

are bounds for kvikL1(IR+;L1(
)), i = 1; : : : ; n.

First we indicate how to obtain upper bounds for the densities ui by means of a tech-

nique introduced by Moser [Mo]. Let w := (0; w1; : : : ; wn); wi := exp(pt)[ei(PMvi)]
p�1;

i = 1; : : : ; n; where p � 2: Using w for the values p = 2k; k = 1; 2; : : :, as test functions

for the equation u0 + A(v; v) = 0 it is possible to derive successively bounds for the

norms kuk
L1(IR+;L2

k
(
;IRn+1))

which are independent of M and of k. This implies that

ei(PMvi) � c or PMvi � e�1i (c); i = 1; : : : ; n: We omit the rather technical details. We

mention only that it is this step which requires to distinguish the cases N = 2 and N > 2.

For the case N = 2 the technique has been presented in [GG2] for a special case in

some detail. From now on we assume that the choice of M is made in such a way that

M > e�1
i
(c); i = 1; : : : ; n: Then the estimate for ei(PMvi) implies that vi � e�1

i
(c), i.e.

the components of the vector v of potentials are bounded from above independently of

M .

To get lower bounds for the potentials one can use test functions of the form

w := (0; w1; : : : ; wn); wi := �
p[(log(ei(PMvi)) + k)�]p�1

ei(PMvi)
; i = 1; : : : ; n:

Here p � 2 and k is a su�ciently large parameter. The superscript \{" denotes the nega-

tive part of a function. This time one gets bounds for k(log(ei(PMvi)) + k)�kL1(IR+;Lp(
))

independent of M and of p. Hence (log(ei(PMvi))+ k)
� � c or PMvi � e�1

i
(exp(�c� k)):

If M is chosen such that �M < e�1i (exp(�c� k)); i = 1; : : : ; n, then the components of

v must be bounded from below by a constant independent of M .

Remark 5.2. Existence can be proved also without the assumption (4.12) if qi � 0 or

qi � 0 for i = 1; : : : ; n or if there are only two species taking part in the process (n = 2).

6. Uniqueness

Due to the nonlinearities of the 
ow expressions (2.6), uniqueness of solutions to (P)

cannot be proved by standard arguments without using additional regularity properties

of the solutions. For example, boundedness of the gradients of the electrochemical poten-

tials would imply uniqueness. But such strong regularity assumption excludes practically

relevant geometries as well as heterogeneous structures.

In the case of Boltzmann statistics a quite satisfying uniqueness result has been proved

in [GG1] for van Roosbroeck's system. This result rests on special properties of the

exponential function and can be extended to (P) in case that ui = u�
i
exp(vi). However,

for more general functions ei, in particular for Fermi{Dirac statistics, there is still a gap

between existence and uniqueness results, at least for N � 3. For two space dimensions

uniqueness has been proved in [GR, Ga]. Thus the situation is quite similar to Navier{

Stokes equations.
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In this section we want to state a uniqueness result under a quite weak regularity

hypothesis. To this purpose we assume the functions di from (2.6) to have the following

special structure

di(�; y; �) = e0
i
(y)
i(�; �): (6.1)

Moreover, in addition to (3.5), we assume:

gi := e0
i
� e�1

i
: ]0;1[�! ]0;1[ ; i = 1; : : : ; n; is concave. (6.2)

Finally, we replace (3.6) by:


i : 
� IRN �! IRN satis�es the Carath�eodory conditions, 
i(x; 0) = 0;


i is strongly monotone and Lipschitzian:

(
i(x; �1)� 
i(x; �2)) � (�1 � �2) � �j�1 � �2j2; j
i(x; �) � 
i(x; �)j � 1
�
j� � �j;

for x 2 
; �; � 2 IRN ; i = 1; : : : ; n; and some � > 0:

9>>>>=
>>>>;

(6.3)

Remark 6.1. In the case of Boltzmann statistics (cf. (2.3)) the condition (6.2) is trivially

satis�ed, since gi is the identity map. It can be shown that for Fermi{Dirac statistics (cf.

(2.4)) the function gi is even strictly concave.

Now we are ready to state a mild regularity condition with respect to the electrostatic

potential ensuring uniqueness.

Theorem 6.1. Let the additional conditions (6.1) { (6.3) be satis�ed. Then a solution

(u; v) to problem (P) is unique if either ei = exp; i = 1; : : : ; n; (Boltzmann statistics) or

rv0 2 L1loc(IR+;L
p(
; IRN)) for some p > N: (6.4)

Proof. Suppose there are two solutions (uj; vj), j = 1; 2; to (P) satisfying (6.4). We set

(u; v) := (u1 � u2; v1 � v2); � := �1 � �2:

For the proof of uniqueness we may and we will restrict our considerations to a compact

interval of time, say S = [0; T ]: By means of the convex functional (4.4) we de�ne a

\distance"

%(u1(t); u2(t)) := 	(u1(t)) + 	(u2(t))� 2	

 
u1(t) + u2(t)

2

!
: (6.5)

Since the functions  i from (4.1) are locally uniformly convex, there exists a positive

constant c1 such that

8t 2 S : c1
�
kv0(t)k2H1(
) +

nX
i=1

kui(t)k2L2(
)
�
� %(u1(t); u2(t)): (6.6)

Hence, because of Gronwall's lemma, it su�ces to show that

%(u1(t); u2(t)) � c2

tZ
0

�
kv0(s)k2H1(
) +

nX
i=1

kui(s)k2L2(
)
�
ds: (6.7)
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Now, setting

�v0 =
v10 + v20

2
; �vi = e�1

i

�ei(v1i ) + ei(v
2
i
)

2

�
; ��i = qi�v0 + �vi;

using the initial conditions along with (4.10) and the de�nition of the operator A, we

obtain

%(u1(t); u2(t)) = �
Z

t

0

2X
j=1

D
A(vj(s); vj(s)); vj(s))� �v(s)

E
ds

= �
nX
i=1

Z
t

0

2X
j=1

�Z



�
e0
i
(v

j

i
)
i(x;r�

j

i
) � r(�

j

i
� ��i) +R

j

i
(�

j

i
� ��i)

�
dx

+
Z
�
R�j
i
(�j

i
� ��i) d�

�
ds:

(To simplify the notation we have omitted the time argument in the last expressions.

This simpli�cation will be used also in the following calculations.) To prove (6.7) we have

to estimate the last expression from above. The only cumbersome term is the �rst one

involving partial derivatives. Setting

�gi := gi
�ei(v1i ) + ei(v

2
i
)

2

�
; Gi := 2�gi � e0

i
(v1

i
)� e0

i
(v2

i
);

we can rewrite this term as follows

2X
j=1

e0
i
(vj

i
)
i(�;r�ji ) � r(�j

i
� ��i)

=
1

2�gi

2X
j=1

e0
i
(vji )
i(�;r�

j

i ) � (2�gir(�ji � qiv
j

0)� e0
i
(v1

i
)rv1

i
� e0

i
(v2

i
)rv2

i
)

=
1

2�gi

�
e0
i
(v1

i
)e0

i
(v2

i
)(
i(�;r�1i )� 
i(�;r�2i )) � r(�1

i
� �2

i
� qi(v

1
0 � v20))

+Gi

2X
j=1

e0
i
(vj

i
)
i(�;r�ji ) � r(�j

i
� qiv

j

0)

�
:

Here, using the strong monotonicity and Lipschitz continuity of 
i, the �rst term can be

estimated easily. Since Gi � 0 by (6.2), it remains to estimate k
p
Gijrv

j

0jkL2(
). Under
Boltzmann statistics Gi vanishes. Thus we can apply (6.4) and �nd by means of the

inequalities of H�older, Gagliardo-Nirenberg, and YoungZ


Gijrv

j

0j
2 dx � kGikLp=(p�2)(
)kjrv

j

0jk
2
Lp(
) � ckvik2L2p=(p�2)(
)kjrv

j

0jk
2
Lp(
)

� ckrvik
2N=p

L2(
;IRN )
kvik

2�2N=p

L2(
) krvj0k
2
Lp(
;IRN)

�
�

4
krvik2L2(
;IRN) + ckvik2L2(
)krv

j

0k
2p=(p�n)

Lp(
;IRN )

�
�

2
kr�ik2L2(
;IRN ) + ckrvj0k

2
L2(
;IRN)

+ ckuik2L2(
):
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From this the theorem follows. 2

Remark 6.2. The electrostatic potential v0 satis�es the Poisson equation at any time

t > 0. Hence, the condition (6.4) reduces to a standard question of regularity: Does the

gradient of the solution to a linear elliptic boundary value problem with a right{hand side

in L1(
) belong to Lp(
) for some p > N? Since the answer is positive for a Lipschitzian

domain 
 and N = 2 (see [G1]) the assumption (6.4) can be omitted if N = 2. For N � 3

su�cient conditions for (6.4) to hold can be found in [Sh]. As to smooth data, a positive

answer is given by the classical regularity theory (cf. [LU]).

7. Equilibria and asymptotic behaviour

First we want to describe the set of all steady states of the system under consideration.

By a steady state we mean a pair (u; v) 2 V � �W such that A(v; v) = 0; u = Ev, and
u0 =

P
n

i=1 qiui.

We know already from Theorem 4.3 that, if (u; v) is a solution to Problem (P), then

all values u(t) remain in the a�ne subspace U + u0 of V � (cf. (4.15) for the de�nition

of U). Thus, one might expect that there exists a steady state (u; v) such that u is in this

subspace. The following theorem con�rms this expectation.

Theorem 7.1. For every u0 2 V � such that u00 =
P

n

i=1 qiu
0
i
and hu0

i
;1i > 0; i = 1; : : : ; n;

there exists a unique (u; v) 2 V � �W such that A(v; v) = 0; u = Ev; and u 2 U + u0:

Proof. Let u0 2 V � be given such that u00 =
P

n

i=1 qiu
0
i
and hu0

i
;1i > 0; i = 1; : : : ; n:

1. Suppose that (uj; vj); j = 1; 2; are steady states satisfying uj 2 U + u0: Then

D
A(vj; vj); vj

E
= 0; (7.1)

and this implies that vj 2 U? (note that (7.1) implies the right hand side of (4.9) to

vanish [of course with � replaced by �j]). Hence u1 � u2 2 U , v1 � v2 2 U?, and

0 =
D
u1 � u2; v1 � v2

E
=
D
Ev1 � Ev2; v1 � v2

E
:

Since E is strictly monotone this is possible only if v1 = v2 and u1 = u2.

2. We de�ne

8v 2 V : �0(v) := �(v) + IU?(v)�
D
u0; v

E
; (7.2)

here � is the functional introduced in (4.2) and IU? is de�ned by

IU?(v) :=

(
0, if v 2 U?,

+1, if v 2 V nU?.

17



It is easy to check that �0 is bounded from below and that lim
kvkV!1

�0(v) = +1: Conse-

quently, there exists v 2 V such that �0(v) = inf
�v2V

�0(�v): Obviously, we have v 2 U?.

3. Let �i := qiv0 + vi; i = 1; : : : ; n, where v is the minimal element of �0. Since v 2 U?,
the functions �i are constant. Note that hu0; vi =

P
n

i=1 hu0i ; �ii :We de�ne, for w 2 H1(
);

g(w) :=
Z



�
"

2
jrwj2 � fw

�
dx+

Z
�

�
�

2
w2 � f�w

�
d� +

nX
i=1

Z


u�
i
'i(�i � qiw)dx:

The de�nition of g is made in such a way that v0 minimizes g. In particular, 'i(�i�qiv0) 2
L1(
): Exploiting our assumptions with respect to the functions ei we can show that, for

�w 2 H1(
) \ L1(
),

hg0(v0); �wi =
Z



�
"rv0 � r �w �

�
f +

nX
i=1

qiu
�

i
ei(�i � qiv0

�
�w
�
dx+

Z
�
(�v0 � f�) �wd�: (7.3)

Because v0 minimizes g, we have hg0(v0); �wi = 0 for every �w 2 H1(
) \ L1(
): Standard
arguments show that the solution to the last equation is necessarily in L1(
). Therefore
the functions v0 and vi = �i � qiv0; i = 1; : : : ; n are all in the space L1(
): From v 2
U? \ L1(
; IRn+1) it follows that A(v; v) = 0:

4. Next we de�ne

8� 2 S? : h(�) :=
nX
i=1

�Z


u�
i
'i(�i � qiv0)dx�

D
u0
i
; �i
E�

:

Since we know already that v0 2 L1(
) the value h(�) is �nite for every � 2 S?. The

de�nition of h implies that � minimizes h (� de�ned as above). Hence, for every �� 2 S?,

0 = h0(�)�� =
nX
i=1

�Z


u�
i
ei(�i � qiv0)dx��i �

D
u0
i
; ��i
E�

:

Let u := Ev. Then ui = u�
i
ei(vi); i = 1; : : : ; n; and the last equation shows that

(hu1 � u01;1i ; : : : ; hun � u0
n
;1i) 2 S. From hg0(v0); �wi = 0 for �w 2 H1(
) \ L1(
) and

(7.3) it follows that u0 =
P

n

i=1 qiui (cf. the de�nition of E). These facts show that

u 2 U + u0. 2

In the remaining part of this section we are going to investigate the asymptotic be-

haviour of transient solutions as time tends to in�nity.

In order to obtain satisfactory results we impose the following (rather mild) additional

condition on the functions r�� and r��� modeling the reactions:

8x 2 
; 8v 2 IRn+1 : r��(x; v; y)� r��(x; v; z) � m(z)(y � z);

8x 2 �; 8v 2 IRn+1 : r�
��
(x; v; y)� r�

��
(x; v; z) � m(z)(y � z);

if y; z 2 IR; y > z; where m : IR �! ]0;1[ is continuous.

9>>=
>>; (7.4)

Under this hypothesis we have the following
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Theorem 7.2. Let (u; v) be a solution to Problem (P). Then, for some � > 0,

ku(t)� ~uk2
L2(
;IRn+1 + kv0(t)� ~v0k2H1(
) � c exp(��t);

where (~u; ~v) denotes the unique steady state in the a�ne space U + u0 (cf. Theorem 7.1).

Proof. Let (~u; ~v) be the steady state in U + u0. We introduce �(t), ��(t), and ~� by

�i(t) := qiv0(t) + vi(t); ��i(t) :=
Z


�i(t)dx; ~�i := qi~v0 + ~vi; i = 1; : : : ; n:

Then, taking into account that u = Ev and ~u = E~v, we obtain (using Poincar�e's inequal-

ity)

kv0(t)� ~v0k2H1(
) +
nP
i=1

kui(t)� ~uik2L2(
)

� c
n
hu0(t)� ~u0; v0(t)� ~v0i+

nP
i=1

hui(t)� ~ui; vi(t)� ~vii
o

= c
nP
i=1

hui(t)� ~ui; �i(t)� ~�ii = c
nP
i=1

hui(t)� ~ui; �i(t)i

� c
nP
i=1

�
kui(t)� ~uikL2(
)kr�i(t)kL2(
;IRN ) + ��i(t)

R

(ui(t)� ~ui)dx

�
:

9>>>>>>>>>>>=
>>>>>>>>>>>;

(7.5)

Since
� R


(u1(t)� ~u1)dx; : : : ;
R

(un(t)� ~un)dx

�
2 S the estimate (7.5) proves that

kv0(t)� ~v0k2H1(
) + kui(t)� ~uik2L2(
) � c
nX
i=1

kr�i(t)k2L2(
;IRN ) + cjPS ��(t)j2; (7.6)

where PS ��(t) denotes the orthogonal projection of ��(t) onto the subspace S.

On the other hand starting from (4.9) and exploiting the hypothesis (7.4) one can

easily show that, for some � > 0;

hA(v(t); v(t)); v(t)i � �
nX
i=1

kr�i(t)k2L2(
;IRN ) + �jPS ��(t)j2: (7.7)

Finally, we note that

	(u(t))�	(~u) =
Z



"

2
jr(v0(t)� ~v0)j2dx+

Z
�

�

2
jv0(t)� ~v0j2d�

+
nX
i=1

Z


u�
i

Z
ui=u

�

i

~ui=u
�

i

(e�1
i
(y)� e�1

i
(~ui=u

�

i
))dy:

Combining the preceding relations we �nd that, for su�ciently small � > 0,

exp(�t)
�
kv0(t)� ~v0k2H1(
) +

nX
i=1

kui(t)� ~uik2L2(
)
�

� c exp(�t)(	(u(t))�	(~u))

= c
�
	(u0)�	(~u)

�
+ c

Z
t

0
exp(�s)

�
�(	(u(s))�	(~u))� hA(v(s); v(s)); v(s)i

�
ds

� c
�
	(u0)�	(~u)

�
:

This proves the desired asymptotic behaviour of (u; v). 2
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