Institut für Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

Pendulum with positive and negative dry friction. Continuum of homoclinic orbits

G.A. Leonov
submitted: 11th February 1994
Department of Mathematics and Mechanics
St. Petersburg University
Bibliotechnaya pl., 2, Petrodvoretz
St. Petersburg, 198904
Russia

Preprint No. 87
Berlin 1994

Edited by
Institut für Angewandte Analysis und Stochastik (IAAS) Mohrenstraße 39
D-10117 Berlin
Germany
Fax: $\quad+49302004975$
e-mail (X.400): $\quad c=d e ; a=d 400 ; p=$ iaas-berlin;s=preprint
e-mail (Internet): preprint@iaas-berlin.d400.de

Pendulum with positive and negative dry friction. Continuum of homoclinic orbits*

G.A. Leonov
Department of Mathematics and Mechanics, St.Petersburg University Bibliotechnaya pl., 2, Petrodvoretz, St.Petersburg, 198904 Russia
e-mail Leonov@math.lgu.spb.su

Abstract

A two-order differential equation of pendulum with dry friction is considered. The existence of a continuum of homoclinic orbits with various homotopic properties on the cylinder is proven.

Bernold Fiedler asked me about the double homoclinic orbit in concrete dynamical systems.
Here a pendulum-like systems with dry friction is considered for which the existence of a continuum of homoclinic orbits with various homotopic properties on the cylinder is proven.
Consider the equation

$$
\begin{equation*}
\ddot{\theta}+F(\theta, \dot{\theta})+\sin \theta=0 \tag{1}
\end{equation*}
$$

or the system

$$
\begin{align*}
\dot{x} & =y \tag{2}\\
\dot{y} & =-F(x, y)-\sin x
\end{align*}
$$

Here $F(x+2 \pi, y)=F(x, y)$ and

$$
F(x, y)=\left\{\begin{aligned}
& 0, \text { for } y<2, \\
& \gamma_{1}, \text { for } y>2, \\
&-\gamma_{2}, \text { for } y>2, \\
&-\pi, \pi),(-\pi, 0), \\
&
\end{aligned}\right.
$$

[^0]

Figure 1: Classical homoclinic orbit
which corresponds to the classical homoclinic orbit in a cylindrical phase space. See figure 1.

Let us denote by Ω the following region in R^{2} :

$$
\Omega=\left\{x \in R^{1}, G(x)<y \leq 2\right\} .
$$

Definition. The trajectory $x(t), y(t)$ of system (2) is called a homoclinic orbit of degree k if there exist the limits

$$
\lim _{t \rightarrow+\infty} x(t), \quad \lim _{t \rightarrow+\infty} y(t), \quad \lim _{t \rightarrow-\infty} x(t), \quad \lim _{t \rightarrow-\infty} y(t)
$$

and if

$$
\left|\lim _{t \rightarrow+\infty} x(t)-\lim _{t \rightarrow-\infty} x(t)\right|=2 k \pi .
$$

Of course this orbit is homoclinic with respect to the cylindrical phase space and heteroclinic with respect to R^{2}.

Proposition 1. For every point $\left(x_{0}, y_{0}\right) \in \Omega$ and for every integer number $k \geq 2$ there exists a homoclinic orbit γ of degree k such that $\left(x_{0}, y_{0}\right) \in \gamma$.
Proof. An important role in this proof is played by the sliding solution $y(t) \equiv 2$. See figure 2.

This solution is stable in the regions

$$
U_{2 j}=\left\{x \in((2 j-1) \pi, 2 j \pi), y \in R^{1}\right\}
$$

Figure 2: Sliding solution
Proof. An important role in this proof is played by the sliding solution $y(t) \equiv 2$. See figure 2.

This solution is stable in the regions

$$
U_{2 j}=\left\{x \in((2 j-1) \pi, 2 j \pi), y \in R^{1}\right\}
$$

and unstable in the regions

$$
U_{2 j+1}=\left\{x \in(2 j \pi,(2 j+1) \pi), y \in R^{1}\right\} .
$$

In the regions $U_{2 j}$ we have unique solutions with respect to initial data and increase of time. In the regions $U_{2 j+1}$ we have unique solutions with respect to initial date and decrease of time.
Every point $x_{0} \in((2 j-1) \pi, 2 j \pi), y_{0}=2$ is initial data of three solutions with respect to decrease of time. These solutions are the sliding solution, some solution in the region $y<2$ and some solution in the region $y>2$. Also every point $x_{0} \in$ $(2 j \pi,(2 j+1) \pi), y_{0}=2$ is initial data of three solutions with respect to increase of time.
We fix now an integer $k \geq 2$ and a point $\left(x_{0}, y_{0}\right) \in \Omega$. It is easy to see now that there exist numbers $t_{1}<t_{2}$ such that

$$
y\left(t_{1}, x_{0}, y_{0}\right)=y\left(t_{2}, x_{0}, y_{0}\right)=2, \quad x\left(t_{1}, x_{0}, y_{0}\right)=2 j \pi, \quad x\left(t_{2}, x_{0}, y_{0}\right)=2(j+1) \pi
$$

for some integer j. See figure 3.

Figure 3: Homoclinic solution of degree k
We can consider the point $x\left(t_{1}, x_{0}, y_{0}\right)=2 j \pi, y\left(t_{1}, x_{0}, y_{0}\right)=2$ as initial data for the classical homoclinic solution with respect to decrease of time. Hence it follows that

$$
\lim _{t \rightarrow-\infty} x\left(t, x_{0}, y_{0}\right)=(2 j-1) \pi, \quad \lim _{t \rightarrow-\infty} y\left(t, x_{0}, y_{0}\right)=0
$$

See figure 4.
In the region

$$
\left\{x \in(2(j+1) \pi, 2(j+k-1) \pi), y \in R^{1}\right\}
$$

we can continue the solution under consideration as a sliding solution: $y\left(t, x_{0}, y_{0}\right)=$ 2. Then we can consider the point $x=2(j+k-1) \pi, y=2$ as initial data for the classical homoclinic solution with respect to increase of time. Hence it follows that

$$
\lim _{t \rightarrow+\infty} x\left(t, x_{0}, y_{0}\right)=(2 j+2 k-1) \pi, \quad \lim _{t \rightarrow+\infty} y\left(t, x_{0}, y_{0}\right)=0
$$

See figure 5.
The proposition is proven.
Let us suppose that $\gamma_{1}=\gamma_{2}=\beta>1$ and denote by $H(x)$ the function

$$
\begin{equation*}
H(x)=\sqrt{2(1+\cos x+\beta|x|)}, \quad x \in[-\pi, \pi], \tag{3}
\end{equation*}
$$

$H(x+2 \pi) \equiv H(x)$.
Let us denote by Φ the following region in R^{2} :

$$
\Phi=\left\{x \in R^{1}, G(x)<y \leq H(x)\right\}
$$

Figure 4: Homoclinic solution of degree k
Proposition 2. For every point $\left(x_{0}, y_{0}\right) \in \Phi$ and for every integer number $k \geq 2$ there exists a homoclinic orbit γ of degree k such that $\left(x_{0}, y_{0}\right) \in \gamma$.

Proof. Let us consider the function

$$
V(x, y)=y^{2}+H^{2}(x) .
$$

It is easy to see that for a solution $x(t), y(t)$ of system (2) such that $x(t) \neq j \pi$ the following equality is true:

$$
\dot{V}(x(t), y(t))=0
$$

From this equality and from the form (3) of the function $H(x)$ we get that for every point $\left(x_{0}, y_{0}\right) \in \Phi$ there exist numbers $t_{1}<t_{2}$ such that

$$
\begin{gathered}
y\left(t_{1}, x_{0}, y_{0}\right)=y\left(t_{2}, x_{0}, y_{0}\right)=2 \\
x\left(t_{1}, x_{0}, y_{0}\right)=2 j \pi, \quad x\left(t_{2}, x_{0}, y_{0}\right)=2(j+1) \pi
\end{gathered}
$$

for some integer j. See figure 6 .
Now it remains to repeat the argumentation in the proof of proposition 1.
There exist various generalizations of propositions 1 and 2 . Let us consider for example the following system

$$
\begin{align*}
& \dot{x}=y \tag{4}\\
& \dot{y}=-Q(x, y)-f(x) .
\end{align*}
$$

Here $f(x)$ is continuously differentiable and 2π-periodic. We suppose also that $f(x)$ has exactly two zeros x_{1} and x_{2} on the interval $[0,2 \pi)$ such that $x_{1}<x_{2}$,

$$
f^{\prime}\left(x_{1}\right)>0, f^{\prime}\left(x_{2}\right)<0
$$

Figure 5: Homoclinic solution of degree 2
Here $Q(x+2 \pi, y)=Q(x, y)$ and

$$
Q(x, y)=\left\{\begin{aligned}
& 0, \text { for } y<\nu, \\
& \gamma_{1}, \text { for } y>\nu, \\
&-\gamma_{2}, \text { for } y>\nu, \\
&\left.x \in\left(x_{1}, x_{1}+2 \pi\right), x_{1}, x_{2}\right)
\end{aligned}\right.
$$

where ν, γ_{1} and γ_{2} are positive numbers such that

$$
\begin{gathered}
\gamma_{1}>\max |f(x)|, \gamma_{2}>\max |f(x)| \\
\nu \leq\left(2 \int_{x_{1}}^{x_{2}} f(x) d x\right)^{1 / 2}
\end{gathered}
$$

Let us denote by $R(x)$ the 2π-periodic function

$$
R(x)=\left(2 \int_{x}^{x_{2}} f(x) d x\right)^{1 / 2}
$$

on the interval (μ, x_{2}) and $R(x)=0$ on the interval $\left(x_{2}-2 \pi, \mu\right)$. Here μ is a number such that

$$
\int_{\mu}^{x_{2}} f(x) d x=0
$$

Let us denote by Ψ the following region in R^{2}

$$
\Psi=\left\{x \in R^{1}, R(x)<y \leq \nu\right\} .
$$

Figure 6: Region Φ
Proposition 3. For every point $\left(x_{0}, y_{0}\right) \in \Psi$ and for every integer number $k \geq 2$ there exists a homoclinic orbit γ of degree k such that $\left(x_{0}, y_{0}\right) \in \gamma$.

The proof of this proposition repeats in essence the argumentation in the proof of proposition 1.
Let us consider the following system

$$
\begin{align*}
& \dot{x}=y \\
& \dot{y}=-\alpha y-Q(x, y)-f(x) . \tag{5}
\end{align*}
$$

Here α is a positive number corresponding to viscous resistance. This system with $Q(x, y)=0$ has been considered in the books [Andronov et al., 1965], [Barbashin and Tabueva, 1969], [Gelig et al., 1978], [Leonov et al., 1992], [Lindsey, 1972].

Conjecture. For every $\alpha>0$ and $f(x)$ there exists $Q(x, y)$ such that system (5) has a continuum of homoclinic orbits.

This conjecture is true if we slightly change the definition of the function $Q(x, y)$:

$$
Q(x, y)=\left\{\begin{aligned}
& 0, \text { for } y<\nu, \\
& \gamma_{1}, \text { for } y>\nu,\left(x_{2}-2 \pi, x_{2}\right), \\
&-\gamma_{2}, \text { for } y>\nu, \\
& x \in\left(x_{2}-2 \pi, x_{3}\right),
\end{aligned}\right.
$$

Here x_{3} is a number on $\left(x_{2}-2 \pi, x_{2}\right)$ such that

$$
f\left(x_{3}\right)=\alpha \nu, \quad f(x) \neq \alpha \nu \forall x \in\left(x_{3}, x_{1}\right)
$$

References

Andronov, A.A., Witt, A.A., and Chaikin, S.E. [1965] Theorie der Schwingungen. (Akademie-Verlag, Berlin).
Barbashin, E.A., and Tabueva, V.A. [1969] Dynamical systems with cylindrical phase space. (Nauka, Moscow).
Gelig, A.H., Leonov, G.A., and Yakubovich, V.A. [1978] Stability of systems with nonunique equilibrium state. (Nauka, Moscow).

Leonov, G.A., Reitmann, V., and Smirnova, V.B. [1992] Non-local methods for pedulum-like feedback systems. (Teubner-Verlag,Stuttgart-Leipzig).
Lindsey, W.C. [1972] Synchronization systems in communication and control. (Prentice-Hall, Inc., New Yersey).

Recent publications of the Institut für Angewandte Analysis und Stochastik.

Preprints 1993

58. H.G. Bothe: The Hausdorff dimension of certain attractors.
59. I.P. Ivanova, G.A. Kamenskij: On the smoothness of the solution to a boundary value problem for a differential-difference equation.
60. A. Bovier, V. Gayrard: Rigorous results on the Hopfield model of neural networks.
61. M.H. Neumann: Automatic bandwidth choice and confidence intervals in nonparametric regression.
62. C.J. van Duijn, P. Knabner: Travelling wave behaviour of crystal dissolution in porous media flow.
63. J. Förste: Zur mathematischen Modellierung eines Halbleiterinjektionslasers mit Hilfe der Maxwellschen Gleichungen bei gegebener Stromverteilung.
64. A. Juhl: On the functional equations of dynamical theta functions I.
65. J. Borchardt, I. Bremer: Zur Analyse großer strukturierter chemischer Reaktionssysteme mit Waveform-Iterationsverfahren.
66. G. Albinus, H.-Ch. Kaiser, J. Rehberg: On stationary Schrödinger-Poisson equations.
67. J. Schmeling, R. Winkler: Typical dimension of the graph of certain functions.
68. A.J. Homburg: On the computation of hyperbolic sets and their invariant manifolds.
69. J.W. Barrett, P. Knabner: Finite element approximation of transport of reactive solutes in porous media. Part 2: Error estimates for equilibrium adsorption processes.
70. H. Gajewski, W. Jäger, A. Koshelev: About loss of regularity and "blow up" of solutions for quasilinear parabolic systems.
71. F. Grund: Numerical solution of hierarchically structured systems of alge-braic-differential equations.
72. H. Schurz: Mean square stability for discrete linear stochastic systems.
73. R. Tribe: A travelling wave solution to the Kolmogorov equation with noise.
74. R. Tribe: The long term behavior of a Stochastic PDE.
75. A. Glitzky, K. Gröger, R. Hünlich: Rothe's method for equations modelling transport of dopants in semiconductors.
76. W. Dahmen, B. Kleemann, S. Prößdorf, R. Schneider: A multiscale method for the double layer potential equation on a polyhedron.
77. H.G. Bothe: Attractors of non invertible maps.
78. G. Milstein, M. Nussbaum: Autoregression approximation of a nonparametric diffusion model.

Preprints 1994
79. A. Bovier, V. Gayrard, P. Picco: Gibbs states of the Hopfield model in the regime of perfect memory.
80. R. Duduchava, S. Prößdorf: On the approximation of singular integral equations by equations with smooth kernels.
81. K. Fleischmann, J.F. Le Gall: A new approach to the single point catalytic super-Brownian motion.
82. A. Bovier, J.-M. Ghez: Remarks on the spectral properties of tight binding and Kronig-Penney models with substitution sequences.
83. K. Matthes, R. Siegmund-Schultze, A. Wakolbinger: Recurrence of ancestral lines and offspring trees in time stationary branching populations.
84. Karmeshu, H. Schurz: Moment evolution of the outflow-rate from nonlinear conceptual reservoirs.
85. W. Müller, K.R. Schneider: Feedback stabilization of nonlinear discrete-time systems.
86. G.A. Leonov: A method of constructing of dynamical systems with bounded nonperiodic trajectories.

[^0]: *This work has been completed in Institut für Angewandte Analysis und Stochastik, Berlin.

