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Abstract 

A two-order differential equation of pendulum with dry friction is consid-
ered. The existence of a continuum of homoclinic orbits with various homo-
topic properties on the cylinder is proven. 

Bernold Fiedler asked me about the double homoclinic orbit in concrete dynamical 
systems. 
Here a pendulum-like systems with dry friction is considered for which the exis-
tence of a continuum of homoclinic orbits with various homotopic properties on the 
cylinder is proven. 
Consider the equation 

B + F(B,B) + sinB = 0 

or the system 

x 
y 

Here F(x + 27r,y) = F(x,y) and 

y 
-F(x, y) - sinx. 

{ 

0, fory < 2, x E (-7r,7r), 
F(x,y) = 11 , fory > 2, x E (-7r,O), 

-12, for y > 2, x E (0, 7r ), 

(1) 

(2) 

*This work has been completed in Institut fiir Angewandte Analysis und Stochastik, Berlin. 
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Figure 1: Classical homoclinic orbit 

which corresponds to the classical homoclinic orbit in a cylindrical phase space. See 
figure 1. 

Let us denote by n the following region in R2 : 

n = { x E R1, G( x) < y ~ 2}. 

Definition. The trajectory x( t ), y( t) of system (2) is called a homoclinic orbit of 
degree k if there exist the limits 

lim x ( t), lim y ( t), lim x ( t), lim y ( t) 
t-+oo t-+oo t--oo t--oo 

and if 

I lim x ( t) - lim x ( t) I = 2 br. 
t-+oo t--oo 

Of course this orbit is homoclinic with respect to the cylindrical phase space and 
heteroclinic with respect to R2 . 

Proposition 1. For every point ( x 0 , y0 ) E n and for every integer number k 2: 2 
there exists a homoclinic orbit r of degree k such that (x 0 , y0 ) Er· 

Proof. An important role in this proof is played by the sliding solution y( t) 2. 
See figure 2. 

This solution is stable in the regions 

U2j = { x E ( (2j - 1)7r,2j7r ), y E R1
} 
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· Figure 2: Sliding solution 

Proof. An important role in this proof is played by the sliding solution y(t) - 2. 
See figure 2. 

This solution is stable in the regions 

U2j == {x E ((2j - l)7r,2j7r), y E R1
} 

and unstable in the regions 

U2i+i = {x E (2j7r, (2j + l)7r), y E R1
}. 

In the regions U2j we have unique solutions with respect to initial data and increase 
of time. In the regions U2j+i we have unique solutions with respect to initial date 
and decrease of time. 
Every point x 0 E ((2j - l)7r, 2j7r), y0 = 2 is initial data of three solutions with 
respect to decrease of time. These solutions are the sliding solution, some solution 
in the region y < 2 and some solution in the region y > 2. Also every point x 0 E 
(2j7r, (2j + 1 )7r ), y0 = 2 is initial data of three solutions with respect to increase of 
time. 
We fix now an integer k ~ 2 and a point ( x 0 , y0 ) E n. It is easy to see now that 
there exist numbers t 1 < t 2 such that 

for some integer j. See figure 3. 
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Figure 3: Homoclinic solution of degree k 

We can consider the point x(t1 ,x0 ,y0 ) == 2j7r, y(t1 ,x0 ,y0 ) == 2 as initial data for the 
classical homoclinic solution with respect to decrease of time. Hence it follows that 

See figure 4. 

In the region 

lim x(t,xo,Yo) == (2j - l)7r, lim y(t,xo,Yo) == 0. 
t-+-00 t-+-00 

we can continue the solution under consideration as a sliding solution: y(t, x 0 , y0 ) = ~ 

2. Then we can consider the point x == 2(j + k - 1 )7r, y == 2 as initial data for the 
classical homoclinic solution with respect to increase of time. Hence it follows that 

lim x( t, xo, Yo) == (2j + 2k - 1 )7r, lim y( t, xo, Yo) == 0. 
t-++oo t-++oo 

See figure 5. 

The proposition is proven. 
Let us suppose that 1'i == , 2 == f3 > 1 and denote by H( x) the function 

H(x) == V2(1 +cos x + f31xl), x E [-7r, 'Tr], (3) 

H(x + 27r) = H(x). 

Let us denote by ~ the following region in R 2: 

~ == {x E R1,G(x) < y ~ H(x)}. 
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Figure 4: Homoclinic solution of degree k 

Proposition 2. For every point (x0 , y0 ) E ~ and for every integer number k ~ 2 
there exists a homoclinic orbit I of degree k such that ( xo, Yo) E I. 

Proof. Let us consider the function 

V(x,y) = y2 + H2(x). 

It is easy to see that for a solution x(t),y(t) of system (2) such that x(t) =/= j'lr the 
following equality is true: 

V(x(t),y(t)) = o. 
From this equality and from the form (3) of the function H( x) we get that for every 
point ( xo, y0 ) E ~ there exist numbers t1 < t2 such that 

y(t1, xo, Yo)= y(t2, xo, Yo)= 2, 

x(t1, xo, Yo)= 2j7r, x(t2, xo, Yo) = 2(j + l)7r. 
for some integer j. See figure 6. 

Now it remains to repeat the argumentation in the proof of proposition 1. 
There exist various generalizations of propositions 1 and 2. Let us consider for 
example the following system 

x = y 
y = -Q(x,y)- f(x). (4) 

Here J ( x) is continuously differentiable and 27r-periodic. We suppose also that f ( x) 
has exactly two zeros x 1 and x2 on the interval (0, 27r) such that x 1 < x2 , 
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Figure 5: Homoclinic solution of degree 2 

Here Q(x + 27r,y) = Q(x,y) and 

{ 

0, fory<v, xE(x1,x1+27r), 
Q(x,y)= Tb fory>v, xE(x2,x1+27r), 

-T2, fory>v, xE(xi,x2), 

where v, Tl and T2 are positive numbers such that 

Tl> max lf(x)I, T2 >max lf(x)I, 

v ~ (2 f J(x)dx)1'2 

Let us denote by R( x) the 27r-periodic function 

( 
rx2 ) 1/2 

R( x) = 2 } x f ( x )dx 

on the interval (µ, x2 ) and R( x) = 0 on the interval ( x2 - 27r, µ ). Here µ is a number 
such that f f(x)dx = O. 

Let us denote by W the following region in R2 

w = { x E R1
, R( x) < y ::; v}. 
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x... 

Figure 6: Region <I> 

Proposition 3. For every point (x0 , y0 ) E W and for every integer number k ~ 2 
there exists a homoclinic orbit 1 of degree k such that ( xo, Yo) E 1. 

The proof of this proposition repeats in essence the argumentation in the proof of 
proposition 1. 
Let us consider the following system 

x = y 
iJ = -ay - Q(x,y)- f(x). 

(5) ~ 

Here a is a positive number corresponding to viscous resistance. This system with 
Q( x, y) = 0 has been considered in the books [ Andronov et al., 1965], [Barbashin 
and Tabueva, 1969], [Gelig et al., 1978], [Leonov et al., 1992], [Lindsey, 1972]. 

Conjecture. For every a> 0 and f(x) there exists Q(x,y) such that system (5) 
has a continuum of homoclinic orbits. 

This conjecture is true if we slightly change the definition of the function Q( x, y ): 

{ 

0, fory<v, xE(x2-27r,x2), 
Q(x,y)= 11, fory>v, xE(x2-27r,x3), 

-12, fory>v, xE(x3,x2). 

Here x3 is a number on (x2 - 27r, x2) such that 

7 



References 

Andronov, A.A., Witt, A.A., and Chaikin, S.E. [1965] Theorie der Schwingun-
gen. (Akademie-Verlag, Berlin). . 

Barbashin, E.A., and Tabueva, V.A. [1969] Dynamical systems with cylindrical 
phase space. (N auka, Moscow). 

Gelig, A.H., Leonov,_ G.A., and Yakubovich, V.A. [1978] Stability of systems 
with non unique equilibrium state. (N auka, Moscow). 

Leonov, G.A., Reitmann, V., and Smirnova, V.B. [1992] Non-local methods for 
pedulum-like feedback systems. (Teubner-Verlag,Stuttgart-Leipzig). 

Lindsey, W.C. [1972] Synchronization systems in communication and control. 
(Prentice-Hall, Inc., New Yersey). 

8 



Recent publications of the 
Institut fiir Angewandte Analysis und Stochastik. 

Preprints 1993 

58. H.G. Bothe: The Hausdorff dimension of certain attractors. 

59. LP. Ivanova, G.A. Kamens.kij: On the smoothness of the solution to a bound-
ary value problem for a differential-difference equation. 

60. A. Bovier, V. Gayrard: Rigorous results on the Hopfield model of neural 
networks. 

61. M.H. Neumann: Automatic bandwidth choice and confidence intervals in 
nonparametric regression. 

62. C.J. van Duijn, P. Knabner: Travelling wave behaviour of crystal dissolution 
in porous media flow. 

63. J. Forste: Zur mathematischen Modellierung eines Halbleiterinjektionslasers 
mit Hilfe der Maxwellschen Gleichungen bei gegebener Stromverteilung . 

. 64. A. Juhl: On the functional equations of dynamical theta functions I. 

65. J. Borchardt, I. Bremer: Zur Analyse grofier strukturierter chemischer Reak-
tionssysteme mit Waveform-Iterationsverfahren. 

66. G. Albinus, H.-Ch. Kaiser, J. Rehberg: On stationary Schrodinger-Poisson 
equations. 

67. J. Schmeling, R. Winkler: Typical dimension of the graph of certain func-
tions. 

68. A.J. Homburg: On the computation of hyperbolic sets and their invariant 
manifolds. 

69. J.W. Barrett, P. Knabner: Finite element approximation of transport of 
reactive solutes in porous media. Part 2: Error estimates for equilibrium 
adsorption processes. 

70. H. Gajewski, W. Jager, A. Koshelev: About loss of regularity and "blow up" 
of solutions for quasilinear parabolic systems. 

71. F. Grund: Numerical solution of hierarchically structured systems of alge-
braic-differential equations. 

72. H. Schurz: Mean square stability for discrete linear stochastic systems. 



73. R. Tribe: A travelling wave solution to the Kolmogorov equation with noise. 

7 4. R. Tribe: The long term behavior of a Stochastic PDE. 

75. A. Glitzky, K. Groger, R. Hiinlich: Rothe's method for equations modelling 
transport of dopants in semiconductors. 

76. W. Dahmen, B. Kleemann, S. ProBdorf, R. Schneider: A multiscale method 
for the double layer potential equation on a polyhedron. 

77. H.G. Bothe: Attractors of non invertible maps. 

78. G. Milstein, M. Nussbaum: Autoregression approximation of a nonparamet-
ric diffusion model. 

Preprints 1994 

79. A. Bovier, V. Gayrard, P. Picco: Gibbs states of the Hopfield model in the 
regime of perfect memory. 

80. R. Duduchava, S. ProBdorf: On the approximation of singular integral equa-
tions by equations with smooth kernels. 

81. K. Fleischmann, J.F. Le Gall: A new approach to the single point catalytic 
super-Brownian motion. 

82. A. Bovier, J.-M. Ghez: Remarks on the spectral properties of tight binding 
and Kronig-Penney models with substitution sequences. 

83. K. Matthes, R. Siegmund-Schultze, A. Wakolbinger: Recurrence of ancestral 
lines and offspring trees in time stationary branching populations. 

84. Karmeshu, H. Schurz: Moment evolution of the outflow-rate from nonlinear 
conceptual reservoirs. 

85. W. Muller, K.R. Schneider: Feedback stabilization of nonlinear discrete-time 
systems. 

86. G.A. Leonov: A method of constructing of dynamical systems with bounded 
nonperiodic trajectories. 


