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Numerical Methods 
for Stochastic Differential Equations 

P.E. KLOEDEN1) and E. PLATEN2 >.3> 

Abstract. Numerical methods for st.ochast.ic differential equations, includ-
ing Taylor expansion approximations, Runge-Kutta like methods and implicit 
methods, are summarized. Important differences between simulation tech-
niques with respect to the strong (path wise) and the weak (distributional) ap-
proximation criteria are discussed. Applications to the visualization of nonlin-
ear stochast.ic dynamics. the computation of Lyap1mov exponent.s and stochas-
tic bifurcations arc also presented. 

1. Introduction. 

In recent years a whole new spectrum of numerical methods for (ordinary) stochas-
tic differential equations (SD Es )'has been developed. Many co11cepts from the 
numerics of ordinary (detcrminist.ic) differential equations (ODEs) can also be ap-
plied to SD Es. but simplist.ic at.tempts to adapt deterministic met.hods to SD Es ca11 
lead t.o difficulties due to differences bet.ween deterministic a11d stochastic calculi. 
Here we shall indicate st.ochast.ic met.hods t.hat have been found to be successful 
or have potential for future development and illustrate their implementation and 
use in a variety of applications involving stochastic dynamical systems. 

Let. us briefly recall some basic facts ahout stochastic <liffcrent.ial cqnat.ions. As 
references on SD Es and their numerical solution we refer the reader to Kloedcn and 
Plat.en ( 1992). which includes an extensive bibliography, and t.o Kloeden. Plat.en 
and Schurz (1993 ), which contains a diskette with computer programs for practical 
simulations. 

A solution X = {Xt, t ~OJ of an Ito stochastic differential equation 

( 1) rlXt = a.(Xt)rlt + b(Xt)rHVi 
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driven by a Wiener process W = {Wt, t ~ O} is a stochastic process starting 
at X 0 = x0 when t = 0. The function a(x) characterizing the local trend is 
called the drift coefficient~ while the diffusion coefficient b( x) characterizes the 
average size of the fluctuations of X. The Wiener process W has. independent 
Gaussian increments and is often called Brownian motion. To define X properly 
one has to introduce the Ito stochastic integral. This looks like a Riemann-Stieltjes 
integral, but in the approximating sums its integrand is always evaluated at the 
left end point of each discretization subinterval and the mean-square limit is used. 
(The Stratonovich stochastic integral results if the integrand is always evaluated 
at the subinterval midpoint; it often differs in value from the corresponding Ito 
integral). This and consequent differences bet.ween deterministic and stochastic 
calculi are due the unbounded variation of the paths of the Wiener process. It 
should always be remembered that stochastic calculus is thus particularly sensitive 
to how approximations are made. 

· 2. Discrete Time Approximation of SDEs. 

Explicitly solvable SDEs are rare in practical applications. so efficient and stable 
numerical methods are required for the simulation of sample paths or functionals 
such as moments of their solutions. Here we shall focus on discrete t.ime stochastic 
numerical methods which arc based on finit.e discrd.izations of a time int.crval 
(0. T) and generate approximate values of the sample paths st.ep by st.ep at t.he 
discretization times. The simulated paths can then be analysed by usual stat.ist.ical 
methods. 

The simplest time discrctizati-on of an ihtcrval [0. T) consists ·of equidistant. 
t.ime points 
(2) 

n = 0, 1, .... N wit.h step size 

(3) 
T 

6. = N' 

where N = 1, 2, .... Variable time steps are also possible but will not be considered 
here. 

The stochastic generalization of the Euler .c;cheme (see Maruyama ( 1955)), 
which is sometimes called the Eulcr-Maruya1iia scheme, has the form 

(4) 

for n = 0. 1. ... , N - 1 \vith initial value Yo = x 0 and Wiener process increments 

(5) 

The random variables ~ Wn are independent. Gaussian distributed with zero mean 
and variance 6. and can be generated using appropriat.e random number generators 
and transformations of their output. The recursive scheme ( 4) obviously gives 
values of t.he Euler approximation Y 6 at t.he discretization times only, but these 
can be interpolated in a variety of ways for theoretical and graphical purposes. 
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3. Convergence Criteria. 

More so than for ODEs, numerical methods for SDEs depe1,1d significantly on the 
type of problem to be solved. In applications involving direct simulations of so-
lutions of SDEs such as in simulating paths of stochastic vibrations or stochastic 
flows, in filtering or in testing statistical estimators, it is import.ant that the cal-
culated values are close to the corresponding values of the desired solution. This 
suggests that schemes appropriate for these tasks should be classified according 
to some kind of strong convergence. We say that an approximation Y~ converges 
with strong order 'Y > 0 if there exists a finite constant. K such that 

{G) 

for all step sizes ~ E (0, 1). The expectation of the absolute global error here 
is a straightforward generalization of the usual deterministic criterion to which it 
reduces in the absence of driving noise. It has been shown t.hat the stoch~c;tic 
Euler scheme ( 4) has only strong order "I = 0.5 which is less than the order 1.9 
of the deterministic Euler scheme. This is a consequence of the volatile nature 
of the driving Wiener process. It docs not contradict. the preceding remark since 
the order is with respect to a general class of SDEs, while for a specific SDE the 
scheme may in fact achieve a higher rate of convergence. Not.e that. with these 
strong approximations it is essential to work wit.h the original increments of t.he 
driving Wiener process. 

In many practical situations it is not necessary to simulate good pat.hwise 
appro~imat.ions of an Ito process, but only some functional of it. such as a moment. 
a probabilit.y density or a Lyapunov exponent. That is. expectations E(g(XT)) of 
t.he solution process X at t.ime T for certain types of functions g arc of int.crest. 
The above strong convergence criterion is not appropriat.c in these cases for which, 
in principle, it is only necessary to approximate t.he probahilit.y measure induced 
by t.he solution· of the SDE. Weakly converging approximations are all that is 
required here. To classify them we shall say t.hat a discrete time approximation 
Y 6 corwerge.'i with weak order (j > 0 if for any polynomial y there exists a finite 
constant K 9 such that. 

(7) IE(g(XT)) - E(g(Y#) )I ~ Kg l)_fJ 

for all step sizes ~ E (0, 1 ). Note that the convergence of all moments with the 
same order is implied by this criterion. 

Under sufficient. regularity conditions it has been shown t.lrnt. the stochastic 
Euler scheme ( 4) converges wit.h weak order /3 = 1.0. the same as that. of the 
deterministic Euler scheme. The same weak order st.ill holds if simpler random 
variables are substituted for the Gaussian !:::!,. W11 in ( 4 )~ such as two point dis-
tributed independent random variables !:::!,. Wn with 

(8) 

This indicates a freedom in designing weak schemes which can use random variables 
not. con::;truct.ed directly from the driving Wiener process and are more efficiently 
generated. 
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In principle most tasks requiring numerical simulations of SDEs fall into either 
of these strong or weak convergence categories. For computational efficience it is 
well worth checking whether or not a weak scheme could be used. 

4. Stochastic Taylor Expansions. 

The general stochastic Taylor expansion derived by Wagner and Platen (1978) (see 
also Platen (1982)) provides the key to the systematic derivation of higher order 
strong and weak schemes for SD Es. To give the reader an indication of what these 
expansions look like. we present a simple example for the solution of the SDE (1) 
expanded about. the initial value X 0 • namely 

(9) Xt = Xo + a(Xo) !.t ds + b(Xo) 1t dWs 
• 0 0 

where R is the remainder. The mnlt.iplc stochastic integral term in (9) is typical of 
the terms in stochastic Taylor expansions. with constant coefficients involving the 
drift. and diffusion coefficients a and b and their higher order derivatives evaluated 
at t.he expansion point X 0 . Similar t.:qws of functions occur as the integrands 
of t.hc next higher order mnltipl1~ intcgrnls that constitute the remainder. Such 
multiple st·ochastic integrals. which pro\·ide more information about the behaviour 
of the Wiener process paths~ tl1at is abo11t the Wiern~r chaos~ must be present if 
higher. accuracy is to be obtained. 

5. Taylor Schemes. 

Special classes of stochastic Taylor cxpa11sions required for higher order strong and 
weak numerical schemes for SD Es arr dc::'cribcd in Plat.en ( 1982) and in Kloedcn 
and Plat.en (1991}. The Taylor :=-:chcm('S arc derived by applying t.rnncat.ed versions 
of these Taylor expansions on each time discretization subinterval. 

For examplci the stochastic Euler schr.me ( 4), which represents the order 0. 5 
strong Taylor schemei can be obtained by truncating the Taylor expansion with 
only the terms on the first line of (9) as its non-remainder terms. From the 
expansion (9) itself we obtain a scheme which has strong order/= 1.0. This was 
proposed by Milstein (1974) and will be written as 

1 rn+I r1 
(10) Yn+t = Yn +a~+ b ~ Wn + 2 bb' }.,." ./.,." dWs 1 dWs 2 • 

· where {and later too) we abbreviate a(Yn) by a. b(1~1 ) by b, and so on. In imple-
menting this scheme we use t.he fact that 

(11) 

The Milstein Scheme ( 10) represents the order 1. 0 strong Taylor scheme. 
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The additional terms fromstochastic Taylor expansions that should be included 
to form a Taylor scheme of any strong order I = 1.5, 2.0, 2.5, ... are described in 
Kloeden and Platen (1992). For instance, the order 1.5 strong Taylor scheme 

(12) 
1 = Yn + a 6. + b 6. W n + Z bb' { ( 6. W n) 2 

- 6.} 

+ a'bt.Zn + ~ ( aa' + ~ b2a") 6 2 

+ (ab'+~ b2b") {6Wn 6 - 6Zn) 

+ ~ b (bb'' + (b'J 2
) { ~(6Wn)2 

- 6} 6Wn 

requires the additional random variable 

(13) 

which is Gaussian distributed with mean zero! variance ~ 6. 3 and correlation 
E(b..Vl'n 6.Zri) =t 6. 2 <u1d is easily generated on a computer. 

Higher order strong Taylor approximations and those for SD Es involving sev-
eral independent Wiener processes also contain multiple stochastic integrals which 
lrnvc t.o be approximated. for example by random Fourier series as described in 
Milstein (1988) and in Klocden, Plat.en and Wright {1992). For special classes of 
SD Es many of the coefiicic11t.s of such multiple integrals vanish or Hatisfy algebraic 
relrtt.ionships which allow ident.it.ies bet.ween integrals of higher and lower multi-
plicities to he used. so there is t.hen 110 11ecd to compute these higher multiple 
integrals. These classes. which include SDEs with additive or commutative noise, 
are encountered in many practical applications. While higher order strong Taylor 
schemes for I ~ 2 are rat.her complicated in general. they simplify considerable 
and become computationally viable for these special SDEs. 

A higher order of convergence is more easily obt.ained for the weak Taylor schemes 
as it takes only integer values and simpler random variables can be used. The 
stochastic Euler scheme ( 4) with two-point distributed random variables as in 
(8) is an order 1.0 wenk Taylor scheme. The following order 2.0 wea.k Ta.ylor 
schr:mr. was proposed by Milst.ein (1978) (sec also Talay (1084) for a proof of its 
convergence order): 

(14) Y,,+1 = Y,,+at.+bt.Wn+~bb'{(t.Wn)' -6} 

+ i ( a'b + ali + i b"b2
) 6 W,. 6 

+ ~ (aa' + ~ a"b2
) D. 2 

2 2 , 
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where 6. Wn can be chosen as a three-point distributed random variable with 

(15) and 

The general weak Taylor schemes of orders /3 = 1.0, 2.0, 3.0, ... are character-
ized in Platen ( 1984) and include all multiple stochastic integrals up to multiplicity 
/3. These multiple integrals can~ however, be represented by more simply generated 
random variables than those in the corresponding strong schemes. 

Both strong and weak Taylor schemes for SDEs are now quite well understood. 
They open the door to other schemes such as the derivative free Runge-Kutta type 
schemes for which t.he convergence order can be established by comparison with the 
corresponding Taylor schemes. The import.ant point t.o be learned from the Taylor 
schemes is that to achieve higher order strong or weak convergence it is necessary 
t.o include in the schemes sufficient information about the driving Wiener processes 
overt.he discretization subintervals in form of multiple stochastic integrals and that 
in t.he weak schemes simpler random variables can often he substituted for these 
nmlt.iple integrals. 

6. Strong Runge-Kutta Type Schemes. 

It. is nat.mal to search for st.ochastic Runge-Kutt.a type schemes which avoid the 
deriv:tl iV(!S in t.hc cocflicicnt.s of the higher order Taylor schemes. First attempts 
W<'rc made by H.iimcliu (1982) who showed that it is only possible to achieve a 
st.rong order 0.G (or 1.0 for special SD Es) when only the increments ( 5) of the 
driven Wiener processes arc used. Later Platen ( 1984) derived the strong order 
1. 0 w.rplicit Bchcme 

wit.h internal stage 
f"n = Yn + a.6. + b6. 1

/ 2 • 

To achieve a higher strong order we know from the strong Taylor schemes that. we 
have to include the random variable 6.Zn (13) iu an order 1.5 strong Rungc-Kutta 
scheme. An example of such a scheme has the form 

( 17) = 1 { - - } Yn + b6.Wn + r;: a(T+) - afI _) 6.Zn 
2v 6. 

+~ {a(T+)+2a+a(i'-)} 6. 

+ ~ {b(i'+)- b(i'-)} {(6.W11 )
2 

- 6.} 
4v 6. 

+ 2~ { b(t +) - 2b + b(t -) } { 6. W11 6. - 6Zn} 

+ 4~ [b(<i'I+)- b(<l>_)- b(i'+) +b(LJ] 
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with stages 
Y ± = Yn + a b. ± b Vii 

and 
<I>±= i'+ ± b(Y+) Vii. 

Other generalizations and interesting specializations of this scheme can be found 
in !Goeden and Platen (1992). Admittedly it looks rather complicated, but simple 
strong Runge-K utta schemes of higher strong order are still not known except for 
special kinds of SD Es. For example, for additive noise where b(x) = b, const. .. 
Chang (1987) obtained the strong order 2.0 method 

(18) 

wit.h stages 

t ± = Y,, + ~!!_I\.+ ! b { Ll.Zn ± J2Jo.1,o) I\. - (Ll.Zn)2
}, 

and ~=a - ~bl/. Note that. an addit.ional ra11dom variable .fu,o is needed here. 
N cwton ( 1991) proposed order 1.0 Runge-I< ut.t.a methods which are asympt.ot.-

ically the best within the class of strong order 1.0 schemes with the increments 
b. H-'rr of the driving \Viener process as their only random variables. 

Just as stiff ODEs require implicit met.hods t.o provide numerical stability, so 
too do stiff SD Es (sec Kloeden and Platen ( 1991) ). In the stochastic case such 
schemes must be construct.eel with some care. A simple example is the order 1. 0 
implir.it .c;trong R11.ngc-K11.tta method 

(19) 

wit.h st.age 

Higher order examples are the following strong order 1.5 implicit method 

(20) 
1 = Yn + 2 {a ( Yn+t) +'a} b. + b Li Wn 

+ ~ { b ( t +) - fJ ( t _) } { ( b. Wn) 2 - b.} 
4v b. 

+ 2~ {b ("f +) - 2b + b ('t-) }{b.Wnb. - b.Z:n} 
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+ 21- {a (i'+) - a (i'-)} { 6Zn - ~6Wn6} 

+ 4~ {b(<l>+)-b(<I>-)-b(t+) +b(t-)} 

x u(6Wn) 2 
- 6} 6W,. 

<I>±= t+ ± b (i'+) Vii. 
and the implicit strong order 2.0 Runge-Kutta ,t;chcrne 

(21) Yn+I = Yn + { 1!(i' +) + g (L) - ~ (g (Yn+tl + g)} 6 + b 611',. 

with stages 
- 1 1 ( - -) T ± = Yn + "2 g_ 6 + 6 b 6 Z ± ( ~ 

where 
- 1 1 

b..Zn = 2 b..Zn + 4 b..Wnb.. 

and 

Strong implicit Runge-Kutta type met.hods have also been investigated for in-
stance in Riimelin (1982), Milstein (1988L Saito and Mit.sni (1992). Hernandez and 
Spigler (1991), and Klau<lcr and Petersen (1985). A very recent strong met.hod of 
order 0.5 in which stochastic terms are also implicit is the balauccd method 

(22) Yn+l = Yri +a 6 + b 6 Wn + (Y,i - Yri+l )(a 6 + b ID.. Wnl) 

proposed by Milstein, Platen and Schurz (1992). 

7. Weak Runge-Kutta Type and Extrapolation Schemes. 

The construction of higher weak order Runge-Kutt.a schemes turns out. t.o be much 
easier. There were proposals for weak second order met.hods in Milstein ( 1978) 
a11cl Talay (1984), but. these still contained a derivative of the diffusion coefficient 
b. This is avoided in the following weak order 2.0 Runge-Ku.tta. scheme 

(23) Yn+1 = 
1 . 

Yn + 2 (a ( i') + a) 6 

+~ (b (t+) + b (t-) + 2b) D..H!n 

+ ~ (b (t+) - b (t-)) { ( 6W,.)' - 6} 6-112 
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with three stages 

and 
- ± /,;" i = Yn + a 6 ± b V 6, 

9 

(see Platen ( 1984) ), where 6. vVn can be chosen as a three-point distributed ran-
dom variable defined in (15). An implicit method of the same order is obtained 
by writing Yn+l instead of t in (23) and a class of second order weak Runge-
Kutta approximations of a specific form using at least five stages is described in 
Mackevicius (1992). 

The derivation of general higher weak order Rm1gc-Kutta met.hods has thus 
far proved difficult, with proposals only in special cases, that is for additive noise 
or for linear equations; see Milstein (1988) and Kloeden and Platen (1992). The 
latter reference contains the following explicit 'third weak order Runge-K utta type 
scheme, which has six stages~ for SDEs with additive noise:. 

(24) Yn+l = r:1 +at.+ b6lVn 

+~ (at+ az - ~a - ~ (at+ az)) /', 

+ {f ( ~ (at - az) - - ~ (at - az)) c /',z" 

+~ '[a(1~1 +(a+at) 6.+((+p)bVX)-at-a~+a] 

X [ {( + f') MV n /X + /', + ( f' { ( MVn) 
2 

- /',}] 

with 

and a; = a ( Yn + 2a 6. ± b ..fl& <P) , 

where cp is either ( or p. Here two correlated Gaussian random variables 6. Wn 
,...., N(O; 6) and 6.Z11 ,..., N(O: ~ 6. 3 ) with E(6.lf'11 6.Zn) = ~6. 2 are used. together 
with two independent. two-point. distributed random variables ( and p with 

1 
P(( = ±1) = P(p = ±1) = -. 2 

One suspects that there should be more compact. and elegant weak Runge-
Kutt.a type schemes of third and fourth order, especially since there is some free-
dom iti the types of random variables that can be used in weak schemes. There 
is already evidence from a paper by Talay and Tubaro ( 1990) that extrapolation 
methods can be used to construct higher convergence from lower order schemes. 
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The simplest extrapolation method, the Romberg or Richardson extrapolation, is 
based on two applications of the Euler scheme to evaluate the functional 

V1~1 = E (g(Y~(T))) 

for the time step sizes ~ = 6 and ~ = 26. Their linear combination 

(25) 

then provides a weak order 2.0 method. Higher weak order extrapolations based 
on the Euler and other higher order weak schemes have also been contructcd 
in Kloeden, Platen and Hofmann ( 1993). Many implicit. weak schemes can he 
extrapolated in a similar way for stiff SDEs. 

8. Visualization of Sto'chastic Dynamics. 

It is oft.en instructive t.o be able to visualize t.he trajectories of a dynamical system 
such as a noisy oscillat.or t.hat is ~ovcrncd by a stochastic differential equation. 
Computer plots of numerical approximations of different sample paths for the 
same initial value or for the same sample path but different initial values provide 
an effective means of visualizing the dynamical behaviour of such a stochastic sys-
tem. Strong schemes arc required for t.his direct simnlat.ion of trajectories, while 
weak schemes should be used to calculate frequency histograms. moments or the 
invariant measure of a limiting stationary solution. 

As an example let. us study a Bonhocffcr-Va.n dcr Pol oscillator. the equations for 
which are the 2-dimensional system of Ito stochastic differential equations 

(26) dX 1 
t 

where {Wt, t ;::: O} is a Wiener process and <7 > 0 is the intensity of the noise. Since 
real dynamical systems need to function effectively under variable conditions, the 
behaviour of the stochastic system (26) for small <7 should be similar to that. of the 
corresponding det.erminist.ic system. which has a limit. cycle, if the latter is t.o he a. 
realistic model. That is. system ( 26) should possess a. noisy limit cycle, evidence 
for which can be suggested by the direct simulation of solution paths of (26) by a 
strong scheme. To be able to draw reliable conclusions, however, a large number 
of sample paths must be examined for a variety of representative initial values. 

To have a specific case, we apply the Milstein scheme (10) with equi.distant. step 
size !:l. = 2-9 to the noisy Bonhoeffer-Van der Pol equations (26) with parameters a 
= 0.7, b = 0.8, c = 3.0, z = -0.34 over the time interval 0 st s T = 1 for the initial 
value XJ = -1.9, X~ = 1.2. and noise intensity <7 = 0.1. Linearly interpolated 
paths of each component. for a typical simulation have been plotted against time 
t and on the ( X 1 , X 2 )-plane in Figure 1, from which it appears that the noisy 
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Bonhoeffer-Van der Pol equations do have a noisy limit cycle. Increasing the 
noise intensity destroys the phase relationship between the two components of the 
system. To exclude the possibility that. the results observed are just some peculiar 
effect of the particular step size or numerical scheme used, the calculations were 
repeated with other step sizes and schemes to see if similar behaviour is obtained. 

3 

2 

) 
-3 -2 -1 2 3 Xl 

-1 

r~ r 
I \ I 

Milstein numerical scheme 

noise intensity = 0.10 

Number of trials = 1 

r 
I 100 Time 00 

2 

20 40 60 80 100 Time 
-1 

Figure 1 Bonhoeffer-Van rier Pol oscillator. 

The out.put of a weak mtmcrical scheme can also provide useful visual informat.ion 
about the behaviour of a stochastic dynamical system. For example, a frequency 
histogram can indicafo t.he shape and support of the density of an invariant mea-
sure associated with an asymptotically stable stationary solution such as the noisy 
limit cycle of the noisy Bonhoeffer-Van der Pol system (26). To illustrate the pos-
sibilities an order 2.0 weak Taylor scheme wit.h step size /). = 2-g was applied to 
the equations (26) over the time interval [O, 10] and a simple box counting proce-
dure was used t.o constrttct the hist.ogratu in Figure 2. In part.icnlar. a 160 x 160 
grid was used with the reference (1,1) cell located on the lower left. of the solution 
field. Peaked regions of this histogram indicate slower passage time in these parts 
of the noisy limit cycle. 
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Milstein numerical scheme 

noise intensity = 0.10 

Number of trials = 1000 

Figure 2 Frequency histogram for the noisy Bonhoeffer-Van dcr Pol equations wi t.h 
noise intensity u = 0.1. 

For each wand fixed time instant t the mapping Tt,w defined by Tt,w ( x) = Xt ( w) for 
the solution xx of a stochastic differential equation with dct.erministic initial value 
X~(w) =xis a difTeomorphism, even though the sample paths of xx themselves 
are only continuous in time t. This property underlies a method of visualization 
of global dynamical behaviour in which a large number of solutions corresponding 
to the same noise sample path but starting in a grid of deterministic initial values 
is followed simultaneously. In view of the diffeomorphism property none of these 
paths can intersect each other. The ability of a strong numerical scheme to preserve 
thiR property provides an indication of itR accuracy and effcctivencRs. 

As an example we consider a simplified version of a Duffing- Van der Pol oscil-
la.tor driven by multiplicative white noise. The It.o stochastic differential equation 
here is 2-dimcnsional, with components X 1 and X 2 representing the displacement 
x and speed x, respectively, namely 

( 27) dXf = Xi dt 

where W = {Wt, t ~ O} is a Wiener process, a is a real-valued parameter and rr 
~ 0 controls the intensity of the multiplicative noise. The detcrminstic version of 
(27), t.hat. is wit.h a = 0, has the steady states 

xi= o, X 2 = 0 for all a 

and 
xi= ±va, X 2 = 0 for a ~ O, 
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the first of which is also a stationary state of the stochastic differential equation 
(27). A typical trajectory starting with nonzero displacement and zero speed is 
oscillatory and attracted to one of the nontrivial steady states (±.ja, 0). The 
regions of attraction of these two steady states could be determined by appro-
priately marking each initial value on the phase plane according to the steady 
solution which attracts the trajectory starting there. For weak noise we might 
expect similar behaviour to the deterministic case just described, but as the noise 
is multiplicative here stronger noise may lead .to substantial changes, particularly 
over a long period of time. 

The Milstein scheme was used for the case a = 1.0 and noise parameter u = 0.2 
using the same sample path of the Wiener process for each trajectory but start.ing 
at different initial values. The paths plotted in Figure 3 are random in appearance 
and remain near to each other until they come close to the origin (0, 0), after which 
they separate and are attracted into the neighbourhood of either (-1, 0) or (1, 0). 

><2 

4 ><1 

-(, 

-9 

Figure 3 The Duffing-Van der Pol oscillator with weak noise. 

Finally. we examine the effect of a stronger multiplicative noise in sy8tcm (21) 
over a long period of time and plot in Figure 4 t.hc displacement component Xl 
against time t. While the noisy trajectories are initially attracted by one or the 
other of the points (±1, 0), not all of them remain indefinitely in t.he vicinity of 
the same point. when the noise intensity is high. Instead, after spending a period 
of time near one of the points, the trajectories may switch over to the other 
point. This is suggestive of a tunneling phenomenon. To convince ourselves of 
the reliabilhy of the above results, we repeated the calculations using a smaller 
step size and other strong schemes. While t.he quantit.ative details may then differ. 
t.hc qualita.tive pict.ure should be much t.he same. Such a check ables us to avoid 
results that arc only an artifice of a particular numerical scheme or simulation. 
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><Ht> 

0 

-2 

Figure 4 Displacement. X,1 versus t for the Duffing-Van dcr Pol equat.iou. 

9. Lyapunov Exponents. 

The asymptotic st.ability of a st.at.ionary solution of a linear stochastic differential 
equation is characterized hy the sign of its largest Lyapunov exponent, with the 
change from negative to positive as a parameter is varied indicating the loss of 
stability. Since Lyapunov exponcnt.s can rarely be determined explicit.ly, they 
usually have t.o be evaluated numerically. A systematic, theoretical and practical 
discussion of the approximation and computation of Lyapunov exponents can be 
found in Talay (1989). 

Lyapunov exponents mcasnre t.he asymptot.ic rat.cs of expansion or contraction 
of the solutions of a linear system, thus generalizing the real parts of the eigen-
values of an aut.onomous deterministic linear system. For a d-dimensional linear 
Stratonovich stochastic differential equation 

ni 

(28) dZt = AZt dt + L Bk Zt 0 dW/:, 
l.:=l 

where d ;::: 2 and W = ( W1 •••.• wm) is an m-dimensional Wiener process, the 
Lyapunotr exponents arc defined as 

(29) i I .X(z, w) = lim sup - In Zt(w)I 
t-oo t 

for each solution with initial value Z8 = z. Under appropriate assumptions on the 
matrices A, B 1 , ••• , nm in (28), the Multiplicative Ergodic Theorem of Oscledets 
assures the existence of just d nonrandom Lyapunov exponents 
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some of which may coincide, and in fact the existence of the limits rather than 
just upper limits in {29). The counterparts of the eigenspaces for. these Lyapunov 
exponents are, however, generally random. 

There is an explicit formula for the top Lyapunov exponent A1. To determine 
it equation (28) must first be transformed to spherical coordinates T = lzl and S 

=z/lzl for z E ~d \ {O} for which it becomes 
m· 

(30) dRt = Rt q(St) dt + L Rt qk(St) 0 dWl: 
k=l 
m 

(31) dSt = h(St. A) dt + L h(St, Bk) 0 dWtk 
k=l 

on ~+ x 3d-l, where 3d-l is the unit sphere in ~d and 

q(s) =ST As+ f, GsT (Bk+ (Bk) T) s - vnks) 2
)' 

. k=l 

q'-=(s) = sTBks. h(s.A) = (A-(sT As)!) .'J. 

Equation (31) does not involve the radial variable Rt, which from (30) has the 
explicit solution 

In Rt= In IZd = /.( q(Su) du+ f, J.t qk(Su) o dW,~, 
• 0 k=l 0 

from "'fhich it follows that 

(32) lim ! In IZtl = Iim ! J.t q(Su) du. 
t-oc: t t-oo t 0 

Consequently, the top Lyapnnov exponent ). 1 of system (28) is given by the formula 

(33) 

where µ is the invariant probability measure of an ergodic solution process S = 
{St, t ~ O} of (28) on s<L-l. In most. cases, however, it is not easy to determineµ 
directly, so the limit (32) is used to approximate the ).1 instead. 

For example, for the stochastic differential equation 

(34) dZt = AZt dt + BZt o dvVt 

with matrices 

A -[a OJ - 0 b , 

and real-valued parameters a. b~ a Baxendale ( 1986) has shown that the top Lya-
punov exponent is 

(35) J.2
1f (a b ) 

1 1 
· 

0 
cos(W) exp 

2
a 2 cos(28) d(} 

A1=-
2

(a+b)+-(a-b) 2 • 

2 !. 7r (a b ) 
0 

exp 
2

a 2 cos(20) d(} 
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Since d = 2 here the projected process St lives on the unit circle S1 and thus can 
be expressed in terms of the polar angle 

¢, = arctan ( ~)) 

satisfying the stochastic equation 

(36) d <Pt = ~(b - a) sin (2</Jt) dt + adWt, 

which is interpreted modulo 27r, with 

(37) q (St) = ij (<Pt) =a (cos ¢t)2 + b (sin <Pt) 2
• 

We shall use the functional 

(38) 

where n.r is the largest integer n such that n b :::; T, for a discrete time approx-
imat.io11 Y 6 of t.hc solution of equation (3G) t.o approximate the top Lyapunov 
exponent ,\1 . From (35) that )q ~ -0.489 ... for the parameters a= 1.0. b = -2.0 
and a = 10. We plot t.he linearly interpolated values of Fl against t for 0 ::; t ::; 
T in Figure 5 for the weak order 2.0 R.unge-I<utta scheme (23) with 6 = 6. = 2-9 , 

T = 512 and Yo = <Po = 0.0 for these parameters, noting that Fl tends towards 
the true value of ,\1. 

rd .. 1 ta 

0 

·0.494402 
·0.4'90'9 

~ 
b.,.. ¥i,; ....,,.......~ 

~~..,...--------------- --·----·---------· 
·-------- ---------) 

192 J2fl JL< 4 ~~ 512 t 0 l 28 

Figure 5 The top Lyapunov exponent. 
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The performance of the numerical scheme above was enhanced by the asymptotic 
stability of the null solution of the system of equations (33) as indicated by the 
negativity if its Lyapunov exponents. For stiff and unstable systems an implicit 
.weak scheme may be required to provide satisfactory results. 

In higher dimensions the stochastic differential equation (31) for St on 3d-l 
does not simplify so nicely and difficulties may be encountered in trying to solve it 
numerically, particularly in ensuring that the successive iterates remain on 3d-l. 
To circumvent these difficulties the first limit in (32) could be approximated di-
rectly, that is by the functional 

(39) 

where Y 0 is now a discrete time approximate solution of the original stochastic 
differential equation (28), or by the fuctional' 

(40) o 1 nr ( IY~I ) 
LT = n 8 L In -,yo I 

T n=l n-1 

which is c,omputationally preferable since the logarithms in (39) will become very 
large in magnitude as IY~I tends to zero or becomes very large. 

10. Stochastic Stability and Bifurcation. 

The reference solution for a stability analysis of a nonlinear stochastic system is 
typically a statistically stationary solution, which, to simplify matters. will be 
supposed to be the zero solution Xt = 0. Consequently, the coefficients of the 
nonlinear (Stratonovich) stochastic differential equation 

m 

( 41) dXt = f! (Xt) dt + L bi:(Xt) 0 dWl: 
j=l 

under consideration need to satisfy 

!!(O) = b1 (0) = ... = bm(o) = 0. 

There is an extensive array of tests for stochastic asymptotic stability of a non-
linear system. This often follows from that of the zero solution Zt = 0 of the 
corresponding linearized stochastic differential equation 

( 42) 
m 

dZt = A Zt dt + L Bk Zt 0 dWtk 
k=l 

where A = \7g_(O), B 1 = \7b1(0), ... , nm = \7bm(o), which is characterized by 
the negativity of its top Lyapunov exponent .X 1 • When the coefficients of ( 42) 
depend on parameters, so too will .X1 and its sign may change as the parameters 
change, thus changing the stability of the zero solution and possibly resulting in 
a stochastic bifurcation. Since the theory of stochastic bifurcation is still in its 
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infancy numerical simulations are often the only means available to see what might 
happen. 

As an example we consider the deterministic system of ordinary differential 
equations 

( 43) 

= 

with parameter a which is based on the Brusselator equations which model un-
forced periodic oscillations in, certain chemical reactions. When a < 2 the zero 
solution (xi, x 2 ) = (0, 0) is globally asymptotically stable, but loses stability in 
a Hopf bifurcation at a = 2 to give rise to a limit cycle for a > 2. Supposing 
that the parameter a is noisy, that is of the form ·a + a ~t where ~t is Gaussian 
white noise, leads to the system of Ito stochastic differential equations with scalar 
multiplicative noise 

( 44) dXf = {(a - l)Xf + a(Xf}2 + (Xf + 1)2 X;} dt +a Xf (1 +Xi )dWt 

dXi = {-a Xf - a(Xf )2 
- (Xf + 1 )2 Xi} dt - a- Xf ( 1 + Xf )dWt 

for which (Xl, Xl) = (0, 0) is a solution. The corresponding linearized system is 
t.hen 

(45) d ( z: ) = [ a - 1 1 ] ( z: ) dt + a [ 1 O ] ( Z~ ) dWt 
zt -a -1 zt -1 o zt 

in its Ito version, with the Stratonovich version having the same form but with a 
replaced by a - a2 /2. Its top Lyapunov exponent At = At (a, a) will depend on 
the two parameters a and a-. In the deterministic case a = 0 we have ;\1 (a,0) = 
! (a - 2}~ the real part of the complex conjugate eigenvalues of the drift coefficient 
matrix. When noise is present we need to evaluate At (a, a-) numerically which 
can he done similarly as in the previous section. Results of such CC?mput.ations of 
the functional ( 40) given in Figure 6 show that the presence of noise stabilizes the 
system for a > 1 with loss1of stability occuring for larger l~ values. A similar effect 
also occurs in the original nonli~1ear system ( 44). 

Figure 7 shows the phase diagram for the noisy Brusselator equations ( 44) 
with initial value XJ = -0.1, X~ = 0.0 over the time interval 0 ~ t ~ T = 1 for 
the parameters a = 2.1 and a = 0.1. It suggests the presence of a noisy limit 
cycle, which is obviously not a closed, periodic curve as in the deterministic case, 
but nevertheless appears to have a characteristic mean radius, or magnitude, and 
mean period. 
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Figure 6 Top Lyapunov exponent ,,\i(n,a) of the noisy Drusi;;clat.or. 
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Figure 7 Noisy Brusselator phase diagram. 
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