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Abstract
Signal detection in functional magnetic resonance imaging (fMRI) inherently involves the

problem of testing a large number of hypotheses. A popular strategy to address this multi-

plicity is the control of the false discovery rate (FDR). In this work we consider the case

where prior knowledge is available to partition the set of all hypotheses into disjoint subsets

or families, e. g., by a-priori knowledge on the functionality of certain regions of interest. If

the proportion of true null hypotheses differs between families, this structural information

can be used to increase statistical power. We propose a two-stage multiple test procedure

which first excludes those families from the analysis for which there is no strong evidence

for containing true alternatives. We show control of the family-wise error rate at this first

stage of testing. Then, at the second stage, we proceed to test the hypotheses within each

non-excluded family and obtain asymptotic control of the FDR within each family at this sec-

ond stage. Our main mathematical result is that this two-stage strategy implies asymptotic

control of the FDR with respect to all hypotheses. In simulations we demonstrate the

increased power of this new procedure in comparison with established procedures in situa-

tions with highly unbalanced families. Finally, we apply the proposed method to simulated

and to real fMRI data.

Introduction
Modern research is increasingly concerned with large-scale experiments and complex experi-
mental designs. From a statistical perspective the analysis of such experiments often involves
the issue of multiple testing of a large number (saym) of individual hypotheses. The develop-
ment of methods to deal with this issue is a very active field of research with many sophisti-
cated procedures emerging, e. g., taking a specific structure in the set of hypotheses into
account; see, for example, Sections 3.3 and 12.2 in [1].
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One example is the analysis of functional magnetic resonance imaging (fMRI) data; see [2]
for an overview. At each unit of measurement (voxel) on a regular grid a statistical test is to be
performed for the null hypothesis of no activation versus the alternative hypothesis of activa-
tion of the voxel (a signal detection problem). In such an application, the numberm is often of
the order of magnitude of several hundreds of thousand hypotheses.

The family-wise error rate (FWER) and the false discovery rate (FDR) are two established
notions for measuring the type I error of a multiple test. The FWER denotes the probability of
at least one false rejection among them individual tests, and a multiple test is said to control
the FWER (in the strong sense), if the latter probability is bounded by a pre-defined signifi-
cance level α over the whole parameter set of the statistical model. One simple way to control
the FWER is to carry out every individual test at the adjusted level α/m, commonly referred to
as the Bonferroni correction. However, this ignores the spatial correlations of the data (cf. [3]),
and can often be improved by multivariate methods. Another strategy for fMRI signal detec-
tion with FWER control incorporating the spatial dependencies of the hypotheses is based on
the geometry of random fields, see [4] and [5].

On the contrary, the FDR is defined as the expected proportion of type I errors among all
rejections of the multiple test φ, and φ is said to control the FDR at a given level α 2 (0, 1) if
this expected proportion is smaller than α for all parameter values of the considered statistical
model. Applying this criterion leads to more liberal multiple tests, meaning that on average
more null hypotheses can be rejected. The Benjamini-Hochberg procedure (or linear step-up
(LSU) test φLSU, see [6]) for FDR control has become very popular in fMRI research, cf. [7].
Meanwhile, FDR control is an established criterion for the analysis of high-dimensional data,
and is agreed upon to provide a suitable interpretation of the results.

When structural information regarding the hypotheses is at hand, it is often possible to
incorporate this external knowledge into the statistical methodology in order to improve the
test procedures with respect to power or specificity. In the fMRI context, weighted variants of
φLSU considered in previous work incorporate different aspects of the spatial structure of the
activation areas, which are typically organized as clusters of activation rather than as singular
spots. Furthermore, the functional organization of the brain defines specific regions of interest
related to specific functions that are accessible by suitable experimental paradigms, see [8]. A
very old example for such a functional atlas based on cytoarchitecture is the Brodmann atlas
(cf. [9]). Clustering techniques to define regions of interest and to incorporate the (in general)
heterogeneous cluster sizes into φLSU were employed in [10] and [11]. Relatedly, in [12] and
[13] a case was studied in which the set of hypotheses can be divided into disjoint groups with
potentially different proportions of activated voxels by means of a-priori knowledge. The
authors demonstrated higher power of their proposed weighted φLSU tests in comparison with
the standard LSU procedure if the fraction of true null hypotheses differs between the groups.

Another class of weighted FDR-controlling multiple tests introduces a second layer of
hypotheses which are added to the original set of them individual hypotheses. Namely, each of
the considered disjoint groups is associated with the group-specific null hypothesis of no acti-
vation of the whole group. This leads to a hierarchical hypotheses structure with two levels.
One level consists of all the group hypotheses and the other of all them individual hypotheses.
In such a context, hierarchical multiple test procedures consist of two stages: First, the group
hypotheses are tested, and families for which the group hypothesis cannot be rejected are
excluded from the analysis. This strategy relaxes the (remaining) multiplicity for the second
stage, where the individual hypotheses are tested. This situation was investigated, for instance,
in [14, 15] and [16], and is also often encountered in other application fields like genetic associ-
ation studies (cf. [17]), gene expression analyses (cf. [18]), or in electroencephalography
research (cf. [19]).
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In this paper we develop a new two-stage method for FDR control in the fMRI context that
takes into account an a-priori partition of the brain into disjoint families of voxels. The main
innovation is that non-linear critical values or rejection curves, respectively, are utilized in the
second stage. To this end, we make use of the approach in [20] and [21] for implicit adaptation
of FDR-controlling multiple test procedures to the amount of signals. While these papers only
considered the individual hypotheses, we apply their reasoning within every group which is
still under consideration in the second stage of the hierarchical two-stage test. This leads to
high sensitivity regarding the voxels within such a group. This is combined with a Bonferroni-
type multiplicity adjustment in the first stage, implying a good specificity during the detection
of active regions (testing of the group hypotheses). We prove that this procedure controls the
FWER on the set of the family hypotheses, as well as, asymptotically asm!1, the FDR
within each family and the global FDR (gFDR), which is the FDR with respect to all individual
hypotheses.

The remaining sections are structured as follows. In Section “Methods” the mathematical
notation is set up, some known results about FDR control are reported, the considered two-
stage procedures are introduced and their statistical properties are analyzed. To evaluate the
proposed new procedure we perform a number of simulations, and we analyze real fMRI data.
To this end, the experimental setups and the most important results are explained and reported
in Section “Results”. We conclude with a discussion in the subsequent Section “Discussion”.
Lengthy mathematical derivations are deferred to S1 Appendix. For the sake of completeness,
additional experimental results are provided in S1 and S2 Tables as well as in the figures in S1,
S2, S3, S4, S5, S6 and S7 Figs.

Methods

Notation and preliminaries
We denote the number of families of hypotheses by k and the families themselves by
H1; . . . ;Hk. Each setH‘ is assumed to consist ofmℓ > 0 individual hypothesesHℓ1, . . .,Hℓm

ℓ
,

1� ℓ� k. In addition, for each of the k groups we consider a screening (or family) hypothesis

Hf
‘ ; 1 � ‘ � k, which we will formally define in Definition 4. The aims of the statistical analysis

are (i) FDR control in each familyH‘ separately, (ii) FDR control with respect to all individual
hypotheses pooled together, denoted by the global FDR, (iii) FWER control on the group level,

i. e., with respect to ðHf
‘ Þ1�‘�k. We assume that for each hypothesis a (marginal) p-value is avail-

able, which we identify by the same sub- and / or superscript as the corresponding hypothesis.
Definition 1 (Linear step-up test φLSU) Denote by p1:m � p2:m � . . .� pm:m the ordered p-

values for a collectionHm ¼ fHi; i 2 I ¼ f1; . . . ;mgg of null hypotheses at hand. Furthermore,
let H1:m, . . ., Hm:m denote the re-ordered null hypotheses inHm, according to the ordering of the
p-values. Then, the linear step-up test φLSU at FDR level α 2 (0, 1) rejects exactly the hypotheses
H1:m, . . .,Hi�:m, where

i� ¼ max fi 2 I : pi:m � ia=mg: ð1Þ
If the maximum in Eq (1) does not exist, then no hypothesis is rejected.

The linear step-up test belongs to the broad class of step-up-down (SUD) multiple tests,
introduced in [22].

Definition 2 (Step-up-down test of order λ in terms of p-values, cf. [21]) Let p1:m� p2:m
� . . .� pm:m and α be defined as in Definition 1. For a tuning parameter l 2 f1; . . . ;mg a step-
up-down test φλ = (φ1, . . ., φm) (say) of order λ based on some critical values α1:m� � � � � αm:m is
defined as follows: If pλ:m � αλ:m, set i� = max{j 2 {λ, . . .,m}:pi:m� αi:m for all i 2 {λ, . . ., j}},
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whereas for pλ:m> αλ:m, put i� = sup{j 2 {1, . . ., λ − 1} : pj:m � αj:m} (sup ; = −1). Define φi = 1
if pi� αi� :m and φi = 0 otherwise (α−1:m = −1).

A step-up-down test of order λ = 1 or λ =m, respectively, is called step-down (SD) or step-up
(SU) test, respectively. If all critical values are identical, we obtain a single-step test.

In case of φLSU, λ =m and αi:m = iα/m for all 1� i�m. In general, the choice of the order λ
and of the critical values employed in an SUD test for FDR control depends on model assump-
tions; cf. Table 5.1 in [1].

Definition 3 (AORC-based critical values, cf. [20] and [21]) Under the assumptions of Def-
initions 1 and 2, we denote by$AORC

l the SUD test with critical values

ai:m ¼ ia
m� ið1� aÞ ; 1 � i � m: ð2Þ

The critical values in Eq (2) correspond to the so-called asymptotically optimal rejection curve
(AORC) introduced in [20]. For suitable choices of λ and under the assumption of stochastically
independent p-values,$AORC

l has been shown to exhaust the FDR level α asymptotically as
m!1, while φLSU is not exhausting α if the number of true null hypotheses is smaller thanm.

In a two level situation with group hypotheses and individual hypotheses, a two-stage proce-
dure can be employed. In our case we are interested in testing the hypotheses within a family

H‘ only if this family has been declared active, meaning that Hf
‘ has been rejected in the first

stage of analysis. In the fMRI context a family consists of many individual hypotheses and we
consider a single activation in a family (an isolated signal) rather as noise than as evidence for
activation of the family. Therefore we employ a criterion which defines a family as active if
there is at least a certain proportion of activated voxels in the family. This proportion has to be
predefined in advance. A useful tool to formalize activity of families in this context is the partial
conjunction hypothesis introduced in [23].

Definition 4 For a given integer 1� uℓ �mℓ, the u-partial conjunction hypothesis Hu‘=m‘ for
familyH‘ is defined as the set of parameters such thatH‘ contains less than uℓ false null hypothe-
ses, with corresponding alternative given by the set of parameters such that the number of true

alternatives inH‘ is at least equal to uℓ. Based on this, we let Hf
‘ ¼ Hu‘=m‘ . According to [23] a

valid p-value for testing Hf
‘ , under the assumption of positive regression dependency on subsets

(PRDS) on the joint distribution of the mℓ individual p-values, can be defined as

pu‘=m‘ ¼ min 1�i�m‘�u‘þ1

m‘ � u‘ þ 1

i
pu‘�1þi:m‘

� �
: ð3Þ

In general, a critical issue in connection with FDR control is the dependency structure among
the p-values. The LSU test controls the FDR under the PRDS assumption regarding the joint
distribution of the p-values, see [24] and [25]. It was shown in [26] that φLSU cannot be
improved uniformly if the dependency among the p-values is completely unknown. Other pro-
cedures as the one introduced in [27] assume weak dependency in the sense of Definition 5.

Definition 5 (Weak dependency) Let p1, . . ., pm denote (random) marginal p-values for a
collectionHm ¼ fHi; i 2 I ¼ f1; . . . ;mgg of null hypotheses at hand. Let IN � I (IA � I) with
|IN| =mN (|IA| =mA) denote the index set of true (false) null hypotheses in I. Then, p1, . . ., pm are
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called weakly dependent, if qN = limm ! 1 mN/m exists and

F̂NmN
ðtÞ ¼ m�1

N

X
i2IN

I½0;t�ðpiÞ ! FNðtÞ; m ! 1 ð4Þ

F̂ AmA
ðtÞ ¼ m�1

A

X
j2IA

I½0;t�ðpjÞ ! FAðtÞ; m ! 1; ð5Þ

where IS denotes the indicator function of the set S, convergence in Eqs (4) and (5) is uniform for
t 2 [0, 1] and almost sure, and FN and FA are continuous cumulative distribution functions with
0< FN(t)� t for all t 2 (0, 1]

Throughout this work, we assume that the p-values within each family are PRDS and weakly
dependent. While one might argue against the weak dependency assumption in the fMRI con-
text (cf. [28]), the validity of weak dependency for p-values corresponding to voxel data has
been discussed in [29] on the basis of simulation studies for different magnitudes of positive
correlation among the voxels. No situation militating against the assumption was found. The
FDR behaviour of AORC-based multiple test procedures under the weak dependency assump-
tion regarding the joint distribution of the p-values was investigated in Chapter 4 of [30].

Considered two-stage multiple tests
In [16] a general method to design procedures coping with the selection of families has been
provided. For a comparison with our proposed procedure φHO we make use of one of the so-
called “simple selection adjusted procedures” proposed in [15], which is based on φLSU and is
denoted throughout the remainder by φBog. Under suitable assumptions, this procedure
achieves control of the FDR on the average over the selected families, FDR control within each
family, and FDR control on the level of the families, see [15]. A simulation study in [31] sug-
gests that global FDR control of φBog holds in multi-phenotype genome-wide association stud-
ies which exhibit similar characteristics as the fMRI studies considered here.

Algorithm 1 (The procedure φBog)

1. Test the k families with the LSU procedure at level α applied to ðp1=m‘Þ1�‘�k , see Eq (3).

Obtain R rejections.

2. In the case of R> 0, apply in each of the R rejected families φLSU at level Rα/mℓ, where ℓ
denotes the index of a rejected family.

We propose to apply the following procedure which harnesses the advantages of the AORC
approach and exploits the structural information.

Algorithm 2 (The procedure φHO) Let bxc denote the largest integer smaller than or equal
to x.

1. For a given tuning parameter κ> k, let uℓ = bκ−1 �mℓc + 1 for 1� ℓ� k. Reject all families
H‘ for which

pu‘=m‘ � a
k
:

Obtain R rejections.

2. In the case of R> 0, apply in each of the R rejected families φAORC
l at level α, with λ = uℓ,

where ℓ denotes the index of a rejected family.
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Under standard assumptions which are typically made in FDR theory, all three aims of the sta-
tistical analyses (i. e., FDR control in each familyH‘ separately, global FDR control, and FWER
control on the group level) are achieved by φHO, at least asymptotically as min

1�‘�k
m‘ ! 1; see

S1 Appendix for details.

Experiments
We will compare the two hierarchical procedures φHO and φBog with AORC-based SUD tests
regarding the empirical power on the combined set of hypotheses in Sections “Computer simu-
lations regarding the power of φHO” and “Power simulation”. In the simulations regarding
fMRI data presented in Section “fMRI—Data” and “fMRI—Results”, we will make compari-
sons of φLSU with the hierarchical procedures on the combined set of voxels by means of their
empirical FDRs. When evaluating real fMRI experiments, we compare the respective numbers
of detections, i. e., rejections. The procedure φLSU and the AORC-based SUD tests will be
applied to the combined set of voxels, neglecting the hierarchical structure.

Computer simulations regarding the power of φHO

In this section we consider the performance of the procedures in terms of power of a multiple
test. A standard notion of power of a multiple test procedure φ(m) form hypotheses is given in
Definition 1.4 of [1] as

powermðφðmÞÞ ¼ E
Sm

mA _ 1

� �
;

where Sm denotes the number of correct rejections and the expectation E refers to the true
underlying measure. The global power of a multiple test procedure φ(m) that operates on a
structured family of hypotheses as considered in Section “Methods” is given by

gpowermðφðmÞÞ ¼ E
Sm

mA _ 1

� �
¼ E

Pk
‘¼1 S‘Pk

‘¼1 mA‘ _ 1

" #
;

wheremA ℓ and Sℓ are the number of false null hypotheses and the number of correct rejections
in family ℓ. For a given number B of Monte Carlo repetitions, the power of φ(m) is estimated by
the average value

dpowermðφðmÞÞ ¼
1

B

XB

b¼1

sm;b

mA

;

where sm, b denotes the realization of Sm in the b-th simulation run. In our simulations, we set
B = 10,000 andm = 2,500.

The simulations refer to the one-sided normal means problem with O ¼ R
m, an observable

random vector T = (T1, . . ., Tm)
> with values in O such that LðTÞ ¼ N mðm; ImÞ, where

μ = (μ1, . . ., μm)
>, and hypotheses

Hj : fmj ¼ 0g vs: Kj : fmj > 0g; j 2 f1; � � � ;mg:

The p-value for a hypothesis Hj is then given by

pjðtjÞ ¼ PHj
ðTj > tjÞ ¼ 1� FðtjÞ;

where tj denotes the observed value of Tj and F denotes the cumulative distribution function of
the standard normal distribution.
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For convenience, we set all μj, j 2 IA, to the same value μ� > 0. The power of the different
procedures will be investigated for different effect sizes μ�. The effect size μ� will range from 0.5
up to 5 in steps of 0.5. Furthermore, we assume that the familyHm ¼ ðH1; . . . ;HmÞ is struc-
tured into two subfamiliesHm1

andHm2
. The parameter κ is set to 1,000, see Section “Power

simulations” for justification. We let πℓ =mℓ/m and qNℓ =mNℓ/mℓ, ℓ = 1, 2, wheremNℓ denotes
the number of true null hypotheses in family ℓ. Table 1 lists the considered parameter configu-
rations. The FDR level was set to α = 5% in all simulations.

fMRI—Data. Simulations and analysis of experimental data were all performed within the
R language and environment for statistical computing and graphics, cf. [32]. The R-scripts for
the creation of the simulated data and their analysis are available from http://www.wias-berlin.
de/preprint/2127/codeANDdata_2127.zip. Simulated fMRI data. We simulated fMRI data
using the R-package neuRosim (cf. [33]) described in detail in [34]. The simulated data con-
sisted of 105 volumes of size 20 × 20 × 20 isotropic voxels. The simulated stimulus had onset
times at the 16-th, 46-th and 76-th volume, a duration overlapping 15 volumes and a repetition
time of two seconds. The expected hemodynamic response to this block design was created
using a convolution of the task indicator function with the standard “double-gamma” hemody-
namic response function, see [35]. The “activation” region in this data was set to a sphere of
radius 3 voxels. The center of the sphere was set in voxel coordinates (5, 5, 5) for Simulation A
and in voxel (10, 10, 10) for Simulation B. Noise was added using a Rician distribution includ-
ing spatial and temporal correlations.

We then analyzed the data with a standard general linear model (GLM) approach using the
R-package fmri (cf. [36] and [37]) including corrections for temporal autocorrelations and
quadratic signal trends. From the resulting statistical parametric map we determined local p-
values.

We defined an arbitrary partition of the spatial domain into eight families of voxels corre-
sponding to the eight “corners” of the data cube. For both simulation datasets we then applied
the hierarchical testing procedures φHO and φBog, as well as φLSU at an FDR level of 0.05.

Statistical Parametric Mapping (SPM) auditory fMRI test data. For validation of our new
inference method on experimental fMRI data we used a publicly available single subject fMRI
dataset with an auditory stimulus design. The data can be downloaded at http://www.fil.ion.
ucl.ac.uk/spm/data/auditory/ together with details on its acquisition.

The number of volumes at a repetition time of 7 seconds was 96 with alternating blocks of
rest and auditory stimulus, starting with rest, each lasting for six volumes. Echo planar imaging
(EPI) data was acquired on a modified 2T Siemens MAGNETOMVision system. The spatial
dimension of the data was 64 × 64 × 64 isotropic voxels of length 3mm. Calculation of local p-
values was performed as described for the simulated fMRI data.

To define suitable families of voxels we normalized AFNI’s (cf. [38]) EPI template
(TT_EPI-tlrc) in Talairach space with Brodmann labels to the functional data using the

Table 1. Parameter configurations in the one-sided normal means problem.

π = (π1, π2) qN = (qN1, qN2)

1 (0.5, 0.5) (0.5, 0.5)

2 (0.5, 0.5) (0.8, 0.1)

3 (0.8, 0.2) (0.8, 0.1)

4 (0.5, 0.5) (0.99, 0.01)

5 (0.8, 0.2) (0.99, 0.01)

doi:10.1371/journal.pone.0149016.t001
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normalization toolbox of SPM8. Thus each voxel in the functional data was assigned a label
according to the Brodmann atlas. Any other suitable atlas or definition of families could have
been used here. We then applied the procedures φHO, φBog, and φLSU to all voxels that had been
assigned any label by the atlas matching described above, restricting analysis to the labelled cor-
tex areas only.

fMRI dataset using a sports imagination task. We also re-used an fMRI dataset from [37]
originating from an experiment performed with one healthy adult female subject. The data are
publicly available under http://www.jstatsoft.org/v44/i11. The alternating design of rest and
task blocks, starting with rest, was identical to the one of the simulated fMRI data and resulted
in 105 volumes. The rest and task blocks had a duration of 30 seconds, the repetition time was
2 seconds. The task was imagination of playing tennis. The spatial dimension of the data cube
was 64 × 64 × 30 with an in-plane resolution of 3.75mm and a slice thickness of 4mm. The
echo time of the EPI sequence was 40ms and the flip angle was 80 degrees. Before the first rest
block six dummy scans were discarded to allow for T1 saturation.

We repeated the analysis described for the SPM auditory fMRI test data, i.e., normalizing
the Brodmann labels to the functional data using SPM8 and performing a standard GLM anal-
ysis with the R-package fmri to calculate local p-values. Signal detection was performed using
the procedures φHO, φBog, as well as φLSU.

Other fMRI datasets. We also analyzed two more fMRI scans of another subject in a fin-
ger tapping task within the same task protocol as described for the sports imagination dataset.
One of the datasets had a doubled in-plane resolution. The analysis yielded very similar results
(with respect to the performance of the signal detection procedure) as the sports imagination
dataset, which is why we decided not to show the results of the analysis here.

Results

Power simulations
The five panels in Fig 1 refer to the five parameter configurations from Table 1 with the choice
of κ = 1,000. This choice was made to ensure that the partial conjunction hypotheses coincide
with the intersection hypotheses, for comparative purposes with the other procedures. For spe-
cific values of the proportion of true null hypotheses, the influence of κ on the performance of
the procedure φHO is demonstrated in S1 Appendix.

In the second panel row of Fig 1 (comprising panels 4–5), the ratios qNℓ, ℓ = 1, 2, are highly
unbalanced. It can clearly be observed that this leads to an improvement in terms of power of
the proposed procedure φHO over the existing multiple tests φBog and φAORC

u‘
, at least for μ� 2 [2,

3]. In the first panel row (comprising panels 1–3), however, the empirical power of φAORC
u‘

is uni-

formly higher than that of φBog and φHO, respectively.
We may remark that a more detailed analysis of the decision patterns of the three concur-

ring multiple tests (not shown here) revealed that the higher power of φAORC
u‘

in panels 2 and 3

is mainly due to the fact that φBog and φHO discard the first familyHm1
already in the first stage

of the analysis (with high probability). Often, such a behavior is wanted in practice, because
few isolated signals are typically interpreted as artifacts, especially in the fMRI context.

fMRI—Results
fMRI—Simulations. We first show the results for Simulation A, where the “activation

area” is fully located within one of the defined families, in Figs 2, 3 and 4. Every procedure
detects all true alternatives (which are marked in yellow), but we can observe a different
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number of false discoveries (indicated in red). The hierarchical procedure φHO does not make
any discoveries in families without activation.

Comparing the detected activation areas with the known ground truth, we estimated the
global and within-family false discovery rates as well as the mean FDR over the families for
1000 Monte Carlo repetitions. We can observe differences regarding the detection of false posi-
tives, see Table 2. The procedure φLSU has the most rejections, but violates the FDR in every
family, except for the family in which the signal is located. All empirical FDRs are below 5% for
the other two procedures.

We show the detection results for Simulation B, where true activations are located within all
defined families of voxels, in Figs 5, 6 and 7. In analogy to the presentations under Simulation
A, we show the slices of activated voxels determined by the three different procedures over-
layed with the true activation.

A visual inspection of the figures and the table confirms the desired behaviour of the proce-
dure. In Table 2 we clearly observe that the families without activation (i. e., families 2–8 in
Simulation A) are in most of the Monte Carlo repetitions excluded from the analysis by φHO

Fig 1. Empirical powers of the procedures. Empirical powers of the procedures φHO (black), φBog (blue) and φAORC
u‘

(red) as a function of the effect size μ* in
the one-sided normal means problem. The total number of hypotheses equalsm = 2500, and the number of groups equals k = 2. The parameter
configurations π = (π1, π2) and qN = (qN1, qN2) are as in Table 1.

doi:10.1371/journal.pone.0149016.g001
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and φBog. In contrast, activation is reported in all families when using the test φLSU. It is not sur-
prising that in families without signal the FDR in the family is not controlled for the LSU-pro-
cedure. If the signal is found in every family (Simulation B) there is no advantage in the use of
the hierarchical approach. The order of magnitude regarding the FDRs seems to be the same

Fig 2. Discoveries of the procedure φHO in fMRI Simulation A. Discoveries of the procedure φHO in Simulation A on a cube with side length 20. There are
eight disjoint families consisting of cubes with a side length of 10 voxels, each one located in one corner of the original cube. Shown are 20 slices
corresponding to the third dimension. Ground activation (yellow) and the false rejections of φHO (red) are shown.

doi:10.1371/journal.pone.0149016.g002
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for the two hierarchical procedures, although the attained FDR level of the procedure φHO is
closer to 5%, suggesting higher power.

SPM auditory fMRI test data. We show the detection results in the auditory cortex of the
proposed procedure φHO overlayed on the functional division of the brain according to the

Fig 3. Discoveries of the procedure φBog in fMRI Simulation A. Discoveries of the procedure φBog in Simulation A on a cube with side length 20. There
are eight disjoint families consisting of cubes with side length of 10 voxels, each one located in one corner of the original cube. Shown are 20 slices
corresponding to the third dimension. Ground activation (yellow) and false rejections of φBog (red) are shown.

doi:10.1371/journal.pone.0149016.g003
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Brodmann atlas and compare them with the detections found by the procedures φLSU and φBog

in Fig 8. We can see that the hierarchical procedures detect voxels mainly located in the audi-
tory areas, while the LSU procedure finds activations all over the brain. The full figures showing
all slices can be found in S2, S3 and S4 Figs.

Fig 4. Discoveries of the procedure φLSU in fMRI Simulation A. Discoveries of the procedure φLSU in Simulation A on a cube with side length 20. There
are eight disjoint families consisting of cubes with side length of 10 voxels, each one located in one corner of the original cube. Shown are 20 slices
corresponding to the third dimension. Ground activation (yellow) and the false rejections of φLSU (red) are shown.

doi:10.1371/journal.pone.0149016.g004
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The table in S1 Table shows the number of discoveries in the different Brodmann areas. In
agreement with Fig 8, it can be seen from this table that the proposed procedure leads to a far
more concentrated signal detection in areas related to the auditory stimulus.

fMRI dataset using a sports imagination task. We show the detection results of the pro-
posed procedures overlayed on the Brodmann atlas. A visual inspection of Fig 9 reveals activa-
tion in the whole brain. As it can be seen in the table in S2 Table, in every area of the brain
many activated voxels are detected by all procedures. We might hypothesize that the stimulus
of this experiment, which is an imagination task, is related to much less specific activation due
to its complexity. Similar to the situation in fMRI Simulation B we do not observe that the hier-
archical procedures are more specific than φLSU regarding the Brodmann areas. The full figures
are provided in S5, S6 and S7 Figs.

Discussion
This work focused on the use of structural information in a new procedure to control the FDR.
We provided a rigorous mathematical analysis of this new procedure and proved asymptotic
control of the FDR. In simulations we studied the performance of the proposed method in situ-
ation with finitem. Furthermore, we applied it to simulated and real fMRI datasets.

For fMRI analysis our procedure bears the unique advantage of being specific to the fami-
lies/regions in which brain activity is located and is highly sensitive within each family.
This conclusion can be clearly drawn from Table 2 and is supported by the figures. Other
FDR controlling procedures suffer from false positives in areas without signal. We first filter
where strong signal can be found and continue to locate the voxels which are responsible for
the strong signal, making use of the nonlinear critical values originating from the theory
around the AORC. It was possible to demonstrate that when the activation is concentrated in
a-priori known regions the procedure can be used to increase the specificity on the level of
the families while finding a similar number of discoveries as the standard approaches within
the families of interest. The hierarchical approach was demonstrated to perform close to the
non-hierarchical approach if families do not differ in the number of true alternatives. How-
ever, we forfeit sensitivity for weak signals if the pre-test is not passed. The use of the Brod-
mann atlas for the real fMRI data is just a simple example of a division of the brain into
functionally different regions, which can (and should) be replaced by more suitable selections

Table 2. Global FDR, mean FDR and within family FDR in the fMRI Simulation A and B for the different procedures.

Simulation A Simulation B

φHO φLSU φBog φHO φLSU φBog

gFDR 0.0352 0.0333 0.026 0.0362 0.0341 0.0347

FDR Fam. 1 0.0352 0.003 0.0257 0.0354 0.0191 0.0331

FDR Fam. 2 0 0.685 0.006 0.0357 0.0288 0.006

FDR Fam. 3 0 0.696 0.015 0.0356 0.0295 0.014

FDR Fam. 4 0 0.678 0.006 0.0331 0.0419 0.006

FDR Fam. 5 0.001 0.676 0.005 0.0354 0.0285 0.005

FDR Fam. 6 0 0.683 0.010 0.0363 0.0443 0.010

FDR Fam. 7 0 0.693 0.012 0.0355 0.0428 0.012

FDR Fam. 8 0 0.691 0.005 0.0337 0.0603 0.005

mean FDR 0.0045 0.6006 0.0106 0.0351 0.0369 0.0114

doi:10.1371/journal.pone.0149016.t002
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in specific applications. In summary our procedure shows superior specificity during the
detection of active regions of interest in the brain while being highly sensitive regarding the
voxels within a detected region, suggesting good applicability of the FDR in signal detection
in fMRI.

Fig 5. Discoveries of the procedure φHO in fMRI Simulation B. Discoveries of the procedure φHO in Simulation B on a cube with side length 20. There are
eight disjoint families consisting of cubes with a side length of 10 voxels, each one located in one corner of the original cube. Ground activation (yellow) and
the false rejections of φHO (red) are shown.

doi:10.1371/journal.pone.0149016.g005
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From a more general perspective, the proposed procedure φHO is designed to discard fami-
lies which contain only few scattered signals. This may result in sub-optimal global power, but
leads to higher specificity on the group level, compared with non-hierarchical procedures
which test allm hypotheses together. Often, as in the fMRI context discussed above, the groups

Fig 6. Discoveries of the procedure φBog in fMRI Simulation B. Discoveries of the procedure φBog in Simulation B on a cube with side length 20. There
are eight disjoint families consisting of cubes with a side length of 10 voxels, each one located in one corner of the original cube. Ground activation (yellow)
and the false rejections of φBog (red) are shown.

doi:10.1371/journal.pone.0149016.g006
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Fig 7. Discoveries of the procedure φLSU in fMRI Simulation B. Discoveries of the procedure φLSU in Simulation B on a cube with side length 20. There
are eight disjoint families consisting of cubes with side length of 10 voxels, each one located in one corner of the original cube. Ground activation (yellow) and
the false rejections of φLSU (red) are shown.

doi:10.1371/journal.pone.0149016.g007
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are the experimental units of interest, and in such a situation the hierarchical approach is rec-
ommendable. The test φHO depends on a tuning parameter κ, which has to be chosen by the
researcher before the start of the analysis. A value κ�mℓ for a familyH‘ has the interpretation,
that a family is declared active if there is evidence that it contains at leastmℓ/κ true alternatives.
If κ>mℓ the partial conjunction hypothesis becomes the intersection hypothesis.

An interesting and challenging direction for future research is the consideration of addi-
tional layers of hierarchy in FDR-controlling multiple test procedures. For example, consider a
hierarchical systemHm ofm hypotheses which is closed under intersection. In the case that
FWER control at level α is targeted, the closure principle (see [39]) allows one to test allm
hypotheses inHm at full level α, provided that the coherence rule is adhered to (rejection of a
hypothesisHi 2 Hm implies that all hypotheses inHm which are subsets ofHi are also rejected).
How this principle can be transferred to the concept of (global) FDR control will be explored in
future work.

Fig 8. Discoveries on chosen slices of the brain for the SPM auditory fMRI dataset.We present chosen slices (auditory cortex visible) of the brain for the
SPM auditory fMRI dataset and the discoveries proposed procedure φHO in the first row. The discoveries in the second row correspond to the procedure φBog

and in the third row the corresponding discoveries of φLSU are displayed.

doi:10.1371/journal.pone.0149016.g008
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Supporting Information
S1 Appendix. Mathematical derivations.Mathematical proofs and investigation of the pro-
posed procedure regarding the tuning parameter κ.
(PDF)

S1 Table. Discoveries in the SPM auditory experiment.Number of discoveries in the SPM
auditory experiment overall and in each Brodmann area for the procedures φHO, φBog, and
φLSU.
(XLS)

S2 Table. Discoveries in the sports imagination task dataset.Number of discoveries in the
sports imagination task dataset overall and in each Brodmann area for the procedures φHO,
φBog, and φLSU.
(XLS)

S1 Fig. Empirical power of φHO. Empirical power of the procedure φHO for two different frac-
tions qN of true null hypotheses, as a function of the tuning parameter κ and the signal strength
μ� in the normal means problem with variance 1.
(TIF)

S2 Fig. Discoveries of φHO for the SPM auditory dataset. Discoveries of the proposed proce-
dure φHO for the SPM auditory fMRI dataset on the Brodmann areas of the brain for all slices.
(TIF)

Fig 9. Discoveries on chosen slices of the brain for the sports imagination task dataset.We present chosen slices (motor cortex visible) of the brain for
the sports imagination task and highlight the discoveries of the procedure φHO in the first column. The discoveries in the second column correspond to the
procedure φBog and in the third column the corresponding discoveries of φLSU are displayed.

doi:10.1371/journal.pone.0149016.g009
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S3 Fig. Discoveries of φBog for the SPM auditory dataset. Discoveries of the procedure φBog

for the SPM auditory fMRI dataset on the Brodmann areas of the brain for all slices.
(TIF)

S4 Fig. Discoveries of φLSU for the SPM auditory dataset. Discoveries of the procedure φLSU

for the SPM auditory fMRI dataset on the Brodmann areas of the brain for all slices.
(TIF)

S5 Fig. Discoveries of φHO for the sports imagination task dataset. Discoveries of the pro-
posed procedure φHO for the sports imagination task dataset on the Brodmann areas of the
brain for all slices.
(TIF)

S6 Fig. Discoveries of φBog for the sports imagination task dataset. Discoveries of the proce-
dure φBog for the sports imagination task dataset on the Brodmann areas of the brain for all
slices.
(TIF)

S7 Fig. Discoveries of φLSU for the sports imagination task dataset. Discoveries of the proce-
dure φLSU for the sports imagination task dataset on the Brodmann areas of the brain for all
slices.
(TIF)
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