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ABSTRACT. In this paper we address density properties of intersections of convex sets in several
function spaces. Using the concept of Γ-convergence, it is shown in a general framework,
how these density issues naturally arise from the regularization, discretization or dualization
of constrained optimization problems and from perturbed variational inequalities. A variety of
density results (and counterexamples) for pointwise constraints in Sobolev spaces are presented
and the corresponding regularity requirements on the upper bound are identified. The results
are further discussed in the context of finite element discretizations of sets associated to convex
constraints. Finally, two applications are provided, which include elasto-plasticity and image
restoration problems.

1. INTRODUCTION

Convex constraint sets K as subsets of an arbitrary Banach space X are common to many
fields in mathematics such as calculus of variations, variational inequalities, and control theory.
Such constraints are induced by physical limitations of control and/or state variables, but also
emerge through Fenchel dualization of convex problems. In this vein, given a set of functions
satisfying an arbitrary constraint, density properties of more regular functions satisfying the same
restriction are of utmost importance in many instances, e.g., for the study of the limiting behavior
of regularized/discretized problems, the closed form determination of Fenchel dual problems,
the deduction of a vanishing viscosity limit for variational inequalities, etc. In abstract terms, the
density problem under consideration can be stated as follows: Given some dense subspace Y of
X , the central point of interest is whether the closure property

(1.1) K(Y )
X

= K,

where K(Y ) = {u ∈ Y : u ∈ K} = K ∩ Y , is fulfilled.

The paper is organized as follows: Section 2 serves as a motivational framework for the density
question under consideration. Here we provide two general environments where the closure
property (1.1) emerges as fundamental for their study. In particular, the first setting in section
2.1 involves constrained optimization and the one in section 2.2 is associated with variational
inequalities. Within these two settings, we consider regularization, Galerkin approximation, and
singular perturbation, and these approaches are treated by methods of Γ-convergence.

In Section 3 we focus on the special setting where X = X(Ω) is a (Rd-valued) vector space of
functions over a bounded domain Ω of RN and K = K(X) denotes the subset of elements in
X(Ω) bounded pointwise by a prescribed measurable function α : Ω→ R ∪ {+∞}, i.e.,

K(X(Ω)) = {w ∈ X(Ω) : |w(x)| ≤ α(x) a.e. (almost everywhere) in Ω},
with | . | denoting an Rd-norm. Particularly in this part, X(Ω) refers to a Lebesgue or Sobolev
space and Y = Y (Ω) refers to the space of continuous or infinitely differentiable functions up to
the boundary. We also use the notation

K(X(Ω), | . |) = {w ∈ X(Ω) : |w(x)| ≤ α(x) a.e. in Ω},
whenever it is necessary to explicit the dependence on the specific norm | . |. This becomes
useful as several results in this paper depend on specifically chosen Rd-norms. We introduce the
problem formulation and give some new density results for continuous obstacles which extents
results from [15] relying on the theory of mollification. In the subsequent section 4, we focus
on extensions of the density results for discontinuous obstacles. It is first shown in section 4.1
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that results of the type (1.1) cannot be expected in general if the obstacle is a just a Sobolev
function. For this purpose we provide a concrete counterexample. The density results are then
extended to discontinuous obstacles which fulfill certain semi-continuity assumptions in the
Lebesgue space-case in section 4.2 and in the Sobolev space-case in section 4.3. Subsequently,
in section 4.4, a different approach is considered for obstacles which originate from the solution
of a PDE (partial differential equation), in which case smooth approximants are constructed
by solving a sequence of singularly perturbed elliptic PDEs. In Section 5, we make use of the
preceding density results to prove the Mosco convergence of various types of finite element
discretizations of K . We finalize the paper with section 6 by providing two concrete applications
from elasto-plasticity and image restoration.

2. MOTIVATION

2.1. Optimization with convex constraints. In many variational problems one seeks the solu-
tion in a given convex, closed and nonempty subset K of a Banach space (X, ‖.‖). To illustrate
the problem, let us consider the following abstract class of optimization problems:

(2.1)

{
inf F (u), over u ∈ X,
s.t. u ∈ K.

We assume that F : X → R is continuous, coercive and sequentially weakly lower semi-
continuous but not necessarily convex. Thus, problem (2.1) admits a solution provided X is
reflexive. The problem class (2.1) is ubiquitous, encompassing numerous fields, such as the
variational form of partial differential equations, variational inequality problems of potential type,
optimal control of partial differential equations with constraints on the state and/or control, and
many other. The analysis of (2.1) and the design of suitable solution algorithms often involve the
general concepts of perturbation or dualization methods comprising regularization, penalization
or discretization approaches or possibly a combination of the latter. The stability properties of
(2.1) with regard to a large class of perturbations rely on the closure property (1.1), i.e.,

K(Y )
X

= K,

where Y is some dense subspace of X with regard to the norm topology of X and K(Y ) is
given by

K(Y ) = {u ∈ Y : u ∈ K} = K ∩ Y.
To justify this conjecture, we consider the following abstract perturbation class.

2.1.1. A class of quasi-monotone perturbations. To subsume as many of the above mentioned
methods as possible we consider the sequence of perturbed problems

(2.2) inf F (u) +Rn(u), over u ∈ X,
defined by a given sequence of functions

Rn : X → R ∪ {+∞}, n ∈ N,

that are perturbations of the indicator function iK : X → R ∪ {+∞} in the following sense:
there exist functions Rn : X → R ∪ {+∞} and Rn : X → R ∪ {+∞} such that

0 ≤ Rn ≤ Rn ≤ Rn ∀n ∈ N,
2



having the additional properties:

(2.3)

{
Rn ≤ Rn+1 ∀n ∈ N, limn→+∞Rn(u) = iK(u) ∀u ∈ X,
Rn is sequentially weakly lower semicontinuous ∀n ∈ N,

and

(2.4) Rn ≥ Rn+1, ∀n ∈ N, lim
n→+∞

Rn(u) = iK∩Y (u) ∀u ∈ X.

We call mappings (Rn) that share the above features quasi-monotone perturbations of the
indicator function iK with respect to the (dense) subspace Y . Note that no additional assumptions
are made on Rn itself.

At this point we make the conjecture that the stability of (2.1) with respect to a large class of
perturbations hinges on the density condition (1.1). In fact, the following result, which is based
on the theory of Γ-convergence [8], substantiates this conjecture.

Under mild assumptions on X , the density property (1.1) ensures that F + iK is the Γ-limit of
(F +Rn) in both, the weak and strong topology.

The proof of this result is referred to the appendix (see Proposition A1). Under the assumptions
of Proposition A1, one may infer that, provided each problem (2.2) admits a minimizer un, each
weak cluster point of the sequence of minimizers (un) is a minimizer of (2.1), cf. [8, Corollary
7.20]. We also remark that in case the (sequential) weak and strong Γ-limits coincide, one usually
uses the notion Mosco convergence.

In the following, we present a selection of approximation methods that fit into the general class of
perturbations defined by (2.2) and which bear high practical relevance. In favor of generality, we
do not leave the abstract setting.

Example 2.1 (Tikhonov-Regularization). Let (Y, ‖ . ‖Y ) be a Banach space which is densely
and continuously embedded into X . For a sequence of positive non-decreasing parameters (γn)
with γn → +∞ and fixed α > 0, consider in (2.2) the Tikhonov regularization

(2.5) Rn(u) = iK(u) + 1
2γn
‖u‖αY ,

where it is understood that Rn(u) = +∞ if u /∈ Y . In fact, set Rn := iK for all n ∈ N
and Rn := Rn. Obviously, (2.3) and (2.4) are satisfied such that (Rn) fits into the context of
quasi-monotone perturbations according to (2.2).

Example 2.2 (Conformal discretization). Let X be a separable Banach space. Suppose (2.1) is
approximated by a Galerkin approach using nested and conformal finite-dimensional subspaces
Xn, i.e.,Xn ⊂ X andXn ⊂ Xn+1 for all n ∈ N, such that the Galerkin approximation property⋃

n∈N

Xn

X

= X

is fulfilled. The resulting discrete counterpart of problem (2.1) is given by (2.2) with Rn(u) =
iK∩Xn . Setting Rn = iK , (2.3) is clearly fulfilled. Define Y =

⋃
n∈N Xn, then (2.4) is fulfilled

with Rn = Rn.

Example 2.3 (Combined Moreau-Yosida/Tikhonov regularization). Let X be a Hilbert space
and (Y, ‖ . ‖Y ) be a Banach space that is densely and continuously embedded into X . For
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two sequences of positive non-decreasing parameters (γn), (γ′n) with γn, γ′n → +∞ and fixed
α > 0, consider the simultaneous Moreau-Yosida and Tikhonov regularization,

(2.6) Rn(u) = γn
2

inf
v∈K
‖u− v‖2 + 1

2γ′n
‖u‖αY ,

with α > 0 fixed, where it is understood that Rn(u) = +∞ if u /∈ Y . Setting Rn(u) =
γn
2

infv∈K ‖u− v‖2, standard properties of the Moreau-Yosida regularization ensure that Rn

satisfies (2.3); see, e.g., [3, Prop. 17.2.1]. Defining Rn(u) = iK(u) + 1
2γn
‖u‖αY , (2.4) is verified

as in the previous example.

Example 2.4 (Conformal discretization and Moreau-Yosida regularization). LetX be a separable
Hilbert space and (γn) a sequence of positive non-decreasing parameters converging to +∞.
The combination of regularization and discretization leads to the definition

(2.7) Rn(u) = γn
2

inf
v∈K
‖u− v‖2 + iXn ,

where the sequence of spaces (Xn) is defined as in Example 2.2. SettingRn = γn
2

infv∈K ‖u−
v‖2 and Rn = iK∩Xn , (2.3) and (2.4) are fulfilled with Y =

⋃
n∈N Xn and the framework of

(2.2) applies.

Consequently, each of these perturbations is stable with respect to (2.1) provided the density
result (1.1) is satisfied. It should also be emphasized that these examples only represent an
assorted variety of perturbations which fit into the problem class (2.2). Moreover, the density
property (1.1) is also a necessary condition for the stability of perturbation schemes in the
following sense: First, the Γ-limit of the approximation schemes defined in Example 2.1 and
Example 2.2 can be calculated using similar arguments as in the proof of Proposition A1. In fact,
under the same conditions on X , one obtains F + iK∩Y as the weak and strong Γ-limit in both
cases. Secondly, in the combined approaches of Example 2.3 and Example 2.4, Proposition A1
guarantees that F + iK is obtained as the weak-strong Γ-limit for any coupling of regularization
parameter pairs [γn, γ

′
n] and [Xn, γn], respectively. Let us put this statement into a perspective

by means of the combined Galerkin-Moreau-Yosida approach (Example 2.4): In this case, it
is possible to prove the existence of a suitable combination of n and γn to recover F + iK in
the Γ-limit without resorting to the density property (1.1), see [21, Prop. 2.4.6]. On the other
hand, the proof is non-constructive and thus not immediately useful for the design of a stable
numerical algorithm. Moreover, if (1.1) is violated, one may construct for any x ∈ K \K ∩ Y a
sequence (γn) such that no recovery sequence exists for the element x (see Proposition A2). The
analogous statement is valid for the case of combined Moreau-Yosida/Tikhonov regularizations.

2.2. Elliptic variational inequalities. The density of convex intersections of the type (1.1)
is also of fundamental importance for the analysis of perturbations of variational inequalities.
Assuming X to be a Hilbert space and K ⊂ X nonempty, closed and convex, we consider the
general variational inequality problem of the first kind,

(2.8) find u ∈ X : 〈Au, v − u〉+ iK(v)− iK(u) ≥ 〈l, v − u〉, ∀ v ∈ X.
Here, l ∈ X∗ is a linear, bounded operator and A : X → X∗ denotes a, in general, nonlinear
operator on X . We further assume A to be Lipschitz continuous and strongly monotone, i.e.,
there exists κ > 0 with

〈Av − Au, v − u〉 ≥ κ‖v − u‖2 , ∀u, v ∈ X.
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In the following, we investigate three main classes of perturbations of (2.8) and their relation to
the density properties of convex intersections.

2.2.1. Quasi-monotone approximation. Consider the perturbed variational inequality problem,

(2.9) find u ∈ X : 〈Au, v − u〉+Rn(v)−Rn(u) ≥ 〈l, v − u〉, ∀ v ∈ X,
where (Rn) is a quasi-monotone perturbation of iK with respect to a dense subspace Y of X .
The stability of the approximation scheme (2.9) hinges on the density property (1.1). In fact, if the
latter condition is fulfilled, then, under mild assumptions on the lower bounds Rn, the sequence
(Rn) Mosco converges to iK . In this case one may invoke the results from [11, 22] to conclude
the consistency of the perturbation scheme with respect to the limit problem (2.8).

2.2.2. Galerkin approximation of variational inequalities. In general, finite-dimensional approxi-
mations ofK are neither conformal nor nested as it was the case in Example 2.2 and Example 2.4,
where K was ’discretized’ by K ∩ Xn, which is numerically realizable only in special cases.
Instead, it is often more favorable to consider non-nested approximations Kn ⊂ Xn that may
contain infeasible elements, such that Kn ⊂ K does not hold true in general. The resulting
finite-dimensional variational inequality problems,

(2.10) find u ∈ X : 〈Au, v − u〉+ iKn(v)− iKn(u) ≥ 〈l, v − u〉, ∀ v ∈ X,
do not fit into the framework of quasi-monotone perturbations from (2.2). The Mosco convergence
of (Kn) to K, or equivalently, the weak and strong sequential Γ-convergence of (iKn) to iK ,
suffices to ensure that the approximation (2.10) is stable with respect to the limit problem (2.8);
cf. [11, I, Theorem 6.2]. This property is maintained in a very general context, that is, appropriate
perturbations A and l may be incorporated, and under weak monotonicity assumptions on A
and its possible perturbations one may even derive strong convergence for the discrete solutions
(un); see [22] for details. However, Mosco convergence requires the existence of a recovery
sequence for any element u ∈ K. To construct this sequence in the context of finite element
methods, one typically uses an interpolation procedure which is only defined on the (supposedly)
dense subset K ∩ Y of K , where typically Y = C∞(Ω) or Y = C(Ω), cf. [11] and Section 5.
This leads again to problem (1.1).

2.2.3. Singular perturbations. In the context of variational inequalities, the closure property (1.1)
also plays a role in the limiting behavior of singular perturbations. In fact, let A1 : Y → Y ∗

be a Lipschitz continuous and strongly monotone operator on a Hilbert space (Y, ‖ . ‖Y ) that
embeds densely and continuously into X . For a sequence of regularization parameters (γn)
with γn → +∞ consider the perturbed problems,

(2.11) find un ∈ K ∩ Y : 〈(A+ 1
γn
A1)un, v − un〉 ≥ 〈l, v − un〉, ∀ v ∈ K ∩ Y.

Observe that problem (2.11) admits a unique solution un ∈ K ∩ Y provided that K ∩ Y is
closed in Y . The appropriate limit problem is then given by,

(2.12) find u ∈ K ∩ Y X
: 〈Au, v − u〉 ≥ 〈l, v − u〉, ∀ v ∈ K ∩ Y X

.

Note that (2.12) corresponds to the initial variational inequality problem if the density property
(1.1) holds true. In this case, the sequence (un) converges strongly in X to the solution of (2.8).
Here, the assumptions on A1 may be alleviated. This type of application also plays a role in the
analysis and the design of algorithms for hyperbolic variational inequalities through the vanishing
viscosity approach. For details, [19, Section 4.9] may be consulted.
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3. DENSITY RESULTS FOR CONTINUOUS OBSTACLES

We first fix some notation. In this section, Ω ⊂ RN denotes a bounded Lipschitz domain. The
space of functions that are restrictions to Ω of smooth functions with compact support on RN is
denoted by D(Ω),

D(Ω) = {ϕ|Ω : ϕ ∈ C∞c (RN)}.
The standard Lebesgue and Sobolev spaces over Ω are denoted by Lp(Ω),W 1,p(Ω) and
W 1,p

0 (Ω), and we also employ the spaces

H(div; Ω) = {u ∈ L2(Ω; RN) : div u ∈ L2(Ω)},
and

H0(div; Ω) = C∞c (Ω; RN)
H(div;Ω)

= {u ∈ H(div; Ω) : u · ν = 0 on ∂Ω}.
In the recent paper [15], it has been shown that for any α ∈ C(Ω) with

(3.1) ess inf
x∈Ω

α(x) > 0,

the following density result for the spaces X(Ω) ∈ {Lp(Ω)d,W 1,p
0 (Ω)d, H0(div; Ω)}, and

1 ≤ p < +∞, holds true:

(3.2) K(C∞c (Ω)d)
X(Ω)

= K(X(Ω)),

where the constraint set K(X(Ω)) with respect to a given subspace

X(Ω) ⊂ L1(Ω)d

is defined by a pointwise constraint on an arbitrary norm | . | on Rd, i.e.,

K(X(Ω)) := {w ∈ X(Ω) : |w(x)| ≤ α(x) a.e. in Ω}.
Here, α : Ω→ R ∪ {+∞} is a given nonnegative Lebesgue measurable function. It is further
understood that d = N in (3.2) if X(Ω) = H0(div; Ω).

To analyze the case without homogeneous Dirichlet boundary conditions, a small modification
of the approximating sequence constructed in [15] is sufficient in order to arrive at the following
statement.

Theorem 3.1. Let α ∈ C(Ω) fulfill (3.1) and 1 ≤ p < +∞. Then it holds that

(3.3) K(D(Ω)d)
W 1,p(Ω)d

= K(W 1,p(Ω)d),

i.e., K(D(Ω)d) is dense in K(W 1,p(Ω)d) with respect to the norm topology in W 1,p(Ω)d.

Proof. Let w ∈ K(W 1,p(Ω)d). Since Ω is a bounded Lipschitz domain we may extend w to
a function in W 1,p(RN)d using for each component the extension-by-reflection operator. The
resulting operator

(3.4) E : W 1,p(Ω)d → W 1,p(RN)d

has the properties Ew|Ω = w for all w ∈ W 1,p(Ω)d and E ∈ L(W 1,p(Ω)d,W 1,p(RN)d); see,
for instance, [2]. Since E is obtained by a partition of unity argument using local reflection with
respect to the Lipschitz graphs into which ∂Ω can be decomposed, the property |w(x)| ≤ α(x)
in Ω is preserved by the extension in that

(3.5) |(Ew)(x)| ≤ EC(Ω)α(x), a.e. x ∈ RN ,
6



where EC(Ω) : C(Ω) → C(RN) denotes the application of the extension by reflection proce-
dure to bounded uniformly continuous functions, i.e., (EC(Ω)α)|Ω = α. Further inspecting the

construction of E, it may also be observed that the support of Ew is compactly contained in RN .
Analogously, we obtain EC(Ω)α ∈ Cc(RN). For a sequence (ρn) of smooth mollifiers

(3.6) ρn(x) = nNρ(nx),

where

ρ ∈ D(RN), ρ ≥ 0, ρ(x) = 0 if |x| ≥ 1,

ˆ
Ω

ρ dx = 1,

we define the approximating sequence Sn(w,Ω) to w by

(3.7) Sn(w,Ω)(x) := (ρn ∗ Ew)(x) =

ˆ
RN
Ew(y) ρn(x− y) dy, x ∈ RN .

It is well known that

(3.8) Sn(w,Ω)|Ω → w in W 1,p(Ω)d as n→∞,
and, since Ew has compact support in RN , it holds that Sn(w,Ω)|Ω ∈ D(Ω)d. In order to
achieve feasibility, we use the scaling sequence

βn :=
(

1 +
sup

x∈RN |αn(x)−E
C(Ω)

α(x)|
min

x∈Ω
α(x)

)−1

,

where αn(x) := ((EC(Ω)α) ∗ ρn)(x), x ∈ RN . Since EC(Ω)α ∈ Cc(RN), αn converges to

EC(Ω)α uniformly in RN and thus βn → 1 as n → ∞. In addition, (3.5) together with (3.7)

yields |Sn(w,Ω)| ≤ αn(x) for x ∈ RN such that

(3.9) β−1
n α(x) = α(x) +

sup
x∈RN |αn(x)−E

C(Ω)
α(x)|

min
x∈Ω

α(x)
α(x) ≥ αn(x) ≥ |Sn(w,Ω)|,

for all x ∈ Ω. As a result, βnSn(w,Ω) ∈ K(D(Ω)d) and, taking account of (3.8), the proof is
accomplished. �

Remark 3.2. In order to incorporate a homogeneous Dirichlet boundary condition in the context of
Theorem 3.1, one may use an additional reparametrization to construct a suitable approximating
sequence; see [15].

4. DENSITY RESULTS FOR DISCONTINUOUS OBSTACLES

4.1. A counterexample for obstacles in Sobolev spaces. Note that Theorem 3.1 requires
continuous obstacles. In some applications, such as in the regularization and discretization of
elasto-plastic contact problems or image restoration problems (see section 6), it may be useful to
consider obstacles that are not continuous. Under such circumstances, the following example
shows that density properties of the type (3.2) or (3.3) cannot be expected if the obstacle is just a
Sobolev function: Without loss of generality, assume that 0 ∈ Ω ⊂ RN with N ≥ 2 and denote
by

Bε(x) := {y ∈ RN : |x− y|2 ≤ ε},
the open ball with center x ∈ RN and radius ε > 0 with respect to the Euclidean norm | . |2 in
RN . Let {xk : k ∈ N} be a countable dense subset, i.e.,

{xk : k ∈ N} = Ω,
7



and r > 0 such that Br(0) ⊂ Ω. Consider the function

(4.1) ϕ(x) := ϕ̃(x) · ln(ln(c |x|−1
2 )), c ≥ er fixed,

where ϕ̃ ∈ C∞c (Br(0)) is a smooth cut-off function with ϕ̃(x) ≥ 0 for all x ∈ Br(0) and ϕ̃ ≡ 1
on Br/2(0). We note that ϕ is nonnegative with a singularity at the origin, and its zero extension
belongs to W 1,N(RN); cf. [1, Example 4.43]. Further set

(4.2) g(x) :=
∞∑
k=1

k−2ϕ(x− xk), x ∈ Ω,

and note that g ∈ W 1,N(Ω) with g being unbounded at each xk; see [10, p.247, Example 4].
Further take a function φ ∈ C1(R) with 0 ≤ φ(t) < 1, φ(t)→ 1 for t→ +∞ and φ′ uniformly
bounded in R. By the chain rule for Sobolev functions, the obstacle

(4.3) α := 2− φ ◦ g
belongs to W 1,N(Ω); see, e.g., [20, Lemma A.3]. Notice also that α is bounded away from zero
and that it is basically equal to 1 on the dense set {xk : k ∈ N}. Consequently, any continuous
function w with w ≤ α a.e. in Ω fulfills w ≤ 1 on Ω:

Assume that the latter implication is false. Then there exist k0 ∈ N as well as µ > 0, δ > 0
such that

(4.4) w(x) ≥ 1 + µ ∀x ∈ Bδ(xk0).

Let R > 0 be such that φ(t) ≥ 1− µ
2

for all t ≥ R. By continuity, there also exists δ′ > 0 such
that ϕ(x− xk0) ≥ Rk2

0 a.e. in Bδ′(xk0) such that

g(x) ≥ k−2
0 ϕ(x− xk0) ≥ R, a.e. x ∈ Bδ′(xk0),

which implies

w(x) ≤ α(x) = 2− φ(g(x)) ≤ 1 + µ
2
, a.e. x ∈ Bδ′(xk0),

contradicting (4.4). Hence, any sequence of continuous functions approximating α from below
is bounded above by 1. However, as α(x) > 1 for a.e. x ∈ Ω by definition, and convergence
in the norm topology of Lp(Ω) implies convergence pointwise a.e. (along a subsequence), we
obtain that

(4.5) α ∈ K(Lp(Ω)) \K(C(Ω) ∩ Lp(Ω))
Lp(Ω)

,

for any 1 ≤ p ≤ +∞, and

(4.6) α ∈ K(W 1,p(Ω)) \K(C(Ω) ∩W 1,p(Ω))
W 1,p(Ω)

,

for all p ≤ N , where α is defined by (4.3).

Remark 4.1 (Complements on the counterexample). An interesting point in the preceding
counterexample is the structure of the set of singularities S where g(x) is not well-defined as a
real number by the infinite sum (4.2) if ϕ from (4.1) is understood as a function in C(Ω \ {0}).
Extending ϕ to Ω by setting ϕ(0) := +∞, we obtain g(xk) = +∞ for all k ∈ N and,
understanding g : Ω → R ∪ {+∞} as an extended real-valued function, we arrive at the
following definition:

S := {x ∈ Ω : g(x) = +∞ with g(x) defined by (4.2) where ϕ(0) = +∞}.
8



By definition, the set {xk : k ∈ N} is contained in S . Besides, it is certain that S , and then
the points where the infinite series does not converge, must have measure zero. On the other
hand, S is in a certain sense much “bigger” than {xk : k ∈ N}. First observe that the set
{xk : k ∈ N} is strictly contained in S . Otherwise, the concrete representative of α from (4.3)
given by

α(x) =

{
1, on {xk : k ∈ N}
2− φ(g(x)), on Ω \ {xk : k ∈ N}

would define a real-valued function that is continuous on {xk : k ∈ N}. By the density property
of {xk : k ∈ N} in Ω and the fact that α(x) > 1 for all x /∈ {xk : k ∈ N}, it is discontinuous
on the complement Ω \ {xk : k ∈ N}. This represents a contradiction to the Baire category
theorem. In the same way, one can show that the set S is nonmeager, i.e., it cannot be expressed
as the countable union of nowhere dense subsets of RN . In the literature that relates to the Baire
category theorem, a nonmeager set is often called of second category. To substantiate this claim,
we define the nested sets

Sn :=
⋃
k∈N

B
ce−enk

2 (xk) ∩ Ω,

which consist of the union of open balls with diminishing radius around the points xk. It can be
verified that ⋂

n∈N

Sn ⊂ S.

In fact, let x ∈
⋂
n∈N Sn and n ∈ N arbitrary. By definition, there exists an index k0 with

x ∈ B
ce−e

nk2
0
(xk0) ∩ Ω. Hence,

g(x) =
∞∑
k=1

k−2ϕ(x− xk) ≥ k−2
0 ln ln(c|x− xk0|−1

2 |) ≥ n.

Letting n → ∞ yields g(x) = +∞ and thus x ∈ S . On the other hand, we observe that
any complement Scn is closed in RN . Moreover, writing Ω as a countable union of closed sets
Gj ⊂ RN , one obtains that(⋂

n∈N

Sn

)c

∩ Ω =
⋃
n∈N

(Scn ∩ Ω) =
⋃
j,n∈N

(Scn ∩Gj).

Since all sets Sn contain the dense set {xk : k ∈ N}, Scn ∩ Gj also has empty interior.
Therefore the complement of

⋂
n∈N Sn in Ω is meager, or, in other words, of first category. The

Baire category theorem implies that
⋂
n∈N Sn, and thus S , is nonmeager.

We summarize the preceding results on general discontinuous obstacles in the following theorem.

Theorem 4.2. Let Ω ⊂ RN be a bounded Lipschitz domain. The following density results hold
true:

(i) Let N ≥ 2 and 1 ≤ p ≤ +∞. Then there exists an obstacle α ∈ W 1,N(Ω) ∩ L∞(Ω)
satisfying (3.1) such that

K(C(Ω) ∩ Lp(Ω))
Lp(Ω)

( K(Lp(Ω)),

the inclusion being strict.
9



(ii) Let N ≥ 2 and 1 ≤ p ≤ N . Then there exists an obstacle α ∈ W 1,N(Ω) ∩ L∞(Ω)
satisfying (3.1) such that

K(C(Ω) ∩W 1,p(Ω))
W 1,p(Ω)

( K(W 1,p(Ω)),

the inclusion being strict.
(iii) Let N < p < +∞ or p = N = 1. For any measurable obstacle function α : Ω →

R ∪ {+∞} which satisfies (3.1), it holds that

K(D(Ω)d)
W 1,p(Ω)d

= K(W 1,p(Ω)d).

Proof. We only prove assertion (iii) since (i) and (ii) follow immediately from (4.5) and (4.6). As
a consequence of the Sobolev imbedding theorem, any w ∈ K(W 1,p(Ω)d) is contained in
C(Ω)d. Let w ∈ K(W 1,p(Ω)d). Setting

α̂(x) = max(|w(x)|, ess inf
x∈Ω

α(x)),

it follows that |w(x)| ≤ α̂(x) a.e. in Ω. Since α̂ ∈ C(Ω) and (3.1) holds with α̂ instead of α, we
may invoke Theorem 3.1 to infer that there exists a sequence (wn) with wn ∈ D(Ω)d, wn → w
in W 1,p(Ω)d and |wn(x)| ≤ α̂(x) ≤ α(x) a.e. in Ω. This entails that wn ∈ K(D(Ω)d) for all
n ∈ N, which accomplishes the proof. �

We immediately infer the corresponding statements for Sobolev spaces incorporating homoge-
neous Dirichlet boundary conditions.

Corollary 4.3. Let Ω ⊂ RN be a bounded Lipschitz domain. The following density results hold
true:

(i) Let N ≥ 2 and p ≤ N . Then there exists an obstacle α ∈ W 1,N(Ω) ∩ L∞(Ω)
satisfying (3.1) such that

K(C(Ω) ∩W 1,p
0 (Ω))

W 1,p
0 (Ω)

( K(W 1,p
0 (Ω)),

the inclusion being strict.
(ii) Let N < p < +∞ or p = N = 1. For any measurable obstacle function α : Ω →

R ∪ {+∞} which satisfies (3.1) it holds that

K(C∞c (Ω)d)
W 1,p

0 (Ω)d

= K(W 1,p
0 (Ω)d).

Proof. (i) Define the upper bound α by (4.3). Let ϕ̂ ∈ C∞c (Ω) be a smooth cut-off function with
0 ≤ ϕ̂ ≤ 1 a.e. on Ω and ϕ̂ ≡ 1 except on a sufficiently small neighborhood of ∂Ω. Then it
holds that α · ϕ̂ ∈ K(W 1,p

0 (Ω)) and the assertion now follows directly from the discussion
preceding Remark 4.1.

(ii) Taking account of (3.2), statement (ii) can be proven as Theorem 4.2(iii).

�
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4.2. Lower semicontinuous obstacles and Lp-spaces. The preceding counterexample pro-
vides a regularity limit in terms of the upper bound α for which the density property (3.2) in the
space X(Ω) = Lp(Ω)d can be expected to hold. In this regard, however, uniform continuity is
far from being a necessary condition. In order to enlarge the space of obstacles compatible with
(3.2), we first consider a generalized lower semicontinuity condition.

Definition 4.4. The set of functions LC(Ω) comprises all measurable functions α : Ω →
R ∪ {+∞} for which there exists a sequence of functions αn : Ω→ R with

(4.7)

{
αn ∈ C(Ω), infx∈Ω αn(x) > 0, αn ≤ α, ∀n ∈ N,

limn→∞ αn(x)→ α(x) for a.e. x ∈ Ω.

This property is more general than lower semicontinuity in the following sense: Consider a lower
semicontinuous function α : Ω→ R ∪ {+∞} that fulfills (3.1). Without loss of generality, we
may assume that infx∈Ω α(x) > 0. Denote by α̃ the extension by zero of α, i.e., α̃(x) =
α(x), x ∈ Ω, α̃(x) = 0 on RN \Ω, and note that α̃ is lower semicontinuous (l.s.c.) on RN . The
Lipschitz regularization of ã,

αn(x) = inf
y∈RN
{ã(y) + n‖x− y‖},

yields the desired sequence (αn) that complies with the requirements of Definition 4.4 (see, e.g.,
[3, Theorem 9.2.1]), such that α ∈ LC(Ω).

Theorem 4.5. Let 1 ≤ p < +∞. If α ∈ LC(Ω), then it holds that

K(C∞c (Ω)d)
Lp(Ω)d

= K(Lp(Ω)d).

Proof. Let w ∈ K(Lp(Ω)d) for α ∈ LC(Ω). For a sequence (αn) given by Definition 4.4
consider the functions

wn(x) := min{|w(x)|, αn(x)} w(x)
|w(x)| ,

where it is understood that wn(x) := 0 if w(x) = 0. It follows from Lebesgue’s theorem on
dominated convergence that wn → w in Lp(Ω)d. Further observe that wn ∈ Kn(Lp(Ω)d)
where

Kn(X(Ω)) := {w ∈ X(Ω) : |w(x)| ≤ αn(x) a.e. on Ω}.
Let ε > 0. According to (3.2), for each n ∈ N, wn can be approximated by a smooth function
w̃n ∈ Kn(C∞c (Ω)d) ⊂ K(C∞c (Ω)d) such that

‖wn − w̃n‖Lp(Ω)d < ε/2.

For sufficiently large n, we conclude that

(4.8) ‖w − w̃n‖Lp(Ω)d ≤ ‖w − wn‖Lp(Ω)d + ‖wn − w̃n‖Lp(Ω)d < ε/2 + ε/2 = ε,

which concludes the proof. �

We proceed by considering the important special case of a piecewise continuous upper bound;
suppose there exists a partition of Ω into open subsets Ωl ⊂ Ω with Lipschitz boundary such
that Ω = ∪Ll=1Ωl, Ωi ∩ Ωj = ∅ for i 6= j and

(4.9) α|Ωl ∈ C(Ωl), inf
x∈Ωl

α|Ωl(x) > 0, l = 1, . . . , L.

Theorem 4.5 ensures that for obstacles of this class the density result in the norm topology of
the Lp−spaces holds true.
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4.3. Lower semicontinuous obstacles and Sobolev spaces. Conditions on the obstacle α
so that the density results for Sobolev spaces hold can be relaxed from assuming that α ∈ C(Ω)
to lower regularity requirements with the aid of Mosco convergence of closed and convex sets.
The following definition goes back to [22].

Definition 4.6 (Mosco convergence). Let X be a reflexive Banach space and (Kn) a sequence

of closed convex subsets with Kn ⊂ X for all n ∈ N. Then Kn
M−→ K as n→ +∞, i.e., Kn

is said to Mosco converge to the set K ⊂ X if and only if

K ⊃ {v ∈ X : ( ∃ (vk) ⊂ X : vk ∈ Knk ∀ k ∈ N, vk ⇀ v)},(M1)

K ⊂ {v ∈ X : ( ∃ (vn) ⊂ X, ∃N ∈ N : vn ∈ Kn ∀n ≥ N, vn → v)}.(M2)

Here, (Knk) denotes an arbitrary subsequence of (Kn) and the subset notation (vk) ⊂ X has
to be understood in the sense that {vk} ⊂ X .

The following class of obstacles encompasses functions W 1,q(Ω) that fulfill a generalized lower
semicontinuity condition, which is slightly stronger than Definition 4.4.

Definition 4.7. We denote by Wq(Ω) for q ≥ 1 the set of functions α ∈ W 1,q(Ω) for which
there exists a sequence of functions (αn) with αn satisfying (3.1), αn ≤ α a.e. in Ω and
αn ∈ C(Ω) ∩W 1,q(Ω) for all n ∈ N such that αn ⇀ α in W 1,q(Ω).

Note that the class Wq(Ω) is strictly contained in W 1,q(Ω). Additionally, if the sequence (αn)
is non-decreasing, then the obstacle α is lower semicontinuous for being the pointwise limit
of a non-decreasing sequence of continuous functions: note that W 1,q(Ω) embeds compactly
in L1(Ω) and hence there exists a pointwise converging subsequence αnj(x) → α(x) for
j →∞, where we consider α as an extended-real valued function. However, the functions in
Wq are not necessarily continuous: it suffices to consider the example from (4.1) for Ω = Br(0),
N > 1 and

(4.10) α(x) = ln(ln(c|x|−1)), c ≥ er fixed.

It follows that α ∈ W 1,q(Ω) for all q ≤ N (see [1, 4.43]), α /∈ C(Ω), and the sequence (αn)
defined as αn(x) = min(α(x), n) for n ∈ N satisfies the requirements of the definition of
Wq(Ω).

We now can establish the density result involving the class Wq(Ω) for q ≥ 1 with the aid of the
results of Boccardo and Murat [5, 6].

Theorem 4.8. Let 1 < p < ∞ and suppose that α ∈ Wq(Ω) with p < q < +∞. Then, the
following density result holds true

K(D(Ω)d; | . |∞)
W 1,p

0 (Ω)d

= K(W 1,p
0 (Ω)d; | . |∞),(4.11)

where K(X(Ω); | . |∞) = {w ∈ X(Ω) : |w(x)|∞ ≤ α(x) a.e. x ∈ Ω}.

Proof. Without loss of generality, consider the one-dimensional case d = 1.
Let w ∈ K(W 1,p

0 (Ω); | . |∞). Since αn ⇀ α in W 1,q(Ω) with q > p > 1, one obtains the
Mosco convergence result

K±n (W 1,p
0 (Ω))

M−→ K±(W 1,p
0 (Ω))
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for the unilateral constraint sets

K−n (X(Ω)) := {w ∈ X(Ω) : w(x) ≥ −αn a.e. in Ω},
K+
n (X(Ω)) := {w ∈ X(Ω) : w(x) ≤ αn a.e. in Ω},

K−(X(Ω)) := {w ∈ X(Ω) : w(x) ≥ −α a.e. in Ω},
K+(X(Ω)) := {w ∈ X(Ω) : w(x) ≤ α a.e. in Ω},

from [5, p.87]. Consequently, there exist two recovery sequences,

(4.12) w±n ∈ K±n (W 1,p
0 (Ω)),

with w±n → w in W 1,p
0 (Ω). Using the continuity of

max( . , 0),min( . , 0) : W 1,p
0 (Ω)→ W 1,p

0 (Ω),

it follows that the sequence

wn = max(w+
n , 0) + min(w−n , 0),

converges to w in W 1,p
0 (Ω). Moreover, it holds that |wn| ≤ αn for all n ∈ N. For each

n ∈ N, the assumptions on αn allow to use (3.2) to infer the existence of a smooth function
w̃n ∈ C∞c (Ω) with |w̃n| ≤ αn ≤ α a.e. in Ω that approximates wn arbitrarily well. Using
wn → w in W 1,p

0 (Ω)d, the assertion follows by an ε/2-argument analogously to (4.8). �

For piecewise continuous obstacles α : Ω→ R according to (4.9) only the singularities on the
interfaces play a role. We define for η > 0 the enlarged interior boundaries of I = ∪Mk=1∂Ωk\∂Ω
as

Iη := {x ∈ Ω : dist(x, I) ≤ η},
and we consider the space of functions C(I; Ω) which are uniformly continuous across I ,

C(I; Ω) := {f : Ω→ R : f |Iη ∈ C(Iη) for some η > 0}.
The corresponding approximation result reads as follows.

Theorem 4.9. Let 1 ≤ p <∞. Let α be piecewise continuous in the sense of (4.9) and assume
that (3.1) is fulfilled. Then the following density result holds true:

K(D(Ω)d)
W 1,p(Ω)d

= K(W 1,p(Ω)d ∩ C(I; Ω)d)
W 1,p(Ω)d

.

Proof. Let w ∈ K(W 1,p(Ω)d) so that |w| ≤ α a.e. on Ω and assume that w is uniformly
continuous on Iη for some fixed η > 0. Consider Ew ∈ W 1,p(RN)d, the extension of w
to the entire RN via the extension-by-reflection operator E defined previously in (3.4). Let
Eα : RN → R be the analogous extension of α. As shown in the proof of Theorem 3.1, this
extension is bound preserving:

|Ew| ≤ Eα a.e. in RN .

Denote by Sn(w,Ω) := ρn ∗ Ew and αn = ρn ∗ Eα the mollifications of Ew and Eα from
(3.7), respectively. Since α is continuous on Eη where Eη := (Iη)c ∩Ω, it follows that αn → α
uniformly on Eη. Further define

βn :=

(
1 +

supx∈Eη |α(x)− αn(x)|
ess infx∈Ω α(x)

)−1

,
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where we use that ess infx∈Ω α(x) > 0. It follows that βn ↑ 1 as n→∞ and βnαn(x) ≤ α(x)
for all x ∈ Eη. Since |Ew(x)| ≤ Eα(x) a.e. on RN , one obtains |Sn(w,Ω)(x)| ≤ αn(x),
which implies

(4.13) βn|Sn(w,Ω)(x)| ≤ α(x), ∀x ∈ Eη.

To enforce the feasibility on the enlarged interface set Iη, we decompose Iη as Iη = A+ ∪ A−
where A+ := {x ∈ Iη : |w(x)| ≥ s} for fixed s > 0 with s < ess infx∈Ω α(x), and
A− := Iη \ A+. Define

γn :=

(
1 +

supx∈A+ |w(x)− Sn(w,Ω)(x)|
s

)−1

.

Since Sn(w,Ω) → w uniformly on Iη, one obtains that γn ↑ 1 as n → ∞. We further have
that

(4.14) γn|Sn(w,Ω)(x)| ≤ |w(x)| ≤ α(x), ∀x ∈ A+.

By definition, |w(x)| < s < ess infx∈Ω α(x) for all x ∈ A−. Using once again the uniform
convergence of Sn(w,Ω) to w on Iη, one observes that, for sufficiently large n,

(4.15) |Sn(w,Ω)| ≤ ess inf
x∈Ω

α(x), ∀x ∈ A−.

Finally, the sequence
wn(x) := γnβnSn(w,Ω)(x)

satisfies wn ∈ D(Ω) for all n ∈ N and

wn → w in W 1,p(Ω)d, |wn(x)| ≤ α(x), a.e. in Ω,

for sufficiently large n; where we have used (4.13), (4.14) and (4.15). This completes the
proof. �

4.4. Supersolutions of elliptic PDEs. By now, density properties for pointwise constraints in
Sobolev spaces of the type

K(C∞c (Ω)d)
W 1,p

0 (Ω)d

= K(W 1,p
0 (Ω)d), or K(D(Ω)d)

W 1,p(Ω)d

= K(W 1,p(Ω)d),

have been obtained on the basis of mollification and a subsequent procedure to enforce feasibility.
An alternative approach is the approximation of a function via the solution of an appropriate
sequence of elliptic PDEs. Using standard regularity theory, one may prove higher regularity
of the approximating sequence and one is left to prove feasibility. In this section we focus on
obstacles which are solutions of an elliptic PDE. Therefore consider a general second order
differential operator A in divergence form;

(4.16) A =
N∑

i,j=1

− ∂

∂xi
aij(x)

∂

∂xj
+

n∑
i=1

bi(x)
∂

∂xi
+ c(x)

where aij, bi, c ∈ L∞(Ω) for 1 ≤ i, j ≤ N . Here, the matrix [aij(x)] is symmetric a.e. and
uniformly elliptic, i.e., there exists a κa > 0 such that

N∑
i,j=1

aij(x)ξiξj ≥ κa|ξ|2, ∀ ξ ∈ RN ,
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for a.e. x ∈ Ω. It is further assumed that aij, bi, c are such that A : H1
0 (Ω) → H−1(Ω) is

strongly monotone, i.e., there exists κ > 0 such that

〈Au, u〉 ≥ κ‖u‖2
H1

0 (Ω), ∀u ∈ H
1
0 (Ω),

where 〈 . , . 〉 denotes the duality pairing in H−1(Ω). For example, this is the case if bi ≡ 0 for
1 ≤ i ≤ N and c(x) ≥ 0 a.e. in Ω. We call a function α ∈ H1(Ω) weak supersolution with
respect to the elliptic operator A, if Aα ≥ 0 in the H−1(Ω)-sense, that is,

(4.17) 〈Aα, v〉 ≥ 0, ∀ v ∈ H1
0 (Ω), v ≥ 0 a.e. in Ω.

The subsequent theorem covers density properties for obstacles that are weak supersolutions of
an elliptic PDE of type (4.16).

Theorem 4.10. Let Ω be a bounded domain. Suppose that α ∈ H1(Ω) is a weak super-
solution for some A as in (4.16) in the sense of (4.17) with α ≥ 0 on ∂Ω. For X(Ω) ∈
{L2(Ω)d, H1

0 (Ω)d} it holds that

K(Y (Ω), | . |∞)
X(Ω)

= K(X(Ω), | . |∞),

in the following cases.

(i) aij ∈ C0,1(Ω) or aij ∈ C1(Ω): Y (Ω) = (H2
loc(Ω) ∩H1

0 (Ω))d,

(ii) ∂Ω ∈ C1,1 or Ω convex, aij ∈ C0,1(Ω): Y (Ω) = (H2(Ω) ∩H1
0 (Ω))d,

(iii) aij, bi, c ∈ Cm+1(Ω), m ∈ N0: Y (Ω) = (Hm+2
loc (Ω) ∩H1

0 (Ω))d,

(iv) ∂Ω ∈ Cm+2, aij, bi, c ∈ Cm+1(Ω), m ∈ N0: Y (Ω) = (Hm+2(Ω) ∩H1
0 (Ω))d.

Proof. Without loss of generality, assume d = 1. First observe that the maximum principle
implies α(x) ≥ 0 a.e. in Ω. Let w ∈ K(X(Ω)) be arbitrary. Consider the sequence (wn),
where wn is defined as the unique solution to the problem,

(4.18) find y ∈ H1
0 (Ω) :

1

n
Ay + y = w in H−1(Ω).

We denote by Tn the solution mapping to (4.18), i.e., wn = Tn(w).

Step 1: Tn-invariance of K(H1
0 (Ω)): We now prove that for any n ∈ N, we have that −α ≤

wn ≤ α a.e., i.e.,

(4.19) Tn : K(L2(Ω))→ K(H1
0 (Ω)),

given that Aα ≥ 0 in the H−1(Ω). Proceeding as in [27], we consider (wn − α)+ as a test
function on (4.18) and add to both sides −〈 1

n
Aα + α, (wn − α)+〉. Then,

κ

n
‖(wn − α)+‖2

H1
0 (Ω) + ‖(wn − α)+‖2

L2(Ω) ≤ 〈(
1

n
A+ I)(wn − α), (wn − α)+〉

≤ 〈w − α− 1

n
Aα, (wn − α)+〉

≤ − 1

n
〈Aα, (wn − α)+〉 ≤ 0,

where we have used that w − α ≤ 0 a.e. in Ω. Therefore, wn ≤ α a.e. in Ω. Analogously, we
obtain that wn ≥ −α a.e., by considering (−α−wn)+ as a test function and by adding to both
sides −〈 1

n
Aα + α, (−α− wn)+〉. This proves (4.19), i.e., wn ∈ K(H1

0 (Ω)).

Step 2: Some convergence results for singular perturbations.
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The desired convergence modes of the approximating sequences rely on standard arguments for
singular perturbations, cf. [19, Theorem 9.1, Theorem 9.4] for the case of singularly perturbed
variational inequalities. First, for y ∈ L2(Ω) it holds

(4.20) lim
n→∞

yn = y in L2(Ω) =⇒ ŷn := Tn(yn)→ y in L2(Ω).

Secondly, for y ∈ H1
0 (Ω), we prove that

(4.21) lim
n→∞

yn = y in H1
0 (Ω) =⇒ lim

n→∞
ŷn = y in H1

0 (Ω).

In fact, since yn ∈ H1
0 (Ω) and A is strongly monotone, we observe that

κ

n
‖ŷn − yn‖2

H1
0 (Ω) + ‖ŷn − yn‖2

L2(Ω) ≤ 〈
(

1

n
A+ I

)
(ŷn − yn), ŷn − yn〉

=
1

n
〈Ayn, yn − ŷn〉

≤ 1

n
‖Ayn‖H−1(Ω)‖yn − ŷn‖H1

0 (Ω),

where we have used that ŷn solves (4.18) with yn as right hand side. Hence (ŷn) is bounded
in H1

0 (Ω). Employing (4.20) one obtains that ŷn ⇀ y in H1
0 (Ω) along a subsequence, and by

uniqueness, it holds ŷn ⇀ y for the entire sequence (ŷn). Finally, from the inequalities above,
we have

κ lim sup
n→∞

|ŷn − yn|2H1
0 (Ω) ≤ lim sup

n→∞
〈Ayn, yn − ŷn〉 = 0,

so that ŷn = Tn(yn)→ y in H1
0 (Ω) and thus (4.21) is proven.

Thirdly, in addition to wn = Tn(w), we define wqn = T qn(w) where T qn(w) := Tn(T q−1
n (w)) for

q ∈ N, q ≥ 2, T 1
n(w) := Tn(w) = wn and w0

n := w. It can be deduced from (4.20) and (4.21)
by induction that

(4.22) lim
n→∞

wqn = w in L2(Ω), ∀ q ∈ N ∪ {0},

for w ∈ L2(Ω), and

(4.23) lim
n→∞

wqn = w in H1
0 (Ω), ∀ q ∈ N ∪ {0},

for w ∈ H1
0 (Ω), respectively.

Step 3: Regularity and convergence of the approximating sequences

The extra regularity of the H1
0 (Ω)-solution Tn(w) to (4.18) is different with respect to the

statement cases: If aij ∈ C0,1(Ω) or aij ∈ C1(Ω) for 1 ≤ i, j ≤ N , the solution Tn(w)
belongs to H1

0 (Ω) ∩ H2
loc(Ω) (see [23] for the first case and [10] for the second one). The

solution Tn(w) belongs to H1
0 (Ω)∩H2(Ω) if ∂Ω is C1,1-smooth [23] or when Ω is convex [12].

In case w ∈ K(L2(Ω)), (4.20) with yn ≡ w ensures that wn → w in L2(Ω). In conjuction with
the regularity and the feasibility of wn = Tn(w) described above, we have then established (i)
and (ii) for X(Ω) = L2(Ω). Secondly, note that if w ∈ K(H1

0 (Ω)) then wn → w in H1
0 (Ω) by

(4.21) with yn ≡ w, and as seen above, wn ∈ K(H1
0 (Ω)). This, together with the regularity of

wn = Tn(w) established above, proves in turn (i) and (ii) for X(Ω) = H1
0 (Ω).
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It is left to argue for (iii) and (iv) as follows. If aij, bi, c ∈ Cm+1(Ω) for 1 ≤ i, j ≤ N , then for
each n ∈ N, the operator Tn has the following increasing regularity properties (see [10]),

w ∈ Hk(Ω) =⇒ Tn(w) ∈ Hk+2
loc (Ω) ∩H1

0 (Ω), 0 ≤ k ≤ m;

and if aij, bi, c ∈ Cm+1(Ω) for 1 ≤ i, j ≤ N and ∂Ω is of class Cm+2, for each n ∈ N,

w ∈ Hk(Ω) =⇒ Tn(w) ∈ Hk+2(Ω) ∩H1
0 (Ω), 0 ≤ k ≤ m.

Finally, this proves (iii) given that wqn ∈ Hm+2
loc (Ω)∩H1

0 (Ω) for 2q ≥ m+ 2, wqn ∈ K(H1
0 (Ω)),

and wqn → w as n→∞ in L2(Ω) or H1
0 (Ω) depending on the regularity of w, cf. (4.22) and

(4.23). The analogous reasoning applies to (iv).

�

Let us briefly comment on the relation to the density results from Theorem 4.5 and Theorem 4.8.
First, note that we do not require the obstacle to be bounded away from zero as we did in the
preceding paragraphs. On the other hand, the maximal regularity of the feasible approximation
hinges on the coefficients of the elliptic operator associated to the obstacle and the smoothness
of the boundary.

Concerning the semicontinuity requirements of the upper bound, a classical result from Trudinger
[28, Cor. 5.3] for the case without lower order terms (bi ≡ 0, c ≡ 0) states that any weak
supersolution in the sense of (4.17) is upper semicontinuous. Therefore, the class of obstacles
considered in Theorem 4.10 differs from the one of Theorem 4.8. By contrast, the consideration
of upper bounds that are weak subsolutions of an elliptic PDE is not useful as these functions
may easily fail to be nonnegative on Ω. For example, this is the case if a weak subsolution
satisfies a Dirichlet boundary condition.

5. APPLICATION TO FINITE ELEMENTS

In this section we want to show how the density results (3.2) and (3.3) can be used to derive the
Mosco convergence of certain discretized versions Kh of K(X(Ω)) associated with standard
finite element spaces suitable for an approximation ofX(Ω). The very general concept of Mosco-
convergence is typically useful for investigating the stability of variational inequality problems
which involve convex constraint sets, e.g, those of the type K(X(Ω)), with regard to a suitable
class of perturbations. In this context, the discretization of K(X(Ω)) can be seen as a special
type of perturbation. Applications are manifold and comprise, for instance, the discretization of
variational problems in mechanics, such as in elasto-plasticity with hardening [17], or in image
restoration, with regard to the predual problem of TV-regularization [14].

5.1. Mosco convergence of sets and approximation of variational inequalities. For the
sake of convenience, we repeat at this point the definition of Mosco convergence from Section 4.

Definition 5.1 (Mosco convergence). Let X be a reflexive Banach space and (Kn) a sequence
of closed convex subsets with Kn ⊂ X . Then Kn is said to Mosco converge to the set K ⊂ X
if and only if

K ⊃ {v ∈ X : ( ∃ (vk) ⊂ X : vk ∈ Knk ∀ k ∈ N, vk ⇀ v)},(M1)

K ⊂ {v ∈ X : ( ∃ (vn) ⊂ X, ∃N ∈ N : vn ∈ Kn ∀n ≥ N, vn → v)}(M2)
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Note that if (Kn) converges to K in the sense of Mosco, then K is necessarily closed and
convex, too.

Remark 5.2. In some textbooks on finite-dimensional approximations of variational inequalities,
cf., e.g., [11, 13], condition (M2) is replaced by the following criterion:

There exists a dense subset K̃ ⊂ K and an operator rn : K̃ → X(M2’)
such that for all v ∈ K̃ it holds rnv → v in X and there exists n0 ∈ N
such that rnv ∈ Kn for all n ≥ n0.

It is easy to show that (M2’) implies (M2). In fact, let v ∈ K and denote by πKnv its (not
necessarily uniquely determined) projection onto Kn. By density, for ε > 0, there exists vε ∈ K̃
such that ||vε − v|| ≤ ε. Thus it holds

||v − πKnv|| = inf
vn∈Kn

||v − vn|| ≤ ||v − rnvε|| ≤ ε+ ||vε − rnvε||

for sufficiently large n such that limn→∞ ||v − πKnv|| ≤ ε, where ε was arbitrary.

The condition (M2’) turns out to be convenient especially in the context of finite-dimensional
approximations, where rn is given by suitable interpolation operators which typically are only
well-defined on a dense subset Y (Ω) of X(Ω) giving rise to sets K̃ of the type K(Y (Ω)). In
this respect, this is precisely the point where the density results of section 3 are needed. In view
of practical relevance, we pick up on the issue of perturbations of variational inequality problems.
To motivate the notion of Mosco convergence, we mention the following well known result from
[19, p.99], which is a special case of the general results in [22].

Theorem 5.3. Let X be a real Hilbert space. For each n ∈ N, let Kn ⊂ X be a nonempty,
closed and convex subset. Assume An : Kn → X∗ to be uniformly Lipschitz and strongly
monotone operators that fulfill

lim
n→∞

Anvn = Av in V ∗,

for all (vn) ⊂ X with vn → v as n→∞, and vn ∈ Kn for all n ∈ N. Further let (ln) ⊂ X∗

with ln → l in X∗, and assume that (Kn) converges to K in X in the sense of Mosco, cf.
(M1),(M2). Then the sequence of unique solutions un of the problems,

find un ∈ Kn : 〈Anun, v − un〉 ≥ 〈ln, vn − un〉, ∀ vn ∈ Kn

converges strongly to the solution u of the limit problem

(5.1) find u ∈ K : 〈Au, v − u〉 ≥ 〈l, v − u〉, ∀ v ∈ K.

In the following, the perturbation is assumed to be originating from a finite-dimensional approxima-
tion Kn = Khn of the set K(X(Ω)) in the framework of classical finite element methods such
that the parameter n is associated with a sequence of mesh sizes (hn) tending to zero. In this
case, Mosco convergence requires that any element of the set K(X(Ω)) can be approximated
by discrete feasible elements. Under this condition, Theorem 5.3 ensures that the solutions
of the discrete problems converge to the solution of the original infinite-dimensional problem
irrespective of the regularity of the data or the obstacle defining K(X(Ω)).

In this sense, Mosco-convergence is a powerful tool whenever the discrete spaces are fixed
a priori, i.e., regardless of the data of the specific problem. The resulting sequence of finite-
dimensional problems can be understood as an approximation of any problem in a given problem
class. This applies, for example, to classical finite element methods.
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In contrast, adaptive finite element methods intend to design the setsKhn in order to approximate
the solution of a specific problem. In fact, the sets Khn are successively determined during the
course of the adaptive algorithm building upon information on the preceding solution un−1 and the
specific data. With the help of suitable a posteriori error estimators, which consecutively exploit
information from discrete solutions, adaptive methods aim at a reduction of the discretization
error whilst enlarging the dimension of the discrete space as economically as possible. However,
rigorous convergence proofs with regard to adaptive discretizations of variational inequalities
are restricted to special cases and usually rely on rather strong assumptions. For instance, in
the case of the obstacle problem with a piecewise affine obstacle, we mention the article [26].
Moreover, density results may still be useful in the convergence analysis of adaptive schemes
which require interpolation operators, cf. [25].

5.2. Finite element discretized convex sets. In this section we assume that Ω ⊂ RN is
polyhedral. Together with Ω, a sequence of geometrically conformal affine simplicial meshes
(Th)h>0 of Ω with mesh size

h := max
T∈Th

diamT

is assumed to be given. For details, we refer to [9]. In analogy to the caseN = 2, we refer to each
Th as a triangulation. The (N -dimensional) Lebesgue measure of an element T ∈ Th is denoted
by λ(T ). We also admit the standard assumption that the sequence (Th) is shape-regular, i.e.,

(5.2) ∃ c > 0 : diam(T )
ρT

≤ c ∀h ∀T ∈ Th,

where diam(T ) = maxx,y∈T |x−y| denotes the diameter of T and ρT designates the diameter
of the largest ball that is contained in T . We further write xT for the (barycentric) midpoint of
an element T , and Mh = {xT : T ∈ Th}, Nh and Eh for the set of element midpoints,
triangulation nodes and edges with respect to Th, respectively. By abuse of notation, we write
|Mh| and |Nh| for the cardinality of the respective set. Let χT : Ω → R designate the
characteristic function of T with respect to Ω, that is,

χT (x) = 0, ∀x /∈ T, χT (x) = 1, ∀x ∈ T.
We further make use of the standard H1(Ω)-conformal finite element space of globally continu-
ous, piecewise affine functions denoted by

P1,h(Ω) := {u ∈ C(Ω) : u|T ∈ P1 ∀T ∈ Th}.
Here, P1 denotes the space of polynomials of degree less than or equal to one. Together with the
finite-dimensional subspace P1,h(Ω) and its standard nodal basis {ϕx : x ∈ Nh} we consider
the global interpolation operator

(5.3) Ih : C(Ω)→ P1,h(Ω), Ihu :=
∑
x∈Nh

u(x)ϕx.

Note that Ih is only defined on a dense subspace of H1(Ω). For the discretization of variational
problems in H(div; Ω), it is customary to use the conforming space of Raviart-Thomas finite
elements of lowest order,

(5.4) RTh(Ω) := {w ∈ L2(Ω)N : w|T ∈ RT ∀T ∈ Th, [w · ν]|E∩Ω = 0 ∀E ∈ Eh},
where RT := {w ∈ Pd1 : ∃ a ∈ Rd, b ∈ R : w(x) = a + bx} and ν denotes the unit
outer normal to T . To incorporate homogeneous Neumann boundary conditions, one uses the
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H0(div; Ω)-conforming subspace

RT0,h(Ω) := RTh(Ω) ∩H0(div; Ω).

The construction of suitable edge-based basis functions {ϕE : E ∈ Eh} can be found in the
literature, cf., for instance, [4], such that the boundary condition in the definition of RT0,h(Ω) can
be easily accounted for. The global Raviart-Thomas interpolation operator is given by

(5.5) IRTh : W 1,1(Ω)N → RTh(Ω), IRTh w :=
∑
E∈Eh

(ˆ
E

w · ν dHN−1

)
ϕE.

We emphasize that the subsequent results may be extended to finite elements of higher order,
which are typically useful when the solution to the variational problem (5.1) displays a higher
regularity. In this regard, higher regularity assumptions on the data and the obstacle are required
and the concept of Mosco convergence is not binding to prove the convergence of the finite
element method, and a priori error estimates with a rate can be derived, cf., e.g., [7]. However, we
do not want to deviate from minimal regularity assumptions on the data. Further, even for simple
variational problems such as the classical elasto-plastic torsion problem, there is a regularity
limitation for the solution regardless of the smoothness of the data, cf. [11].

Note also that the subsequently covered problems comprise situations where the discrete feasible
sets Kh are not necessarily nested and non-conforming in the sense that they are in general not
contained in the feasible set K(X). In the following, c denotes a positive constant, which may
take different values on different occasions.

Lemma 5.4 (Mosco convergence, first condition). Let Ω ⊂ RN be a polyhedral domain and α ∈
C(Ω) with α(x) ≥ 0 in Ω. Further let (wh) be a sequence that fulfills for all h, wh ∈ P1,h(Ω)d

and |wh(xT )| ≤ α(xT ) for all T ∈ Th. If wh ⇀ w for h → 0 in L2(Ω)d then it holds that
|w| ≤ α a.e. in Ω.

Proof. It suffices to show that iK(w) = 0, where

K := {w ∈ L2(Ω)d : |w| ≤ α a.e.}.

Moreover, it holds that iK = j∗, where j∗ denotes the Fenchel conjugate

j∗(v∗) := sup
v∈L2(Ω)d

{(v∗, v)− j(v)}

of the mapping j : L2(Ω)d → R, j(v) :=
´

Ω
α|v|∗ dx. Here,

|v∗|∗ = sup
v∈Rd\{0}

v∗ · v/|v|

denotes the dual norm of | . |. From the definition of j∗, we obtain that iK(w) = 0 is equivalent
to

(5.6) (w, v) ≤
ˆ

Ω

α|v|∗ ∀ v ∈ L2(Ω)d.

By a density argument, it suffices to prove this result for all v ∈ Cc(Ω)d. Denote by

(5.7) αh :=
∑
T∈Th

α(xT )χT , vh :=
∑
T∈Th

v(xT )χT
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the piecewise constant interpolants of α and v, respectively. The uniform continuity of α and
v implies αh → α and vh → v in L∞(Ω). By the weak convergence of (wh), the strong
convergence of (αh) and (vh) as well as the midpoint quadrature rule, we obtainˆ

Ω

w · v dx←
ˆ

Ω

wh · vh dx =
∑
T∈Th

ˆ
T

wh · vh dx

=
∑
T∈Th

λ(T )wh(xT ) · vh|T dx(5.8)

≤
∑
T∈Th

λ(T ) α(xT ) |vh|T |∗ dx

=

ˆ
Ω

αh|vh|∗ dx→
ˆ

Ω

α|v|∗ dx,

which proves (5.6). �

Lemma 5.5. Let Ω ⊂ RN be a polyhedral domain and α ∈ C(Ω) with α(x) ≥ 0 in Ω. Let
(wh) be a sequence that fulfills for all h, wh ∈ P1,h(Ω)d and |wh(x)| ≤ α(x) for all x ∈ Nh. If
wh ⇀ w for h→ 0 in L2(Ω)d then it holds that |w| ≤ α a.e. in Ω.

Proof. The assertion follows by a slight modification of the proof of Lemma 5.4. Instead of
the piecewise constant interpolant we define αh as the piecewise affine interpolant of α, i.e.,
αh = Ihα, which fulfills α(x) = (Ihα)(x) for all x ∈ Nh and αh → α strongly in L∞(Ω)d. By
(5.8) we obtainˆ

Ω

w · v dx←
ˆ

Ω

wh · vh dx =
∑
T∈Th

λ(T )
N+1

∑
x∈Nh∩T

wh(x) · vh|T dx

≤
∑
T∈Th

λ(T )
N+1

∑
x∈Nh∩T

|wh(x)| |vh|T |∗

≤
∑
T∈Th

λ(T )
N+1

∑
x∈Nh∩T

α(x) |vh|T |∗

=

ˆ
Ω

αh|vh|∗ dx→
ˆ

Ω

α|v|∗ dx.

�

Theorem 5.6. Let Ω ⊂ RN be a polyhedral domain and α ∈ C(Ω) such that (3.1) holds true.
Then the sets

(5.9) Kh = {w ∈ P1,h(Ω)d : |w(xT )| ≤ α(xT ) for all T ∈ Th}

Mosco-converge for h→ 0 to the set K(H1(Ω)d) in H1(Ω)d.

Proof. Since weak convergence in H1(Ω) implies weak convergence in L2(Ω), the preceding
Lemma 5.4 shows that (M1) is fulfilled. We now show (M2’). To prove the assertion, we may use
a strategy that is similar to the one in [11, Chapter II] and requires (3.3). Note that Theorem 3.1
implies that the set

(5.10) K̃ := {ϕ ∈ C∞(Ω)d : |ϕ(x)| < α(x) for all x ∈ Ω}
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is also dense in K(H1(Ω)d) with respect to the H1(Ω)d-norm. For the global interpolation
operator Ih defined in (5.3) we have the classical estimate,

(5.11) ||u− Ihu||L∞(Ω) ≤ ch2||u||W 2,∞(Ω) ∀u ∈ W 2,∞(Ω).

Here, c denotes a constant independent of h on account of the shape-regularity of the triangula-
tion (5.2); cf. [9, p.61]. We further define rh : K̃ → P1,h(Ω)d by

rhw := [Ihw1, . . . , Ihwd],

and it follows that rhw → w as h → 0 in H1(Ω)d for all w ∈ K̃; see [9, Corollary 1.109].
Applying estimate (5.11) to the components of w ∈ K̃ and using the equivalence of norms on
Rd, one obtains that

(5.12) || |w − rhw| ||L∞(Ω) ≤ ch2||w||W 2,∞(Ω)d ,

for a suitable modification of c. This implies

(5.13) |rhw(x)| ≤ |w(x)|+ ch2||w||W 2,∞(Ω)d ∀x ∈ Ω.

Since any w ∈ K̃ is uniformly bounded away from α, there exists h0 = h0(w) such that
rhw ∈ Kh ∀h ≤ h0, which implies (M2’). �

Corollary 5.7. Under the conditions of Theorem 5.6, the sequence (Kh) defined in (5.9) Mosco-
converges for h→ 0 to the set K(L2(Ω)d) in L2(Ω)d.

Proof. Again, Lemma 5.4 implies that (M1) withX = L2(Ω)d holds true. For K̃ defined in (5.10)
it holds that K̃ is also dense in K(L2(Ω)d) with respect to the L2(Ω)d-norm, cf. (3.2). Thus,
(M2’) follows analogously to the proof of Theorem 5.6. �

Corollary 5.8. Under the conditions of Theorem 5.6 the node-based discrete sets

(5.14) Kh := {w ∈ P1,h(Ω)d : |w(x)| ≤ α(x) ∀x ∈ Nh},

Mosco converge for h→ 0 to K(H1(Ω)d) in H1(Ω)d.

Proof. The proof is analogous to the proof of Theorem 5.6, noting that (5.13) also implies
rhw ∈ Kh ∀h ≤ h0 with Kh according to the node-based definition (5.14). �

Remark 5.9. With the help of the density property (3.3) for uniformly continuous upper bounds,
the above results on the Mosco convergence of discretized convex sets carry over to spaces
involving homogeneous Dirichlet boundary conditions. In this context, the set P1,h(Ω) in the
definitions of the discretized sets Kh in (5.9) and (5.14) has to be replaced by the space

P ∂Ω
1,h := {u ∈ C(Ω) : u|T ∈ P1 ∀T ∈ Th, u(x) = 0 ∀x ∈ Nh ∩ ∂Ω}.

The resulting discrete sets Kh incorporate the zero boundary condition and the corresponding
results on Mosco convergence for h→ 0 remain valid replacing H1(Ω)d by H1

0 (Ω)d.

With the help of the density result (3.2), one obtains the following result for the discrete approxi-
mation of pointwise constraint sets in H(div; Ω) by the Raviart-Thomas finite element space
RTh(Ω); cf. (5.4).
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Theorem 5.10. Let Ω ⊂ RN be a polyhedral domain. Let α ∈ C(Ω) such that (3.1) is satisfied.
Then the sets

Kh := {w ∈ RT0,h(Ω) : |w(xT )| ≤ α(xT ) ∀T ∈ Th}
Mosco-converge to K(H0(div; Ω)) in H(div; Ω) and to K(L2(Ω)N) in L2(Ω)N .

Proof. Let wh ∈ Kh for all h. First observe that if (wh) weakly converges to w in H(div; Ω),
then it also weakly converges to w in L2(Ω)N . Analogously to the proof of Lemma 5.4 one
concludes that |w| ≤ α a.e. in Ω. The continuity of the normal trace mapping

H(div; Ω) 3 w 7→ 〈wν, v〉H−1/2(∂Ω),H1/2(∂Ω) ∈ R

for fixed v ∈ H1(Ω) implies wν = 0 in H−1/2(∂Ω). We conclude that w ∈ K(H0(div; Ω))
whence it follows that (M1) is satisfied. Secondly, note that

K(C∞c (Ω)N)
H(div;Ω)

= K(H0(div; Ω));

cf. (3.2). For the global Raviart-Thomas interpolation operator defined in (5.5), the following
interpolation error estimate holds true [9, Corollary 1.115]:

(5.15) ‖u− IRTh u‖L∞(Ω)N + ‖ div u− div IRTh u‖L∞(Ω) ≤ ch‖u‖W 1,∞(Ω)N

for all u ∈ W 2,∞(Ω)N . Setting rhw := IRTh w for any w ∈ K̃ , where

K̃ := {w ∈ C∞c (Ω)N : |w(x)| < α(x), ∀x ∈ Ω},

and taking account of the fact that IRTh w → w in H(div) for all w ∈ K̃, we may proceed
analogously to the proof of Theorem 5.6 to verify (M2’). �

The previous approach can also be applied to derive approximation results for constraint sets
involving pointwise bounds on partial derivatives. To begin with, we consider the gradient-
constraint sets

K∇(X(Ω)) = {w ∈ X(Ω) : |∇w| ≤ α a.e. in Ω},
for X(Ω) ⊂ H1(Ω)d and an arbitrary norm | . | on RN×d.

Theorem 5.11. Let Ω ⊂ RN be a polyhedral domain. Let α ∈ C(Ω) such that (3.1) is satisfied.
Define

(5.16) Kh := {w ∈ P ∂Ω
1,h (Ω)d : |∇w|T | ≤ α(xT ) ∀T ∈ Th}.

Then the sets Kh Mosco-converge to K∇(H1
0 (Ω)d) in H1

0 (Ω)d.

Proof. To prove (M1) it suffices to notice that if wh ⇀ w in H1(Ω)d then ∇wh ⇀ ∇w in
L2(Ω)N×d. Similar to the proof of Lemma 5.4, one obtains for v ∈ Cc(Ω)N×d thatˆ

Ω

∇w : v dx←
ˆ

Ω

∇wh : v dx ≤
ˆ

Ω

|∇wh||v|∗ dx ≤
ˆ

Ω

αh|v|∗ dx→
ˆ

Ω

α|v|∗ dx,

using αh from (5.7). Therefore, (5.6) holds with∇w in place of w, and (M1) is verified.

To prove (M2’), we consider again the global interpolation operator Ih from (5.3). The standard
estimate

||∇u−∇Ihu||L∞(Ω)N ≤ ch||u||W 2,∞(Ω), ∀u ∈ W 2,∞(Ω),
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holds true, see e.g. [9]. Note also that K∇(C∞c (Ω)d) is dense in K∇(H1
0 (Ω)d) for the H1(Ω)d-

norm [15, Theorem 4]. Thus, the set

K̃ := {w ∈ C∞c (Ω)d : |∇w(x)| < α(x) ∀x ∈ Ω}
is also dense in K∇(H1(Ω)d). Therefore one may argue as in the proof of Theorem 5.6 to
deduce (M2’). �

Next we consider pointwise constraints on the divergence. For X(Ω) ⊂ H(div; Ω) let

(5.17) Kdiv(X(Ω)) := {w ∈ X(Ω) : | divw| ≤ α a.e. in Ω}.
Using Raviart-Thomas finite elements, a discrete realization of the inequality constraint in (5.17)
can be achieved by imposing the inequality on the midpoints of the triangulation. The following
statement ensures that the resulting approach is stable as the mesh width goes to zero.

Theorem 5.12. Let Ω ⊂ RN be a polyhedral domain. Let α ∈ C(Ω) fulfill (3.1). Then the sets

Kh := {w ∈ RT0,h(Ω) : | divw|T | ≤ α(xT ), ∀T ∈ Th}
Mosco-converge in H(div; Ω) to the set Kdiv(H0(div; Ω)) as defined in (5.17).

Proof. Taking account of the fact that wh ⇀ w in H(div; Ω), wh ∈ Kh, implies divwh ⇀
divw in L2(Ω), (M1) follows analogously to the corresponding part of the proof of Theorem 5.11.
Since Kdiv(C∞c (Ω)N) is dense in Kdiv(H0(div; Ω)) [15, Theorem 4], the set

K̃ := {w ∈ C∞c (Ω)d : | divw(x)| < α(x), ∀x ∈ Ω}
is also dense in Kdiv(H0(div; Ω)). Setting rh = IRTh , the estimate (5.15) implies rhw → w in
H(div; Ω) and

‖ divw − div rhw‖L∞(Ω) ≤ ch||w||W 2,∞(Ω)N ,

for all w in K̃ . In particular, one may argue as in the proof of Theorem 5.6 to verify (M2’). �

For a general Lp-function as upper bound, a point-based discretization is obviously not possible.
As a remedy, the construction of the discrete sets Kh typically involves some kind of averaging
process. For this purpose, we define the integral mean 

T

α dx :=

ˆ
T

α dx/λ(T )

over some given subset T ⊂ Ω (with positive measure).

Now we have to take into account that the density results of the type (3.2) and (3.3), which
represent the main ingredient to prove the consistency of the finite element approximation, may
fail to hold true (see, e.g., Theorem 4.2). On the other hand, the results from Section 4 indicate
that the density property is still guaranteed for a large class of discontinuous obstacles. To
maintain the greatest level of generality, we assume that the nonnegative measurable function
α : Ω→ R ∪ {+∞} allows for the density property

(5.18) K(C(Ω))
L2(Ω)d

= K(L2(Ω)d).

Here, we concentrate on the consistency in the L2-topology but an extension to the other cases
is possible by appropriately modifying assumption (5.18). We stress the fact that assumption
(5.18) is fulfilled in relevant situations; cf., e.g., Theorem 4.5.
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Lemma 5.13. Let Ω ⊂ RN be a polyhedral domain and α ∈ L2(Ω) with α(x) ≥ 0 a.e. in Ω.
Let (wh) be a sequence that fulfills for all h, wh ∈ P1,h(Ω)d and |wh(xT )| ≤

ffl
T
α dx for all

T ∈ Th. If wh ⇀ w for h→ 0 in L2(Ω)d then it holds that |w| ≤ α a.e. in Ω.

Proof. The assertion follows analogously to the proof of Lemma 5.4 by a slight modification of
the definition of αh. Instead of the piecewise constant interpolant we consider the piecewise
constant quasi-interpolant αh :=

∑
T∈Th χT

ffl
T
α dx. Observe that αh converges strongly to α

in L2(Ω)d, which is sufficient for the above argument. �

Theorem 5.14. Let Ω ⊂ RN be a polyhedral domain. Let α ∈ L2(Ω) with (3.1) such that (5.18)
holds true. Then the sets

Kh := {w ∈ P1,h(Ω)d : |w(xT )| ≤
 
T

α dx, ∀T ∈ Th}

Mosco-converge for h→ 0 to the set K(L2(Ω)d) in L2(Ω)d.

Proof. We only need to prove (M2’) since Lemma 5.13 implies (M1). First note that (3.1) and
(5.18) imply that the set

K̃ := {w ∈ C∞c (Ω)d : ∃ δ = δ(w) > 0 such that |w(x)| ≤ α(x)− δ a.e. in Ω},

is also dense in K(L2(Ω)d). Furthermore, we set

rhw := [Ihw1, . . . , Ihwd],

for w ∈ K̃ and Ih as in (5.3). Integrating estimate (5.13) yields

|
 
T

rhw dx| ≤
 
T

|w| dx+ ch2‖w‖W 2,∞(Ω)d , ∀T ∈ Th.

Let w ∈ K̃ be fixed. Since rhw is affine on each T ∈ Th, an application of the midpoint rule
shows

|rhw(xT )| ≤
 
T

|w| dx+ ch2‖w‖W 2,∞(Ω)d , ∀T ∈ Th,

which implies

(5.19) |rhw(xT )| ≤
 
T

α dx− δ(w) + ch2‖w‖W 2,∞(Ω)d , ∀T ∈ Th.

This implies rhw ∈ Kh for all w ∈ K̃ and h ≤ h0(w). By (5.11) it holds that rhw → w in
L2(Ω)d for h→ 0, which proves (M2’). �

6. FURTHER APPLICATIONS

6.1. Regularization of elasto-plastic contact problems. In the context of the one time-step
problem of quasi-static elasto-plasticity with an associative flow law, the deformation of a material
represented by a bounded Lipschitz domain Ω subject to given applied forces is modeled by the
evolution of the displacement, the material stress and strain as well as certain internal variables,
cf. [13]. An elasto-plastic contact problem arises if the movement of the material is additionally
restricted by the presence of a rigid obstacle. From a mathematical point of view, the problem
can be equivalently reformulated in terms of the normal stress z∗ at the (sufficiently smooth)
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contact boundary Γc and a variable q that is related to the deviatoric part of the material stress;
for details we refer to [17, p.154]:

(6.1)


min G([z∗, q])− 〈z∗, ψ〉 over [z∗, q] ∈ H1/2(Γc)

∗ × L2(Ω)d

s.t. z∗ ∈ H1/2
+ (Γc)

∗,

|q|2 ≤ β a.e. in Ω.

Here, d := N(N+1)
2
− 1 and G is a strongly convex, continuous and coercive functional that

models the elasto-plastic material behavior subject to given external loads. Furthermore, a
contact constraint on the normal component of the displacement is imposed by a function ψ,
which lies in the trace space H1/2(Γc). The upper bound β ∈ L2(Ω) is determined by the
hardening law, and it is bounded away from zero by the positive yield stress σy, i.e., β(x) ≥ σy
a.e. in Ω. The normal stress z∗ is constrained to lie in the polar cone

H
1/2
+ (Γc)

∗ = {z∗ ∈ H1/2(Γc)
∗ : 〈z∗, z〉 ≤ 0 ∀ z ∈ H1/2

+ (Γc)},

to the cone of nonnegative functions

H
1/2
+ (Γc) = {z ∈ H1/2(Γc) : z ≥ 0 a.e. on Γc},

where H1/2(Γc)
∗ designates the topological dual space of H1/2(Γc). From an algorithmic point

of view, it is favorable to replace (6.1) by a combined Moreau-Yosida/Tikhonov regularization
given by

(6.1γ)


min G([z, q])− (z, ψ)L2(Γc) + γn

2
‖z+‖2

L2(Γc)

+γn
2
‖[(|q|2 − β)]+‖2

L2(Ω) + 1
2γ′n
‖[z, q]‖2

H1(Γc)×H1(Ω)d
,

over [z, q] ∈ H1(Γc)×H1(Ω)d,

where (γn) and (γ′n) are sequences with γn, γ′n → +∞ as n→ +∞. In contrast to (6.1), (6.1γ)
can be solved efficiently by the semismooth Newton method in the infinite-dimensional setting.
As a consequence, the Newton iterates are superlinearly convergent, and the convergence rate
is mesh-independent upon discretization. For details, see [17, Section 5]. In order to prove the
stability of (6.1γ) with regard to the limit problem (6.1) in the sense of Proposition A1, we show
that the problems (6.1γ) define a quasi-monotone perturbation of iK with respect to the dense
subspace H1(Γc)×H1(Ω)d ⊂ H1/2(Γc)

∗ × L2(Ω)d; cf. the definition below (2.2). Here, we
write for X ⊂ H1/2(Γc)

∗ × L2(Ω)d,

K(X ) := {[z∗, q] ∈ X : z∗ ∈ H1/2
+ (Γc)

∗, |q|2 ≤ β a.e. in Ω},

and K := K(H1/2(Γc)
∗ × L2(Ω)d). In fact, setting

Rn([z, q]) := γn
2
‖z+‖2

L2(Γc)
+ γn

2
‖[(|q|2 − β)]+‖2

L2(Ω) + 1
2γ′n
‖[z, q]‖2

H1(Γc)×H1(Ω)d ,

where it is understood that Rn([z∗, q]) = +∞, unless [z∗, q] ∈ H1(Γc)×H1(Ω)d, it is easily
seen that

Rn([z, q]) := iK([z, q]) + 1
2γ′n
‖[z, q]‖2

H1(Γc)×H1(Ω)d ,

fulfills (2.4). Moreover, we set

Rn([z∗, q]) := γn
2
r(z∗) + γn

2
‖[(|q|2 − β)]+‖2

L2(Ω),
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where

r(z∗) := (max{ sup
z∈H1/2

+
(Γc),

‖z‖
H1/2(Γc)

=1

〈z∗, z〉, 0})2.

The validity of (2.3) is an immediate consequence of the following lemma.

Lemma 6.1. The functional r : H1/2(Γc)
∗ → R is weakly l.s.c. and it fulfills

(i) r(z∗) = 0 for all z∗ ∈ H1/2
+ (Γc)

∗,

(ii) r(z∗) > 0 for all z∗ ∈ H1/2(Γc)
∗ \H1/2

+ (Γc)
∗,

(iii) r(z) ≤ ||z+||2L2(Γc)
for all z ∈ L2(Γc).

Proof. As a composition of a convex, continuous and monotone function with a supremum of
l.s.c. and convex functions, r : H1/2(Γc)

∗ → R is weakly l.s.c. Assertions (i) and (ii) are

direct consequences of the definition of H1/2
+ (Γc)

∗. For z ∈ L2
−(Γc) = {z ∈ L2(Γc) : z ≤

0 a.e. in Ω}, it holds r(z) = 0 and (iii) is always satisfied. Now let z ∈ L2(Γc) \ L2
−(Γc). By

the density of H1/2
+ (Γc) in L2

+(Γc) it holds that

r(z)1/2 = sup
z∈H1/2

+
(Γc)

‖z‖
H1/2(Γc)

=1

〈z∗, z〉 > 0.

Moreover, one obtains

||z+||L2(Γc) = sup
z̃∈L2(Γc)

z̃ 6=0

1
‖z̃‖L2(Γc)

(z+, z̃)

≥ sup
z̃∈L2(Γc)

z̃ 6=0,z̃≥0 a.e.

1
‖z̃‖L2(Γc)

(z, z̃) ≥ sup
z̃∈H1/2

+
(Γc)

z̃ 6=0

1
‖z̃‖

H1/2(Γc)

(z, z̃) = r(z)1/2,

which implies (iii). �

From the discussion in the introduction and Proposition A1, it is known that the consistency of
the regularization scheme (6.1γ) with respect to (6.1) hinges on the density of K(H1(Ω)d) in
K(L2(Ω)d), where

K(X(Ω)) := {q ∈ X(Ω) : |q|2 ≤ β a.e. in Ω},

in accordance with the notation from the preceding sections. Owing to the results of sections
3 and 4, this is always fulfilled for kinematic hardening, as β is a positive constant in this case.
In the same way, it is also fulfilled for large classes of discontinuous obstacles β in the case of
combined isotropic-kinematic hardening. Once the density property is ensured, one may use
monotonicity properties of G to derive strong convergence properties of regularized (normal)
stresses, strains and displacement; cf. [17] for details.

6.2. Fenchel duality in image restoration. Optimization problems with total variation regular-
ization have been successfully considered in the image restoration context. In the denoising
setting, an original image utrue that belongs to the space of functions of bounded variation
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BV (Ω), Ω ⊂ R2, is sought to be recovered from a noise perturbed measurement f = utrue + η
with η ∈ L2(Ω),

´
η = 0 and

´
|η|2 = σ2. This motivates the optimization problem

min
1

2

ˆ
Ω

|u− f |2dx+ α

ˆ
Ω

|Du|1 over u ∈ BV (Ω),

for α ∈ R in the seminal work [24] by Rudin, Osher and Fatemi. Here, Du, the distributional
gradient of u ∈ BV (Ω), is a Borel measure and |Du|1 is its total variation measure with total
mass

´
Ω
|Du|1, which is characterized via duality asˆ

Ω

|Du|1 = sup

{ˆ
Ω

u div v dx : v ∈ C1
c (Ω; R2), |v(x)|∞ ≤ 1, ∀x ∈ Ω

}
.

The drawback of the above reconstruction scheme is that the choice of the regularization
parameter α is global: A good reconstruction locally requires high values of α in some regions of
Ω (e.g., flat regions of utrue) and low values in other regions (e.g., locations of details of utrue). A
recent approach in [16, 18] proposes the following alternative: For a function α : Ω→ R such
that (3.1) holds true, consider the optimization problem

min
1

2

ˆ
Ω

|u− f |2dx+

ˆ
Ω

α(x)|Du|1 over u ∈ BV (Ω),(6.2)

where
´

Ω
α(x)|Du|1 stands for the integral of α on Ω with respect to the measure |Du|1. Hence,

α needs to be a |Du|1-integrable function in order for
´

Ω
α|Du|1 to be correctly defined. A

sufficient condition for this is given by α ∈ C(Ω), the space of continuous functions on Ω.

As usual in convex optimization, it is convenient to consider the problem in (6.2) from the point of
view of Fenchel duality. In fact, (6.2) can be characterized as the Fenchel dual problem of the
following constrained optimization problem

(6.3)

{
min 1

2
‖ div p+ f‖2

L2(Ω) over p ∈ H0(div; Ω)

s.t. p ∈ K(H0(div; Ω), | . |∞),

if the following density result holds true:

K(C1
c (Ω)2), | . |∞)

H0(div;Ω)
= K(H0(div; Ω), | . |∞),

where, according to the above notational convention,

K(H0(div; Ω), | . |∞) = {q ∈ H0(div; Ω) : |q(x)|∞ ≤ α(x) a.e. in Ω}.

APPENDIX: PROPERTIES OF QUASI-MONOTONE PERTURBATIONS

Proposition A1. Let the Banach space X be reflexive or assume that the dual space X∗

is separable. For a closed, convex and nonempty set K ⊂ X , let (Rn) be a sequence of
quasi-monotone perturbations of iK with respect to the dense subspace Y according to (2.2). If
the density property (1.1) holds true, then F + iK is the Γ-limit of (F +Rn) in both, the weak
and strong topology.

Proof. Denote by
Γ- lim sup

n→+∞
Gn(u) := sup

U∈N (u)

lim sup
n→+∞

inf
u∈U

Gn(u)
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the Γ-upper limit at u of a sequence of functions Gn : X → R ∪ {+∞} in the norm topology.
Here,N (u) denotes the set of all open neighborhoods of u in the norm of X . By analogy, define
Γw- lim supn→+∞Gn, the Γ-upper limit of Gn in the weak topology of X , as well as the lower
limit counterpart Γw- lim infn→+∞Gn. We write

Γw- lim
n→+∞

Gn = Γw- lim sup
n→+∞

Gn = Γw- lim inf
n→+∞

Gn

for the weak Γ-limit of (Gn) provided the latter equality is satisfied. For the corresponding defini-
tions we refer to the monograph [8]. Further denote by sc-G the lower semicontinuous envelope
of G : X → R ∪ {+∞}. Exploiting the relations between Γ- and pointwise convergence [8,
Chapter 5], one obtains with (2.4) and the continuity of F ,

Γw- lim sup
n→+∞

(F +Rn) ≤ Γ- lim sup
n→+∞

(F +Rn)

≤ Γ- lim sup
n→+∞

(F +Rn) = sc-(F + iK∩Y ) = F + iK∩Y ,

where we use [8, Prop. 6.3, Prop. 6.7, Prop. 5.7, Prop. 3.7]. Similarly, (2.3) together with [8, Prop.
6.7, Prop. 5.4] implies

(6.4) Γw- lim inf
n→+∞

(F +Rn) ≥ Γw- lim inf
n→+∞

(F +Rn) = lim
n→+∞

sc-
w(F +Rn)

where sc-
w(F +Rn) denotes the lower semicontinuous envelope of F +Rn in the weak topology

of X . Further note that the coercivity and the sequential weak lower semicontinuity of F +Rn

imply that the level sets {u ∈ X : F (u) +Rn(u) ≤ t}, t ∈ R, are bounded and sequentially
weakly closed. If X is reflexive or if the dual space X∗ is separable, then the sequential weak
closure of bounded subsets of X coincides with the weak closure, see [8, Prop. 8.7, Prop. 8.14],
such that F +Rn is weakly lower semicontinuous, which entails

Γw- lim inf
n→+∞

(F +Rn) ≥ lim
n→+∞

(F +Rn) = F + iK ,

by (6.4). Eventually, it holds that

F + iK ≤ Γw- lim inf
n→+∞

(F +Rn)

≤ Γw- lim sup
n→+∞

(F +Rn) ≤ Γ- lim sup
n→+∞

(F +Rn) ≤ F + iK∩Y ,

such that Γ- limn→+∞(F+Rn) = Γw- limn→+∞(F+Rnu) = F+iK , if (1.1) holds true. �

Proposition A2. Let the assumptions of Example 2.4 be satisfied. Further suppose that
K ∩ Y ( K . Then for all x ∈ K \K ∩ Y there exists a strictly increasing sequence (γn) with
γn →∞ such that there exists no strong recovery sequence at x, i.e.,

F (yn) +Rn(yn) 9 F (x)

for all (yn) ⊂ X with yn → x, where (Rn) is given by (2.7).

Proof. Let x ∈ K \K ∩ Y and ρ > 0 such that Bρ(x) ∩K ∩ Y = ∅, where Bρ(x) := {y ∈
X : ‖x− y‖ < ρ}.
(a) We first prove the following result:

(6.5) ∀n ∈ N ∃ γn > 0 :
[
y ∈ X ∧ dist(y,K ∩Bρ(x))2 < 1

γn
=⇒ y /∈ Xn

]
.
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Assume that the opposite holds, i.e.,

∃n0 ∈ N :
[
∀n ∈ N ∃xn ∈ Xn0 , vn ∈ K ∩Bρ(x) : ‖xn − vn‖2 ≤ 1

n

]
.

Since vn ∈ Bρ(x) ∩K for all n ∈ N and Bρ(x) ∩K is convex, bounded and closed, there
exists a subsequence (vnk) of (vn) with vnk ⇀ v and v ∈ Bρ(x) ∩ K. As xn − vn → 0,
one also obtains xnk ⇀ v and thus v ∈ Xn0 . Hence, v ∈ Xn0 ∩K ∩Bρ(x) = ∅, which is a
contradiction.

(b) Non-existence of a strong recovery sequence:

Choose (γn) according to (6.5) and assume that there exists a recovery sequence (yn) to x,
which means that yn → x and F (yn) + γn

2
dist(yn, K)2 + iXn(yn)→ F (x). The continuity

of F implies that yn ∈ Xn for sufficiently large n and that γn
2

dist(yn, K)2 → 0. Consequently,
using yn → x and x ∈ K , there exists n1 ∈ N such that

dist(yn, K)2 = dist(yn, K ∩Bρ(x))2 ≤ 1
γn

for all n ≥ n1. With the help of part (a), we conclude that yn /∈ Xn for all n ≥ n1, which is a
contradiction.

�
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[21] A. Mielke and T. Roubíček. Rate-independent Systems. Springer, 2015.
[22] U. Mosco. Convergence of convex sets and of solutions of variational inequalities. Advances

in Mathematics, 3(4):510 – 585, 1969.
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