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Foreword and Acknowledgments

I am pleased to present the report of the talks given at the 38th annual meeting of the wor-
king group “Data Analysis and Numerical Classification” (AG DANK) of the German Classi-
fication Society at WIAS in autumn 2016. This book, also published online at the web site
http://www.wias-berlin.de/publications/wias-publ/, is dedicated to Prof.
Dr. Hans-Hermann Bock on the occasion of his 75th birthday. He is the founder and famous
ambassador of the GfKl and, here, especially of the AG DANK - see the festschrift of Prof.
Gunter Ritter in this volume. Bock was the first and long-term chairman of the AG DANK
from 1979 until 2001.

The autumn meeting took place at the Weierstrass Institute for Applied Analysis and Sto-
chastics (WIAS), Berlin, from Friday, Nov. 18 till Saturday, Nov. 19, 2016. Already 20 and 8
years ago, WIAS had hosted the traditional annual meeting with special focus on clustering,
classification, and multivariate graphics (Mucha and Bock, 1996, Mucha and Ritter, 2009).
The present workshop continued the topic of the previous meeting held at KIT in Karlsruhe:
Recent Developments of Big Data Analysis and Data Science. Concretely, in Berlin, the
focus was mainly directed on statistical problems of (necessary) data preprocessing such
as transformations, variable selection, and dimension reduction in clustering and classifica-
tion. Here, the aim was bringing together leading statisticians and scientists working in the
life sciences for discussing applications of classification and clustering to neural sciences,
market research, genetics, archaeometry and the like. The program started with four invited
lectures of distinguished scientists, namely Dr. Karsten Tabelow (WIAS Berlin), Prof. Willi
Sauerbrei (University of Freiburg), Prof. Thorsten Dickhaus (University of Bremen), and Dr.
Markus Weber (ZIB Berlin). Altogether 16 talks were presented. Among them, four discus-
sion papers dealt with statistical analyses of the special data set issued in advance. The
present publication does not cover all talks presented at the autumn meeting, but only a
selection of contributions. However, all presentations of the workshop are available online
as pdf files at the website http://www.wias-berlin.de/workshops/dank2016/.
The meeting was attended by altogether 24 participants who contributed interesting discus-
sions.

The working group AG DANK of the German Classification Society (“Gesellschaft für Klassi-
fikation e.V. (GfKl) Data Science Society”) deals with all statistical, mathematical, and com-
putational aspects of data analysis and classification problems (clustering, discriminant ana-
lysis, supervised/unsupervised classification, pattern recognition, data mining) and with their
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applications to the life sciences, economy, engineering, archaeometry, and administration.
Founded in 1977, the Gesellschaft für Klassifikation Data Science Society is a transdiscipli-
nary scientific society that aims at promoting methods of classification and data analysis in
theory and application. It celebrated its 40th Annual Conference at the Fourth Joint Statisti-
cal Meeting of the Deutsche Arbeitsgemeinschaft Statistik “Statistics under one Umbrella” in
Göttingen, Germany, in March 2016.

There was also a “lite” anniversary at the autumn meeting: Dr. Christian Hennig’s twenty
years of active work in the AG DANK. I am proud to say that, to my knowledge, he started
his scientific career in GfKl at the autumn meeting at WIAS in 1996 with his talk “Analyse
des ausgesendeten Datensatzes” and his related paper (Hennig 1996). Twenty years later,
he delivered a very difficult dataset for our competition. Thank you, Christian. Now he is
a distinguished scientist and, in 2014, he became the secretary of the IFCS, the umbrella
society of the national classification societies. His career should encourage young scientists
in the field of mathematical statistics to join the AG DANK.

The editor would like to thank all who have contributed to this report. I’m especially grateful to
Prof. Ritter for his additional contribution “Happy 75th birthday, Prof. Bock.” The correspon-
ding lecture was already presented during the previous autumn meeting at KIT in Karlsruhe.
My special thanks go to the board members of WIAS for their active support; they sponsored
the three book prizes for the competition and the printout of this volume. Special thanks go to
Christine Schneider for her thorough preparation of the workshop (catering during the event,
websites, and the like).

Hans-Joachim Mucha
Research Group Stochastic Algorithms and Nonparametric Statistics
Chair of AG-DANK
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Figure 1: Prof. Hans-Hermann Bock talking to Prof. Tadashi Imaizumi

Part I

Festschrift on the Occasion of Prof.
Bock’s 75th Birthday

1 Happy 75th Birthday, Prof. Bock1

Gunter Ritter
Faculty of Informatics and Mathematics

University of Passau, Germany
ritter@fim.uni-passau.de

Abstract

In 2015, Hans-Hermann Bock celebrated his 75th birthday. Two months later,
the annual meeting of the working group AG DANK took place at the KIT at Karls-
ruhe/Germany. At this meeting, I contributed a talk on the occasion of Bock’s birthday.
The present paper is the written record of this talk.

1Talk given on the occasion of the 75th birthday of Prof. Dr. Dr. h.c. H.-H. Bock at the Autumn Meeting 2015
of the AG DANK at the KIT, Karlsruhe/Germany
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Introduction

Bock is a man of remarkable foresight. At an early age, he recognized what would be im-
portant 40 years later – a gift that only few people share with him. The choice of his doctoral
thesis “Statistische Modelle für die einfache und doppelte Klassifikation von normalverteilten
Beobachtungen” (Statistical models for simple and double classification of normally distribu-
ted observations) presages the increasing importance that data analysis and classification
gain today. An article in the newspaper “Frankfurter Allgemeine” states that Big Data drives
the fourth industrial revolution; see Figure 3. Indeed, data analysis helps to earn billions of
dollars in today’s economy.

Bock is a highly motivated scientist as well as a gifted organizer. He founded the German
Classification Society (GfKl). He has served as its first chairman. A later chairman once
said “Bock is not a member of the GfKl, he is the GfKl.” He has played a significant role in
the foundation of the International Federation of Classification Societies (IFCS), the umbrella
organization of a large number of national classification societies. He served also as its first
president and organized its first conference at the RWTH Aachen University, Germany. He
founded the working group AG DANK and has served as its chairman for 22 years. It is not
exaggerated to say that not all of these institutions would exist without his initiative.

A few years after his thesis, Bock [3] wrote his book “Automatische Klassifikation” which con-
tains everything that was then known on cluster analysis. He has later been a driving force
in the foundation of the Springer scientific series “Studies in Classification, Data Analysis,
and Knowledge Organization”, where he is still a managing editor. Moreover, he is a foun-
ding editor of the renowned statistical journal “Advances in Data Analysis and Classification.”
He was its first editor-in-chief and still serves as a managing editor. Moreover, he is on the
editorial board of various scientific journals.

He has received numerous honors. He was awarded the title of Doctor honoris causa by the
Cracow University of Economics. He is the first recipient of the IFCS Research Medal and
a recipient of the “DAGStat Medaille für besondere Verdienste um die Statistik in Deutsch-
land,” conferred by the Deutsche Arbeitsgemeinschaft Statistik. He is an Honorary Member
and Honorary President of the German GfKl and an Honorary Member of the Belarussian
Statistical Association.

Bock has dealt with many statistical fields, his knowledge is comprehensive. Astonishingly,
Bock was able to gain insight into statistical contexts without doing much programming work,
as it is usual today. His theoretical insight was sufficient to obtain valid results. His fields of
work are

(a) k-means and similar algorithms;

(b) significance tests;

(c) symbolic data;

(d) two-mode clustering;

DOI 10.20347/WIAS.REPORT.29 Berlin 2017
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Figure 2: Prof. Hans-Hermann Bock discussing with colleagues. On his side, his wife.

(e) neural networks and SOMs;

(f) clustering of time series;

(g) explorative data analysis;

(h) dissimilarity matrices;

(i) multivariate scaling;

(j) fuzzy clustering.

Bock has cooperated with well-known scientists, for instance, F.A.T. de Carvalho, P. Brito, I.
Van Mechelen, P. De Boeck, W.H.E. Day, E. Kubicka, G. Kubicka, F.R. McMorris, V. Schmitz
are his coauthors. He maintains close links to international colleagues and he has spent
numerous sabbaticals in France, Japan, Poland, and in the USA. Discussion with him is
always a gain for everybody, whether it is about statistics or about everyday questions.

1.1 Dr. Bock and the first years of the AG DANK

In 1979, Dr. Bock founded within the German Classification Society (GfKl) a section de-
dicated to scientists mainly interested in the mathematical and probabilistic foundations of
statistics, in particular, classification, and clustering. The list of attendants and the program
of the first meeting on April 4, 1979 are shown in Fig. 4. The section was first called SIG-NK,
renamed SEK-DANK in 1985, and received its current name AG DANK in 1990. Bock was

DOI 10.20347/WIAS.REPORT.29 Berlin 2017
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Figure 3: Article from the Frankfurter Allgemeine (October 2016)
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elected the first chairman in 1979; he was reelected five times and served until 2001 when
he thought it was time for a change. I succeeded him as chairman in 2001.

A list of some events in the time period 1979 – 2001 is shown in Table 1. The co-chairs are
also given. The members of AG DANK meet regularly at different places all over Germany
once a year. Cities and times until 2001 are displayed in Fig. 5.

Table 1: Some events in the first 23 years of AG DANK.

Date of election Chair; Event Co-chair Name
4. 4. 1979 H.-H. Bock, Aachen SIG-NK
16. 4. 1980 M. Schader, Karlsruhe SIG-NK
24. 3. 1983 executive board: SIG-NK

becomes SEK DA-NK
7.12. 1984 H.-H. Bock, Aachen M. Schader, Karlsruhe SEK DA-NK
9. 2. 1985 executive board: SEK DA-NK

becomes member of IFCS
11. 4. 1989 H.-H. Bock, Aachen J. Hansohm, Essen
12. 3. 1990 general meeting: SEK DA-NK

becomes AG DANK
1. 4. 1992 H.-H. Bock, Aachen K. Ambrosi, Hildesheim AG DANK
9. 3. 1995 H.-H. Bock, Aachen R. Ostermann, Siegen AG DANK
4. 3. 1998 H.-H. Bock, Aachen G. Ritter, Passau AG DANK
15. 3. 2001 G. Ritter, Passau Chr. Hennig, Hamburg AG DANK

I would now like to say some words on the scientific achievements of Prof. Bock. I choose
the fields of probabilistic cluster analysis, Subsections 1.2 and 1.3, and symbolic data, Sub-
section 1.4.

1.2 Decision-theoretic foundation of clustering algorithms

With the exception of a singular paper by Pearson [13] in 1894, the state of art in cluste-
ring before 1986 was hierarchic and partitional. Representatives of the hierarchical view of
clustering were T. Sørensen [17], 1948, K. Florek et al. [8], 1951, and Joe H. Ward, Jr. [21],
1963. Ward [21] had detected on heuristic grounds his well-known sum-of-squares criterion

m

∑
j=1

∑
i∈C j

∥xi − xC j∥
2. (1)

The partitional point of view was studied by Robert L. Thorndike [20], 1953, H. Stein-
haus [18], 1956, S.P. Lloyd [11], 1957, A.W.F. Edwards and L.L. Cavalli–Sforza [7], 1965,
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Figure 4: List of attendants and program of the first SIG-NK meeting in 1979.

DOI 10.20347/WIAS.REPORT.29 Berlin 2017



H.-J. Mucha 12

Figure 5: Meeting venues during the first 23 years.
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John C. Gower [9], 1967, and J. MacQueen [12], 1967. These authors substantiated cluste-
ring algorithmically and geometrically. None of them had presented a probabilistic foundation
of clustering.

As a mathematical statistician, Bock was not satisfied with this state of affairs. Recognizing
clustering as a statistical estimation problem, he applied in his doctoral thesis [1] at the
Mathematisch-Naturwissenschaftliche Fakultät of the University of Freiburg the methods of
statistical decision theory. Excerpts of his thesis were later published in Metrika. The leading
page of this paper is presented as Fig. 6.

At this point, I would like to go in more detail. Let us follow Bock in considering n p-
dimensional observations x = x1, ...,xn from m unknown classes. Bock regards them as
observations drawn from n independent, observable, normal random vectors X1, ...,Xn in
Rp that are subdivided in m < n (unknown) groups A1, ...,Am with (unknown) mean values
a j, j = 1, . . . ,m and a common spherical covariance matrix σ2Ip. This establishes a proba-
bilistic model of the data. He seeks the quantities A = {A1, ...,Am}, σ and a = (a1, ...,am).

Statistical decision theory provides us with the following general solution: Let L(A ,a;B) be
the loss incurred if (A ,a) is true and B is estimated. An example is L(A ,a;B) = 1−δA ;B
Let λ be an a priori measure on the set of partitions A and their vectors of mean values a =
(a1, ...,am). An example is given by the product of the polynomial and the normal distribution,
λ (A ,a) = qA f (a | A ), f (a j | A ) = Nδ j(A ),λ j(A )·σ2·Ip

, j = 1, . . . ,m. The expected loss to be
minimized is generally

E
∫

L(A ,a;B(X))dλ (A ,a)

In the special case above, the solution is provided by maximizing the a posteriori density

P(A | x)∼ qA f (x | A ) = qA ·
∫

a
f (x | A ,a)d f (a | A )

= . . .

=
1

(2πσ2)np/2 exp

{
− 1

2σ2

n

∑
i=1

∥xi∥2

}

· qA

∏m
j=1(λ jn j +1)p/2 exp

{
1

2σ2

m

∑
j=1

n jλ j · ∥xA j∥2 +2 · xA jδ j −∥δ j∥2

λ j +1/n j

}
.

Here, f (x | A ,a) is the probability density function of x under A and a. This is a cluster
criterion for general loss functions and prior probabilities. Bock discusses subsequently a
number of special cases for the quantities L and λ .

Some of them make up the table in Fig 7. Note that Bock retrieves in row III Ward’s sum-
of-squares criterion. Thus, it emerges from probabilistic considerations, a fact that was
unknown before Bock’s thesis. His theory reappears in his book [3] with Vandenhoeck &
Ruprecht in 1974; see Fig. 8. Apart from the classification model, his book contains ever-
ything that was known on clustering at this time: Separation and homogeneity measures,
ultrametrics, hierarchical clustering, scaling.
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Figure 6: Leading page of the excerpt [2] of Bock’s doctoral thesis in Metrika 18.
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Figure 7: Table of cluster criteria obtained for various prior assumptions (from Metrika 18).
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Figure 8: Title page of Bock’s book with Vandehoeck and Ruprecht, 1974
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Now, the cat was out of the bag. Bock had shown that statistical decision theory could be
applied to compute cluster criteria. These didn’t have to be guessed as done by earlier aut-
hors. By applying the theory to general normal models of clusters, the determinant criterion,
too, could have been found. It was later derived from a slightly different statistical model by
A.J. Scott and M.J. Symons [16], 1971, and by M.J. Symons [19], 1981, both in Biometrics.
In both papers, Bock’s work has unfortunately not been cited. The probabilistic theory of
clustering has been shown to be extensible to elliptical and skewed distributions.

1.3 Cluster validation

Day [6] noted that local maxima of mixture likelihoods are not unique. The same is true for
solutions of the classification model. In the k-means case, the solution with the least criterion
is in most cases the desired one. An example with two “local” minima is shown in Fig. 10.

It is obvious that the solution with the smaller sum-of-squares criterion corresponds to the
desired one. However, it even happens that the data set in hands is not clustered at all.
Therefore, Bock [4] proposes four methods of cluster validation by significance tests. The
first page of this publication is shown as Fig. 9. I report here on the last method in his paper.
It uses the sum-of-squares criterion as a test statistic. As a main result, he determines
its asymptotic distribution obtaining a maximum F-test. His theory uses the framework of
homoscedastic mixtures with spherical components.

We are again given p-dimensional Euclidean data x1, · · · ,xn and consider the test

H0 : The data originates from a “unimodal” distribution
versus

H1 : the data originates from m > 1 distinct (spherical) distributions.

Bock defines two statistics. The first one is Ward’s criterion (1) or the trace of the “within”
matrix,

gn(C ) = 1
n trWn =

1
n

m

∑
j=1

∑
i∈C j

∥xi − xC j∥
2.

The other one is the trace of the “between” matrix

bn(C ) = 1
nTn −gn(C ) = 1

n

m

∑
j=1

|C j| · ∥x j − x∥.

Here, Tn denotes the “total” matrix and the subscript n indicates the number of data points.
Bock wishes a scale invariant test, since “often, in practice, only the type of the distribution of
X j can be specified (involving an unknown scale factor or standard deviation) . . . ” Therefore,
he proposes as test statistic the quotient of between and within matrix,

k∗n =
b∗n
g∗n

=
Tn

g∗n
−1, (2)

DOI 10.20347/WIAS.REPORT.29 Berlin 2017
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Figure 9: First page of Bock’s 1985 publication in Journal of Classification.
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Figure 10: Top: clustered data set; bottom: two k-means solutions.

where g∗n (b∗n) denotes the minimum (maximum) value. Intuitively, k∗n is large, if C = {C1, ...,Cm}
consists of m spherical clusters.

In order to use the test statistic (2), Bock needs the distribution of g∗n under H0, that is, the
minimum of the sum-of-squares criterion over all partitions, and its asymptotic distribution.
This is not an easy task. The minimum of Ward’s criterion can also be represented in a
different form, namely

min
C

m

∑
j=1

∑
i∈C j

∥xi − xC j∥
2 = min

z,C

m

∑
j=1

∑
i∈C j

∥xi − z j∥2 = min
z

n

∑
i=1

min
j
∥xi − z j∥2.

The right-hand side says that we must find m points (z1, . . . ,zm) = z such that ∑n
i=1 min j ∥xi−

z j∥2 is minimum. This is called the best-location problem. The minimum partition C is the
Voronoi decomposition to the minimum z and the minimum z consists of the mean vectors of
the minimal clusters.

The best-location problem has also a continuous version. Instead of n points, he now con-
siders their common distribution PX1 and an arbitrary partition B of Rp. For z = (z1, . . . ,zm),
Bock [3], 1974, considers

g(B,z) = ∑
1≤ j≤m

∫
B j

∥x− zk∥2PX1(dx).
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and proves the following.

1.1 Theorem (a) The following minima exist:

g(B) = min
z

g(B,z), g(z) = min
B

g(B,z), g∗ = min
B,z

g(B,z).

(b) We have
min

z
g(z) = min

B
g(B) = g∗.

Next, Bock takes recourse to the following theorem of consistency and asymptotic normality
due to Pollard [14, 15] which had appeared just a few years earlier.

1.2 Theorem Under regularity conditions on Xi, we have

(a) Consistency: P-a.s.,

g∗n =
1
n trW ∗

n = min
z

1
n

n

∑
i=1

min
1≤ j≤m

∥Xi − z j∥2

−→
n→∞

min
z

∫
min

1≤ j≤m
∥x− z j∥2PX1(dx) (= g∗).

(b) Consistency: P-a.s., the minimal points (z1, ...,zm) converge as n → ∞ to

z∗ = argmin
z

∫
min

1≤ j≤m
∥x− z j∥2PX1(dx)

(c) Asymptotic normality of the m mean vectors:
√

n(Zn − z∗)) −→
n→∞

N0,I (in distribution).

(d) Hence

√
n
(

g∗n −min
z

∫
min

1≤ j≤m
∥x− z j∥2PX1(dx)

)
−→
n→∞

N0,τ2 (in distribution),

where the variance τ2 depends on a fourth moment of X1.

As a consequence, Bock [4], 1985, obtains the following theorem on the distribution of the
test statistic. It is the basis for his maximum F test. In passing, the theorem answers a
conjecture of Hartigan’s [10] about the asymptotic distribution of k∗n. As above, g∗ denotes
the minimum best-location criterion and k∗ = σ2

g∗ −1.

1.3 Theorem
√

n(k∗n − k∗) is asymptotically normally distributed with mean 0 and variance
κ2/g∗.
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Figure 11: Hyperbox in R2.

Therefore, the maximum F test for H0 vs. H1 reads:

(i) Specify a density that describes the hypothesis H0 of homogeneity;

(ii) use it to determine the optimum partition B∗ = (B∗
1, . . . ,B

∗
m) of Rp in m clusters with its

m centers and compute from here g∗ und k∗ and κ2;

(iii) if
√

n(k∗n − k∗) lies in the rejection region of the asymptotic normal distribution N0,κ2/g∗ ,
unimodality is rejected in favor of m clusters.

1.4 Symbolic data

Sometimes, one wishes to classify objects of higher complexity. Points in a symbolic data
set are typically sets or more general objects. An example is

xi =
(
[20,25],{math,phys,chem},

((
0.6
DE

)
,

(
0.2
NL

)
,

(
0.2
JAP

)))
This data item consists of the interval [20,25], the three subjects “mathematics,” “physics,”
and “chemistry,” and of three countries with a rating, each. In the multivariate context, a data
item might consist of d intervals

xi =
(
[a1,b1], · · · , [ad,bd]

)
We associate with it the hyperbox (“box”, see Fig. 11)

Ri = [a,b] =
(
[a1,b1]×·· ·× [ap,bp]

)
We remain in the context of boxes. It is possible to define several dissimilarities of two such
data items.
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(a) The first one is the sum of the squared Euclidean distances of the “left, lower” and the
“right, upper” corners:

dv([a,b], [u,v]) = ∥(a1, · · · ,ap,b1, · · · ,bp)− (u1, · · · ,up,v1, · · · ,vp)∥2

= ∥a−u∥2 +∥b− v∥2

Note that the two objects [a,b] and [u,v] are equal, if and only if these corners coincide.

(b) Another dissimilarity is the Hausdorff distance between two boxes. Let K be such a box
and let d(a,K) = minx∈K d(a,x) be the distance of point a to K. The Hausdorff distance
between the two boxes is

dH([a,b], [u,v])
= Maximum of all distances between points from one set to the other set.

= max
c∈[a,b]

d
(
c, [u,v]

)
∨ max

w∈[u,v]
d
(
w, [a,b]

)
(c) Chavent and Lechevallier, 2002, propose a dissimilarity of Hausdorff’s type:

d1
(
[a,b], [u,v]

)
=

p

∑
k=1

|uk −ak|∨ |vk −bk|.

The Euclidean and the Hausdorff dissimilarities are illustrated in Fig. 12.

There is also a central box of a finite set of boxes. This is defined by

Z = argmin
Q

n

∑
i=1

d(Ri,Q).

Here are two examples for R1 = [a(1),b(1)], . . . ,Rn = [a(n),b(n)].

(a) In the Euclidean case, we have Z = [a,b].

(b) For Chavent and Lechevalier’s dissimilarity, we find

Z =
p

∏
k=1

[µk −λk,µk +λk],

where µk = med
(
m1,k, · · · ,mn,k

)
, λk = med

(
λ1,k, · · · ,λn,k

)
and

m1,k = (b1,k +a1,k)/2, λ1,k = (b1,k −a1,k)/2.

Figure 13 illustrates the centers for dv and d1.

Bock [5] is interested in establishing a probabilistic model for clustering symbolic data. To
this end, he defines a probability density function on the set of all boxes. This, in turn, needs
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Figure 12: Two dissimilarities between symbolic data items. Left: Euclidean, right: Hausdorff.

Figure 13: Central boxes: Left Euclidean, right Chavent and Lechevalier.
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first a parametrization of a box. Let M = (M1, . . . ,Mp) be its center and let L = (L1, . . . ,Lp)
be its midranges. Bock assumes that M is independent of L and that all midranges are inde-
pendent. Moreover M ∼ N(p)

m,σ2Ip
spherically normal and Lk ∼ Γ(αk,βk) has a Γ distribution.

Clustering of a (finite) subset of boxes proceeds iteratively and alternatingly by a k-means-
type algorithm starting from an initial partition C = {C1, . . . ,Cm}.

(i) Compute the MLE’s of the parameters of all clusters;

(ii) assign each box to a cluster according to the ML (or Bayesian) discriminant rule;

(iii) iterate (i) and (ii) until stationarity.

References

[1] Hans-Hermann Bock. Statistische Modelle für die einfache und doppelte Klassifikation
von normalverteilten Beobachtungen. PhD thesis, University of Freiburg, Germany,
1968.

[2] Hans-Hermann Bock. Statistische Modelle und Bayessche Verfahren zur Bestimmung
einer unbekannten Klassifikation normalverteilter zufälliger Vektoren. Metrika, 18:120–
132, 1972.

[3] Hans-Hermann Bock. Automatische Klassifikation. Vandenhoeck & Ruprecht, Göttin-
gen, 1974. In German.

[4] Hans-Hermann Bock. On some significance tests in cluster analysis. J. Classification,
2:77–108, 1985.

[5] Hans-Hermann Bock. Analyzing symbolic data. In Okada et al., editor, Cooperation and
Classification in Data Analysis, Studies in Classification, Data Analysis, and Knowledge
Organization, pages 3–12, Heidelberg, 2009. Springer. Proceedings of the German-
Japanese Workshops in Tokyo and Berlin.

[6] N.E. Day. Estimating the components of a mixture of normal distributions. Biometrika,
56:463–474, 1969.

[7] A.W. Edwards and L.L. Cavalli-Sforza. A method of cluster analysis. Biometrics, pages
362–375, 1965.

[8] K. Florek, J. Lukaszewicz, J. Perkal, H. Steinhaus, and Zubrzycki S. Sur la liaison et la
division des points d’un ensemble fini. Colloquium Mathematicum, 2:282–285, 1951.

[9] John C. Gower. A comparison of some methods of cluster analysis. Biometrics, pages
623–628, 1967.

DOI 10.20347/WIAS.REPORT.29 Berlin 2017



H.-J. Mucha 25

[10] John A. Hartigan. Distribution problems in clustering. In J. van Ryzin, editor, Classifica-
tion and Clustering, pages 45–72. Academic Press, New York, 1977.

[11] Stuart P. Lloyd. Least squares quantization in PCM. Bell Labs memorandum, 1957.

[12] J. MacQueen. Some methods for classification and analysis of multivariate observati-
ons. In L.M. LeCam and J. Neyman, editors, Proc. 5th Berkeley Symp. Math. Statist.
Probab. 1965/66, volume I, pages 281–297, Berkeley, 1967. Univ. of California Press.

[13] Karl Pearson. Contributions to the theory of mathematical evolution. Phil. Trans. Royal
Soc. London, Series A, 185:71–110, 1894.

[14] David Pollard. Strong consistency of k-means clustering. Ann. Statist., 9:135–140,
1981.

[15] David Pollard. A central limit theorem for k-means clustering. Ann. Statist., 10:919–926,
1982.

[16] A.J. Scott and M.J. Symons. Clustering methods based on likelihood ratio criteria.
Biometrics, 27:387–397, 1971.

[17] T. Sørensen. A method of establishing groups of equal amplitude in plant sociology
based on similarity of species content and its application to analyses of the vegetation
on danish commons. Biol. Skrifter, 5:1–34, 1948.

[18] H. Steinhaus. Sur la division des corps matériels en parties. Bull. Acad. Polon. Sci.,
4:801–804, 1956.

[19] M.J. Symons. Clustering criteria and multivariate normal mixtures. Biometrics, 37:35–
43, 1981.

[20] R. L. Thorndike. Who belongs in the family? Psychometrika, 18:267–276, 1953.

[21] Joe H. Ward, Jr. Hierarchical grouping to optimize an objective function. J. Amer. Stat.
Assoc., 58:236–244, 1963.

DOI 10.20347/WIAS.REPORT.29 Berlin 2017



H.-J. Mucha 26

Part II

Papers of Talks

2 Probabilistic Variable Selection in Cluster Analysis
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Introduction

Data sets in cluster analysis may cause problems for several reasons. There may be missing
values, there may be outliers, or the data set may be big. Large size, in turn, can have two
causes, many observations or many variables (or both). Whereas too many observations
can be easily dealt with by random sampling, high dimension causes severer problems. This
is the subject matter of this paper.

Sensitive clustering methods need in each cluster substantially more observations in each
cluster than there are variables. Cluster characteristics cannot be well determined, other-
wise. An extreme case violating this requirement is the so-called p ≫ n case, which means
that the number of variables is much larger than data set size. Typical examples of high-
dimensional data with a low number of observations are gene expression data of patients.
The differentially expressed genes in a patient’s tissue are the interesting ones; they make
up only a small subset of all genes. The complementary probes on the microarray act like
sensors; those related to the differentially expressed genes provide us with the variables
relevant for clustering. In view of the present clustering task, the remaining probes yield just
noise.

Fowlkes et al. [1] studied the effect of additional noise variables. Let us follow their ideas.
Fig. 14 shows a data set clearly separated in five clusters. Any reasonable clustering algo-
rithm should be able to detect the clusters given their number. If three noise variables are
added, that is, the data points are shifted in three dimensions perpendicular to the drawing
plane, then Scott and Symons’ [8] determinant criterion

1
2

g

∑
j=1

n j logdetS j (3)

yields a solution with 28 errors. (In Eq. (3), n j is the size of cluster C j, S j =
1
n j

∑i∈C j(xi −
x j)(xi−x j)

⊤ is its scatter matrix, and x j its mean vector.) If clusters are even better separated
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Figure 14: Well separated, two-dimensional data set.

as shown in Fig. 15 one still obtains fourteen errors, despite the fact that the original two-
dimensional data set is unnaturally well separated.

If the original data set contains too many variables, as in the examples, variable selection
methods are needed to reduce the dimension of the data set. Besides noise, the surplus
variables may also be redundant. There are nowadays a number of variable selection met-
hods. Raftery and Dean [5] propose a forward–backward method based on statistical testing
by Bayes factors. They determine also the number of variables to be selected but apply their
method only to low dimensional data sets. Tyler et al.’s [10] “invariant subspace selection”
(ICS) compares different estimates of multivariate scatter matrices to reveal departure from
elliptical symmetry. Hui and Lindsay [2] try to detect the largest white noise subspace retur-
ning its orthogonal complement. The last two methods select interesting, oblique subspaces.
They have not explicitly been designed in view of clustering algorithms.

The following proposal has the flavor of Raftery and Dean’s proposal but uses maximum
likelihood estimation instead of testing. The basis is the notion of irrelevance as proposed by
John et al. [3] and Koller and Sahami [4] which will next be described.
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Figure 15: Extremely separated, two-dimensional data set.

2.1 Irrelevance in clustering

We first need some notation. We consider a random vector X in RD distributed according to
a g-component normal mixture,

µ =
g

∑
j=1

π jNm j,V j , (4)

where π j > 0, ∑g
j=1 π j, are the mixing rates and the parameter pairs (m j,Vj) of the normal

components are pairwise distinct. The D coordinates in RD will be numbered 1,2, . . . ,D.
The random vector X can be represented in the form Y (L), where Y (1), . . . ,Y (g) are random
vectors distributed as Nm j,V j , respectively, and where L is a random number in the interval
1 . .g with distribution (π1, . . . ,πg). The number L has the meaning of a random assignment to
a component (or class); it is assumed to be independent of all Y ( j)’s. We will also consider a
(real-valued) data set x= (x1, . . . ,xn) with n observations of dimension D (that is, xi ∈RD, 1≤
i ≤ n) drawn from n independent copies of X1 =Y (L1)

1 , . . . ,Xn =Y (Ln)
n of X =Y (L). Realizations

of the random assignments Li will be denoted by ℓi, the class assignment of object i, and we
write ℓℓℓ= (ℓ1, . . . , ℓn).

Since µ is a mixture, the data set x is clustered according to the mixture components if they
are sufficiently different. The aim is to detect these clusters. As an obstacle, we assume in
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Figure 16: (a) y uninformative and irrelevant w.r.t. x; (b) y uninformative but relevant w.r.t. x;
(c) y informative but irrelevant w.r.t. x.

addition that the dimension D is larger than actually needed to detect the clusters. This cau-
ses the problems already addressed in the Introduction. Another aim is therefore selection
of a smaller subset of d < D variables that contains the information on the cluster structure.
The number d is assumed to be a priori given and must be chosen in relation to the number
of observations and to the expected cluster sizes. In order to guarantee that scatter matrices
of clusters w.r.t. d variables are almost surely nonsingular, we have to assume that each
cluster has at least d +1 elements and that the restriction of the data set to any subset of d
variables is in general position. This is almost surely satisfied if P[X = x] = 0 for all x ∈ RD.
For E ⊆ 1 . .D, XE (xE ) will be the restriction of X (x) to the entries in E.

Irrelevance of variables can be caused by redundancy and noise. John et al. [3] and Koller
and Sahami [4] proposed a probabilistic model for irrelevance. Intuitively, a subset of varia-
bles, E ⊆ 1 . .D, is irrelevant w.r.t. to a disjoint subset F , E ∩F = /0, if the union E ∪F ⊆ 1 . .D
does not contain more information w.r.t. the given clustering than F . More formally, we define
the following.

2.1 Definition (a) The subset E ⊆ 1 . .D is irrelevant w.r.t. to a disjoint subset F ⊆ 1 . .D, if
L is conditionally independent of XE given XF , that is, for all j,

P[L = j |XF ,XE ] = P[L = j |XF ].

(b) The subset E is irrelevant if it is irrelevant w.r.t. its complement.

For illustration, some examples of irrelevance are shown in Fig. 16. All three mixtures are
homoscedastic.

In Fig. 16(a), the ordinate y is clearly uninformative, that is, the ordinate contains by itself no
cluster information, and it is also irrelevant w.r.t. the abscissa, x. In Fig. 16(b), the ordinate is
uninformative but relevant w.r.t. the abscissa. That is, the ordinate improves the information
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provided by the abscissa. It is sufficient to consider two observations on the dotted line.
An observation at the bottom has a larger probability to belong to the right-hand population,
one at the top is rather a member of the left population. Fig. 16(c) displays an example
where the ordinate is informative but irrelevant w.r.t. the abscissa. The line connects the
midpoints of the two normal populations with parameters m( j) = (m( j)

x ,m( j)
y ), j = 1,2, and

V =

(
vx vy,x
vy,x vy

)
. Its slope is m(2)

y −m(1)
y

m(2)
x −m(1)

x
=

vy,x
vx

, as can be easily derived from Definition 2.1.

Under mild assumptions, any data set has exactly one relevant subset of variables. The
subset F ⊆ 1 . .D of variables is called structural if no subset /0 ̸= C ⊆ F is irrelevant w.r.t.
F \C. The following theorem is due to Gallegos and Ritter and contained in Ritter [6].

2.2 Theorem Let the real random variables Xi, i ∈ 1 . .D, have a strictly positive and con-
tinuous joint Lebesgue density f(X1,...,XD). Then, there exists exactly one structural subset
F ⊆ 1 . .D with irrelevant complement.

Normal mixtures allow us to deduce irrelevance from their parameters. To this end, it is
favorable to represent a normal distribution as a regression. Any absolutely continuous dis-
tribution function f on RD can be represented by its conditional distribution function f (xE | xF)
in the form

f (x) = f (xE | xF) · f (xF).

When X = (XF ,XE)∼ Nm,V is normal, the conditional distribution function has the represen-
tation

f (xE | xF)∼ XE | [XF = xF ] = mE|F +GE|FxF +UE|F .

Here UE|F ∼ N0,VE|F is the residual random vector in RE . This is a reparametrization of Nm,V
by the conditional parameters mE|F , GE|F , N0,VE|F and the parameters of XF . Note that the
number of real parameters of the regression model, that is, its dimension is dE + dE · dF +(dE+1

2

)
+ (dF+3)dF

2 (dE and dF are the sizes of E and F = {E, respectively, and the last term
is the number of parameters of XF ). This is indeed the dimension of the normal model on
RD, (D+3)D

2 . The normal case allows the following characterization of irrelevance by the
regression parameters of the components j ∈ 1 . .g, G j,E|F , m j,E|F , Vj,E|F . It will be the basis
for the next section.

2.3 Theorem (a) If X is a normal mixture (with nonsingular covariance matrix VXF ), then
the following statements are equivalent.

(i) The subset E is irrelevant w.r.t. F ;

(ii) the parameters G j,E|F , m j,E|F , and Vj,E|F do not depend on j.

(b) In this case, these common parameters have the representations

(iii) GE|F = Cov(XE ,XF)(VXF)
−1;

(iv) mE|F = mE −GE|FmF ;

(v) VE|F =VE −GE|FCov(XF ,XE).
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2.2 Variable selection algorithm

We will use the notion of irrelevance introduced in Section 2.1 to extend Symons’ [9] classical
determinant criterion to variable selection. This well-known determinant criterion for general
normal mixtures (4) is an extension of Scott and Symons’ criterion (3) to clusters of arbitrary
sizes. It reads

1
2

g

∑
j=1

n j(ℓℓℓ) logdetS j(ℓℓℓ)+nH
(n1(ℓℓℓ)

n , . . . ,
ng(ℓℓℓ)

n

)
. (5)

Here, S j(ℓℓℓ) and n j(ℓℓℓ) are the scatter matrix and size of the jth cluster of the assignment ℓℓℓ,
respectively. The entropy H(p1, . . . , pg) = −∑ j p j log p j accounts for unequal cluster sizes.
The desired assignment ℓℓℓ has a small value of criterion (5), but not necessarily the smallest
one. A small value of the Scott-Symons criterion (3), that is, the left-hand side of Eq. (5),
tends to equalize cluster sizes. Since the entropy is largest when cluster sizes are equal,
it discourages small values of Eq. (5), favoring unequal cluster sizes unless the first term
in Eq. (5) strongly insists on equally sized clusters. The entropy correction is, however, not
just a heuristic idea but has been proved to be just right for equilibrating Scott and Symons’
criterion (3).

Above, I wrote intentionally “... has a small value of the criterion ” instead of “... has the
least criterion.” The solution with the smallest criterion is often not the desired one. First,
it can be spurious having an unnaturally shaped, slim cluster, that is, a cluster with a very
small eigenvalue of its shape matrix. Such a solution is unwanted in most cases. Second,
the solution with the smallest criterion may even be wrong when all eigenvalues are decent.
To obtain a reasonable solution, I rather prefer to use the so-called SBF plot; see Fig. 17. It
is a plot of the negative log(HDBT ratio) vs. the log of criterion (5). The lower Pareto points
of this plot belong to reasonable solutions. I usually select the one closest to the left lower
corner; see Ritter [6], Chapter 4.

Schroeder [7] designed an iterative minimization algorithm for criterion (5). It can be interpre-
ted as an iterative alternation of (normal) parameter estimation and Bayesian discriminant
analysis until a stationary assignment has been found. The iteration becomes eventually
stationary since it decreases the criterion and the criterion is bounded below since there are
only finitely many partitions. I like to call this algorithm the k-parameters algorithm since it
has as a special case the well-known k-means algorithm. Indeed, it is a simple exercise
to show that Scott and Symons’ criterion reduces to Ward’s [11] sum-of-squares criterion if
clusters are spherical of equal variance and if cluster sizes are equal. At the same time,
Schroeder’s algorithm collapses in this case to the k-means algorithm. The stationary soluti-
ons of the k-parameters algorithm are often called “local” minima although they are not local
in any sense. A better word for local minimum would be steady solution. There is, however,
an analogy to local maxima of mixture likelihoods.

It is well known that data sets possess in general many steady solutions. Therefore, the
k-parameters algorithm has to be started from many initial points and the resulting steady
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Figure 17: SBF plot.

solutions have to be validated in order to detect the desired one(s). This is the most difficult
part of a cluster analysis. Another approach uses another method to generate a special
initial solution for the k-parameters algorithm. This is, however, not the subject matter of this
talk.

We will now extend Symons’ criterion (5) to variable selection. The background of his method
is the classification log-likelihood

f (ℓℓℓ,x;πππ,m,V) =∑
j

∑
i : ℓi= j

log
(
π jNm j,V j(xi)

)
=∑

j
∑

i : ℓi= j
logNm j,V j(xi)+∑

j
n j(ℓℓℓ) logπ j. (6)

Its maximization w.r.t. πππ , m, and V yields Symons’ criterion (5). In view of variable selection,
we now follow Ritter [6], Chapter 5, introducing the subset F ⊆ 1 . .D of variables as an
additional parameter. If {F is irrelevant w.r.t. F , we obtain from Eq. (6) and from the results
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of Sect. 2.1 the normal clustering-and-selection model

f (ℓℓℓ,x;F,πππ,m,V) = ∑
j

∑
i : ℓi= j

log
(
π jNm j,V j(xi)

)
=

g

∑
j=1

∑
i:ℓi= j

(
π j logNm j,V j(xi,F)

)
+∑

i
logNmE|F ,VE|F (xi,E −GE|Fxi,F).

Its parameters are F , m j, Vj, mE|F , VE|F and GE|F . Maximization w.r.t. πππ , m, and V yields a
first form of the determinant criterion for clustering and selection

1
2

g

∑
j=1

n j(ℓℓℓ) logdetS j,F(ℓℓℓ)+nH
(n1(ℓℓℓ)

n , . . . ,
ng(ℓℓℓ)

n

)
+ n

2 logdetSE|F .

Here, S j,F(ℓℓℓ) is the scatter matrix of the restrictions to F of the observations in cluster j
and SE|F is the residual scatter matrix. By detS = detSF · detSE|F , logdetSE|F differs from
− logdetSF by the constant logdetS and so, the final form of the determinant criterion for
clustering and variable selection reads

1
2

g

∑
j=1

n j(ℓℓℓ) logdetS j,F(ℓℓℓ)+nH
(n1(ℓℓℓ)

n , . . . ,
ng(ℓℓℓ)

n

)
− n

2 logdetSF . (7)

Note that this criterion is completely affine equivariant. If an affine transformation A is app-
lied to (7), then the first term is changed by n logdetA and the last term by −n logdetA. In
particular, units of measurement used for the observations are completely irrelevant. The
idea is again finding small values of Eq. (7) w.r.t. ℓℓℓ and F .

Besides model and criterion, the k-parameters algorithm, too, can be extended to an algo-
rithm with variable selection. A proposal proceeds along the iteration(

ℓℓℓ(0),F(0))−→ (
ℓℓℓ(0),F(1))−→ (

ℓℓℓ(1),F(1))−→ . . . .

We obtain the following k-parameters algorithm with variable selection. It is a wrapper since
variable selection uses the result of the clustering part of the algorithm. Generally, an assig-
nment is admissible, if it allows estimation of the parameters of all clusters. In the present
normal case this means regularity of scatter matrices.

2.4 Algorithm
// Input: Subset F ⊆ 1 . .D, |F |= d, admissible ℓℓℓ, and value of the criterion.
// Output: New quantities Fnew and ℓℓℓnew, with improved criterion or “stop.”

1. (Estimation) Compute the sample mean vectors x j(ℓℓℓ) and scatter matrices S j(ℓℓℓ), 1 ≤ j ≤
g, and the total scatter matrix S.

2. (Selection) Minimize

h(F ′) =
g

∑
j=1

n j(ℓℓℓ) logdetS j,F ′(ℓℓℓ)−n logdetSF ′ (≤ h(F))

w.r.t. F ′, |F ′|= d. Denote the minimizer by Fnew.
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3. Use the quantities from step 1 to compute the MLE’s of the regression parameters (G,m,V )
w.r.t. ℓℓℓ and the new subsets Fnew and Enew = {Fnew.

Define the posterior probabilities
ui, j = logn j − 1

2 logdetS j,Fnew(ℓℓℓ)

− 1
2(xi,Fnew − x j,Fnew(ℓℓℓ))

⊤S j,Fnew(ℓℓℓ)
−1(xi,Fnew − x j,Fnew(ℓℓℓ))

− 1
2(xi,Enew −m−Gxi,F)

⊤V−1(xi,Enew −m−Gxi,F).

4. (Assignment) Compute an admissible assignment ℓℓℓnew using a reduction step based on
the statistics ui, j.

5. (Decision) If Fnew and ℓℓℓnew improve the criterion then return Fnew and ℓℓℓnew,
else “stop”.

If variables are independent, step 2 is easily obtained by sorting. Indeed, if scatter ma-
trices are diagonal, the value h(F ′) has the representation ∑k∈F ′

{
∑ j n j(ℓℓℓ) logS j(ℓℓℓ)(k,k)−

n logS(k,k)
}

, where S j(ℓℓℓ)(k,k) (S(k,k)) are the diagonal entries in the kth row of S j(ℓℓℓ) (S).
In the independent case, it is therefore sufficient to compute the d smallest values k of
∑ j n j(ℓℓℓ) logS j(ℓℓℓ)(k,k)−n logS(k,k). This is easily done by sorting.

It has been shown that the present algorithm is able to select a dozen meaningful variables
from a thousand; see the gene expression example in Ritter [6], Chapter 6.

Discussion

Any variable selection method is fraught with some special risks. First, even noise variables
often lead to clusterings, in particular, when there are not many observations. If a clustering
of the irrelevant (noise) variables is stronger than the desired one of the relevant variables,
then the former will probably be detected instead of the latter. Second, if the data contains
clusterings in two respects, then it is not clear, which one has been detected and an unwan-
ted clustering may result. For instance, if we have data of healthy and sick people of two
ethnic populations and we decompose in two clusters, then it is not clear whether we have
analyzed the ethnic properties or the health status. A cluster analysis can, in general, not be
performed without knowledge of background and context.
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Abstract

Data analysts are often faced with many covariates and a suitable model for expla-
nation requires the selection of a subset of variables with a relevant influence on the
outcome. For continuous variables it is important to determine a suitable function which
fits the data well. We will introduce the basic concept and philosophy of the multivaria-
ble fractional polynomial (MFP) approach, which tackles both issues simultaneously. In
the context of comparing two treatments we will introduce MFPI as an extension to in-
vestigate for potential interactions with continuous covariates. The approach avoids well
known problems introduced by categorization. We will also introduce various opportu-
nities and challenges of fractional polynomial modelling in Big Data. Furthermore, we
will argue that treatment comparisons need to be based on well-designed randomized
trials. In general, observational data do not allow to derive an unbiased estimate of the
treatment effect, even if the sample size is very large.

Introduction

The number of covariates potentially included in a regression model is often too large and
a more parsimonious model may have advantages. Several variable selection strategies
(e.g. all-subset selection with various penalties for model complexity, or stepwise proce-
dures) have been proposed for a long time (Sauerbrei, 1999). As there are few analytical
studies about their properties, their usefulness is controversial. With continuous covariates
the usual assumption of linearity may be violated. The multivariable fractional polynomial
(MFP) approach simultaneously determines a functional form for continuous covariates and
deletes uninfluential covariates (Royston and Altman, 1994; Sauerbrei and Royston, 1999;
Sauerbrei et al., 2007a; Royston and Sauerbrei, 2008).

Continuous covariates are measured in most of the studies in the health sciences and MFP
has become a popular approach for multivariable model building. For variable selection it
uses backward elimination and for continuous covariates it checks whether a suitable (non-
linear) function from the class of fractional polynomials improves the fit significantly (Royston
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and Altman, 1994; Royston and Sauerbrei, 2008). The method also allows categorical and
binary covariates. Extensions of MFP have been developed to look for interactions between
continuous covariates and treatment (MFPI), between two continuous covariates (MFPIgen)
and for interactions with time (non-proportional hazards, MFPT) in a Cox model (Royston
and Sauerbrei, 2008; Sauerbrei et al., 2007b; Buchholz and Sauerbrei, 2011).

We have substantial experience in the analysis of real and simulated data with MFP, but
restricted to ’larger’ data sets. We will introduce key issues of MFP modelling and briefly
discuss some opportunities and challenges when using fractional polynomial modelling in
the context of ’big data’, a highly relevant topic for the future. The phrase ’big data’ is used
for many different types of very large amounts of automatically collected data. Unfortuna-
tely, the concept of big data is not well-defined, since an essentially arbitrary dividing line
seems to be imposed on the sample size, for no apparent reason. Nevertheless, the term
seems to have stuck. In a recent Editorial, David Hand (2016) stresses the importance of
distinguishing between two types of activity relating to big data. The first involves primarily
data manipulation: sorting, searching, matching, and so on. Examples include online route
finders and apps for updated status of bus and train traffic, with the associated issues ad-
dressed mostly by computer scientists and mathematicians. The second type of big data
activity seeks to go beyond the data at hand, with the ultimate goals being either prediction
of future data, or understanding of the mechanisms and processes that have generated the
collected data. Achieving these goals will rely primarily on state-of-the-art statistical and ma-
chine learning methods. In addition, the method of data collection is relevant; briefly we may
distinguish whether data come from a well-designed experiment (e.g. a randomized trial),
a systematic collection (e.g. cancer registry) or whether they are ’found’ data (e.g. internet
poll). For a discussion see Keiding and Lewis (2016).

In this paper we have the second type of data in mind and as an application we will discuss
key issues when comparing two treatments. Often, differences between effects of competing
treatments are relatively small, but nevertheless relevant for patients. We will argue that data
from a ’larger’ randomized trial is required and that data from observational studies, even if
the data set is ’Big’ (very large), would not help to provide an unbiased estimate of treatment
differences (Harford, 2014; Antes, 2015). We will also argue that the information from many
RCTs is not fully exploited and discuss that MFPI should play a prominent role to investigate
for potential interactions of a continuous covariate with treatment. Having ’Big Data’ in mind
and assuming that the selection of covariates and functional form for continuous covariates
are an important part of the analysis, we will discuss opportunities and challenges of an
analysis using MFP.

In this paper we have a ’larger’ data set in mind, thoughts about big data are postponed to
the specific subsection 6. In subsection 1 we discuss several key issues in variable selection.
This is followed by subsection 2 on handling continuous covariates and the introduction of
fractional polynomial modelling. The basic concept and philosophy of MFP modelling is intro-
duced in subsection 3, followed by a short subsection on MFPI, the extension to investigate
for interaction between a continuous and a binary covariate (subsection 4). MFPI can play
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an important role when comparing two treatments (subsection 5). Before giving concluding
remarks, in subsection 6 we discuss issues of MFP modelling in the context of big data. We
have extensively published on the methodology and therefore details will not be given. We
refer to the original papers, our book and the MFP website.

3.1 Model Building when Several Covariates are Available

In fitting regression models, data analysts are often faced with many covariates that may
have an influence on an outcome variable. Consensus is that subject matter knowledge
should generally guide model building, but it is often limited or at best fragile, making data-
dependent model building necessary (Harrell, 2001). If the number of covariates is large, a
parsimonious model involving a subset of the available covariates is often preferable (Sauer-
brei, 1999). An aim of the analysis is the selection of covariates with more than a negligible
influence on the outcome. In the health sciences the most popular methods for continuous,
binary and censored survival data outcomes are normal-errors (linear) regression, logistic
regression and Cox regression models. Issues and methods for variable selection are very
similar among the three models mentioned. Usually, methods for variable selection and
related issues have been developed and investigated for a normal-errors linear regression
model and the methods, or at least their basic ideas, are commonly transferred to generali-
zed linear models and to models for survival data. Sometimes additional problems, such as
the definition of residuals or equivalents of R2, exist. We refer to Andersen and Skovgaard
(2010) for a text providing a useful unified treatment of regression models for different types
of outcomes.

Relevant issues

In this part of subsection we assume that ’linearity’ is a suitable assumption for the effect
of a continuous covariate and our main emphasis is on models for explanation (interpreta-
tion). We have more traditional methods for variable selection (e.g. backward elimination) in
mind. There have been several recent developments in the literature on variable selection
but we know of no strong argument favoring replacement of backward elimination with anot-
her procedure in the MFP algorithm (see subsection 3). Some of our arguments are hardly
defensible for ’small’ sample sizes and high-dimensional data, such as -omics data. Such
situations are implicitly excluded. Under our assumptions we consider the following issues
as the most relevant to model selection: Aim (model for prediction or for explanation), model
complexity, model stability, incorporating the model uncertainty concept, selection bias and
shrinkage of regression coefficients as a potential way to correct for it. For more details see
our website http://mfp.imbi.uni-freiburg.de/.

Aim of the model and model complexity
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Many different aims are possible when developing a multivariable model and the specific
aim has an influence on the suitability of a chosen approach. For a detailed discussion
see section 2.4 in Royston and Sauerbrei (2008). In many analyses the most important
distinction is between models aiming to derive a suitable covariate and models aiming to
identify factors which seem to help explaining the value of an outcome. For a discussion
see the paper entitled ’To explain or to predict’ by Shmueli (2010). He illustrates that these
phrases mean different things in different disciplines and mentions relevant distinctions and
practical implications for explanatory and predictive modeling. For example, in the social
sciences the term explanatory model is used nearly exclusively for testing causal theory.
Although we agree with Shmueli that our approach to derive a model would be better called
descriptive modeling, we will proceed with the better known (in the health sciences) term
’explanatory model’.

For stepwise variable selection procedures, the significance level (to be chosen by the ana-
lyst) is the key user-adjustable setting that influences model complexity. For details on step-
wise procedures and a discussion of the close relationship between the significance level
and the information criteria AIC and BIC see section 2.6 in Royston and Sauerbrei (2008).
Deriving explanatory models is the main aim in this paper. There are several arguments that
simpler models are preferable for such situations (Sauerbrei, 1999; Royston and Sauerbrei,
2008 section 2.9.4).

Model complexity, model stability and model uncertainty

Model complexity, model stability and model uncertainty are three different issues of data-
dependent model building. However, they are closely related. A more complex model (in
this context, a model including more covariates) is usually less stable as it almost invaria-
bly includes several covariates which have only a ’weak’ effect on the outcome (Sauerbrei
and Schumacher, 1992; Sauerbrei et al., 2015). When selecting a specific model, the un-
certainty of the selection process is (usually) ignored. To improve models for prediction,
the model uncertainty concept was introduced some 20 years ago (Chatfield, 1995, Draper,
1995). A predictor and its variance are estimated by averaging predictors from many (unsta-
ble) models. Usually the Bayesian framework is used for model selection and assessment
of model uncertainty (Bayesian model averaging; Hoeting et al., 1999). Extending an ap-
proach by Buckland et al. (1997), Augustin et al. (2005) suggested using the bootstrap to
handle model uncertainty. In contrast to the Bayesian approach which uses Occam’s razor
to reduce the number of models, Augustin et al. (2005) proposed using a screening step to
eliminate covariates with at most a weak effect. Obviously, the number of models included in
the second part for model averaging is severely reduced. For a detailed illustration see the
example in Sauerbrei et al. (2015). In subsection 3 we will describe the MFP approach to
select covariates and functional relationships for continuous covariates. We have also con-
ducted some investigations in the context of function stability (Royston and Sauerbrei, 2003).

Variable selection and shrinkage

DOI 10.20347/WIAS.REPORT.29 Berlin 2017



H.-J. Mucha 40

Concerning approaches for variable selection, the situation is very confusing. Triggered by
the problem of identifying a small number of relevant covariates in a high-dimensional data,
many procedures have been proposed recently. However, the number of helpful comparisons
between strategies is limited. There is agreement that variable selection will cause biases in
estimates of regression parameters and many of the more recent strategies combine varia-
ble selection with shrinkage in a regularized approach. For an overview of techniques see
Hastie et al. (2009) and several issues are also discussed in Schumacher et al. (2012).
In the context of low-dimensional data van Houwelingen and Sauerbrei (2013) assessed
whether post-selection two-step approaches using global shrinkage proposed by van Hou-
welingen and Le Cessie (1990) or parameterwise shrinkage (PWSF, (Sauerbrei, 1999)) can
improve selected models. They also compared results to models derived with the LASSO
procedure (Tibshirani, 1996), probably the most popular approach to combine variable se-
lection and shrinkage in a one-step approach. Concerning prediction ability the performance
of backward elimination (BE) with a suitably chosen significance level was not worse com-
pared to the LASSO and BE models selected were much sparser, an important advantage
for interpretation and transportability. It could be shown that the PWSF approach compares
favourably to global shrinkage. It was summarized that BE followed by PWSF is a suitable
approach when variable selection is a key part of data analysis, provided that the amount of
information in the data is not ’too small’.

In the context of using the MFP procedure to derive a multivariable model data-dependently,
it was noted that regression parameter estimates of FP functions are biased and may need
to be shrunken (Sauerbrei and Royston, 1999). The PWSF approach was considered as one
potential way to handle this issue. However, for covariates which are either highly correlated
or associated with regard to contents, such as several parameters describing a nonlinear
FP2 function, the approach has weaknesses. For such cases the methodology was exten-
ded by so-called ’joint shrinkage factors’, a compromise between global and parameterwise
shrinkage (Dunkler et al., 2016).

3.2 Continuous Covariates

Continuous covariates are often encountered in life. We measure age, weight, blood pres-
sure and many other things. In medicine, such measurements are often used to assess risk
or prognosis or to select a therapy. However, the question of how best to extract useful in-
formation from continuous covariates is an important challenge (Rosenberg et al., 2003), in
the multivariable context interrelated with the selection of covariates for inclusion in a model.
In a short summary, topic group 2 of the STRATOS (STRengthening Analytical Thinking for
Observational Studies) initiative states (Sauerbrei et al., 2014):

“In practice, multivariable models are usually built through a combination of (i) a priori inclu-
sion of well-established ’predictors’ of the outcome of interest and (ii) a posteriori selection of
additional variables, based often on arbitrary, data-dependent procedures and criteria such
as statistical significance or goodness-of-fit measures. There is a consensus that all of the
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many suggested model building strategies have weaknesses (Miller, 2002) but opinions on
the relative advantages and disadvantages of particular strategies differ considerably. The
effects of continuous predictors are typically modeled by either categorizing them (which rai-
ses such issues as the number of categories, cutpoint values, implausibility of the resulting
step-function relationships, local biases, power loss, or invalidity of inference in case of data-
dependent cutpoints) (Greenland, 1995) or assuming linear relationships with the outcome,
possibly after a simple transformation (e.g. logarithmic). Often, however, the reasons for
choosing such conventional representation of continuous variables are not discussed and
the validity of the underlying assumptions is not assessed.

To address these limitations, statisticians have developed flexible modeling techniques ba-
sed on various types of smoothers, including fractional polynomials (Royston and Altman,
1994; Royston and Sauerbrei, 2008) and several ’flavors’ of splines. The latter include re-
stricted regression splines (Harrell, 2001; Boer, 2001), penalized regression splines (Wood,
2006) and smoothing splines (Hastie and Tibshirani, 1990). For multivariable analysis, these
smoothers have been incorporated in generalized additive models.”

To categorize or to model?

For continuous covariates, a simple and popular approach is to assume a linear effect, but
the linearity assumption may be questionable. To avoid this strong assumption, resear-
chers often apply cutpoints to categorize the covariate, implying regression models with
step functions. This simplifies the analysis and may or may not simplify interpretation of
results. It seems that the usual approach in clinical and psychological research is to di-
chotomize continuous covariates, whereas in epidemiological studies it is customary to cre-
ate several categories, often four or five, allowing investigation of a crude dose-response
relationship. However, categorization discards information and raises several critical is-
sues such as how many cutpoints to use and where to place them (Altman et al., 1994;
Royston et al., 2006). Sauerbrei and Royston (2010) illustrate several critical issues by in-
vestigating prognostic factors in patients with breast cancer. As a more suitable approach
to analysis, they propose to model continuous covariates with fractional polynomials (FP).
See Royston and Sauerbrei (2008) for a monograph on this topic and the related website
http://mfp.imbi.uni-freiburg.de/.

Fractional polynomials

Class of FP functions

The class of fractional polynomial (FP) functions is an extension of power transformations of
a covariate. For most applications FP1 and FP2 functions are sufficient.

FP1: β1xp1

FP2: β1xp1 +β2xp2
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Figure 18: Various shapes of FP2 functions with different power terms p1 and p2.

For the exponents p1 and p2 a set S={-2, -1, -0.5, 0, 0.5, 1, 2, 3}, with 0 = logx was pro-
posed. For p1 = p2 = p (’repeated powers’) an FP2 function is defined as β1xp +β2xp logx.
This defines 8 FP1 and 36 FP2 models. The values p1 = 1, p2 = 2 define the quadratic
function. The class of FP functions seems to be small, but it includes very different types of
shapes (Fig. 18). General FPm functions are well-defined and straightforward, but will not
be discussed here as they are rarely used. FP3 or more complex FP functions may improve
the fit in some cases (particularly in a univariate analysis), but in the multivariable context,
which is the main issue here, we are not aware of any relevant example. Occasionally they
also find a use as effective approximations to intractable mathematical functions (Royston
and Altman, 1997).

Selecting an FP function

A suitable function should fit the data well, and also be simple, interpretable and generally
usable. To assess whether a covariate has a significant effect, the FP function selection
procedure (FSP) starts by comparing the best fitting allowed FP (often FP2) function of
a continuous covariate x with the null model (Royston and Sauerbrei, 2008 section 4.10).
If significant, the procedure proceeds by comparing FP functions with a ’simple’ (usually
linear) default function. Using FSP the default function is often selected. More complex FP

DOI 10.20347/WIAS.REPORT.29 Berlin 2017



H.-J. Mucha 43

functions are chosen only if they fit the data much better (based on a significance criterion),
which implies that sample size (effective sample size in survival data) plays an important
role. Modifications are required in ’big data’, see subsection 6.

Before starting to select a suitable function, the analyst must decide on a nominal p-value (α)
and on the degree (m) of the most complex FP model allowed. Typical choices in medicine
are α = 0.05 and FP2 (m = 2). In the following we describe FSP when FP2 is chosen. It is
straightforward to adapt the procedure for use with other FP degrees. Based on minimizing
the deviance (minus twice the maximized log likelihood), the best FP1 and best FP2 function
are determined. The following test procedure assumes that the null distribution of the diffe-
rence in deviances between an FPm and an FP (m− 1) model is approximately central χ2

on two degrees of freedom. For details see section 4.9.1 of Royston and Sauerbrei (2008).
The FP function is determined for the variable x using the following closed test procedure:

1 Test the best FP2 model for x at the α significance level against the null model using
four d.f. If the test is not significant, stop, concluding that the effect of x is ’not signifi-
cant’ at the α level. Otherwise continue.

2 Test the best FP2 for x against the default (usually a linear function) at the α level using
three d.f. If the test is not significant, stop, the final model being the default. Otherwise
continue.

3 Test the best FP2 for x against the best FP1 at the α level using two d.f. FP2 selects
two power terms and estimates two corresponding parameters, therefore 4 d.f.; corre-
spondingly FP1 has 2 d.f., giving a difference of two d.f. If the test is not significant,
the final model is the best FP2, otherwise the final model is the best FP1. End of
procedure.

Note that the α level for the selection of the FP function can be different to the significance
level of backward elimination. If α = 1 in the latter then x is always selected and step 1 is
redundant. Using the flavor of a closed test procedure ensures that the overall type 1 error is
close to the nominal significance level. For some results concerning type 1 error and power
we refer to simulation studies described in section 4.10.5 of our book.

3.3 MFP: an Approach to Multivariable Model-building with Several
Continuous Covariates

MFP is an approach to multivariable model-building which retains continuous covariates as
continuous, finds non-linear functions if sufficiently supported by the data, and removes we-
akly influential covariates by backward elimination (BE). The main issues of the approach
arise from the two key components: variable selection with backward elimination and se-
lection of an FP function to model non-linearity.
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The MFP algorithm - basic concept

Like backward elimination, the MFP algorithm starts with all candidate covariates entered
as linear terms (the ’full model’) and investigates whether any covariates can be eliminated.
However, for each of the continuous covariates the FSP is used to check whether a non-
linear function fits the data significantly better than a linear function. After a first cycle some
covariates will often be eliminated and for some continuous covariates a better fitting non-
linear function may have been determined. The algorithm starts a second cycle, but the
new starting model now has fewer covariates (as some were eliminated) and perhaps non-
linear functions for some of the continuous covariates. In the second cycle all covariates
are reconsidered (even if they were not significant at the end of the first cycle) and the
FSP is used again to determine the ’best’ fitting FP function (it may be different because
other ’adjustment’ covariates are in the model). This yields the result of cycle 2 which is the
starting point for cycle 3. In most cases the model does not change anymore in cycle 3 or 4
and the algorithm stops with the final MFP model.

Important is the order of ’searching’ for model improvement by better fitting non-linear functi-
ons. Obviously, mismodelling the functional form of a covariate with a strong effect is more
critical than mismodelling the functional form of a covariate with a weak effect. The order
is determined by ascending p-values from likelihood ratio tests for elimination from the full
model. Covariates with a small p-value are considered first. Boxes 6.1 and 6.2 in Royston
and Sauerbrei (2008) illustrate the algorithm in an example. Most often 0.05 is used as the
significance criteria for both variable elimination and function selection, however, these two
important parameters for variable and function selection can (and should) be flexibly chosen
by the analyst. Depending on the aim of an analysis more or less stringent significance
criteria may be preferable.

MFP modelling - philosophy and related matters

For a detailed description of the algorithm and some relevant issues see Chapter 6 in Roys-
ton and Sauerbrei (2008). In the discussion of it, we consider in detail four relevant issues
(1 - Philosophy of MFP; 2- Function Complexity, Sample Size and Subject-Matter Know-
ledge; 3- Improving Robustness by Preliminary Covariate Transformation; 4- Conclusion and
Future). Our thoughts about these issues are summarized in a table entitled ’Towards recom-
mendations for model building by selection of variables and functional forms for continuous
predictors in observational studies, under the assumption of Tab 1.3.’ This table is adapted
from Sauerbrei et al. (2007a), where we expressed thoughts about our philosophy of MFP
modelling:

“Issues such as model stability, transportability and practical usefulness need more attention
in model development. The latter are all connected with the often neglected criterion of ex-
ternal validation. Increasing their importance will result in models that are built with the aim
to get the big picture right instead of optimizing specific aspects and ignoring others. With
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a good model building procedure, the analyst should be able to detect strong factors, strong
non-linearity for continuous variables, strong interactions between variables and strong non-
proportionality in survival models. With such a model one is less concerned about failing
to include variables with a weak effect, failing to detect weak interactions or failing to find
some minor curvature in a functional form of a continuous covariate. Such a model should
be interpretable, generalizable and transportable to other settings. In contrast to results from
spline techniques, which are often presented as a function plot, an FP function is a simple
formula allowing general usage. Our aims agree closely with the philosophy of MFP and its
extensions for interactions (Royston and Sauerbrei, 2003) and time-varying effects (Sauer-
brei et al., 2007b). Modifications that may improve the usefulness of MFP are combination
with shrinkage and a more systematic check for overlooked local curvature.”

In a large simulation study comparing MFP with various spline approaches, we provided
some evidence for the conclusions given in the table of recommendations’, but further simu-
lation studies are needed (Binder et al, 2013). It is planned to conduct them in topic group 2
of the STRATOS initiative ’Selection of variables and functional forms in multivariable analy-
sis’ (Sauerbrei et al, 2014).

3.4 Extension of MFP to Investigate for Interactions

Given the enormous amount of resources spent on conducting a large clinical trial, it is sur-
prising that greater efforts are not made to try to extract more information from clinical trials
data. In the context of potential interactions between continuous covariates and treatment,
we have argued for the use of MFPI (multivariable fractional polynomials - interaction) for
such investigations (Royston and Sauerbrei, 2004; Sauerbrei and Royston, 2007). Unfortu-
nately, dichotomization is still the ’standard’, even though most of the well-known problems
of categorization mentioned above transfer to analyses for interactions. The key ideas of
MFPI are: first, MFPI estimates for each treatment group a fractional polynomial function
representing the prognostic effect of the continuous covariate of interest, optionally adjus-
ting for other covariates. Second, the difference between the functions for the treatment
groups is calculated and tested for significance. The testing is done through an analysis of
interaction between treatment and the FP function. A plot of the difference (e.g., log ha-
zard ratio) against the covariate, together with a 95% CI, is termed a ’treatment-effect plot’.
A treatment-effect plot for a continuous covariate not interacting with treatment would be a
straight line parallel to the x-axis, whereas a treatment-covariate interaction would be indi-
cated by a non-constant line, often increasing or decreasing monotonically. For more details
see subsection 6 in our book (Royston and Sauerbrei, 2008). In a recent simulation study we
were able to illustrate striking advantages of MFPI over methods based on dichotomization
or categorization (Royston and Sauerbrei, 2013; Royston and Sauerbrei, 2014). Based on
these results, we slightly changed our recommendation for the most suitable approach (our
new default). For details see the website or the latter paper.
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3.5 Opportunities of MFPI when Comparing Treatments

By re-analyzing data from an MRC randomized trial in patients with renal cancer, we illus-
trated additional opportunities to investigate for interactions of a continuous covariate with
treatment (Royston et al., 2004). In Fig. 19 we show Kaplan-Meier estimates in all patients
and in patients defined by 4 subgroups based on white cell count (WCC) values. These
subgroups are motivated by the treatment effect function for WCC (top right). Using MFPI
we investigate ten continuous covariates as potential modifiers of the treatment effect. Nine
covariates did not exhibit any important interaction, but for WCC the test for interaction was
significant at the 1% level. We use Kaplan-Meier plots in subpopulations as check of the
derived treatment effect function.

The five plots of Kaplan-Meier estimates show that the proportional hazard assumption of
the Cox model is acceptable in all populations and we estimated treatment effects in each of
the groups. The estimated hazard ratio (HR: Interferon to MPA; 95% confidence interval) in
all patients is 0.75 (0.60 - 0.93), which clearly shows the benefit of interferon. However, in
subgroups defined by increasing values of WCC we observe increasing estimates agreeing
with the treatment effect function and the impression from the plots for subgroups (I: 0.53
(0.34 - 0.83), II: 0.69 (0.44 - 1.07), III: 0.89 (0.57 - 1.37), IV: 1.32 (0.85 - 2.05)).

There is a large effect favoring interferon in group I (very low WCC values). The advan-
tage disappears for patients with higher WCC values. Analyses in subgroups support the
estimated treatment effect function.

Concerning the interpretation of results from MFPI analyses, we need to distinguish bet-
ween prospectively planned analyses and a retrospectively conducted search for markers
which may have an influence on the effect of treatment. Results from a retrospective search
need to be seen as hypothesis generation, requiring validation in new data. For hypothesis
generation we recommend using small p-values (e.g. 0.01), otherwise larger p-values may
be acceptable. In any case, we strongly recommend checking estimated treatment effect
functions by conducting analyses in subgroups.

3.6 Analyzing Big Data with MFP - on Opportunities and Challenges

So far we have no experience analyzing ’Big Data’ with MFP or more generally with FP
methodology. In the following we will consider two very different ’big data’ situations and
point to potential opportunities and challenges when using FPs for the analysis.

Large(r) sample size

Having a large sample size offers many opportunities for MFP analyses but also raises se-
veral issues of our test-based FP function selection procedure. Obviously FSP needs to be
adapted because a very large sample size would (nearly) always result in selecting the most

DOI 10.20347/WIAS.REPORT.29 Berlin 2017



H.-J. Mucha 47

Figure 19: Plots of Kaplan-Meier estimates of overall survival probability for patients treated
with interferon (pale) or MPA (dark) and estimated treatment effect function (with 95% CI)
comparing the treatment effect dependent on white cell count (WCC), the only significant
covariate interacting with treatment (top right). The four Kaplan-Meier plots (middle and
bottom) show survival estimates in subgroups determined by WCC values.
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complex allowed FPm (typically FP2) function.

Careful consideration of whether FP2 functions should be allowed is one simple way to
handle this issue. For example, restriction to the FP1 class could be suitable if subject
matter knowledge provides a strong argument that a function should be monotonic. In that
case the best fitting transformation of the eight functions would be selected. In a similar way
FSP could be modified to select the best of the thirty-six FP2 functions if a non-monotonic
function would be suitable.

Another approach would be to use the area between curves (ABC) criteria to replace signi-
ficance tests in the FSP. ABC was proposed by Govindarajulu et al. (2007) to quantify the
distance between smoothed curves and later adapted to quantify the distance between two
curves estimating time-varying effects in the Cox model for survival data (ABCtime, Buchholz
et al., 2014). In a procedure similar to FSP, distances between best FP2, best FP1 and the
linear function could be considered. However, further work on a suitable metric to compare
two curves is needed. What is a relevant ABC value to conclude that the best FP2 fits ’sub-
stantially better’ than the linear function or the FP1 function? This issue needs experience in
real studies and in simulations.

In the context of MFP modelling it is also important to adapt the variable selection part of
MFP. One simple possibility is to choose the BIC (Bayes Information Criterion; Schwarz,
1978) as the criterion for model selection. The penalty constant of BIC is log(n), which may
help to restrain the selection of many significant covariates with a very small effect. BIC
or extremely small p-values such as 0.000001 may also be used in FSP for the selection
of an FP function. A different line would to try adapting the variable selection (backward
elimination) part by using ideas from the change-in-estimates approach (Greenland et al.,
1989). That may also help for categorical covariates, also needing adaption for the case of
very large sample sizes.

However, practical experience is needed to see whether these ideas are sufficient to adapt
the current MFP procedure to handle the problem of variable and function selection in very
large data sets. Very large sample sizes offer also many new possibilities for MFP met-
hodology. For potential interactions between two continuous covariates we have proposed
MFPIgen as an extension of MFPI (see section 7.11 in Royston and Sauerbrei, 2008). Ho-
wever, to conduct such an analysis a ’large’ sample size is needed. For ’very’ large sample
sizes an adaption as discussed above may be required.

Having very large datasets allows the analyst to partition the data and give the often neg-
lected model validation aspect much more weight. To get some ideas about external vali-
dation of a ’derivation’ model, data partitioning is often done, even with ’medium sized’ data
sets. In very large data sets natural partitions may be available (e.g. three hospitals with
large datasets each) and a partition could be possible without the severe disadvantage of
losing power, which is often low anyway. See van Houwelingen (2000) for related discussi-
ons. Related is the possibility of dividing the data into several (well-defined) subpopulations,
conduct an (MFP) analysis in each of them and summarize results in a meta-analysis. Using
’big data’ from nine SEER registries, we proposed a new approach for the meta-analysis of
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functions (Sauerbrei and Royston, 2011).

Very large number of covariates and small sample size

This situation is becoming more and more relevant in the health sciences, often called ’omics’
research. This term encompasses multiple molecular disciplines that involve characteriza-
tion of global sets of biological molecules such as DNAs, RNAs, proteins and metabolites
(IoM (Institute of Medicine), 2012). Typical sample sizes are between 100 and 500 (for sur-
vival data the effective sample size, the number of events, is often much smaller) and the
number of covariates range from several hundreds to several hundred thousand. Obviously,
deriving a ’suitable’ model is a challenge. ’Traditional’ statistical modelling approaches can-
not be used and many strategies have been adapted and developed during the last years.
Considering a preliminary covariate screening step, various methods of regularization and
the combination of variable selection and shrinkage play a key role. However, usually it is
assumed that the effect of a continuous covariate is linear. We could imagine that conside-
ration of the eight functions from the FP1 class could improve some of the models. After
a pre-selection of covariates (say selection of the top 500) it would be easy to consider (in
univariate analyses) whether any of the seven non-linear FP1 functions provides a much
better fit compared to a linear function. The p-value or the ABC criterion may be used for the
comparison.

To identify extreme values in omics data, Boulesteix et al. (2011) used a simple pre-
transformation, originally proposed to improve robustness of MFP models (Royston and Sau-
erbrei, 2007), and compared gene rankings derived from the original and the transformed
values. For some datasets they could identify striking differences in the gene rankings, cau-
sed by altering single observations. The approach could be extended to consider the best
FP1 function as the pre-transformation and an extension to multivariable models should be
possible.

Concluding Remarks

We have provided a brief overview of multivariable model building based on fractional poly-
nomials for modelling continuous covariates. We have concentrated on the MFP approach
which combines backward elimination as a strategy for variable selection with the selection
of a suitable function from a well-defined class of fractional polynomials. The aim of a mul-
tivariable model has a substantial influence on the suitability of a model building procedure
(Shmueli, 2010). Different strategies can produce very different models, but predictors from
different models are often (very) similar (Sauerbrei et al., 2015). In the health sciences mo-
dels for explanation play a more important role and we have such models in mind in our
discussion. For the variable selection part we have discussed model complexity as the key
issue and shrinkage as a potential way to correct for bias introduced by data dependent mo-
delling. The complexity of a BE model can be easily controlled by the significance level and
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we use it as the key parameter for both parts of MFP.

Comparing two (or more) treatment strategies is one of the most important investigations
in the health sciences. From a statistical point of view the popular phrase ’individualized
treatment’ implies interactions of treatment with ’several’ patient characteristics. So far inte-
ractions with a continuous covariate are usually investigated by categorizing (dichotomizing)
the continuous covariate and investigate for treatment differences in subgroups. In the con-
text of prognostic factors, risk factors and many others, the severe disadvantages introduced
by categorization have been well known for many years (Altman et al., 1994, Royston et al.,
2006). Obviously, most of the problems transfer to models investigating for interactions. For
a more detailed discussion see (Hingorani et al., 2013). One of their recommendations reads
“Standards in statistical analysis of prognosis research should be developed which address
the multiple current limitations. In particular, continuous variables should be analysed on
their continuous scale and non-linear relationships evaluated as appropriate.”

The MFP procedure was extended to MFPI as a more suitable way to investigate for inte-
ractions between a binary treatment (extension for categorical covariates are straightforward)
and a continuous patients characteristic. In an example we have demonstrated that MFPI
analyses can help to identify prognostic factors which interact with treatment, in some areas
in medicine they are called predictive factors. To report relevant details of MFP and MFPI
analyses is straightforward, another important factor of our approaches. The importance of
transparent reporting and reproducible research has become a key issue in medical rese-
arch. As software for MFP and MFPI is generally available (originally all routines have been
programmed by Patrick Royston in Stata, for details see the website) it should be possible to
reproduce an analysis, provided the data are publicly available.

So far we have no experiences using MFP and MFPI in the context of ’Big Data’. We have
outlined some potential chances and problems in using our approaches. However, the key
issues depend on the specific problem and the way data were collected. In the health scien-
ces there are many promises related to ’Big Data’ but it is obvious that more data will not
solve every problem (Antes, 2015). Very large sample sizes can be helpful to reduce the
random error and increase power, but potential biases are the more relevant in many ana-
lyses. Consequently, for investigations to compare treatments and to search for treatment
modifying factors, we have used the data from a randomized trial. Concerning data qua-
lity, Hand (2016) points out that ’large does not necessarily mean good, useful, valuable
or interesting. Big does not necessarily mean accurate or comprehensive’. With this short
overview we aim to illustrate that fractional polynomial methodology can be used sensibly for
many analyses requiring modelling of continuous covariates.

References

Altman, D.G., Lausen, B., Sauerbrei, W. and Schumacher, M (1994): Dangers of using
’Optimal’ cutpoints in the evaluation of prognostic factors. Journal of the National Cancer

DOI 10.20347/WIAS.REPORT.29 Berlin 2017



H.-J. Mucha 51

Institute, 86: 829–835

Andersen, P.K. and Skovgaard, L.T. (2010): Regression with Linear Predictors. Springer,
New York

Antes, G. (2015): A new Science(ability)? Lab Times Online

Augustin, N., Sauerbrei, W. and Schumacher, M. (2005): The practical utility of incor-
porating model selection uncertainty into prognostic models for survival data. Statistical
Modelling 5: 95–118

Binder, H., Sauerbrei, W. and Royston, P. (2013): Comparison between splines and fracti-
onal polynominals for multivariable model-building with continous covariates: a simulation
study with continous response. Statistics in Medicine 32: 2262–2277

Boer, C. de (2001): A Practical Guide to Splines. revised edn. Springer, New York

Boulesteix A.-L., Guillemot V. and Sauerbrei W. (2011): Use of pretransformation to cope
with extreme values in important candidate features. Biometrical Journal 53(4): 673–688

Buchholz, A. and Sauerbrei, W. (2011): Comparison of procedures to assess non-linear
and time- varying effects in multivariable models for survival data. Biometrical Journal
53(2): 308–331

Buchholz, A., Sauerbrei, W. and Royston, P. (2014): A measure for assessing functions of
time-varying effects in survival analysis. Open Journal of Statistics 4: 977–998

Buckland, S.T., Burnham, K.P. and Augustin, N.H. (1997): Model selection: an integral
part of inference. Biometrics 53: 603–618

Chatfield, C. (1995): Model uncertainty, data mining and statistical inference (with discus-
sion). Journal of the Royal Statistical Society, Series B 158: 419–466

Draper, D. (1995): Assessment and propagation of model selection uncertainty (with dis-
cussion). Journal of the Royal Statistical Society, Series B 57: 45–97

Dunkler, D., Sauerbrei, W. and Heinze, G. (2016): Global, Parameterwise and Joint Post-
Estimation Shrinkage. Journal of Statistical Software 69: 8

Govindarajulu, U.S., Spiegelman, D., Thurston, S.W., Ganguli, B. and Eisen, E.A. (2007):
Comparing Smoothing Techniques in Cox Models for Exposure-Response Relationships.
Statistics in Medicine 26: 3735–3752

Greenland, S. (1989): Modeling and variable selection in epidemiologic analysis. Ameri-
can Journal for Public Health 79(3): 340–349

DOI 10.20347/WIAS.REPORT.29 Berlin 2017



H.-J. Mucha 52

Greenland, S. (1995): Avoiding power loss associated with categorization and ordinal
scores in dose-response and trend analysis. Epidemiology (Cambridge, Mass.) 6 4: 450–
454

Hand, D.J. (2016): Editorial: ’Big data’ and data sharing. Journal of the Royal Statistical
Society, Series A 179, 3: 629–631

Harford, T. (2014): Big data: are we making a big mistake? Financial Times

Harrell, F.E. (2001): Regression modeling strategies, with applications to linear models,
logistic regression, and survival analysis. Springer, NewYork

Hastie, T.J. and Tibshirani, R. (1990): Generalized Additive Models. Chapman & Hall,
London

Hastie, T.J., Tibshirani, R. and Friedman, J. (2009): The Elements of Statistical Learning.
2nd edn. Springer, New York

Hingorani, A.D., van der Windt, D., Riley, R.D., Abrams, K., Moons, K.G.M., Steyerberg,
E.W., Schroter, S., Sauerbrei, W., Altman, D.G., Hemingway, H. for the PROGRESS Group
(2013): Prognosis research strategy (PROGRESS) 4: Stratified medicine research. British
Medical Journal 346

Hoeting, J.A., Madigan, D., Raftery, A.E. and Volinsky, C.T. (1999): Bayesian model aver-
aging: A tutorial. Statistical Science 14: 382–417

IOM (Institute of Medicine) (2012): Evolution of Translational Omics: Lessons Learned
and the Path Forward. The National Academies Press, Washington, DC

Keiding, N. and Louis, T.A. (2016): Perils and potentials of self-selected entry to epidemi-
ological studies and surveys. J.R.Statistical Society, Series A 2: 319–376

Miller, A. (2002): Subset Selection in Regression. Taylor & Francis: Boca Raton, Florida

Rosenberg, P.S., Katki, H., Swanson, C.A., Brown, L.M., Wacholder, S. and Hoover, R.N.
(2003): Quantifying epidemiologic risk factors using nonparametric regression: model
selection remains the greatest challenge. Statistics in Medicine 22: 3369–3381

Royston, P. and Altman, D.G. (1994): Regression using fractional polynomials of conti-
nuous covariates: parsimonious parametric modelling (with disc.). Applied Statistics 43:
429–467

Royston, P. and Altman, D.G. (1997): Approximating statistical functions by using fractional
polynomial regression. The Statistician 46: 411–422

Royston, P., Altman, D.G. and Sauerbrei, W. (2006): Dichotomizing continuous predictors
in multiple regression: a bad idea. Statistics in Medicine 25: 127–141

DOI 10.20347/WIAS.REPORT.29 Berlin 2017



H.-J. Mucha 53

Royston, P. and Sauerbrei, W. (2003): Stability of multivariable fractional polynomial mo-
dels with selection of variables and transformations: a bootstrap investigation. Statistics in
Medicine 22: 639–659

Royston, P. and Sauerbrei, W. (2004): A new approach to modelling interactions between
treatment and continuous covariates in clinical trials by using fractional polynomials. Sta-
tistics in Medicine 23: 2509–2525

Royston, P. and Sauerbrei, W. (2007): Improving the robustness of fractional polynomial
models by preliminary covariate transformation: a pragmatic approach. Computational
Statistics and Data Analysis 51: 4240–4253

Royston, P. and Sauerbrei, W. (2008): Multivariable Model-Building - A pragmatic ap-
proach to regression analysis based on fractional polynomials for modelling continuous
variables. Wiley.

Royston, P. and Sauerbrei, W. (2013): Interaction of treatment with a continuous variable:
simulation study of significance level for several methods of analysis. Statistics in Medicine
32(22): 3788–3803

Royston, P. and Sauerbrei, W. (2014): Interaction of treatment with a continuous variable:
simulation study of power for several methods of analysis. Statistics in Medicine 33: 4695–
4708

Royston, P., Sauerbrei, W. and Ritchie, A. (2004): Is treatment with interferon-alpha ef-
fective in all patients with metastatic renal carcinoma? A new approach to the investigati-
ons of interactions. British Journal of Cancer 90: 794–799

Sauerbrei, W. (1999): The use of resampling methods to simplify regression models in
medical statistics. Applied Statistics 48: 313–329

Sauerbrei, W., Abrahamowicz, M., Altman, D.G., le Cessie, S. and Carpenter, J. on behalf
of the STRATOS initiative (2014): STRengthening Analytical Thinking for Observational
Studies: the STRATOS initiative. Statistics in Medicine 33: 5413–5432

Sauerbrei, W., Buchholz, A., Boulesteix, A.-L. and Binder, H. (2015): On stability issues in
deriving multivariable regression models. Biometrical Journal 57: 531–555

Sauerbrei, W. and Royston, P. (1999): Building multivariable prognostic and diagnostic
models: transformation of the predictors using fractional polynomials. Journal of the Royal
Statistical Society, Series A 162: 71–94

Sauerbrei, W. and Royston, P. (2007): Modelling to extract more information from clinical
trials data: on some roles for the bootstrap. Statistics in Medicine 26: 4989–5001

DOI 10.20347/WIAS.REPORT.29 Berlin 2017



H.-J. Mucha 54

Sauerbrei, W. and Royston, P. (2010): Continuous Variables: To Categorize or to Model?
In: Reading, C. (Ed.): The 8th International Conference on Teching Statistics- Data and
Context in statistics education: Towards an evidence based society. International statisti-
cal Institute, Voorburg

Sauerbrei, W. and Royston, P. (2011): A new strategy for meta-analysis of continuous
covariates in observational studies. Statistics in Medicine 30(28): 3341–3360

Sauerbrei, W., Royston, P. and Binder H. (2007a): Selection of important variables and
determination of functional form for continuous predictors in multivariable model building.
Statistics in Medicine 26: 5512–5528

Sauerbrei, W., Royston, P. and Look, M. (2007b): A new proposal for multivariable
modelling of time-varying effects in survival data based on fractional polynomial time-
transformation. Biometrical Journal, 49: 453–473

Sauerbrei, W. and Schumacher, M. (1992): A Bootstrap Resampling Procedure for Model
Building: Application to the Cox Regression Model. Statistics in Medicine 11: 2093–2109

Schumacher, M., Holländer, N., Schwarzer, G., Binder, H. and Sauerbrei, W. (2012): Prog-
nostic Factor Studies. In: Crowley, J., Hoering, A. (Eds): Handbook of Statistics in Clinical
Oncology. Third Edition, Chapman and Hall/CRC, 415–470

Shmueli, G. (2010): To explain or to predict? Statistical Science 3: 289–310

Tibshirani, R. (1996): Regression Shrinkage and Selection via the Lasso. Journal of the
Royal Statistical Society, Series B 58(1): 267–288

Van Houwelingen, H.C. (2000): Validation, calibration, revision and combination of prog-
nostic survival models. Statistics in Medicine 19: 3401–3415

Van Houwelingen, H.C. and le Cessie, S. (1990): Predictive value of statistical models.
Statistics in Medicine 9: 1303–1325

Van Houwelingen, H.C. and Sauerbrei, W. (2013): Cross-validation, shrinkage and varia-
ble selection in linear regression revisited. Open Journal of Statistics 3: 79–102

Wood, S. (2006): Generalized Additive Models. Chapman & Hall/CRC, New York

DOI 10.20347/WIAS.REPORT.29 Berlin 2017



H.-J. Mucha 55

4 On Estimating Pricing Models from End-Consumer Inter-
net Car-Configuration Data

Tino Fuhrmann, Marvin Schweizer, Andreas Geyer-Schulz
Information Services and Electronic Markets

Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany

Tino.Fuhrmann@student.kit.edu,
Marvin.Schweizer@student.kit.edu,
Andreas.Geyer-Schulz@kit.edu, and

Peter Kurz
TNS Deutschland GmbH

München, Germany
Peter.Kurz@tns-infratest.com

Abstract

In this contribution we report on our first attempts of extracting a pricing-model from
an anonymous end-consumer Internet car configurator data set made available from
TNS Infratest for a data mining competition of the special interest group for data analy-
sis of the German Classification Society (GfKl e.V.) in Karlsruhe on 20.-21. November
2015. In this report, we concentrate on the simplest possible rational pricing model –
a linear part-worth utility function. We introduce a new data-transformation for product
configuration data in general: the elimination of “irrational” product configuration types.
We combine this transformation with an elimination of configuration types which are price
outliers. Our second contribution is the analysis of the null space of the pricing model in
a post-processing phase to improve the interpretation of the pricing model.

Introduction and Motivation

“A product configurator is a software-based expert system that supports the user in the
creation of product specifications by restricting how predefined entities (physical or non-
physical) and their properties (fixed or variable) may be combined.” (A. Haug [3, p. 19])

Modern product configurators are the car industry’s response to increased global compe-
tition, because they enable mass customization at an industrial scale [8]: “The customer
should get what he wants, when he wants it at an attractive price.” Product configurators
enable the customer to build his own product autonomously – even if the product is complex.
Figure 20 shows that product configurators play a key role across several functional areas of
a company: Empirical configuration data improves e.g. strategic product portfolio planning,
offer generation in the operative sales process, production planning, and, last but not least,
the pricing of product lines. Researchers at Sawtooth Software Inc. investigated product
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Figure 20: Pricing and Product Configurators
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configurators as part of adaptive choice-based conjoint analysis as early as 2006 (see [4],
[9], and [7]).

The car industry has reacted to this strategic challenge only recently. In 2013 the internati-
onal benchmark study on mass customization companies of Walcher and Piller [10] did not
yet contain a single car configurator. However, the Configurator Database Project (as of De-
cember 29th, 2016) listed 87 end-consumer Internet car configurators with all global players
(and their major brands) present. Despite the intensive use of car configurators by the car
industry, academic research on datasets of end-consumer car configurators is practically
non-existent, because of the lack of publicly available datasets of this type. In a recent sur-
vey on consumer decision-making and configuration systems (see [5]), the main emphasis
is on consumers’ behavioral deviations from rationality and their causes.

While we may safely assume that each global player knows his own pricing models (and
considers them a strategic secret), it is nevertheless interesting to investigate methods of
extracting pricing models from large end-user Internet car configuration data sets and to
know the limits of these methods. In addition, the assessment of the quality and information
content of such Internet data sets remains an open problem.

Our contribution is structured as follows: In Subsect. 4.1 we describe the end-consumer car
configuration data set used in this investigation. Next, we introduce the basics of linear part-
worth utility functions and their estimation by weighted least-squares (WLS) in Subsect. 4.2.
In the next two Subsects. (4.3 and 4.4) we introduce the data transformations used in pre-
processing and the analysis of null space of the models used for computing a canonical
model representation. We discuss first results in Subsects. 4.2, 4.3, and 4.4, respectively.
In Subsect. 4.5 we discuss the results and limitations of the pre- and postprocessing trans-
formations introduced.

4.1 The Car Configurator Data Set

The preprocessing of the original data set of TNS Infratest (collected from 473 819 respon-
dents, 3 days from the first half of 2012 with 962 799 configurations) is described in [2] and
reduces the data set by a lossless transformation to a data set of 943 (weighted) configu-
ration types with 112 binary variables and, in addition, frequency (weight), price, line, and
engine type. In the following, we use the preprocessed data set with the 112 binary attributes
grouped for easier reference. Since we will concentrate on the Sports Line, we indicate all
attributes which are observed in the configuration types of the Sports Line as bold:

1 6 attribute groups with mutually exclusive attributes (only one attribute in a group can
be set to 1):

1.1 4 model lines (Sports Line, Modern Line, Luxury Line, No Line).

1.2 9 engine types, (1, 2, 3, 4, 5, 6, 7, 8, 9). We assume that engine types 1 to 4 are
petrol engines, and engine types 5 to 9 are diesel engines.
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1.3 12 color variants: Hematite grey metallic, sparkling bronce metallic, alpine
white, black saphire metallic, deep sea blue metallic, blue water metallic,
peacock blue metallic, glacier silver metallic, orion silver metallic, mineral
white metallic, black, and crimson red metallic.

1.4 11 trim variants (3 observed): Aluminum with fine longitudinal grain with
accent strip in milky glass look, fine wood burr walnut with accent strip
in chrome, aluminum with fine longitudinal grain with red accent strip, fine
wood burr walnut with black accent strip, high polish cashmere silver with accent
strip in milky glass look, aluminum with fine longitudinal grain with black accent
strip, fine wood fine line anthracite with intarsia and accent strip in chrome, alu-
minum with fine longitudinal grain and black accent strip high polish black with
red accent strip, matt satin silver, and fine wood fine line porous structured with
accent strip in milky glass look.

1.5 16 cushion (interior upholstery) variants (5 observed): Fabric leather combina-
tion oyster, leather Dakota black with red contrasting seam, leather Dakota
coral red with black contrasting seam, fabric Imola anthracite with red con-
trasting seam, leather Dakota black II, leather Dakota Everest grey with black
contrasting seam, leather Dakota Veneto beige I, leather Dakota Veneto beige II,
fabric leather combination anthracite, fabric Imola anthracite with grey contrasting
seam, leather Dakota oyster with contrasting seam in dark oyster, leather Dakota
black I, leather Dakota saddle brown, leather Dakota black with contrasting seam
in dark oyster, fabric Salome saddle brown anthracite, fabric anthracite.

1.6 24 rim variants (5 observed): 17 inch alu basis II, 17 inch alu sport II, 17 inch
alu luxury II, 18 inch alu sport III, 18 inch alu luxury III, 18 inch alu basis II, 18
inch alu luxury I, 17 inch alu sportI, 18 inch alu modern III, 17 inch alu modern II,
18 inch alu basis I, 17 inch alu luxury I, 17 inch alu basis III, 16 inch alu basis II,
18 inch alu modern I, 18 inch alu sport I, 18 inch alu luxury II, 16 inch alu basis I,
17 inch alu modern I, 18 inch alu sportII, 18 inch alu basis III, 16 inch steel basis,
17 inch alu basis I, and 18 inch alu modern II.

The attributes model line and engine type are used as a priori segmentation attributes
for identifying iso-price segments of configuration types.

41 attributes of of the 76 binary attributes in this group are not observed for configura-
tion types of the Sports Line.

2 36 attributes which can be combined (any subset of attributes can be set to 1) structu-
red as follows:

2.1 4 packages: sport, comfort, storage, and light interieur.

2.2 2 types of transmission: four wheel drive and automatic transmission.
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2.3 8 driving assistants: cruise control with braking function, cruise control with
stop go function, parking assistant, rear view camera, lane change warning,
lane departure warning, road sign recognition, and head up display.

2.4 8 attributes for steering, light, and chassis: adaptive chassis with lowering,
sport leather steering wheel, variable sports steering, performance leather
steering wheel, xenon light, adaptive cornering light, glass sunroof, and
sun protection blind.

2.5 9 attributes for convenience, security, etc.: seat heating for front seats, sports
seats for front seats, electric seat adjustment, lumbar support for front seats,
climate control, alarm system, arm rest for front seats, comfort access, and
hitch.

2.6 5 attributes for navigation, media, and communication: navigation system busi-
ness, hifi system, dvd changer, mobile phone prep with bluetooth usb, and
digital radio.

The 3 attributes sports package, sport leather steering wheel, and sports seats for
front seats are not configured in the configuration types of the Sports Line.

Configuration types of the Sports Line have 68 binary attributes, 35 belong to the 6 groups
of mutually exclusive attributes. For four groups of these attributes (Color, Rims, Cushions,
Trims) we know the part-worths from the setup of a conjoint experiment partially contained
in the data, but we do not use them. The second group of attributes contains 33 attributes
which can be combined. For the second we do not know the part worths. The technical
constraints of the car configurator are unknown.

4.2 Estimating a Linear Part-Worth Utility Function

The theory of choice in micro-economics and statistical utility theory formalize a general,
axiomatic and normative model how rational decision-makers should act. Rational behavior
is captured by the axioms of expected utility theory (EUT) introduced by John von Neumann
and Oskar Morgenstern in 1944 [6, Chapter 3, pp. 15-31] and compatible with linear utility
functions.

The simplest rational pricing model is a linear (part-worth) utility function U(C):

U(C) = pw0 + ∑
c j∈C

pw j · c j

where the constant pw0 is the part-worth (base price) of the configuration, C denotes the
set of attributes describing the configuration and c j ∈ {0,1} the j-th attribute in C and pw j
the part-worth of the j-th attribute. Under the assumptions that the base price pw0 is for a
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car configuration without configured attributes and that the presence of the j-th attribute in
a configuration (c j = 1) is more valuable than its absence (c j = 0), all part-worths should be
positive: pw j ≥ 0, ∀ j. We assume that U(C) at least equals the price a consumer is willing
to pay for a car with configuration C: U(C) = price.

For the estimation of the part-worth utilities and the base price(s) of car configurations from
the data set we use the following linear regression model:

price = C ·pw+u

where the dependent variable price is an N×1 vector, C is an N×J regression matrix (each
line represents a car configuration), pw is the J×1 parameter vector (of part-worths), and u
is an N×1 vector, N is the number of car configurations, J the number of boolean attributes of
a car configuration. Ci. denotes the i-th line of C and is a 1×J vector. Since we concentrate
only on car configurations of the Sports Line, there are 5 attribute groups with mutually
exclusive attributes. We suppress the constant and this implies that we have one default
configuration for each engine (the most important attribute). In each of the 4 attribute groups
color, interior upholstery, trims, and rims one variable must be configured. This implies that
we can only estimate the part-worths of n−1 attributes in an attribute group of n attributes.
The last attributes are part of the default configuration. We use a completely specified model,
because we want to extract as much information from the dataset as possible. However, this
approach implies that CTC is not of full rank, because some attributes are linear dependent
and others are not observed. We deal with this complication in Subsect. 4.4.

However, by moving from car configurations to car configuration types whose number we
represent as T , we can reduce the computational effort considerably (by three orders of
magnitude) because T << N for our dataset. This implies that we move from minimizing the
residual sum of squares

RSS(pw) =
N

∑
i=1

(pricei −Ci. ·pw)2

of car configurations to minimizing the weighted sum of squares of car configuration types

WSS(pw,W) =
T

∑
i=1

Wii(pricei −Ci. ·pw)2

with C now representing the car configuration types and wii (a diagonal element of the di-
agonal weight matrix W) the number of times the i-th car configuration type has been ob-
served in the data set. This simply means, we solve the weighted least squares problem
(price−C ·pw)T W(price−C ·pw) by

p̂w = (CT WC)−1CT W ·price
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Note, in this contribution, we use weighted least squares for parameter estimation in order to
replace the computation of the CT C matrix for car configurations by the computation of the
CT WC matrix of configuration types to reduce the computation effort. We do not try to deal
with heteroscedasticity by reweighting as suggested e.g. in [1, Chap. 4.5] and [11].

4.3 Preprocessing: The Elimination of Irrational and of Price Outlier
Configuration Types

4.3.1 The Elimination of Irrational Configuration Types

But are end-consumers designing their own car in a rational manner? Obviously not, as the
comparison of the attributes of two configuration types of the iso-price segment in Table 2
shows.

Table 2: The Configuration Types for Sports Line, Engine 2 of the Iso-Price Segment at 35
300 Euro: B a subset of A

Configuration Type A B
Color: Orion Silver Metallic Orion Silver Metallic
Rims: 17 Inch Alu Sport II 17 Inch Alu Sport II
Cushions: Fabric Imola Anthracite with Fabric Imola Anthracite with

Red Contrasting Seam Red Contrasting Seam
Trims: High Polish Black with High Polish Black with

Red Accent Strip Red Accent Strip
parking assistant parking assistant
lane change warning lane change warning
dvd changer dvd changer
xenon light

Iso-price segments are defined by choices between car configurations of the same model
line and engine type with the same price under the assumption that an attribute configured
adds value to a car configuration. The comparison of the attribute sets of the configurations
in an iso-price segment allows us to analyze deviations from rationality, because of the axiom
that a consumer always prefers more (the value provided by an additional attribute) to less.
In the whole data set, 17% of the consumers have configured car configurations which are
proper subsets in an iso-price segment. We call these configurations irrational.

When estimating rational pricing models from product configuration data, the elimination of
irrational configurations is – as far as we know – a new data transformation which takes care
of irrational behavior. Figure 21 shows a first, naive filter algorithm for implementing this data
transformation.
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1 For each iso-price segment in data set do

1.1 Perform a subset comparison operation between all pairs of configuration types
in an iso-price segment and build a list of all subset configuration types found.

1.2 Flag all configuration types which are proper subsets as irrational.

2 Delete all irrational configuration types from data set.

Figure 21: A Naive Filter Algorithm for the Elimination of Irrational Configurations

This algorithm identifies 91 configuration types of the 416 configuration types (with 220 514
configurations) of the Sports Line and leaves a total of 325 rational configuration types (with
179 545 configurations (81%)). The effects of this transformation on the weighted residuals
of a linear path worth utility model can be seen in line 3 of Table 3 and in the 3rd boxplot of
Fig. 22 on the right hand side, both labelled Rational.

4.3.2 The Elimination of Price Outlier Configuration Types

It is well known that linear regression results are sensitive to outliers. The boxplot of confi-
guration prices of Fig. 22 shows that all configuration types with a configuration price higher
than 55000 Euro should be considered as outliers. By checking the residual errors of the
configuration types we have verified that the price outliers are also the outliers in the boxplot
of the weighted residuals.

Elimination of all configuration types with a price above 55000 Euro should improve the es-
timates of the linear part-worth utility function. The effects of this transformation on the
weighted residuals of a linear path worth utility model can be seen in line 2 of Table 3 and in
the 2nd boxplot of Fig. 22 on the right hand side, both labelled No Outliers.

4.3.3 The Effects of the Transformations on Weighted Residuals

Figure 22 on the right hand side and Table 3 allow us to compare the effects of the two
data transformations and their joint effect on the residuals and the weighted residuals of
the linear part-worth utility functions of Subsect. 4.2. We see that the joint effect of both
data transformations eliminates most of the outliers of the residuals and leads to a more
symmetric distribution of the residuals.

4.4 Postprocessing: Analyzing the Null Space of the Model

Unfortunately, not all parameters of a linear part-worth utility function can be estimated. In R,
these parameters are flagged with NA (Not Available). We distinguish the following cases:
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Figure 22: Boxplot of Configuration Prices and Residuals (left). Outliers have prices above
55000 Euros. Boxplot of Residuals after Transformations (right).

Table 3: Effects of Transformations on Weighted Residuals of Sports Line Configuration Types

Configuration Types Min 1Q Median 3Q Max
All -385 345 -36 153 -1 145 36 614 768 514
No Outliers -282 421 -26 019 2 973 34 423 205 543
Only Rational -396 824 -34 695 0 37 919 517 244
Both: No Outl. & Only Rat. -287 586 -26 993 1 523 30 758 181 377
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1 Some attributes of a car configuration type of a line have not been selected by consu-
mers. These attributes remain unobserved. The CT WC matrix does not have full rank
and these attributes form one part of the null space of the model. In addition, in our
data set the unobserved attribute j has the property that ∑T

i=1 Ci, j = 0. For configura-
tion types of the Sports Line we have identified 44 attributes of this type which have
been reported in Subsect. 4.1.

2 The rest of the null space are attributes which are linear dependent on other attributes.
The structure of this linear dependency must be analyzed completely. We treat this
case in the following.

Mathematically, the existence of linear dependent attributes implies that the weighted least
squares problem does not have a unique solution, but a set of equivalent solutions exist. The
complete set of solutions can be represented completely as a canonical basis together with
a set of linear change of basis operators. Equivalent means equivalent with regard to the
optimization criterium of the regression problem.

For product configuration data not all attributes in a group of mutually exclusive attributes can
be identified: At least one attribute of such a group must be configured in each configuration
and, therefore, a linear dependency with the constant of the regression model exists. The
pricing model’s constant is interpreted as the price of a default configuration for which the
default attributes (one for each group of mutually exclusive attributes) which we can not
estimate are set. The prices of the other attributes in such a group indicate the cost of
replacement of the default attribute by the other attributes of the group. The signs of these
relative prices depend on the choice of the default configuration. In the car configuration data
set, 6 groups of such mutually exclusive attributes exist: model lines, engine types, colors,
interior upholstery, trims, and rims.

In order to make part-worth utilities easily interpretable and comparable, we define a ca-
nonical product configuration as the configuration type with a set of mutually exclusive
(must-be-configured) default attributes of lowest price. From a mathematical point of view,
the canonical product configuration is the canonical basis. Relative to the default attribute,
all other part-worths of attributes of such a group of mutually exclusive attributes are always
positive.

Weighted linear regression in R as implemented by lm uses a deterministic algorithm which
assigns variables to the basis in the sequence in which they are listed in the model specifi-
cation of lm. We start with a regression model specification with the independent variables
in arbitrary order. For each group of mutually exclusive variables, we check the signs of the
parameters. If negative signs exist, we choose the variable with the most negative parameter
and we exchange this variable with the last variable of the group.

For example, for the color attributes, we get the parameters shown in Table 4: Crimson Red
Metallic is the color of the default car configuration. Only one color attribute (Mineral White
Metallic) is slightly significant. And Deep Sea Blue Metallic is the color attribute with the
most negative value.
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Table 4: Estimation of Parameters for Color Attributes. Significance Code: .= 0.1.

Attribute β Std. Error t-value P(>| t |) Sign.
HematiteGreyMetallic 324.85 1 041.72 0.312 0.755420
SparklingBronceMetallic -100.24 1 032.38 -0.097 0.922725
AlpineWhite 635.43 1 003.40 0.633 0.527129
BlackSaphireMetallic 44.73 1 089.34 0.041 0.967280
DeepSeaBlueMetallic -1 043.27 1 042.96 -1.000 0.318120
BluewaterMetallic 673.50 1 114.82 0.604 0.546298
PeacockBlueMetallic 743.47 1 392.23 0.534 0.593801
GlacierSilverMetallic 1 776.48 1 164.84 1.525 0.128485
OrionSilverMetallic -844.81 1 094.14 -0.772 0.440765
MineralWhiteMetallic 2 525.75 1 467.92 1.721 0.086541 .
Black 944.33 1 406.65 0.671 0.502622
CrimsonRedMetallic NA NA NA NA

To obtain the canonical parameters of the color attributes we moved the attribute Deep Sea
Blue Metallic to the last position of the color attributes. Compare the parameter estimates
of the color attributes shown in Table 4 with the canonical solution shown in Table 5 and
observe how signs and significance of the part-worths change.

However, linear dependencies can be more complicated: For the group of rims, we have dis-
covered three groups of linear dependencies by permutation of the model specifications: For
all configuration types of engines 3, 4, 7, 8, and 9 only the rim X18InchAluLuxury has been
selected and is linear dependent on the engine attribute. For engines 2 and 6, only the rims
X17InchAluLuxuryII and X17AluBasisII have been selected and they are linear dependent.
The same dependency exists between the rims X18InchAluSport III and X17InchAluSport II
for engines 1 and 5.

At the moment, we have only analyzed the linear dependencies of the mutually exclusive
attributes.

4.5 The Canonical Model After Both Transformations

The canonical model (and all equivalent models) are highly significant and explain more than
99 percent of the variance: The residual standard error is 59940 on 253 degrees of freedom
(DF), R2 is 0.997 and the adjusted R2 is 0.996. The F-statistic is 1361 on 61 and 253 DF with
a p-value less than 2.2e−16.

The 9 canonical default configurations (one for each engine type) of the Sports Line have
the color Deep Sea Blue Metallic. Their interior upholstery is Fabric Leather Combination
Oyster with trims configured as Aluminium with Fine Longitudinal Grain with Accent
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Strip in Milky Glass Look. Rims differ between engines: For engines 1 and 5, we have
X18InchAluSport III, for engines 2 and 6, X17InchAluLuxuryII and for engines 3, 4, 7, 8,
9: X18InchAluLuxury. These attributes are the non-identified attributes of the canonical
car configuration. The prices of the canonical default configurations are typeset in bold in
Table 5. They range from 30367 Euro for the default configuration of engine 1 to 47218 Euro
for the default configuration of engine 9.

The parameter estimates of the part-worth utilities of the canonical model for the attributes
with mutually exclusive attributes are shown in column Both of Table 5.

The estimates for all other attributes are shown in column Both of Table 6. In the attribute
groups of Driving Assistants and Convenience, Security, . . . we find 10 attributes of the 12
attributes with negative signs. This indicates that the model of a simple linear part-worth
utility function does not completely explain the unknown pricing strategy embedded in the
product configurator and that further analysis is required.

Conclusion

In this contribution we have presented the preprocessing method of the elimination of irratio-
nal configuration types (without reweighting) for product configuration data sets. In addition,
we have shown that a partial recovery of a pricing model from product configuration data is
possible with the restriction that one attribute of each group of mutually exclusive attributes
can not be estimated for regression models whose constants capture the price of the default
configuration. In addition, we have made progress in the analysis of the null space of regres-
sion models for complex product configuration data: We have introduced the concept of a
canonical configuration as the least price configuration (in the sense that its default attributes
have the lowest price in their group of mutually exclusive attributes) and we have shown how
this configuration can be found with the help of permutations of the model specification. A
potential improvement for the elimination of irrational configuration types is finding a proper
reweighting scheme of rational configuration types.
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Table 5: Canonical Parameter Estimation (CPE) of Part-Worth Attribute Utilities for Sports Line’s
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Table 6: CPE of Part-Worth Attribute Utilities for Sports Line’s Configuration Type. Attribute Combi-
nations. Significance Codes (only model Both): ∗∗∗= 0.001, ∗∗= 0.01, ∗= 0.05, .= 0.1.

Attributes All Rational P < 55000 Both Sign.
Packages
Storage package 679 1 492 42 348
Comfort package 782 1 545 759 1 156 **
Light package interior 3 394 3 297 835 1 452 **
Transmission
Automatic transmission 1 346 1 402 825 1 060 .
Four wheel drive 3 316 1 878 2 049 1 450 *
Driving Assistants
Head up display -6 456 -4 151 -3 319 -2 432 *
Rear view camera -525 -1 145 -1 898 -1 858 **
Lane change warning -2 356 -3 119 -1 720 -1 553 .
Cruise control with stop go function -184 839 -801 -605
Cruise control with braking function 1 442 139 5 -578
Parking assistant 398 99 342 -31
Road sign recognition -329 857 943 674
Lane departure warning 2 422 1 326 3 391 2 895 **
Steering, Light, Chassis, ...

Variable sports steering -4 742 -4 525 -1 696 -2 255 **
Sun protection blind 8 343 7 206 -469 35
Xenon light 901 748 617 365
Performance leather steering wheel 1 409 1 495 945 1 109 **
Glass sunroof 1 105 1 832 1 064 1 471 **
Adaptive cornering light -672 213 1 621 1 588 **
Adaptive chassis with lowering 1 554 91 2 707 1 669 **
Convenience, Security, ...
Lumbar support for front seats -622 -1 302 -1 545 -1 158 *
Electric seat adjustment 186 -466 -755 -777
Alarm system 283 394 -531 -271
Seat heating for front seats -520 97 -616 -247
Comfort access -466 -608 177 57
Arm rest for front seats -109 -394 430 222
Climate control 1 348 827 800 589
Hitch 713 1 817 1 541 2 412 ***
Navigation, Media, and Communication
Hifi system -415 46 -72 -122
Digital radio 2 084 2 272 58 14
Mobile phone prep with bluetooth usb -1 071 -1 312 502 84
Navigation system business 770 775 1 362 1 058 **
DVD changer 2 653 3 346 2 061 2 224 ***
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Abstract

For equilibrium systems Markov State Models (MSM) are a powerful tool for grou-
ping states according to a metastability criterion. Given a reversible Markov chain, in
MSM the eigenvalue structure of the underlying Markov chain is exploited for detecting
metastable sets, such that the dynamics of a system in a high dimensional space can
be described by the entries of a small transition probability matrix. Considering Non-
Equilibrium Steady States the underlying Markov chain is no longer reversible and thus
the eigenvalue structure, being the backbone for MSM can no longer be employed. To
overcome this, we present a novel MSM method (GenPCCA) being capable to find a
low dimensional description of even non reversible Markov processes by using a Schur
decomposition instead of using eigen vectors. We show the performance of GenPCCA
on networks for gene expression.

Introduction

In a Markov State Model (MSM) an underlying stochastic process is described by a transition matrix
between clustered states. Under the assumption, that the stochastic process has a metastable be-
havior, i.e. the system stays mostly in a metastable set of states and switches only rarely between
these sets, the stochastic process can be described by a low dimensional basis. In literature several
concepts for the description of the clusters can be found (e.g. Sarich and Schütte (2014), Bowman
et al (2014)). The coarse graining procedure of the stochastic process onto clustered states can also
be interpreted as a Galerkin projection. One fundamental assumption in MSM is that the stochastic
process is reversible allowing for spanning the low dimensional space of the clusters by eigen vectors.
It has been understood, that this assumption is quite realistic for equilibrium states, i.e. states in a
thermal equilibrium. However, for Non-equilibrium steady states (NESS) is non-reversible.

In Fill (1991) the eigenvalue bounds of the mixing rates for reversible Markov chains have been
extended to non- reversible chains by reversiblizing the non-reversible matrix. Based on this clustering
methods for non-reversible processes Runolfsson and Ma (2007), Huisinga et al (2004) but also other
approaches Jacobi (2010), Sarich and Schütte (2014) have been developed.
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In order to tackle this problem, the authors of Fritzsche et al. (2007) proposed - and further developed
by Tifenbach (2011) - to replace the eigenvalue problem by a singular value decomposition and using
the singular values and singular vectors. However, in Jacobi (2010) it is claimed that the singular vec-
tors do not have the relevant sign structure to identify the metastable states, thus it is not preserving
the dynamical structure of the Markov chain. Nevertheless, this method has been applied in Tjakra
(2013) in the context of identifying the collective variables.

In this article we propose a novel clustering method (GenPCCA) aiming at grouping states of a Markov
chain by their transition behavior on the basis of a Schur decomposition.

It turns out that this novel method offers a powerful analysis of the Markov chain which also includes
the identification of coherent subsets and the freedom of regarding an arbitrary initial distribution of
states. Thus this novel method covers a broader class of applications by including non reversible
Markov chains. Since this method is a generalization of PCCA+ towards non-reversible processes it
is named GenPCCA (Generalized Perron Cluster Analysis).

5.1 Non-Equilibrium Steady States

Let a homogeneous Markov chain in a finite state space Γ = {1, . . . ,N} be given by {Xi, i ∈ N} with
the transition matrix

P = (pi j)i, j=1,....,N pi j = P(xt+1 = i|xt = j).

In MSM we seek for a projection G : RN → Rn such that the states (xi)i=1,...,N are clustered into
collection of metastable states (Cα)α=1,...,n where

P(Cα |Cα)≈ 1,

meaning that the system process stays long in metastable subsets Cα and rarely switches between
the sets.

The dynamics of the system can then be described by a low-dimensional projection of P, i.e. a matrix

G(P) = Pc = (pc
αβ )α(i),β ( j)=1,...,n

where n ≪ N.

In the case of a metastable Markov chain, the state space can be decomposed into metastable
subsets building the low dimensional space.

In order to guarantee that Pc inherits the correct dynamical behavior of the underlying Markov chain,
it has to meet the Chapman-Kolmogorov equation, i.e.

(G(P))k = G(Pk). (8)

In general, the projection G(P) of a Markov chain is not Markovian does not meet the semi-group
property given by (8), and thus the stochastic process induced by the n×n transition matrix Pc = G(P)
between the clusters is in general not a Markov process.

Markovianity can be guaranteed by claiming on the projection G:
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� invariant subspace condition: there exists a matrix X ∈ RN×n (for a suitable choice of n) which
meets

PX = XΛ (9)

for Λ ∈ IRn×n

� orthogonality relation
XT DηX = In×n, (10)

where Dη = diag(η1, ...,ηN) and Λ ∈ Rn×n, i.e. the X are spanning an n dimensional invariant
subspace of P.

With the invariant subspace condition (9) and the orthogonality condition (10) the projection G(P) is
given by

G(P) = (CT DηC)−1(CT DηPC) (11)

where C = XA for a suitable transformation matrix A which we specify Section 5.2 .

In other words Conditions (9) and (10) of a projection G are sufficient for (8). We remark, that a
singular valued decomposition of P does not meet (9) and consequently a Galerkin projection leads
to a projection error Sarich and Schütte (2014).

The eigen vectors of the dominant eigenvalues of P, i.e. the eigenvalues close to one, which are
typically used in MSM meet the invariant subspace condition and the orthogonality relation. Thus in
a reversible MSM construction, the metastable subsets can be described by the span of the eigen
vectors corresponding to eigenvalues close to 1.

For equilibrium statistical mechanics, Markov State Models (MSM) have celebrated quite great success.
Möller-Levet (2003), Shumway (2003), Vlachos et al. (2003), Li (2001), Deuflhard (2000), Deuflhard
and Weber (2005) by employing the eigenvalue structure.

However many biological phenomena can be found to relax towards a steady flux, these methods are
referred to as Non-equilibrium Steady States (NESS). Typical examples are systems driven by time
dependent or non-conservative external forces.

5.2 Markov State Models for Non Equilibrium Steady States

In Non Equilibrium Steady States, the system under consideration does not reach thermal equilibrium
state but a steady state. This fact precludes in general MSM since then then it can no longer be gua-
ranteed that the eigenvalues are real valued. Consequently the metastable sets can not be described
by the eigen vectors of the eigenvalues close to one, since the eigenvalues can not be arranged in an
order and a projection based on complex eigen vectors would lead to a complex matrix G(P) = Pc.

In the foregoing section the orthogonality relation in the context of eigen vectors was realized by
assuming that the underlying process is reversible. By resigning the reversibility of the underlying
Markov chain, an interpretation of a transition matrix in terms of unconditional transition probabilities
is not possible since then the eigen vectors do not meet the invariance condition (9) and the subspace
condition (10) in general. Moreover the spectrum of its corresponding transition matrix is in general
not real but complex.
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We thus take advantage of a Schur decomposition. Instead of using eigenvalues we employ Schur
vectors. Let therefore X̃ be n Schur vectors of P̃ = D0.5

η PD−0.5
η , then we have

P̃X̃ = X̃Λ

⇐⇒ D0.5
η PD−0.5

η X̃ = X̃Λ

⇐⇒ PD−0.5
η X̃ = D−0.5X̃Λ

⇐⇒ PX = XΛ, X = D−0.5
η X̃ . (12)

We have thus shown, that a Schur decomposition meet the invariant subspace condition (9) and the
orthogonality condition (10). Consequently G(P) is given by (11) with Schur vectors X . This allows
us to state the following

5.1 Theorem Let G(P) be given by (11), i.e.

G(P) = (CT DηC)−1(CT DηPC),

where X are the Schur vectors according to (12) and C = XA and Dη be some initial distribution of
the Markov chain, then

(G(P))k = G(Pk).

Proof:

G(P) = (CT DηC)−1(CT DηPC)
= (A T XT DηXA )−1(A T XT DηPXA )
= (A T XT DηXA )−1(A T XT DηXΛA )
= (A T A )−1(A T ΛA )
= A −1ΛA ,

such that G(P) meets the desired criterion:

(G(P))k = (A −1ΛA )k = A −1ΛkA = G(Pk).

�

5.2 Remark Note that the Markov chain in Theorem 5.1 does neither need to be aperiodic nor ir-
reducible. Moreover - in contrast to the reversible case - the initial distribution η has not to be the
stationary distribution. Theorem 5.1 may also be interpreted as commutativity between propagation
in time (k steps) and discretization G, which is a desired property for long term predictions.

In the real Schur decomposition the matrix Λ is an upper triangle matrix with possibly 2×2-blocks on
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its diagonal 

a11 z1 ∗ . . . . . . . . . . . . ∗

z̄1 b11 ∗ . . . . . . . . . . . .
...

0 0
. . . . . . . . . . . . . . .

...
... . . . . . . aii zi . . . . . .

...
... . . . . . . z̄i bii . . . . . .

...
... . . . . . . . . . . . .

. . . ∗ ∗
... . . . . . . . . . . . . 0 ann zn

0 . . . . . . . . . . . . 0 z̄n bnn


.

The remaining problem is, that an arrangement of the Schur decomposition in descending order (of
eigenvalues) is no longer possible. In Brandts (2002) it has been proposed to arrange the Schur-
values according to a absolute distance to a given target value z. For the reversible case z = 1 should
be chosen, to guarantee that PC is close to unit matrix allowing for a clustering into metastable states
(the eigenvalues of PC correspond to these selected values).

For the non reversible case, however, we can apply another method by arranging the Schur-values
according to the distance from the unit circle. In this case PC will have eigenvalues close to the unit
circle and, thus, will be similar to a permutation matrix, which can be seen as a clustering of states
in the sense of coherent sets Froyland and Padberg-Gehle (2014). This feature of GenPCCA will be
shown in the section of illustrative examples below.

Figure 23: Spectrum of the transition matrix P of the ODE system.

So far we have not yet explained how to obtain the matrix A from Theorem 5.1. In the framework
of GenPCCA, this step is identical to PCCA+ Weber (2005) and Deuflhard and Weber (2005). The
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Figure 24: Coordinate system showing the concentrations of the three protein species. These are
the 1000 starting points of the ODE system. Each of the thousand points is assigned to one of the
three colored regions (metastable regions) by using GenPCCA. It can be clearly seen, that the points
with two high (=20) and one low protein concentration (=0) are the centers of the metastable regions.

DOI 10.20347/WIAS.REPORT.29 Berlin 2017



H.-J. Mucha 76

problem of finding the matrix A can be converted to an optimization problem. More precisely, Gen-
PCCA finds a transformation matrix A mapping the column vectors of Schur vectors X , spanning the
invariant subspace, to the basis C = XA used for the projection G(P). Finding an optimal n×n-basis
transformation matrix A is the aim of this algorithm. As input the matrix X of the invariant subspace
is needed. The output of GenPCCA is the above mentioned matrix of membership vectors C. The
column vectors of both matrices, X and C, span the same subspace. Thus, GenPCCA provides an
invariant subspace projection of P, such that the subspace spanning vectors C have an interpretation
in terms of membership vectors. The selection of A is realized by a convex maximization problem
Weber (2005), Deuflhard and Weber (2005).

5.3 Example Gene Expression

In Elowitz and Leibler (2000) a regulatory network for gene expression in Escherichia coli is proposed
explaining the interplay between the genes TetR, λcI and LacI (see Elowitz and Leibler (2000) for
more details). The main part of this network is the repressilator consisting of three genes, where
each one of the genes produces a protein which represses the transcription (production of mRNA)
of one of the other two genes. This is a typical example of a NESS due to the cyclic cascades of
protein expression, where standard MSM method would fail since in the example the detailed balance
condition (reversibility) is violated. However, this system meets the balanced condition, given by

∑
i

πiPi j = π j.

such that we can use GenPCCA. The kinetics of this model can be explained by a system of six
differential equations: Let us denote pA/mA as the concentrations of LacI, pB/mB as the concentrati-
ons of Tet1R and pC/mC as the concentrations of cI We then have three differential equations for the
concentrations mA,mB,mC of the mRNA and three for the concentrations pA, pB, pC of the proteins,

dmA

dt
=−m1 +

α
1+ pn

C
+α0

d pA

dt
=−β (pA −mA)

dmB

dt
=−mB +

α
1+ pn

A
+α0

d pB

dt
=−β (pB −mB)

dmC

dt
=−mC +

α
1+ pn

B
+α0

d pC

dt
=−β (pC −mC), (13)

where α = 298.2 transcriptions per second, β = 1/5 the ratio of protein decay rate to the mRNA decay
rate, α0 = 0.03 is the growth constant and n = 2 is a Hill coefficient.

For computing the system of ODEs we took a Niederreiter sequence Lidl and Niederreiter (1984),
Niederreiter (1988) of 1000 starting points in the six dimensional space of the ODE system. We
multiplied each component of the Niederreiter sequence with 20, to have starting values in the interval
[0,20]. In each of these points we simulated the ODE for 1.5 seconds (ode45 Mathworks (2012)).
For computing the entries of a stochastic transition matrix P the endpoints of each simulations have
been assigned to the starting points by using an exponential assignment function such that

Pi j =
exp(−0.2 · ∥xstart,i − xend, j∥)

∑1000
k=1 exp(−0.2 · ∥xstart,i − xend,k∥)

, i, j = 1, ...,1000.
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Figure 25: Clusters colored in the network.
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Figure 26: Permutating and coloring the non-zero entries of the adjacency matrix g according to the
assignment to the seven clusters detected by GenPCCA.

Then in a next step we computed the spectrum of P (Fig.23 shows the spectrum of P of the ODE sy-
stem). Since the underlying process is a NESS, the spectrum has also complex eigenvalues. The lea-
ding eigenvalues (absolute values) are λ1 = 1.0000,λ2 = 0.6083±0.1959i,λ3 = 0.2921±0.2081i,λ4 =
0.2994. We selected 3 eigenvalues to be the dominating ones, i.e., closest to the unit circle. Note,
that despite the NESS, the Perron Frobenius Theorem for stochastic matrices still holds, such that
λ1 = 1 is clearly algebraically and geometrically simple.

Computing the corresponding Schur decomposition according to (12) where η is the stationary dis-
tribution of P, leads to a 1000× 3-matrix X which has been used for the GenPCCA algorithm. The
corresponding projection of P to a 3×3-transition matrix G(P) is given as:

G(P) =

0.7404 0.2521 0.0075
0.0190 0.7330 0.2480
0.2318 0.0249 0.7433

 .

One can clearly see that the process has a cyclic structure, i.e., it is a NESS. Three different states
can be identified: Approximately 75% of the transitions show a metastable behavior whereas ≈ 25%
enter in a cyclic manner into one of the other metastable regions. Thus, the matrix G(P), can be used
to detect the cyclic flow of the system. The Schur vectors can be used to identify the corresponding
regions in the state space of the ODE system. The clustering of the starting points is shown in Fig. 24.

The above ODE system introduced by Elowitz and Leibler (2000) can also be considered as a reaction
network. This kind of modeling is adopted in the SimBio Toolbox of MATLAB Mathworks (2012). The
package oscillograph includes a 65×65-adjacency matrix g which corresponds to the edges of
the reaction network (cp. Fig. 25).
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Besides the above gene expression reactions, a node ’trash’ has been introduced, representing the
dissipated entities. The matrix P is generated by normalizing the matrix g via rescaling its rows. Using
GenPCCA with the matrix of the leading 7 Schur values, we built the 7× 7-matrix G(P). The corre-
sponding seven clusters are mapped to the non-zero entries of g (cp Fig 26). GenPCCA obvioulsy
detected the four parts of the reaction network which belong to TetR, λcI, LacI and the trash (cp Fig
25). Additionally, GenPCCA can separate the products from the reactions in the protein production
parts (cp. colored adjacency matrix in Fig. 26). Note that in this case P has a ßinkrepresenting a
non-equilibrium process disallowing to use conventional MSM.

Conclusions

In contrast to existing MSM our novel method does neither need a reversible stochastic process nor
the stationary density of the process in order to meet the invariance (9) and orthogonality condition
(10). GenPCCA thus broadens the area of applications of MSM.

Acknowledgment. The work of Marcus Weber has been done for the DFG Collaborative Research
Center 765.
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Abstract

Using a dataset of football player performance data, we discuss exemplarily different
decisions by the user that are required for dissimilarity definition and clustering, namely
representation, transformation, standardisation and variable weighting.

6.1 A principle for data preprocessing

“The dark side of cluster analysis” refers to the fact that clustering and mapping multivariate
data are strongly affected by preprocessing decisions such as variable transformations (“data
cleaning” belongs to preprocessing but is not treated here). The variety of options is huge
and guidance is scant. This paper treats, in condensed form, some of the issues, using a
dataset of football players performance data.

The framework here is the design of a dissimilarity measure, used for multidimensional sca-
ling and dissimilarity-based clustering.

Clustering and mapping are unsupervised; decisions cannot be made by optimising cross-
validated prediction quality. Neither is it a convincing rationale to transform data to standard
distributional shapes such as the Gaussian. A more general discussion is given in [4].

General principle: Data should be preprocessed in such a way that the resulting effective
distance between observations matches how distance is interpreted in the application of
interest.

Corollary: Different ways of data preprocessing are not objectively “right” or “wrong”; they
implicitly construct different interpretations of the data.

Data driven principles such as optimising stability or “clusterability” are suspicious: can the
data decide on their own how they should be interpreted?

DOI 10.20347/WIAS.REPORT.29 Berlin 2017



H.-J. Mucha 82

6.2 Overview of decisions

Here is an overview of decisions that need to be made.

Representation: decisions about how to represent the relevant information in the variables
properly; this may involve excluding variables, defining new variables summarising
or framing information in better ways, and certain kinds of “interpretation-based” (as
opposed to data-based) standardisation.

Transformation: variables should be transformed in such a way that the resulting differen-
ces match appropriate “interpretative distances” adapted to the meaning of the varia-
bles and the specific application.

Standardisation: variables should be standardised in such a way that a difference in one
variable can be traded off against the same difference in another variable when aggre-
gating variables for computing dissimilarities.

Weighting: some variables may be more important/relevant than others - weighting is about
appropriately matching the importance of variables.

Mathematically, both standardisation and weighting are multiplications by a constant,
but the rationales are quite different.

Variable selection and dimension reduction are special cases of representation and weig-
hting.

Defining indexes summarising information guided by interpretation is an alternative to data-
based dimension reduction.

6.3 Basic ingredients

The framework here is the construction of a dissimilarity measure by aggregating variable-
wise distances, e.g.,

Gower aggregation ([3])
d(x1,x2) = ∑p

i=1 widi(x1i,x2i)

Euclidean aggregation

d(x1,x2) =
√

∑p
i=1 widi(x1i,x2i)2.

Alternatives exist but are not treated here.

Mapping is then done by Kruskal’s nonparametric multidimensional scaling ([2]) and cluste-
ring by “partitioning around medoids” ([1]).

The general principle above also applies to the choice of mapping and clustering method,
but not treated here.
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6.4 Football players dataset

Football players characterised by 125 variables taken from whoscored.com (we have data
on > 2000 players but use only 75 prominent ones from the 2014/15 season for illustration).

Variables:

12 position variables (binary) - indicating where a player can play.

Age, height, weight (ratio scale numbers)

Subjective data: Man of the match, media ratings

Appearance data of player and team, number of appearances, minutes played

Count variables (top level): goals, tackles, shots, passes, fouls, clearances etc.

Count variables (lower level): subdivisions such as shots by body parts, type of pass (long,
corner, freekick etc.), successful/failed etc.

Aim: to provide a mapping and classification of players that can be used by managers and
clubs looking for players.

6.5 Representation

� Standardise count variables by number of minutes played.

� Top level/lower level count variables:
use total count (per 90 minutes),
use percentages on lower level, e.g.,
shots 5.5, shots right foot 3.8, left foot 0.8, header 0.9,
use shots 5.5,
percentages right foot 69, left foot 14, header 16
percentage profiles are complementary information to total.

� For binary position data use “geco coefficient” ([5]) based on aggregating “geographical
distance” for every position to closest position of other player.

� We decided to not use subjective variables.
It’d be legitimate to use them - this is a decision about what meaning the results should
have.
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Figure 27: Histogram of offsides (left hand side) and goals (right).

6.6 Transformation

Some variables are very skewly distributed.

There is more variation at the upper end, which suggests that “interpretative distance” bet-
ween large values should be transformed down. But goals count (approximately) linearly in
football.

So we use a concave transformation for “Caught offsides”, but none for “Goals”.

We decide between log(x+ c) or
√

x+ c and about the value of c by looking at what it does
to the values and what seems appropriate (subjective football expertise). We explore by
sensitivity analysis what difference it makes. (We decided to use the plain square root here;
details are omitted in this paper.)

Transformations: data dependent?
Unfortunately, researchers have no clear formal idea about “interpretative distance”. The
rationale of transformation is matching “interpretative distance” independently of the data.
But researchers may need to look at data for having a clearer idea about “interpretative
distance”.

6.7 Standardisation

Percentage variables, player age, goals, passes per 90 minutes don’t have compatible vari-
ation. Standardisation is needed.
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But different percentages at same level (shots left, right, header) should be standardised by
pooled variance, because variations are compatible and relative sizes should be preserved.
Bigger variation should have bigger implicit weight.

Standardisation should not destroy implicit weighting by variance, where appropriate.

6.8 Weighting

Variable weights are useful if some variables seem more important than others. This influ-
ences the meaning of the results.

Weighted percentage distributions as “one variable”, e.g., left foot, right foot, header shots
are each weighted 1/3; we think about this as giving groups of variables that together forma-
lise a certain aspect of the information unit weight.
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Correlation, shared information: if variables are correlated because of redundant informa-
tion (e.g., percentages adding to 100), weight them down.
If variables with complementary meanings are correlated, there is no reason not to give them
full weight.

Results

“External validation” by football knowledge: Erkin and Pirlo are quite different, but in the
same cluster in plain Euclidean solution. Rodriguez and Clichy are expected to be similar,
which they are with distances constructed here.
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Abstract

Although many new algorithms like e.g. support vector machines, boosting, random
forests or neural networks have been proposed in the recent past logistic regression
does still represent the gold standard in industrial praxis.

Benchmarking studies show the general superiority of flexible learning techniques
that are able to detect complex structures. These studies typically restrict to the eva-
luation of one or several performance measures (like misclassification rate) and ignore
further aspects of practical feasibility.

In this paper a critical investigation of pros and cons of modern machine learning
techniques with respect to business requirements and their practical relevance is worked
out. An exemplary case study based on credit scoring using random forests is executed.

Introduction

Although many new algorithms like e.g. support vector machines, boosting, random forests or neural
networks have been proposed in the recent past there are several reasons why logistic regression
does still represent the gold standard in industrial praxis:

1 Logistic regression is widely taught.

2 There are many software implementations of logistic regression available.

3 The resulting models are stable and no further parameter tuning is necessary/possible.

4 The results are easy to interpret.

While the first two reasons are historical and currently under change the third one refers to the neces-
sity an additional parameter specification that is appropriate to the specific data situation. A wrong
parameter specification will lead to suboptimal predictive power of the resulting model and can thus
be considered as an operative risk from an economic point of view.

On the other hand, many benchmarking studies (cf. e.g. Szepannek et al., 2008, Szepannek et
al., 2010, Lessmann et al., 2013) have shown some general superiority of modern flexible learning
techniques in terms of quantitative performance measures, especially for complex data structures.

Figure 28 (left) shows a typical example in the credit scoring context: the relationship between age
and default rate is nonlinear. A linear model like logistic regression will not be appropriate here. For
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Figure 28: Example of a nonlinear relationship (left), binning and WoE transform (right).

this reason industrial praxis in credit scoring is a pre-binning of the data by the analyst. The binned
variables are further used for modelling as dummy variables or transformed to weights of evidence
(WoEs) where a new numeric variable

XWoE = log
(

f (x|Y = 1)
f (x|Y = 0)

)
is created from the original variable X (cf. Fig. 28, right). A property of this transform is its (univariate)
linearity in the logit of Y (cf. e.g. Szepannek, 2011). Such a pre-binning of the data not only allows to
model nonlinear relationships using logistic regression and but also guarantees an implicit plausibility
check of the data by the analyst which reduces operational risk.

But pre-binning still does not take into account nonlinear relationships between explanatory variables
and moreover the manual nature of the process does still require some kind of additional automatized
pre-processing if the number of variables is very large. In order to compare different methods acade-
mic benchmark studies typically set up automatized benchmark experiments and the comparison with
an industrial use case is not the scope. As a consequence most benchmark studies will be biased
towards algorithms that allow for a higher degree of automatization.

For this reason in this document logistic regression models both with and without pre-binning are
constructed as a the baseline for comparisons. It has to be stated that manual pre-binning denotes
some loss in scientific rigor which is accepted in order to increase practical relevance of the results.

An experiment is set up based on real world data from the credit scoring business context. Random
forests (Breiman, 2001) are selected as they represent one of the most popular modern machine
learning techniques. In contrast to typical benchmark studies not only the performance of an opti-
mally tuned parameter set is analyzed but also the performance over the whole range of parameter
combinations. As a consequence the study concentrates on random forests and no further classifiers
are investigated.

In Subsec. 7.1 the parameters of random forests are discussed and in Subsec. 7.2 the experiment is
presented. Several questions are analyzed to test the practical benefit of modern machine learning
techniques:
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� Potential benefit vs. the risk of a performance decrease

� Investigation of random forest parameters

� Cost benefit considerations: time to invest

� Evaluation of the improvements from a business perspective.

� The effect of the analyst

� Interpretation of the model

The results are given in Subsec. 7.3 and finally a summary is given in Subsec. 7.4.

7.1 Random Forests and Parameter Tuning

Random Forests (Breiman, 2001) are designed to avoid shortcomings w.r.t. bias and variance of
either small or large single decision trees: a set of large trees (with small bias) is built on bootstrap
samples. The variance of the final classifier is reduced by averaging the predictions of all trees. In
addition, the single trees are further uncorrelated by allowing only for random subset of variables at
each single split of each tree (cf. e.g. Segal, 2006). The number of trees as well as the number of
variables that are considered for each split are two main parameters for random forest construction
and optimized in most benchmark studies. A larger number of trees will generally increase compu-
tation time and improve performance but saturate. The number of randomly chosen variables should
depend on the dimension of the data set: if it is too large the existence of dominant variables may
lead to very similar trees and reduce the bootstrapping effect. On the other hand, selecting too few
variables may be dangerous if the data consists of a large percentage of purely noisy variables w/o
any information on the class.

As an extension to many studies the current experiment does not restrict on these two parameters but
includes several additional parameters (for an overview see Boulesteix, 2012), namely the minimum
node size and the maximum number of terminal nodes. Both parameters control the depth of
single trees within the forest and should be chosen according to the philosophy of large unbiased
trees.

In addition the bootstrap samples can be chosen either with or without replacement. A corresponding
sample size w/o replacement is of 0.632× the sample size. Strobl et al. (2007) describe the bias of
variable importance for sampling with replacement. Finally, samples can be balanced w.r.t. the
classes as tree splitting criteria typically are affected by the class proportions (cf. e.g. Bischl et
al., 2016, Brown and Mues, 2012, Crone and Finlay, 2012). For this reason both balanced and
unbalanced samples are investigated for random forest construction.

7.2 Case Study

An issue of credit scoring research is the general lack of real world data as they are confidential
in general. For this study the freely available German Credit Data (Hoffmann, 1994) from the UCI

DOI 10.20347/WIAS.REPORT.29 Berlin 2017



H.-J. Mucha 91

Additional debtors Number of credits
Age Other instalment plans
Amount People liable
Credit history President residance
Duration Property
Duration employment Purpose, product
Foreign worker Savings
Housing, type of residence Gender, family status
Instalment rate Status checking account
Job Telephone available

Table 7: Variables of the German credit data set.

Machine learning repository (Newman et al., 1998) is used. Based on one single data set the results
should rather be considered as a case study without claim for generality. Bischl et al. (2016) try to
overcome this issue by collecting a large number of data sets from other domains but transferability
to the credit scoring context remains questionable.

The data consists of 1000 observations in two classes (default vs. non-default) which is quite few
compared to real world applications. There are 20 explanatory variables. The prior probability of
default is 0.3 which does not reflect typical unbalance of real world scoring data. In contrast to
decision trees logistic regression is quite insensitive to class unbalance (Bischl et al., 2016, Brown
and Mues, 2012, Crone and Finlay, 2012).

Table 7 summarizes the variables, numeric variables are in bold. Typical for business applications
the variables are not all metric but most data comes along in categories further emphasizing the
analyst’s role in model building as the categories are w/o any order but have to be interpreted w.r.t.
their meaning from a business point of view.

As a baseline logistic regression models are built with and without pre-binning of the variables. Bin-
ning is done based on manual plausibility checks of the splits generated by univariate decicsion trees
with varying complexity parameters (Therneau and Atkinson, 1997). For the binned variables sepa-
rate regression models are built either using dummies or WoEs.

The Gini coefficient G = 2(AUC − 0.5) is used as a performance measure as it represents the
most popular statistic to evaluate the performance of credit scoring systems in practise. Given the
comparatively small sample size 10 fold cross validation is used for performance evaluation. Good
practice would consist in an additional inner CV loop for parameter optimization of random forests (cf.
e.g. Szepannek et al., 2010, Bischl et al., 2016). The focus of this study slightly differs from typical
benchmark experiments as the entity of all models with different parameters is of interest rather than
only the optimally parameterized one. For this reason no parameter optimization on an additional
inner loop has been done here.

A total of 2304 random forests has been investigated based on an exhaustive parameter grid of the
parameters given in table 8 (the default parameters are in bold, for the number of terminal nodes
there is no restriction in the default parameterization of random forests, corresponding to a value of
500 in the setting).

In order to investigate its relevance for business a test on the achieved improvement is implemented
according to Henking et al. (2006) using approximate normal distribution of the AUC with standard
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Tuning Parameter Values
Number of trees {20,50,200,500,1000,2000}
Number of variables | Split {2,4,8,16}
Min. node size {1,5,20,50}
Max. number terminal nodes {5,10,20,50,100,500}
Sampling with replacement {yes,no}
Balanced class sizes {yes,no}

Table 8: Parameters for random forest optimization.

Pre-inning Dummies WoEs
Yes 57.13 57.80
No 59.06 59.75

Table 9: Results of logistic regression models.

error:

σ̂AUC =

√
AUC(1−AUC)+(ND −1)(q1 −AUC2)+(NND −1)(q2 −AUC2)

NDNND

and q1 =
AUC

2−AUC , q2 =
2AUC2

1+AUC as well as N(N)D the number of (non-)defaults in the sample.

7.3 Results

Logistic Regression: Table 9 shows the results of the logistic regression models. Both preliminary
binning and WoE pre-transform of the binned data improve performance. Whereas improvement by
binning might result from allowing to model nonlinearities the additional gain of using WoEs may be
a consequence of the small data set as the use of dummy characteristics increases the degrees of
freedom of the subsequent regression model.
Random forests and their parameterization: The best random forest model achieves a Gini coef-
ficient of 61.53 which is no significant improvement (p value: 0.294). The optimal parameters are
identical to the default ones except from the number of variables offered at each split being 2 < 4 (=
floor of the

√
· of the number of variables in the data set). Figure 29 shows the frequency of model

performance over all parameter combinations.

It can be seen that the relative improvement by using random forest models is quite small whereas
the potential loss can be dramatic for a bad parameter set. Only 7.6% of the models improve logistic
regression performance but 19.5% even led to significant performance decrease. This underlines the
risk of blindly applying modern machine learning algorithms, instead a thorough understanding of the
methodology is required. Interestingly, just using default parameterization already results in a (slight)
performance increase (60.04, p value 0.465). In order to prevent from misinterpreting the results it
has to be remarked that the frequencies in Figure 29 result from an experimental design and do not
reflect a distribution as the figure might suggest. The results are further biased by the attempt to
investigate a quite exhaustive parameter grid whereof some combinations turn out to be avoidable,
leading to an analysis of the impact of the single parameters. Figure 30 shows the performance as
a function of the parameters and levels in an OFAT sense: Mainly, the considerations of Subsec. 7.1
are confirmed as both small (flat) base single trees as well as a number of trees that is too small
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result in strong performance decrease. Remarkably a number of four variables that is offered at each
split on average gives the best results but the optimal model is obtained for two variables only. As a
summary, some parameter values can be discarded for both theoretical considerations and empirical
evidence.

In conclusion, the observed benefit of using random forests is relatively small and no significant
improvement is obtained. But one may consider a business case of a population with 5% defaulters
in total and a sum of 2bn. EUR of annual funding. In this case an improvement of only +1% rejected
defaulters in will lead to a profit increase of 1mn EUR per year. The ROC curves for visual analytics
as provided by many statistical software packages will not even allow to recognize any difference in
the corresponding graphs.

Cost vs. benefit analysis: Different to academic research, time-to-market is typically an important
business consideration which also holds for the credit scorecard modelling process. For this reason
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Figure 31: Performance vs. optimization time (left) and variance of forests (center) and performance
decrease for lack of variables (right).

and based on the observed results from the last paragraph a parameter space (according to the
previous grid but reduced by the identified implausible values for the tree and forest size) has been
set up and a random search of additional 10000 forests in this parameter space has been set up in
order to check the increase in performance with duration of the optimization process. (Please note
that a naive random search can be speed up by intelligent search algorithms like genetic algorithms
or iterated F-racing, cf. e.g. Bischl et al., 2016). Figure 31 (left) shows that the optimum is reached
after only 400 iterations and not improved anymore which clearly indicates that the costs related to
the additional parameter optimization process are comparatively low.

Astonishingly, it can be seen from the graph that the optimal performance from the first experiment
(61.53) is not reached again within 10000 additional forests. This phenomenon is due to the ”random-
ness of random forests”: as the forests do depend on bootstrap samples two random forest models
based on the same parameters will not be identical (see also Schäfer, 2006). Figure 31 (center)
shows the performance variability of 100 random forests models for both the default parameters as
well as the ”optimal” parameter set: the performance of the first experiment is not reached again,
which again underlines the importance of the second test loop for parameter optimization in order to
avoid overfitting (cf. Subsec. 7.2).

The higher variance of the best parameterization from experiment 1 can be explained by the additio-
nal randomness that results from selecting only two instead of four variables at each split which can
increase or decrease performance depending on the selected variables. A consequence, model
selection should consist in taking into account both expectation and variance of the model
performance estimation. In order to win a competition like kaggle one may accept a higher vari-
ance to obtain increased upper performance quantiles whereas in a risk management context lower
quantiles of model performance estimation will more relevant.

Model tuning vs. integration business knowledge: Improving models may not only be achieved by
improving statistical modelling but also by identification of additional important explanatory variables.
As the used data represents a real world example we can analyze what happened if some variables
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were not available (to simulate the improvement that can obtained by new variables). Figure 31 (right)
shows the loss in performance if a randomly selected percentage of variables were not available for
model building. Please note the difference: as opposed to the random forest parameter the variables
are not just removed for single splits within a tree but for the whole forest, here. The graph outlines
the importance of identifying predictive characteristics: the benefit of an additional variable is much
higher than the additional benefit obtained by model optimization. This step has to be considered as
an important factor and emphasises the importance of a proper integration of business knowledge
into the model building process.

Understanding the model: Finally, risk models not only have to be communicated to several directi-
ons (management, employees as well as its results towards the customers), there are also regulatory
constraints often based on a natural mistrust towards black box algorithms. It should be remarked at
this point that a properly validated and demonstrated superiority in model performance will lead to
better estimates of risk which denotes one of the central targets of regulation.

Often the interpretability of regression coefficients (score points) are considered as advantageous
to understand the key drivers of a model and to allow for its validation. The concept of variable
importance (cf. e.g. Strobl et al., 2007) can be used to quantify the relevance of a variable within any
classification model. Moreover the decrease in variance importance on out-of-time samples can be
used for validation purposes and thus a decomposition of the black box.

7.4 Summary

The paper aims to bridge a gap between academic research concerning modern machine learning
techniques and their business relevance for credit scoring applications. Random forests are inves-
tigated as one of today’s most popular machine learning algorithms. The results are compared to
logistic regression in a realistic setting. Several practical aspects are discussed like parameter tu-
ning, business relevance of the improvements as well as cost vs. benefit aspects. In summary, the
obtained benefits were comparatively small, but still of potentially large monetary impact. In addition
the identification of new predictive characteristics has been demonstrated to be of great importance
underlining the relevance of business knowledge integration in the modeling process.

As an important result, the simultaneous investigation of expectation and variance of classifier per-
formance estimation has been worked out to be appropriate for model selection in a risk context
potentially leading to a focus on quantiles.

Finally, variable importance has been presented as a tool to remove doubts concerning black box like
algorithms w.r.t. regulatory constraints or for model validation purposes and improve the estimation
of risks.
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Abstract

In archaeometry, the chemical composition of oxides of objects is measured, and
often the results are presented in percentages. Then, the so-called compositional data
analysis should be applied as “the only one valid statistical analysis”. This paper is con-
cerned with finding groups (clusters) in (strict) compositional data, that is, nonnegative
data with row sums equal to a constant, usually 1 in case of proportions or 100 in case
of percentages. It reports about some experiments. Without loss of generality, the clus-
ter analysis of observations of compositional data is considered, where the row profiles
contain parts of some whole. Distance functions between profiles and appropriate clus-
tering methods are recommended. Nowadays, besides oxides, a much greater number
of trace elements can be measured by new innovative technical equipments. Usually,
these measurements are in ppm (parts per million) or ppb (parts per billion) which cau-
ses additional problems for compositional data analysis. Applications to archaeometry
are presented.

8.1 Introduction and Motivation

In archaeology, the aim of clustering is to find groups in data such as proveniences of glass
objects or pottery. The motivating example is taken from Baxter & Freestone (2006) where
the complete original data matrix Z = (zi j) is published as it is analyzed hereafter. It is
compositional data with nonnegative elements zi j ≥ 0, (i = 1,2, . . . , I, j = 1,2, . . . ,J). Each
archaeological object (observation) is characterized by J = 11 variables, the contents of
oxides in %. The sum in each row is exactly 100%. This dataset of colorless Romano-British
vessel glass contains two groups. Group 1 consists of 40 cast bowls with high amounts of
Fe2O3. Group 2 also consists of 40 objects: this is a collection of facet-cut beakers with low
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Figure 32: PCA plot of log-ratio transformed data (Romano-British vessel glass: here one
Sb2O3 value of the dataset was changed slightly from 0.08 to 0.0001 (observation “79”)).

Al2O3. Cluster analysis is unable to find the true classes for log-ratio transformed data: 35
objects were wrongly classified, see Fig. 2 and Table 2 in Mucha et al. (2008). This is an
error rate of about 44 %. Generally, log-ratio compositional data analysis (Aitchison 1986)
means: instead of the original data matrix Z use X with elements

xi j = log(zi j/g(zi)) , (14)

where g(zi) = (zi1zi2 . . .ziJ)
1/J is the geometric mean of the ith observation. This transforma-

tion is restricted to strictly positive values zi j > 0 which is an essential drawback in applicati-
ons to archaeological and geological sciences. Fig. 32 shows another drawback of log- ratio
data analysis: it is an outlier “producing” technique. The PCA plot with the class membership
of the objects is based on log-ratio transformed data (14). In addition, to become apparent,
the following experiment was done: We change only one value of Sb2O3 very slightly from
0.08 to 0.0001 (observation “79”). (Then the corresponding values of this row are trimmed
to sum up strictly to 100%). As a result, the observation “79” becomes a very strong outlier.
However it is already a possible outlier when doing log ratio analysis of the original data, see
Fig. 2 in Mucha et al. (2008). Obviously, besides the zero value problem, compositional data
analysis seems to be inappropriate for positive values near 0. Already Baxter and Freestone
(2006) criticized that Aitchison argued that all others transformations are “meaningless” and
“inappropriate” for compositional data. The authors presented the failure of PCA for different
data sets based on the log-ratio transformation.
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Figure 33: Scatterplot of the canonical discriminant variable of log-ratio transformed data vs. the
canonical discriminant variable of the original Romano-British vessel glass data.

Another experiment: What about the performance of the well-known linear discriminant ana-
lysis based on log-ratio transformed data referred to (14)? It is poor: Four “cast bowls” and
seven “facet-cut beakers” are wrongly classified by the estimated linear classifier. The two
classes cannot satisfactory be separated by the corresponding canonical discriminant varia-
ble “CanVar_Aitchison”. Fig. 33 shows a visual comparison with the canonical discriminant
variable of the original data. The latter separates the true classes without error, see the hori-
zontal broken line in between the two class-wise distributions. This is different to the vertical
dotted line which visualizes the classification result of “CanVar_Aitchison” mentioned alre-
ady above. In the linear discriminant analysis of the original data, the F-value of about 610
(degrees of freedom are 11 and 68) is quite high. It is highly significant.

Figure 34: The variable MnO is very skew-symmetric (data: Romano-British vessel glass).
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8.2 Finding Clusters in Compositional Data

We consider here the simplest model-based Gaussian clustering method. It seems to be
an appropriate (practical) model for clustering highdimensional datasets (i.e., I ≈ J). Let
C = {x1, . . . ,xi, . . . ,xI} denote the finite set of observations. Further, let P = {C1, . . . ,CK} of
C be the partition we are looking for. The minimization of the sum of squares (SS) criterion
(i.e., derived from the simplest model-based Gaussian clustering model)

VK(P) =
K

∑
k=1

Wk, (15)

is equivalent to the minimization of

VK(P) =
K

∑
k=1

1
|Ck| ∑

i∈Ck

∑
h∈Ck,h>i

dih, (16)

where
dih = d(xi,xh) = ∥xi −xh∥2 (17)

is the squared euclidean distance between two observations xi and xh, and Wk is the usual
estimate of the within-cluster covariance matrix Σk of cluster Ck. The corresponding distance
matrix is D = (dih), (i = 1,2, . . . , I,h = 1,2, . . . , I). It is symmetric, and it is additive, i.e., it can
be expressed by the sum of multiple (variable-wise) distance matrices D( j):

D =
J

∑
j=1

q jD( j), (18)

where the element d( j)
ih = (xi j − xh j)

2 is the squared euclidean distance with respect to vari-
able j, and q j = 1 is the standard “weight” of variable j. Eq. (18) becomes more general by
taking into account nonnegative weights of variables q j ≥ 0. For example, q j = 1/s2

j means
standardisation of variable j to standard deviation equal to 1, where s j > 0 is the standard
deviation of the original variable j. Greenacre (1988) uses the weights q j = x++/x+ j for
clustering the row profiles (i.e., the vectors of relative frequencies) of a contingency table.
Here x+ j/x++ is the jth element of the average row profile. Then, the elements of D in (18)
are the Chi-square distances between profiles (i.e., between vectors of proportions that sum
up strictly to 1). So far, clustering of vectors of proportions in compositional data analysis
can also be considered within the framework of correspondence analysis.

Concerning standardisation and weighting of variables see Sect. 6 in this volume. Another
common approach in (robust) statistics is to transfer the values for every variable to their rank
values. The advantage is that important practical problems are managed in the twinkling
of an eye, namely the scaling problem and outlier problem. However, one loses a lot of
information. The logarithmic transformation is very common in geochemistry because the
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Figure 35: PCA plot of log-transformed data (Romano-British vessel glass).

distributions of the chemical elements are often skew-symmetric with a long tail on the right
side (see, for example, Fig. 34). The general logarithmic transformation is

xi j = log(zi j + c j), (19)

where c j > 0 is an appropriate constant with regard to variable j. Hereafter, c j = 1, j =
1,2, . . . ,J, is used. As a result, Fig. 35 shows the PCA plot of log-transformed data. The
hierarchical Ward’s clustering finds the true classes without error. It minimizes the criterion
(16), that is, the SS-criterion (15). Fig. 36 shows univariate and bivariate densities for the first
two principal components. Another visualization of the bivariate density is shown in Fig. 36.
The two classes, “cast bowls” and “facet-cut beakers”, look well separated.

The additive (variable-wise) techniques such as standardisation, weighting, logarithmic trans-
formation, and transformation to rank order data, are different to the multivariate log-ratio
transformation (14). The latter takes all the data into account when transforming a single
variable.

8.3 Application: Cluster Analysis of Basalt Ground Stone Tools from
El-Wad

There is an ongoing study to establish a geochemical-mineralogical characterization of dif-
ferent basaltic rocks used as processing tools during the Natufian culture of the later parts
of the Epipalaeolithic period (c. 15,000-11,500 Cal BP) in the southern Levant (Gluhak and
Rosenberg 2013). It focuses on tools found in various sites attempting to define raw material
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Figure 36: Nonparametric univariate and bivariate density estimation of the first two principal
components of log-transformed data (Romano-British vessel glass).

Figure 37: Several cuts of the nonparametric bivariate density estimation of the first two
principal components (see Fig. 36).

DOI 10.20347/WIAS.REPORT.29 Berlin 2017



H.-J. Mucha 103

Figure 38: PCA plot of log-transformed basalt data showing the result of clustering (see also
Fig. 39).

variability between tool types as well as to pursue their provenance. Here we analyze only
a small subset of I = 55 tools found in el-Wad (Carmel Mountains). Altogether 39 oxides
and chemical elements were measured. In the following, only the 10 oxides are under in-
vestigation, i.e., J = 10. The logarithmic transformation (19) with c j = 1, j = 1,2, . . . , j, is
used.

Fig. 38 shows the corresponding PCA plot. Here the result of Ward’s cluster analysis into
4 clusters is presented. In addition, the circle surrounds a very stable sub-cluster (see also
Fig. 39: The corresponding Jaccard values of stability τ are underlined and in bold). The dot-
ted line separates the data into two clusters which constitute the stablest partition obtained.
Fig. 39 shows the result of the investigation of stability of Ward’s clustering via the bootstrap
resampling technique. Here the degree of stability of an individual cluster is measured by the
Jaccard similarity measure τ which can achieve a maximum value equals 1. The latter allows
the investigation of stability of both the individual clusters (Hennig 2007) and the partitions.
The latter is based on an averaged Jaccard value such as

τ∗ = 1/K
K

∑
k=1

τk,

where K is the number of clusters in the partition. The partition into two clusters has the
highest averaged Jaccard value τ∗ = 0.93, see at the bottom line in Fig. 39.
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Figure 39: Stability of individual clusters of Ward’s clustering (see also Fig. 38). High values
of stability are in bold.

Outlook

The stability of the clusters of basaltic rocks looks quite different. Cluster analyses of all tools
from all sites based on all variables (10 oxides and 29 trace elements) are postponed to the
future. Then the pivotal question has to be answered: Can we find stable groups in such
(mixed) data by applying “usual” statistical clustering? To answer this, further investigations
are necessary where variable selection in cluster analysis (Mucha and Bartel 2016) seems
the favorite way to do this. And, besides the simplest model-based Gaussian clustering
criterion (15), the logarithmic sum-of-squares criterion (Mucha 2009) seems to be also an
appropriate criterion for this data, namely minimizing

V ∗
K(P) =

K

∑
k=1

|Ck| log tr
Wk

|Ck|
, (20)

or, equivalently

V ∗
K(P) =

K

∑
k=1

|Ck| log( ∑
i∈Ck

∑
h∈Ck,h>i

1
|Ck|2

dih), (21)

where d is the squared euclidean distance (17). Both criteria (15) and (20) look for clusters
of spherical shape. However, the more general criterion (20) can also detect clusters of
different volumes. As the SS-criterion (15) is, it is also additive because of its analogon (21)
which is based on pairwise distances (17). Again, the latter can be generalized by variable
weighting (see eq. (18)).
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Part III

Data Analyses

9 Comparison of the Results of the Competition

Hans-Joachim Mucha

Introduction

Every now and then in the past more than 20 years, data analysis experiments were performed at the
meeting. Beginning with the meeting 2005 at Infratest in Munich, Germany, the data analyses were
transformed to a competition with more contributions. As introduced at the autumn meeting 2013 at
UCL in London, it runs as a competition with real-world data sets and book prizes for the winners.
This time, the following book prizes were donated by WIAS:

(a) Gunter Ritter (2015): Robust Cluster Analysis and Variable Selection. Chapman & Hall/CRC
Monographs on Statistics & Applied Probability;

(b) Vladimir Spokoiny and Thorsten Dickhaus (2015): Basics of Modern Mathematical Statistics, 18
of Springer Texts in Statistics, Springer;

(c) Christian Hennig, Marina Meila, Fionn Murtagh, and Roberto Rocci (2015): Handbook of Cluster
Analysis. Chapman & Hall/CRC Handbooks of Modern Statistical Methods.

9.1 The “Chemsensor” dataset for competition

There is a plethora of existing data analysis methods and the idea is to apply them to various data
sets with different characteristics in order to learn about their strengths and weaknesses. For this
purpose, a real life data set was issued about two months before the event: The bioaerosol data for
unsupervised classification (clustering) competition were provided by Dr. Chistian Hennig.

Table 10: Confusion matrix of the true class vs. result of linear discriminant analysis, see Sarantaridis
et al. (2012). The columns show which class the events were assigned to by cross validation.

Class BGP BSS JSS BWP Total
BGP 29 0 1 0 30
BSS 1 22 7 0 30
JSS 1 10 19 0 30
BWP 5 3 3 19 30
Total 36 35 30 19 120
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Table 11: True class membership and cluster analysis results. In addition, the original numbering is
shown as it is in Sarantaridis et al. (2012)

No. Class P5 P6 P7 P3 No. Orig. No. Class P5 P6 P7 P3 No. Orig.
1 4 1 5 1 3 107 61 3 1 6 3 3 68
2 4 1 5 1 3 108 62 1 3 6 3 2 30
3 2 2 3 2 1 60 63 3 2 3 2 3 75
4 3 2 3 2 1 66 64 4 1 1 5 3 96
5 2 1 6 3 2 53 65 3 4 3 2 2 64
6 3 1 6 3 2 67 66 3 4 3 2 3 73
7 4 3 5 1 2 100 67 4 3 1 5 3 91
8 3 2 3 2 3 62 68 1 3 6 6 2 11
9 2 4 4 2 2 50 69 1 3 6 3 1 29

10 4 1 6 4 3 105 70 3 4 3 2 3 88
11 4 1 6 4 3 118 71 2 4 4 4 1 42
12 4 1 2 1 2 109 72 4 2 4 4 3 115
13 4 2 1 5 3 99 73 2 1 6 3 2 55
14 3 4 4 2 2 85 74 1 3 5 7 2 16
15 2 2 4 2 3 43 75 3 1 5 5 3 72
16 3 2 3 2 3 71 76 4 1 2 1 3 119
17 1 3 6 6 2 4 77 4 5 2 3 2 94
18 3 2 3 2 1 81 78 4 1 2 1 1 98
19 1 1 5 7 2 6 79 1 3 6 3 2 3
20 4 2 4 2 3 102 80 3 4 4 2 2 70
21 1 4 4 4 1 18 81 4 1 6 3 2 106
22 4 1 1 5 3 104 82 1 3 5 7 3 19
23 2 2 4 2 2 45 83 4 3 1 5 3 93
24 2 2 3 2 1 35 84 1 3 6 6 2 5
25 3 2 3 2 3 82 85 2 1 5 7 2 33
26 4 1 6 1 3 120 86 2 2 4 2 3 46
27 2 2 3 2 1 36 87 3 2 3 2 3 86
28 3 2 3 2 2 90 88 2 3 5 7 3 51
29 3 3 6 6 2 61 89 3 2 3 2 3 80
30 3 1 6 6 2 63 90 1 3 6 3 3 14
31 1 3 6 3 2 10 91 3 3 2 6 2 65
32 4 1 2 3 1 95 92 2 1 5 7 3 31
33 4 1 2 1 3 116 93 4 2 4 2 3 97
34 3 2 3 2 2 87 94 1 1 5 3 3 15
35 4 1 6 4 3 110 95 3 2 3 2 2 69
36 2 2 3 2 2 57 96 1 3 2 3 1 26
37 2 1 6 3 1 54 97 1 3 6 6 2 2
38 4 1 1 5 3 101 98 1 3 6 6 2 20
39 4 1 1 5 2 112 99 1 3 6 6 2 22
40 1 3 6 6 2 27 100 4 5 2 1 2 117
41 1 3 6 3 1 9 101 1 3 6 6 3 21
42 3 2 3 2 1 78 102 3 2 3 2 1 84
43 2 2 4 2 1 44 103 1 3 2 3 2 8
44 1 3 6 6 2 25 104 2 2 3 2 3 40
45 4 1 6 4 2 113 105 2 3 5 7 2 47
46 2 2 3 2 2 37 106 1 3 6 6 3 13
47 1 3 6 3 2 12 107 2 1 6 3 1 56
48 3 2 3 2 3 89 108 1 3 6 6 2 7
49 3 1 5 3 3 79 109 2 2 4 2 3 41
50 2 2 3 2 2 49 110 2 2 3 2 1 52
51 2 2 3 2 2 48 111 1 3 5 7 2 17
52 4 1 4 4 3 92 112 1 1 6 3 2 1
53 3 1 5 7 3 74 113 2 2 3 2 2 58
54 3 2 3 2 2 83 114 1 1 6 1 2 24
55 2 1 5 7 2 39 115 4 1 2 3 1 103
56 2 4 3 2 2 32 116 3 1 3 2 1 77
57 4 5 1 5 3 111 117 1 1 2 3 1 28
58 1 3 6 6 3 23 118 3 2 3 2 1 76
59 2 4 4 2 3 38 119 2 2 3 2 3 34
60 2 2 3 2 2 59 120 4 2 1 5 3 114
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Table 12: True class (rows) vs. result “P5” of G. Szepannek, see Table 16 in Sect. 10.

Class 1 2 3 4 5 Total
BGP 5 0 24 1 0 30
BSS 7 17 2 4 0 30
JSS 7 16 2 5 0 30
BWP 19 5 3 0 3 30
Total 38 38 31 10 3 120

Table 13: True class (rows) vs. result “P6” of G. Ritter, see Sect. 11.

Class 1 2 3 4 5 6 Total
BGP 3 1 5 21 30
BSS 13 8 5 4 30
JSS 1 20 2 3 4 30
BWP 9 8 4 3 6 30
Total 9 12 33 15 16 35 120

The “Chemsensor” dataset was collected for testing a new method to detect bioaerosol particles
based on gaseous plasma electrochemistry. The presence of such particles in air has a big impact
on health, but monitoring bioaerosols poses great technical challenges. Sarantaridis et al. (2012)
attempted to tell several different bioaerosols apart based on voltage changes over time on eight
different electrodes when particles passed a premixed laminar hydrogen/oxygen/nitrogen flame. Four
biological particles were tested: Bermuda grass pollen (BGP), Bermuda smut spores (BSS), Johnson
smut spores (JSS) and Black walnut pollen (BWP). These define the “true classes” in the dataset.
Each class comprised of 30 single events, giving a total of 120 events (particulates, observations)
for analysis. An event was defined as the response from a single biological particle interacting with
the detector, composed of 8 time series (from 8 electrodes) of potential difference values lasting 4
ms. In turn, every time series consisted of 301 voltage points/values, so that for each event a 2408-
dimensional vector was constructed. These were provided to the participants of the competition.

Sarantaridis et al. (2012) carried out supervised classification after reducing the dimensionality by
summarizing the relevant information in the time series in seven characteristic features, namely max-
imum voltage in series, minimum voltage in series, maximum voltage change caused by electrode,
difference between final and initial voltage, length of positive change caused by the electrode, length
of negative change caused by the electrode and time point at which the more extreme maximum was
achieved. This therefore yielded 7*8=56 variables. These were not provided to the participants of the
competition in order to give participants the option to use their own methods of dimension reduction.
In fact, this is data for supervised classification. Even with sophisticated methods of dimension re-
duction and classification it is a difficult task to derive a good classifier. Sarantaridis et al. (2012)
wrongly classified 31 observations using linear discriminant analysis on the subset of 56 variables.
This corresponds to an error rate of about 26%, see Table 10.
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Table 14: True class (rows) vs. result “P7” of R. Schachtner, see Sect. 12.

Class 1 2 3 4 5 6 7 Total
BGP 1 12 1 12 4 30
BSS 20 4 1 5 30
JSS 22 3 1 3 1 30
BWP 9 2 4 6 9 30
Total 10 44 23 8 10 15 10 120

Table 15: Confusion matrix of the true class (rows) vs. result “P3” of M. Weber.

Class 1 2 3 Total
BGP 5 19 6 30
BSS 8 14 8 30
JSS 6 11 13 30
BWP 3 7 20 30
Total 22 51 47 120

9.2 Comparison of the results of the competitors

The dataset accompanied by a shortened description without the reference was sent to the parti-
cipants. However, it was risky to deliver such a description. In addition, the original observations
(Sarantaridis et al. (2012)) comes already grouped (class 1: 1–30, 2: 31–60, 3: 61–90, 4: 91–120).
I was afraid that competitors searched the web for additional information such as number of clus-
ters and their cardinality. So, I rearranged the observations randomly before sending them to the
participants.
Four data analysis experts took part in the competition: Gero Szepannek, Gunter Ritter, Reinhard
Schachtner, and Marcus Weber. Table 11 shows the cluster analysis results, namely the partitions
“P5”, “P6”, “P7”, and “P3”, respectively. The corresponding confusion matrices are shown in Ta-
bles 12, 13, 14, and 15. None of the competitors found out the true number of clusters. I was a little
bit happy about this because it removed my worries that the competition was unfair. The “Chemsen-
sor” dataset can be downloaded from the website
http://www.wias-berlin.de/workshops/dank2016/committee.jsp.

References
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10 Clustering of Time Series Data

Gero Szepannek
Stralsund University of Applied Sciences, Germany

gero.szepannek@fh-stralsund.de

Abstract

A brief summary of the AG DANK 2016 data analysis task of clustering time series
data is given. The important steps include the choice and discussion of an appropri-
ate preprocessing, dimensionality reduction as well as clustering algorithm and model
selection.

Introduction

In tradition of earlier fall meetings of the AG DANK the meeting was accompanied by a data set pro-
vided to the participants in order to compare and discuss results and methodology for its analysis:
For 120 particulates (observations), there are eight time series of voltage values, corresponding to
eight electrodes. Every time series consists of 301 voltage measurements. Values had been trans-
formed by subtracting the first time point so that this is zero for each of the eight electrodes, because
according to the chemists this is not informative (Sarantaridis et al., 2012).

The task consisted in the unsupervised identification of groups (i.e. clusters) of particulates where
the true groups were not known in advance. Comparison with the true groups (classes) is used as a
criterion to evaluate the results of the participants.

10.1 Methodology

Preprocessing Technique: An important subtask of cluster analysis consists in an appropriate pre-
processing of the data (cf. e.g. Roever and Szepannek, 2005, Weihs and Szepannek, 2008). The
emphasis of preprocessing is evident as no supervisor is available to evaluate results but the evalua-
tion of models has to be done based on the input variables itself. A description of several preproces-
sing strategies is given in Hennig and Liao (2013).

For time series typically it is not meaningful to consider each time point as a separate variable which
would fail for time shifts. Often time series are mapped to the frequency domain. In the research
field of automatic speech recognition an additional cepstral analysis (subsequent inverse Fourier
transform) is commonly used to extract relevant spectral information: harmonics appear as periodic
signals in the spectrum and thus via high coefficients in the cepstrum. In consequence only the
amplitudes of lower cepstral coefficients are used for further modeling (Davis and Mermelstein, 1980).

Figure 40 shows the original data for one electrode. There is no periodic structure in the data visible.
Cepstral preprocessing is done using R package tuneR (Ligges, 2016) for each of the eight electro-
des separately although its appropriateness questionable for the time series under consideration as
well as a subsequent unit variance scaling of the coefficients.
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10.2 Cluster Algorithms

Cluster Algorithms: As there are eight vectors of cepstral coefficients an intuitive idea might consist
in a simultaneous dimensionality reduction and clustering. The ORCLUS algorithm (Aggarwal and Yu,
2000) as implemented in the R package orclus (Szepannek, 2013a) performs alternating PCA and
observation clustering. In order to determine both an appropriate subspace dimension and number
of clusters the sparsity coefficient can be used (Szepannek, 2011).

Figure 41 (left) shows an example of cluster specific subspaces as identified by the ORCLUS algo-
rithm. In a simulation study orclus results turned out to be sensitive to the parameterization (Szepan-
nek, 2011). Clusters as in Fig. 41 (left) can be interpreted as normal mixtures with a cluster-specific
correlation structure. For this reason an alternative approach consists in the popular model based
MCLUST (Fraley and Raftery, 2012). Here, BIC allows for a model selection between different candi-
date results. Figure 41 (right) shows BIC of different models depending on the covariance structure
and cluster number.

10.3 Results and Discussion

The result of MCLUST using cepstral preprocessing showed the highest accuracy among several
competing solutions presented on the workshop, although the graphical analysis of the original time
series does not support its appropriateness. Table 16 shows the results of the clustering compared
with the true classes. The BIC criterion did not identify the correct number of (four) classes here but
cluster 5 of the solution does contain only 3 observations. The accuracy of 54% can be considered as
an improvement of the Bayes prior (i.e. 25%) but in terms of prediction the result is not satisfactory.
Especially class 2 and 3 are not separated by the clustering.

Class 1 2 3 4 5 sum
BGP 5 0 24 1 0 30
BSS 7 17 2 4 0 30
JSS 7 16 2 5 0 30
BWP 19 5 3 0 3 30
sum 38 38 31 10 3 120

Table 16: Confusion matrix of true classes (rows) vs. clusters (columns) of the optimal solution using
MCLUST.

Generally, unsupervised learning is able to identify a structure in the input variables which is typically
done by maximization of a predefined criterion but there is no guarantee that this structure is related
to a supervisor (Szepannek, 2013b). An uprising question for this data set will be the analysis of
signal and noise with respect to the true classes for the variables under investigation. A supervised
learning approach might serve to complete the picture.

I would like to acknowledge Prof. A. Geyer-Schulz from IISM at Karlsruhe Institute for Technology for
interesting discussions on John Tukey and Cepstral analysis during the meeting.

DOI 10.20347/WIAS.REPORT.29 Berlin 2017



H.-J. Mucha 112

References

Aggarwal, C. and Yu, P. (2000): Finding Generalized Projected Clusters in High Dimensional Spa-
ces. ACM SIGMOD 29(2), 70–81.

Davis, K. and Mermelstein, P. (1980): Comparison of parametric representation for monosyllabic
word recognition in continuously spoken sentences. In: IEEE Transactions on Acoustics Speech
and Signal Processing 28 (4), 357–366.

Fraley, C. and Raftery, A. (2012): MCLUST Version 4 for R: Normal Mixture Modeling for Model-
Based Clustering, Classification, and Density Estimation. Technical Report no. 597, Department of
Statistics, University of Washington.

Hennig, C. and Liao, T. (2013): How to find an appropriate clustering of mixed type variables with
applications to socio-economic stratification. JRSS C, 62, 309–369.

Ligges, U. (2016): tuneR: Analysis of Music and Speech. R package version 1.3-1. http://
CRAN.R-project.org/package=tuneR.

Roever, C. and Szepannek, G. (2005): Application of a genetic algorithm to variable selection in
fuzzy clustering. In C. Weihs and W. Gaul (eds): Classification - The Ubiquitous Challenge, 674–
681, Springer.

Sarantaridis, D., Hennig, C. and Caruana, D. (2012): Bioaerosol detection using potentiometric
tomography in flames, Chemical Science 3, 2210–2216.

Szepannek, G. (2011): ORCLUS Subspace Clustering using R, Talk at 33. AG DANK, 11.11.2011,
Düsseldorf.

Szepannek, G. (2013a): orclus: Subspace Clustering. R package version 0.2-5. http://
CRAN.R-project.org/package=orclus.

Szepannek, G. (2013b): Contribution to the discussion of the paper of Hennig, C. and Liao, T.:
How to find an appropriate clustering of mixed type variables with applications to socio-economic
stratification. JRSS C, 62, 309–369.

Weihs, C. and Szepannek, G. (2008): Distances in Classification. Transactions on Case-Based
Reasoning 2, 3–14.

DOI 10.20347/WIAS.REPORT.29 Berlin 2017



H.-J. Mucha 113

0
50

100
150

200
250

300

−0.1 0.0 0.1 0.2

E
lectro

d
e 1

tim
e

voltage

Figure 40: Time series of the first electrode for all 120 particulates.
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11 Probabilistic Analysis of “Chemsensor”

Gunter Ritter
Faculty of Informatics and Mathematics

University of Passau, Germany
ritter@fim.uni-passau.de

“Chemsensor” is a classical numerical data set with 120 lines of length 2408, each. Each line consists
of eight concatenated time series produced by eight sensors; see Figure 42. This suggests to treat
the observations as objects in the sense of pattern recognition.

Obvious landmarks (or characteristic points) are the spikes and the endpoints visible in the plots of
the eight time series. I used as features the locations and values of the spikes of the curves and
their final values. This resulted in a new data set of 28 variables. Since there are only 120 obser-
vations, this number is still too large. Therefore, the probabilistic clustering and selection algorithm
described in Ritter [2], Chapter 5, was applied to detect eight relevant variables. See also my contri-
bution “Probabilistic variable selection in cluster analysis” in the present volume. The number eight
is just a guess (and maybe still too large for just 120 observations). The algorithm is based on the
classification and selection likelihood

1
2

g

∑
j=1

n j(ℓℓℓ) logdetS j,F(ℓℓℓ)+nH
(n1(ℓℓℓ)

n , . . . ,
ng(ℓℓℓ)

n

)
− n

2 logdetSF .

Here, n (= 120) is the size of the data set, ℓℓℓ : 1 . .n → 1 . .g is a cluster assignment, g is the number
of clusters, n j(ℓℓℓ) is the size of cluster j w.r.t. assignment ℓℓℓ, F ⊆ 1 . .120 is a subset of variables, S j,F

is the scatter matrix of cluster j w.r.t. the variables in F , and SF is the total scatter matrix w.r.t. F .

I finally fed the eight selected variables to a program that implements the determinant criterion and a
Gaussian hierarchical method for initial solutions; see Fraley [1]. The algorithm needs a cluster num-
ber as input parameter. I chose six, since this number yielded a partition with reasonably separated
clusters. Figure 43 displays the related SBF plot. It shows the criteria and HDBT ratios of all “local”
minima found for six clusters. I selected the solution closest to the left lower corner as the favorite
one. Pairwise plots of its clusters are presented in Figure 44.
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Figure 42: One line in the data set.

Figure 43: SBF plot
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Figure 44: Pairwise plots of the six clusters.
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Figure 44: Pairwise plots of the six clusters, continued.
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12 Analysis of the Flame Plasma Electrochemical Sensor
Dataset

Reinhard Schachtner, Gerhard Pöppel and Thomas Siegert
Infineon Technologies AG Regensburg, Germany
reinhard.schachtner@infineon.com

Abstract

We give a short summary of our approach to the exploratory analysis of the flame
plasma electrochemical sensor data set which constitutes this year’s competition data of
the AG DANK autumn meeting in Berlin 2016. After a short description of the techniques
applied we motivate our decision in favour of the finally chosen cluster solution.

12.1 Inspection of the raw data

The investigated data consists of 120× 8× 301 measurement values comprising 120 particulates,
measured at 8 electrodes at 301 consecutive time points. According to the dataset description, va-
lues have been transformed subtracting the first time point so that this is zero for each of the eight
electrodes.

We started our analyses by visual inspection of the data. For each of the 8 electrodes each particu-
late shows a typically smooth curve starting at zero (see figure 45 for data examples). We noticed a
few measurements to be accompanied by small noise (presumably stemming from the measurement
procedure) and one particulate (case 46) to contain a discontinuity. All together, the mentioned irre-
gularities which can be typical for real world measurements were found to be at an ignorable low level
and we did not consider any kind of outlier removal procedure necessary here.

12.2 Clustering Methods

Throughout this contribution, we utilize the clustering algorithms available in the free statistics soft-
ware R [4] under the hierarchical clustering function hclust. This choice seems reasonable for two
reasons:

1 The number of underlying clusters was not given in advance, hence a dendrogram representing
the overall clustering structure is expected to reveal this information to the data analyzer.

2 The function heatmap offers the possibility to display the re-ordered raw data together with
a cluster dendrogram. Hence, a given data partition can be easily checked for plausibility by
human inspection.

In the present case no such thing like a ground truth, i.e. the true cluster memberships, was provi-
ded in advance. Hence, the respective data partitions generated by various hierarchical clustering
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Figure 45: top: Two typical instances of the dataset: 1 particulate in 1 electrode, measured at 301
time points bottom left: case 46 has a discontinuity, bottom right: measurement accompanied by
small noise

algorithms were evaluated with respect to their plausibility by human perception. We also applied
various data preprocessing variants like scaling and centering, as well as approaches to reduce the
dimensionality as described in section 12.3.

Summarizing, Ward’s agglomerative hierarchical clustering method turned out to produce the most
comprehensible data partitions. It is interesting to notice that there exist several algorithms claiming
to implement Ward’s method as described in [7], but can lead to different clustering results (see [3]
for a discussion).

12.3 Data Preprocessing

Data Transformations

Depending on the physical quantities to be measured, measurement equipment sometimes needs
calibration which can cause offsets and scaling effects in the data. We therefore investigated the
impact of scaling and centering operations on the dataset by subtracting the mean value for every
particulate and electrode and applying a z-standardization respectively. The observed dendrogram
structures did not show remarkable simplifications in these cases.
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Figure 46: Hierarchical clustering of two compressed versions of the dataset
left: 301 time points averaged into 3 groups, right: 301 time points averaged into 6 groups per elec-
trode and particulate. Small values are displayed in red, large values in blue

Dimensionality Reduction

Being confronted with the setting of n = 120 observations in p = 2403 dimensions the data analyst
might feel unhopefully surrendered to the curse of dimensionality. In order to improve the relation
between variables and observations, dimensionality reduction approaches were applied to the data.
A simple way of compression of the investigated data set can be done by taking averages over time
where the 301 time points per particulate and electrode are grouped into 2,3, . . . time ranges and the
group averages are taken as input to the cluster algorithm (see figure 46 for examples).

Again, it turned out that the overall clustering structure did not improve remarkably compared to the
original, uncompressed data.

Matrix and Tensor Factorization

In the analysis of multidimensional biomedical data sets it is common practice to apply so called explo-
ratory matrix factorization (EMF) techniques like Principal Component Analysis (PCA), Independent
Component Analysis (ICA) or Nonnegative Matrix Factorization (NMF) seeking uncorrelated, statisti-
cally independent or strictly non-negative features which characterize the data sets under study and
serve as discriminative features for classification purposes (see [2] and references therein). Under
certain assumptions which need to be verified in the respective applications, the EMF approaches
typically yield a low-rank representation of the original datasets which can be used as input for a
clustering algorithm, thus avoiding the problem of clustering in high dimensions. If the data contains
non-negative values only, non-negative tensor factorization approaches can be applied (see e.g. [1]
for a survey on non-negative matrix and tensor factorization). We discuss one such approach in more
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Figure 47: Entries of the basis tensor hl jk ≥ 0 (left) and clustered weight matrix wil ≥ 0 (right)
resulting from a non-negative tensor factorization of the transformed electrochemical sensor data set
into L = 9 components using the method from [6]

detail.

Assume that the entry (i,j,k) of a non-negative data array xi jk ≥ 0 can be represented as a function of
L underlying components

xi jk = f

(
L

∑
l=1

wilhl jk

)
(22)

where an element of the weight matrix wil ≥ 0 is related to the contribution of component l on con-
stituent i, while an element of the basis tensor hl jk ≥ 0 describes component l on electrode j at time
k.

In order to apply the non-negative tensor factorization algorithm described in [6] to the electrochemical
sensor data set, the 120× 8× 301 entries need to be transformed into the range between [0,1] so
that it can be interpreted as something like a normalized physical intensity. In figure 47 an example
decomposition of the transformed data into L = 9 components is given. The 120× 9 weight matrix
(right) represents the data in a space spanned by the 9×8×301 basis tensor (left), and was used as
input for the clustering procedure described in section 12.2.

Note that the data representation in the form of eq. (22) implies the assumption that the data is
generated as a certain superposition of underlying sources. Moreover, the choice of an optimal
number of underlying basic components L is not straight forward, and different representations lead
to different cluster partitions of the data. The clustering structure shown in figure 47 is not notably
simpler than in original space and no additional information on the data generating process was
available to justify the superposition assumption.

12.4 Proposed Solution

Since the participants of the competition were requested to submit one single cluster partition before
the workshop started, we had to restrict ourselves in favour of one solution among the many diverse
variants obtained during our analyses.
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Figure 48: Proposed clustering solution. The dashed vertical line on the left hand side represents
the chosen clustering partition, the numbers on the right hand side denote the seven cluster labels.
Small values are red, large values are blue.

As explained in Subsection 12.2 the visual appearance of a clustering structure served as a criterion
for its quality. Neither of the evaluated data manipulations discussed in section 12.3 showed an
obvious advantage over the clustering structure obtained via untransformed data, and no additional
knowledge on the data generating process was given which can give rise for the necessity of a
certain data preprocessing. Hence, we decided to chose the solution depicted in figure 48 which can
be obtained via the hierarchical Ward’s clustering on untransformed data to be our contribution to the
data analysis competition.

We decided that an intersection of the dendrogram at 7 clusters leads to a data partition which is
well comprehensible by human perception (see Table 11, column “P7”, for the cluster memberships).
Note for example that case 52 in cluster 4 which constitutes one extra cluster in other cluster variants
follows a similar trace as its cluster mates from cluster 4 but with higher intensity in both up and down
directions.

In an attempt to cluster validation, we give a visualization of the determined clustering solution in
figure 49. It turns out that it is possible to find a low-dimensional data representation in a supervised
fashion which exhibits the seven clusters as distinct data clouds well-separated from each other.

Therefore, the original data was first transformed via PCA. In this ill-posed small n large p setting, at
most 120 linearly independent principal components can be extracted from the data. The first 113
extracted principal components corresponding to the numerically nonzero eigenvalues of the corre-
lation matrix together with the cluster labels were fed into a Manova module, essentially performing
a linear discriminant analysis (LDA). The computations for principal component analysis and linear
discriminant analysis described in figure 49 were done using Cornerstone software (camLine GmbH).
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Figure 49: Visualization of the proposed clustering solution Table 11, column “P7”, in terms of a
linear discriminant analysis (LDA) on the first 113 principal components of the data.
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Discussion

After the discussion of all proposed solutions during the workshop, the unravelled ground truth turned
out to be 4 different classes of particles [5].

It is interesting to notice that a clustering structure which seems reasonable (see the representations
in figures 48 and 49) has comparatively little in common with the truly underlying partition.

A possible explanation of this behavior for real world data sets is that the physical measurement pro-
cess or measurement equipment can induce additional structure to the data (beneath other influence
factors possibly not considered to be relevant during the data recording).

As an example, consider data analysis in a semiconductor fabrication environment, where one is often
concerned with yield detractors originating in the manufacturing process. In this case the data stems
from measurement equipment which evaluates the performance of the fabricated integrated circuits.
Typically, multiple devices are tested concurrently on the same test equipment on different test sites
to improve testing throughput. This procedure is called multisite testing. In consequence, the test
equipment can generate additional site-specific characteristics in the measurement data, (i.e. offsets
between the respective test sites) overlaying the data properties originating from the manufacturing
processes.
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