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1. Introduction
Smoluchowski's coagulation equation [30]

i c(«, x) = 5 Σ Κ (χ - y, y) cfc * - y) c(i, y) - f) #(*, y) cfc *) φ, y), (1)
σί * y=l y=l

where t > 0 and χ = 1,2,... , describes the time evolution of the average concentration of
particles of a given size in some physical System. Concentration of particles of size χ increases
s a result of coagulation of particles of sizes χ — y and y. It decreases if particles of size χ merge

with any other particles. The intensity of the process is governed by the coagulation kernel K.
The phenomenon of coagulation occurs in a wide r nge of applications, e.g., in astrophysics,
biology, chemistry and meteorology (see the survey paper [7]).

Stochastic particle Systems play an important role in the study and numerical treatment of
equation (1). The Standard Stochastic model related to the coagulation equation is a Markov
jump process where two different clusters of size χ and y coagulate to a single cluster of size
x + y with rate K(x,y). This model is called Marcus-Lushnikov process (cf. [23], [13], [22], [2]).
The basic relationship between the Stochastic model and the deterministic equation is given
by the law of large numbers. Also qualitative properties of the coagulation equation and its
generalizations have been successfully studied using the Stochastic approach. We refer to [17],
[15], [18], [24], [8], [25], [9] concerning recent results, and especially to [2] s an excellent review.
Sufficiently fast increasing coagulation kernels lead to Solutions exhibiting gelation, i.e. a loss
of mass in finite time

<gei = inf {t > 0 : mi(t) < mi(0)}, where rm(t) = f>c(i,z). (2)
x—\

According to [2, Section 5.2], the general Interpretation of gelation in terms of Stochastic models
is "perhaps the most interesting aspect of the subject".

The purpose of this paper is to study the gelation phenomenon using Monte Carlo sim-
ulations. In Section 2 we introduce two Stochastic algorithms. One is based on the Marcus-
Lushnikov process. The other is new and based on transfer of mass instead of concentration. In
Section 3 we apply the Stochastic algorithms to different kernels, and use the numerical results
to discuss some conjectures concerning gelation.
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2. Stochastic algorithms
Many stochastic algorithms for the coagulation equation (1) and its generalizations are based
on the classical Marcus-Lushnikov process (cf. [13], [14], [6], [29], [12], [10], [16]). Various
numerical methods for the coagulation equation are reviewed in [28], where also an extended
list of references is given. Some stochastic algorithms contain an additional approximation
parameter (time Step), thus providing Solutions to time discretized versions of the coagulation
equation (1) (cf. [2l], [20], [27], [26], [19]). Let the process be represented in the form

(xi(f) , . . . ,xjv(t)W) ι * > 0 , #(0) = n, (3)

where N(t) denotes the variable number of particles in the System. Its jump process dynamics
is given by the following algorithm.

Direct Simulation algorithm (DSA)

0. Initialize the System z = (zi,..., xn) according to the initial condition.

1. Given a state z = (xi,... ,£#) wait an exponentially distributed time, with parameter

\/ \ ·*· V""* Ι<Ύ/τ /»» ^
\ / Q Z^ ^ *' 3l

2. Choose indices i φ j according to the probabilities

3. Replace x^Xj by Xi + Xj and go to 1.

The Marcus-Lushnikov model corresponds to the "direct physical Simulation" of the coagulation
process. Assuming unit initial mass, functionals of the solution to equation (1) are approximated
s

x=l '· i=l x=l

where Nx(t) denotes the number of particles of size χ.
Here we consider an alternative stochastic model for the treatment of the coagulation

equation, which was introduced in [3], [11]. In this model mass units (instead of physical parti-
cles) are simulated by stochastic point measures, and the approximate transfer of concentrations
is replaced by a transfer of mass. The dynamics of the corresponding Markov process, which
has also the form (3), is given by the following algorithm.

Mass flow algorithm (MFA)

0. Initialize the System z = (xi, . . . , xn) according to the initial condition.

1. Given a state z = (xi,. . . ,£#) wait an exponentially distributed time, with parameter

λίζ)= /
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2. Choose indices i Φ j according to the probabilities

l Kfaxj)
n \(z) Xj

3. Remove z» , add x,· -f Xj (if Xi + Xj < 6„) and go to 1.

This process approximates ( s n — > oo and 6n — > oo) a transformation of the solution to equation
(1), namely c(t,x) := xc(t,x) . Consequently, functionals of the solution are approximated s

£*)«.) ~ &*f. (4)
x=i n »=i x»w

for appropriate test functions φ and t > 0 , where unit initial mass is assumed.

3. Conjectures and numerical tests
We study the problem how to determine the time evolution of the mass πΐι (cf. (2)) for general
coagulation kernels using stochastic algorithms. Homogeneous kernels, i.e. kernels satisfying

K(Cx,Cy) = CxK(x,y), VOO, (5)
are expected to be gelling if λ > l . As test examples, we consider the class of kernels

which are homogeneous with exponent λ = 7 , and the class of kernels

K(x,y) = (xy)a, 0 . 5<α<1 , (7)
which are homogeneous with exponent λ = 2 α .

Note that the multiplicative kernel

K(x,y) = xy (8)
is contained in both classes (6) (7 = 2) and (7) (a = 1). This special case has been intensively
studied in the framework of random graph theory (see [2, Section 4.4]). The unique solution to
the coagulation equation (1) with monodisperse initial condition

c(0,l) = l, c(0,fc) = 0, fc>2, (9)

is explicitly known. In particular, the mass is given by

so that igei = l. Moreover, it has been established that the asymptotic behaviour of the maximal
component in the DSA-system changes qualitatively at the gelation point, namely

( logn , if £ < 1 ,
n! , if t = l,
n , if t > l.
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It was shown in [5] that, for the kernel (8), the Marcus-Lushnikov process converges to a
det erminist ic limit, which coincides with the solution before the gelation point, but is different
from the solution after that point. Thus, for the kernel (8), one obtains

but the property, which one might naively expect,

M^(t]
mi(t) = l-nlirn 1 v ; , V i > 0 , (12)

does not hold.
Property (11) suggests to study the gelation problem for general coagulation kernels using

the maximal component in the DSA-system. Let r$ be the random moment at which a com-
ponent of size bigger than ψ(η) is formed for the first time. In [6] the convergence of τ£ for
ψ (n) = \n and various coagulation kernels was studied numerically. Correspondingly, gelation
was interpreted s the emergence of a "superparticle" having mass proportional to the mass of
the System. More general functions ψ have been considered in [4] and [17, Theorem 5]. A basic
element of the convergence proofs for general kernels is uniqueness of the solution to the limit-
ing equation. However this uniqueness has been established only up to the gelation point [24].
Thus, the problem of convergence after the gelation point is open for general kernels. There is
Aldous' conjecture [2, Section 5.2] that MI (t) = o(n) after the gelation point, i.e. (11) does
not hold, for homogeneous kernels (5) with exponent l < λ < 2 . Spouge's conjecture [29]
says that for kernels (7) with α G (0.5, 1) the mass of the gel is approximated by the maximal
cluster, i.e. (12) and, in particular, (11), hold. For kernels (6) it has been proved in [1] that
the moment of order 7 explodes at t = l , "strongly suggesting" that ί^\ = l for all 7 .

Since the new MFA-process is not mass-preserving (due to the truncation parameter 6n),
one obtains a natural approximation of the mass (cf. (4)), namely conjecture A

where N^(t) is the current particle number. Another interesting aspect of this model (for
6n = oo) is the emergence of infinite clusters in finite time for gelling kernels. Our conjecture B
is that the (random) explosion times of the stochastic System converge ( s n ->· oo) to the
gelation time. This would connect the gelation effect (a property of the limiting equation) with
the explosion phenomenon of a stochastic process, thus representing the physical Interpretation
of gelation.

Numerical experiments have been carried out using MFA and DSA for difierent coagulation
kernels. Both algorithms are initialized with monomers according to (9). The functionals

^1Φ, t > 0 , (14)

for MFA (cf. (13)), and
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for DSA (cf. (12)) are measured for different values on n. The results are averaged over a
sufficiently large number of independent runs.

Figure l illustrates the theoretical results concerning the asymptotic behaviour of the largest
cluster for DSA and the kernel (8). Corresponding numerical results for MFA show convergence
of the mass approximation (14) to the analytic expression (10), thus confirming conjecture (13).
Both numerical curves visually coincide with the corresponding theoretical values.

Figure 2 shows convergence of the mass approximations (14) and (15) for the kernel (6)
with 7 = 1.5. The limits are different, in analogy with the case (8). The MFA results support
conjecture (13) äs far äs the existence of the limit at the right-hand side is concerned. The
DSA results suggest conjecture C that (11) holds for the kernel (6) and all 7, contradicting
Aldous' conjecture. At least, deviations from the order n are so small that they cannot be
detected numerically.

Figure 3 shows convergence of the mass approximation (14) provided by MFA for the kernel
(7) with = 0.8. As in the previous case, these results partly support conjecture (13). The
corresponding results for DSA (cf. (15)) are given in Figure 4. These results do not allow us
to make any suggestions concerning the controversial conjectures mentioned above. We do not
see convergence even for very large n. At least, the order of the largest cluster clearly changes
at the gelation point.

An interesting feature of MFA is the much better convergence behaviour (compared to DSA)
after the gelation point for kernels of the form (7). Note that there is no gel-sol interaction in
the mass flow algorithm, while there is such an interaction in the direct Simulation algorithm.
This makes us believe in conjecture (13). Note that the exponent of homogeneity (cf. (5))
varies between l and 2 for both classes of kernels (6) and (7), but kernels (6) are not of the
order o(x y) äs + y -> oo. One might speculate that for kernels (7) the gel-sol interaction
in DSA is not strong enough to be kept in the limit, but causes significant systematic error
for finite particle Systems, while for kernels (6) the gel-sol interaction is so strong that both
algorithms converge to different limits.

0.25 0.5 0.75 1.25 1.5 1.75

Figure 1: Mass approximation by MFA (solid line, n = bn — 105) and DSA (dashed line,
n = 107) for kernel (8).
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Figure 2: Mass approximation by MFA (solid lines, n = 104,105, bn = 105) and DSA (dashed
lines, n = ΙΟ7,108) for kernel (6) with 7 = 1.5.

Figure 3: Mass approximation by MFA (solid lines, n = 102 -» 105, 6n = 100 n) for kernel (7)
with α = 0.8.
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Figure 4: Mass approximation by MFA (solid line, n = 105, 6n = 107) and DSA (dashed lines,
n = 105 ->> 109) for kernel (7) with = 0.8.
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