
EMERGO

a generic platform for authoring and playing
scenario-based serious games

EMERGOEMERGO

Aad Slootmaker

The research reported in this thesis was carried out at the Open University of the
Netherlands at the Faculty of Psychology and Educational Sciences

SIKS Dissertation Series No. 2018-21
The research reported in this thesis has been carried out under the auspices of SIKS, the Dutch Research
School for Information and Knowledge Systems.

© 2018 Aad Slootmaker, Heerlen
Cover design: Sneldrukkerij Pasklaar, Sittard
Printing: Datawyse | Universitaire Pers, Maastricht
ISBN 978-94-92739-21-6

EMERGO

a generic platform for

authoring and playing

scenario-based serious games

Proefschrift

ter verkrijging van de graad van doctor
aan de Open Universiteit

op gezag van de rector magnificus,
prof. mr. A. Oskamp

ten overstaan van een door het
College voor promoties ingestelde commissie

in het openbaar te verdedigen

op vrijdag 14 september 2018 te Heerlen
om 16:00 uur precies

door

Adriaan Slootmaker

geboren op 18 maart 1958 te Rotterdam

Promotor
Prof. dr. E.J.R. Koper, Open Universiteit

Co-promotor
Dr. H.G.K. Hummel, Open Universiteit

Leden beoordelingscommissie
Prof. dr. D. Griffiths, University of Bolton
Prof. dr. M.D. Kickmeier-Rust, Graz University of Technology and Univer-
sity of Teacher Education St. Gallen

Prof. dr. H. Drachsler, Open Universiteit and German Institute for Inter-
national Educational Research
Prof. dr. J.J.D.M. van Lankveld, Open Universiteit

5

Contents

Chapter 1 General introduction 7

Chapter 2 Developing scenario-based serious games for complex cognitive
skills acquisition design, development and evaluation of the
EMERGO platform 23

Chapter 3 EMERGO platform components processes and architecture 47

Chapter 4 Evaluating the usability of authoring environments for serious games 91

Chapter 5 Evaluating the usability of player environments for serious games 115

Chapter 6 General discussion 137

 References 151

 Appendices 159

 Summary 165

 Samenvatting 173

 Dankwoord 183

 SIKS dissertation series 187

7

Chapter 1
General introduction

General introduction

9

1 Introduction

In this thesis we describe the design and evaluation of an online scenario-based serious
game platform that enables online universities to efficiently develop their own scenario-
based serious games and to deliver them to their students.

Online educators have always been interested and involved in integrating new technol-
ogies and methods in their curricula to improve the quality, efficiency and effectiveness
of their education. Motivation can be considered to be a key aspect of effective learning
(Prensky, 2007). A higher intrinsic motivation often leads to a better performance, in-
creased curiosity and more explorative and self-regulated study behavior (Ryan & Deci,
2000; Martens, Gulikers, & Bastiaens, 2004). Increased motivation may also lead to
more satisfied students and to lower dropout rates. For institutes that provide online
learning it is even more important to integrate new technologies and methods to literal-
ly bridge the distance to their students because they lack facilities like lecture halls,
laboratories, field trips or internships.

Nowadays higher education in general calls for more competency-based education and
workplace learning. This kind of learning often requires acquiring complex professional
and academic skills in authentic professional settings. These skills involve cognitive pro-
cesses that are associated with higher-order activities like problem solving, reasoning,
taking decisions or reflecting in context, which take a lot of time and practice to master.
As a result, this kind of experiential education often is difficult to organize because
these skills require a lot of time to teach, frequent training in different (protected) situa-
tions and time-consuming guidance with the risk of guidance not given on time or to a
sufficient extent in actual practice. In addition, higher education faces the problem how
to ensure the transfer of acquired skills and knowledge to professional practice. Exer-
cise situations that are equivalent to later professional practice will foster this transfer.
Serious games offer a solution for aforementioned problems because they may offer
built-in personalized teaching and guidance, offer different (protected) situations to
practice and resemble professional practice.

The term “serious game” was first used by Abt (1970) to define a board or card game
where players pursue serious goals. The term became popular since 2002 when the
Serious Games Initiative promoted the use of video game technology and knowledge to
improve game-based simulations in public organizations (Djaouti, Alvarez, Jessel, &
Rampnoux, 2011). Since 2002 a serious game is no longer seen as a board or card game
but as a special kind of video game. Michael and Chen (2006) defined serious games as
games that do not have entertainment, enjoyment, or fun as their primary purpose. A
game developer’s primary purpose, for instance, could be learning, but also behavioral
change to improve health, public awareness of social issues, or marketing. According to
the definition of Michael and Chen (2006) entertainment, enjoyment and fun are sub-
ordinate to this primary purpose. However, Dörner, Göbel, Effelsberg, and Wiemeyer

Chapter 1

10

(2016) do not rank the purposes of a serious game by their importance and define a
serious game as “a digital game created with the intention to entertain and to achieve
at least one additional goal (e.g., learning or health)”. The additional goals of a game
developer are sufficient to categorize a game as a serious game and to characterize its
type. The authors rightly point out that entertainment games may also be used serious-
ly, e.g., to improve one’s skills.

As our context is online universities we assume the primary purpose of serious games to
be learning. We comply with the “serious game” definition of Michael and Chen (2006)
where the primary purpose of a serious game is not entertainment, enjoyment or fun.
We believe that entertainment and fun should be subordinate to learning and should
naturally arise during game development and not be imposed. According to Prensky
(2002), the primary objective of a game designer is not entertainment but engagement
that is generated by challenge and relaxation. In addition, in games for learning fun is
not about amusement but about enjoyment and pleasure, which leads to relaxation and
motivation. According to the author: “Relaxation enables learners to take things in more
easily; motivation enables them to put forth effort without resentment.”. Franzwa et al.
(2014) state that learning and fun should be in balance and that too much fun may
distract a player or even stop his progress. We believe that the balance between learn-
ing and fun may also depend on the characteristics of the target group, e.g., youngsters
or adults, or on the characteristics of a learning task, e.g., more active or more passive.

Serious games can be categorized into different types that correspond to entertainment
game types like adventure games, strategy games, role-playing games, simulation
games, exercise games, or pervasive games, or may be combinations of several types.
Our focus is scenario-based serious games that combine aspects of adventure, strategy,
role-playing and simulation games. This type of games present interactive narratives
driven by exploration, problem-solving and decision-making to students playing roles in
simulated complex problem spaces that closely resemble professional practice. Stu-
dents are confronted with ill-defined problems, often allowing multiple solutions and
requiring application of necessary methodologies or tools and collaboration with fellow
learners (Westera, Nadolski, Hummel, & Wopereis, 2008). We call these games ‘scenar-
io-based’ because the scenario plays such an important role as being the design of the
game. The scenario extensively describes the problem space, which activities have to be
done and which materials are needed to acquire required complex cognitive skills, and
how the problem space should adapt to the individual students. In this thesis we will
focus on scenario-based serious games that are aimed at learning.

Serious games are powerful means to provide learning in a more effective way and are
able to increase learners’ motivation (De Freitas, 2006; Connolly et al., 2012; Backlund,
& Hendrix, 2013; Boyle et al., 2016). In addition, engagement and challenge have a
positive effect on learning (Hamari et al., 2016). The primary goal of serious games is to

General introduction

11

motivate learners, give them appropriate feedback, improve their skills at the right
level, and improve collaboration within groups (Ibrahim et al, 2012). The learner should
be in control and learning should be situated and authentic, possibly based on a didacti-
cal model or approach and should support transfer of learned skills (Dede, 2009; Clark,
& Mayer, 2011; Thillainathan, & Leimeister, 2014). Serious game developers may im-
prove learners’ motivation by providing players with an interesting storyline and enjoy-
able interface, generating interest or curiosity, offering challenging, exciting and cus-
tomized tasks, giving a feeling of being in control, offering immediate feedback and
adapting to the individual learner (Dörner, Göbel, Effelsberg, & Wiemeyer, 2016). These
aspects can foster active engagement and can support the intended goals of a serious
game.

Given their potential benefits it is no surprise that the use of serious games is still grow-
ing and that innovation of the field is stimulated, for instance, by the European Union.
In 2015 the global games market grew by more than 9% and the serious games market
also showed impressive growth figures (Games Monitor, 2015). In addition, from 2012
to 2015, the number of serious game developers in game studios in the Netherlands
grew by more than 7% annually. This growth is still continuing since the video games
market is expected to grow at 6.8% annually from 2017 to 2021 (PMC, 2017). Since the
first decade innovation of the field of serious games is stimulated by the European Un-
ion as is illustrated by numerous European projects such as the ELEKTRA project (2006 –
2008), the PlayMancer project (2007 – 2011), the 80days project (2008 – 2010), the
ImREAL project (2010 -2013), the GALA project (2010 – 2014) and the RAGE project
(2015 – 2019). The latter project is especially interesting for the field of serious games
development because it will deliver self-contained gaming components that can be
integrated into existing game engines or platforms to extend their functionality or to
foster easier and more efficient game development.

Despite the growth in use of serious games their application within online universities
faces a number of issues that are related to differences with the entertainment games
sector. First, target groups are smaller in size because a game is generally developed for
a specific course in a specific content domain resulting in lower available budgets. Sec-
ond, in addition to regular game developers, a development team consists of educators
responsible for the instructional design and domain experts responsible for the domain
content where the latter often differ per development project and thus need to be
recruited and reworked each time. Current development tools mostly have insufficient
instructional design support for educators and are too complicated for the average
educator or domain expert who has no technical background. In addition, serious
games have to be playable and testable anytime to enable educators and domain ex-
perts to provide correct input during authoring. Third, to enable personalized learning
serious games often have to adapt more to the characteristics and needs of the individ-
ual player or player group than entertainment games, which requires more game con-

Chapter 1

12

tent to cater for all possible player paths and consequently more complex authoring
and more extensive testing. Fourth, player environments have to support this specific
type of adaptation by continuous performance monitoring and analysis which requires
specific and extensive logging of player data. The same player data should also enable
game evaluation for game improvement during development or deployment and enable
research on learning effects of a game.
Above mentioned issues that are specifically related to application of serious games call
for dedicated development and deployment environments. (i) Smaller budgets ask for
efficient development. (ii) Co-authoring by educators and domain experts and adapta-
tion to the individual player ask for specific tooling and more user-friendly user inter-
faces. (iii) Game adaptation, evaluation and research ask for specific and extensive log-
ging and analysis of player data.

The Open University of the Netherlands (OUNL) is an example of an online university
providing bachelor and master degrees in various academic fields. To help students to
acquire complex professional and academic skills in authentic professional settings, a
scenario-based game platform has been developed and used. As the design of the plat-
form is based on a long experience of developing serious games at the OUNL we first
give an overview of this development and the underlying ideas in section 2. In section 3
we introduce EMERGO that consists of a method and a web-based platform and was
developed by the OUNL in collaboration with a number of Dutch universities to enable
developing and delivering serious games more efficiently. In section 4 we present the
design questions that challenged us during the initial and ongoing development of the
platform and that we try to answer in this thesis. We end with an outline of the next
chapters in section 5.

2 Serious games development at the OUNL

In the eighties the OUNL started developing educational software that was used em-
bedded in its academic courses and was called courseware. In the early years, mainly
tutorials and simulations were developed that were based on some kind of physical,
mathematical or computational model and were used within natural sciences or math-
ematics to illustrate the working of these models and to improve their understanding by
changing their parameters. This courseware was distributed on floppy disks or diskettes.
Personal computers (PCs) were not yet widespread so many students had to visit one of
the OUNL’s study centers spread around the country, especially if the courseware used
video, which required a laser disc player.

In the nineties faculties of law, psychology, cultural sciences and management sciences
became interested and involved in development of educational software. The compe-
tences to be acquired within their curricula asked for more comprehensive applications
in which students should perform complex tasks and didactical and substantive support

General introduction

13

and guidance should be integrated. This development resulted in a shift from mainly
tutorials and simulations to mainly environments that resembled working environ-
ments. A student would be immersed and would work as a trainee, e.g., in a law firm or
bungalow park, or as a researcher, e.g., within a public transport company or a psycho-
logical clinic. The offered tasks often showed an increase in complexity over time and
enabled students to acquire complex cognitive skills. At the time we called this kind of
stand-alone applications competence-based multimedia practicals, because different
media (text, images, audio and video) were combined to mimic realistic environments
and their interaction possibilities (Gerrichhauzen et al., 1998; Hommes et al., 2000;
Huysse et al., 1998; Ivens et al., 1998; Leinders et al., 1993; Vandermeeren et al., 1997;
Wöretshofer et al., 2000).

Multimedia practicals presented a student’s working environments in 2D, used a space
metaphor for visiting different locations and experts and usually used video for creating
more realism. Occasionally, a mathematical model was used to calculate certain aspects
of the environment, e.g., the occupancy rate of bungalows and the influence of market-
ing campaigns or unexpected events on it. A number of these multimedia practicals
were developed with and used by external partners. An internship or a research are
large study tasks, which resulted in students spending many hours within these multi-
media practicals, sometimes as much as 50 hours. This high study load and the use of
different media required an extensive functional design with a scenario describing all
student activities and materials needed. In addition, it required a careful planning of
development activities and a large investment in time and money. Such an investment
could only be justified in case of large student numbers when the investment was
earned back during deployment because integrated student support and guidance
would result in savings on human guidance.

Multimedia practicals were developed using ToolBook (http://tb.sumtotalsystems.com/)
that could be used by ICT developers as well as interaction designers and allowed for
efficient component-based development. The components we developed represented
different functionalities to be provided to students, e.g., a map or a task overview. Each
component had its own authoring and playing part where the authoring part could be
realized in a short time by using and connecting standard input elements. Content was
usually entered by educators or programmers, sometimes by domain experts. The play-
ing part usually required customization, although reuse of parts of previously developed
components was common. Multimedia practicals were extensively tested by students
before they were distributed on CD-ROM (Compact Disc Read-Only Memory) or later on
DVD (Digital Video Disc) and could be used by students on a Windows PC at home.

These multimedia practicals would now be called serious games, although the engage-
ment and game fun were not determined so much by intense interaction or flashy

Chapter 1

14

graphics but by interesting storylines, challenging tasks and rich content, and the thrill
of learning something new.

3 EMERGO

The rise of the World Wide Web in the nineties had no immediate impact on serious
games development at the OUNL, because at the time web technologies could not yet
provide the rich and direct interaction needed within this kind of applications. The in-
troduction of the AJAX (Asynchronous JavaScript And XML) technology in 2004 and the
emergence of frameworks supporting it was the right moment to switch to web-based
development and deployment. AJAX allowed for communication between the client and
the server in the background, so parts of a web page could be adapted dynamically
without having to reload the page after each user action. From now on the World Wide
Web would enable us to offer students one equally rich player environment as in the
stand-alone serious games before, to offer teachers one authoring environment that
could be used for all game authoring, to better support reuse of game content, to sim-
plify delivery of games and updates, also of the platform itself, and to better monitor
and support students. Our expectation was that we would be able to develop and de-
ploy serious games more efficiently.

In 2006 four Dutch universities, led by the OUNL, started the EMERGO project (in Eng-
lish EMERGE: Efficient Method for ExpeRiential Game-based Education), an educational
innovation project that was co-funded by SURF foundation (the collaborative ICT organ-
ization for Dutch higher education and research, https://www.surf.nl/). Based on the
OUNL’s long experience of developing stand-alone scenario-based serious games, the
four participating universities worked together to develop a method and a web-based
platform that would enable online universities to develop and deliver scenario-based
serious games more efficiently. Main requirements for the platform were to offer a set
of reusable and adaptable components that covers most functionalities needed in this
kind of games, to provide a user-friendly authoring environment and an intuitive and
immersive player environment. In addition, five serious games about environmental
decision making were developed that are still in use at two participating universities.
During the Skills Labs project from 2008 to 2010, another educational innovation pro-
ject co-funded by SURF foundation, three institutes, led by the OUNL, developed anoth-
er four serious games, about water management. In addition, the platform was im-
proved with respect to performance and usability and was extended with new compo-
nents. During the years thereafter until now the platform has been used to develop and
deliver new serious games in cooperation with external partners and faculties within
the OUNL. At the moment 26 serious games have been developed. The number of plat-
form components, which represent different platform functionalities needed to acquire

General introduction

15

complex cognitive skills, has increased from initially 12 to 30 at the moment. In addition,
the platform’s performance and look and feel have been improved over the years.

4 This thesis: aim and design questions

The EMERGO project challenged us to design and develop a platform that would enable
more efficient development and delivery of scenario-based serious games and would
serve all stakeholders involved in development and delivery of games as well as in ex-
tension of the platform itself.
We tried to answer the general design question of this thesis:

How to design and develop a generic platform for fast and flexible development
and delivery of a wide variety of scenario-based serious games that enable com-
plex cognitive skills acquisition?

The platform should be generic in the sense that it should enable online universities to
realize a wide range of game scenarios for different content domains and learning pur-
poses and that it should integrate development and delivery tasks that require different
types of platform users in one system. Game development should be fast and flexible.
Game authoring should be user-friendly so teachers would be able to author games that
way lowering the threshold for developing serious games. Previewing and testing game
content and reuse of developed game content should be supported and multiple game
authors working in parallel should be possible. Game deployment should also be fast
and flexible. Delivery of developed games should be easy, bug fixing of and interfering
in already deployed games should be possible and student support in case of technical
or functional problems should be supported. To enable complex cognitive skills acquisi-
tion the platform should offer a set of common components that covers most of the
needed functionalities to acquire this type of skills and should enable reuse of these
components and their content in other games. To author these game components
teachers would need a user-friendly authoring environment in which they could work
independently. And to play developed games students would need an intuitive immer-
sive player environment capable of being adapted to the individual student’s progress.
In addition, the platform should be sustainable in the sense that it should allow for easy
addition of new components and for playing as well as authoring of all previously devel-
oped games.

Early evaluations of the authoring environment showed that its usability was subopti-
mal. Teachers found two platform components, the Script and Conversations compo-
nents, difficult to use and some of them had trouble to use the Script component inde-
pendently, despite extensive instruction in advance. This made us question how we
could improve the usability of the authoring environment, why components differ in
their perceived usability, if our findings would be similar to findings for similar authoring
environments and if we could derive some guidelines to improve the usability of this

Chapter 1

16

kind of environments. These considerations led to the first additional design question of
this thesis:

1. How to improve the usability of authoring environments for serious games?

Early evaluations of the player environment showed students to be satisfied to very
satisfied about its user interface. However, we did not evaluate its usability in detail and
were curious whether students were still satisfied, whether we still could improve its
usability, whether and how platform components differ in their perceived usability,
whether our findings would be similar to findings for similar player environments and
whether we could derive some guidelines to improve the usability of this kind of envi-
ronments. These considerations led to the second additional design question of this
thesis:

2. How to improve the usability of player environments for serious games?

5 This thesis: outline of chapters

The general design question is addressed in chapters 2 and 3, the first additional design
question in chapter 4 and the second additional design question in chapter 5. We end
with a general discussion in chapter 6.

Chapter 2 addresses the general design question with respect to the design and devel-
opment of the platform and presents evaluation results.

The following main design steps have been taken to answer the general design ques-
tion.

We identified the intended users of the platform, namely teachers, students, adminis-
trators and ICT developers

We set up initial functional requirements for each intended user and non-functional
requirements for the platform itself. Teachers should be able to author, preview and
test game content, to monitor students and to possibly interfere in running games.
Students should be able to play games and to send in outcomes. Administrators should
be able to manage platform users, game runs and game teams. ICT developers should
be able to rather easily extend the platform with new functionality. The platform itself
should be efficient, reliable, stable and usable on multiple operating systems.

Based on the requirements we chose a multilayered client-server architecture, a web-
based client, the Java EE platform, Open source frameworks and a centralized database
for implementation.

We identified five platform roles that should have their own working environment with
associated tasks. The administrator role manages all users and their platform roles. The

General introduction

17

developer role authors games, game roles and game components. The run manager
role manages game runs and teams and assigns students to runs and teams in a certain
game role. The tutor role monitors students and may interfere in a running game. The
student role plays games.

We designed a domain model containing all platform entities, e.g., components, games,
runs and users, and their mutual dependencies. Our starting point was that the domain
model should remain unchanged if new platform components are added, which simpli-
fies extension of the platform. Therefore the domain model is kept simple and does not
contain entities that represent game elements such as NPCs (Non-Playing Characters),
materials or game rules. Instead, these entities are defined and stored as XML strings in
attributes of certain domain model entities. This data-driven approach ensures maxi-
mum flexibility.

We identified the initial set of platform components that should be implemented. Our
starting point was a typical game scenario that was based on our previous experience in
developing serious games. This scenario involved an environment with different loca-
tions, interaction with NPCs representing supervisors, colleagues or experts and the use
of a tablet with apps that provide background materials, enable communication with
NPCs and PCs (Playing Characters) and enable students to acquire needed complex
cognitive skills. A Script component should be used to adapt the environment to the
individual student.

We devised a generic component design for both initial and future platform compo-
nents. This design should allow for defining components, their properties, their mutual
relations, their content and the structure and properties of their content. All compo-
nent definitions are stored as XML strings. The same applies to all authoring and stu-
dent data.

We chose a method to implement authoring of game script. As teachers were expected
to do game authoring, programming of game script was out of the question. Popup
dialogues are used to assemble game rules consisting of conditions to check property
values and actions to change property values. A condition and its associated actions
resemble an ‘if-then’ statement in a programming language. A condition is triggered by
a change of a property value that is a result of a student action, a timer event or a script
action.

After designing the platform we started its implementation. We subsequently imple-
mented the domain model, the various role environments and the initial set of compo-
nents, all of which demanded their own more detailed design decisions.

Chapter 2 ends with an evaluation of the platform. Evaluated is if the platform indeed
caters for more efficient game development, how satisfied teachers and students are

Chapter 1

18

about the platform, and if the platform’s functional and non-functional requirements
are met.

Chapter 3 also addresses the general design question and is a further elaboration of
important aspects of the platform, namely its components, processes, and architecture.

We start with a further elaboration of the generic component design described in chap-
ter 2 and present the general structure of all platform components and their XML defi-
nitions that define their allowed properties and content. The components form a flat
structure where dependencies on other entities are defined by relations, this way sim-
plifying extension with new components. We also extensively describe all components
to illustrate the type of game elements and (didactical) functions the platform supports.

Next, we describe the main platform processes such as the authoring process, the play-
ing process and processes that are supportive or conditional for authoring and playing.
We describe the general authoring process for games, game roles and game compo-
nents and focus on its most important and complex sub-process, the authoring of game
component content, which includes game script. A single editor is used for authoring
and validation of content. This editor uses a component’s XML definition to render the
component’s content and input elements to manipulate it. Dedicated input elements
are used to assemble script conditions and actions. The editor also allows for preview-
ing and testing game content in the player environment in every stage of authoring,
while authoring is in progress and from different points within the game scenario. For
the playing process we describe the structure of the player environment and its differ-
ent run components, the rendering of these run components, which involves personal-
izing content using student’s progress, and the event handling process, which includes
handling of student, timer, script and peer events. Other platform processes include
monitoring or supporting students, managing game runs and populating the platform
and game runs with users.

We end chapter 3 with the multilayered architecture we used for the implementation of
the different platform components and processes. We describe its various layers with
their main components, their responsibilities and the Open source software we used to
implement them.

Chapter 4 addresses the first additional design question “1. How to improve the usability
of authoring environments for serious games?”.

To be able to answer the design question we conducted an in-depth qualitative study of
the EMERGO authoring environment to determine its usability. Because the number of
authors was too small we could not apply quantitative evaluation methods. Instead, we
conducted semi-structured interviews (Bryman, 2012) with some experienced game
developers who authored a game for higher education and previously authored several

General introduction

19

other games. The use of semi-structured interviews allowed us to not only investigate
usability but also to get an idea of the user experience, i.e., the usefulness, emotional
impact and context of use for a particular user. We prepared the interviews by setting
up an interview guide with themes and associated questions. Themes were: the au-
thor’s general impression of the authoring environment, to what extent the initial re-
quirements for the environment were met, the authoring experience for the used com-
ponents and the development process. We added the last theme because an insuffi-
cient integration of authoring within the development process might influence experi-
enced usability. To answer the design question we compared our usability findings with
those found for comparable environments in literature and established usability guide-
lines to improve authoring environments for serious games.

The use of the authoring environment is embedded in the EMERGO method. The meth-
od supports a development team in ideation, the writing of a global game description
based on answers to a list of standard questions, the writing of a game scenario in three
steps where each step adds more detail and the use of the authoring environment to
enter and test the scenario and upload assets. A development team consists of subject
matter experts, educational technologists, interaction designers and ICT developers,
and may, if necessary, be temporarily reinforced with other expertise.

Multiple usability definitions exist in literature. One of the first and best known is that of
Nielsen (1994) who defines usability by its quality of five components: learnability (for
novice users), efficiency (amount of time to accomplish task), memorability (for fre-
quent users), errors (number, severity, recoverability), and satisfaction (pleasantness).
Nielsen’s definition is general and can be applied to all kinds of devices. However, since
the EMERGO authoring environment is software and the quality of the software may
influence experienced usability, we will use ISO/IEC 25010:2011 (ISO/IEC, 2011) as the
theoretical framework by which we will explain our findings. Its product quality model is
composed of eight software quality characteristics of which usability is one. Usability is
subdivided into six aspects: appropriateness recognizability, learnability, operability,
user error protection, user interface aesthetics and accessibility. The seven other soft-
ware quality characteristics are functional suitability, reliability, performance efficiency,
compatibility, security, maintainability and portability. Note that for better readability,
we replace ‘appropriateness recognizability’ with understandability and ‘functional
suitability’ with functionality.

Tool complexity and the type of user may have a negative impact on experienced usabil-
ity. Entertainment and serious game development usually requires highly complex au-
thoring tools that are used by specialized developers. Hartson and Pyla (2012) and Mur-
ray (2004, 2016) identified different complexity types involved. Tool complexity may be
related to the interface, i.e., the intricacy or elaborateness of user actions or to the
number of editor features and components. However, tool complexity may also be

Chapter 1

20

related to the work domain, i.e., the degree of intricacy and technical nature of the
corresponding field of work or to the number of abstract concepts, complex structures
or dynamic structures that have to be understood, maintained or tested. Improved
usability might surely reduce interface complexity but probably will have hardly any
effect on work domain complexity because this type of complexity is inherent to the
domain. Experienced usability may also depend on the type of user. For education,
Murray (2004, 2016) identified five possible types of users with different complexity
capacity. For instance, teachers have a low complexity capacity, so they cannot be ex-
pected to use complex authoring tools. On the other hand, ICT developers have a high
complexity capacity.

Chapter 5 addresses the second additional design question “2. How to improve the
usability of player environments for serious games?”.

To be able to answer the design question we conducted a mixed method study of the
EMERGO player environment. Students from four Dutch Regional Centers for Secondary
Vocational Education each played one of two developed games. We used quantitative
and qualitative methods to collect both more objective and more subjective and de-
tailed usability data for the player environment. We used a pre-questionnaire just be-
fore a game session, individual note taking during the game session, a post-
questionnaire just after the game session and a group discussion afterwards. The ques-
tionnaires were used to determine students’ prior ICT skills (to rule out their possible
effect on experienced usability) their SUS (System Usability Scale; Brooke, 1996, 2013;
Sauro, 2011) scores and their experienced general usability and component specific
usability. The qualitative methods were used to collect as much points of improvement
and points of satisfaction as possible regarding the usability of the environment and
allowed us to also get an idea of the player experience, i.e., the level of autonomy, im-
mersion, engagement, and challenge. To answer the design question we established
guidelines for player environments for serious games.

Usability is a decisive success factor for entertainment games as well as serious games
because it is essential for a good player experience. Poor usability may lead to annoy-
ance and distraction and may have an impact on the learning outcomes of serious
games (Olsen, Procci, & Bowers, 2011). Although usability is a very important quality
factor of a software system, no single definition of usability exists which takes into ac-
count all of its possible aspects (Dubey & Rana, 2010). In addition, measuring usability is
complex as Lewis (2014, p. 664) emphasizes: “The measurement of usability is complex
because usability is not a specific property of a person or thing. You cannot measure
usability with a simple ‘usability’ thermometer (Dumas, 2003; Hertzum, 2009; Hornbæk,
2006). Rather, it is an emergent property dependent on interactions among users,
products, tasks, and environments”. Validated questionnaires for summative usability
evaluation, of which the SUS probably is most widely used (Lewis, 2014), either produce

General introduction

21

a general score or scores on general usability aspects, which make them less appropri-
ate to identify more detailed and specific interface related usability issues. Therefore,
we also applied qualitative evaluation methods in our study. Just like for the authoring
environment we will use ISO/IEC 25010:2011 (ISO/IEC, 2011) as the theoretical frame-
work by which we will explain our qualitative findings for the player environment.
An important concept in the context of gaming is playability. Playability is broader than
usability and is defined as “the degree to which a game is fun to play and is usable, with
an emphasis on the interaction style and plot-quality of the game; the quality of game-
play” (Usability-First, 2017). Playability may be affected by the quality of the storyline,
the degree of responsiveness, the intensity of interaction, pace, control, intricacy, cus-
tomizability, realism, social and team support, and the quality of graphics and sound.

Usability and playability are both important for games but for player environments for
games usability is probably more important than playability. Usability of a game will
mainly depend on the usability of the environment’s different components. However,
playability of a game will mainly depend on playability aspects of the game itself, e.g.,
the quality of the storyline, feedback, graphics and sound. These playability aspects
cannot be influenced by player environments, although the environments should of
course support responsiveness and intensity of interaction. Therefore, to answer the
design question we will focus on the usability of the player environment. We expect the
operation of its components to be rather easy because complex concepts, structures
and dynamics (Murray, 2004) that are visible during authoring are hidden for students.
However, how components’ functions are translated into usable interfaces may leave
room for improvement.

Finally, in chapter 6 we provide a review of our results and our main conclusions, recent
and future development and research, and significance of the platform.

The development of a platform such as EMERGO requires teamwork. Many have con-
tributed to the realization and extension of the platform. Appendix 1 therefore shows
an overview of the estimated contribution of the author to the main development and
evaluation tasks presented in chapters 2 to 5.

23

Chapter 2
Developing scenario-based serious games

for complex cognitive skills acquisition
design, development and evaluation

of the EMERGO platform

This chapter has been published as: Slootmaker, A., Kurvers, H. J., Hummel, H. G. K., &
Koper, E. J. R. (2014). Developing scenario-based serious games for complex cognitive
skills acquisition: Design, development and evaluation of the EMERGO platform. Journal
of Universal Computer Science, 20(4), 561-582

Chapter 2

24

Abstract

Serious games are considered to provide powerful and attractive ways to acquire com-
plex cognitive skills for education and training. But existing platforms for development
of game-based e-learning often appear either not to be very user-friendly or too rigid or
costly. This article addresses the design, development and evaluation of a generic plat-
form for fast and flexible development and delivery of a wide variety of scenario-based
serious games that enables complex cognitive skills acquisition. We present the re-
quirements for the EMERGO platform and which common components it offers to cater
for most of the needed functionalities within scenario-based serious games. We explain
how users in various roles can use the platform to manage, develop, deliver and play a
broad variety of scenario-based games. Evaluation data are presented to back up the
claim that the platform indeed allows for faster, more user-friendly and less costly de-
velopment and delivery of scenario-based games. Seven years after the platform has
been launched, it until now has proven successful and still continues to evolve. We
close off with some conclusions and needs for further development.

Design, development and evaluation of the EMERGO platform

25

1 Introduction

Serious games offer a solution for enabling professional learning at a distance, when the
acquisition in actual practice would be impossible or rather hard to realize. Professional
education requires students to practice complex cognitive skills in authentic profession-
al settings. These skills involve cognitive processes, e.g., problem solving, reasoning,
taking decisions or reflecting in context. This kind of experiential education often is
difficult to organize in a practical, e.g., because there are more students than intern-
ships available or because the supervision of students would be too time-consuming,
risky or insufficient in actual practice.

Existing development frameworks for games often are inadequately tuned toward spe-
cific learning needs (Nadolski, Hummel, Slootmaker, & Van der Vegt, 2012), and game
engines often have been developed for just one specific aspect of a game (e.g., graph-
ical rendering). There are frameworks that integrate a number of these more specific
engines, but do not support teachers that well in the process of developing serious
games, or have a steep learning curve (De Freitas et al., 2010). For further take-up in
education there was a hard felt need to provide teachers with a user-friendly authoring
environment. Besides this, existing frameworks often lack suitable logging of game pro-
gress, which impedes research on the actual effects of serious games.

The Open University of the Netherlands, being a provider of distance education, has a
longer experience in developing serious games for complex cognitive skills acquisition in
various content domains and with different learning purposes. These serious games
were developed on client computers and delivered on CD/DVD. Not all operating sys-
tems were supported, delivery was demanding (reproduction), and technical or func-
tional bug fixes could not be delivered easily. And there was little reuse of game com-
ponents. Games were mostly built from scratch. There was a need for a platform that
would simplify and broaden delivery. The platform should further foster reuse and ex-
change between serious games for different content domains by offering reusable and
adaptable components for game development.

Developing serious games is often a costly business. Most games are developed as 3D
environments requiring a vast investment in 3D graphics that cannot be reused easily in
other games. However, use of 3D is not always needed, because maximum fidelity of
the environment does not necessarily lead to better learning (Herrington, Reeves, &
Oliver, 2007). Furthermore, the development and testing of the didactic scenarios of
serious games is quite time consuming, because the intended complex skills require
many steps to take and many hours to acquire. There was a need for an approach and
platform that would support more cost-effective development of scenario-based serious
games.

Chapter 2

26

Some 10 years ago the need for a user-friendly authoring environment providing teach-
ers with reusable and adaptable components to develop serious games cost-effective
was commonly felt in many higher education institutes. This need then was expressed
in the development of a number of online platforms that enabled teachers to develop
their own serious games without programming. Examples are Fablusi
(http://www.fablusi.com/), Unigame (http://www.unigame.net/) and Cyberdam
(http://www.cyberdam.nl/). These platforms enabled the development of multi-role-
playing games where learners take on the role profiles of specific characters or repre-
sentatives of organizations. However, our focus was broader than just role-play. We
wanted to offer a rich environment for experiential education where students mostly
learn on their own and where other actors are mostly implemented as non-playing
characters.

The central research question of this article is how to design and develop a generic plat-
form for fast and flexible development and delivery of a wide variety of scenario-based
serious games that enable complex cognitive skills acquisition. According to Westera
(2001) cognitive skills are skills that involve mental processes that occur in the mind
while using, transforming or supplementing available knowledge. Complex cognitive
skills are associated with higher-order activities like problem solving, reasoning, think-
ing, assessing and concluding. They include the mental processes of analysis, synthesis
and evaluation to produce a re-ordering or extension of the existing cognitive structure.
Scenario-based serious games are games where learners are placed in complex problem
spaces, which mimic real world situations. They are confronted with ill-defined prob-
lems, often allowing multiple solutions and requiring application of necessary method-
ologies or tools and collaboration with fellow learners (Westera, Nadolski, Hummel, &
Wopereis, 2008). To enable the acquisition of these complex cognitive skills and this
type of games the scenario describes the problem space, which activities have to be
done, which materials are needed and how the problem space should be adjusted while
the student is playing.

To answer the research question, the remainder of this article will be structured as
follows. In section 2 we elaborate on the type of scenario-based games the platform
supports. In section 3 we present the requirements for the platform. In section 4 we
describe how we developed the platform and present the history of versions. In section
5 we present the platform roles, the domain model and common reusable components
and their underlying generic design. In section 6 we evaluate if the platform satisfies the
requirements and compare it to related work. In section 7 we summarize our findings
and present our plans for future work.

Design, development and evaluation of the EMERGO platform

27

2 Scenario-based serious games supported by the platform

Figure 2.1. Screen of a game showing a square with buildings to visit. On the bottom left corner we see an icon
for the tablet. On the bottom right corner we see a mike to record parts of interviews and a notepad to make

contextualised notes

The platform supports games where the student works as a trainee in an immersive
virtual environment that resembles real-life environments like a law firm or an office
environment. His virtual supervisor will give him assignments, and will react to and
reflect on his outcomes. He will meet virtual experts or other people to gain background
knowledge about the skills to acquire. Within the environment the student has a tablet
with apps that provide background materials, enable communicating with virtual per-
sons and other students, and help the student to acquire the skills. The student will be
confronted with the consequences of his acts. This means that the environment must
be able to respond to student actions by giving clear feedback, and adjust itself accord-
ing to the progress of the student.

Within a game on Sexology, for instance, the student attends two patient interviews
and a multidisciplinary meeting, and interviews four subject matter experts. He has to
learn to prepare himself for the patient interview, to write a summary of the interview,
to work out a model related to the causes of the patient’s problem, and to write a pro-
posal for treatment. The student starts the game on a square with buildings related to
the Sexology course: a hospital, a university, a school, a health service, an aids center
and a station (see Figure 2.1). The station is used to visit virtual patients at home. With-
in the hospital the student finds his supervisor, subject matter experts, rooms for pa-

Chapter 2

28

tient interviews and meetings, and his own room. He has a notepad to make contextual-
ized notes and a recorder to record parts of interviews. On his tablet the student finds
background materials like the patient records, a log containing all notes made with the
notepad, an app with all recordings made during interviews, a manual explaining the
interface of the game and an email app to get mails and send in assignment outcomes.

3 Requirements for the platform

The objective of the platform is to enable the fast and flexible development and delivery
of a wide variety of scenario-based serious games which enable complex cognitive skills
acquisition. Intended users of the platform are teachers, students, administrators and
programmers. Teachers will develop games by writing a game scenario, selecting rele-
vant educational material and using the platform to enter game data, game materials
and game script, and they will monitor students; Students will use the platform to play
games; Administrators will manage platform users; and Programmers will extend the
platform. Based on our experience and studies carried out by others (Aldrich, 2005), as
well as on aforementioned problems with current development, we now list following
functional (F) and non-functional (N) requirements for the platform (Table 2.1).

Table 2.1: Functional (F) and non-functional (N) requirements for the platform

Requirement Description

F1 Offer teachers an intuitive and user-friendly authoring environment where they
independently can create and edit games.

F2 Enable teachers to create and edit game roles, so students playing together in one game
can have different roles.

F3 Offer teachers a set of common reusable and adaptable components that covers most of
the needed functionalities to acquire complex cognitive skills using scenario-based
serious games. Teachers should be able to select components they need and edit these
now called game components.

F4 Enable several teachers working together on the same game so work can be divided.

F5 Enable teachers to preview games or a single game component as a student, at any stage
of the development process.

F6 Enable teachers to test games as a student at any stage of the development process and
starting from multiple points within the game script.

F7 Enable teachers to import and export games so games can be distributed to other
platform instances and their content can be reused.

F8 Enable teachers to import and export game components so game content can be reused.

F9 Enable teachers to monitor progress of students.

F10 Enable teachers to interfere in a running game, for instance, if outcome quality is
insufficient or if a student is stuck in the game.

F11 Offer students an intuitive immersive player environment where they play developed
games. The player environment should be adjusted according to the actions and progress
of a student by using game script.

F12 Enable to save and persist all student actions, for game script to operate on, and for
evaluation and research purposes.

Design, development and evaluation of the EMERGO platform

29

Requirement Description

F13 Enable students to send in assignment outcomes, allowing progression within the game
(triggered by game script) and monitoring of progress.

F14 Enable students to enrich the running game with user generated content and share this
content with other students.

F15 Enable administrators to manage platform users and their roles.

F16 Enable administrators to manage game runs, by assigning a cohort of students to a run
and assigning students to game roles.

F17 Enable administrators to manage game teams, teams of students operating within the
same game run.

F18 Enable programmers to easily extend the platform with new languages.

F19 Enable programmers to rather easily extend the set of common reusable components
with new components.

F20 Enable programmers to extend the player environment with new skins, to be able to offer
(external) parties their own look and feel.

N1 Be reliable and stable.

N2 Be usable on multiple operating systems, e.g., at and across institutes.

N3 Offer efficient development and delivery of games. Delivering and updating the platform
and developed serious games should be easy and not affect student’s progress.

N4 Be backward compatible, authoring and playing of earlier developed games should be
possible.

N5 Be integrated with institutional infrastructures.

Requirements F3 and F11 directly relate to acquiring complex cognitive skills. Learners
will perform authentic tasks in an environment that challenges and makes them curious,
presents appropriate and unambiguous outcome goals and provides clear, constructive
and encouraging feedback (Nadolski, Hummel, Slootmaker, & Van der Vegt, 2012).
Requirements F1, F5 and F6 relate to aforementioned need for a more user-friendly
authoring environment. Requirements F3, F7 and F8 relate to the need for reusable and
adaptable components. Requirements F1, F2 to F8, and N3 relate to the need for more
cost-effective development. The requirements are elaborated in a use case diagram
(see Figure 2.2).

Chapter 2

30

Figure 2.2. Use case diagram for the platform. Requirements are indicated

Rectangles indicate the boundaries of the authoring and player environment. These
boundaries are debatable. For instance, previewing and testing a game could be done
outside of the authoring environment, but we feel these options should be an integral
part of it. In the next section we elaborate on the development of the platform.

teacher

student

administrator

programmer

edit game role
(F2)

edit game com-
ponent (F3+F4)

export game
(F7)

import game
component (F8)

export game
component (F8)

preview game
component (F5)test game (F6)

monitor student
progress (F9)

interfere in run-
ning game (F10)

play game (F11)

send in
outcome (F13)

enrich running
game (F14)

manage platform
users (F15)

manage game
runs (F16)

manage game
teams (F17)

extend with com-
ponents (F19)

extend with
languages (F18)

extend with
skins (F20)

import game
(F7)

serious games platform (N1+N2+N3+N4+N5)

create game
(F1)

edit game (F1)

<<include>>
<<include>>

<<include>>

<<include>>

<<include>>

create game
role (F2)

select com-
ponent (F3)

<<include>>

<<include>>

preview game
(F5)

player environment (F11+F12)

authoring environment (F1+F3+F4)

Design, development and evaluation of the EMERGO platform

31

4 Development of the platform

Version 1 of the platform was developed within the EMERGO project (2006-2007) that
was co-funded by SURF foundation, and was intended to be used by all SURF members.
The project had three outcomes: a methodology to support writing the scenario for
scenario-based serious games (Nadolski et al., 2008), a platform for developing and
delivering the games and five games that were used in education. This article will focus
on the EMERGO platform. Version 2 of the platform was one of the outcomes of the
Skills Labs project, also co-funded by SURF foundation, and was released in 2010. The
project also delivered four games that were used in education. Version 3 was an out-
come of a couple of projects and was released in 2013. The platform is Open source and
can be found on SourceForge (EMERGO, 2013).

The first development step was to choose an application architecture. We choose for a
multilayered client-server architecture, because one layer can be substituted by another
implementation without affecting the other layers. To meet requirement F12 (save and
persist all student actions) we choose to use a centralized database on a server so game
script, also located on a server, can operate on student actions, and student data can be
shared within multi-role games and is easily available for evaluation and research. To
meet requirements N1 (reliable and stable) and N2 (usable on multiple operating sys-
tems), and because we had broad experience with it, we choose the Java EE platform. To
meet requirement N3 (efficient development and delivery of games), we choose the
client to be web-based, requiring no installation of dedicated client software to develop
or play a game and enabling easily updating the platform and developed games. To meet
requirement N1 (reliable and stable) we choose the Spring application framework (Spring
Framework, 2013), to implement our domain model and business logic, and the MySQL
database server for data persistence in a centralized database. Both are proven technol-
ogy and widely used within the Open source community. For the client web interface we
choose ZK framework (ZK Framework, 2013) that runs on all common browsers. ZK
framework is a so called RIA (Rich Internet Application) offering the same interactivity
and responsiveness as a desktop application, and therefore offered the best guarantee
to meet requirements F1 (intuitive and user-friendly authoring environment) and F11
(intuitive immersive player environment). ZK comes with a very rich set of visual compo-
nents, which offered the best guarantee to be able to build our own components, meet-
ing requirements F3 (common reusable and adaptable components) and F19 (extend
with new components). ZK is very fast and Ajax-based, so all student actions can be
saved immediately, meeting requirement F12 (save and persist all student actions).

The platform was developed by a multidisciplinary team of educational technologists,
interaction designers and programmers. For the development process we used an agile
methodology similar to Scrum, implying always delivering working software, short itera-
tions, quick response to change and close cooperation within the development team.

Chapter 2

32

We started the development process with the design of the platform, which involved
following five steps: (1) Identify needed platform roles; (2) Create a domain model for
the platform; (3) Identify needed common reusable components, meeting requirement
F3 (common reusable and adaptable components); (4) Create a generic component
design, meeting requirement F19 (rather easily extend with new components); and (5)
Design the component for handling game script, meeting requirement F11 (using game
script, the player environment should be adjusted). In section 5 we will present the
results of these five design steps.

Next we started the implementation of the platform. After implementing the domain
model and business logic we could start implementing the use cases in a certain order.
Most use cases depend on each other, e.g., before you can create a game, you must
first be added as a platform user. While implementing the use cases, we also started
implementing components in a certain order, determined by their mutual dependency
and by the priority within the development team. Version 1 of the platform contained
an initial set of common components. This set was extended with new components in
version 2 and version 3.

The evaluation of the platform involved measuring if requirements F1 (intuitive and
user-friendly authoring environment), F11 (intuitive immersive player environment) and
N3 (efficient development of games) were met. The evaluations of the other require-
ments were based on our experiences with the users of the platform, ourselves includ-
ed. Versions 1 and 2 of the platform were evaluated on the aspects of intuitivity and
user-friendliness for teachers using the authoring environment to enter data. Both
versions were evaluated on the production ratio for developed games and on student
satisfaction with the user-interface of the player environment. Besides this, version 1
was evaluated on student satisfaction, and version 2 on the aspects of quality, studiabil-
ity and effectiveness of developed games as perceived by students. Intuitivity and user-
friendliness as perceived by teachers were operationalized by ‘the capacity to use the
platform components independent without help’ and ‘the simplicity encountered when
using platform components to enter data’, respectively. Intuitivity and user-friendliness
were measured using a questionnaire containing questions, like ‘Were you able to use
the component independently?’ and ‘How simple was it to use the component?’. Pro-
duction ratio (as main indicator for efficient development) was measured by comparing
development hours (as were recorded in the project administration) with the estimated
or measured study time. Student satisfaction was operationalized and questioned as
the appreciation of the player environment. Quality and studiability were operational-
ized in 22 questions, like ‘Were the instructions for performing a task clear enough?’
and ‘Did you get enough background material to perform a task?’. Effectiveness of de-
veloped games was determined by students’ grades, in one case also by comparing
them with grades obtained in classroom education.

Design, development and evaluation of the EMERGO platform

33

5 Design of the platform

In this section we present the design of the platform; the platform roles, the domain
model, the implemented common reusable components, the underlying generic com-
ponent design and the script component.

5.1 The platform roles

Starting from the use case diagram defined in section 3 (Figure 2.2) we identified five
platform roles that should have their own working environment within the platform:
administrator, developer, run manager, tutor and student. The administrator and run
manager platform role are best filled in by user ‘administrator’. The developer and tutor
platform role are filled in by the user ‘teacher’. The student platform role is filled in by
the user ‘student’, or if a teacher has a role within the game, by the user ‘teacher’. The
user ‘programmer’ has no counterpart as platform role, he has his own development
environment to extend the platform.

The administrator platform role manages all users and their platform roles (requirement
F15). Further he can help students who get technically stuck in a game, by inspecting a
student’s progress in the player environment, and adjusting his progress if necessary
(requirement F10). If, for instance, certain materials do not become available for a stu-
dent, due to a bug, the administrator can make them available.

Figure 2.3. Game component content editor showing a dialogue screen to enter a conversation fragment

Chapter 2

34

The developer uses the authoring environment to create and edit games (requirement
F1). Per game he can create and edit game roles (requirement F2) and game compo-
nents by selecting components to use and enter their content (requirement F3). If
needed the game owner (the developer who created the game) can assign other devel-
opers as author of certain game components (requirement F4). All game component
content is entered using a single editor (see Figure 2.3). During authoring the developer
can preview the game or a game component in the player environment (requirement
F5). And he can test the game in the player environment from multiple points within the
game script (so in time) (requirement F6) and for every game role, and even can test
with multiple players. Finally, he can import and export a game or a game component
as an IMS content package (IMSCP-IM, 2007) (requirements F7 and F8).

The run manager creates and updates runs of developed games (requirement F16) and
he defines run users by assigning users to a run. Further, he can run users to a certain
game role and define run teams of run users if appropriate (requirement F17).

The tutor monitors the progress of students (requirement F9). He gets overviews of
tasks students have completed and assignment outcomes they have submitted. If need-
ed, he can interfere in the game by sending an email as if it is sent by a non-playing
character (requirement F10), so students do not notice the difference. This way thresh-
olds can be raised, e.g., to guarantee the quality of students outcomes. Further, he can
help students who get stuck in a game by inspecting a student’s progress in the player
environment and instructing how to proceed (requirement F10).

The student sees an overview of games to play and can start the player environment (see
Figure 2.1) with a chosen game (requirement F11). The player environment renders all
developed games in 2D, and mimics the professional practice students later have to work
in. All student progress is saved and persisted continuously (requirement F12).

5.2 The domain model

The resulting domain model (see Figure 2.4) shows all entities of the platform and how
they are related. Components are the most important concept of the platform. Compo-
nents are used to build and play a game. Programmers maintain the set of components
and can extend it. Users of the EMERGO platform can get multiple platform roles. As an
administrator, a User can manage Users and give them platform roles. As a developer, a
User can manage multiple Games and is the owner of the Games he creates. Per Game
he is the author of multiple Game Roles and Game Components. He can make other
developers author of his Game Components. The Game itself is not much more than a
container for Game Roles and Game Components. Components can have multiple
Game Component instances and a certain Game Component can be used by multiple
Game Roles. As a run manager, a User manages Runs. A Game can have multiple Runs.
The run manager allocates Users to a Run as Run Users. He also can create Run Teams

Design, development and evaluation of the EMERGO platform

35

of Run Users. As a tutor, a User can monitor Runs. As a student, a User can participate in
multiple Runs as Run User and can be member of multiple Run Teams. A Run User has
Run User Progress within a Run and a Run Team has Run Team Progress. Note that both
types of progress can be present in one Run. Progress is related to a Game Component.

Figure 2.4. Domain model of the platform

5.3 Common platform components

Based on our experience in developing scenario-based serious games over the years, we
have identified a number of components that represent common functionalities for this
kind of games. Students are always placed in an environment with multiple locations
where they can interview people, and have a virtual tablet with apps to help them with
their assignments. Table 2.2 lists all components that we have implemented and in
which version of the platform.

User

Component

GameGame Component

*

for

*
has

*

*

is part of

*

for

*

has

*

has

*

has

- student *is

*
has

1..*

is available for

1..*

1..*

Game Role

Run

Run User

Run User Progress Run Team

Run Team Progress

- developer

*

is author of
- developer

*

manages

- run manager

*

manages

- administrator
*

manages

*

defines

- monitors

- tutor

*

monitors

Chapter 2

36

Table 2.2: Common components, their function and in which version of the platform they were implemented

Component Function Version
Locations Navigate through the game and stage setting 1
Navigation More naturally navigate through the game, using hyper regions on location

backgrounds and the parallax effect (see Figure 2.1)
3

Conversations Interact with non-playing characters on location, using video 1
Alerts Provide popup instructions 1
Notepad Make contextualized notes. Available on every location 1
Memo record-
er

Record parts of interviews. Available on every location 3

Profile See each other’s profile and scores defined in the ‘Scores’ component. Availa-
ble on every location

3

Chat Chat in game. Available on every location 3
Tablet Provide available apps. Available on every location 1
Assessments Enable in-game assessment, using items defined in ‘Items’ component. App on

tablet
1

Directing Examine an interview using different camera angles. App on tablet 3
Email Enable in-game email, e.g., for providing predefined assignments to students

and sending in assignment outcomes by students. App on tablet
1

Google Maps Enable showing maps with markers. App on tablet 2
Logbook Provide overview of notes made with the ‘Notepad’ component. App on tablet 2
Memo player Look back interview recordings. App on tablet 3
Resources Provide background material. App on tablet 1
Tasks Provide tasks overview or to do list. App on tablet 1
Video manual Explain the player environment interface. App on tablet 3
Items Provide item bank of multiple choice and multiple answer questions to be used

in the ‘Assessments’ component
1

States Enable defining game properties that can be read and changed in game script 3
Scores Enable defining scores to be shown in the ‘Profile’ component 3
Script Enable dynamic adjustment of the player environment using game script 1
Relations Store relations between content of different components 1

The last two components do not represent game functionalities, but are added because
they are common in every game. The Script component is used by developers to enter
the game script. The Relations component is used by the platform to store relations
between content of different game components, e.g., which items belong to a certain
assessment.

5.4 The generic component design

To be able to meet requirement F19 (rather easily extend with new components), we
wanted the domain model to remain unchanged if we extend the platform with a com-
ponent. We therefore choose to store all component related content in XML. It con-
cerns the component itself, the game component content entered by developers and
the game component progress of students, as can be seen in the domain model.

To be able to meet requirement F19 (rather easily extend with new components), we
had to come up with a generic design for components, so components could be added

Design, development and evaluation of the EMERGO platform

37

in the future too. We choose to define every component by an XML definition (see ex-
ample in Figure 2.5), that includes:
1. component properties (e.g., a component is present for a student or not);
2. relations with other components (e.g., the Logbook component will show all notes

entered in the Notepad component);
3. possible content elements, that make up the content of a component (e.g., loca-

tions, folders, resources, interviews, questions);
4. mutual hierarchy of content elements, indicating which content element must be

part of another one (e.g., questions are part of an interview);
5. relations with other content elements (e.g., an item belongs to an assessment);
6. content to be entered by a developer (e.g., the text of a question to be asked or a

reference to a video stream to be played);
7. content to be entered by a student (e.g., an email text or attachments)
8. content elements’ properties (e.g., an email is sent);
9. the type of the properties;
10. the default values of the properties;
11. which property values can initially be changed by developers; and
12. which property values can be read and/or changed by game script.

Figure 2.5. Simple example of an XML definition: the Alerts component

Properties have different purposes. There are properties that determine visibility or
accessibility in the player environment (requirement F11). These properties typically can
change during the game and are set by developers, initially or by using game script.
Other properties determine the adaptability of a component (requirement F3) in either

Chapter 2

38

functionality or layout, and are initially set by developers. Most properties are used to
handle progress within the game. Adjustments to their values are triggered by student
actions (e.g., opening a resource), game script (e.g., sending a predefined email) or the
platform itself (keeping game time). We have defined over 30 properties. Table 2.3 lists
properties that are used most often.

Table 2.3: Most used properties and their purpose

Property Type Purpose Example
Present Boolean Does a student see a component

or content element?
A tablet app is present or not

Accessible Boolean Can a student access a compo-
nent or content element?

A door is locked or not

Expandable Boolean Can a student expand a content
element?

A resource folder can be ex-
panded or not

Expanded Boolean Is a content element expanded by
a student?

A resource folder is expanded
or not

Opened Boolean Is a component or content ele-
ment opened by a student?

A door is opened

Started Boolean Is a component or content ele-
ment started by a student or the
platform?

A video stream is started by the
platform

Finished Boolean Is a component or content ele-
ment finished by a student or the
platform?

An assessment is finished by a
student

Sent Boolean Is a content element sent by a
student or the platform?

An email is sent by a student or
the platform

All game component content entered by game developers and all game component
progress of students is stored in XML, in a structure defined by the XML definition of the
corresponding component. Progress is formed by all property changes in time and pos-
sibly associated content like an email text and attachments entered by a student. Some
components allow a developer to set properties that enable students to create and
share user generated content (requirement F14). This content is saved within progress
too.

The generic component design ensures that adding new components has a minimal
effect on the authoring environment. Only if a new component demands a new content
format, a corresponding input element has to be added in the game component con-
tent editor. This, however, does not account for the player environment. It has to be
extended with an embedded player for the component.

5.5 The Script component

By using the Script component a developer enters the dynamics of the game scenario,
thus determining how the player environment should be adjusted according to the

Design, development and evaluation of the EMERGO platform

39

actions and progress of a student. Conditions and actions are entered using dialogues
that require no programming (requirement F1). A condition and its related actions re-
semble an ‘if-then’ statement in a programming language (see Figure 2.6).

A script condition enables the developer to check whether properties have been set to
certain values, e.g., if a student has opened a location then its opened property is set
true. A condition can be built up by sub conditions using logical operators. Conditions
are triggered by events, either by student actions or timer events, resulting in a proper-
ty change. If the condition becomes true its related actions will be executed.

A script action enables the developer to set a property to a certain value, e.g., a new
conversation can be made available by setting its present property to true. When a
property is set, the execution of a script action can result in other conditions being
triggered. A special kind of script action is the definition of a script timer. If its ‘parent’
condition becomes true, the timer will start. Another condition then can be used to
check if the timer fires. Timers have a certain delay, can be defined to be repetitive, and
can measure game-time or real-time.

Conditions and actions themselves have properties too. One of them is the present
property. By setting its value to true or false a developer can switch conditions and
actions on and off, meaning the working of the script itself can be changed too. The
Script component only allows conditions and actions to be defined on existing content
entered by developers, not on user generated content entered by students.

In the next section we present the evaluation of the platform and its relation to other
work.

Figure 2.6. An example of script (entered for the game described in section 2). Conditions and actions are
added using dialogue popups

Chapter 2

40

6 Evaluation of the platform and related work

6.1 Evaluation of the platform

The EMERGO platform has been used in various projects with both internal and external
partners. In seven years, 22 games were developed, which were used in education by
nearly 4000 students in total. Games were developed for six content domains, had a
broad variety in scenarios and structure and differed both in complexity and study load,
ranging from two to 30 hours. Twenty games were single user games and two games
were multi-role games that involved collaboration between students. The platform
currently is being used by five educational institutes.

We evaluated requirements F1 (intuitive and user-friendly authoring environment), F11
(intuitive immersive player environment) and N3 (efficient development of games) for
nine developed games, five running on version 1 of the platform and four on version 2.
All nine games were of the same type as described in section 2. The teachers developing
with version 1 were different from the ones developing with version 2. Teachers origi-
nated from two educational institutes and had a background in Environmental Sciences.
Nadolski et al. (2008) evaluated version 1 of the platform and found that teachers only
had trouble using the Script component independently (one out of three) and that the
Script and Conversations components were most difficult to use. They also found that
students (n = 8) were very satisfied with the user interface of the platform and with the
developed games. Furthermore, they found an average production ratio of 1:25 (one
hour study load costs 25 hours development time) for five developed games, compared
with average production rates of 1:100 and higher found before (Alessi, & Trollip, 2001).
Version 2 of the platform was evaluated in the Skills Labs project (for evaluation results
see http://dspace.ou.nl/handle/1820/2385). Again teachers only had trouble using the
Script component independently (one out of four), and found the Script and Conversa-
tions components most difficult to use. Students (n = 40) were satisfied with the user
interface of the platform. The average production ratio for four developed games was
1:30. Version 2 was also evaluated regarding quality and studiability, and effectiveness
of developed games. Students (n = 40) judged quality and studiability of the four devel-
oped games as sufficient (three games) or good (one game). Effectiveness was deter-
mined by student’s grades. The average grade was sufficient to good, only two students
out of forty scored insufficient. For one game grades were compared with grades ob-
tained in classroom education, and were slightly better. Evaluation of the other re-
quirements is based on our own experiences with the users of the platform, ourselves
included.

Design, development and evaluation of the EMERGO platform

41

Below we discuss if the functional and non-functional requirements were met.
• F1 (intuitive and user-friendly authoring environment) was partly met. All teachers

could author all components independently, except for the Script component. The
Script and Conversations component were quite difficult to use.

• F2 (multiple game roles) was met, but only used in two games.
• F3 (common reusable and adaptable components) was met. One component can be

used in multiple games and game components can be imported and exported. The
generic component design ensures that components can be defined to be adaptable.

• F4 (several teachers working together on the same game) was met.
• F5 (preview games and game components) was met. It was an indispensable option

while developing games and new platform components.
• F6 (test games) was met. It was an indispensable option for fast development of

games and new platform components.
• F7 (import and export games) was met. It turned out to be very handy for distribution

of games to other platform instances.
• F8 (import and export game components) was met.
• F9 (monitor progress) was met.
• F10 (interfere in a running game) was met. In some games this option was prede-

signed in the game scenario. However, the option was mostly used by administrators
to help students who were stuck in a game.

• F11 (intuitive immersive player environment) was met. Students were satisfied or
very satisfied with the player environment.

• F12 (save and persist all student actions) was met. Students almost never lost data
and could always continue a game the next session. A first scientific article based on
the logging data is in preparation (Westera, Nadolski, & Hummel, 2014).

• F13 (send in outcomes) was met. Outcomes are sent in as an attachment of an in-
game email.

• F14 (enrich running game with user generated content) was met. It was implemented
for the Resources and Google Maps components.

• F15 (manage platform users) was met.
• F16 (manage game runs) was met.
• F17 (manage game teams) was met.
• F18 (extend with languages) was met. Currently supported languages are English,

Dutch and Spanish.
• F19 (rather easily extend with new components) was met. In version 2 and 3, the

platform was extended with new common components. The generic component de-
sign ensures no or very little adjustment of the authoring environment, although ad-
justment of the player environment still is time consuming.

Chapter 2

42

• F20 (extend with skins) was met. In version 3, the platform was expanded with the
ability to support multiple skins. The current platform has three skins and new skins
can be added rather easily.

• N1 (reliable and stable) was met. It is demonstrated by the many games developed
and many students playing them.

• N2 (usable on multiple operating systems) was met. The platform currently runs on
Windows and Linux servers.

• N3 (efficient development and delivery of games) was met by our choice for a web
client, and the abilities to update developed games in case of bugs and to help stu-
dents who are stuck. Production ratios are better than before.

• N4 (backward compatible) was met. Games developed seven years ago still run on the
platform.

• N5 (be integrated with institutional infrastructures) was met. The platform was inte-
grated with the ELO of the Open University to enable single sign-on.

6.2 Related work

During the last decade there were a lot of initiatives to get serious game development
on a higher level, strongly supported by the European Commission.

The ELEKTRA project (2006 - 2008), for instance, was a research project that focused on
bridging the gap between computer science and pedagogy. The project delivered a 3D
game on physics meant to engage youngsters for the subject. In-game feedback of
these youngsters was used to fine tune the game. The game is analogue to the EMERGO
platform in being able to adapt the player environment according to player progress,
but differs on being an offline 3D game and not an online development and delivery
platform of multiple games.

The 80days project (2008 – 2010, http://www.eightydays.eu/) was a follow-up of the
ELEKTRA project and focused on game adaptation to individual learners, their prior
knowledge, abilities, preferences, needs and aims (adaptive personalized learning).
Adaptation on a micro level was realized by giving feedback or hinting in specific learn-
ing situations, and on a macro level by sequencing and pacing of learning situations
tailored to the individual learner. The project delivered a 3D game on geography which
was developed using the StoryTec framework (Göbel, Salvatore, Konrad, & Mehm,
2008), an authoring tool for the development of story-based, process-oriented, interac-
tive 3D applications. It resembles EMERGO in enabling authors to develop games with-
out or with minor programming skills. The Story Editor within StoryTec has some re-
semblance with the Script component of EMERGO in being able to enter conditional
transitions within the game, to go from one scene to another, and to enter actions on
content elements. And both platforms enable adaptive personalized learning. But while
StoryTec focuses on highly graphical oriented 2D/3D games to be developed and played

Design, development and evaluation of the EMERGO platform

43

on a client computer, EMERGO focuses on lesser graphics, use of video and web-based
development and delivery. This different focus is related to different customer demands
for both platforms.

The ImREAL project (2010 – 2013, http://www.imreal-project.eu/), was a European
research project focusing on the development of a suite of learning services which ex-
tract their data from the real world and can be plugged into virtual environments to
augment these environments and enhance self-regulated learning. The learning services
were developed by the participating universities. Two existing commercial products
were extended to make use of these services. In a first use case an existing role-play
simulation environment, developed by EmpowerTheUser (http://www.etu.ie/), was
extended to use services related to cultural variations in interpersonal communication,
to user generated content, to user profiles (extracted from user activity on the Social
Web) and to supporting learners in understanding and improving how they learn. In a
second use case another role-play simulation environment, developed by Imaginary
(http://www.i-maginary.it/en/), was extended with a story boarding environment for
collecting and structuring content for simulations, and the same services as in the first
use case. Both commercial simulation environments require no programming, like is the
case with EMERGO, and offer rich immersive user experiences, but are not freely avail-
able. They support web-based delivery, although it is unclear if all student actions are
persisted, but they do not support web-based development. It would certainly be inter-
esting to explore if EMERGO could be extended with the ImREAL learning services.

Another related initiative is the eAdventure project (http://e-adventure.e-ucm.es/), a
research project of Universidad Complutense de Madrid that delivered the eAdventure
authoring tool for the creation of point-and-click adventure games for educational pur-
poses. Developed games can be exported as SCORM package and therefore can be
integrated with Learning Management Systems, enabling exchange of adaptation and
assessment data. In this respect it is more mature than EMERGO. eAdventure is more
focussed on decision making and influencing or adapting certain behaviour, while
EMERGO focuses on acquiring complex cognitive skills. Games can be developed on
multiple platforms and can be deployed on these platforms and on the web too, alt-
hough then not all student actions are persisted. It has an easy-to-use game editor,
which requires no programming, just like EMERGO, but it does not support multi-role or
multi-user games or sharing of content between students.

Chapter 2

44

7 Conclusions and future work

7.1 Conclusions

We demonstrated how to design and develop a generic platform that enables fast and
flexible development and delivery of a wide variety of scenario-based serious games
which enable complex cognitive skills acquisition.

The platform is generic in the sense that it enables a broad variety of game scenarios to
be authored, to be played and to be monitored. It offers a set of common reusable
components a teacher can pick from to develop a game. The components and their
content can be reused in other games. One player environment delivers the variety of
scenarios to students and saves and persist all student actions continuously, fostering
educational research on all games.

The platform is fast in the sense that teachers can use it mostly independent, can draw
on already developed components and can preview and test a game during develop-
ment and from any point in the scenario, which results in more cost-effective develop-
ment, as indicated by better production ratios than before. Web-based delivery ensures
fast and easy delivery of games, updates of games and the platform itself.

The platform is flexible in the sense that a game can have multiple authors, a teacher
can adjust already deployed games in case of bugs and can interfere in a running game,
and the platform provides tooling to help students who are stuck. The platform can be
extended rather easily with new components and languages, and skins for the player
environment. Developed games can be easily distributed to other platform instances.

Nineteen out of 20 functional requirements were fully met. Requirement F1 (intuitive
and user-friendly authoring environment) was partly met. Entering game script turned
out to be too difficult. We could improve its interface, but scripting still requires more
technical skills so probably better could be entered by a programmer. Another way to
improve could be using predefined templates or game patterns, e.g., collaboration
scripts (see next subsection). Although requirement F19 (rather easily extend with new
components) was met, we expect that extending the player environment can be im-
proved by constructing it using interface building blocks based on macros or templates.
All non-functional requirements were met.

7.2 Future work

Collaboration scripts have been scarcely implemented in serious games so far. There-
fore, we have built and evaluated two games using online collaboration (Hummel et al.,
2010; Hummel et al., 2013). We will use this experience to extend the EMERGO plat-
form with components that support collaboration. This will involve adding new compo-
nents for rating, voting and negotiation, and extending the Script component to enter

Design, development and evaluation of the EMERGO platform

45

and handle collaboration script. We also consider integrating an online conferencing
system as an alternative for chat.

We would like to extend the platform with real-time elements (known as augmented
virtuality) like web services for presenting real-time data, real-time video with non-
playing characters met in video, and sensor data for better support. With regard to the
latter option, at the Open University research is done and software is developed for real
time emotion recognition using visual and auditory sensors (Bahreini, Nadolski, Qi, &
Westera, 2012). To enable research on the learning benefits of real time emotion
recognition in serious games, we will integrate this software with the EMERGO plat-
form, so the player environment can be adjusted according to the student’s emotions.

We are involved in some projects where the EMERGO platform will be used in develop-
ing countries, e.g., Kenia, Colombia. In these countries connectivity is a problem, so we
will make the platform better suitable for low bandwidths. The platform will buffer
game content when sufficient bandwidth is available, to account for low connectivity
later on. We consider developing a mobile client app for the player environment in case
of no connectivity at all. We then could extend the platform to make use of the capabili-
ties of mobile devices like GPS positioning, and making pictures, video and audio.

We already experimented with integrating the Unity Web Player and the EMERGO plat-
form, by playing a Unity game embedded in the platform and exchanging data between
player and platform. The platform then could support students playing an existing Unity
game. We would like to further explore this promising possibility.

Acknowledgements

We wish to thank SURF foundation for co-funding the development and scaling-up of
the EMERGO platform. We also thank all developers, teachers and students of the insti-
tutes contributing to the initial development and extension of the platform.

47

Chapter 3
EMERGO platform components

processes and architecture

EMERGO platform components, processes and architecture

49

1 Introduction

In chapter 2 we presented the functional and non-functional requirements for the
EMERGO platform and the design steps that led to its realization. The main require-
ments were to offer a set of reusable and adaptable components that covers most
functionalities needed in scenario-based serious games, to provide a user-friendly au-
thoring environment for teachers and an intuitive and immersive player environment
for students. We also presented the different platform roles, namely administrator,
developer, run manager, tutor and student. The administrator manages all platform
components and all users and their platform roles, and may support students by in-
specting their game progress within the player environment and adjusting it if neces-
sary. The developer uses the authoring environment to create and author games, game
roles, game components and game component content (see Figure 3.1), and can pre-
view or test entered content using the player environment. See section 3.1 for a de-
tailed description of the authoring process.

Figure 3.1. The authoring environment’s game component content page

The run manager creates or updates runs of developed games, defines run users by
assigning student users to a run and a certain game role, and defines run teams of run
users if applicable. The tutor monitors the progress of students using overviews and
may support them by inspecting their game progress within the player environment.
The student gets an overview of games to play and can start the player environment

Chapter 3

50

with a chosen game (see Figures 3.2 and 3.3). See section 3.2 for a detailed description
of the playing process.

Figure 3.2. An impression of the player environment for two developed games

EMERGO platform components, processes and architecture

51

Figure 3.3. An impression of the player environment for two developed games having different skins

In chapter 2 we also presented the domain model of platform entities (see Figure 2.4)
with components, users, games, game roles, game components, runs, run users, run
teams, run user progress and run team progress. The latter two entities are used to
track student or team progress per game component. We briefly presented the differ-

Chapter 3

52

ent platform components (see Table 2.2) and their underlying generic component de-
sign (see section 5.4 in chapter 2) which involves component properties, content ele-
ments, their hierarchy, their content and their properties, and relations between differ-
ent game elements. We also briefly explained the working of the Script component,
responsible for the dynamics within the game scenario (see section 5.5 in chapter 2).
Because the platform should be reliable, stable and deployable on multiple operating
systems we chose the Java EE platform (J2EE, 2017) for its implementation. To be able
to easily add new platform components the platform’s domain model is rather simple
and does not contain entities that represent game elements such as materials or game
rules. These entities are defined within the platform components’ XML (W3C, 2015)
definitions that comply with the generic component design and are saved as XML con-
tent during authoring or XML progress during playing. The use of XML allows for a very
flexible data-driven approach.

In this chapter we will further elaborate on important aspects of the platform, namely
its components, processes and architecture.
In section 2 we first present the general structure of platform components and their
XML definitions that define their allowed properties and content. Following, we de-
scribe all components to illustrate the game elements and functions the platform sup-
ports. We start with the Navigation component that is used to define locations and the
navigation between them and this way lays the foundation for all other components like
the Conversations and Tablet components. In section 3 we present main platform pro-
cesses such as the authoring process, the playing process and processes that are sup-
portive or conditional for authoring and playing. After describing the general authoring
process we focus on the authoring of game component content, which includes game
script, because it is the most important and complex sub-process. For the playing pro-
cess we describe the structure of the player environment after which we focus on the
event handling process. This process involves handling of student, timer, script and peer
events, which will result in updating the student’s progress. The other platform pro-
cesses involve monitoring and supporting students, managing game runs and populat-
ing the platform and game runs with users. In section 4 we present the multilayered
architecture of the platform that forms the foundation for the implementation of the
different platform components and processes. We describe the different layers, their
main components, their responsibilities and the Open source software we used to im-
plement them.

2 The platform components

We start this section with a description of the general structure of platform compo-
nents and their XML definitions and continue with a description of all components to
illustrate all game elements and functions the platform supports.

EMERGO platform components, processes and architecture

53

2.1 The general structure of components and XML definitions

Every platform component represents a certain platform function and has a fixed code,
a type, a multiplicity, an XML definition and a possible parent component (see Figure
3.4). The code attribute indicates the component’s function, e.g., ‘navigation’ or ‘tablet’.
The type attribute is either ‘functional’ which means it has a function in the game sce-
nario and can be authored by a game developer or ‘system’ meaning it is used to sup-
port authoring and playing of a game. The multiple attribute indicates if a developer
may create multiple game component instances per component for a specific game
role. For instance, it would be strange to have multiple Navigation, Tablet or Email game
components per game role. However, most components allow for having multiple game
component instances, which allows for thematically arranging content, e.g., one Con-
versations component per interviewee or task. The XML definition attribute defines the
component’s possible properties, content and relations with other components or con-
tent. Varying availability of components and content is handled by game script (see
description of Script component below). The component’s parent component is either
empty meaning the component will be directly available within the game interface or
equal to the Tablet meaning the component will be available after opening the Tablet
component. The components form a flat structure where mutual dependencies are
defined by relations (see description of Relations component below), which simplifies
extension with new components.

Figure 3.4. Part of the domain model with entities involved in game authoring

The XML definitions define the XML content of game components, which can be seen as
instantiations of components within a game (see Figure 3.4). Figure 3.5 shows the gen-
eral UML class diagram (Fowler, 2004; Object Management Group, 2017) of XML con-

- XML definition : String
- multiple : boolean
- type : String
- code : String

Component

- skin : String
- name : String

Game

- XML content : String
- name : String

Game Component 1..*

1..*

1..*

is available for

- NPC : boolean
- name : String

Game Role

*

defines

0..1

has parent

Chapter 3

54

tent, which is a visualization of the generic component design described in section 5.4
of chapter 2. A game component has possible content elements that may form a hierar-
chy. Content elements are game elements like, for instance, locations, backgrounds,
resources, questions, or fragments. A content element has content children that will
contain its actual content like titles, names, text or assets. Assets are files like pdf’s,
images or videos, or URLs. Both component and content elements have properties that
serve different purposes. See Table 2.3 for a description of most used properties and
their purpose. Properties ‘present’ and ‘accessible’ determine visibility or accessibility of
a game component or a content element in the player environment. The values of these
properties may be set by a developer during authoring or changed by game script dur-
ing a game session. Other properties, e.g., ‘correct’, ‘droppable’ or ‘position’, allow a
developer to adapt the functionality, behavior or layout of a game component or con-
tent element. Most properties, e.g., ’selected’, ’opened’, ’started’, ‘finished’ or ’sent’,
are used to handle progress within the game. Change of property values is triggered by
student actions, e.g., when a resource is opened, by game script, e.g., when an email is
sent, or by the game itself, e.g., when a video fragment is finished. Both game compo-
nent and content elements may have relations with other game components or content
elements, or with properties or game roles (the latter is not shown in Figure 3.5 be-
cause it is not defined within the XML definitions.). A relation always involves two ob-
jects, e.g., from a specific content element to a specific property. See the component
descriptions in section 2.2 for the different kinds of relations. Relations are defined
within XML definitions but stored in the XML content of the Relations component, see
section 2.2. Script conditions, actions and timers are also content elements, which have
their own content children, properties and relations. This allows for game script to
switch these content elements on and off during a game session by changing the value
of their property ‘present’ (see Script component in section 2.2).

Figure 3.5. General UML class diagram of game components’ XML content

Content Element Property

Content Child

**

*

*

*

Relation

*0..1

*

0..1

0..1 *

Game Component

A relation always
involves two objects

EMERGO platform components, processes and architecture

55

Below an example of an XML definition to illustrate its structure, in this case for the
Tasks component:

<data>
 <component type="root">
 <properties present="true" accessible="true" selected="false" opened="false"/>
 <initial-properties properties="present,accessible"/>
 <get-properties properties="present,accessible,selected,opened"/>
 <set-properties properties="present,accessible,opened"/>
 </component>
 <content type="root" child-nodes="task" preview="true" max-id="0">
 <task type="node" id="" key="name" child-nodes="task">
 <name type="line"/>
 <instruction type="simple-rich-text"/>
 <properties present="true" accessible="true" selected="false" opened="false"
 finished="false"/>
 <initial-properties properties="present,accessible"/>
 <get-properties properties="present,accessible,selected,opened,finished"/>
 <set-properties properties="present,accessible,finished"/>
 </task>
 </content>
</data>

In the example above we see that the game component’s properties and their default
values are defined by the properties tag within the component tag. If the default prop-
erty value is ‘true’ or ‘false’ its type is Boolean, if it is a number its type is Double and
otherwise its type is String. The initial-properties tag indicates which properties may be
set by a game developer during authoring and the get-properties and set-properties tags
indicate which properties may be inspected or changed by game script during a game
session. The game component’s possible content elements are defined as children of
the content tag, in this case task, and are of type ‘node’. During authoring the content
tag is the ‘root’ element of all content elements. Its child-nodes attribute indicates that
a task may be added directly under the ‘root’ element. Its preview attribute indicates
that the game component may be previewed separately in the player environment
during authoring. Its max-id attribute is used by the platform to be able to generate a
unique id for a newly created content element. The key attribute of the task indicates
which content child’s value functions as a key for the content element, in this case
‘name’. This key will be visible for a developer if he creates a relation to a task, for in-
stance, in game script. The task’s child-nodes attribute indicates that a task may have
sub tasks. The task’s content children ‘name’ and ‘instruction’ are used to enter its con-
tent. Just like the component tag, every content element has child tags ‘properties’,
’initial-properties’, ’get-properties’ and ’set-properties’ to define properties and their
default values and if they may be set by a developer or inspected or changed by game
script.

Below an example of the definition of a relation, in this case for the Conversations com-
ponent where a conversation can be present on multiple locations:

Chapter 3

56

<data>
 ..
 ..
 <content type="root" child-nodes="conversation" max-id="0">
 <conversation type="node" id="" key="p-id"
 child-nodes="background,fragment,question"
 preview="true">
 <p-id type="line" private="true"/>
 <name type="line"/>
 <ref-locations type="ref" ref-type="conversation-node-to-location-nodes"
 ref-component="navigation" ref-node="location" multiple="true"/>
 ..
 ..
 </conversation>
 ..
 ..
 </content>
</data>

In the example above we see that the conversation tag defines a conversation and its
ref-locations child tag defines relations with ‘locations’. Its ref attribute indicates that it
defines relations and its ref-type attribute indicates the relation type, in this case from a
conversation element to location elements. It concerns a relation with multiple loca-
tions, indicated by the ref-node and multiple attributes, situated within the ‘Navigation’
component, indicated by the ref-component attribute. Relations are stored in the XML
content of the Relations component (see further).

The examples show that XML definitions do not conform to XML schema (W3C, 2016)
that may be used to describe the grammar of an XML document. Although the XML
definitions together show some similarity to a domain-specific language (Van Deursen,
Klint, & Visser, 2000) it was not our intention to develop such a language also because
every newly added EMERGO component might require an extension with new language
elements. XML schema also does not support validation of the ref tag that we use to
define relations with other entities. Instead validity of this ref tag and all other XML
content and students’ XML progress is handled by Java components used by the author-
ing and player environment.

2.2 The description of EMERGO components

We now will describe the structure of the XML content of the different game compo-
nents in the form of UML class diagrams that show allowed content elements and rela-
tions. Content children and properties are left out of these diagrams for clarity. Most
content elements are created by a developer during authoring, e.g., locations and back-
grounds, but other content elements are created by a student during playing, e.g.,
notes and chats. We start with the Navigation component that allows for defining loca-
tions and the navigation between them and continue with the components that may be
present on locations, including the Tablet. Next, we describe all game components that
are situated on the Tablet. We end with game components that are not visible to stu-

EMERGO platform components, processes and architecture

57

dents within the player environment and are either used by other game components or
for adaptation of the player environment.

Navigation. This component supports student’s navigation through the game using
hyper regions on locations, which may be decorated. Figure 3.6 shows allowed content
elements. Locations define the scenes a student may visit during the game. Every loca-
tion may have a background that may show a background image. In case of multiple
locations or backgrounds the default one is set during authoring, which may be over-
ruled by game script during a game session. Every background may host a number of
passages, objects, clickable objects, panels or plugins that all are positioned on the
background. A passage functions as a hyper region and is used to go to another loca-
tion. A developer selects one or more locations, which results in one or more relations
with a location. In case of multiple locations a student will select one during a game
session. An object is an image that is used for decoration. A clickable object functions as
a hyper region and needs a script condition to handle clicking on it during a game ses-
sion, e.g., to give feedback. A panel is used to play a media fragment. A plugin has to be
developed by an ICT developer and allows for filling a specific piece of the background
with its own dedicated interface and event handling.

Figure 3.6. UML class diagram of the Navigation component

Conversations. This component enables student’s interaction with NPCs (Non Playing
Characters) situated at a location but may also be used to play a single video stream,
e.g., a presentation, without any interaction. Figure 3.7 shows allowed content ele-
ments. A conversation represents a dialogue with an NPC and is opened automatically

Navigation

Location

Background

Passage Object Clickable Object Panel

1..*

*

* *

1..*

*

has

*

Plugin

* *

Relation
1*

with

Chapter 3

58

when a student enters a location. In case of multiple conversations he will select one.
Per conversation a developer selects one or more locations, which results in one or
more relations with a location. A conversation may have a background image and may
automatically play a fragment, e.g., to let an NPC introduce himself, and may present a
number of predefined questions to ask. Fragments support various media formats.
When a question is chosen a corresponding fragment is played as an answer. A frag-
ment may be followed by the presentation of a number of other questions, e.g., to
zoom in at a subject. In case of multiple conversations on one location or multiple back-
grounds or fragments the default one is set during authoring, which may be overruled
by game script during a game session.

Figure 3.7. UML class diagram of the Conversations component

Notepad. A student can always open this component to make contextualized notes,
e.g., about a certain conversation or resource. Allowed content elements are notes (see
Figure 3.8).

Figure 3.8. UML class diagrams of the Notepad and Memo recorder component

Conversations

Conversation

Background QuestionFragment

* **
*

has answer
*

is followed by

*

*1
has

Relation

with Location

Notepad

Note

*

Memo recorder

Memo

*

EMERGO platform components, processes and architecture

59

Memo recorder. This component may be available during conversations and allows a
student to make recordings of (parts of) conversations. Allowed content elements are
memos (see Figure 3.8).

Alerts. This component supports alerting a student during a game session, e.g., to at-
tend a meeting or to insist to work faster. Allowed content elements are alerts (see
Figure 3.9) that are authored by a developer. An alert may show a text in a temporary
popup or play an audio fragment and needs a script action to show or play it.

Notifications. This component supports providing texts situated on a location, e.g., to
show feedback. Whether a new notification replaces an existing one or is added to
existing ones is configurable. Allowed content elements are notifications (see Figure
3.9) that are authored by a developer. During authoring a developer selects one or
more locations on which the component must be present, which results in one or more
relations with a location.

Figure 3.9. UML class diagrams of the Alerts and Notifications component

Scores. This component is available on every location and is used to show student’s
scores. It permanently shows the most important scores but a click on it shows a score
overview of all scores, including the less important ones. Allowed content elements are
scores (see Figure 3.10) that are authored by a developer. A score is related to a state
(see States component below), which is selected during authoring, and adds a label and
a unit to the state value.

Profile. This component can be opened on every location and supports to share profiles
and certain scores. Allowed content elements are an image, a mood and scores (see
Figure 3.10). The profile image is uploaded and the mood is entered as a text by stu-
dents during a game session. Just like for the Scores component scores are authored by
developers who select corresponding states and decide which scores are shared.

Chats. This component can be opened on every location and supports chatting between
students. Allowed content elements are chats (see Figure 3.10) that are created by a
student during a game session.

Alerts

Alert

*

Notifications

Notification

*

*1

has
Relation

with Location

Chapter 3

60

Figure 3.10. UML class diagrams of the Scores, Profile and Chats component

Tablet. This component can be opened on every location and is used to open other
components that are situated on it as indicated by their parent attribute (see Figure
3.4). The tablet has no content elements of its own. During a game session style sheets
of its app components are used to render icons to open them.

Tasks. This Tablet app is used to show a task overview. Allowed content elements are
tasks (see Figure 3.11). Tasks may have sub tasks and are authored by a developer.
Whether the completion of tasks is managed by a student himself or by game script is
configurable. The availability of other game content needed to perform a task is man-
aged by game script.

Resources. This Tablet app is used to show an overview of resource titles that may be
subdivided into folders. Resources can be opened by a student and can be all kinds of
assets, like pdf’s, images, videos or URLs. Allowed content elements are folders and
resources (see Figure 3.11) that are authored by a developer.

Figure 3.11. UML class diagrams of the Tasks and Resources component

Email. This Tablet app allows students to get predefined mails from NPCs and to send
predefined mails to NPCs or PCs. Figure 3.12 shows allowed content elements. A devel-

Chat

*

Scores

Score

1

1
has

*

Relation

with State

Profile

Image Mood Score

0..1 0..1 *

Chats

Relation

with State

1

1
has

ResourcesTasks

Folder Resource

* *

*

Task

*

*

*

EMERGO platform components, processes and architecture

61

oper authors mail folders, e.g., inbox and outbox, and can add sub folders to further
categorize mails. He also authors incoming mails, which may include attachments, and
selects an NPC as sender, which is indicated by the relation between incoming mail and
game role. An incoming mail needs a Script action to send it. He also authors outgoing
mails, gives them a title and selects NPCs or PCs as receivers, which is indicated by rela-
tions in Figure 3.12. During a game session a student will select an outgoing mail, enter
its text, add possible attachments and send it.

Figure 3.12. UML class diagram of the Email component

Assessments. This Tablet app enables in-game assessment, using items defined in the
Items component (see further). Allowed content elements are assessments, instruc-
tions, ref items and feedback conditions (see Figure 3.13) that are authored by a devel-
oper. If a student opens an assessment a textual instruction may be shown before he
starts answering items. ‘Ref item’ is related to an item (see the Items component) and
among others adds a weight to the item relative to other ‘ref items’ within the assess-
ment. A developer may define a number of feedback conditions to give feedback on the
assessment as a whole. A feedback condition consists of a feedback text to show and a
condition to check if the assessment is in a certain state, e.g., if all items are answered

NPC receiverNPC sender PC receiver

with Game Role

Email

Folder

**

Outgoing MailIncoming Mail

**

Attachment

* *

Relation
0..1

1

has

0..1

1

has

1

1

has

Chapter 3

62

correctly or not. A feedback condition may also check properties of other game compo-
nents or content elements to, e.g., take into account a student’s foreknowledge. The
condition part of a feedback condition functions the same as a script condition (see the
Script component).

Figure 3.13. UML class diagram of the Assessments component

Logbook. This Tablet app shows an overview of notes, including their context, that are
made by a student using the Notepad. In addition, it allows a student to adjust his
notes. The Logbook has no allowed content elements (see Figure 3.14) but uses stored
content in the Notepad component as indicated by the relation between the two.

Memo player. This Tablet app shows an overview of recordings of conversation frag-
ments, including their context, that are made by a student using the Memo recorder. A
click on the recording title starts playing the recording. The Memo player has no al-
lowed content elements (see Figure 3.14) but uses stored content in the Memo record-
er component as indicated by the relation between the two.

Figure 3.14. UML class diagrams of the Logbook and Memo player component

Assessments

Instruction

Assessment

*

Feedback Condition

*0..1

Ref Item

*

1

1 has
1..*

1
has

with Item

Relation

with Property

Relation

Logbook
11

has

with Notepad

Relation Memo player
11

has

with Memo recorder

Relation

EMERGO platform components, processes and architecture

63

Google maps. This Tablet app shows Google Maps decorated with markers that present
information about the pointed position when they are clicked. Allowed content ele-
ments are markers (see Figure 3.15). The developer determines the initial latitude,
longitude and zoom factor of Google Maps for a student and adds markers at certain
latitudes and longitudes. Every marker shows a description and may show a resource
title. Resources can be opened by a student and can be all kinds of assets, like pdf’s,
images, videos or URLs.

Directing. This Tablet app allows a student to analyze video recordings of conversations,
e.g., a therapeutic session between a practitioner and a patient. Allowed content ele-
ments are settings and views (see Figure 3.15). A developer may define various settings
that all have a video stream as content. A video stream contains a number of video
recordings next to each other that are recorded by various cameras and allows for
quickly switching cameras. The views correspond to the various cameras and allow a
student to focus on a specific participant or on the whole.

Game manual. This Tablet app uses screen recordings to help students use the various
game components. Allowed content elements are fragments (see Figure 3.15) that have
a title and a screen recording as content.

Figure 3.15. UML class diagrams of the Google maps, Directing and Game manual component

Items. This component is used to define question items and feedback on given answers.
It is not visible to students within the player environment but is used by the Assess-
ments component that also renders the interface for the items. It functions as a ques-
tion item bank, which can be used by various assessments. Allowed content elements
are items, alternatives, feedback conditions and resources (see Figure 3.16). A develop-
er may define different multiple choice or multiple answer items with a number of al-
ternatives. Feedback conditions consist of a feedback text to show and a condition to
check for chosen alternatives. Because the Items component is used as an item bank for

Directing

Setting

Google maps

View

*

*

Resource

*

Game Manual

Fragment

*

Chapter 3

64

various assessments, feedback conditions within this component are restricted to only
check properties within the same game component instance. The condition part of a
feedback condition functions the same as a script condition (see the Script component).
Items, alternatives and feedback conditions may include resources such as additional
learning materials that can be all kinds of assets, like pdf’s, images, videos or URLs.

Figure 3.16. UML class diagram of the Items component

States. This component is not visible to students within the player environment but is
used to define game states that are used by other components, e.g., to show or store
some kind of progress or content. For example, the Scores and Profile components use
states to show scores to a student. The Script component may be used to adjust states
during a game session. Figure 3.17 shows allowed content elements. A state is used to
store some kind of value of type Boolean, Double or String. A formula is used to enter a
mathematical formula based on states. The formula is entered as a string where states
can be referenced by their key, e.g., ‘[$score$]’ to reference to a state with key ‘score’.
The string is validated using the BeanShell Java interpreter (http://www.beanshell.org/)
to check if it yields a correct Java expression that can be calculated during a game ses-
sion. A textual content is meant to give access to some textual content of another con-
tent element by relating to it, e.g., to a title of a certain task within a Tasks component.
Textual content and state values can be embedded in other textual content, e.g., by
using ‘[$task-title$]’ in a feedback text to embed a textual content with key ‘task-title’,
which allows for personalized textual content.

Items

Alternative Feedback Condition

Resource

Item

*

* *

*

*

* * *

1
has

with Property

Relation

EMERGO platform components, processes and architecture

65

Figure 3.17. UML class diagram of the States component

Script. This component is not visible to students within the player environment but is
used to define script to manipulate properties of components and content elements.
Figure 3.18 shows allowed content elements.

A developer uses a condition to check whether properties have been set to certain
values, e.g., if property ‘opened’ of a location is set to ‘true’, and may have sub condi-
tions. The property values to check are stored in a content child of a condition so are no
part of the relations between a condition and its checked properties. A condition may
be simple and check the value of one property (see Figure 3.25) but may also be com-
pound built up by parts using Boolean logic where each part checks one property. Every
part is used to check a property value for certain game roles and for either a game
component or a content element. A compound condition may check properties for
several game components and content elements. Compound conditions are validated
using the BeanShell Java interpreter to check if they yield correct Java expressions.
Change of property values due to student actions, timer events or script actions may
trigger main conditions, which are situated directly under the ‘root’ element of all con-
tent elements of the Script component. Main conditions may have sub conditions that
check other current property values. If a condition evaluates to true its sub conditions
will be evaluated and its child actions will be executed. If multiple conditions evaluate to
true due to the change of one property value the conditions will be handled in the order
in which they were entered.

An action is used to set a property to a certain value for certain game roles and one or
more game components or content elements, e.g., to make some conversations availa-
ble by setting their ‘present’ property to ‘true’. The property value is stored in a content
child of an action so is no part of the relations between an action and its set properties.
Actions will be executed per condition and in the order in which they were entered. The

States

State

*

Formula

*

Textual Content

*

1

1
has

with Content Element

Relation

Chapter 3

66

execution of an action implies a new change of a property value, which may result in
other conditions evaluating to true and their actions being executed, and so on.

Conditions and their actions resemble ‘if-then’ statements in programming languages
because conditions and actions are handled in the order in which they are entered.
However, main conditions are not continuously evaluated but only if the value of a
property they are related to changes. Conditions, actions and the Script component
may be switched on and off during a game session by adjusting their ‘present’ property,
which allows for changing the working of game script itself.

A timer has a certain delay, may be repetitive and can measure in-game time or real
time. If its ‘parent’ condition evaluates to true, the timer will start. Another condition
then can be used to check if the timer fires. Actions may be used to stop or restart a
timer.

Figure 3.18. UML class diagram of the Script component

Relations. This component is a system component that cannot be authored by a devel-
oper. It is used by the platform to store relations defined in other components’ UML
class diagrams above. Allowed content elements are relations (see Figure 3.19). A rela-
tion contains ids of an ‘origin’ object, e.g., a script condition, and a ‘destination’ object,
e.g., a property. The relation also has a property to store the relation type as it is de-
fined within the corresponding XML definition (see example of an XML definition in
section 2.1). In the relations defined so far possible ‘origin’ objects are game compo-
nents and content elements and possible ‘destination’ objects are game components,
content elements, properties and game roles. Five combinations of ‘origin’ and ‘destina-
tion’ objects are defined so far: game component to game component, game compo-
nent to content element, content element to content element, content element to
property, and content element to game role. Examples are, respectively, Logbook com-
ponent to Notepad component, Notifications component to location element, conver-

Condition

Script

ActionTimer

*

*

** 1..*

1
has

with Property

Relation
*1

has

EMERGO platform components, processes and architecture

67

sation element to location element, condition element to a property, and incoming mail
element to a game role. Another combination that might be possible is from content
element to game component, e.g., if the Navigation component would be extended
with a content element to open a specific game component. Possible relations with a
property or a game role as ‘origin’ are very unlikely because property is just a basic
container without any behavior and game role is no part of game components’ content.
Instead the relation between game role and game component is defined within the
domain model (see Figure 3.4).

Figure 3.19. UML class diagram of the Relations component

3 The platform processes

The most important platform processes are the authoring process where content of the
platform components described in the previous section is entered and the playing pro-
cess where individual student’s progress is kept and saved per component. Therefore,
we describe the authoring process, which includes game script authoring, and preview-
ing and testing of game content, and the playing process that includes handling of
events, script and cooperation or collaboration. In addition, we describe platform pro-
cesses that are supportive or conditional for authoring and playing games.

3.1 The authoring process

The EMERGO method involves writing the game scenario (see section 3.1 in chapter 4)
and subsequently using the authoring environment to convert the scenario and materi-
als into game content. The scenario among others will describe the PC and NPC game
roles, the locations they need, the learning tasks involved and the platform components
that are needed.

Relations

Game RoleContent Element

Relation

0..1

with

Property

**

0..1

has

*

0..1

has

0..1

*

with

0..1

*

with

0..1

* with

Game Component

A relation always
involves two objects

Chapter 3

68

As the UML class diagrams of the components in the previous section show, there are
dependencies between game components that are defined as relations, e.g., the Con-
versations component depends on locations entered within the Navigation component
and the Script component may depend on entered content of multiple game compo-
nents. However, this does not mean that all content of the independent game compo-
nents should be entered before that of the dependent game components. As the sce-
nario subsequently describes learning tasks and possible subtasks, content will be en-
tered also subsequently by adding content or script to new or existing game compo-
nents. So authoring is not a linear process in which game components are created and
filled with content in a fixed order. Rather, it is a process of hopping from one game
component to another, entering content, previewing entered content and occasionally
creating a new game component in between.

Figure 3.20 shows the authoring process. First, a developer creates a game, gives it a
name and selects what skin it should use in the playing environment (see Figure 3.4 for
game, game role and game component attributes). Second, he creates all game roles,
gives them a name and selects them to be PC or NPC. Creating game and game roles are
normally one-time sub-processes because game and game roles are defined in the sce-
nario and are not likely to change during authoring. Next the developer will hop be-
tween three sub-processes. A developer may (i) create a game component, give it a
name and select associated game roles, (ii) enter specific game component content or
(iii) preview specific game component content. Because game components have no
mutual relation in the domain model (see Figure 3.4) they are created independently of
each other. In addition to creating games and game components a developer may also
reuse existing games or game components by importing them. Multiple developers may
author content in parallel because every game component has its own developer as-
signed to it. This allows for distributing workload and assigning development tasks to
the right team members.

EMERGO platform components, processes and architecture

69

Figure 3.20. The authoring process

Creating a game, game roles and game components are simple less important sub-
processes, which take little time. Therefore, we will first focus on the sub-process of
entering game component content, which is the most important sub-process and will
take most of a developer’s time. Entering game component content may be complex
because it depends on the complexity of the component and the number of relations
with other content. For instance, authoring of the Alerts component is rather simple
because it involves only one content element without any hierarchy and with no rela-
tions with other content elements. On the other hand, authoring of the Script compo-
nent is complex because it involves a hierarchy of content elements that have many
relations with other content. After describing the sub-process of entering game compo-
nent content we will describe the indispensable sub-process of previewing this content.

Entering game component content. Figure 3.21 shows the authoring page for game
component content that is used for all game components. In this case it shows a page
with entered content for the moderately complex Navigation component. The page
shows the game component properties to be initially set by a developer (at the top, in
this case only one, ‘initially present’) and a tree structure of already entered content
elements that resembles the allowed hierarchy defined within the game component’s

Create
Game

Create
Game
Roles

Create
Game

Component

Enter Game
Component

Content

Preview
Game

Component
Content

Chapter 3

70

XML definition. The tree allows for CRUD (Create, Read, Update and Delete) operations
on content elements using a menu and a popup dialogue. It also supports drag, drop,
and copying of content elements. A content element is edited in a popup dialogue with
input elements that are defined in the XML definition.

Figure 3.21. Game component content page showing content for the Navigation component

Entering game component content involves a number of sub-processes that we will
describe below: (i) rendering of already entered content, (ii) rendering of a popup dia-
logue to edit a content element and (iii) saving a content element. In addition, we will
describe the specific dialogues needed to enter game script conditions and actions.

Rendering game component content page. The UML sequence diagram in Figure 3.22
shows which EMERGO software components are involved in rendering the game com-
ponent content page. A developer starts by selecting the game component whose con-
tent he wants to edit from a list of created game components.

EMERGO platform components, processes and architecture

71

First, the UI (User Interface) layer retrieves the XML content tree for the selected game
component from the Content Manager. The Content Manager is specifically used by the
game component page and is responsible for the rendering of its content, the input
elements in the popup dialogue to author it, the validation of input and the storage of
content. The Content Manager uses the Component Manager and the Game Compo-
nent Manager to retrieve the XML definition and XML content strings for the selected
game component. The Component Manager and Game Component Manager are re-
sponsible for CRUD operations on components and game components, respectively.
Subsequently the Content Manager uses the XML Manager to convert the XML defini-
tion and XML content strings into an XML content tree that is a tree structure of in-
stances of a so called XML tag, a Java class that corresponds to an XML tag within an
XML string but adds extra functionality. In the process every XML content tag gets a
reference to its corresponding XML definition tag. The XML Manager is responsible for
managing of all XML entities used within the platform, both during authoring and play-
ing.

Second, the UI layer uses the Content Manager to render input elements for all game
component properties that are retrieved from the XML content tree by the XML Man-
ager.

Third, the UI layer uses the Content Manager to render a tree of all content elements
where every tree element gets a reference to the corresponding content element. For
every content element the Content Manager uses the XML Manager to retrieve specific
attributes from the XML content tree that should be visible in the tree such as name
and id of the content element.

Chapter 3

72

Figure 3.22. UML sequence diagram for rendering the game component content page

Rendering popup dialogue to edit a content element. Figure 3.23 shows the UML se-
quence diagram for this sub-process. A developer starts by selecting a tree element and
selecting the menu option to edit the content element.

The UI layer opens a popup dialogue and uses the Content Manager to render all input
elements for the content element referenced by the tree element. The Content Manag-
er retrieves a list of the content element’s content and properties from the XML Man-
ager and renders the corresponding input elements. If the content element’s content
has relations with other game content or assets, the Content Manager uses the Relation
Manager or the Asset Manager to be able to set the content of the corresponding input
elements. The Relation Manager manages the content of the Relations component (see
section 2.2) and the Asset Manager is responsible for CRUD operations on assets.

Component ManagerUI layer Content Manager XML Manager Game Component Manager

renderComponentInputElements()

getXMLContent()

getComponentProperties()

componentProperties

renderedComponentInputElements

renderContentTree()

XMLContent

renderComponentInputElements()

getXMLContentTree()

renderContentTreeElements()

getXMLContentTree()

renderedContentTree

getContentElementAttributes()

XMLContentTree

contentElementAttributes

XMLContentTree

getXMLDefinition()

<<XMLDefinition>>

EMERGO platform components, processes and architecture

73

Figure 3.23. UML sequence diagram for rendering the popup dialogue to edit a content element

Saving a content element. Figure 3.24 shows the UML sequence diagram for this sub-
process. A developer starts by clicking the ‘ok’ button to save the content element.

The UI layer uses the Content Manager to validate the content element. Subsequently,
the Content Manager uses the XML Manager to validate entered content and proper-
ties and return possible validation errors to the UI layer. In case of validation errors the
UI layer will render these errors so the developer can adjust his input (not shown in
Figure 3.24). Otherwise the UI layer uses the Content Manager to update the content
element. First, the Content Manager uses the XML Manager to update the content
element with the adjusted content and properties. Second, it uses the Asset Manager to
update the content element’s assets if applicable. Third, it uses the XML Manager to
update the XML content tree (that is kept in memory by the game component content
page) with the adjusted content element for the selected game component and to
return it as an XML content string. Fourth, it saves this XML content string using the
Game Component Manager. Fifth, it uses the Relation Manager to update the relations
of the content element with other content. The adjusted content element is returned to
the UI layer that closes the popup dialogue and uses the Content Manager to re-render
the corresponding tree element.

Relation ManagerUI layer Content Manager XML Manager

renderContentElementInputElements()
getContentElementContentAndProperties()

contentElementContentAndProperties

renderContentElementInputElements()

renderedContentElementInputElements

Asset Manager

getContentElementRelations()

contentElementRelations

getContentElementAssets()

contentElementAssets

Chapter 3

74

Figure 3.24. UML sequence diagram for saving a content element

Below an example of stored XML content, in this case for a Tasks game component:

<data>
 <component>
 <properties present="true" accessible="true"/>
 </component>
 <content id="1" max-id="3">
 <task type="node" id="2">
 <name>Visit doctor</name>
 <instruction/>
 <properties present="true" accessible="true"/>
 </task>
 <task type="node" id="3">
 <name>Visit researcher</name>
 <instruction/>
 <properties present="false" accessible="true"/>
 </task>
 </content>
</data>

In the example above we see that component properties ‘present’ and ‘accessible’ are
‘true’ meaning the game component is initially present and accessible for a student. The
game component has two tasks where the first one is initially present and the second
one not.

Relation ManagerUI layer Content Manager XML Manager Asset ManagerGame Component Manager

validateContentElement()
validateContentElementContentAndProperties()

validationErrors

rerenderTreeElement()

treeElement

validationErrors

updateContentElement()
updateContentElementContentAndProperties()

contentElement

updateXMLContentTree()

XMLContent

saveXMLContent()

updateContentElementRelations()

contentElement

updateContentElementAssets()

EMERGO platform components, processes and architecture

75

Entering game script. Figures 3.21 to 3.24 describe the authoring process of all game
component content including game script. The only difference between script and other
types of content is that script conditions and actions have specific input elements. Figure
3.25 shows the popup dialogue to enter a script condition that will check if a property is
set to a certain value. This popup dialogue will be shown on top of the normal popup
dialogue for editing a content element as shown in Figure 3.21. In this case the condition
checks if PC ‘doctor’ has entered location ‘Hospital’. Entering a location within the player
environment will result in setting the location’s property ‘opened’ to ‘true’ (see subsec-
tion ‘Event handling’ in section 3.2). After a developer has selected a game component,
in this case the Navigation component, he selects for which game roles the condition
should be checked and selects the type of content element, in this case ‘location’. Out of
a list of content elements he selects the ones to be checked, in this case ‘Hospital’. He
may also enter a pattern to which all content element keys must comply. Next, he selects
which property should be checked and selects (for Boolean values) or enters (for String
and Double values) the property value to be checked. If the value is a Boolean or a String
there is only one operator to check the value, namely the ‘=’ operator. If the value is a
Double there are different operators to check the value like ‘>’ or ‘<’. A developer may
also select a function that operates on all property value changes collected during play-
ing. The only function implemented so far is ‘count’. It counts the number of times a
property is set to a certain value. The developer then may compare this count with a
certain value he enters. To enter a script action, which will set a property to a certain
value, a similar popup is used. The only difference is that no function or operator can be
chosen because these options are irrelevant when a property value is set.

Figure 3.25. Editing a script condition

Chapter 3

76

Previewing game component content. During every stage of authoring a developer may
preview his currently entered game component content in the player environment by
clicking on a root tree item and selecting the ‘preview’ menu option, which will open a
popup dialogue (see Figure 3.26). Certain content elements like locations and conversa-
tions also offer the ‘preview’ option, which allows for preselecting a location or conver-
sation in the player environment to preview or test a certain part of the game scenario.
If a developer clicks the ‘preview’ button the player environment is opened and his
progress will be saved until he closes the player environment. This way it is possible to
make ‘recordings’ up to a certain point in the game scenario. If he subsequently clicks
the ‘preview read-only’ button the player environment is opened with the previously
recorded progress. However, this time progress is not permanently saved but only dur-
ing the play session in the player environment. In this way, the recording may be used
to test a specific part of the game scenario over and over again. The recording may also
be continued by clicking the ‘preview’ button again or deleted by clicking the ‘delete
progress’ button. Using the ‘new …’ button, it is possible to create multiple recordings,
which allows for previewing and testing different parts of the game scenario. It is also
possible to test cooperation or collaboration between students having different game
roles because multiple instances of the player environment can be previewed simulta-
neously. Recordings can be shared with others by sharing a ‘preview read-only’ URL of
the player environment, which can be used to demonstrate some parts of the game
scenario.

Figure 3.26. The preview popup dialogue to preview entered content within the player environment

3.2 The playing process

The EMERGO platform offers students an intuitive and immersive player environment
(see Figures 2.1, 3.2, 3.3, 4.1, 5.1 and 5.2) that is adapted according to actions and pro-
gress of a student. Below we will describe the components that make up the environ-
ment and the important sub-processes of their rendering, which includes rendering
personalized content, and event handling, which includes script handling and progress
management.

EMERGO platform components, processes and architecture

77

The UI structure of the environment reflects the flat structure of the platform’s compo-
nents. The UI layer renders a Run Window by using a so called Run Window Java class,
which is called this way because deployment of a game involves students being as-
signed to runs (Tattersall et al., 2005). Every type of game component that should be
visible to students is implemented as a child of the Run Window, by using its own specif-
ic Java class. All specific classes inherit from a so called Run Component class, which
handles their general behavior. From here on, we will use the general term ‘Run Com-
ponent’ to indicate a specific implementation. The layering of the Run Components is
managed by their style sheets where a higher z-index corresponds to a higher layer (see
Figure 3.27). The Run Component for the Navigation component is situated in the low-
est layer because its locations form the foundation for the other Run Components.
Above the Navigation component we see components that are available on locations.
Tablet apps like, for instance, the Tasks and Resources components have their own
layer above the Tablet because they are shown on top of the Tablet. The Notepad and
Alerts components are situated in the highest layer because making notes should al-
ways be possible and alerts should appear above other components. The different play-
er environment skins are implemented as sets of style sheets where style sheet attrib-
utes default are inherited from the primary (‘OUNL’) skin but may be overruled in a new
skin.

Chapter 3

78

Navigation

DirectingGoogle maps

Memo playerLogbookAssessments

EmailResourcesTasks

Tablet

ChatProfile

ScoresNotifications

Alerts

Memo recorder

Notepad

Conversations

Game manual

z-index=100

z-index=125

z-index=150

z-index=200

z-index=225

z-index=300

z-index=250

Tablet apps

Run Window

Figure 3.27. Player environment’s Run Window with Run Components representing different game compo-
nents in different presentation layers

The Run Window is responsible for the creation of all Run Components and handles
their mutual dependencies. It initially creates an instance of the Navigation component
that on its turn will show the default or last visited location. If a conversation is available
for this location the Run Window creates an instance of the Conversations component
that will show the conversation. The Run Window also will create instances of the
Memo recorder, Notifications and Scores components, if applicable. And it will render
icons for opening the Tablet, Notepad, Profile and Chats components, if applicable. All
Run Components will notify the Run Window if they are opened or closed or if one of
their content elements such as a location, conversation or conversation fragment is
opened or closed so the Run Window may handle dependencies between different Run
Components. For instance, if a conversation fragment or a resource is opened the Run
Window will notify the Notepad component to change its notes context. Or if a student
navigates to another location the Run Window will close a possibly opened conversation
and possibly open a new one. The Run Window also creates a Run Timer that is not
visible to students and is used to regularly handle the firing of script timers and peer-to-

EMERGO platform components, processes and architecture

79

peer events in case of cooperation or collaboration (see subsection ‘Event handling’
below).

Rendering a Run Component. Figure 3.28 shows the rendering process for a Run Com-
ponent. The process starts if the Run Window creates a new instance of a Run Compo-
nent, e.g., a Navigation component.

The Run Component will use the Progress Manager to return the personalized content
tree for the current student. The Progress Manager is, among others, responsible for
retrieving personalized content and storing progress. It uses the Component Manager
and the Game Component Manager to retrieve the XML definition and XML content
strings for the Run Component and uses the XML Manager to convert these XML defini-
tion and XML content strings into an XML content tree of XML tags, just like described
for the authoring process. Next, it uses the Run User Progress Manager to retrieve the
XML progress string for the Run Component and uses the XML Manager to convert this
XML progress string in an XML progress tree of XML tags. The Run User Progress Man-
ager is responsible for CRUD operations on run user progress data. And finally the Pro-
gress Manager uses the XML Manager to personalize the XML content tree with XML
progress by extending every XML content tag with a reference to its corresponding XML
progress tag. The Run Component uses this personalized content tree to render its
content and necessary controls and during the process uses the Asset Manager (not
shown in Figure 3.28) to get content elements’ assets if applicable. Personalized con-
tent trees are kept in memory per Run Component for better performance in case up-
dated progress needs to be stored.

Chapter 3

80

Figure 3.28. UML sequence diagram for rendering of a Run Component

Event handling. Figure 3.29 shows the event handling process for the player environ-
ment. It includes the process of handling notify events between the Run Window and
specific Run Components, which is described above. Other types of events are user
events, property events, timer events and peer-to-peer (p2p) events. Primary input
events are user events generated by a student and timer events generated by the Run
Timer.

A student generates a user event by, for instance, clicking on a resource title to open a
resource. This event is captured by one of the Run Components, in this case a Re-
sources component. It converts the user event into a property event and sends it to the
Event Handler (see further for p2p event handling). The Run Component may also send
a property event independently, e.g., if a video fragment is finished. A property event
has attributes containing the property value and references to the associated property,
content element and game component. In case a resource is opened the property value
is ‘true’, the property is ‘opened’, the content element is a ‘resource’ element and the
game component is a Resources game component. In case of user generated content
the property event also contains content children that contain, e.g., an email text, at-
tachments or a chat text.

Run User Progress ManagerRun Component Component ManagerProgress Manager XML Manager Game Component Manager

getXMLPersonalizedContentTree()

getXMLContent()

XMLContent

getXMLContentTree()

XMLContentTree
getXMLProgress()

XMLProgress

getXMLProgressTree()

XMLProgressTree

getXMLPersonalizedContentTree()

XMLPersonalizedContentTree

XMLPersonalizedContentTree

renderPersonalizedContent()

getXMLDefinition()

<<XMLDefinition>>

EMERGO platform components, processes and architecture

81

The Event Handler is responsible for handling of all property events. It forwards the
property event to the Progress Manager that will use the personalized content tree for
the Run Component in question, which is kept in memory, the XML Manager and the
Run User Progress Manager (both not shown in Figure 3.29) to store the changed prop-
erty value and possible new or altered content children. The Event Handler also for-
wards the property event to the Script Handler that will evaluate script conditions relat-
ed to the property event’s attributes. If a condition evaluates to true its associated
script actions are executed, which results in sending newly generated property events
back to the Event Handler. Again, the Event Handler forwards these property events to
the Progress Manager to store changed property values and forwards the property
events to the Script Handler to evaluate conditions and so on, which may result in a
cascade of property events. The Event Handler also forwards every property event to
the Run Window that will send a notify event to the Run Component corresponding to
the game component attribute within the property event. This notify event allows the
Run Component to update itself, e.g., to change the presence of a specific content ele-
ment.

Figure 3.29. Event handling process for the player environment

property event

notify event

property event

property event

Run Window

Student

Run
Component

Event
Handler

Progress
Manager

Script
Handler

Timer
Handler

Run Timer

user event

property event

property event

timer event

property event

notify event

P 2 P Handler

Shared Progress
Manager

p 2 p event

p 2 p event

property event

Chapter 3

82

The Run Timer regularly sends timer events to the Timer Handler that handles script
timers and to the P2P handler that handles sharing change of property values to other
students (see below). If a script timer fires the Timer Handler sends a property event to
the Event Handler. In this case the property event’s attributes contain the property
value ‘true’, the ‘finished’ property a ‘timer’ element and a Script game component. The
Event Handler further handles the property event as described above.

If a change of a property value has to be shared with other students, e.g., when sending
an email or chat, the responsible Run Component will send a p2p event to the P2P Han-
dler. A p2p event is an extension of a property event that also contains references to
the sender and receiver of the event. The P2P handler sends the p2p events to the
Shared Progress Manager that will use the XML Manager and the Run User Shared Pro-
gress Manager (both not shown in Figure 3.29) to actually store the changed property
value for other students. Timer events sent by a Run Timer in another student’s player
environment trigger the P2P Handler of the other student to regularly check for p2p
events and retrieve them using the Shared Progress Manager. The P2P handler converts
possible p2p events to property events and sends them to the Event Handler that fur-
ther handles the property events as described above.

Below an example of stored student’s XML progress, in this case for the Tasks game
component:

<data>
 <component>
 <properties selected="true,12.118" opened="true,12.122,false,18.385"/>
 </component>
 <content id="1" max-id="3">
 <task type="node" id="2" ref-content-id="2">
 <properties finished="true,46.999"/>
 </task>
 <task type="node" id="3" ref-content-id="3">
 <properties present="true,47.007"/>
 </task>
 </content>
</data>

In the example above we see that component property ‘selected’ is set to ‘true’ 12.118
seconds after the start of the game meaning the student clicked the Tasks icon on the
Tablet to open the Tasks component at that moment. This resulted in the Run Window
creating and opening the Tasks component as indicated by property ‘opened’ set to
‘true’ after 12.122 seconds. Property ‘opened’ becomes ‘false’ after 18.385 seconds
meaning the student closed the Tasks component. Note that all changes of property
values are saved. Due to game script, property ‘finished’ of the first task is set to ‘true’
after 46.999 seconds and property ‘present’ of the second task is set to ‘true’ after
47.007 seconds. The task tags within the XML progress have their own ‘id’ and have a

EMERGO platform components, processes and architecture

83

reference to their corresponding content element in the XML content, namely attribute
‘ref-content-id’.

3.3 Other platform processes

In addition to the authoring and playing processes there are also processes to monitor
or support students, to manage game runs, to populate the platform and game runs
and to integrate the platform with other systems.

Monitoring and supporting students. A tutor may (i) inspect a student’s progress or (ii)
interfere in a running game as an NPC or an administrator (iii) may adjust a student’s
progress. These sub-processes involve the Progress Manager or Shared Progress Man-
ager (see section 3.2) to retrieve or adjust student’s progress.

A tutor may have two reasons to inspect progress: to inspect the performance of a
student or to help a student out if he does not succeed to finish a specific task. To in-
spect their performance he gets an overview of students per run, the tasks they have
completed and assignment outcomes they have submitted. He may also generate his
own overviews of specific game content properties, e.g., to inspect if certain resources
are opened or questions are asked, or to inspect students’ paths through the game. To
help a student out he can open the player environment showing the student’s progress
to diagnose the problem. The same option allows him to interfere in a running game by
sending an email as an NPC, e.g., in case a student’s performance is poor or better than
average. Sending such an email might also trigger script that releases a next task. Such
thresholds placed by a game developer may enable a tutor to guarantee a certain level
of quality.

As a tutor can help out a student with substantive problems an administrator can help
out in case of technical problems, e.g., if a door stays locked or certain resources do not
become available due to bugs. An administrator has an overview of all students within
specific runs and can open the player environment showing the progress of a specific
student to diagnose the problem. Subsequently he can fix the problem by adjusting
property values within the student’s progress. To adjust a property value he opens a
similar dialogue as the one used to create a script action, which, after all, is meant to
adjust a property value. If he saves the changed property value the Shared Progress
Manager (see section 3.2) is used to send a p2p event to the student, which will result
in a live update of the student’s progress so he can continue his game session.

Managing game runs. The run manager has an overview of all his runs and can perform
CRUD operations on them. Creating a run involves selecting a game from a list of all
available games, giving the run a name and entering a start date and end date. It is
important to stress that the game itself is not published but that the run just has a ref-
erence to the game. This allows for adjustments of the game that are immediately
available to students, e.g., in case of required bug fixes. It is even possible to let stu-

Chapter 3

84

dents start with a part of a game while another part still is in development. The latter
option has been used on various occasions.
Just like the administrator the run manager has the possibility to adjust property values
within students’ progress during a run, but he may also initialize property values before
a run. However, properties are not changed for one student but for all students in the
run which allows for, e.g., assigning certain tasks to all students in the run at the same
time. It also allows for configuring runs differently, e.g., in case of experiments where
different runs should meet different experimental conditions. To adjust a property value
the run manager uses a similar dialogue as the administrator (see above). If he saves the
changed property value the Shared Progress Manager is used to send p2p events to all
students in the run, which will result in a live update of students’ progress.

Populating the platform and game runs with users. The administrator has an overview
of all platform users and can perform CRUD operations on them. Creating a user in-
volves assigning one or more platform roles to him, i.e., administrator, developer, run
manager, tutor or student. Users can also be imported using an XML file containing
predefined user data.

From his run overview the run manager can assign students to runs and game roles by
selecting them directly or by importing them using an XML file containing predefined
run user data. In the same overview he can also assign tutors to runs. He may also cre-
ate teams of run users that have a shared progress for game components that allow
user generated content such as the Resources and Google maps components. Students
may extend the content of these components with their own resources and markers
where extensions are stored in run team progress, which enables to see each other’s
contributions to a same game component.

Integrating other systems. The platform offers SOAP (W3C, 2017) web services that
support the exchange of progress data with other applications that may adapt the play-
er environment for a certain student. In an experiment, another application used
webcam data analysis to derive a student’s mood and used the web services to trigger
personalized game support depending on his mood (Bahreini et al., 2012). The web
services allow for retrieving or setting state element property values of States compo-
nents. If a property value has to be set the corresponding web service creates a proper-
ty event for the student and invokes the Event Handler (see Figure 3.29) to handle it.
Script conditions and actions then are used to adapt the game support depending on
the set property value. Other web services support identity management to enable
single sign-on.

In another experiment we integrated the Unity Web Player. A Unity game was shown
embedded within the player environment by using a plugin element of the Navigation
component. JavaScript functions were used to exchange data between the Unity game

EMERGO platform components, processes and architecture

85

and the EMERGO player environment, which resulted in adaptation of each other’s
interfaces.

4 The platform architecture

The requirements for the platform formulated in chapter 2 led to the choice for a multi-
layered client-server architecture (see Figure 3.30), which fosters abstraction, loose
coupling and separation of concerns (Microsoft, 2009). One layer’s implementation may
be substituted by another implementation without affecting the other layers, e.g., when
switching to another DBMS (Database-Management System). This architecture forms
the foundation for the implementation of the different platform components and pro-
cesses. To foster technical platform independence we chose the Java EE platform (J2EE,
2017) for implementation and MySQL server for data storage (MySQL, 2017). We chose
the Hibernate framework for data mapping (Hibernate, 2017), the Spring framework
(Spring Framework, 2013) for data management, and the ZK framework (ZK Framework,
2013) for the user interface. To host the EMERGO platform we chose the Apache
Tomcat web server (Apache Tomcat, 2017). The platform has been developed under
the GNU General Public License and is available on SourceForge at
https://sourceforge.net/projects/emergo/.

As every architecture layer in Figure 3.30 depends on layers underneath we will de-
scribe the four different layers and their main components and responsibilities from the
bottom to the top.

Chapter 3

86

Figure 3.30. The platform’s multilayered client-server architecture

4.1 The database layer

The platform stores all data in a MySQL relational database that is accessed using a
JDBC driver. The database contains one table per domain model entity (see Figure 2.4)
and some additional tables for the relations between these entities. The database also
has a table to store asset entities that are uploaded by developers or students. These
assets have no direct relation with the domain model entities in the database, but are
referenced from within game component’s XML content or XML progress. Another
table is used for sharing students’ XML progress.

 User interface layer (uses ZK framework)
administrator

User Overview

Component
Overview

Support Overview

developer run manager tutor student

Game Overview

Game Role
Overview

Game Component
Overview

Game Component
Content Page

Run Overview

Run User
Overview

Run Team
Overview

Monitor Overview Game Run
Overview

Database management layer (uses Spring and Hibernate framework)
administration

User Manager

Component
Manager

authoring deploying, monitoring
and support

asset management

Game Manager

Game Role
Manager

Game Component
Manager

Run Manager

Run User Manager

Run Team
Manager

Run User Progress
Manager

Asset Manager

Run Team
Progress Manager

Run User Shared
Progress Manager

Database layer (uses MySQL server)

Business logic layer

XML management Content management Progress management P2P management

XML Manager Content Manager

Progress Manager

Shared Progress
Manager

P2P Handler

Run Window

Run Timer

Event Handler

Script Handler

Timer Handler

Relation Manager

Run
Component

Entities

XML Definition XML Content

XML Progress

XML Tree

XML Tag

Content Element

Property

Property Event

P2P Event

playing, monitoring
and support

EMERGO platform components, processes and architecture

87

4.2 The database management layer

In this layer every domain model entity has its own manager component. Five types of
processes can be distinguished. Administrative processes involve platform users and
components. Game authoring involves games, game roles and game components.
Game deployment involves runs, run users and run teams. The same entities are in-
volved in monitoring and supporting students when overviews of these entities are
generated. Game playing involves run user progress, run team progress and run user
shared progress. The same entities are involved in monitoring and supporting students
when the player environment is used to inspect a student’s progress. Asset manage-
ment involves assets that are referenced from within game components’ XML content
or XML progress. All manager components offer CRUD (Create, Read, Update and De-
lete) operations on entities, and provide possibly filtered lists of entities to be used in
the Business logic layer or User interface layer. The managers also validate entities so
check if all entity attributes are entered correctly, except for entity attributes that con-
tain XML. XML content is validated by the Content Manager in the Business logic layer
and XML progress by the different Run Components in the User interface layer. The
Spring framework is used to inject the manager components within the platform. All
domain entities are implemented as Java Beans that have properties containing entity
specific data or references to other entities that reflect their relations within the do-
main model. The managers use the Hibernate framework to map these Java Beans to
database tables.

4.3 The business logic layer

This layer shows four parts that handle different business processes and one part with
entities that play a role in one or more of these processes. We will describe the differ-
ent processes starting with XML management, which is intensively used by the other
three processes.

XML management. The XML Manager component is used to manage XML definitions of
platform components, XML content of game components and XML progress of run user
progress, run team progress and run user shared progress. It has six functions: (i) parse
XML strings and return XML trees of XML tags (see below), (ii) convert XML trees back
to XML strings for storage, (iii) offer CRUD and copy operations for XML tags, (iv) vali-
date entered XML content using XML definitions, (v) provide filtered XML trees, e.g., on
type of tag, and (vi) personalize an XML content tree with XML progress by extending
every XML content tag with a reference to its corresponding XML progress tag. An XML
tag component has properties like name, value and attributes just like a normal XML tag
in a string and it has methods to get or set this kind of data. XML tags of type ‘node’
correspond to content elements that have content children, which contain their con-

Chapter 3

88

tent, and properties (see section 2.1). The XML Tag component has methods to get and
set the content element’s content and properties.

Content management. The Content Manager is responsible for managing XML content,
which includes rendering of the game component content page and the popup dialogue
for editing content, and handling CRUD operations on XML content. It uses the XML
Manager to validate entered content and the Game Component Manager in the Data-
base management layer to retrieve or store the content. It also uses the Relation Man-
ager to update the relations with other content. See section 3.1 for a detailed descrip-
tion of content management.

Progress management. The Event Handler is responsible for handling all property
events which are events sent in case of change of property values. It uses the Progress
Manager to store a changed property value and the Script Handler to possibly execute
script related to the property change. If the script execution results in another changed
property value the Script Handler will send a property event to the Event Handler to
handle the changed property value. The Event Handler forwards every property event
to the Run Window in the User interface layer so it may update itself. The Timer Han-
dler is responsible for handling script timers. If a script timer fires it sends a property
event to the Event Handler. See section 3.2 for a detailed description of progress man-
agement and event handling.

P2P management. The P2P handler is responsible for handling all p2p events which are
events that are sent in case changed property values have to be shared with other stu-
dents, e.g., when an email or chat is sent. The P2P handler uses the Shared Progress
Manager which will store the changed property value for other students. The P2P Han-
dler regularly checks for p2p events from other students, converts them to property
events and sends them to the Event Handler to handle the changed property value. See
section 3.2 for a detailed description of P2P management.

4.4 The user interface layer

This layer uses the Ajax-based ZK framework to expose the EMERGO platform to its
users and to handle creation and user events. Every component in this layer represents
a so called ZUL (ZK User interface Language) page on the web server that is rendered as
an HTML page in the browser. This layer is separated into five parts that relate to the
different platform roles. All ‘Overview’ components are used to manage or inspect do-
main model entities and use the Database management layer to present lists of entities
that allow CRUD operations on them if applicable. The Support Overview and Monitor
Overview also use the Run Window for inspection of student’s progress.

Administrator. The User and Component Overviews present lists of current users and
components and allow for CRUD and copy operations on them. Users can also be im-
ported using an XML file containing predefined user data. A component’s XML definition

EMERGO platform components, processes and architecture

89

is edited in an input field, so involves no specific editor. Components can be exported
and imported as an IMS Content Package (IMSCP-IM, 2008) for deployment on other
platform instances. The Support Overview is used to help students who are technically
stuck in a game. See section 3.3 for a detailed description.

Developer. The Game, Game Role and Game Component Overviews present lists of a
developer’s current games, and game roles and game components per game and allow
for CRUD and copy operations on them. A game or game component can be exported
and imported as an IMS Content Package for deployment on other platform instances.
The Game Component Content Page uses the Content Manager in the Business logic
layer to handle entering of content for all game components. See section 3.1 for a de-
tailed description.

Run manager. The Run, Run User and Run Team Overviews present lists of a run man-
ager’s current runs and run users and run teams per run and allow for CRUD operations
on them. Run users can also be imported using an XML file containing predefined run
user data. See section 3.3 for a detailed description.

Tutor. The Monitor Overview is used to monitor students’ progress. It shows a list of
runs a tutor has been assigned to by a run manager and allows for inspecting a specific
student’s progress by opening the player environment showing the student’s progress.
See section 3.3 for a detailed description.

Student. The Game Run Overview shows a list of runs a student has been assigned to by
a run manager. If a student clicks on a run, the player environment is opened showing
the Run Window. The Run Window functions as the stage for Run Components that
represent game components created and authored by a developer. Run Window and
Run Components are rendered using the game skin selected by a developer. Run Com-
ponents will convert user events into property events and will invoke the Event Handler
in the Business logic layer to handle them. A Run Timer is used to regularly check script
timers by invoking the Timer Handler and to regularly check for p2p events from other
students by invoking the P2P Handler. See section 3.2 for a detailed description of the
structure and working of the player environment’s components.

91

Chapter 4
Evaluating the usability of authoring

environments for serious games

This chapter has been published as: Slootmaker, A., Hummel, H. G. K., & Koper, E. J. R.
(2017). Evaluating the usability of authoring environments for serious games. Simulation
& Gaming, 48(4), 553-578

Chapter 4

92

Abstract

Background. The EMERGO method and online platform enable the development and
delivery of scenario-based serious games that foster students to acquire professional
competence. One of the main goals of the platform is to provide a user-friendly author-
ing environment for creating virtual environments where students can perform authen-
tic tasks.

Aim. We present the findings of an in-depth qualitative case study of the platform´s
authoring environment and compare our findings on usability with those found for
comparable environments in literature.

Method. We carried out semi-structured interviews, with two experienced game devel-
opers who have authored a game for higher education, and a literature review of com-
parable environments.

Findings. The analysis shows that the usability of the authoring environment is prob-
lematic, especially regarding understandability and learnability, which is in line with
findings of comparable environments. Other findings are that authoring is well integrat-
ed with the EMERGO method and that functionality and reliability of the authoring
environment are valued.

Practical implications. The lessons learned are presented in the form of general guide-
lines to improve the understandability and learnability of authoring environments for
serious games.

Evaluating the usability of authoring environments for serious games

93

1 Introduction

Serious games (SGs) are considered to provide powerful and attractive ways of acquir-
ing professional competences. However, their use is still limited, because their technical
requirements are high, they are: difficult to customize for the educational process,
difficult to support, and, the field lacks standards for SG design (Klemke et al., 2015). In
addition, the field also lacks good architecture for SG development (Nadolski, Hummel,
Slootmaker, & Van der Vegt, 2012) and simpler authoring tools (Arnab et al., 2012). In
the previous decade, our the Open University of the Netherlands experienced similar
needs and developed their EMERGO method (in English EMERGE: Efficient Method for
ExpeRiential Game-based Education), including an online platform for SG development
(Nadolski et al., 2008). It intends to both simplify and better support the development
and delivery of scenario-based SGs. In this kind of game, students acquire professional
competences in complex problem spaces that mimic real-world situations. The scenario
describes the problem space and how it should adapt to the students’ actions. The
platform’s authoring environment is used to convert the scenario into platform content.

Evaluations of the platform (Nadolski et al., 2008; Slootmaker, Kurvers, Hummel, &
Koper, 2014) show that educators, after having received some instruction, can author
most platform components independently and with ease. However, the authoring envi-
ronment has not yet been evaluated in detail. We believe a deeper understanding is
relevant, for both practice and research.

This type of research is part of the field of game design research, as Kultima (2015)
examines and discusses it, stating that understanding game studies as design research
could deepen our understanding of game design.

This article presents the findings of an in-depth qualitative case study on the usability of
the authoring environment and its integration with the EMERGO method. We compare
the usability findings with those found in literature for comparable environments. We
present the lessons learned in the form of general guidelines to improve the under-
standability and learnability of authoring environments for SGs.

We first give some information on game design research, game authoring, usability, and
comparable studies in the section Background. In the EMERGO section, we present the
EMERGO method and the development, authoring, and debriefing of EMERGO games.
In the Method section, we explain the method that is followed in order to arrive at our
findings in the Findings section, in which we also provide practical guidelines for improv-
ing the understandability and learnability of authoring environments for serious games.
Finally, in the Conclusion and discussion section, we present the main conclusions to be
drawn from this study.

Chapter 4

94

2 Background

2.1 Game design research

Although game design is the most popular keyword in game research papers, there is
no explicit reflection on notions of design and design research (Kultima, 2015). In addi-
tion, game studies have focused on the game and the player but not on the context that
involves the design, designer, process, and practice of the game. According to Kultima
(2015), trying to understand game studies as design research would potentially improve
our understanding of game design and bridge the epistemic gap between practice and
science. She therefore encourages taking design research as theoretical background for
future game studies. For possible theoretical background to be utilized, the author
refers to Cross (2007), who distinguishes three areas of design research that are based
on, respectively, people, process, and products: design epistemology (study of design-
ers’ professional theories), design praxeology (study of the practices and processes of
design), and design phenomenology (study of the form and configuration of artifacts).
Kultima (2015) argues that the multidisciplinary domain of game studies has been un-
successful in addressing the latter two areas of design research.

To facilitate future studies and understanding of game design practice, Kultima and
Sandovar (2016) proposed a framework of game design values. Their framework utilizes
three design theory frameworks from architectural and industrial design: Lawson’s
Guiding Principles, Schön’s Appreciative Systems, and Holm’s Designers’ Distinctive
Design Values. All three frameworks indicate that designers never start from scratch but
already have their own motivations, their own reasons for wanting to design, and their
own sets of beliefs, values, and attitudes. The author divides game design values into
nine categories: (1) Value of Player Centrism, (2) Casual Game Design Values, (3) Tradi-
tional Game Design Values, (4) Societal Impact and Cultural Values, (5) Value of Artistic
Expression, Innovation, and Experimentation, (6) Values of Production and Creation
Process, (7) Ludological Values, (8) Values of Independency, and (9) Commercial Values.
The first three categories are more oriented toward players and involve values like usa-
bility and playability, flexibility and simplicity, and immersion, challenge, and competi-
tion. The fourth category is oriented toward society and culture and involves values like
ethics and morality and cultural diversity and tradition. Categories five through eight are
more oriented toward game developers and involve values like visual design and aes-
thetics, development as a challenge, collaboration, value of teamwork, value of game
mechanics, and autonomy and artistic freedom. The last category is oriented toward
business and involves values like economic success. The author states that, if viewed
from a general perspective, there is no single design value that is more important than
another. However, this case-based research focuses on game developers and more
specifically on the game authoring process that can be classified under the category
Values of Production and Creation Process.

Evaluating the usability of authoring environments for serious games

95

2.2 Authoring leisure games

Current video games are often complex, immersive games that are developed through
large and costly projects and involve many specialized developers who use specific
development tools. The flexibility, productivity, and usability of these dedicated tools
are decisive success factors. Game designs are complex when they entail many game
elements to be classified under four categories: story (narrative), aesthetics (look and
feel), technology (materials and interactions), and mechanics (fostering game rules and
interactivity) (Schell, 2008).

The development of complex games requires comprehensive and dedicated develop-
ment tools. Hartson and Pyla (2012) identified two types of system complexity that may
influence usability: (1) interaction complexity, which is related to the intricacy or elabo-
rateness of user actions, including cognitive load; and (2) work domain complexity,
which is related to the degree of intricacy and the technical nature of the corresponding
field of work (e.g., game development). Systems with high interaction and high work
domain complexity are more likely to have low usability. This is in line with Oja (2010),
who stated that usability is even more critical for complex software development.

No single definition for usability currently exists. Nielsen (1994) defined usability by its
quality of five components: (1) learnability (for novice users), (2) efficiency (amount of
time to accomplish task), (3) memorability (for frequent users), (4) errors (number,
severity, recoverability), and (5) satisfaction (pleasantness). ISO/IEC (2011) defined
usability as the degree to which a product or system can be used by specified users to
achieve specified goals with effectiveness, efficiency, and satisfaction in a specified
context of use. A more recent concept is user experience (UX), which involves the ef-
fects of usability factors, usefulness factors (how useful a tool is for a task), and emo-
tional impact (broader than Nielsen’s satisfaction) and strongly depends on the context
of a usage by a particular user (Hartson & Pyla, 2012). Not all UX aspects are equally
important for every type of user. Paakkanen (2014) finds that experienced video game
developers find effectiveness (usefulness) most important. For novice users, this proba-
bly would be the ease of use (usability).

Popular video game development tools, like Unity3D, Unreal Engine 4, and Cry Engine,
have a high interaction and work domain complexity. They include many sophisticated
editors (e.g., AI editors) that all contribute to their complexity and steep learning curve.
Pattrasitidecha (2014) found that, out of 16 3D mobile game engines, Unity3D is easiest
to learn but has a relatively low usability, which most likely is due to Unity3D’s high
complexity.

Popular console and web-based editors, like Super Mario Maker and Scratch, have low
interaction and work domain complexity. Super Mario Maker is a very user-friendly
editor for the Wii U console. Its interaction complexity is low, because games can be

Chapter 4

96

easily created by dragging and dropping objects from a tool palette. Objects can even
be combined to get a new object that shows combined behavior. Its work domain com-
plexity is also low, because the number of objects and possible manipulations on it are
limited, and objects have built-in behavior, so no entry of game rules is needed. This low
complexity contributes to its high usability. Scratch is a massively used, low threshold
web-based game editor. Its interaction complexity is low, because it makes use of
blocks that can be dragged and dropped and connected to each other to create the
game flow and even to create the game rules. Its work domain complexity is also low,
because the number of different blocks is limited. Again, low complexity contributes to
high usability.

Besides interaction and work domain complexity, design decisions may also influence
tool usability. Murray (1999, 2004, 2016) investigated design trade-offs for authoring
tools. Increasing the flexibility (the ability to author a diversity of game types), breadth
(of the domains supported), or depth (of the models to author) of a tool usually comes
at the cost of usability. In addition, learnability and productivity are often in conflict,
because simplicity for novice users means less powerful features that foster productivi-
ty for experienced users.

Conditions during development and implementation of a tool may also influence its
usability. What is the budget? What is the time schedule? Are there great risks in-
volved? Are the right people with the right skills available? What is the expected num-
ber of authors? In case of setbacks or a small number of authors, the priority will likely
be to deliver a tool that works, so usability aspects, efficiency, and satisfaction will be at
the expense of effectiveness.

2.3 Authoring serious games

Unlike leisure games, serious games should support learning. Dede (2009), Clark and
Mayer (2011), and Thillainathan and Leimeister (2014) stated that the learner should be
in control and that learning should be situated and authentic, possibly based on a didac-
tical model or approach and should support transfer of learned skills. To be able to give
relevant support, guidance, and feedback, the game should keep progress of and assess
the learner and should adapt to the learner’s learning strategies and skills. The game
may assess the learner on performance, emotion, motivation, and on personality as-
pects and may adapt to the learner on the micro and macro levels (Kickmeier-Rust &
Albert, 2010; Kickmeier-Rust & Albert, 2012; Kickmeier-Rust, Mattheiss, Steiner, & Al-
bert, 2011). Micro-level adaptation is embedded in the game flow and leads to, e.g.,
giving the learner advice or feedback or motivating or urging him. Macro-level adapta-
tion leads to adjustments of either the game flow or the game’s pace or intensity.

Murray (2004, 2016) did some important work on the complexity of authoring tools and
stated that the complexity level of an authoring tool should match the complexity ca-

Evaluating the usability of authoring environments for serious games

97

pacity of its user. He identified four types of complexity. Interface and tool complexity is
related to the number of editor features and components. The more features and com-
ponents, the more difficult it is to manage and combine them. Object complexity is
related to the number of abstract concepts whose definitions and uses are not obvious.
For instance, it is more difficult to understand and explain an abstract concept like
feedback, when compared to a more concrete object like an image. Structural complexi-
ty is related to the number of complex structures of linked objects. Creating and main-
taining such structures is cognitively challenging. Dynamic complexity is related to the
number of laws, rules, mechanisms, or influences that contribute to change, which may
lead to many possible student paths that are difficult to test and debug.

In addition, Murray (2004, 2016) identifies five possible types of users with different
complexity capacity. Teachers have a low complexity capacity, so they cannot be ex-
pected to use complex authoring tools. This is in line with Theodosiou and Karasavvidis
(2015), who found that student teachers struggle to incorporate critical game elements
and have major difficulties in connecting game elements effectively. Domain experts
and content developers have a medium complexity capacity, though they may have little
practical or theoretical knowledge of pedagogy. Instructional designers and learning
theorists have a medium complexity capacity too, though they may not have the time to
dedicate to a steep tool learning curve. Knowledge engineers and game developers have
a medium to high complexity capacity, because they are trained for representing
knowledge in a computationally usable fashion. Computer scientists and software de-
velopers have a high complexity capacity, because they are used to design and debug
structural and procedural models. Only the last two types of users can be expected to
manage sophisticated authoring tasks.

2.4 Related work

Other authors also evaluated the usability of authoring environments for SGs. Mehm,
Göbel, and Steinmetz (2012) evaluated STORYTEC, an authoring tool that integrates the
work of game designers, pedagogues, artists, and domain experts into one unified au-
thoring tool. Most usability aspects were found to be average. Only so-called self-
descriptiveness (the dialogue should make clear what the user should do next) (ISO,
2006), which relates to understandability, and error tolerance, which relates to opera-
bility, were rated lower than average.

Van Est, Poelman, and Bidarra (2011) evaluated SHAI, a (prototypical) scenario editor
for simulation games that enables instructors to arrange scenario building blocks to
match individual trainees’ needs and to make real-time adjustments. Usability was
found to be poor. Shortcomings relate to understandability (‘options are too complex’,
‘graphics are unclear’, ‘large scenarios are difficult to comprehend’), learnability (‘better

Chapter 4

98

descriptions are needed’), operability (‘keyboard shortcuts are missing’), and user inter-
face aesthetics (‘better presentation is needed’).

Marchiori et al. (2012) evaluated WEEV, a method and system for educational adven-
ture game authoring, and identified many usability problems related to understandabil-
ity (‘part of the system is complex to use’, ‘example games are needed to understand
the purpose of the system’) and learnability (‘a guided tutorial is needed to help novice
users’).

Gaeta et al. (2014) evaluated an authoring tool for the creation of stories that support
learning in an emergency context and found usability to be relatively low.

3 EMERGO

We developed the EMERGO method and online platform (Nadolski et al., 2008) to sim-
plify and better support the development and delivery of scenario-based SGs. In this
kind of game, learners are confronted with realistic, ill-defined problems, often allowing
multiple solutions and requiring application of necessary methodologies or tools and
collaboration with fellow learners (Westera, Nadolski, Hummel, & Wopereis, 2008). The
platform’s authoring environment offers 22 components that support different (didacti-
cal) functions that should be present in scenario-based SGs. In addition, the platform
offers environments to play the developed games, to monitor students, and to manage
users and game runs. EMERGO has been used to develop 24 games for all kinds of disci-
plines. It supports the acquisition of four out of five capability types, as defined by
Gagné (1985): intellectual skills, cognitive strategies, verbal information, and attitudes.
Motor skills are not (yet) supported. The online platform is Open source and is available
on SourceForge (EMERGO, 2013).

Earlier and more superficial evaluations of the authoring environment show that educa-
tors, after receiving some instruction, could use most components independently and
with ease (Nadolski et al., 2008; Slootmaker, Kurvers, Hummel, & Koper, 2014). One
component could not be used independently, and two components were not easy to
use. This makes us question why the usability of some components is lower than of
others, how we could improve this, how this is related to component complexity, and if
it is related to the conversion of the scenario into game content. The research goal of
this case study is to evaluate in detail the usability of the EMERGO authoring environ-
ment and integration of authoring with the EMERGO method. We expect that the usa-
bility evaluation will enable us to derive some guidelines for increasing the usability of
the environment.

This case study addresses two areas of design research that are still underrepresented
in game studies (Kultima, 2015): design praxeology (i.e., the development process using
the EMERGO method) and design phenomenology (i.e., the EMERGO authoring envi-
ronment). The study deals with the game design value category Values of Production

Evaluating the usability of authoring environments for serious games

99

and Creation Process, as proposed by Kultima and Sandovar (2016), which contains
values like Technological advancement, Development as a challenge, Collaboration and
value of teamwork, and Open source ideology.

In this article, we use usability as defined by ISO/IEC 25010:2011 (ISO/IEC, 2011). It is
one out of eight software quality characteristics and is defined as the degree to which a
product or system can be used by specified users to achieve specified goals with effec-
tiveness, efficiency, and satisfaction in a specified context of use. The other characteris-
tics are functionality, reliability, performance efficiency, compatibility, security, main-
tainability, and portability. Usability is further subdivided into six aspects: understanda-
bility, learnability, operability, user error protection, user interface aesthetics, and ac-
cessibility. Note that, for better readability, we replace the ISO/IEC characteristic ‘func-
tional suitability’ with functionality and the characteristic ‘appropriateness recognizabil-
ity’ with understandability.

In the following sections, we will describe development, authoring, and debriefing for
EMERGO games and the EMERGO authoring environment itself.

3.1 Developing EMERGO games

The use of the EMERGO authoring environment is embedded in the EMERGO method.
This method comprises five phases and (although based on ADDIE) recommends using
iterations, like a Unified Process approach with cycles that prevent overspending and
minimizes risks or failures.

During the analysis phase, the development team formulates answers to a list of stand-
ard questions. Answers are used as input for a global description of the game that in-
cludes learning goals and competencies to achieve. During the design phase, the meth-
od supports the team in the creative process of writing a scenario in three steps. First,
the team formulates which activities have to be accomplished, why, when, where, and
in what order, if needed. Activities are formulated as location plans, using the template
Where the student will…<description of the activity>. Second, the team identifies: (i)
with whom activities must be done and with what materials and tooling, (ii) when activi-
ties are completed and how this is assessed, and (iii) which feedback is given and when,
and in what form and by whom. Third, the team describes each activity exhaustively in
terms of its required materials and tooling. In this stage, it becomes evident whether
materials are already available or still need to be developed and whether the scenario
can be realized with available platform components, or if it needs new components or
even a new game skin. During the development phase, the authoring environment is
used to convert the scenario and materials into game content. If needed, new compo-
nents or skin are developed, film recordings are made, and other materials like docu-
ments or images are developed. During the implementation phase, the game is de-

Chapter 4

100

ployed to students and educators (for monitoring), and during the evaluation phase, the
game is evaluated.

An EMERGO development team consists of content matter experts, educational tech-
nologists, interaction designers, and ICT developers. Educational technologists and
content matter experts write the global description and scenario of the game and in-
volve other team members to check for feasibility. Interaction designers and ICT devel-
opers develop graphical assets and, if needed, new components or skin. If film record-
ings are needed, the team temporarily is reinforced with cameramen, actors or experts,
and video editors. Initially, our objective was for educational technologists and content
matter experts to do all authoring, but actual practice shows that game script authoring
is mostly too complicated and is then done by an ICT developer, which is in line with
Murray (2016), who states that the latter user type has a higher complexity capacity
than the former.

3.2 Authoring EMERGO games

In a typical EMERGO game, the student acts as a PC (Playing Character) and enters an
authentic environment, where he works as a trainee. He can navigate to different loca-
tions, where he finds NPCs (Non-Playing Characters), like his supervisor, colleagues,
experts, or specialists, or can attend interviews or meetings (see Figure 4.1). In the
environment, he has a tablet with apps, e.g., a task overview, a resources app, an (in-
game) email app, or an app to conduct tests. He also has a memo recorder, to record
interesting parts of interviews and meetings, and a notepad to make contextualized
notes.

The student gets tasks from his supervisor or other NPCs, either in person or by mail. He
can be assessed on every action he performs, e.g., which interviews he attends, which
questions he asks, which resources he consults, or which mail he sends. In addition, he
can be assessed, e.g., using tests that enable measuring foreknowledge and perfor-
mance. Depending on his actions, the game can adapt the environment at the micro
level, e.g., by sending mail, showing an alert, changing an NPC reaction, releasing new
resources or new interview questions, or changing an answer to a question, or at the
macro level, e.g., by providing new or alternative tasks. The student gets feedback on
his performance by NPCs in person, by mail, as screen text, or in tests. This feedback
can incorporate mail attachments or the release of resources, such as worked-out ex-
amples or expert reports. The student gets navigation support through alerts, e.g., re-
minders for meetings or instructions for where to go next.

Evaluating the usability of authoring environments for serious games

101

Figure 4.1. A patient being interviewed (video). At the bottom left, we see the tablet, and at the bottom right,

we see the memo recorder and notepad

The EMERGO authoring environment offers 22 components to realize the above kind of
scenarios (see Table 4.1).

The components support eight different (didactical) functions: present and adapt envi-
ronment (E), assign tasks and provide overview (T), present knowledge (K), assess
learner (A), provide feedback (F), support processing of information (P), support collab-
oration (C), and support navigation (N). Note that one component may serve several
functions and that one function may involve several components. For instance, the
conversations component can be used to assign a task, to present knowledge, or to
provide feedback. And the script component should assess the learner to trigger the
conversations component to give the right feedback.

The components allow much freedom in the way the environment is presented, how
tasks are assigned, if they must be executed in a certain order, how they are assessed,
and how feedback is provided and thus support a wide range of game scenarios. Of
course, the metaphor of an environment with locations and the available components
put constraints on the end form of the game, but this partially can be overcome by
adding new components or a new game skin.

Chapter 4

102

Table 4.1: EMERGO components and their possible functions and complexity

Component Description Functions Complexity
Navigation Enable spatial navigation through the game E Medium
Conversations Enable communication with NPCs using video or text ETKF Medium
Notepad Enable making contextualized notes EP Low
Memo recorder Enable recording of conversations EP Low
Alerts Provide popup texts EFN Low
Notifications Provide (accumulated) embedded texts EFN Low
Scores Provide score overview EF Low
Profile Enable sharing profile with PCs EC Low
Chat Enable communication with PCs EC Low
Tablet Enable selecting apps E Low
Tasks Provide task (completion) overview. App ET Low
Resources Enable consulting resources. App EKF Low
Email Enable communication with NPCs and between PCs.

App
ETKFC Medium

Assessments Enable conducting tests. App EAF Medium
Logbook Provide overview of notes. App EP Low
Memo player Enable playing back of recordings. App EP Low
Google maps Enable inspecting maps with markers. App EK Low
Directing Enable analyzing communication between NPCs. App EP Low
Game manual Provide help on game interface. App EN Low
Items Define questions to be used in tests EAF Medium
States Define states to be used by the Script or Scores compo-

nent
A Low

Script Define rules to assess the learner and adapt the game
at the micro and macro levels

ETKAFPCN High

Based on Murray’s (2004, 2016) four tool-complexity types, we identified three com-
plexity levels: low, medium, and high. This allowed us to relate components’ complexity
to the complexity capacity of its user (Murray, 2016). Low complexity components have
a low interface, object, and structural and dynamic complexity. They either have only a
few configuration options or an obvious and simple data model without dynamics. Me-
dium complexity components have a medium interface, object, and/or structural com-
plexity, but a low dynamic complexity. The navigation, conversations, email, assess-
ments, and items components comply with this condition. They all have a medium ob-
ject complexity, because they include abstract concepts whose definitions and uses are
not obvious. In addition, the navigation component has a medium interface complexity,
because it includes a larger number of authoring features, and the navigation, conversa-
tions, and items components have a medium structural complexity, because they in-
clude complex structures of linked objects. High complexity components have a medi-
um or high interface, object, structural, and dynamic complexity. Only one component,
the script component, complies with this condition. It has a medium interface and a
high object complexity, and depending on the number of game rules and their interrela-
tions in the game scenario, it may have a high structural and/or dynamic complexity.

Evaluating the usability of authoring environments for serious games

103

Depending on their individual complexity capacity, content matter experts will use low
or medium complexity components that involve knowledge presentation. Educational
technologists will mostly use medium complexity components that involve task assign-
ment, assessment, and feedback. ICT developers will use high complexity components,
although some educational technologists may also consider using them.

Object, structural, and dynamic complexities are related to the SG domain and there-
fore are difficult to influence. However, interface complexity is related to the way user
tasks are translated into usable interfaces and therefore leaves room for improvement,
which is the motive for our usability evaluation.

3.3 Debriefing EMERGO games

The EMERGO platform supports the design of in-game and post-game debriefing for the
reflection on and the sharing of the game experience to turn it into learning (Crookall,
2010).

For the design of in-game reflection on the game experience, game authors can use
components that support giving feedback or processing of information. The conversa-
tions component can be used for reflection on a task with a supervisor or reflection on
the domain with an expert. The resources component can be used to provide additional
reflection materials. The email component can be used for asking the student to send in
a reflection document like a report or for commenting on a student’s task process or
outcomes by NPCs or PCs (fellow students or educators), including attachments like
expert outcomes that can be used for reflection. If an educator has a PC role, he can
support or moderate students’ reflection during the game. He can even do this by im-
personating an NPC. The assessments component can be used to reflect on learning,
the logbook to reflect on notes made, and the memo player and directing component to
reflect on NPC communication, e.g., a patient interview.

For the design of in-game sharing of the game experience, game authors can use the
email and chat components that support communication with fellow students or educa-
tors.

For post-game reflection on and the sharing of the game experience, educators can
organize debriefing sessions with students where all student data can be used as input
to foster discussion. Educators can use the platform or ask administrators to provide
overviews of students’ performance and to reflect on developed games.

Chapter 4

104

3.4 The EMERGO authoring environment

One of our main goals was to develop a user-friendly, reliable, and stable authoring
environment that would enable efficient development of scenario-based SGs by offer-
ing a set of common components. We set up functional and non-functional require-
ments (see Appendix 2) that laid the foundation for the structure and the working of
the environment, which comprises four pages (see Figure 4.2).

Figure 4.2. Authoring process

The games page shows an overview of games and allows CRUD (Create, Read, Update,
Delete) operations on and import and export of games.

The game roles page shows an overview of game roles for a chosen game and allows
CRUD operations on game roles. A game role can be either a PC or an NPC.

The game components page shows an overview of game components for a chosen
game and allows CRUD operations on and import, export, and copying of game compo-
nents. Most components allow for having multiple game component instantiations,
which enables thematically arranging content, e.g., one conversations component per
interviewee.

Crea t e gam e

Crea t e game rol e s

Crea t e game compo n e n ts

Con f igure game component and cr e a t e co n t e n t

Evaluating the usability of authoring environments for serious games

105

Figure 4.3. Game component content page for the Navigation component

The game component content page (see Figure 4.3) shows the game component con-
figuration and content and allows CRUD operations on and drag, drop, and copying of
game content. Configuration implies setting initial properties, e.g., is the game compo-
nent initially present? Content is presented as a tree and authored using a single game
component content editor whose working is determined by the component definition
that defines possible content elements (e.g., locations or backgrounds), their hierarchy,
which content can be entered, and their properties. A content element is edited in a
pop-up dialogue that validates entered content. The script component is authored the
same way. Script conditions are added as root tree items and will be triggered by prop-
erty changes that are initiated by student actions, timers, or script actions. Script ac-
tions are children of a script condition and are executed if the condition is triggered.
They change properties that may adapt the player environment or the game script it-
self.

Chapter 4

106

To enter all content, authors will switch between the game components page and the
game component content page. Game and game components can be previewed and
tested in the player environment.

4 Method

As subject for our evaluation, we choose the development of a game on Sexology, one
of the most recently developed games. It is a typical example of an EMERGO game, and
it uses most EMERGO components, 14 out of 22 available.

4.1 Participants

Two experienced male game developers, who developed several other EMERGO games
before, completed the game authoring. The first author is an educational technologist
(without any technical background), who also led the project and wrote the scenario.
The second author is an ICT developer, who also developed new game components. The
educational technologist authored the conversations, notepad, alerts, tablet, resources,
email, and logbook component. The ICT developer authored the navigation, memo
recorder, tasks, memo player, directing, game manual, and script component.

4.2 Data collection method

As data collection method, we chose semi-structured interviews (Bryman, 2012).
Strengths of this method are that it has a high validity, because interviewees are able to
talk about something in detail and depth, and a high flexibility, because it allows com-
plex questions and issues to be discussed. Weaknesses of this method are that it is not
very reliable, because it is difficult to exactly repeat an interview, and that the findings
are difficult to generalize. We found other data collection methods, like questionnaires,
observation studies, think- or talk-aloud protocols, focus groups, automated collection
of heat maps, or a combination of methods, not appropriate. Questionnaires, observa-
tion studies, and think- or talk-aloud protocols give too little detail and depth and are
less flexible. Focus groups are more suitable for larger groups and bear the risk that
opinions are not expressed equally. Automated collection of heat maps is not possible,
because the EMERGO platform does not log the authoring process. A combination of
methods is not appropriate, because the aforementioned methods are not appropriate.

We prepared the interviews by setting up an interview guide with themes and related
questions (see Appendix 2). The themes are: (1) the author’s general impression of the
authoring environment, (2) the requirements for the environment, (3) the components
used for the Sexology game, and (4) the development process.

Evaluating the usability of authoring environments for serious games

107

4.3 Procedure

The same interviewer interviewed the two game authors separately. Both interviews
were conducted about a year and a half after the game was developed, lasted about
two and a half hours, and were recorded with consent. The spoken language was na-
tive, so interviewees could better express themselves. Interviewee and interviewer
together walked through the pages of the authoring environment and the 14 EMERGO
components to recall working with it in a natural setting.

For our data analysis, we first used the interview recordings to make notes per inter-
viewee and per theme. Second, we identified issues and counted related remarks.
Third, we related these issues to usability aspects and other ISO/IEC software quality
characteristics and to aspects of the development process. As a last step, we collected
suggested improvements to be able to set up general usability guidelines.

5 Findings

We present the findings related to our original evaluation goal, which was to evaluate
the usability of the authoring environment and the integration of authoring in the
EMERGO method. As interviewees also made remarks related to other software quality
characteristics and the development process itself, we present these findings as well. A
general finding is that interviewees’ remarks do not contradict each other. We end with
general usability guidelines for authoring environments for SGs.

5.1 Usability of the authoring environment

We give a general impression per interviewee composed of their striking literal remarks.

The educational technologist. ‘If you see it for the first time, you think: ‘What on Earth
do I have to do here?’ However, things fairly quickly become clear if you get some peer
support, and are somewhat familiar in scenario writing. You don’t have to be an ICT
developer, but it is good to get an idea of the different layers you can distinguish in
authoring, where switching properties on and off is close to programming. If you get
deeper, it conceptually becomes more complicated. If you work with it somewhat long-
er, almost all components are a piece of cake, except scripting. Then it becomes Spar-
tan, because it is not always intuitive.’

The ICT developer. ‘You actually see a somewhat empty environment. It has a new but-
ton, but further you see little information, especially for someone who knows nothing
about it. You get no location or context-specific help. You might build in that you can
get some explanation on every screen, on the purpose, what you can do exactly, and
how you might proceed. If you understand the editor, it works fine. However, entering
game script requires concentration to prevent errors.’

Chapter 4

108

Interviewees made remarks that can be related to three out of six usability aspects,
namely understandability, learnability, and operability. No remarks can be related to
user error protection, user interface aesthetics, or accessibility. Both interviewees iden-
tified most issues. ISO/IEC defines understandability as the degree to which users can
recognize whether a product or system is appropriate for their needs, learnability as the
degree to which a product or system can be used by specified users to achieve specified
goals of learning to use the product or system with effectiveness, efficiency, freedom
from risk, and satisfaction in a specified context of use, and operability as the degree to
which a product or system has attributes that make it easy to operate and control.

The understandability of the authoring environment is problematic. Although inter-
viewees find the distribution in pages and navigation through them obvious, they quite
often find the used terminology unclear and not fitting their expectations (16 remarks)
and find it unclear as to why, when, and where certain options are present, or why two
options offer the same functionality (25 remarks). Less problematic is that interviewees
miss examples of scenarios, games, and game components (three remarks).

The learnability of the authoring environment is problematic. Interviewees miss on-
screen guidance and clear instruction on all pages and pop-up dialogues (17 remarks)
and miss information on didactics and use of the components, their mutual dependen-
cies, and the order of entering component content (10 remarks). For a large part, miss-
ing guidance, instruction, and information can be found in a comprehensive authoring
manual, but it is partly outdated, and searching in a manual for the right help is labori-
ous.

The operability of the authoring environment is somewhat problematic. Interviewees
mention that available components are not filtered on the chosen game skin (one re-
mark), file names cannot contain special characters (two remarks), objects cannot be
easily positioned on the screen (one remark), and the preview option does not always
function as expected (two remarks). However, interviewees like drag and drop and the
uniform input control for URLs and files.

Interviewees made no remarks about the notepad, memo recorder, tablet, logbook, and
memo player components, probably because these components only need some con-
figuration and no authoring of game content.

We give an impression per interviewee and authored component that is composed of
their striking literal remarks.

Evaluating the usability of authoring environments for serious games

109

The educational technologist. ‘It is a lot of work, but not really complicated. After some
time, it is no longer a problem to work with. It cannot be made easier. You just have to
copy/paste from Word and work very precisely.’ (Conversations). ‘No problem, I under-
stood everything.’ (Alerts). No problem at all. The preview option is indispensable.’
(Resources). ‘I had some trouble to understand the distinction between sent and re-
ceived mails. I further had no problems.’ (Email).

The ICT developer. ‘Part of authoring does not seem logical or is unclear, unless you
imagine it visually. However, for a large part authoring is straightforward, once you
know how it functions and what it stands for.’ (Navigation). ‘No problems, pretty sim-
ple.’ (Tasks). ‘Explanation is missing.’ (Directing). ‘It is somewhat difficult to understand
the distinction between the three types of resources. The rest is obvious.’ (Game man-
ual). ‘It is not entirely clear what every property stands for and some menu options are
unclear. You can implement different solutions for the same problem. This all made
authoring more difficult, especially if I had not used the component for a while. In itself I
found authoring convenient.’ (Script).

5.2 The development process and the integration of authoring

Interviewees made remarks that can be related to the development team, the EMERGO
design and development phase, and the transition between these two phases. The
educational technologist identified most issues.

Both interviewees find the development team very important. The educational technol-
ogist states that you need a good role distribution (‘What I did really suits my role.’), the
right people (‘The quality of the content matter expert is almost decisive.’), and a good
organization of such a project.

Team members should complement each other and should consult each other to get
the best result (‘Together you find solutions that you would not find separately.’). Dur-
ing the authoring phase, both authors were in close contact, so they could efficiently
work together to make things work and fix bugs.

For the design and development phase, the educational technologist states that he
wrote the scenario without taking the available components into account very much.
However, novice developers should know how to deal with the components before-
hand, otherwise they get into trouble. If they are expected to author only one game,
they should author only low complexity components.

Both interviewees have their opinions about the moment of transition between the
design and development phase. The educational technologist states that authoring
normally starts when the scenario is finished, but that you could start earlier if the
storyline is clear and you know which components you need, at the risk of time-

Chapter 4

110

consuming adjustments in case of scenario changes. In addition, the ICT developer
states that it also depends on someone’s preference. One person likes to write every-
thing down, while the other likes to try things out early.

We do not identify any problems related to the integration of authoring in the EMERGO
method. Interviewees are positive about the process of converting the scenario to game
content and are satisfied with the efficient way of authoring together. The ICT develop-
er could quite easily extract script conditions and actions from the scenario, because
the scenario is structured in such a way that this is possible.

5.3 Other software quality characteristics

Interviewees made remarks that can be related to two out of seven other software
quality characteristics, namely functionality and reliability. No remarks can be related to
performance efficiency, compatibility, security, maintainability, and portability. The ICT
developer identified most issues. ISO/IEC defines functionality as the degree to which a
product or system provides functions that meet stated and implied needs when used
under specified conditions and reliability as the degree to which a system, product, or
component performs specified functions under specified conditions for a specified peri-
od.

The functionality of the authoring environment is valued. Both interviewees stated that
the preview and test options are essential and indispensable. They find it convenient
that you can easily change the content of a game in exploitation. The ICT developer is
positive about the flexibility of the Script component.

The reliability of the authoring environment is valued. Interviewees find saving content
to be reliable, although drag and drop sometimes results in partial loss of data.

5.4 General usability guidelines for authoring environments for serious games

Just as with the EMERGO authoring environment, other authoring environments for SGs
seem to have usability problems related to understandability and learnability (see sec-
tion Related work). To prevent such problems, we present general guidelines that are
based on improvements suggested by the interviewees.

Guidelines to improve understandability:
• Offer an intuitive user interface so authors can more easily do what they want. An

intuitive interface might be different for different kinds of authors. The educational
technologist: ‘It is not always intuitive. For students, we now have an interface,
whereby they only have to think about what they want to do, not how to do it. Can
we improve the usability for authors in the same way? Probably you should make
different kinds of screens for different kinds of authors.’

Evaluating the usability of authoring environments for serious games

111

• Offer two levels of input, basic for novices and advanced for experts, so novice
authors are shielded from unnecessary complexity. The ICT developer: ‘Better first
present mandatory input controls and then optional input controls.’

• Offer examples of scenarios, games, and game components and how they relate to
each other, so authors better understand what to do. The educational technologist:
‘If I would be a novice developer, I would like to see some example scenarios that
highlight where and when certain components are used.’

• Offer a preview option to preview entered content at any time, so authors better
understand what they are doing. The educational technologist: ‘The preview option
helped me to understand the working of the authoring environment.’

• Use clear terminology fitting user expectations. The educational technologist: ‘You
have not yet managed to name the properties in a way that I understand exactly
what will happen.’

Guidelines to improve learnability:
• Offer clear instruction and wizards, so authors are guided during the authoring

process. The ICT developer: ‘Context sensitive help is needed when entering game
content. You also could use wizards.’

• Offer information on didactics and use of components, so novice authors can make
a quick start. The ICT developer: ‘You could give a short description why and how to
use a component.’

6 Conclusions and discussion

Our research goal was to evaluate in detail the usability of the EMERGO authoring envi-
ronment and integration of authoring in the EMERGO method for serious game devel-
opment. The case-based research addresses two areas of design research, as distin-
guished by Cross (2007) – design praxeology and design phenomenology – and falls into
the game design value category Values of Production and Creation Process, as proposed
by Kultima and Sandovar (2016).

We found understandability and learnability of the authoring environment to be prob-
lematic and operability to be somewhat problematic. On the one hand, this is caused by
a lack of guidance and support but on the other hand, it is caused by the complexity of
the domain and the environment itself. The first problem originates from the initial
development of the EMERGO platform, when the priority was to build a player envi-
ronment for students without enough capacity available to invest in the usability of the
authoring environment. The second problem is related to tool complexity (Murray,
2004, 2016). Complex learning requires complex scenarios that need a powerful envi-
ronment with a lot of functionality and freedom, which may lead to lower usability. So
power and flexibility of the authoring environment are both a strength and weakness.

Chapter 4

112

We found authoring to be well integrated in the EMERGO method. However, our evalu-
ation method did not include detecting the opposite, because we did not ask a question
that specifically addressed this issue. Limitations of the EMERGO method might be that
it only supports one type of game (scenario-based). However, if the scenario does not
involve motor skills and can be realized with the available components, other types of
games (like point-and-click adventure games) might also be supported. In addition, the
method does not dictate but rather offers tooling to support design and development.
The way the scenario is set up (using location plans) leaves plenty of room for creativity.
Interviewees also do not mention any problems that can be related to the separation
between design and development phases. This might be because they do not know
better, but it also has to do with efficient development. Interviewees stated that if de-
velopment starts when the scenario is not mature enough, time-consuming adjust-
ments are needed in case of scenario changes. Of course, the authoring environment
might be used in a more creative and agile manner, by skipping the scenario and switch-
ing between generating content, entering content, and previewing.

We found functionality and reliability of the environment to be valued.

Our findings do not include all usability aspects and all software quality characteristics.
We think this is not due to our evaluation method but to the fact that interviewees did
not mention related remarks, either because they had no problems with it or it was not
relevant in their context of use. For instance, they will have had to deal with the aspects
user error protection and user interface aesthetics, but they made no related remarks.
And the characteristics maintainability and portability are not relevant in their context
of use, because they relate to the EMERGO platform itself, not to developed games.

Besides the limited scope on certain usability aspects and software quality characteris-
tics, our evaluation has other limitations. The data obtained are based on the develop-
ment of only one game by only two authors who did not use all EMERGO components.
However, we have strong indications that our findings are generic for the development
of all EMERGO and similar complex learning games, because of the following reasons.
First, the developed game contains a didactical scenario that is representative of a typi-
cal EMERGO game. Second, we focused on the development process by eliciting
knowledge from informants that were strongly connected to it. Third, the facts that
these authors / informants had already developed and authored EMERGO games be-
fore, come from different backgrounds (different world views), and have used other
components as well, make it very probable that their remarks are generic for other
EMERGO games and components as well. Fourth, our findings are in line with more
superficial findings we collected with other authors in two previous studies (Nadolski et
al., 2008; Slootmaker, Kurvers, Hummel, & Koper, 2014). Fifth, all components are au-
thored by a single editor that uses common input controls, so components that are not
evaluated are also indirectly partly evaluated. We do not claim that our findings are

Evaluating the usability of authoring environments for serious games

113

applicable to development of serious games in general, especially when these do not
contain specific references to learning features.

Our method might not be reliable, since we only interviewed two authors who may
have given desired answers. However, they are the most experienced and most recent
authors, and we think that they were honest, also because they criticized the authoring
environment a lot. The fact that the interviews were conducted long after the game was
developed is a clear limitation. However, the authors have still used the authoring envi-
ronment after the game was developed, and walking through the environment helped
them recall their memories and led to a very detailed narrative.

We are not able to generalize our findings to specific learning features, such as assess-
ment and feedback, because we did not raise them during the interviews. Also, the
authoring environment has no single components that deal with learning features, like
other environments (Kickmeier-Rust & Albert, 2010), but instead requires the coopera-
tion of several components to support learning.

We presented some general usability guidelines for authoring environments for serious
games. These guidelines include providing examples and didactic advice that might
direct authors in a particular style of game, which may reduce the chances of other
creative solutions. However, novice authors need examples and advice, and good and
varied examples might also feed creativity. Another risk is that authors might get over-
fed by all the instruction and information or even do not pay attention to it. However,
this probably depends on the type of person. There are people who prefer guidance
and others who prefer trial and error. All authors should be served.

Most guidelines seem obvious but can easily be neglected under time pressure or due
to other causes. Further, the guidelines seem to be so general that they may also be
applicable to other types of authoring environments.

As a follow-up of this evaluation, we plan to impose the usability guidelines on the
EMERGO authoring environment. In a future study, we will evaluate the environment
again to see if the guidelines indeed cater to better usability. It would be interesting to
investigate if a more graphical or block-based interface would be an improvement.

Since the development of the game used for this evaluation, the EMERGO platform has
been extended with new functionality. For instance, the platform now supports more
adventure-like games, like the Playground Game developed by Westera, Slootmaker,
and Kurvers (2014). We recently integrated the use of the webcam to record students
who counsel virtual patients. These recordings are used for in-game peer feedback and
are discussed in a post-game debriefing session. We are currently working on a game
for an introductory course on Psychology. This game also will be used for research pur-
poses. We will simplify the rollout of games to different experimental groups.

Chapter 4

114

We have plans to integrate an external service to analyze quality of reports and to add
components that support collaboration. We already developed two games that use
online collaboration (Hummel et al., 2010; Hummel, Geerts, Slootmaker, Kuipers, &
Westera, 2013). We will use this experience to add new components for rating, voting,
and negotiation.

Acknowledgements

We would like to thank Henk van den Brink and Hub Kurvers of the Open University of
the Netherlands for participating in the interviews.

115

Chapter 5

Chapter 5
Evaluating the usability of player
environments for serious games

This chapter is based on: Slootmaker, A., Nadolski, R. J., Kurvers, H. J., Hummel, H. G. K.,
& Koper, E. J. R. (2018). Evaluating the usability of player environments for serious
games. Manuscript submitted for publication.

Chapter 5

116

Abstract

The web-based EMERGO platform enables the development and delivery of scenario-
based serious games (SGs) for acquiring complex cognitive skills in authentic profes-
sional settings. One of the main goals of the platform was to provide an intuitive and
immersive player environment allowing students to perform authentic tasks. We pre-
sent the results of a both quantitative and qualitative summative study on the player
environment’s usability. For the quantitative part we used pre- and post-test question-
naires, and for the qualitative part individual note taking during game sessions and
group discussions after game sessions. The analysis shows that the overall usability of
the player environment is “ok”. Its operability is valued most, but understandability and
user interface aesthetics are considered somewhat problematic. We argue why prob-
lems are probably caused by inadequate game preparation and students’ expectation to
get a more realistic and less restrictive environment. We present guidelines to improve
the usability of player environments for SGs.

Evaluating the usability of player environments for serious games

117

1 Introduction

Serious games (SGs) are powerful means to provide learning in a more attractive and
challenging way, e.g., to learn complex cognitive skills in authentic professional settings.
These skills involve using, transforming or supplementing available knowledge, and so
called higher-order activities like problem solving, reasoning, thinking, assessing, and
concluding.

The actual uptake of SGs is still hampered because their development is technically
demanding and involves high costs and time investments. In addition, the field lacks a
good architecture for SG development (Nadolski, Hummel, Slootmaker, & Van der Vegt,
2012), standards for SG design (Klemke et al., 2015) including usability design, and
standardized ways of evaluation including usability evaluation. Measuring usability itself
is complex as Lewis (2014, p. 664) emphasizes: “The measurement of usability is com-
plex because usability is not a specific property of a person or thing. You cannot meas-
ure usability with a simple ‘usability’ thermometer (Dumas, 2003; Hertzum, 2009;
Hornbæk, 2006). Rather, it is an emergent property dependent on interactions among
users, products, tasks, and environments”.

To overcome a number of problems related to SG development, we developed the
EMERGO (in English EMERGE: Efficient Method for ExpeRiential Game-based Education)
web-based platform for the development and delivery of scenario-based SGs (Nadolski
et al., 2008). Scenario-based SGs foster knowledge acquisition, development of cogni-
tive skills and understanding of complex relationships. The scenario describes the prob-
lem space, the learning tasks to be performed, how this is assessed and how the game
should adapt to the student, e.g., by providing personalized feedback. The platform
enables a wide variety of game scenarios to be authored, to be played and to be moni-
tored, integrates game development, delivery and playing in one system, and can be
used for education as well as for research purposes. Fast and flexible game develop-
ment is fostered by options to reuse game content, to preview and test a game at any
time, to adapt a game to the individual student and to easily modify already deployed
games. Fast and flexible game delivery is fostered by web-based delivery of games, and
of updates of games and the platform itself, and options to interfere in a running game
and to deliver different game versions of the same game to different target groups.
Over the years, the platform has been used by thousands of students and has been
extended with many new platform components.

One of our main goals was to provide an intuitive and immersive player environment
that enables students to perform authentic tasks. The research goal of this study is to
now evaluate the usability of this player environment in detail and to establish guide-
lines to improve the usability of player environments for SGs. We already evaluated the
platform’s authoring environment in detail (Slootmaker, Hummel, & Koper, 2017).
However, the player environment, although being essential for the platform, has not

Chapter 5

118

been evaluated in detail until now. More superficial evaluations with less available plat-
form components (Nadolski et al., 2008; Slootmaker, Kurvers, Hummel, & Koper, 2014)
have shown that students are (very) satisfied about the user interface of the player
environment. We remained interested to know whether students are still satisfied,
about which usability aspects, whether and how platform components differ in their
perceived usability and whether we could derive usability guidelines for this type of
environments. We believe a deeper understanding is relevant to both the EMERGO
player environment and comparable player environments for SGs.

We will now first give background information on the concept and definition of usability
(in the ‘Usability’ section). In the ‘EMERGO’ section we then present EMERGO, its player
environment and the available platform components under study. In the ‘Method’ sec-
tion we explain the methods for data collection and analysis we applied to arrive at our
results and findings, including practical guidelines for player environments for SGs (in
the ‘Results and findings’ section). Finally, in the ‘Conclusions and discussion’ section,
we present our main conclusions to be drawn from this study.

2 Usability

Although usability is a very important quality factor of a software system, no single
definition of usability exists which takes into account all of its possible aspects (Dubey &
Rana, 2010). Nielsen (1994), for instance, defined usability by its quality of five compo-
nents: learnability (for novice users); efficiency (amount of time to accomplish task);
memorability (for frequent users); errors (number, severity, recoverability); and satis-
faction (pleasantness). ISO/IEC (2011) on the other hand, defined usability as the degree
to which a product or system can be used by specified users to achieve specified goals
with effectiveness, efficiency, and satisfaction in a specified context of use. A more
recent concept is “user experience” which involves the effects of usability factors, use-
fulness factors (how useful is a tool for a task), and emotional impact (Hartson & Pyla,
2012).

Apart from a lack of a single usability definition, there is also no single method to meas-
ure it. The most widely used standardized usability questionnaires are the QUIS (Chin et
al., 1988), the SUMI (Kirakowski, 1996), the PSSUQ (Lewis, 1995, 2002) and the SUS
(System Usability Scale; Brooke, 1996, 2013; Sauro, 2011). The SUS consists of 10 items,
has a global reliability of 0.92 and is probably most widely used (Lewis, 2014). It produc-
es one usability score, allows for interpretation of its data in a normative way, and
seems to tolerate minor changes to its wording (Lewis, 2014) and translations into other
languages (Sauro, 2011). A disadvantage of these questionnaires is that they either
produce a general score (SUS) or scores on general usability aspects (QUIS, SUMI and
PSSUQ), which makes them less appropriate to identify more specific interface related
usability issues.

Evaluating the usability of player environments for serious games

119

Usability is a decisive success factor for video games, which is illustrated by the large
volume of studies on the usability and playability of games. The concept of “playability”
is broader than that of usability and is defined as “the degree to which a game is fun to
play and is usable, with an emphasis on the interaction style and plot-quality of the
game; the quality of gameplay” (Usability-First, 2017). Playability may be affected by the
quality of the storyline, the degree of responsiveness, the intensity of interaction, pace,
control, intricacy, customizability, realism, social and team support, and the quality of
graphics and sound. Federoff (2002) compiled a list of game usability heuristics that can
be used for video game creation and evaluation, and classified them into three areas:
game interface, game mechanics (fostering game rules and interactivity), and gameplay
(problems and challenges a player must face). The game interface and game mechanics
areas cover usability aspects like interface consistency, while the gameplay issues cover
more typical playability aspects like a variable difficulty level.

For SGs the same usability and playability aspects play a role as for video games. How-
ever, because their main purpose is learning (Franzwa et al., 2014), aspects that support
learning obviously need more attention. According to Ibrahim et al. (2012), SGs aim to
motivate learners, give them appropriate feedback, improve their skills at the right
level, and improve collaboration within groups. The author compiled a list of playability
guidelines to evaluate and enhance the playability of SGs, which mainly fall into Feder-
off’s gameplay area (2002) and cover all SG aspects, e.g., game challenge (like “not too
difficult” or “easy”); feedback (e.g., to understand why one has failed); adaptation (e.g.,
to the individual pace of the player); and game control (e.g., a player should be in con-
trol). According to Hamari et al. (2016), both engagement and challenge in game-based
learning have a positive effect on learning.

Player environment for SGs will be partly responsible for the usability and playability of
developed games. Game usability will mainly depend on the usability of the environ-
ment’s different components. However, game playability will mainly depend on the
quality of the game itself, e.g., the quality of the storyline, feedback, graphics and
sound, which cannot be influenced by player environments. However, player environ-
ments should support playability aspects like responsiveness and intensity of interaction
and should enable to play games that conform to playability guidelines.

As the playability of player environments for SGs mainly depends on the quality of
played games, in this study we will focus on their usability. Not many authors have eval-
uated the usability of player environments for SGs. Gaeta et al. (2014) evaluated the
usability of a Storytelling Complex Learning Object and found the mean SUS score to be
64.13 which corresponds to a user-friendliness between “ok” and “good” (Bangor, Kor-
tum, & Miller 2008).

Since the EMERGO player environment is software and the quality of the software may
influence perceived usability, we will use ISO/IEC 25010:2011 (ISO/IEC, 2011) as the

Chapter 5

120

theoretical framework by which we will explain our findings. Its product quality model is
composed of eight software quality characteristics (s1-s8) of which usability (s1) is one.
The seven other characteristics are functionality (s2), reliability (s3), performance effi-
ciency (s4), compatibility (s5), security (s6), maintainability (s7) and portability (s8).
Perceived usability may be influenced by the player environment’s functionality, reliabil-
ity or performance efficiency, but probably not by its compatibility, security, maintaina-
bility and portability because these characteristics are only relevant for its developers
but not for its users. ISO/IEC 25010:2011 subdivides usability into six aspects (u1-u6):
understandability (u1), learnability (u2), operability (u3), user error protection (u4), user
interface aesthetics (u5) and accessibility (u6). (For better readability we have replaced
characteristic ‘functional suitability’ with functionality and ‘appropriateness recogniza-
bility’ with understandability).

3 EMERGO

We developed the web-based EMERGO platform (Nadolski et al., 2008) to support the
development and delivery of so called scenario-based SGs where learners are confront-
ed with realistic, ill-defined problems that often allow for multiple solutions and require
the application of methodologies or tools and collaboration to get solved (Westera,
Nadolski, Hummel, & Wopereis, 2008). The platform offers 22 generic components that
support different (didactical) functions that may be needed in scenario-based SGs. It
also offers a player environment to play games, an authoring environment to develop
games (Slootmaker, Hummel, & Koper, 2017) and environments to monitor students
and manage users and game runs. EMERGO has been used to develop 24 games for all
kinds of professional and academic fields, and supports the acquisition of four out of
five kinds of learning objectives categories as defined by Gagné (1985): intellectual
skills, cognitive strategies, verbal information, and attitudes. Motor skills are not sup-
ported. The platform is Open source and is available on SourceForge (EMERGO, 2013).

EMERGO games are usually developed by a multidisciplinary team consisting of content
matter experts, educational technologists, interaction designers and ICT (Information
and Communication Technology) developers. When needed a team is reinforced with
other specialists (e.g., for video production). After agreeing on a global description of
the game, the team writes the game scenario in three steps, where each step adds
more detail. In the end, the scenario describes the tasks to be executed and in what
order. Per task it describes which PCs (Playing Characters) and NPCs (Non-Playing Char-
acters) are involved, which resources and tooling are needed, when the task is complet-
ed, how this is assessed and which feedback is given in what form and by whom. The
authoring environment is used to convert the scenario and materials into game content
and script that can be previewed and tested in the player environment.

Evaluating the usability of player environments for serious games

121

In the following subsections, we will describe the playing of EMERGO games, the
EMERGO player environment and its generic components.

3.1 Playing EMERGO games

In a typical EMERGO game a student enters an authentic environment where he works
on professional tasks as a trainee / junior employee. Figures 5.1 and 5.2 give an impres-
sion of such a game, in fact one of the two games used in this study. After being wel-
comed (see Figure 5.1a) the student can navigate to different locations (see Figure 5.1b)
to find NPCs like his supervisor, colleagues or experts, or can attend interviews or meet-
ings (see Figure 5.2a). In the environment he has a tablet (see Figure 5.2b) with apps,
e.g., a task overview, a resources app, an (in-game) email app or an app to conduct
tests. He also has a memo recorder to record interesting parts of interviews and meet-
ings, and a notepad to make contextualized notes. On his tablet he has a memo player
app to play his memo recordings and a logbook app to inspect his notes.

The student gets tasks from his supervisor or other NPCs and can send in his outcomes
by email, either to NPCs or to PCs (fellow students or teachers). He can be assessed on
every action he performs (e.g., which interviews he attends) or by using tests. Depend-
ing on actions or progress, the game script may adapt the environment on a micro level
(e.g., by (un)locking locations or releasing new resources) or on macro level (e.g., by
introducing new tasks). The student may get feedback on his performance by NPCs or in
tests. This feedback can incorporate mail attachments or release of resources. If a
teacher has a PC role, he can give students feedback within the game; otherwise he can
give feedback by impersonating an NPC. The student gets navigation support through
alerts (e.g., instructions where to go next).

Chapter 5

122

Figure 5.1. Impression of a typical EMERGO game. From top to bottom we see a. an introduction video, and b.
a hallway to navigate to different locations

Evaluating the usability of player environments for serious games

123

Figure 5.2. Impression of a typical EMERGO game. From top to bottom we see a. an interview with a supervi-
sor using video, and b. a tablet with apps that are needed to during the game

Chapter 5

124

3.2 The EMERGO player environment

One of our main goals was to develop an intuitive, immersive and reliable player envi-
ronment that will be adapted according to actions and progress of a student. The envi-
ronment should support multiple game roles, should offer a set of generic, reusable and
adaptable components, and should save all student actions, for game script to operate
on, and for evaluation and research purposes. The environment should enable ICT de-
velopers to rather easily add new components, by applying a generic component tem-
plate. The current environment also supports the use of skins and plugins. Skins make it
possible to offer external parties their own look and feel, and plugins enable ICT devel-
opers to add specific functionality only needed once, e.g., for experiments.

The player environment and its components support most heuristics and guidelines
compiled by Federoff (2002) and Ibrahim et al. (2012). However, adding user-generated
content is only possible in a few components, reversal of actions is not supported, and
games are only re-playable with help of an administrator.

Table 5.1: Player environment components and their possible functions

Component Description Functions
1. Navigation Enable spatial navigation through the game E
2. Conversations Enable communication with NPCs using video or text ETKF
3. Notepad Enable making contextualized notes EP
4. Memo recorder Enable recording of conversations EP
5. Alerts Provide popup texts EFN
6. Notifications Provide (accumulated) embedded texts EFN
7. Scores Provide score overview EF
8. Profile Enable sharing profile with PCs EC
9. Chat Enable communication with PCs EC
10. Tablet Enable selecting apps E
11. Tasks Provide task (completion) overview. App ET
12. Resources Enable consulting resources. App EKF
13. Email Enable communication with NPCs and between PCs. App ETKFC
14. Assessments Enable conducting tests. App EAF
15. Logbook Provide overview of notes. App EP
16. Memo player Enable playing back of recordings. App EP
17. Google maps Enable inspecting maps with markers. App EK
18. Directing Enable analyzing communication between NPCs. App EP
19. Game manual Provide help on game interface. App EN
20. Items Contains questions to be used by the Assessments component EAF
21. States Contains states to be used by the Script or Scores component A
22. Script Contains rules to assess the learner and adapt the game on micro

and macro level
ETKAFPCN

Table 5.1 shows all available player environment components, their description and
which different (didactical) functions they support. The eight functions that may be
present in scenario-based SGs are: present and adapt the environment (E); assign tasks

Evaluating the usability of player environments for serious games

125

and provide task overview (T); present knowledge (K); assess learner (A); provide feed-
back (F); support processing of information (P); support collaboration (C); and support
navigation (N). One component may serve several functions and one function may in-
volve several components. For instance, the conversations component can be used to
assign a task or to give feedback. And giving feedback involves the script component to
determine the correct feedback and the conversations component to give it.

Within the player environment the navigation component (number 1 in Table 5.1) ren-
ders the different locations and background objects, and enables navigation by clickable
interface elements (e.g., doors). The conversations to tablet components (numbers 2 to
10) are presented on top of a location and may be present on all locations or specific
ones. The tablet is opened on top of conversations and is used to present the tasks to
game manual tablet apps (numbers 11 to 19). The items to script components (numbers
20 to 22) are no recognizable entities in the player environment and are either used by
another component or to adapt the environment. Most components allow for having
multiple instantiations in the player environment, which enables thematically arranging
game content (e.g., one conversations component per interviewee). Components may
be allocated to specific game roles, which allows for a different environment per game
role.

The operation of all components is expected to be rather easy. The component inter-
faces do not present complex concepts, structures or dynamics (Murray, 2004), so we
do not expect to find related problems. However, how the (didactical) functions are
translated into usable interfaces may leave room for improvement, which is the motive
for our usability evaluation.

4 Method

For the summative evaluation of the usability of the EMERGO player environment we
used two games on IT administration (in Dutch) that were developed in 2014 by the
Dutch Foundation for Practice-based Learning in the context of the SLEM project (SLEM,
2017). In both games, students have to develop an information system, going through
five generally accepted phases for solving IT-problems (including needs analysis, writing
a functional design, writing a technical design, making a test plan, and reporting). In the
second game the system to be developed is more complex and the learner support
provided is less substantive than in the first game. Both games are typical examples of
EMERGO games (see section ‘Playing EMERGO games’), have quite similar game scenar-
ios, have the same look and feel, offer the same interaction style and use the same 16
out of 22 available player environment components: the navigation, conversations,
notepad, memo recorder, alerts, tablet, tasks, resources, email, assessments, logbook,
memo player, game manual, items, states and script component.

Chapter 5

126

4.1 Participants

One hundred and sixty seven students in IT administration from four Dutch Regional
Centers for Secondary Vocational Education participated in this research. These stu-
dents (two female and 165 male; mean age 19.3 years) were all in their second year of
study and individually played either game 1 or game 2. Game 1 was not yet embedded
in the curriculum and was tested by 86 students from two participating schools, while
game 2 was pilot-tested in regular education by 81 students from all four participating
schools. Due to not or not seriously filled-in questionnaires, we could use only data of
120 students for our quantitative data analysis, 56 for game 1 and 64 for game 2. How-
ever, for our qualitative data analysis we could use data of all students. The survey was
conducted in the fall of 2014 and the first half of 2015.

4.2 Data collection

Students participated in the evaluation while sitting in a classroom (with maximally 30
students) in the presence of researchers, partly authors of this article, and their teacher.
We used the same data collection process and instruments (in Dutch) for both games.
To get a more complete and detailed picture, we opted for a mixed method of quantita-
tive and qualitative methods to collect both more objective and more subjective usabil-
ity data. We used a pre-questionnaire just before a game session, individual note taking
during the game session, a post-questionnaire just after the game session and a group
discussion afterwards. In advance, a researcher gave an oral instruction about the eval-
uation process. During the game session the researchers and teacher were available in
case of questions or problems. The group discussion with students was led by research-
ers following the same procedure for each class.

For the quantitative part we used questionnaires. The pre-questionnaire included a
question to determine student’s age and three MC (Multiple Choice) questions (inter-
val, 10-point scale) to determine the level of prior ICT skills, entertainment game skills
and SGs skills, in order to find out whether the level of these skills would affect the
experienced usability, see Table 5.4. The post-questionnaire included: 10 standard MC
questions to determine the SUS mean score, see Figure 5.3; five general usability relat-
ed MC questions, see Table 5.2; and 11 component specific MC questions, see Table
5.3. All these MC questions used an ordinal 5-point Likert scale ranging from “strongly
disagree” to “strongly agree”. The post-questionnaire also included a MC question to
determine the final grade (interval, 10-point scale) for the operation of the player envi-
ronment, see Figure 5.4. Afterwards we determined students’ play time (mean value 13
hours and 58 minutes) from the logging and received given grades for students’ needs
analysis reports from the participating teachers (only for game 2).

For the qualitative part we used individual note taking, open questions in the post-
questionnaire and a group discussion. Our goal was to collect points of improvement

Evaluating the usability of player environments for serious games

127

(tips) and points of satisfaction (tops), regarding both operation of the player environ-
ment and provided game content. During the game sessions, students were asked to
write down these tips and tops. Based on oral students’ comments, present researchers
also kept a record of tips and tops. In addition, the post-questionnaire included open
questions to collect tips and tops. During the group discussion with students research-
ers also collected tips and tops.

4.3 Data analysis

For the quantitative analysis we used data of 120 students out of the original 167. We
could identify not seriously filled in post-questionnaires because students choose the
same answer for all SUS questions while answers are expected to fluctuate because of
the questions’ alternating positive or negative tone. We could use the data of 56 stu-
dents that played game 1 (non-response 35%) and 64 students that played game 2
(non-response 21%). Next we calculated the mean SUS scores (Sauro, 2011), and ana-
lyzed all data using SPSS (Statistical Package for the Social Sciences).

For the qualitative data analysis we used data of all 167 students, whether they com-
pleted the game or not. Of the 637 tips and tops collected during and after the game
sessions, 277 tips and tops were unclear or related to game content, which is beyond
the scope of this publication. The remaining 198 tips and 162 tops related to operation
of the player environment did, although different in wording, partly address the same
topics. We identified these similar tips and tops and their frequency and related them
to usability aspects or other ISO/IEC software quality characteristics and to either the
usability in general or to specific component usability.

5 Results and findings

We now present the quantitative and qualitative findings related to our original evalua-
tion goal which was to evaluate the usability of the EMERGO player environment. Re-
sults and findings are presented for both evaluated games together. We end with prac-
tical guidelines to improve the usability of player environments for SGs.

5.1 Quantitative results

For game 1 one-way ANOVA analysis demonstrates no significant effect of participating
school on the SUS mean scores (F(1,54) = 0.239, p = 0.627, ɳ2

p = 0.004). However, for
game 2 one-way ANOVA analysis demonstrates a significant and large effect of partici-
pating school (F(3,60) = 9.304, p = 0.000, ɳ2

p = 0.318). This appears to be caused by one
school where students’ (n = 14) mean ratings are lowest for all SUS items except one. If
we leave out this school, one-way ANOVA analysis demonstrates no significant effect of
participating school (F(2,47) = 0.335, p = 0.717, ɳ2

p = 0.014) for game 2. Analysis of stu-
dents’ qualitative remarks provides possible explanations why students of this one

Chapter 5

128

school rated lower : (i) they complained about a mismatch between game and curricu-
lum, (ii) they knew less what they were up to, (iii) they had less time, and (iv) they com-
plained more about inadequate game preparation and technical problems. For the two
schools involved in the evaluation of both game 1 and 2, one way ANOVA analysis
demonstrates no significant effect of game on the SUS mean scores (F(1,81) = 2.496, p =
0.118, ɳ2

p = 0.030), so we present our results for both evaluated games together.

Figure 5.3 shows students’ SUS mean score to be 57.85, which is below the mean score
of 68.05 for web pages and applications as determined by Bangor, Kortum, and Miller
(2008) and corresponds to a user-friendliness between “ok” (52.01) and “good” (72.75).
The 10 SUS items have a Cronbach’s alpha of 0.76, so demonstrate an acceptable inter-
nal reliability (Sauro, 2011). The Shapiro-Wilk test (W = 0.973, p = 0.016) demonstrates
that the SUS mean score is not normally distributed. However, for games 1 and 2 sepa-
rately it is normally distributed, W = 0.963, p = 0.079 and W = 0.967, p = 0.088, respec-
tively.

Figure 5.3. Frequency distribution for SUS scores

Evaluating the usability of player environments for serious games

129

Table 5.2 shows the results for the five general usability related questions. All mean
values are within 3 (“neutral”) and 4 (“agree”). Students seem to be relatively positive
about the clearness of the used space metaphor and are relatively negative about the
clearness of operating instructions and about having sufficient control.

Table 5.2: General usability questions (n = 120)

Question M SD
1. The space metaphor as a basis for the design of the game is clear 3.99 0.96
2. I find the operating instructions in the game clear 3.47 0.96
3. I could start and shut down the game without any problems 3.77 1.23
4. I think I have sufficient control within the game 3.34 1.07
5. I always know where I am in the game 3.67 0.97
Mean 3.65 0.71

Table 5.3 shows the results for the 11 component specific questions. All mean values
are within 3 (“neutral”) and 4 (“agree”). Students seem to be relatively negative about
the memo recorder component and relatively positive about the tablet component.
Note that no questions were asked about the notepad and logbook component.

Table 5.3: Component specific usability questions (n = 120)

Question Component M SD
1. How I had to navigate within the game was clear Navigation 3.68 0.99
2. How I had to conduct conversations and interviews within the game
was clear

Conversations 3.68 1.11

3. How to record conversations and interviews was clear Memo recorder 3.28 1.19
4. The operation of popup notifications was clear Alerts 3.57 1.00
5. How to use the tablet was clear Tablet 3.86 0.96
6. How to use the task overview was clear Tasks 3.63 1.09
7. How to use the resources was clear Resources 3.68 1.02
8. How to use the email was clear Email 3.82 1.00
9. How I had to use the assessments was clear Assessments 3.57 1.16
10. How I could play back conversations and interviews was clear Memo player 3.71 1.09
11. How to use the game manual was clear Game manual 3.60 1.02
Mean 3.64 0.73

Chapter 5

130

The final grade for operation of the player environment is 6.22, see Figure 5.4. In the
Dutch language area a grade of 6 corresponds to “sufficient”. The Shapiro-Wilk test (W
= 0.927, p = 0.000) demonstrates that the final grades for operation are not normally
distributed, also not for games 1 and 2 separately, W = 0.902, p = 0.000 and W = 0.941,
p = 0.004, respectively.

Figure 5.4. Frequency distribution for final grades for operation of the player environment

We found no indication that students’ prior skills affected the experienced usability.
Table 5.4 shows that Pearson correlation coefficients are not (r <= 0.1, eight cases) or
weakly significant (0.1 < r <= 0.3, four cases). We also found no indication that students’
age or play time, or grade for needs analysis report (only for game 2) affected the expe-
rienced usability. Pearson correlation coefficients are not (r <= 0.1, eight cases) or weak-
ly significant (0.1 < r <= 0.3, four cases).

Evaluating the usability of player environments for serious games

131

Table 5.4: Pearson correlation coefficients between students’ attributes and usability data
Student attribute Usability data Magnitude (r)
Prior skills

ICT skills Mean SUS scores 0.055
 Mean general usability 0.014
 Mean component specific usability 0.138
 Final grade for game operation -0.042
Entertainment game skills Mean SUS scores -0.015
 Mean general usability 0.062
 Mean component specific usability 0.087
 Final grade for game operation -0.014
SGs skills Mean SUS scores 0.111
 Mean general usability 0.139
 Mean component specific usability 0.205
 Final grade for game operation -0.015

Age Mean SUS scores -0.015
 Mean general usability -0.062
 Mean component specific usability -0.063
 Final grade for game operation -0.063
Play time Mean SUS scores 0.081
 Mean general usability 0.236
 Mean component specific usability 0.181
 Final grade for game operation 0.207
Grade for needs analysis Mean SUS scores 0.166
 Mean general usability -0.041
 Mean component specific usability 0.073
 Final grade for game operation 0.057

5.2 Qualitative findings

In general, students have strong opinions and extreme positions (i.e., they can be either
very positive or very negative).

Regarding general usability, understandability (u1) is somewhat problematic because
some students miss operating instructions (11 tips) although others find the game envi-
ronment to be very clear (four tops). Operability (u3) is predominantly valued (80 tops,
“Game operation is easy”), but some students miss feedback on download status and
errors, or sounds when clicking or in case of alerts (11 tips). User interface aesthetics
(u5) is somewhat problematic because some students expect a more realistic and dy-
namic, and less structured environment where they can walk around in 3D instead of
clicking on doors and can communicate through talking instead of choosing predefined
questions (16 tips), although others find the game environment to be beautifully made,
the layout good and the interface nice (nine tops). Functionality (s2) is somewhat prob-
lematic because some students find the alerts during interviews to be disturbing and
miss a timeline and scoring to indicate their progress (five tips). Reliability (s3) is pre-
dominantly valued (eight tops, “It works fine and as expected”), but some students miss
better browser support (three tips). Performance efficiency (s4) is problematic (72 tips,

Chapter 5

132

“Slow page loading and game operation, problems while playing video files and pro-
gress being not or incorrectly saved”), which was mainly caused by slow wireless inter-
net connections in some schools. We could not relate tips or tops to usability aspects
learnability (u2), user error protection (u4) or accessibility (u6), or to other software
quality characteristics.

Regarding component usability, the navigation’s operability (u3) is predominantly val-
ued (15 tops, “It is clear and easy”), although some students found horizontally scrolling
to be unhandy (three tips). The conversations’ operability is predominantly valued (18
tops, “The intuitive way you ask questions is good”), although a number of students
miss video controls (15 tips), which, however, are left out deliberately for more realism.
Its user error protection (u5) is somewhat problematic, because leaving a location will
end a conversation without any warning (nine tips). Its functionality (s2) is also some-
what problematic, because predefined questions may not cover all questions one would
like to ask (one tip). The notepad’s operability is somewhat problematic, because it
cannot be dragged (nine tips). Its functionality is also somewhat problematic, because
students see no advantage in making context specific notes (13 tips), although others
find it very handy (six tops). The memo recorder’s functionality is valued (three tops, “It
is very handy”). The tablet’s operability is valued (three tops, “It is easy and clear”) and
its functionality is also valued (four tops, “It works fine”). The tasks’ functionality is val-
ued (eight tops, “It is important, necessary and handy”). The resources’ functionality is
somewhat problematic, because clicking a link sometimes resulted in two file down-
loads (nine tips). The email’s operability is valued (four tops, “It is easy”). Its reliability
(s3) is somewhat problematic, because the input control for mail text was not always
rendered in all browsers (seven tips). Its functionality is also somewhat problematic,
because feedback on a sent mail is not substantive (two tips). The assessments’ opera-
bility is somewhat problematic, because some students find finishing of an assessment
to be cumbersome (six tips). The logbook’s functionality is somewhat problematic, be-
cause some students find the presentation of notes to be unclear (four tips). The memo
player’s functionality is also somewhat problematic, because some students miss the
original background (two tips). We could not relate tips or tops to the alerts and game
manual, to usability aspects understandability (u1), learnability (u2), user interface
aesthetics (u5) and accessibility (u6), or to other software quality characteristics.

5.3 Usability guidelines for player environments for serious games

We present guidelines for player environments for serious games that are based on tips
given by students. As our intention was to evaluate the usability of the player environ-
ment we had to filter out game usability issues. For instance, students’ expectation of a
more realistic and dynamic environment where one is more in control is related to both
environment (more video game interface alike) and game (more in control). And expe-

Evaluating the usability of player environments for serious games

133

rienced inadequate instruction may be related to the environment (operation of the
components) or game (navigation and learning support).
Guidelines to improve understandability:
• Match the interface of the environment to the expectations of its intended users as

much as possible
• Offer a timeline to show user’s progress in time and learning
• Use scoring to encourage the user to perform better
• Let users formulate their own questions using text or speech analysis
• Use text analysis of reports to be able to give substantive feedback
• Present operating instructions at the right time
• Use sounds to support interaction between user and environment
• Always present clear messages in case of errors or time-consuming processes.
Applying the first guideline may not always be possible because a player environment is
set up using some kind of metaphor and therefore cannot be expected to serve all kind
of games and all kind of users (e.g., young and old), apart from the costs that would be
involved.

6 Conclusions and discussion

Our research goal was to evaluate the usability of the EMERGO player environment for
scenario-based serious games in detail and to establish guidelines to improve the usabil-
ity of player environments for SGs. To accomplish this goal, we evaluated the experi-
enced usability of the environment for two games about IT administration. Although
both games used only 16 environment components out of 22 two available (73%), we
think that our findings are representative for the usability of the player environment as
a whole. First, the games are typical examples of EMERGO games, meaning components
involved have been used in games most often. Second, the remaining not-used compo-
nents have comparable interfaces, input controls, and complexities as the used ones.

Students find the general usability of the player environment to be between “ok” and
“good”. The mean SUS score is 57.85, which is lower than the mean overall score of
68.05 for web pages and applications, (Bangor, Kortum, & Miller, 2008), and the mean
given grade for operation of the environment is 6.23, which corresponds to “sufficient”.
However, in their remarks students are predominantly positive about the environment’s
operability. Students are relatively negative about its understandability and user inter-
face aesthetics. They miss operating instructions and would like to operate in a more
realistic and dynamic and less structured environment where they are more in control.
In addition, its functionality is somewhat problematic and its reliability is predominantly
valued. Students find the understandability of all components to be “sufficient” alt-
hough they are relatively negative about the memo recorder component and relatively
positive about the tablet component. Components’ operability is predominantly valued,
but functionality and reliability are somewhat problematic for some components. We

Chapter 5

134

can identify two possible limitations of our findings. First, our findings do not include all
usability aspects and software quality characteristics. However, we think this is not due
to our evaluation method but to the fact that students did not mention related remarks,
either because they had no problems with it or it was not relevant in their context of
use, e.g., they made no remarks on usability aspect ‘learnability’. Second, certain quali-
tative remarks may be overvalued, because students could express same remarks on
different occasions.

The found usability is lower than found in earlier superficial evaluations of the player
environment (Nadolski et al., 2008; Slootmaker, Kurvers, Hummel, & Koper, 2014). The
cause of the lower usability might be that, just as Lewis (2014) stated, usability rather is
an emergent property that depends on interactions among users, products, tasks and
environments. Because of their age (mean age 19.3 years), students involved probably
were more used to playing video games, which may be the reason why they expected a
more realistic and dynamic player environment where they are more in control. How-
ever, the game scenarios were linear with tasks in a fixed order and missed scoring,
levelling or unexpected events. The tasks may have been less challenging or enjoyable,
because they had expected outcomes or contained little fun. The games used in the
evaluation were used for the first time so possibly had imperfections in playability and
were not yet (fully) embedded in regular education, which possibly resulted in inade-
quate game preparation and students missing instruction during a game session.

We presented usability guidelines for player environments for serious games. Some
guidelines, e.g., the use of scoring, correspond with heuristics and guidelines compiled
by Federoff (2002) and Ibrahim et al. (2012). Some guidelines seem to be so general
that they may also be applicable to other types of player environments.

As a follow-up of this evaluation we plan to re-design the EMERGO player environment
according to our findings and to evaluate its usability again in a future study, where we
will also involve teachers and admins who are responsible for the embedding of games
in education. The results of this evaluation could provide insight on the impact of specif-
ic design ideas and implementations on the improvement (or not) of the usability of
such a system.

Since the time of study we have extended the player environment with eight new com-
ponents to, e.g., show user’s progress in time and learning and support webcam record-
ings as a reaction on a shown video, categorization of text or video fragments and forms
with different types of input controls. In the near future there might be a need for a
mobile or more flexible player environment skin (e.g., in screen, input element and font
size) or better accessibility support for people with disabilities.

Evaluating the usability of player environments for serious games

135

Acknowledgements

We thank the Dutch Foundation for Practice-based Learning for collaborating in the
development and evaluation of the games, and Wim Westera and Henk van den Brink
of the Open University of the Netherlands for project management and writing of the
game scenarios, respectively. We also would like to thank all students and teachers of
the four Dutch Regional Centers for Secondary Vocational Education that participated in
this study. This publication has been produced in the context of the SLEM project
(SLEM, 2017) which has received funding from the Dutch NRO under grant agreement
No. 405-14-504.

137

Chapter 6
General discussion

Chapter 6
General discussion

General discussion

139

1 Introduction

In this thesis we presented the design and evaluation of the EMERGO platform that was
developed in the context of online higher education in the Netherlands. The platform
aims to enable online universities to efficiently develop and deploy scenario-based
serious games for complex cognitive skills acquisition. Serious games are powerful
means to provide learning in a more motivating and effective way and their application
is still growing. If applied successfully, serious games may increase learners’ motivation
and may have a positive effect on learning, thereby increasing the effectiveness of edu-
cation.
The platform provides environments for all stakeholders involved in scenario-based
serious games development, namely teachers, students, administrators and ICT devel-
opers. Main requirements for the platform were to offer a set of reusable and adapta-
ble components that cover most functionalities needed in scenario-based serious
games, to provide a user-friendly authoring environment for teachers and an intuitive
and immersive player environment for students. These requirements have been opera-
tionalized in the general design question of this thesis:

How to design and develop a generic platform for fast and flexible development
and delivery of a wide variety of scenario-based serious games that enable com-
plex cognitive skills acquisition?

Evaluations of teachers using the authoring environment showed that two components
were difficult to use and, for one of them, that some teachers had trouble to author
game script independently. This made us question how we could improve the usability
of the authoring environment and if our findings would be similar to findings for compa-
rable environments. These considerations have been operationalized in the first addi-
tional design question:

1. How to improve the usability of authoring environments for serious games?

Evaluations of the player environment showed that students were satisfied to very
satisfied about its user interface. However, we did not evaluate the user interface in
detail, were curious if students were still satisfied and if our findings would be general-
izable to comparable environments. These considerations have been operationalized in
the second additional design question:

2. How to improve the usability of player environments for serious games?

In section 2 we summarize our answers to the design questions given in chapters 2 to 5
and draw main conclusions. In section 3 we present recent and future development and
research. In section 4 we discuss the significance of the platform.

Chapter 6

140

2 Review of results and conclusions

2.1 The general design question

In chapter 2 and 3 we answered the general design question, namely how to design and
develop a generic platform that enables fast and flexible development and delivery of a
wide variety of scenario-based serious games that enable complex cognitive skills acqui-
sition.
We described the main design steps that had to be taken before the platform could be
implemented, which included: (i) identify the intended users of the platform, (ii) set up
requirements for the intended users and the platform in general, (iii) choose an appro-
priate platform architecture and supporting technologies, (iv) identify needed platform
roles, (v) set up a domain model for the platform, (vi) identify an initial set of platform
components needed, (vii) set up a generic component design, and (viii) choose a meth-
od to implement game script authoring that requires no programming.

Evaluation showed that virtually all of the initial requirements for the platform were
met.

We managed to design and develop a generic, fast, flexible, reliable and sustainable
platform.

The platform is generic because it enables a broad variety of game scenarios to be au-
thored, to be played and to be monitored as is demonstrated by 26 games developed
for six content domains with study loads ranging from two to 30 hours. The platform
also integrates development and delivery tasks that require different types of platform
users in one system and can be used for both education and research purposes.

The platform is fast because teachers can use the authoring environment for the most
part independently, can draw on already developed components and can preview and
test a game in every stage of authoring. The result is more efficient development, as
indicated by a decrease in production time by a factor three to four as compared with
values found before. In addition, web-based delivery ensures fast and easy delivery of
games and of updates of games and the platform itself.

The platform is flexible because it allows for games having multiple authors and for
parts of game script to be switched on or off during game sessions. In case of bugs au-
thors can adjust already deployed games and teachers can interfere in a running game.
In case students have problems the platform allows administrators to fix these prob-
lems by changing students’ progress data. In addition, developed games and game
components can be easily distributed to other platform instances and the platform can
be rather easily extended with new components.

The platform’s reliability and sustainability are demonstrated by the fact that it has
been used for over 10 years to develop many new games used by thousands of students

General discussion

141

in total and that the first games developed are still used in education, and by the in-
crease of the number of platform components from initially 12 to 30 at the moment.
Extendibility is facilitated by (i) the generic component design, which serves as a tem-
plate for defining new platform components and their structure, properties, content
and interdependencies, (ii) the flat structure of the components where dependencies
are defined by relations rather than by a hierarchy and (iii) the platform’s multilayered
architecture that neatly separates different responsibilities and processes.

We did not fully manage to design and develop a user-friendly authoring environment.
Although teachers could author game content almost independently, some of them had
trouble to author game script independently. All teachers found two components, the
Script and Conversations components, difficult to use. We showed that all game con-
tent, including game script, is authored and validated using a single editor that uses a
component’s XML definition to render the component’s content and input elements to
manipulate it.

We managed to design and develop an intuitive immersive player environment as indi-
cated by students being satisfied to very satisfied about its user interface. We showed
that game script allows for adapting the environment to the individual student with
respect to guidance, presentation, navigation support, feedback, adaptive behaviour of
NPCs and task sequencing. Specific Java components are responsible for students’ pro-
gress management and for handling of events, which include student, timer, script and
peer events.

2.2 The first additional design question

In chapter 4 we answered the first additional design question, namely how to improve
the usability of authoring environments for serious games.

We conducted an in-depth qualitative study of the authoring environment by applying
semi-structured interviews, compared our findings on usability with those found for
comparable environments in literature and established guidelines to improve the usabil-
ity of authoring environments for serious games in general.

We found usability aspects understandability and learnability of the authoring environ-
ment to be problematic, which is in line with findings for comparable environments that
also show shortcomings with regard to these aspects, and found its operability to be
somewhat problematic. We found the environment’s functionality and reliability to be
valued and its use to be well integrated in the EMERGO method.

Problems with usability are caused by a lack of guidance and support, and by the inher-
ent complexity of the serious games domain and the environment’s components. Guid-
ance and support can be improved by adding them. However, inherent complexity,
which is determined by the number of abstract concepts, complex structures or dynam-

Chapter 6

142

ic structures that have to be understood, maintained or tested, may be hardly influ-
enced by usability improvements. Based on the work of Murray (2004, 2016) we esti-
mated that most EMERGO components have a low complexity, five have a medium
complexity and one, the Script component, has a high complexity.

The amount and form of needed guidance and support will depend on the complexity
capacity of the user, e.g., in general teachers have a lower complexity capacity than ICT
developers who are used to design and debug structural and procedural models. A
related aspect is the abstraction level of the environment as a whole and of its various
components. It is an indication of the extent to which authors work with constructs that
are more high level, such as tasks or characters, or more low level, such as program-
ming instructions (Dörner, Göbel, Effelsberg, & Wiemeyer, 2016). The abstraction level
of the EMERGO authoring environment is quite low (although it presents many abstract
concepts). The composition and cooperation of components and entering content are
quite low level and entering game script is close to programming. The quite low abstrac-
tion level of the environment is both a strength and a weakness. It makes the environ-
ment more flexible on the one hand but on the other hand more difficult to compre-
hend, which may be one of the reasons why teachers found some components difficult
to use.

Based on remarks of respondents we established guidelines to improve the usability of
authoring environments for serious games with respect to understandability and
learnability.

To improve understandability we recommend to: (i) simplify authoring by offering an
intuitive user interface, which might be different for different kinds of authors, (ii) re-
duce complexity by offering two levels of input, basic for novices and advanced for
experts, (iii) offer examples of scenarios, games, and game components and how they
relate to each other, so authors better understand what to do, (iv) offer a preview op-
tion to preview entered content at any time, so authors better understand what they
are doing, and (v) use clear terminology fitting authors’ expectations.

To improve learnability we recommend to: (i) offer clear instruction and wizards to
guide authors during the authoring process, and (ii) offer information on didactics and
use of components, so novice authors can make a quick start.

Most guidelines seem obvious but can easily be neglected under time pressure or due
to other causes. Further, the guidelines seem to be so general that they may also be
applicable to other types of authoring environments.

2.3 The second additional design question

In chapter 5 we answered the second additional design question, namely how to im-
prove the usability of player environments for serious games.

General discussion

143

We conducted a mixed method study of the player environment, using quantitative and
qualitative methods to collect both more objective and more subjective and detailed
usability data, and established guidelines to improve the usability of player environ-
ments for serious games in general.

We found the usability of the player environment to be quite low. We found the mean
SUS (System Usability Scale) score of the environment to be 57.85, which is lower than
the mean score of 68.05 for web pages and applications as determined by Bangor, Kor-
tum, and Miller (2008), and corresponds to a usability between “ok” and “good”. The
mean given grade for operation of the environment is 6.23, which is rather low and
corresponds to “sufficient”. However, in their remarks students are predominantly
positive about the environment’s operability. Students are relatively negative about its
understandability and user interface aesthetics. They miss operating instructions and
would like to operate in a more realistic, more dynamic and less structured environ-
ment where they are more in control. In addition, the environment’s functionality is
somewhat problematic but its reliability is predominantly valued. Students find the
understandability of the various platform components “sufficient”. The operability of
the components is predominantly valued, but functionality and reliability of some com-
ponents is somewhat problematic.

The found low usability may be caused by students’ young age (mean age 19.3 years) in
comparison to earlier evaluations (see chapter 2), causing them to be more familiar
with playing video games, which may be the reason why they expected a more realistic
and dynamic player environment where they are more in control. Another cause might
be that the games used to evaluate the player environment were too restrictive or not
challenging, enjoyable or exciting enough. The games might also have had imperfec-
tions or have been introduced inadequately because they were tested with students for
the first time. So although the platform and its components make it possible to apply
almost all usability heuristics and playability guidelines compiled by Federoff (2002) and
Ibrahim et al. (2012) game developers may omit to do so.

Based on remarks of students we established guidelines to improve the usability of
player environments for serious games: (i) match the interface of the environment to
the expectations of its intended users as much as possible, (ii) offer a timeline to show
user’s progress in time and learning, (iii) use scoring to encourage the user to perform
better, (iv) let users formulate their own questions using text or speech analysis, (v) use
text analysis of reports to be able to give substantive feedback, (vi) present operating
instructions at the right time, (vii) use sounds to support interaction between user and
environment, and (viii) always present clear messages in case of errors or time-
consuming processes. Guidelines (iii) and (vii) correspond with heuristics and guidelines
compiled by Federoff (2002) and Ibrahim et al. (2012).

Chapter 6

144

2.4 Conclusions

We have demonstrated how to design and develop a generic platform for fast and flexi-
ble development and delivery of a wide variety of scenario-based serious games that
enable complex cognitive skills acquisition. More cost-efficient development makes it
possible to serve smaller target groups, which are often found in higher education, e.g.,
for a specific course in a specific content domain. Authoring of game script without
programming and the possibility to play and test games during development anytime
serve specific serious game development team members like educators and domain
experts. Adaptation to the individual student, game evaluation and research on learning
effects are served by extensive student logging.

We have demonstrated the needs for improving the usability of authoring environ-
ments for serious games and established guidelines to improve their understandability
and learnability. These guidelines can be used to improve the EMERGO authoring envi-
ronment that proved to be problematic with respect to understandability and learnabil-
ity. Despite this lower usability teachers were able to develop serious games and even
more efficient than before. However, authoring of game script proved to be too difficult
for some teachers and due to its inherent dynamic complexity probably could be better
done by a more technically skilled person.

We have demonstrated the needs for improving the usability of playing environments
for serious games and established guidelines to improve their usability. These guidelines
can be used to improve the EMERGO player environment that proved to have a lower
usability than found in previous evaluations. Despite this experienced lower usability
most students managed to successfully complete the games used in the evaluation.

3 Recent and future development and research

3.1 Recent development and research

Since the evaluation studies of the authoring and player environment we have im-
proved the platform by adding new platform components, extending the platform’s role
environments and integrating other tooling. A part of these improvements has been
triggered by the increasing demand to use the platform for research purposes.

The platform is extended with eight generally usable platform components.

Seven components are used in a serious game developed for an introductory course in
Psychology, where students become acquainted with four fields within Psychology. The
game is also used for educational research into various game conditions that vary in
activation level and richness of context. Students play 16 mini-games where they visit
12 professionals who work in one of these four fields and who ask them to perform
tasks. A so-called dashboard component shows a student’s experienced satisfaction and

General discussion

145

task difficulty, and monitored performance on eight different skills practiced within the
game. The other six components are used to perform tasks that are directly related to
the professional’s field of work and offer functions that allow for categorization of text
or video fragments and filling in forms with different types of input controls.

The so-called iSpot component is used within two courses about conversation skills and
allows students to practice these skills by making webcam recordings of their reactions
on shown videos, e.g., a patient having a problem. Fellow students or teachers playback
and asses these recordings and use the webcam to record their feedback. Students can
use these feedback recordings to improve their performance until they make final
webcam recordings that are used for examination. The iSpot component has also been
used to collect research data for the RAGE project (http://rageproject.eu/).

We improved the environments for a number of platform roles.

For the developer role the Script component now enables to create template scripts
where script conditions and actions do not relate to game content but to ids or patterns
of ids of game content that does not have to exist yet. The actual game content in-
volved in these template scripts is determined during a game session. This option allows
for creating generic game script that can be used in similar situations but with different
game content involved, this way decreasing redundancy of script.

The run manager role now has an option to initialize or adjust game content properties
within students’ progress before or during a run. This option allows for differentiating
runs of the same game, e.g., in case of experiments where different runs should meet
different experimental conditions, and for changing the player environment for all stu-
dents at the same time, e.g., to switch to a next level or task.

The tutor role now has an option to generate his own overviews of specific game con-
tent properties, e.g., to inspect specific students’ performance indicators or paths
through the game.

We did some work on integration of the platform with other tooling.

The platform now supports integrating questionnaires made in Google Forms and Lime-
Survey that can be used for data collection in research experiments. Game script is used
to start a questionnaire at the right moment and to check if it has been completed.

We integrated a RAGE Adaptation and Assessment component to automatically adapt
game difficulty to a student’s expertise (Van der Vegt, Nyamsuren, Kurvers, & Westera,
2018). By using this component game authors do not have to create game script any-
more to support this kind of adaptation.

The platform now uses a separate streaming server (Wowza Streaming Engine) for stor-
age and streaming of all video content including students’ webcam recordings.

Chapter 6

146

3.2 Future development and research

Apart from improving the usability of the platform’s authoring and player environments
based on the presented guidelines, this thesis opens various other possibilities for fu-
ture development and research. To meet the growing demand for the application of
serious games in online education, we now will explore options to improve the author-
ing and player environment and the platform in general.

To guide game developers through the design and authoring process we could develop
a scenario editor component. This component would act as a wizard and would lower
the threshold for serious game development by supporting instructional design and
authoring by making use of templates, graphical representations and visualisations.
Authoring is simplified because this component will function as an abstraction layer
above the other rather low level components and can be used to orchestrate them,
e.g., by combining adequate learning - with gaming mechanics. Such a scenario editor
component would allow for using the authoring environment in a more agile manner
and much earlier in the development process, even directly after game ideation so
without the necessity of writing a textual scenario beforehand. Adaptation techniques
applied for students playing serious games could be used to adapt the scenario editor to
the individual game developer. Another promising possibility could be that accumulated
student data would be used to improve design advice within the scenario editor.

To improve the usability of game script authoring we could implement a more graphical
or block-based interface like in MIT’s Scratch. However, it remains a challenge to facili-
tate keeping a good overview in case of a lot of game script. The authoring environment
already allows for distributing game script over multiple Script components but in case
of dozens of Script components, such as in a serious game for Psychology, keeping a
good overview is cumbersome.

A follow-up study could show whether these improvements indeed lead to a better
usability of the authoring environment.

To improve the player experience of the player environment we could add better sup-
port for using animations and apply responsive design, which guarantees a good render-
ing on multiple devices having different screen resolutions. To improve the under-
standability of the environment we could add an option to let the environment and all
of its visible components introduce themselves and their working on first encounter. To
better support students in acquiring knowledge we could add an option to get in con-
tact with NPCs, using various communication facilities. Within EMERGO games NPCs are
often played by domain experts that are interviewed about their work using predefined
questions. This option would enable students to ask other not foreseen questions that
possibly could be added in the interview later on. A follow-up study could show whether
these improvements indeed lead to a better usability of the player environment.

General discussion

147

We also could improve the efficiency of student support in case of problems. The cur-
rent email traffic regarding substantive, functional, or technical problems could be re-
placed by a non-intrusive option within the player environment that enables students to
report any problem on the exact spot where they experience it. This option could also
be used to suggest possible improvements. Using an overview of these problems and
improvements helpdesk personnel could jump right away to the correct spot in the
player environment to diagnose and fix a problem more quickly than before, and to
report the solution to a student on the same spot. Game evaluators could use the same
overview to inspect the context of a suggested improvement. This may lead to quicker
improvements of the player environment or delivered games.

To better support game evaluation we could add a general option to rate a task or level
right after completion, e.g., to measure enjoyment, complexity or needed study time.
We already applied this option in the serious game for Psychology but it certainly would
be useful for other games.

To better support ICT developers in extending the player environment with new com-
ponents we could offer interface building blocks based on macros or templates to
speed up the construction of a new component.

To improve the EMERGO platform in general we are considering adding an extra plat-
form role ‘researcher’ with its own working environment that can be used for educa-
tional research and game evaluation. In recent years the platform has been increasingly
used for research where researchers use an existing game or develop their own small
dedicated game for data collection. In both cases they require their own specific over-
views of combined student data. The current procedure is to assign the platform role
‘tutor’ to these researchers and to build a specific landing page for them showing the
desired student data. We have to investigate if the required functionality in these spe-
cific landing pages can be generalized to one working environment. We might integrate
the RAGE Gaming Analytics Suite component that is meant to gather and store specific
interaction data for real-time performance and progress monitoring, and evaluation. In
addition, researchers should also be able to harvest data arbitrarily from all available
logging data, which would require integrating an existing data mining tool that offers
data mining techniques such as cluster analysis, pattern recognition or outlier detec-
tion. Our experience during the development of the serious game for Psychology is that
researchers may also need high level (performance) indicators. These indicators require
some game specific pre-processing of student progress, e.g., certain competency levels
that are determined by a combination of student data that may have their own
weighting. For this purpose, we are considering adding a platform component to con-
struct, handle and store these game specific high level indicators.

We could improve integration of the platform with other game and e-learning plat-
forms, external web services and sensors.

Chapter 6

148

We could explore integration with Unity games. We have already experimented with
integrating the Unity Web Player where a Unity demo game was played embedded
within the platform and events sent to each other triggered each other’s adaptation. It
would be interesting to further explore this possibility, where the platform could func-
tion as an educational shell around a Unity game.

We could better support integration with institutional e-learning platforms. It should be
possible to retrieve students’ game progress data, e.g., scores, task completion rates or
times and task success rates, so this data can be shown in tutor overviews within the e-
learning platform.

We could explore integration with external web services for enriching the platform with
real-time data and sensors for better student support. We have already built web ser-
vices that support exchange of student data and that were used in an experiment to
trigger specific game support based on a student’s mood determined by webcam analy-
sis. It would be interesting to explore integrating other types of sensors and possibly
social network activity.

4 Significance of the platform

The platform allows for developing serious games in which the learner is in control,
learning is situated, authentic and may be based on a didactical model, and transfer of
learned skills to practice is supported. Learners’ skills may be improved by offering chal-
lenging, exciting and customized tasks, offering multiple perspectives, giving appropri-
ate immediate feedback, integrating assessment of learning and adapting the game to
the individual learner. These aspects can foster motivation and active engagement, and
this way can support the intended goals of a serious game. For higher education these
goals are increasingly related to the acquisition of complex professional and academic
skills. The platform enables to achieve these goals and thus to improve the effectiveness
of education.

Due to its technical platform independence and use of Open source frameworks online
universities can easily use the platform. Institutes may install their own platform in-
stance or various institutes may use one platform instance where multiple administra-
tors manage their own development and deployment environment. In both cases de-
velopers may exchange each other’s games and game components by exporting and
importing them.

Although the platform and its underlying architecture do not pose any obstacles to
wider use it is not widely used. Over the years the platform has been used for pro-
longed periods of time by three other Dutch institutes for online education. Various
other (inter)national institutes for education have come to know the platform of which
some have used it for educational material development. Causes of this limited use

General discussion

149

might be the difficulty in organizing cooperation between institutes, the ‘not invented
here’ syndrome, insufficient promotion or the still high costs of game development.

Future improvements in usability and possible new extensions like a scenario editor to
better support the design and authoring process, and a ‘researcher’ role to better sup-
port educational research and game evaluation, can promote wider use of the platform
and wider application of serious games. Other improvements may be realized by inte-
grating RAGE components that offer not yet supported functions. We might also up-
grade certain unique EMERGO components to RAGE components to improve awareness
of the platform.

The platform and its underlying ideas, architecture, evaluations and future development
as presented in this thesis, can be expected to contribute to new development and
research in the fields of serious games development, instructional design and online
education.

151

References
References

References

References

153

Abt, C. C. (1970). Serious games. New York, NY: Viking Press.
Aldrich, C. (2005). Learning by doing: the essential guide to simulations, computer games, and pedagogy e-

learning and other educational experiences. San Francisco, CA: John Wiley & Sons.
Alessi, S. M., & Trollip, S. R. (2001). Multimedia for learning: Methods and development. Needham, MA: Allyn

& Bacon.
Apache Tomcat (2017). Apache Tomcat. Retrieved November 14, 2017, from http://tomcat.apache.org/
Arnab S., Berta R., Earp J., De Freitas S., Popescu M., Romero M., Stanescu I., & Usart M. (2012). Framing the

adoption of serious games in formal education. Electronic Journal of e-Learning, 10(2), 159-171.
Backlund, P., & Hendrix, M. (2013). Educational games - Are they worth the effort? A literature survey of the

effectiveness of serious games. Proceedings of the 5th International Conference on Games and Virtual
Worlds for Serious Applications (VS-GAMES), 1-8. doi : 10.1109/VS-GAMES.2013.6624226

Bahreini, K., Nadolski, R. J., Qi, W., & Westera, W. (2012). FILTWAM - a Framework for Online Game-Based
Communication Skills Training - Using Webcams and Microphones for Enhancing Learner Support.
Proceedings of the 6th European Conference on Games Based Learning, 39-48.

Bangor, A., Kortum, P. T., & Miller, J. T. (2008). An Empirical Evaluation of the System Usability Scale. Interna-
tional Journal of Human–Computer Interaction, 24(6), 574-594. doi:10.1080/10447310802205776

Boyle, E. A., Hainey, T., Connolly, T. M., Gray, G., Earp, J., Ott, M., & Pereira, J. (2016). An update to the syste-
matic literature review of empirical evidence of the impacts and outcomes of computer games and se-
rious games. Computers & Education, 94, 178-192. doi:10.1016/j.compedu.2015.11.003

Brooke, J. (1996). System usability scale (SUS). Usability Evaluation in Industry. London, UK: Taylor and Francis.
Brooke, J. (2013). SUS: A Retrospective. Journal of Usability Studies, 8(2), 29-40.
Bryman, A. (2012). Social Research Methods, Fourth Edition. Oxford University Press.
Chin, J. P., Diehl, V. A., & Norman, K. L. (1988). Development of an instrument measuring user satisfaction of

the human-computer interface. Proceedings of the SIGCHI conference on Human factors in computing
systems, 213-218. Washington, DC: ACM. doi:10.1145/57167.57203

Clark, R. C., & Mayer, R.E. (2011). e-Learning and the Science of Instruction. New York, NY: Wiley-Blackwell.
doi:10.1002/9781118255971

Connolly, T. M., Boyle, E. A., MacArthur, E., Hainey, T., & Boyle, J. M. (2012). A systematic literature review of
empirical evidence on computer games and serious games. Computers & Education, 59(2), 661-686.
doi:10.1016/j.compedu.2012.03.004

Crookall, D. (2010). Serious Games, Debriefing, and Simulation/Gaming as a Discipline. Simulation & Gaming,
41(6), 898-920. doi:10.1177/1046878110390784

Cross, N. (2007). From a Design Science to a Design Discipline: Understanding Designerly Ways of Knowing
and Thinking. Design Research Now, 41-54. doi:10.1007/978-3-7643-8472-2_3

Dede, C. (2009). Immersive Interfaces for Engagement and Learning. Science, 323(5910), 66-69.
doi:10.1126/science.1167311

De Freitas, S., I. (2006). Using games and simulations for supporting learning. Learning, media and technology,
31(4), 343-358.

De Freitas, S., Rebolledo-Mendez, G., Liarokapis, F., Magoulas, G., & Poulovassilis, A. (2010). Learning as
immersive experiences: Using the four-dimensional framework for designing and evaluating immersive
learning experiences in a virtual world. British Journal of Educational Technology, 41(1), 69-85.
doi:10.1111/j.1467-8535.2009.01024.x

Djaouti, D., Alvarez, J., Jessel, J. P., & Rampnoux, O. (2011). Origins of Serious Games. In Serious Games and
Edutainment Applications (pp. 25-43). London, UK: Springer. doi:10.1007/978-1-4471-2161-9_3

Dörner, R., Göbel, S., Effelsberg, W. & Wiemeyer, J. (2016). Serious Games: Foundations, Concepts and Prac-
tice. Cham, Switzerland: Springer.

Dubey, S. K., & Rana, A. (2010). Analytical Roadmap to Usability Definitions and Decompositions. International
Journal of Engineering Science and Technology, 2(9), 4723-4729.

Dumas, J. S. (2003). User-based evaluations. In J. A. Jacko & A. Sears (Eds.), The human computer interaction
handbook (pp. 1093-1117). Mahwah, NJ: Erlbaum.

EMERGO (2013). EMERGO project page. Retrieved July 29, 2013 from http://sourceforge.net/projects/emergo/

http://sourceforge.net/projects/emergo/

References

154

Federoff, M. A. (2002). Heuristics and usability guidelines for the creation and evaluation of fun in video games
(Unpublished master’s thesis). Indiana, IN: Indiana University.

Fowler, M. (2004). UML Distilled: a brief guide to the standard object modeling language (Third Edition).
Reading, MA: Addison-Wesley Professional.

Franzwa, C., Tang, Y., Johnson, A., & Bielefeldt, T. (2014). Balancing Fun and Learning in a Serious Game De-
sign. International Journal of Game-Based Learning, 4(4), 37-57. doi:10.4018/ijgbl.2014100103

Gaeta, M., Loia, V., Mangione, G. R., Orciuoli, F., Ritrovato, P., & Salerno, S. (2014). A methodology and an
authoring tool for creating Complex Learning Objects to support interactive storytelling. Computers in
Human Behavior, 31, 620-637. doi:10.1016/j.chb.2013.07.011

Gagné, R. (1985). The Conditions of Learning and Theory of Instruction. New York, NY: Holt, Rinehard, and
Winston.

Games Monitor (2015). Games Monitor. Retrieved February 24, 2018, from https://www.dutchgamegarden.nl/
project/games-monitor/

Gerrichhauzen, J. T. G., Hoefakker, R. E., Perreijn, A. C., Van den Brink, H. J., Slootmaker, A., & Berkhout, J.
(1998). Buiten dienst [Out of order] (version 1.0) [multimedia CD-ROM]. Heerlen, The Netherlands: Open
University of the Netherlands.

Göbel, S., Salvatore, L., Konrad, R., & Mehm, F. (2008). StoryTec: A Digital Storytelling Platform for the Autho-
ring and Experiencing of Interactive and Non-linear Stories. In Spierling, U., Cavazza, M., Peinado, F., Ay-
lett, R., Swartjes, I., Kudenko, D., Young, R., Tychsen, A., Pizzi, D., El-Nasr, M. (eds.) Interactive Storytel-
ling. LNCS, vol. 5334 (pp. 325-328). Berlin – Heidelberg, Germany: Springer. doi:10.1007/978-3-540-
89454-4_40

Hamari, J., Shernoff, D. J., Rowe, E., Coller, B., Asbell-Clarke, J., & Edwards, T. (2016). Challenging games help
students learn: An empirical study on engagement, flow and immersion in game-based learning. Compu-
ters in Human Behavior, 54, 170-179. doi:10.1016/j.chb.2015.07.045

Hartson, R., & Pyla, S. (2012). The UX Book: Process and Guidelines for Ensuring a Quality User Experience.
New York, NY: Elsevier. doi:10.1145/2347696.2347722

Herrington, J., Reeves, T.C., & Oliver, R. (2007). Immersive learning technologies: Realism and online authentic
learning. Journal of Computing in Higher Education, 19(1), 80-99. doi:10.1007/BF03033421

Hertzum, M., Hansen, K. D., & Andersen, H. H. K. (2009). Scrutinising usability evaluation: Does thinking aloud
affect behaviour and mental workload? Behaviour & Information Technology, 28, 165-181.

Hibernate (2017). Hibernate ORM. Retrieved November 14, 2017, from http://hibernate.org/orm/
Hommes, M. A., Houtmans, M. A., Hummel, H. G. K., Kuntze, A. J. , Tiesnitsch, D., Rickhoff, M. L., Westera, W.,

Kerstjens, W. M. J., Kurvers, H. J., Slot, W. J. J., Vander Meeren, W. M. F., & Berkhout, J. (2000). Diagnos-
ticus [Diagnostician] (version 1.0) [multimedia CD-ROM]. Heerlen, The Netherlands: Open University of
the Netherlands.

Hornbæk, K. (2006). Current practice in measuring usability: Challenges to usability studies and research.
International Journal of Human-Computer Studies, 64, 79-102.

Hummel, H. G. K., Van Houcke, J., Nadolski, R. J., Van der Hiele, T., Kurvers, H. J., & Löhr, A. (2010). Scripted
collaboration in serious gaming for complex learning: Effects of multiple perspectives when acquiring
water management skills. British Journal of Educational Technology, 42(6), 1029-1041.
doi:10.1111/j.1467-8535.2010.01122.x

Hummel, H. G. K., Geerts, W., Slootmaker, A., Kuipers, D., & Westera, W. (2013). Collaboration scripts for
mastership skills: Online game about classroom dilemmas in teacher education. Interactive Learning En-
vironments, 23(6), 670-682. doi:10.1080/10494820.2013.789063

Huysse, P., Nadolski, R. J., Oldenboom, E., Kerstjens, W. M. J., De Vries, F. J. J, Slootmaker, A, Jordense, M.,
Jambos, M., & Berkhout, J. (1998). Paradise Parks (version 1.0) [multimedia CD-ROM]. Heerlen, The
Netherlands: Open University of the Netherlands.

Ibrahim, A., Vela, F. L. G., Rodríguez, P. P., Sánchez, J. L. G., & Zea, N. P. (2012). Playability Guidelines for
Educational Video Games: A Comprehensive and Integrated Literature Review. International Journal of
Game-Based Learning (IJGBL), 2(4), doi:18-40. 10.4018/ijgbl.2012100102

https://www.dutchgamegarden.nl/%20project/games-monitor/
https://www.dutchgamegarden.nl/%20project/games-monitor/

References

155

IMSCP-IM (2007). IMS Content Packaging Information Model. Retrieved March 01, 2007, from
http://www.imsglobal.org/content/packaging/cpv1p1p2/imscp_infov1p1p2.html

ISO (2006). ISO 9241-110:2006. Ergonomics of human-system interaction – Part 110: Dialogue principles.
ISO/IEC (2011). ISO/IEC 25010:2011. Systems and software engineering – Systems and software Quality Requi-

rements and Evaluation (SQuaRE) – System and software quality models.
Ivens, W. P. M. F., Lansu, A. L. E., Hummel, H. G. K., Huisman, W. H. T., Westera, W., Wagemans, L. J. J. M.,

Slootmaker, A., & Berkhout, J. (1998). Bodem en milieu [Soil and environment] (version 1.95) [multime-
dia CD-ROM]. Heerlen, The Netherlands: Open University of the Netherlands.

J2EE (2017). Java Platform, Enterprise Edition. Retrieved November 14, 2017, from http://www.oracle.com/
technetwork/java/javaee/overview/

Kickmeier-Rust, M. D., & Albert, D. (2010). Micro-adaptivity: Protecting immersion in didactically adaptive
digital educational games. Journal of Computer Assisted Learning, 26(2), 95-105. doi:10.1111/j.1365-
2729.2009.00332.x

Kickmeier-Rust, M. D., & Albert, D. (2012). Educationally adaptive: Balancing serious games. International
Journal of Computer Science in Sport, 11(1), 1-10.

Kickmeier-Rust, M. D., Mattheiss, E., Steiner, C., & Albert, D. (2011). A Psycho-Pedagogical Framework for
Multi-Adaptive Educational Games. International Journal of Game-Based Learning, 1(1), 45-58.
doi:10.4018/ijgbl.2011010104

Kirakowski, J. (1996). The Software Usability Measurement Inventory: Background and usage. In P. Jordan, B.
Thomas, & B. Weerdmeester (Eds.), Usability evaluation in industry (pp. 169-178). London, UK: Taylor &
Francis.

Klemke, R., Van Rosmalen, P., Ternier, S., & Westera, W. (2015). Keep it simple: Lowering the barrier for
authoring serious games. Simulation & Gaming, 46(1), 40-67. doi:10.1177/1046878115591249

Kultima, A. (2015). Game design research. Proceedings of the 19th International Academic Mindtrek Confe-
rence, 18-25. doi:10.1145/2818187.2818300

Kultima, A., & Sandovar, A. (2016). Game design values. Proceedings of the 20th International Academic
Mindtrek Conference, 350-357. doi:10.1145/2994310.2994362

Leinders, J. J. M., Drury, S. A., Rothery, D. A., Nadolski, R. J., Van der Heijden, M. P., De Vries, F. J. J., Slot, W. J.
J., Roosendaal, A., Kurvers, H. J., & Berkhout, J. (1993). Reseat (version 1.0) [multimedia CD-ROM]. Heer-
len, The Netherlands: Open University of the Netherlands.

Lewis, J. R. (1995). IBM computer usability satisfaction questionnaires: Psychometric evaluation and instruc-
tions for use. International Journal of Human-Computer Interaction, 7(1), 57-78. doi:10.1080/1044
7319509526110

Lewis, J. R. (2002). Psychometric Evaluation of the PSSUQ Using Data from Five Years of Usability Studies.
International Journal of Human–Computer Interaction, 14(3), 463-488. doi:10.1207/S15327590IJHC
143&4_11

Lewis, J. R. (2014). Usability: Lessons Learned… and Yet to Be Learned. International Journal of Human-
Computer Interaction, 30(9), 663-684. doi:10.1080/10447318.2014.930311

Marchiori, E. J., Torrente, J., del Blanco, Á., Moreno-Ger, P., Sancho, P., & Fernández-Manjón, B. (2012). A
narrative metaphor to facilitate educational game authoring. Computers & Education, 58(1), 590-599.
doi:10.1016/j.compedu.2011.09.017

Martens, R., Gulikers, J., & Bastiaens, T. (2004). The impact of intrinsic motivation on e‐learning in authentic
computer tasks. Journal of Computer Assisted Learning, 20(5), 368-376. doi:10.1111/j.1365-
2729.2004.00096.x

Mehm, F., Göbel, S., Steinmetz, R. (2012). Authoring of Serious Adventure Games in StoryTec. In: Göbel, S.,
Müller, W., Urban, B., Wiemeyer, J. (eds). E-Learning and Games for Training, Education, Health and
Sports. Lecture Notes in Computer Science 7516, 144-154. Berlin – Heidelberg, Germany: Springer.
doi:10.1007/978-3-642-33466-5_16

Michael, D. & Chen, S. (2006). Serious Games: Games that Educate, Train, and Inform. Boston, MA: Thomson.
Microsoft (2009). Microsoft Application Architecture Guide. Second Edition. Microsoft Corporation.

http://www.oracle.com/%20technetwork/java/javaee/overview/
http://www.oracle.com/%20technetwork/java/javaee/overview/

References

156

Murray, T. (1999). Authoring intelligent tutoring systems: An analysis of the state of the art. International
Journal of Artificial Intelligence in Education, 10, 98-129.

Murray, T. (2004). Design tradeoffs in usability and power for advanced educational software authoring tools.
Educational Technology, 44(5), 10-16.

Murray, T. (2016). Coordinating the Complexity of Tools, Tasks, and Users: On Theory-based Approaches to
Authoring Tool Usability. International Journal of Artificial Intelligence in Education, 26(1), 37-71.
doi:10.1007/s40593-015-0076-6

MySQL (2017). MySQL Enterprise Edition. Retrieved November 14, 2017, from https://www.mysql.com/
products/enterprise/

Nadolski, R. J., Hummel, H. G. K., Van den Brink, H. J., Hoefakker, R. E., Slootmaker, A., Kurvers, H. J., & Storm,
J. (2008). EMERGO: A methodology and toolkit for developing serious games in higher education. Simula-
tion & Gaming, 39(3), 338-352. doi:10.1177/1046878108319278

Nadolski, R. J., Hummel, H. G. K., Slootmaker, A., & Van der Vegt, W. (2012). Architectures for Developing
Multiuser, Immersive Learning Scenarios. Simulation & Gaming, 43(6), 825-852. doi:10.1177/104687
8112443323

Nielsen, J. (1994). Usability Engineering. New York, NY. Elsevier.
Object Management Group. (2017). Unified Modeling Language (UML). Retrieved September 28, 2017, from

http://www.uml.org/
Oja, M. K. (2010). Designing for collaboration: Improving usability of complex software systems. Proceedings

of the 28th International Conference Extended Abstracts on Human Factors in Computing Systems, 152-
158. doi:10.1145/1753846.1754059

Olsen, T., Procci, K., & Bowers, C. (2011). Serious Games Usability Testing: How to Ensure Proper Usability,
Playability, and Effectiveness. Proceedings of the International Conference of Design, User Experience,
and Usability, 625-634. Berlin – Heidelberg, Germany: Springer. doi:10.1007/978-3-642-21708-1_70

Paakkanen, V. (2014). User Experience of Game Development Environments: Can Making Games be as Fun as
Playing Them? Master Thesis. Aalto University, Espoo, Finland.

Pattrasitidecha, A. (2014). Comparison and Evaluation of 3D Mobile Game Engines. Master Thesis. Chalmers
University of Technology, University of Gothenburg, Göteborg, Sweden.

PMC (2017). Perspectives from the Global Entertainment and Media Outlook 2017–2021. Retrieved February
24, 2018, from https://www.pwc.com/outlook

Prensky, M. (2002). The motivation of gameplay: The real twenty-first century learning revolution. On the
horizon, 10(1), 5-11. doi:10.1108/10748120210431349

Prensky, M. (2007). Digital game-based learning. St Paul, MN: Paragon House.
Ryan R. M., & Deci E. L. (2000). Self-determination theory and the facilitation of intrinsic motivation, social

development, and well-being. American Psychologist, 55(1), 68-78. doi:10.1037/0003-066X.55.1.68
Sauro, J. (2011). A practical guide to the System Usability Scale: Background, benchmarks, & best practices.

Denver, CO: Measuring Usability LLC.
Schell, J. (2008). The Art of Game Design: A Book of Lenses. Second Edition. New York, NY: CRC Press.

doi:10.1201/b17723
SLEM (2017). SLEM project page. Retrieved July 29, 2017, from https://www.nro.nl/kb/405-14-504-toepassen-

serious-games-in-mbo-opleiding-ict-beheerder/
Slootmaker, A., Hummel, H. G. K., & Koper, E. J. R. (2017). Evaluating the usability of authoring environments

for serious games. Simulation & Gaming, 48(4), 553-578. doi:10.1177/1046878117705249
Slootmaker, A., Kurvers, H. J., Hummel, H. G. K., & Koper, E. J. R. (2014). Developing scenario-based serious

games for complex cognitive skills acquisition: Design, development and evaluation of the EMERGO plat-
form. Journal of Universal Computer Science, 20(4), 561-582.

Spring Framework (2013). Spring Framework. Retrieved November 14, 2013, from http://www.springsource.org/
Tattersall, C., Vogten, H., Brouns, F., Koper, R., Van Rosmalen, P., Sloep, P., et al. (2005). How to create flexible

runtime delivery of distance learning courses. Educational Technology & Society, 8(3), 226-236.
Theodosiou, S., & Karasavvidis, I. (2015). Serious games design: A mapping of the problems novice game

designers experience in designing games. Journal of e-Learning and Knowledge Society, 11(3), 133-148.

https://www.mysql.com/%20products/enterprise/
https://www.mysql.com/%20products/enterprise/
http://www.springsource.org/

References

157

Thillainathan, N., & Leimeister, J. M. (2014). Serious Game Development for Educators - A Serious Game Logic
and Structure Modeling Language. EDULEARN14 Proceedings, 1196-1206.

Usability-First (2017). Playability definition. Retrieved from: http://www.usabilityfirst.com/glossary/playability
Vandermeeren, W. M. F., Hoogveld, A. W. M., Hummel, H. G. K., Vos, M. M. H. L. S, Rosendaal, A., Van der

Vegt, G. W., & Berkhout, J. (1997). Practicum Assesment Center (version 3.0) [multimedia CD-ROM].
Heerlen, The Netherlands: Open University of the Netherlands.

Van der Vegt, W., Nyamsuren, E., Kurvers, H. J., & Westera, W (2018). Portable Software Assets for Serious
Games: enabling software reuse across programming languages and game engines. Manuscript sub-
mitted for publication.

Van Deursen, A., Klint, P., & Visser, J. (2000). Domain-specific languages: an annotated bibliography. ACM
SIGPLAN Notices, 35(6), 26-36. New York, NY: ACM. doi:10.1145/352029.352035

Van Est, C., Poelman, R., & Bidarra, R. (2011). High-level scenario editing for serious games. Proceedings of the
International Conference on Computer Graphics Theory and Applications, 339-346. doi:10.5220/
0003374503390346

W3C (2015). Extensible Markup Language (XML). Retrieved May 12, 2015, from https://www.w3.org/XML/
W3C (2016). XML Schema. Retrieved August 18, 2016, from http://www.w3.org/XML/Schema
W3C (2017). Simple Object Access Protocol (SOAP). Retrieved November 05, 2017, from https://www.w3.org/

TR/soap/
Westera, W. (2001). Competences in education: A confusion of tongues. Journal of Curriculum Studies, 33(1),

75-88. doi:10.1080/00220270120625
Westera, W., Nadolski, R. J., Hummel, H. G. K., & Wopereis, I. G. J. H. (2008). Serious games for higher educa-

tion: a framework for reducing design complexity. Journal of Computer Assisted Learning, 24(5), 420-
432. doi:10.1111/j.1365-2729.2008.00279.x

Westera, W., Nadolski, R. J., & Hummel, H. G. K. (2014). Serious Gaming Analytics: What Students´ Log Files
Tell Us about Gaming and Learning. International Journal of Serious Games, 1(2), 35-50.
doi:10.17083/ijsg.v1i2.9

Westera, W., Slootmaker, A., & Kurvers, H. J. (2014). The Playground Game: Inquiry-based Learning About
Research Methods and Statistics. Proceedings of the 8th European Conference on Games Based Learning,
2, 620-627.

Wöretshofer, J., Nadolski, R. J., Starren-Weijenberg, A. M. A. G., Quanjel-Schreurs, R. A. M, Aretz, C. C. W. M.,
van der Meer, N. H. W., Martyn, G., van den Brink, H. J., Slootmaker, A., & Berkhout, J. (2000). Pleit voor-
bereid [Preparing a plea] (version 1.0) [multimedia CD-ROM]. Heerlen, The Netherlands: CIHO.

ZK Framework (2013). ZK Framework. Retrieved November 14, 2013, from http://www.zkoss.org/

https://www.w3.org/%20TR/soap/
https://www.w3.org/%20TR/soap/

159

Appendices
Appendices

Appendices

Appendices

161

Appendix 1: Estimated contribution of the author to the main tasks presented in
this thesis

Chapter Main task %
2 Setup of platform requirements 60
 Design of the platform 80
 Implementation of the platform 80
 Evaluation of the platform 20
3 Design and implementation of platform components 80
 Design and implementation of authoring process 80
 Design and implementation of playing process 80
 Design and implementation of other platform process 70
 Setup of platform architecture 70
4 Usability data collection for authoring environment 100
 Usability data analysis for authoring environment 100
5 Usability data collection for player environment 60
 Usability data analysis for player environment 100

Appendices

162

Appendix 2: Interview guide

General impression
• What is your general impression of the authoring environment?
• Is it easy to use?
• Is it clear enough?
• Is its subdivision in screens straightforward?
• Is the navigation through screens straightforward?

Requirements (F=Functional, N=Non-functional)
Create and edit games (F)

• Did you create games yourself?
• If so, is editing of games straightforward?
• Did you encounter any problems editing games?
• Did you have any trouble with the concept of games?

Create and edit game roles (F)
• Did you add game roles?
• If so, did you add PCs or NPCs or both?
• Was editing of game roles straightforward, or did you encounter any problems?
• Did you have any trouble with the concept of game roles?

Select and edit game components (F)
• Did you have a good overview of components available beforehand?
• If not, was it difficult to get this overview?
• Did you have any trouble choosing the right components for your game, starting from the scenar-

io?
• Was it obvious to you in which order components should be filled with content?
• Did you miss some functionality or components?
• Could you map your scenario easily to the available components?
• If not, were you able to implement the missing functionality using other components?
• Did you have any trouble with the game component editor in general?
• Did you have any trouble with the concept of the game component?

Developing a game together (F)
• What are your experiences with working together on the same game content?
• Could this process be improved?

Previewing a game or game component (F)
• Did you use the preview option?
• If so, did you use it to preview the game or just a single game component?
• For which game components did you use it?
• Did you have any difficulty using this option?
• Is it straightforward?
• Could it be improved?

Testing a game (F)
• Did you use the preview option for testing?
• If so, did you use it to test the game in total or just a single game component?
• For which game components did you use it?
• Did you use the option to create multiple preview items corresponding to multiple starting points

within the game?
• Did you have any difficulty using this option?
• Is it straightforward?
• Could it be improved?

Appendices

163

Import or export a game (F)
• Did you copy, import, or export games?
• What are your experiences with it?
• Did you have trouble with it?
• Could it be improved?

Import or export a game component (F)
• Did you copy, import, or export game components?
• If so, which game components?
• What are your experiences with it?
• Did you have trouble with it?
• Could it be improved?

Reliability and stability (N)
• Did you have any technical problems entering game content?
• Did you lose any entered data due to technical problems?
• How could we improve reliability and stability?

Delivering and updating games (N)
• Did you adjust the game or any game components while students were already playing?
• Did you experience any problems?
• Could it be improved?

General questions for components
• Did you use this component?
• Did you have any trouble using the component?
• What did you miss working with the component?
• How could we improve the component?
• Did you use the preview option for this component?
• What turned out to be handy when using the component?
• Do you feel comfortable using the component?

Development process
No questions prepared.

165

Summary
Summary

Summary

Summary

167

General design question

Scenario-based serious games are a specific type of digital games aimed at learning. A
scenario extensively describes an interactive narrative in which learners carry out as-
signments in an environment that closely resembles professional practice, such as a law
firm or a psychological clinic, in order to acquire professional competences. Assign-
ments mostly involve ill-defined problems that often allow for multiple solutions requir-
ing application of specific methodologies or tools, or collaboration with fellow learners.
This type of games is used to acquire complex cognitive skills that involve higher-order
activities like problem solving, reasoning, taking decisions or reflecting. Higher educa-
tion increasingly calls for acquiring this type of skills.

The application of serious games may improve effectiveness and efficiency of educa-
tion. Challenging assignments may increase learners’ engagement and motivation,
which results in better performance and possibly less dropout. In-game guidance will
reduce necessary human guidance. To foster learning, the learner should be in control,
learning should be situated and authentic, and transfer of learned skills to practice
should be supported.

Although the market for serious games is very promising and still growing, the applica-
tion within online universities faces a number of issues that call for dedicated develop-
ment and delivery environments. Smaller target groups and available budgets ask for
efficient development. Specific development team members like educators and domain
experts, and adaptation to the capacities of individual students ask for specific tooling.
Game adaptation, evaluation and research ask for specific and extensive logging and
analysis of student data.

These considerations lead to the general design question that underlies this thesis: How
to design and develop a generic platform for fast and flexible development and delivery
of a wide variety of scenario-based serious games that enable complex cognitive skills
acquisition?

The platform to be developed should be generic, in the sense that online universities
should be able to develop and deliver their own scenario-based serious games for vari-
ous content domains and learning purposes. The platform should also integrate game
development, delivery and playing in one system, and be relatively easy to extend.

Fast and flexible game development should be enabled by a user-friendly authoring envi-
ronment that enables teachers to author games fast and independently, that way lower-
ing the threshold for developing these type of games. The environment should also allow
for games having multiple authors, and allow for preview and reuse of game content.

Fast and flexible game delivery should be enabled by an intuitive and immersive player
environment that enables students to play games in authentic settings. Bug fixing of

Summary

168

already deployed games and student support in case of problems should be possible
and easy.

We took the following main design steps to answer the general design question:
(i) We identified the intended users of such a platform, namely teachers, students,

administrators and ICT developers;
(ii) We set up requirements for each intended user and for the platform itself. To

promote broad use, the platform should be fast, flexible, reliable and stable, and
usable on multiple operating systems;

(iii) Based on the requirements, we chose for a web-based platform, a multilayered
platform architecture and the use of Open source software.

(iv) We identified five platform roles that should each have their own working envi-
ronment. Teachers would either have a ‘developer’ role to author games or have a
‘tutor’ role to monitor students. Students would have a ‘student’ role. Administra-
tors or ICT developers would either have an ‘administrator’ role to manage plat-
form users and components or a ‘run manager’ role to manage game runs and as-
sign students to them;

(v) We designed a domain model that includes all platform entities, such as compo-
nents, games, runs and users, and their interdependencies. We decided to define
and store all game content and progress as XML strings, which would allow for
easy extension with new components, without the need to modify the domain
model;

(vi) Based on our previous experience in developing serious games we identified an
initial set of platform components that enables acquiring complex cognitive skills. A
so called Script component enables assembling game script in order to adapt the
player environment to the individual student;

(vii) To enable easy extension with components we devised a generic component de-
sign that allows for defining components’ game content to be authored, game
progress to be stored and to be adapted by game script; and

(viii) In order to avoid teachers having to program game script, we chose to have them
assemble game script via popup dialogues.

After taking the main design steps we started implementing the platform, which we
called EMERGO (in English EMERGE: Efficient Method for ExpeRiential Game-based
Education). We subsequently implemented the domain model, the various role envi-
ronments and the initial set of components, all of which demanded more detailed de-
sign decisions. To foster easy extension with new components, we decided to design a
single editor for authoring, validation, previewing and testing of all components’ game
content. We also decided to design a single player environment that handles rendering
and adaptation of platform components, events triggered by students and game script,
and storage of students’ progress for analysis during and after a game session.

Summary

169

Initial evaluations showed that we managed to design and develop a generic, sustaina-
ble and extendible platform that allows for fast and flexible development and delivery
of a wide variety of scenario-based serious games.

The platform is indeed generic. A set of various components enables a wide variety of
game scenarios to be authored, to be played and to be monitored as is demonstrated
by 26 games developed for six content domains by several online universities. Different
role environments integrate game development, delivery and playing in one system. In
addition, the platform can be used for education as well as for research purposes.

The platform’s sustainability is demonstrated by the facts that: (i) it has been used over
the years to develop dozens of games for thousands of students in total; (ii) the number
of components has increased from initially 12 to 30 at the moment; and (iii) the first
games developed are still in use.

Extendibility is facilitated by: (i) the generic component design, which serves as a tem-
plate for defining new components and their structure, properties, content and inter-
dependencies; (ii) the flat structure of the components where dependencies are de-
fined by relations rather than by a hierarchy; and (iii) the platform’s multilayered archi-
tecture that neatly separates different responsibilities and processes.

The platform allows for fast and flexible game development. Teachers can use its au-
thoring environment to author game content, can reuse already developed components
and game content, and can preview and test a game at any time. The result is more
efficient development as is indicated by a decrease in production time by a factor three
to four as compared with values found before (about 25 to 30 hours of development for
one hour of study instead of about 100 hours previously). The Script component allows
for adaptation of the player environment to the individual student and for modification
of its own working by switching parts of game script on or off. In addition, it is possible
to modify already deployed games where modifications are immediately available to
students, e.g., in case of bugs or step-by-step game roll-out.

The platform also allows for fast and flexible game delivery. Web-based delivery ensures
fast and easy delivery of games and of updates of games and the platform itself. A single
player environment enables teachers to offer their own challenging, authentic and
adaptable environments to students. It also enables teachers to give feedback by send-
ing an in-game email as a virtual game character, e.g., in case of poor or excellent stu-
dent performance. Administrators may configure game runs of the same game differ-
ently, which allows for delivery of different game versions to different target groups,
e.g., in case of scientific experiments. They may also adjust students’ progress during a
game run, which allows for immediately helping students in case of problems or for
simultaneously putting a group of students into another state of play, e.g., a next level.
Initial evaluations also showed that we managed to design and develop an intuitive

Summary

170

immersive player environment, as evaluated by students who were satisfied to very
satisfied about its user interface.

First additional design question

We did not fully manage to design and develop a user-friendly authoring environment.
Some teachers had trouble to use the Script component without help and all teachers
found two components, the Script and Conversations components, difficult to use. This
made us question how we could improve the usability of authoring environments for
serious games in general, which led to the first additional design question that has been
further researched for this thesis: How to improve the usability of authoring environ-
ments for serious games?

We conducted an in-depth qualitative study of the usability of the EMERGO authoring
environment by applying interviews with game authors.

We found the usability of the authoring environment to be problematic with respect to
its understandability and learnability, which is in line with findings for comparable envi-
ronments that also showed shortcomings with respect to these aspects. We found the
environment’s operability to be somewhat problematic and its functionality and reliabil-
ity to be positively valued.

Flaws in usability appear to be caused by a lack of guidance and support but probably are
also caused by the inherent complexity of the platform’s components, exposed to au-
thors during authoring. Most components appear to have a low complexity, some have a
medium complexity and one, the Script component, has a high complexity. Usability may
be improved by adding guidance and support but usability improvements may hardly
have any effect on the inherent component complexity. In addition, authoring of compo-
nents is quite detailed and low level, where assembly of game script is close to pro-
gramming. This makes the authoring environment on the one hand more powerful and
flexible but on the other hand probably more difficult to comprehend, which may be
another cause for its found problematic understandability and learnability.

Based on remarks of interviewees we established guidelines to improve the usability of
authoring environments for serious games, with respect to understandability and
learnability.

To improve understandability we recommend to:
(i) Simplify authoring by offering an intuitive user interface, which might be different

for different kinds of authors;
(ii) Reduce complexity by offering two levels of input, basic for novices and advanced

for experts;

Summary

171

(iii) Offer examples of scenarios, games, and game components and how they relate to
each other, so authors better understand what to do;

(iv) Offer a preview option to preview entered content at any time, so authors better
understand what they are doing; and

(v) Use clear terminology fitting authors’ expectations.

To improve learnability we recommend to:
(i) Offer clear instruction and wizards to guide authors during the authoring process;

and
(ii) Offer information on didactics and use of components, so novice authors can

make a quick start.
These guidelines seem to be general and (partly) applicable to other dedicated types of
authoring environments.

Second additional design question

Although the initial evaluations of the player environment showed that students were
satisfied to very satisfied about its user interface, we did not evaluated its usability in
detail and were curious if students were still satisfied and if not, how we could improve
its usability. This made us question how we could improve the usability of player envi-
ronments for serious games in general, which led to the second additional design ques-
tion that has been further researched for this thesis: How to improve the usability of
player environments for serious games?

We conducted a detailed study of the usability of the EMERGO player environment by
applying quantitative and qualitative research methods on a group of students.

We found the usability of the player environment to be quite low. Quantitative analysis
showed the usability to be between “ok” and “good”, which is lower than found for web
applications in general. In addition, the operability of the environment and the under-
standability of its various components were rated “sufficient”. However, qualitative
analysis showed that students were predominantly positive about the environment’s
operability, and relatively negative about its understandability and user interface aes-
thetics (pleasing and satisfying interaction for the user). They missed operating instruc-
tions and would like to operate in a more realistic, more dynamic and less structured
environment where they are more in control. In addition, the environment’s functionali-
ty was somewhat problematic. Its reliability was predominantly valued positively.

The found low usability may be caused by students’ young age, probably more familiar
with playing video games that provide dynamic player environments where they are in
control. The games used for the evaluation may also have had teething problems and
may have been too restrictive or not challenging, enjoyable or exciting enough. Alt-
hough the platform allows for creating realistic, dynamic and open environments where

Summary

172

students are in control, game developers may have their reasons for not using this po-
tential.

Based on remarks of respondents, we established guidelines to improve the usability of
player environments for serious games:
(i) Match the interface of the environment to the expectations of its intended users

as much as possible;
(ii) Offer a timeline to show user’s progress in time and learning;
(iii) Use scoring to encourage the user to perform better;
(iv) Let users formulate their own questions using text or speech analysis;
(v) Use text analysis of reports to be able to give substantive feedback;
(vi) Present operating instructions at the right time;
(vii) Use sounds to support interaction between the user and the environment; and
(viii) Always present clear messages in case of errors or time-consuming processes.

Conclusions

The EMERGO platform allows for more efficient serious games development (general
design question), which makes it suitable for serving smaller target groups that are
often found in higher education, e.g., for a specific course in a specific content domain.
The possibilities to preview and test games during development at any time and to
author game script without programming facilitate specific development team mem-
bers like educators and domain experts. Adaptation to the individual student, game
evaluation and research on learning effects are facilitated by extensive logging of stu-
dents’ progress and data analysis using game script.

Due to its independence of operating systems and use of Open source software online
universities should be able to easily install and use the platform. However, the platform
is not widely used, although it was originally intended to be. Over the years the platform
has been used for prolonged periods of time by three other institutes for online educa-
tion in the Netherlands. Various other (inter)national institutes for education have come
to know the platform of which some have used it in exploratory way.

A wider use of the platform and wider application of serious games could be promoted
by future improvements regarding usability (additional design questions) based on the
presented guidelines in this thesis and possible new extensions, like a scenario editor to
better support authors in their game design and to simplify the authoring process, and a
‘researcher’ role to better support educational research and game evaluation.

The platform and its underlying ideas, architecture, evaluations and future development
as presented in this thesis, can be expected to contribute to new development and
research in the fields of serious games development, instructional design and online
education.

173

Samenvatting
Samenvatting

Samenvatting

Samenvatting

175

De algemene ontwerpvraag

Scenariogebaseerde serious games zijn een specifiek type digitale games dat gericht is
op leren. Een scenario beschrijft uitgebreid een interactief verhaal waarin studenten
opdrachten uitvoeren in een omgeving die sterk lijkt op de beroepspraktijk, zoals een
advocatenkantoor of een psychologische kliniek, en waarbij het doel is om professione-
le competenties te verwerven. Opdrachten hebben meestal betrekking op vaag gedefi-
nieerde problemen met vaak meerdere mogelijke oplossingen die de toepassing van
specifieke methodologieën of hulpmiddelen, of samenwerking met medeleerlingen
vereisen. Dit soort games wordt gebruikt om complexe cognitieve vaardigheden te
verwerven waarmee activiteiten van hogere orde gemoeid zijn, zoals problemen oplos-
sen, redeneren, beslissingen nemen of reflecteren. Het hoger onderwijs vraagt steeds
meer om het verwerven van dit soort vaardigheden.

Het gebruik van serious games kan de effectiviteit en efficiëntie van het onderwijs ver-
beteren. Uitdagende opdrachten kunnen de betrokkenheid en motivatie van studenten
verhogen, wat resulteert in betere prestaties en mogelijk minder uitval. In de game
ingebouwde begeleiding zal benodigde menselijke begeleiding verminderen. Om het
leren te bevorderen, zal de student de controle moeten hebben, moet het leren gesitu-
eerd en authentiek zijn en moet de overdracht van geleerde vaardigheden naar de
praktijk worden ondersteund.

Hoewel de markt voor serious games zeer veelbelovend is en nog steeds groeit, kampt
de toepassing binnen online universiteiten met een aantal problemen die vragen om
specifieke ontwikkel- en uitleveromgevingen. Kleinere doelgroepen en beschikbare
budgetten vragen om efficiënte game-ontwikkeling. Voor het onderwijs specifieke ga-
me-ontwikkelaars, zoals docenten en domeinexperts, en adaptatie aan het niveau van
individuele studenten vragen om specifieke gereedschappen. Game-adaptatie, evalua-
tie en onderzoek vragen om specifieke en uitgebreide opslag en analyse van studentge-
gevens.

Deze overwegingen leiden tot de algemene ontwerpvraag die ten grondslag ligt aan dit
proefschrift: Hoe kan een generiek platform worden ontworpen en ontwikkeld voor
snelle en flexibele ontwikkeling en uitlevering van een breed scala aan scenariogeba-
seerde serious games die worden gebruikt om complexe cognitieve vaardigheden te
verwerven?

Het te ontwikkelen platform moet generiek zijn, in die zin dat online universiteiten hun
eigen scenariogebaseerde serious games zouden moeten kunnen ontwikkelen en uitle-
veren, voor verschillende inhoudsdomeinen en met verschillende leerdoelen. Het plat-
form moet ook de ontwikkeling, de uitlevering en het spelen van games in één systeem
integreren en relatief eenvoudig uitbreidbaar zijn.

Samenvatting

176

Snelle en flexibele game-ontwikkeling moet worden gefaciliteerd door een gebruiks-
vriendelijke auteursomgeving die docenten in staat stelt om games snel en onafhanke-
lijk te ontwikkelen, waarmee de drempel wordt verlaagd voor het ontwikkelen van dit
soort games. Games zouden meerdere auteurs moeten kunnen hebben en preview en
hergebruik van game inhoud moet mogelijk zijn.

Snelle en flexibele game-uitlevering moet worden gefaciliteerd door een intuïtieve en
meeslepende afspeelomgeving die studenten in staat stelt om games te spelen in au-
thentieke omgevingen. Het verhelpen van fouten in reeds uitgeleverde games en on-
dersteuning van studenten in geval van problemen moet mogelijk en gemakkelijk zijn.

We hebben de volgende belangrijke ontwerpstappen gezet om de algemene ontwerp-
vraag te beantwoorden:
(i) We hebben de beoogde gebruikers van een dergelijk platform geïdentificeerd,

namelijk docenten, studenten, beheerders en ICT-ontwikkelaars;
(ii) We hebben eisen opgesteld voor elke beoogde gebruiker en voor het platform

zelf. Om breed gebruik te bevorderen, moet het platform snel, flexibel, be-
trouwbaar en stabiel zijn en bruikbaar op meerdere besturingssystemen;

(iii) Op basis van de eisen hebben we gekozen voor een webgebaseerd platform, een
meerlagige platformarchitectuur en voor het gebruik van opensourcesoftware;

(iv) We hebben vijf rollen geïdentificeerd die ieder hun eigen werkomgeving zouden
moeten krijgen. Docenten vervullen ofwel een 'ontwikkelaar' rol om games te on-
twikkelen, ofwel een 'tutor' rol om studenten te monitoren. Studenten vervullen
alleen een 'student' rol. Beheerders of ICT-ontwikkelaars vervullen ofwel een ‘be-
heerder’ rol om platform gebruikers en componenten te beheren, ofwel een 'run-
beheerder' rol om game-runs te beheren en er studenten aan toe te wijzen;

(v) We hebben een domeinmodel ontworpen dat alle platform-entiteiten bevat, zoals
componenten, games, runs en gebruikers, en hun onderlinge afhankelijkheden.
We hebben besloten om alle game-inhoud en -voortgang te definiëren en op te
slaan als XML-tekst, waardoor eenvoudig nieuwe componenten kunnen worden
toegevoegd zonder dat het domeinmodel hoeft te worden aangepast;

(vi) Op basis van onze eerdere ervaring met de ontwikkeling van serious games heb-
ben we een initiële set van platformcomponenten geïdentificeerd die kan worden
gebruikt om het verwerven van complexe cognitieve vaardigheden mogelijk te
maken. Een zogenaamde Script-component faciliteert het invoeren van gamescript
dat de afspeelomgeving kan aanpassen voor de individuele leerling;

(vii) Om een eenvoudige uitbreiding met componenten mogelijk te maken, hebben we
een generiek componentontwerp ontwikkeld waarmee de game-inhoud van een
component kan worden gedefinieerd, en welke gamevoortgang moet worden bi-
jgehouden en kan worden aangepast door gamescript; en

Samenvatting

177

(viii) Om te voorkomen dat docenten gamescript zouden moeten programmeren, heb-
ben we ervoor gekozen om hen gamescript te laten assembleren met behulp van
pop-updialogen.

Na het zetten van de belangrijkste ontwerpstappen zijn we begonnen met de imple-
mentatie van het platform dat we EMERGO noemden (Efficiënte Methodiek voor ERva-
ringsGericht Onderwijs). We implementeerden achtereenvolgens het domeinmodel, de
werkomgevingen voor de verschillende rollen en de initiële set van platformcomponen-
ten, waarbij we meer gedetailleerde ontwerpbeslissingen namen. Om de uitbreiding
met nieuwe componenten te faciliteren, besloten we om één enkele editor te ontwer-
pen voor het invoeren, valideren, previewen en testen van de game-inhoud van alle
componenten. We besloten ook om één enkele afspeelomgeving te ontwerpen voor de
afhandeling van de presentatie en adaptatie van platformcomponenten, van studentac-
ties en gamescript, en van de opslag van de studentvoortgang voor analyse tijdens en
na een game.

Uit de eerste evaluaties bleek dat we erin geslaagd zijn om een generiek, duurzaam en
uitbreidbaar platform te ontwerpen en te ontwikkelen dat een snelle en flexibele ont-
wikkeling en uitlevering van een breed scala aan scenariogebaseerde serious games
faciliteert.

Het platform is inderdaad generiek. Een set van diverse componenten faciliteert het
invoeren, spelen en monitoren van een grote verscheidenheid aan gamescenario’s,
zoals blijkt uit 26 games die door verschillende online-universiteiten voor zes inhouds-
domeinen zijn ontwikkeld. Verschillende werkomgevingen integreren het ontwikkelen,
uitleveren en spelen van games in één systeem. Daarnaast is het platform behalve voor
onderwijs ook voor onderzoek te gebruiken.

De duurzaamheid van het platform blijkt uit de volgende feiten: (i) het is jarenlang ge-
bruikt om tientallen games te ontwikkelen voor in totaal duizenden studenten; (ii) het
aantal componenten is gestegen van aanvankelijk 12 naar 30 op dit moment; en (iii) de
als eerste ontwikkelde games worden nog steeds gebruikt.

De uitbreidbaarheid van het platform wordt gefaciliteerd door: i) het generieke compo-
nentontwerp dat dient als een sjabloon voor het definiëren van nieuwe componenten
en hun structuur, eigenschappen, inhoud en onderlinge afhankelijkheden; ii) de platte
structuur van de componenten, waarbij afhankelijkheden worden gedefinieerd door
relaties in plaats van door een hiërarchie; en iii) de meerlagige platformarchitectuur, die
verschillende verantwoordelijkheden en processen netjes scheidt.

Het platform faciliteert snelle en flexibele game-ontwikkeling. Docenten gebruiken de
auteursomgeving om game-inhoud in te voeren, kunnen reeds ontwikkelde componen-
ten en game-inhoud hergebruiken, en kunnen een game op elk gewenst moment pre-
viewen en testen. Dit heeft geresulteerd in efficiëntere game-ontwikkeling, zoals blijkt

Samenvatting

178

uit een afname van de productietijd met een factor drie tot vier in vergelijking met
eerder gevonden waarden (ongeveer 25 tot 30 uur ontwikkeltijd voor één uur studietijd
in plaats van ongeveer 100 uur voorheen). De Script-component faciliteert het aanpas-
sen van de afspeelomgeving voor de individuele leerling en het aanpassen van zijn eigen
werking door delen van gamescript te kunnen in- of uitschakelen. Daarnaast is het mo-
gelijk om reeds uitgeleverde games aan te passen waarbij de aanpassingen direct be-
schikbaar zijn voor studenten, bijvoorbeeld bij onvolkomenheden of een stapsgewijze
uitrol van de game.

Het platform faciliteert ook een snelle en flexibele game-uitlevering. Webgebaseerde
uitlevering zorgt voor een snelle en eenvoudige uitlevering van games, en van updates
van games en het platform zelf. De afspeelomgeving stelt docenten in staat om hun
eigen uitdagende, authentieke en aanpasbare omgevingen aan te bieden aan studen-
ten. Ook kunnen docenten binnen de game terugkoppeling geven door een e-mail te
verzenden namens een virtuele persoon, bijvoorbeeld bij tegenvallende of uitstekende
prestaties van studenten. Beheerders kunnen game-runs van eenzelfde game verschil-
lend configureren, waardoor verschillende versies van een game aan verschillende
doelgroepen kunnen worden uitgeleverd, bijvoorbeeld tijdens wetenschappelijke expe-
rimenten. Ook kunnen beheerders de voortgang van studenten aanpassen tijdens een
game-run, waardoor studenten direct kunnen worden geholpen in geval van problemen
of een groep studenten tegelijkertijd in een andere game-toestand kan worden gezet,
bijvoorbeeld een volgend game-level. De eerste evaluaties toonden ook aan dat we erin
geslaagd zijn om een intuïtieve en meeslepende afspeelomgeving te ontwerpen en te
ontwikkelen, wat bleek uit het feit dat studenten tevreden tot zeer tevreden waren
over de gebruikersinterface.

De eerste aanvullende ontwerpvraag

We zijn er niet volledig in geslaagd om een gebruiksvriendelijke auteursomgeving te
ontwerpen en te ontwikkelen. Sommige docenten hadden moeite om de Script-
component zonder hulp te gebruiken en alle docenten vonden twee componenten, de
Script- en Gesprekken-component, moeilijk te gebruiken. We vroegen ons af hoe de
gebruiksvriendelijkheid van auteursomgevingen voor serious games in het algemeen
verbeterd zou kunnen worden, wat leidde tot de eerste aanvullende ontwerpvraag die
nader onderzocht is voor dit proefschrift: Hoe kan de gebruiksvriendelijkheid van au-
teursomgevingen voor serious games verbeterd worden?

We hebben een diepgaande kwalitatieve studie naar de gebruiksvriendelijkheid van de
EMERGO-auteursomgeving uitgevoerd door een aantal auteurs te interviewen.

De gebruiksvriendelijkheid van de auteursomgeving bleek problematisch wat betreft
begrijpelijkheid en leerbaarheid, wat in lijn is met bevindingen voor vergelijkbare omge-

Samenvatting

179

vingen die ook tekortkomingen vertoonden wat betreft deze aspecten. Operabiliteit
bleek enigszins problematisch en functionaliteit en betrouwbaarheid werden positief
gewaardeerd.

De problematische gebruiksvriendelijkheid blijkt te worden veroorzaakt door een gebrek
aan begeleiding en ondersteuning van auteurs, maar waarschijnlijk ook door de inhe-
rente complexiteit van de platformcomponenten, waarmee auteurs tijdens het invoe-
ren geconfronteerd worden. De complexiteit blijkt voor de meeste componenten laag
te zijn, voor sommige gemiddeld en voor één, de Script-component, hoog. De gebruiks-
vriendelijkheid kan worden verbeterd door begeleiding en ondersteuning toe te voe-
gen, maar een verbeterde gebruiksvriendelijkheid zal weinig invloed hebben op de
inherente complexiteit van de componenten. Daarnaast wordt de game-inhoud op een
vrij gedetailleerd en laag niveau ingevoerd, waarbij het assembleren van gamescript
dicht tegen programmeren aan ligt. Dit maakt de auteursomgeving aan de ene kant
krachtig en flexibel, maar aan de andere kant waarschijnlijk moeilijker te begrijpen, wat
een andere oorzaak kan zijn voor de gevonden problematische begrijpelijkheid en leer-
baarheid.

Op basis van de opmerkingen van geïnterviewden hebben we richtlijnen opgesteld om
de gebruiksvriendelijkheid van auteursomgevingen voor serious games te verbeteren,
wat betreft hun begrijpelijkheid en leerbaarheid.

Om de begrijpelijkheid te verbeteren bevelen we aan om:
(i) Het invoeren van game-inhoud te vereenvoudigen door een intuïtieve gebruik-

ersinterface aan te bieden, die per type gebruiker kan verschillen;
(ii) De complexiteit te verminderen door twee niveaus van invoer aan te bieden, sim-

pel voor beginners en geavanceerd voor gevorderden;
(iii) Voorbeelden te geven van scenario's, games en componenten en hun onderlinge

relaties, zodat gebruikers beter begrijpen wat ze moeten doen;
(iv) Een preview-optie aan te bieden die het mogelijk maakt om op elk moment inge-

voerde game-inhoud te previewen, zodat auteurs beter begrijpen wat ze doen; en
(v) Duidelijke terminologie te gebruiken die aansluit bij de verwachtingen van de

gebruikers.

Om de leerbaarheid te verbeteren bevelen we aan om:
(i) Duidelijke instructies en wizards aan te bieden om gebruikers tijdens het invoeren

te begeleiden; en
(ii) Informatie aan te bieden over de didactiek en het gebruik van de componenten,

zodat beginnende gebruikers een snelle start kunnen maken.
Deze richtlijnen lijken algemeen en (deels) toepasbaar te zijn op andere specifieke ty-
pen auteursomgevingen.

Samenvatting

180

De tweede aanvullende ontwerpvraag

De eerste evaluaties van de afspeelomgeving toonden aan dat studenten tevreden tot
zeer tevreden waren over de gebruikersinterface. We hadden de gebruiksvriendelijk-
heid echter niet in detail geëvalueerd en waren benieuwd of studenten nog steeds
tevreden waren en zo niet, hoe we de gebruiksvriendelijkheid zouden kunnen verbete-
ren. We vroegen ons af hoe de gebruiksvriendelijkheid van afspeelomgevingen voor
serious games in het algemeen verbeterd zou kunnen worden, wat leidde tot de tweede
aanvullende ontwerpvraag die nader onderzocht is voor dit proefschrift: Hoe kan de
gebruiksvriendelijkheid van afspeelomgevingen voor serious games verbeterd worden?

We hebben een gedetailleerde studie naar de gebruiksvriendelijkheid van de EMERGO-
afspeelomgeving uitgevoerd door zowel kwantitatieve als kwalitatieve onderzoeksme-
thoden toe te passen op een groep studenten.

De gebruiksvriendelijkheid van de afspeelomgeving bleek vrij laag te zijn. Kwantitatieve
analyse toonde aan dat de gebruiksvriendelijkheid tussen "ok" en "goed" was, wat lager
is dan gevonden voor webapplicaties in het algemeen. De operabiliteit van de omgeving
en de begrijpelijkheid van zijn verschillende componenten werden als "voldoende" be-
oordeeld. Kwalitatieve analyse toonde echter aan dat studenten overwegend positief
waren over de operabiliteit van de omgeving, en relatief negatief over de begrijpelijk-
heid en de esthetiek van de gebruikersinterface (die zorgt voor een aangename en be-
vredigende interactie voor de gebruiker). Ze misten bedieningsinstructies en zouden
graag willen opereren in een meer realistische en dynamische, en minder gestructu-
reerde omgeving waarin ze meer controle hebben. Daarnaast was de functionaliteit van
de omgeving enigszins problematisch. De betrouwbaarheid werd overwegend positief
gewaardeerd.

De gevonden lage gebruiksvriendelijkheid kan worden veroorzaakt door de jonge leeftijd
van de studenten, waardoor ze waarschijnlijk meer vertrouwd waren met het spelen
van videogames die een dynamische omgeving bieden waarin ze meer controle hebben.
De voor de evaluatie gebruikte games kunnen ook kinderziekten hebben gehad en kun-
nen te beperkend of niet uitdagend, plezierig of opwindend genoeg zijn geweest. Hoe-
wel het platform het creëren van realistische, dynamische en open omgevingen waarin
studenten controle hebben faciliteert, kunnen game-ontwikkelaars hun redenen heb-
ben om dit potentieel niet te gebruiken.

Op basis van de opmerkingen van respondenten hebben we richtlijnen opgesteld om de
gebruiksvriendelijkheid van afspeelomgevingen voor serious games te verbeteren:
(i) Stem de interface van de omgeving zoveel mogelijk af op de verwachtingen van de

beoogde gebruikers;
(ii) Biedt een tijdlijn om de voortgang van de gebruiker in tijd en leren te tonen;
(iii) Gebruik scores om de gebruiker te stimuleren om beter te presteren;

Samenvatting

181

(iv) Laat gebruikers hun eigen vragen formuleren door gebruik te maken van tekst- of
spraakanalyse;

(v) Gebruik tekstanalyse van rapporten om inhoudelijke terugkoppeling te kunnen
geven;

(vi) Presenteer bedieningsinstructies op het juiste moment;
(vii) Gebruik geluiden om de interactie tussen een gebruiker en de omgeving te onder-

steunen; en
(viii) Presenteer altijd duidelijke meldingen bij fouten of tijdrovende processen.

Conclusies

Het EMERGO-platform maakt een efficiëntere ontwikkeling van serious games mogelijk
(algemene ontwerpvraag), waardoor het platform geschikt is voor kleinere doelgroepen
die vaak in het hoger onderwijs te vinden zijn, bijvoorbeeld voor een specifieke cursus in
een specifiek inhoudsdomein. De mogelijkheden om de games tijdens de ontwikkeling
op elk gewenst moment te kunnen previewen en testen, en om gamescript te kunnen
invoeren zonder te hoeven programmeren, faciliteren specifieke ontwikkelteamleden
zoals docenten en domeinexperts. Adaptatie aan de individuele student, game-
evaluatie en -onderzoek naar leereffecten worden gefaciliteerd door uitgebreide opslag
van de voortgang van studenten en data analyse met behulp van gamescript.

Dankzij zijn onafhankelijkheid van besturingssystemen en het gebruik van opensource-
software zouden online-universiteiten in staat moeten zijn om het platform eenvoudig
te installeren en te gebruiken. Het platform wordt echter niet op grote schaal gebruikt,
hoewel dat oorspronkelijk wel de bedoeling was. Door de jaren heen is het platform
langdurig gebruikt door drie andere instellingen voor online-onderwijs in Nederland.
Diverse andere (inter)nationale onderwijsinstellingen hebben kennis genomen van het
platform waarvan sommige het verkennend hebben gebruikt.

Een breder gebruik van het platform en een bredere toepassing van serious games
zouden kunnen worden bevorderd door toekomstige verbeteringen wat betreft ge-
bruiksvriendelijkheid (aanvullende ontwerpvragen) op basis van de gepresenteerde
richtlijnen en mogelijke nieuwe uitbreidingen, zoals een scenario-editor om auteurs
beter te ondersteunen bij het ontwerpen van games en om het invoeren te vereenvou-
digen, en een 'onderzoeker' rol om onderwijskundig onderzoek en game-evaluatie beter
te ondersteunen.

Het platform en zijn achterliggende ideeën, architectuur, evaluaties en toekomstige
ontwikkeling, zoals gepresenteerd in dit proefschrift, zullen naar verwachting bijdragen
aan nieuwe ontwikkelingen en onderzoek op het gebied van de ontwikkeling van se-
rious games, instructie-ontwerp en online onderwijs.

183

Dankwoord
Dankwoord

Dankwoord

Dankwoord

185

Graag bedank ik iedereen die een rol heeft gespeeld bij de totstandkoming van dit
proefschrift. Vele helpende handen hebben de route naar de top mogelijk gemaakt. Ik
verontschuldig mij bij voorbaat dat ik niet iedereen kan noemen.

Allereerst wil ik mijn promotores Rob Koper en Hans Hummel bedanken. Zij hebben
erop vertrouwd dat ik de top zou halen, ook als ik het zicht op de top even kwijt was.
Rob heeft me de mogelijkheid geboden om dit proefschrift te schrijven en heeft vooral
in het begin erg veel tijd en energie geïnvesteerd en dat waardeer ik zeer. Hans, mijn
steun en toeverlaat, heeft altijd voor me klaar gestaan. Zijn veelvuldige en uitgebreide
feedback wat betreft aanpak, opbouw, inhoud en Engels van de verschillende hoofd-
stukken, en wat betreft de statistische analyse was van onschatbare waarde en heeft
me op het goede pad gehouden.
Daarnaast dank ik Saskia Brand-Gruwel en Jos van den Broek voor het in mij gestelde
vertrouwen en voor het bieden van de personele en financiële randvoorwaarden om dit
proefschrift te kunnen schrijven.
Dan wil ik mijn reisgenoot Hub Kurvers bedanken. Zonder zijn vele werk was dit proef-
schrift er niet geweest. Als mede-architect, -ontwikkelaar en -beheerder van het
EMERGO-platform en zijn componenten, en niet te vergeten als klankbord, heeft hij
zeer bijgedragen aan het bereiken van de top. Ook zijn steun tijdens het promotietra-
ject was onmisbaar.

Ik wil tevens de vele anderen bedanken die ervoor hebben gezorgd dat het EMERGO-
platform kon worden ontwikkeld, gebruikt, doorontwikkeld of geëvalueerd. Zij vervul-
den vele verschillende rollen zoals: manager, lid van een stuurgroep, projectleider,
didactisch ontwerper, scenarioschrijver, interactieontwerper, inhoudsdeskundige, au-
teur van game-inhoud, expert, acteur, regisseur, cameraman, video-editor, geïnter-
viewde, onderzoeker, ICT-beheerder, docent of student.
Allereerst bedank ik mijn OUNL-collega’s die hebben bijgedragen aan vele projecten:
Wim Westera, Hans Hummel, Rob Nadolski, Henk van den Brink, Jeroen Storm en Hub
Kurvers. Veel dank voor jullie inbreng en voor de goede en fijne samenwerking.
Specifiek voor hun bijdrage aan het EMERGO project bedank ik: collega’s van de OUNL,
met name Colin Tattersall, Ruud Hoefakker en Ron Cörvers, en medewerkers van de
Universiteit Utrecht, met name Carel Dieperink.
Voor hun bijdrage aan het Skills Labs project bedank ik: collega’s van de OUNL, met
name Ansje Löhr, Angelique Lansu, Daisy Tysmans en Mimi Crijns, en medewerkers van
Hogeschool Zeeland en Kennis Netwerk Delta Water, met name Tony van der Hiele,
Jasper van Houcke en Tjeerd Blauw.
Voor hun bijdrage aan de game-ontwikkeling bij de OUNL-cursus Seksuologie bedank ik:
collega’s van de OUNL, met name Henk van den Brink, Arjan Bos en Perry Pintar, en
freelancer Mark Handels.
Voor hun deelname aan de interviews bedank ik: Henk van den Brink en Hub Kurvers.

Dankwoord

186

Voor hun bijdrage aan het SLEM-project bedank ik: collega’s van de OUNL, medewer-
kers van Stichting Praktijkleren, met name Ton Remeeus, Martin van Kollenburg en
Mark Hector, en docenten en studenten van de vier deelnemende ROC’s: Aventus,
Nova College, roc van Twente en Zadkine.
Daarnaast dank ik iedereen die heeft bijgedragen aan een groot aantal niet in dit proef-
schrift beschreven projecten, die ofwel onderwijs ofwel onderzoek als oogmerk hadden.
Meer specifiek bedank ik iedereen die heeft meegewerkt aan de productie van de vele
uren video die hebben bijgedragen aan het succes van het platform.
Ik dank ook mijn OUNL-collega’s die meer op de achtergrond het nodige werk hebben
verricht. Bij het beheer van het platform was de bijdrage van medewerkers van GSO
essentieel. Ook de bijdrage van medewerkers van de faculteit PenOW was essentieel. Zij
hebben gefungeerd als inhoudsdeskundige, expert, acteur, of adviseur, of speelden een
rol op administratief of secretarieel gebied. Meer specifiek bedank ik Mieke Haemers
voor haar steun bij alle formaliteiten rondom de afronding van het promotietraject en
de laatste correcties van het proefschrift, en Jeroen Berkhout voor de opmaak van de
figuren in het proefschrift.

In het bijzonder wil ik Hans Hummel, Rob Nadolski en Hub Kurvers bedanken. Jullie zijn
van meet af aan nauw betrokken geweest bij de ontwikkeling van het EMERGO-
platform. Het is dan ook geen toeval dat Hans mijn dagelijks begeleider is geworden en
Rob en Hub mijn paranimfen. Dank jullie, jongens, voor jullie inzet, steun en kameraad-
schap. Rob en Hans, deze laatste Tour zit erop, maar met jullie wil ik er nog wel de Giro
of de Vuelta rijden.

Ik wil ook mijn collega’s, familie, vrienden en kennissen bedanken voor de getoonde
belangstelling, hun luisterend oor en hun goede raad. Een promotietraject vreet ener-
gie, maar gelukkig kon ik mijn accu altijd weer opladen bij de kookclub, muziekgroep
Multivocaal, bij het meditatief zingen, bij de Djembe Folas en bij mijn tennismaten.
Lieve mensen, dank hiervoor.

En natuurlijk wil ik ook mijn gezin bedanken. Zij hebben mij tijdens het promotietraject
met hun liefde, adviezen en aanwezigheid gesteund en waren getuige van mijn pieken
en dalen, en van mijn verminderde aanwezigheid. Vanaf nu ben ik er weer voor 100%!

Heerlen, juli 2018

Het werk gepresenteerd in hoofdstuk 2 en 3 is medegefinancieerd door stichting SURF,
de ICT-samenwerkingsorganisatie van het onderwijs en onderzoek in Nederland
(https://www.surf.nl/).

187

SIKS dissertation series
SIKS dissertation series

SIKS dissertation series

SIKS dissertation series

189

The complete list of dissertations carried out under the auspices of SIKS, the Dutch Research School for Infor-
mation and Knowledge Systems from 1998 on can be found at http://www.siks.nl/dissertations.php.
2011-01 Botond Cseke (RUN)

Variational Algorithms for Bayesian In-
ference in Latent Gaussian Models

2011-02 Nick Tinnemeier (UU)
Organizing Agent Organizations. Syn-
tax and Operational Semantics of an
Organization-Oriented Programming
Language

2011-03 Jan Martijn van der Werf (TUE)
Compositional Design and Verification
of Component-Based Information Sys-
tems

2011-04 Hado van Hasselt (UU)
Insights in Reinforcement Learning;
Formal analysis and empirical evalua-
tion of temporal-difference learning
algorithms

2011-05 Base van der Raadt (VU)
Enterprise Architecture Coming of Age
- Increasing the Performance of an
Emerging Discipline.

2011-06 Yiwen Wang (TUE)
Semantically-Enhanced Recommenda-
tions in Cultural Heritage

2011-07 Yujia Cao (UT)
Multimodal Information Presentation
for High Load Human Computer Inte-
raction

2011-08 Nieske Vergunst (UU)
BDI-based Generation of Robust Task-
Oriented Dialogues

2011-09 Tim de Jong (OU)
Contextualised Mobile Media for
Learning

2011-10 Bart Bogaert (UvT)
Cloud Content Contention

2011-11 Dhaval Vyas (UT)
Designing for Awareness: An Expe-
rience-focused HCI Perspective

2011-12 Carmen Bratosin (TUE)
Grid Architecture for Distributed Pro-
cess Mining

2011-13 Xiaoyu Mao (UvT)
Airport under Control. Multiagent
Scheduling for Airport Ground Han-
dling

2011-14 Milan Lovric (EUR)
Behavioral Finance and Agent-Based
Artificial Markets

2011-15 Marijn Koolen (UvA)
The Meaning of Structure: the Value
of Link Evidence for Information Re-
trieval

2011-16 Maarten Schadd (UM)
Selective Search in Games of Different
Complexity

2011-17 Jiyin He (UVA)
Exploring Topic Structure: Coherence,
Diversity and Relatedness

2011-18 Mark Ponsen (UM)
Strategic Decision-Making in complex
games

2011-19 Ellen Rusman (OU)
The Mind ' s Eye on Personal Profiles

2011-20 Qing Gu (VU)
Guiding service-oriented software en-
gineering - A view-based approach

2011-21 Linda Terlouw (TUD)
Modularization and Specification of
Service-Oriented Systems

2011-22 Junte Zhang (UVA)
System Evaluation of Archival Descrip-
tion and Access

2011-23 Wouter Weerkamp (UVA)
Finding People and their Utterances in
Social Media

2011-24 Herwin van Welbergen (UT)
Behavior Generation for Interpersonal
Coordination with Virtual Humans On
Specifying, Scheduling and Realizing
Multimodal Virtual Human Behavior

2011-25 Syed Waqar ul Qounain Jaffry (VU)
Analysis and Validation of Models for
Trust Dynamics

SIKS dissertation series

190

2011-26 Matthijs Aart Pontier (VU)
Virtual Agents for Human Communica-
tion - Emotion Regulation and In-
volvement-Distance Trade-Offs in Em-
bodied Conversational Agents and Ro-
bots

2011-27 Aniel Bhulai (VU)
Dynamic website optimization through
autonomous management of design
patterns

2011-28 Rianne Kaptein (UVA)
Effective Focused Retrieval by Exploi-
ting Query Context and Document
Structure

2011-29 Faisal Kamiran (TUE)
Discrimination-aware Classification

2011-30 Egon van den Broek (UT)
Affective Signal Processing (ASP): Un-
raveling the mystery of emotions

2011-31 Ludo Waltman (EUR)
Computational and Game-Theoretic
Approaches for Modeling Bounded Ra-
tionality

2011-32 Nees-Jan van Eck (EUR)
Methodological Advances in Bibliome-
tric Mapping of Science

2011-33 Tom van der Weide (UU)
Arguing to Motivate Decisions

2011-34 Paolo Turrini (UU)
Strategic Reasoning in Interdepen-
dence: Logical and Game-theoretical
Investigations

2011-35 Maaike Harbers (UU)
Explaining Agent Behavior in Virtual
Training

2011-36 Erik van der Spek (UU)
Experiments in serious game design: a
cognitive approach

2011-37 Adriana Burlutiu (RUN)
Machine Learning for Pairwise Data,
Applications for Preference Learning
and Supervised Network Inference

2011-38 Nyree Lemmens (UM)
Bee-inspired Distributed Optimization

2011-39 Joost Westra (UU)
Organizing Adaptation using Agents in
Serious Games

2011-40 Viktor Clerc (VU)
Architectural Knowledge Management
in Global Software Development

2011-41 Luan Ibraimi (UT)
Cryptographically Enforced Distributed
Data Access Control

2011-42 Michal Sindlar (UU)
Explaining Behavior through Mental
State Attribution

2011-43 Henk van der Schuur (UU)
Process Improvement through Soft-
ware Operation Knowledge

2011-44 Boris Reuderink (UT)
Robust Brain-Computer Interfaces

2011-45 Herman Stehouwer (UvT)
Statistical Language Models for Alter-
native Sequence Selection

2011-46 Beibei Hu (TUD)
Towards Contextualized Information
Delivery: A Rule-based Architecture for
the Domain of Mobile Police Work

2011-47 Azizi Bin Ab Aziz (VU)
Exploring Computational Models for
Intelligent Support of Persons with
Depression

2011-48 Mark Ter Maat (UT)
Response Selection and Turn-taking
for a Sensitive Artificial Listening Agent

2011-49 Andreea Niculescu (UT)
Conversational interfaces for task-
oriented spoken dialogues: design as-
pects influencing interaction quality

2012-01 Terry Kakeeto (UvT)
Relationship Marketing for SMEs in
Uganda

2012-02 Muhammad Umair (VU)
Adaptivity, emotion, and Rationality in
Human and Ambient Agent Models

2012-03 Adam Vanya (VU)
Supporting Architecture Evolution by
Mining Software Repositories

SIKS dissertation series

191

2012-04 Jurriaan Souer (UU)
Development of Content Management
System-based Web Applications

2012-05 Marijn Plomp (UU)
Maturing Interorganisational Informa-
tion Systems

2012-06 Wolfgang Reinhardt (OU)
Awareness Support for Knowledge
Workers in Research Networks

2012-07 Rianne van Lambalgen (VU)
When the Going Gets Tough: Exploring
Agent-based Models of Human Per-
formance under Demanding Condi-
tions

2012-08 Gerben de Vries (UVA)
Kernel Methods for Vessel Trajectories

2012-09 Ricardo Neisse (UT)
Trust and Privacy Management Sup-
port for Context-Aware Service Plat-
forms

2012-10 David Smits (TUE)
Towards a Generic Distributed Adap-
tive Hypermedia Environment

2012-11 J.C.B. Rantham Prabhakara (TUE)
Process Mining in the Large: Prepro-
cessing, Discovery, and Diagnostics

2012-12 Kees van der Sluijs (TUE)
Model Driven Design and Data Integra-
tion in Semantic Web Information Sys-
tems

2012-13 Suleman Shahid (UvT)
Fun and Face: Exploring non-verbal
expressions of emotion during playful
interactions

2012-14 Evgeny Knutov (TUE)
Generic Adaptation Framework for
Unifying Adaptive Web-based Systems

2012-15 Natalie van der Wal (VU)
Social Agents. Agent-Based Modelling
of Integrated Internal and Social Dy-
namics of Cognitive and Affective Pro-
cesses.

2012-16 Fiemke Both (VU)
Helping people by understanding
them - Ambient Agents supporting
task execution and depression
treatment

2012-17 Amal Elgammal (UvT)
Towards a Comprehensive Framework
for Business Process Compliance

2012-18 Eltjo Poort (VU)
Improving Solution Architecting Prac-
tices

2012-19 Helen Schonenberg (TUE)
What's Next? Operational Support for
Business Process Execution

2012-20 Ali Bahramisharif (RUN)
Covert Visual Spatial Attention, a Ro-
bust Paradigm for Brain-Computer In-
terfacing

2012-21 Roberto Cornacchia (TUD)
Querying Sparse Matrices for Informa-
tion Retrieval

2012-22 Thijs Vis (UvT)
Intelligence, politie en veiligheids-
dienst: verenigbare grootheden?

2012-23 Christian Muehl (UT)
Toward Affective Brain-Computer In-
terfaces: Exploring the Neurophysiolo-
gy of Affect during Human Media Inte-
raction

2012-24 Laurens van der Werff (UT)
Evaluation of Noisy Transcripts for
Spoken Document Retrieval

2012-25 Silja Eckartz (UT)
Managing the Business Case Deve-
lopment in Inter-Organizational IT Pro-
jects: A Methodology and its Applica-
tion

2012-26 Emile de Maat (UVA)
Making Sense of Legal Text

2012-27 Hayrettin Gurkok (UT)
Mind the Sheep! User Experience Eva-
luation & Brain-Computer Interface
Games

SIKS dissertation series

192

2012-28 Nancy Pascall (UvT)
Engendering Technology Empowering
Women

2012-29 Almer Tigelaar (UT)
Peer-to-Peer Information Retrieval

2012-30 Alina Pommeranz (TUD)
Designing Human-Centered Systems
for Reflective Decision Making

2012-31 Emily Bagarukayo (RUN)
A Learning by Construction Approach
for Higher Order Cognitive Skills Im-
provement, Building Capacity and In-
frastructure

2012-32 Wietske Visser (TUD)
Qualitative multi-criteria preference
representation and reasoning

2012-33 Rory Sie (OUN)
Coalitions in Cooperation Networks
(COCOON)

2012-34 Pavol Jancura (RUN)
Evolutionary analysis in PPI networks
and applications

2012-35 Evert Haasdijk (VU)
Never Too Old To Learn -- On-line Evo-
lution of Controllers in Swarm- and
Modular Robotics

2012-36 Denis Ssebugwawo (RUN)
Analysis and Evaluation of Collabora-
tive Modeling Processes

2012-37 Agnes Nakakawa (RUN)
A Collaboration Process for Enterprise
Architecture Creation

2012-38 Selmar Smit (VU)
Parameter Tuning and Scientific Tes-
ting in Evolutionary Algorithms

2012-39 Hassan Fatemi (UT)
Risk-aware design of value and coor-
dination networks

2012-40 Agus Gunawan (UvT)
Information Access for SMEs in In-
donesia

2012-41 Sebastian Kelle (OU)
Game Design Patterns for Learning

2012-42 Dominique Verpoorten (OU)
Reflection Amplifiers in self-regulated
Learning

2012-43 Withdrawn

2012-44 Anna Tordai (VU)
On Combining Alignment Techniques

2012-45 Benedikt Kratz (UvT)
A Model and Language for Business-
aware Transactions

2012-46 Simon Carter (UVA)
Exploration and Exploitation of Multi-
lingual Data for Statistical Machine
Translation

2012-47 Manos Tsagkias (UVA)
Mining Social Media: Tracking Content
and Predicting Behavior

2012-48 Jorn Bakker (TUE)
Handling Abrupt Changes in Evolving
Time-series Data

2012-49 Michael Kaisers (UM)
Learning against Learning - Evolutiona-
ry dynamics of reinforcement learning
algorithms in strategic interactions

2012-50 Steven van Kervel (TUD)
Ontologogy driven Enterprise Informa-
tion Systems Engineering

2012-51 Jeroen de Jong (TUD)
Heuristics in Dynamic Sceduling; a
practical framework with a case study
in elevator dispatching

2013-01 Viorel Milea (EUR)
News Analytics for Financial Decision
Support

2013-02 Erietta Liarou (CWI)
MonetDB/DataCell: Leveraging the Co-
lumn-store Database Technology for
Efficient and Scalable Stream Proces-
sing

2013-03 Szymon Klarman (VU)
Reasoning with Contexts in Descrip-
tion Logics

2013-04 Chetan Yadati (TUD)
Coordinating autonomous planning
and scheduling

SIKS dissertation series

193

2013-05 Dulce Pumareja (UT)
Groupware Requirements Evolutions
Patterns

2013-06 Romulo Goncalves (CWI)
The Data Cyclotron: Juggling Data and
Queries for a Data Warehouse Au-
dience

2013-07 Giel van Lankveld (UvT)
Quantifying Individual Player Diffe-
rences

2013-08 Robbert-Jan Merk (VU)
Making enemies: cognitive modeling
for opponent agents in fighter pilot
simulators

2013-09 Fabio Gori (RUN)
Metagenomic Data Analysis: Computa-
tional Methods and Applications

2013-10 Jeewanie Jayasinghe Arachchige (UvT)
A Unified Modeling Framework for
Service Design.

2013-11 Evangelos Pournaras (TUD)
Multi-level Reconfigurable Self-
organization in Overlay Services

2013-12 Marian Razavian (VU)
Knowledge-driven Migration to Ser-
vices

2013-13 Mohammad Safiri (UT)
Service Tailoring: User-centric creation
of integrated IT-based homecare ser-
vices to support independent living of
elderly

2013-14 Jafar Tanha (UVA)
Ensemble Approaches to Semi-
Supervised Learning Learning

2013-15 Daniel Hennes (UM)
Multiagent Learning - Dynamic Games
and Applications

2013-16 Eric Kok (UU)
Exploring the practical benefits of ar-
gumentation in multi-agent delibe-
ration

2013-17 Koen Kok (VU)
The PowerMatcher: Smart Coordina-
tion for the Smart Electricity Grid

2013-18 Jeroen Janssens (UvT)
Outlier Selection and One-Class Classi-
fication

2013-19 Renze Steenhuizen (TUD)
Coordinated Multi-Agent Planning and
Scheduling

2013-20 Katja Hofmann (UvA)
Fast and Reliable Online Learning to
Rank for Information Retrieval

2013-21 Sander Wubben (UvT)
Text-to-text generation by monolin-
gual machine translation

2013-22 Tom Claassen (RUN)
Causal Discovery and Logic

2013-23 Patricio de Alencar Silva (UvT)
Value Activity Monitoring

2013-24 Haitham Bou Ammar (UM)
Automated Transfer in Reinforcement
Learning

2013-25 Agnieszka Anna Latoszek-Berendsen
(UM)
Intention-based Decision Support. A
new way of representing and imple-
menting clinical guidelines in a Deci-
sion Support System

2013-26 Alireza Zarghami (UT)
Architectural Support for Dynamic
Homecare Service Provisioning

2013-27 Mohammad Huq (UT)
Inference-based Framework Managing
Data Provenance

2013-28 Frans van der Sluis (UT)
When Complexity becomes Inte-
resting: An Inquiry into the Informa-
tion eXperience

2013-29 Iwan de Kok (UT)
Listening Heads

2013-30 Joyce Nakatumba (TUE)
Resource-Aware Business Process Ma-
nagement: Analysis and Support

2013-31 Dinh Khoa Nguyen (UvT)
Blueprint Model and Language for En-
gineering Cloud Applications

SIKS dissertation series

194

2013-32 Kamakshi Rajagopal (OUN)
Networking For Learning; The role of
Networking in a Lifelong Learner's Pro-
fessional Development

2013-33 Qi Gao (TUD)
User Modeling and Personalization in
the Microblogging Sphere

2013-34 Kien Tjin-Kam-Jet (UT)
Distributed Deep Web Search

2013-35 Abdallah El Ali (UvA)
Minimal Mobile Human Computer In-
teraction

2013-36 Than Lam Hoang (TUe)
Pattern Mining in Data Streams

2013-37 Dirk Börner (OUN)
Ambient Learning Displays

2013-38 Eelco den Heijer (VU)
Autonomous Evolutionary Art

2013-39 Joop de Jong (TUD)
A Method for Enterprise Ontology ba-
sed Design of Enterprise Information
Systems

2013-40 Pim Nijssen (UM)
Monte-Carlo Tree Search for Multi-
Player Games

2013-41 Jochem Liem (UVA)
Supporting the Conceptual Modelling
of Dynamic Systems: A Knowledge En-
gineering Perspective on Qualitative
Reasoning

2013-42 Léon Planken (TUD)
Algorithms for Simple Temporal Rea-
soning

2013-43 Marc Bron (UVA)
Exploration and Contextualization
through Interaction and Concepts

2014-01 Nicola Barile (UU)
Studies in Learning Monotone Models
from Data

2014-02 Fiona Tuliyano (RUN)
Combining System Dynamics with a
Domain Modeling Method

2014-03 Sergio Raul Duarte Torres (UT)
Information Retrieval for Children:
Search Behavior and Solutions

2014-04 Hanna Jochmann-Mannak (UT)
Websites for children: search strate-
gies and interface design - Three stu-
dies on children's search performance
and evaluation

2014-05 Jurriaan van Reijsen (UU)
Knowledge Perspectives on Advancing
Dynamic Capability

2014-06 Damian Tamburri (VU)
Supporting Networked Software Deve-
lopment

2014-07 Arya Adriansyah (TUE)
Aligning Observed and Modeled Beha-
vior

2014-08 Samur Araujo (TUD)
Data Integration over Distributed and
Heterogeneous Data Endpoints

2014-09 Philip Jackson (UvT)
Toward Human-Level Artificial Intelli-
gence: Representation and Computa-
tion of Meaning in Natural Language

2014-10 Ivan Salvador Razo Zapata (VU)
Service Value Networks

2014-11 Janneke van der Zwaan (TUD)

 An Empathic Virtual Buddy for Social
Support

2014-12 Willem van Willigen (VU)
Look Ma, No Hands: Aspects of Auto-
nomous Vehicle Control

2014-13 Arlette van Wissen (VU)
Agent-Based Support for Behavior
Change: Models and Applications in
Health and Safety Domains

2014-14 Yangyang Shi (TUD)
Language Models With Meta-
information

SIKS dissertation series

195

2014-15 Natalya Mogles (VU)
Agent-Based Analysis and Support of
Human Functioning in Complex Socio-
Technical Systems: Applications in Sa-
fety and Healthcare

2014-16 Krystyna Milian (VU)
Supporting trial recruitment and de-
sign by automatically interpreting eli-
gibility criteria

2014-17 Kathrin Dentler (VU)
Computing healthcare quality indica-
tors automatically: Secondary Use of
Patient Data and Semantic Interope-
rability

2014-18 Mattijs Ghijsen (UVA)
Methods and Models for the Design
and Study of Dynamic Agent Organiza-
tions

2014-19 Vinicius Ramos (TUE)
Adaptive Hypermedia Courses: Quali-
tative and Quantitative Evaluation and
Tool Support

2014-20 Mena Habib (UT)
Named Entity Extraction and Disambi-
guation for Informal Text: The Missing
Link

2014-21 Kassidy Clark (TUD)
Negotiation and Monitoring in Open
Environments

2014-22 Marieke Peeters (UU)
Personalized Educational Games -
Developing agent-supported scenario-
based training

2014-23 Eleftherios Sidirourgos (UvA/CWI)
Space Efficient Indexes for the Big Da-
ta Era

2014-24 Davide Ceolin (VU)
Trusting Semi-structured Web Data

2014-25 Martijn Lappenschaar (RUN)
New network models for the analysis
of disease interaction

2014-26 Tim Baarslag (TUD)
What to Bid and When to Stop

2014-27 Rui Jorge Almeida (EUR)
Conditional Density Models Integra-
ting Fuzzy and Probabilistic Repre-
sentations of Uncertainty

2014-28 Anna Chmielowiec (VU)
Decentralized k-Clique Matching

2014-29 Jaap Kabbedijk (UU)
Variability in Multi-Tenant Enterprise
Software

2014-30 Peter de Cock (UvT)
Anticipating Criminal Behaviour

2014-31 Leo van Moergestel (UU)
Agent Technology in Agile Multiparal-
lel Manufacturing and Product Sup-
port

2014-32 Naser Ayat (UvA)
On Entity Resolution in Probabilistic
Data

2014-33 Tesfa Tegegne (RUN)
Service Discovery in eHealth

2014-34 Christina Manteli(VU)
The Effect of Governance in Global
Software Development: Analyzing
Transactive Memory Systems.

2014-35 Joost van Ooijen (UU)
Cognitive Agents in Virtual Worlds: A
Middleware Design Approach

2014-36 Joos Buijs (TUE)
Flexible Evolutionary Algorithms for
Mining Structured Process Models

2014-37 Maral Dadvar (UT)
Experts and Machines United Against
Cyberbullying

2014-38 Danny Plass-Oude Bos (UT)
Making brain-computer interfaces bet-
ter: improving usability through post-
processing.

2014-39 Jasmina Maric (UvT)
Web Communities, Immigration, and
Social Capital

2014-40 Walter Omona (RUN)
A Framework for Knowledge Mana-
gement Using ICT in Higher Education

SIKS dissertation series

196

2014-41 Frederic Hogenboom (EUR)
Automated Detection of Financial
Events in News Text

2014-42 Carsten Eijckhof (CWI/TUD)
Contextual Multidimensional Rele-
vance Models

2014-43 Kevin Vlaanderen (UU)
Supporting Process Improvement
using Method Increments

2014-44 Paulien Meesters (UvT)
Intelligent Blauw. Met als ondertitel:
Intelligence-gestuurde politiezorg in
gebiedsgebonden eenheden.

2014-45 Birgit Schmitz (OUN)
Mobile Games for Learning: A Pattern-
Based Approach

2014-46 Ke Tao (TUD)
Social Web Data Analytics: Relevance,
Redundancy, Diversity

2014-47 Shangsong Liang (UVA)
Fusion and Diversification in Informa-
tion Retrieval

2015-01 Niels Netten (UvA)
Machine Learning for Relevance of In-
formation in Crisis Response

2015-02 Faiza Bukhsh (UvT)
Smart auditing: Innovative Compliance
Checking in Customs Controls

2015-03 Twan van Laarhoven (RUN)
Machine learning for network data

2015-04 Howard Spoelstra (OUN)
Collaborations in Open Learning Envi-
ronments

2015-05 Christoph Bösch (UT)
Cryptographically Enforced Search
Pattern Hiding

2015-06 Farideh Heidari (TUD)
Business Process Quality Computation
- Computing Non-Functional Require-
ments to Improve Business Processes

2015-07 Maria-Hendrike Peetz (UvA)
Time-Aware Online Reputation Analy-
sis

2015-08 Jie Jiang (TUD)
Organizational Compliance: An agent-
based model for designing and evalua-
ting organizational interactions

2015-09 Randy Klaassen (UT)
HCI Perspectives on Behavior Change
Support Systems

2015-10 Henry Hermans (OUN)
OpenU: design of an integrated sys-
tem to support lifelong learning

2015-11 Yongming Luo (TUE)
Designing algorithms for big graph da-
tasets: A study of computing bisimula-
tion and joins

2015-12 Julie M. Birkholz (VU)
Modi Operandi of Social Network Dy-
namics: The Effect of Context on
Scientific Collaboration Networks

2015-13 Giuseppe Procaccianti (VU)
Energy-Efficient Software

2015-14 Bart van Straalen (UT)
A cognitive approach to modeling bad
news conversations

2015-15 Klaas Andries de Graaf (VU)
Ontology-based Software Architecture
Documentation

2015-16 Changyun Wei (UT)
Cognitive Coordination for Coopera-
tive Multi-Robot Teamwork

2015-17 André van Cleeff (UT)
Physical and Digital Security Me-
chanisms: Properties, Combinations
and Trade-offs

2015-18 Holger Pirk (CWI)
Waste Not, Want Not! - Managing Re-
lational Data in Asymmetric Memories

2015-19 Bernardo Tabuenca (OUN)
Ubiquitous Technology for Lifelong
Learners

2015-20 Loïs Vanhée (UU)
Using Culture and Values to Support
Flexible Coordination

SIKS dissertation series

197

2015-21 Sibren Fetter (OUN)
Using Peer-Support to Expand and
Stabilize Online Learning

2015-22 Zhemin Zhu (UT)
Co-occurrence Rate Networks

2015-23 Luit Gazendam (VU)
Cataloguer Support in Cultural Heri-
tage

2015-24 Richard Berendsen (UVA)
Finding People, Papers, and Posts:
Vertical Search Algorithms and Evalua-
tion

2015-25 Steven Woudenberg (UU)
Bayesian Tools for Early Disease De-
tection

2015-26 Alexander Hogenboom (EUR)
Sentiment Analysis of Text Guided by
Semantics and Structure

2015-27 Sándor Héman (CWI)
Updating compressed colomn stores

2015-28 Janet Bagorogoza (TiU)
KNOWLEDGE MANAGEMENT AND
HIGH PERFORMANCE; The Uganda Fi-
nancial Institutions Model for HPO

2015-29 Hendrik Baier (UM)
Monte-Carlo Tree Search Enhance-
ments for One-Player and Two-Player
Domains

2015-30 Kiavash Bahreini (OU)
Real-time Multimodal Emotion Reco-
gnition in E-Learning

2015-31 Yakup Koç (TUD)
On the robustness of Power Grids

2015-32 Jerome Gard (UL)
Corporate Venture Management in
SMEs

2015-33 Frederik Schadd (TUD)
Ontology Mapping with Auxiliary Re-
sources

2015-34 Victor de Graaf (UT)
Gesocial Recommender Systems

2015-35 Jungxao Xu (TUD)
Affective Body Language of Humanoid
Robots: Perception and Effects in Hu-
man Robot Interaction

2016-01 Syed Saiden Abbas (RUN)
Recognition of Shapes by Humans and
Machines

2016-02 Michiel Christiaan Meulendijk (UU)
Optimizing medication reviews
through decision support: prescribing
a better pill to swallow

2016-03 Maya Sappelli (RUN)
Knowledge Work in Context: User
Centered Knowledge Worker Support

 2016-04 Laurens Rietveld (VU)
Publishing and Consuming Linked Data

2016-05 Evgeny Sherkhonov (UVA)
Expanded Acyclic Queries: Contain-
ment and an Application in Explaining
Missing Answers

2016-06 Michel Wilson (TUD)
Robust scheduling in an uncertain en-
vironment

2016-07 Jeroen de Man (VU)
Measuring and modeling negative
emotions for virtual training

2016-08 Matje van de Camp (TiU)
A Link to the Past: Constructing Histo-
rical Social Networks from Unstructu-
red Data

2016-09 Archana Nottamkandath (VU)
Trusting Crowdsourced Information on
Cultural Artefacts

2016-10 George Karafotias (VUA)
Parameter Control for Evolutionary Al-
gorithms

2016-11 Anne Schuth (UVA)
Search Engines that Learn from Their
Users

2016-12 Max Knobbout (UU)
Logics for Modelling and Verifying
Normative Multi-Agent Systems

SIKS dissertation series

198

2016-13 Nana Baah Gyan (VU)
The Web, Speech Technologies and
Rural Development in West Africa - An
ICT4D Approach

2016-14 Ravi Khadka (UU)
Revisiting Legacy Software System
Modernization

2016-15 Steffen Michels (RUN)
Hybrid Probabilistic Logics - Theoreti-
cal Aspects, Algorithms and Experi-
ments

2016-16 Guangliang Li (UVA)
Socially Intelligent Autonomous
Agents that Learn from Human Re-
ward

2016-17 Berend Weel (VU)
Towards Embodied Evolution of Robot
Organisms

2016-18 Albert Meroño Peñuela (VU)
Refining Statistical Data on the Web

2016-19 Julia Efremova (Tu/e)
Mining Social Structures from Ge-
nealogical Data

2016-20 Daan Odijk (UVA)
Context & Semantics in News & Web
Search

2016-21 Alejandro Moreno Célleri (UT)
From Traditional to Interactive
Playspaces: Automatic Analysis of
Player Behavior in the Interactive Tag
Playground

2016-22 Grace Lewis (VU)
Software Architecture Strategies for
Cyber-Foraging Systems

2016-23 Fei Cai (UVA)
Query Auto Completion in Information
Retrieval

2016-24 Brend Wanders (UT)
Repurposing and Probabilistic Integra-
tion of Data; An Iterative and data
model independent approach

2016-25 Julia Kiseleva (TU/e)
Using Contextual Information to Un-
derstand Searching and Browsing Be-
havior

2016-26 Dilhan Thilakarathne (VU)
In or Out of Control: Exploring Compu-
tational Models to Study the Role of
Human Awareness and Control in Be-
havioural Choices, with Applications in
Aviation and Energy Management
Domains

2016-27 Wen Li (TUD)
Understanding Geo-spatial Informa-
tion on Social Media

2016-28 Mingxin Zhang (TUD)
Large-scale Agent-based Social Simula-
tion - A study on epidemic prediction
and control

2016-29 Nicolas Höning (TUD)
Peak reduction in decentralised elec-
tricity systems - Markets and prices for
flexible planning

2016-30 Ruud Mattheij (UvT)
The Eyes Have It

2016-31 Mohammad Khelghati (UT)
Deep web content monitoring

2016-32 Eelco Vriezekolk (UT)
Assessing Telecommunication Service
Availability Risks for Crisis Organisa-
tions

2016-33 Peter Bloem (UVA)
Single Sample Statistics, exercises in
learning from just one example

2016-34 Dennis Schunselaar (TUE)
Configurable Process Trees: Elicitation,
Analysis, and Enactment

2016-35 Zhaochun Ren (UVA)
Monitoring Social Media: Summariza-
tion, Classification and Recommenda-
tion

2016-36 Daphne Karreman (UT)
Beyond R2D2: The design of nonverbal
interaction behavior optimized for ro-
bot-specific morphologies

SIKS dissertation series

199

2016-37 Giovanni Sileno (UvA)
Aligning Law and Action - a conceptual
and computational inquiry

2016-38 Andrea Minuto (UT)
MATERIALS THAT MATTER - Smart
Materials meet Art & Interaction De-
sign

2016-39 Merijn Bruijnes (UT)
Believable Suspect Agents; Response
and Interpersonal Style Selection for
an Artificial Suspect

2016-40 Christian Detweiler (TUD)
Accounting for Values in Design

2016-41 Thomas King (TUD)
Governing Governance: A Formal Fra-
mework for Analysing Institutional De-
sign and Enactment Governance

2016-42 Spyros Martzoukos (UVA)
Combinatorial and Compositional As-
pects of Bilingual Aligned Corpora

2016-43 Saskia Koldijk (RUN)
Context-Aware Support for Stress Self-
Management: From Theory to Practice

2016-44 Thibault Sellam (UVA)
Automatic Assistants for Database Ex-
ploration

2016-45 Bram van de Laar (UT)
Experiencing Brain-Computer Inter-
face Control

2016-46 Jorge Gallego Perez (UT)
Robots to Make you Happy

2016-47 Christina Weber (UL)
Real-time foresight - Preparedness for
dynamic innovation networks

2016-48 Tanja Buttler (TUD)
Collecting Lessons Learned

2016-49 Gleb Polevoy (TUD)
Participation and Interaction in Pro-
jects. A Game-Theoretic Analysis

2016-50 Yan Wang (UVT)
The Bridge of Dreams: Towards a
Method for Operational Performance
Alignment in IT-enabled Service Supply
Chains

2017-01 Jan-Jaap Oerlemans (UL)
Investigating Cybercrime

2017-02 Sjoerd Timmer (UU)
Designing and Understanding Forensic
Bayesian Networks using Argumenta-
tion

2017-03 Daniël Harold Telgen (UU)
Grid Manufacturing; A Cyber-Physical
Approach with Autonomous Products
and Reconfigurable Manufacturing
Machines

2017-04 Mrunal Gawade (CWI)
MULTI-CORE PARALLELISM IN A CO-
LUMN-STORE

2017-05 Mahdieh Shadi (UVA)
Collaboration Behavior

2017-06 Damir Vandic (EUR)
Intelligent Information Systems for
Web Product Search

2017-07 Roel Bertens (UU)
Insight in Information: from Abstract
to Anomaly

2017-08 Rob Konijn (VU)
Detecting Interesting Differences:Data
Mining in Health Insurance Data using
Outlier Detection and Subgroup Disco-
very

2017-09 Dong Nguyen (UT)
Text as Social and Cultural Data: A
Computational Perspective on Varia-
tion in Text

2017-10 Robby van Delden (UT)
(Steering) Interactive Play Behavior

2017-11 Florian Kunneman (RUN)
Modelling patterns of time and emo-
tion in Twitter #anticipointment

2017-12 Sander Leemans (TUE)
Robust Process Mining with Guaran-
tees

2017-13 Gijs Huisman (UT)
Social Touch Technology - Extending
the reach of social touch through hap-
tic technology

SIKS dissertation series

200

2017-14 Shoshannah Tekofsky (UvT)
You Are Who You Play You Are: Mo-
delling Player Traits from Video Game
Behavior

2017-15 Peter Berck, Radboud University (RUN)
Memory-Based Text Correction

2017-16 Aleksandr Chuklin (UVA)
Understanding and Modeling Users of
Modern Search Engines

2017-17 Daniel Dimov (UL)
Crowdsourced Online Dispute Resolu-
tion

2017-18 Ridho Reinanda (UVA)
Entity Associations for Search

2017-19 Jeroen Vuurens (TUD)
Proximity of Terms, Texts and Seman-
tic Vectors in Information Retrieval

2017-20 Mohammadbashir Sedighi (TUD)
Fostering Engagement in Knowledge
Sharing: The Role of Perceived Bene-
fits, Costs and Visibility

2017-21 Jeroen Linssen (UT)
Meta Matters in Interactive Storytel-
ling and Serious Gaming (A Play on
Worlds)

2017-22 Sara Magliacane (VU)
Logics for causal inference under un-
certainty

2017-23 David Graus (UVA)
Entities of Interest--- Discovery in Digi-
tal Traces

2017-24 Chang Wang (TUD)
Use of Affordances for Efficient Robot
Learning

2017-25 Veruska Zamborlini (VU)
Knowledge Representation for Clinical
Guidelines, with applications to Mul-
timorbidity Analysis and Literature
Search

2017-26 Merel Jung (UT)
Socially intelligent robots that unders-
tand and respond to human touch

2017-27 Michiel Joosse (UT)
Investigating Positioning and Gaze Be-
haviors of Social Robots: People's Pre-
ferences, Perceptions and Behaviors

2017-28 John Klein (VU)
Architecture Practices for Complex
Contexts

2017-29 Adel Alhuraibi (UVT)
From IT-BusinessStrategic Alignment
to Performance: A Moderated Media-
tion Model of Social Innovation, and
Enterprise Governance of IT

2017-30 Wilma Latuny (UVT)
The Power of Facial Expressions

2017-31 Ben Ruijl (UL)
Advances in computational methods
for QFT calculations

2017-32 Thaer Samar (RUN)
Access to and Retrievability of Content
in Web Archives

2017-33 Brigit van Loggem (OU)
Towards a Design Rationale for Soft-
ware Documentation: A Model of
Computer-Mediated Activity

2017-34 Maren Scheffel (OUN)
The Evaluation Framework for Lear-
ning Analytics

2017-35 Martine de Vos (VU)
Interpreting natural science
spreadsheets

2017-36 Yuanhao Guo (UL)
Shape Analysis for Phenotype Charac-
terisation from High-throughput Ima-
ging

2017-37 Alejandro Montes García (TUE)
WiBAF: A Within Browser Adaptation
Framework that Enables Control over
Privacy

2017-38 Alex Kayal (TUD)
Normative Social Applications

SIKS dissertation series

201

2017-39 Sara Ahmadi (RUN)
Exploiting properties of the human
auditory system and compressive sen-
sing methods to increase noise ro-
bustness in ASR

2017-40 Altaf Hussain Abro (VUA)
Steer your Mind: Computational Ex-
ploration of Human Control in Relation
to Emotions, Desires and Social Sup-
port For applications in human-aware
support systems"

2017-41 Adnan Manzoor (VUA)
Minding a Healthy Lifestyle: An Explo-
ration of Mental Processes and a
Smart Environment to Provide Support
for a Healthy Lifestyle

2017-42 Elena Sokolova (RUN)
Causal discovery from mixed and mis-
sing data with applications on ADHD
datasets

2017-43 Maaike de Boer (RUN)
Semantic Mapping in Video Retrieval

2017-44 Garm Lucassen (UU)
Understanding User Stories - Compu-
tational Linguistics in Agile Require-
ments Engineering

2017-45 Bas Testerink (UU)
Decentralized Runtime Norm Enfor-
cement

2017-46 Jan Schneider (OU)
Sensor-based Learning Support

2017-47 Yie Yang (TUD)
Crowd Knowledge Creation Accelera-
tion

2017-48 Angel Suarez (OU)
Collaborative inquiry-based learning

2018-01 Han van der Aa (VUA)
Comparing and Aligning Process Re-
presentations

2018-02 Felix Mannhardt (TUE)
Multi-perspective Process Mining

2018-03 Steven Bosems (UT)
Causal Models For Well-Being:
Knowledge Modeling, Model-Driven
Development of Context-Aware Appli-
cations, and Behavior Prediction

2018-04 Jordan Janeiro (TUD)
Flexible Coordination Support for Dia-
gnosis Teams in Data-Centric Enginee-
ring Tasks

2018-05 Hugo Huurdeman (UVA)
Supporting the Complex Dynamics of
the Information Seeking Process

2018-06 Dan Ionita (UT)
Model-Driven Information Security
Risk Assessment of Socio-Technical
Systems

2018-07 Jieting Luo (UU)
A formal account of opportunism in
multi-agent systems

2018-08 Rick Smetsers (RUN)
Advances in Model Learning for Soft-
ware Systems

2018-09 Xu Xie (TUD)
Data Assimilation in Discrete Event Si-
mulations

2018-10 Julienka Mollee (VUA)
Moving forward: supporting physical
activity behavior change through intel-
ligent technology

2018-11 Mahdi Sargolzaei (UVA)
Enabling Framework for Service-
oriented Collaborative Networks

2018-12 Xixi Lu (TUE)
Using behavioral context in process
mining

2018-13 Seyed Amin Tabatabaei (VUA)
Using behavioral context in process
mining: Exploring the added value of
computational models for increasing
the use of renewable energy in the re-
sidential sector

2018-14 Bart Joosten (UvT)
Detecting Social Signals with Spatio-
temporal Gabor Filters

SIKS dissertation series

202

2018-15 Naser Davarzani (UM)
Biomarker discovery in heart failure

2018-16 Jaebok Kim (UT)
Automatic recognition of engagement
and emotion in a group of children

2018-17 Jianpeng Zhang (TUE)
On Graph Sample Clustering

2018-18 Henriette Nakad (UL)
De Notaris en Private Rechtspraak

2018-19 Minh Duc Pham (VU)
Emergent relational schemas for RDF

2018-20 Manxia Liu (RUN)
Time and Bayesian Networks

2018-21 Aad Slootmaker (OU)
EMERGO: a generic platform for au-
thoring and playing scenario-based se-
rious games

EMERGO

a generic platform for authoring and playing
scenario-based serious games

EMERGOEMERGO

Aad Slootmaker

	Chapter 1 General introduction
	1 Introduction
	2 Serious games development at the OUNL
	3 EMERGO
	4 This thesis: aim and design questions
	5 This thesis: outline of chapters

	Chapter 2 Developing scenario-based serious games for complex cognitive skills acquisition design, development and evaluation of the EMERGO platform
	Abstract
	1 Introduction
	2 Scenario-based serious games supported by the platform
	3 Requirements for the platform
	4 Development of the platform
	5 Design of the platform
	5.1 The platform roles
	5.2 The domain model
	5.3 Common platform components
	5.4 The generic component design
	5.5 The Script component

	6 Evaluation of the platform and related work
	6.1 Evaluation of the platform
	6.2 Related work

	7 Conclusions and future work
	7.1 Conclusions
	7.2 Future work

	Acknowledgements

	Chapter 3 EMERGO platform components processes and architecture
	1 Introduction
	2 The platform components
	2.1 The general structure of components and XML definitions
	2.2 The description of EMERGO components

	3 The platform processes
	3.1 The authoring process
	3.2 The playing process
	3.3 Other platform processes

	4 The platform architecture
	4.1 The database layer
	4.2 The database management layer
	4.3 The business logic layer
	4.4 The user interface layer

	Chapter 4 Evaluating the usability of authoring invironments for serious games
	Abstract
	1 Introduction
	2 Background
	2.1 Game design research
	2.2 Authoring leisure games
	2.3 Authoring serious games
	2.4 Related work

	3 EMERGO
	3.1 Developing EMERGO games
	3.2 Authoring EMERGO games
	3.3 Debriefing EMERGO games
	3.4 The EMERGO authoring environment

	4 Method
	4.1 Participants
	4.2 Data collection method
	4.3 Procedure

	5 Findings
	5.1 Usability of the authoring environment
	5.2 The development process and the integration of authoring
	5.3 Other software quality characteristics
	5.4 General usability guidelines for authoring environments for serious games
	Guidelines to improve understandability:
	Guidelines to improve learnability:

	6 Conclusions and discussion
	Acknowledgements

	Chapter 5 Evaluating the usability of player environments for serious games
	Abstract
	1 Introduction
	2 Usability
	3 EMERGO
	3.1 Playing EMERGO games
	3.2 The EMERGO player environment

	4 Method
	4.1 Participants
	4.2 Data collection
	4.3 Data analysis

	5 Results and findings
	5.1 Quantitative results
	5.2 Qualitative findings
	5.3 Usability guidelines for player environments for serious games

	6 Conclusions and discussion
	Acknowledgements

	Chapter 6 General discussion
	1 Introduction
	2 Review of results and conclusions
	2.1 The general design question
	2.2 The first additional design question
	2.3 The second additional design question
	2.4 Conclusions

	3 Recent and future development and research
	3.1 Recent development and research
	3.2 Future development and research

	4 Significance of the platform

	References
	Appendices
	Appendix 1: Estimated contribution of the author to the main tasks presented in this thesis
	Appendix 2: Interview guide

	Summary
	General design question
	First additional design question
	Second additional design question
	Conclusions

	Samenvatting
	De algemene ontwerpvraag
	De eerste aanvullende ontwerpvraag
	De tweede aanvullende ontwerpvraag
	Conclusies

	Dankwoord
	SIKS dissertation series

<<

 /ASCII85EncodePages false

 /AllowTransparency false

 /AutoPositionEPSFiles true

 /AutoRotatePages /All

 /Binding /Left

 /CalGrayProfile (None)

 /CalRGBProfile (Adobe RGB \0501998\051)

 /CalCMYKProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)

 /sRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Warning

 /CompatibilityLevel 1.5

 /CompressObjects /Tags

 /CompressPages true

 /ConvertImagesToIndexed true

 /PassThroughJPEGImages true

 /CreateJobTicket false

 /DefaultRenderingIntent /Default

 /DetectBlends true

 /DetectCurves 0.0000

 /ColorConversionStrategy /CMYK

 /DoThumbnails false

 /EmbedAllFonts true

 /EmbedOpenType false

 /ParseICCProfilesInComments true

 /EmbedJobOptions true

 /DSCReportingLevel 0

 /EmitDSCWarnings false

 /EndPage -1

 /ImageMemory 1048576

 /LockDistillerParams false

 /MaxSubsetPct 100

 /Optimize true

 /OPM 1

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo true

 /PreserveFlatness true

 /PreserveHalftoneInfo false

 /PreserveOPIComments true

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts true

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Remove

 /UsePrologue false

 /ColorSettingsFile ()

 /AlwaysEmbed [true

]

 /NeverEmbed [true

]

 /AntiAliasColorImages false

 /CropColorImages true

 /ColorImageMinResolution 150

 /ColorImageMinResolutionPolicy /OK

 /DownsampleColorImages true

 /ColorImageDownsampleType /Average

 /ColorImageResolution 300

 /ColorImageDepth -1

 /ColorImageMinDownsampleDepth 1

 /ColorImageDownsampleThreshold 1.50000

 /EncodeColorImages true

 /ColorImageFilter /DCTEncode

 /AutoFilterColorImages true

 /ColorImageAutoFilterStrategy /JPEG

 /ColorACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /ColorImageDict <<

 /QFactor 0.76

 /HSamples [2 1 1 2] /VSamples [2 1 1 2]

 >>

 /JPEG2000ColorACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 15

 >>

 /JPEG2000ColorImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 15

 >>

 /AntiAliasGrayImages false

 /CropGrayImages true

 /GrayImageMinResolution 150

 /GrayImageMinResolutionPolicy /OK

 /DownsampleGrayImages true

 /GrayImageDownsampleType /Average

 /GrayImageResolution 300

 /GrayImageDepth -1

 /GrayImageMinDownsampleDepth 2

 /GrayImageDownsampleThreshold 1.50000

 /EncodeGrayImages true

 /GrayImageFilter /DCTEncode

 /AutoFilterGrayImages true

 /GrayImageAutoFilterStrategy /JPEG

 /GrayACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /GrayImageDict <<

 /QFactor 0.76

 /HSamples [2 1 1 2] /VSamples [2 1 1 2]

 >>

 /JPEG2000GrayACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 15

 >>

 /JPEG2000GrayImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 15

 >>

 /AntiAliasMonoImages false

 /CropMonoImages true

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /OK

 /DownsampleMonoImages true

 /MonoImageDownsampleType /Average

 /MonoImageResolution 1200

 /MonoImageDepth -1

 /MonoImageDownsampleThreshold 1.50000

 /EncodeMonoImages true

 /MonoImageFilter /FlateEncode

 /MonoImageDict <<

 /K -1

 >>

 /AllowPSXObjects false

 /CheckCompliance [

 /None

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXTrimBoxToMediaBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXSetBleedBoxToMediaBox true

 /PDFXBleedBoxToTrimBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXOutputIntentProfile (None)

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputCondition ()

 /PDFXRegistryName ()

 /PDFXTrapped /False

 /CreateJDFFile false

 /Description <<

 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>

 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>

 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>

 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>

 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>

 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>

 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>

 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>

 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>

 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>

 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>

 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>

 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)

 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>

 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>

 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>

 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>

 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>

 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>

 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>

 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>

 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>

 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>

 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>

 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>

 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>

 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>

 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)

 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)

 >>

>> setdistillerparams

<<

 /HWResolution [600 600]

 /PageSize [595.276 841.890]

>> setpagedevice

