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Abstract. Reo is a language for programming of coordination proto-
cols among concurrent processes. Central to Reo are connectors: pro-
grammable synchronization/communication mediums used by processes
to exchange data. Every connector runs at a clock; at every tick, it enacts
an enabled synchronization/communication among processes.
Connectors may prioritize certain synchronizations/communications over
others. “Passive” connectors use their priorities only at clock ticks, to
decide which enabled synchronization/communication to enact. “Active”
connectors, in contrast, use their priorities also between clock ticks, to
influence which synchronizations/communications become enabled; they
are said to “propagate their priorities”.
This paper addresses the problem of formalizing propagation of priorities
in Reo. Specifically, this paper presents a new instantiation of the connec-
tor coloring framework, using eight colors. The resulting formalization
of propagation of priorities is evaluated by proving several desirable be-
havioral equalities.

Foreword

This paper addresses, perhaps, the oldest open problem in the Reo community.
The problem came to my attention for the first time in May 2011, six months

into my PhD project. Perhaps—nay, surely!—I should have walked away from
it; oh, the time that would have saved me... But, the problem was too tempting
to resist. Farhad, Kasper, and I worked on solutions intermittently over the past
years. Many times, I thought we had solved it; equally many times, we had not.

I promised Farhad more than once to end our suffering (my choice of words),
by formalizing propagation of priorities in the connector coloring framework,
using k > 3 colors. I never quite succeeded. This seems the perfect occasion to
finally, half a decade down the road, fulfill that promise. Well, to some extent.

1 Introduction

Context. Reo is a language for programming of coordination protocols among
concurrent processes. Central to Reo are connectors: programmable synchroniza-
tion/communication mediums used by processes to exchange data, by invoking



write and take operations. Every connector runs at a clock; at every tick, it
enacts an enabled synchronization/communication among processes, based on
the operations those processes have performed.

To send data, a process can invoke a write operation on the interface of a
connector; to receive, it can invoke a take operation. Both writes and takes are
blocking : after a process has invoked write or take, it immediately suspends,
its operation becomes pending, and it resumes only after its operation has been
resolved by the connector. To resolve a pending write, a connector performs a
reciprocal take; to resolve a pending take, it performs a reciprocal write.

As connectors fully control resolution of pending operations, only connectors
decide when (synchronization) and whereto/wherefrom (communication) data
flow. In this way, connectors coordinate the synchronization/communication
among processes.

Problem. Connectors may prioritize certain synchronizations/communications
over others. “Passive” connectors use their priorities only at clock ticks, to de-
cide which enabled synchronization/communication to enact. “Active” connec-
tors, in contrast, use their priorities also between clock ticks, to influence which
synchronizations/communications become enabled; they are said to “propagate
their priorities”.

Imagine, for instance, a connector C among processes P1, P2, and P3. Imag-
ine, moreover, that at every clock tick, C can enact either a data-flow from P1

to P3 with high priority (enabled only if P1 and P3 invoked write and take), or
a data-flow from P2 to P3 with low priority (enabled only if P2 and P3 invoked
write and take). If C is passive, it quietly awaits the next clock tick, checks
which operations are pending to determine which data-flows are enabled (if any),
chooses and enacts the one with the highest priority, and quietly awaits the next
clock tick. If C is active, in contrast, it requests P1 to invoke write (and P3 to
invoke take) before the next clock tick, thereby enabling C to choose and enact
the high priority data-flow from P1 to P3 at the next clock tick.

Contribution. Existing formalizations of Reo do not support modeling of con-
nectors that propagate priorities. This paper presents such a formalization.

Section 2 establishes terminology and definitions. The section is terse; more
gentle introductions to Reo [Arb04,Arb11] and the connector coloring frame-
work [CCA07,Cos10] appear elsewhere. Section 3 details the problem of formal-
izing propagation of priorities. Section 4 presents a solution in the connector
coloring framework, using eight colors. Section 5 contains an evaluation of this
solution, in terms of behavioral equalities. Section 6 concludes this paper with
a discussion. Appendix A contains definitions. Proofs appear in a technical re-
port [Jon18].
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Fig. 1: Examples of connector syntax

2 Preliminaries

Syntax. Structurally, a connector in Reo is a (directed hyper)graph of vertices
and (nonempty, directed hyper)edges.3 Every edge is labeled with a type, shortly
used to define the semantics of a connector. Figure 1 shows examples.

A vertex of a connector is external if it is the source of exactly one edge, or
the target of exactly one edge; otherwise, it is internal. Processes perform write

and take operations on external vertices, which thus consistute the interface.
A connector is primitive, if it has exactly one edge; otherwise, it is compound.

Figure 2, first column, shows the name and syntax of common primitives.
A connector is well-formed, if (i) it has at least one edge, and (ii) if each of

its vertices is the source of at most one edge, the target of at most one edge, and
the source or target of at least one edge.

The structural composition of two connectors, denoted by operator ./, is the
graph consisting of the union of the sets of vertices, and the union of the sets of
edges; it is a partial operation, to preserve well-formedness. Moreover, structural
composition is associative and commutative.

A vertex is shared between two connectors, if it is an external vertex of both.

Informal semantics. Behaviorally (informal), a connector in Reo is a set of data-
flows between vertices, along edges, endowed with a partial order of priorities.4

A vertex is active in a data-flow, if data passes through it; otherwise, it
is passive. Every vertex participates either actively or passively in each of its
connector’s data-flows. Idling is the degenerate data-flow in which every vertex
participates passively. A data-flow of a connector is enabled, if every external
vertex that actively participates in the data-flow has a pending write or take;
idling is always enabled, vacuously.

A connector runs on a clock; at every tick, it enacts one of its enabled data-
flows. If multiple data-flows are enabled, it nondeterministically selects an order-
theoretically maximal one among them. Figure 2, second column, shows the
informal semantics of common primitives; “prioritizes (n) over (m)” means “(n)
is greater than (m)”.

3 Binary edges are usually called channels; maximal sets of adjacent ternary edges are
usually called nodes [Arb04,Arb11].

4 For simplicity, and because it is a concern orthogonal to formalizing priorities, I
consider only stateless connectors in this paper.



Name & Syntax Informal semantics

Drain

v1

1. It takes data through v1, and loses it.
2. Or, it idles.

It prioritizes (1) over (2).

Sync

v1 v2

1. It takes data through v1, and writes it through v2.
2. Or, it idles.

It prioritizes (1) over (2).

SyncDrain

v1 v2

1. It takes data through v1 and v2, and loses them.
2. Or, it idles.

It prioritizes (1) over (2).

ExclDrain

v1 v2

1. It takes data through v1, and loses it.
2. Or, it takes data through v2, and loses it.
3. Or, it idles.

It prioritizes (1) over (3), and (2) over (3).

LossySync?

v1 v2

?

1. It takes data through v1, and writes it through v2.
2. Or, it takes data through v1, and loses it.
3. Or, it idles.

It prioritizes (1) over (3), and (2) over (3).

LossySync

v1 v2

1. It takes data through v1, and writes it through v2.
2. Or, it takes data through v1, and loses it.
3. Or, it idles.

It prioritizes (1) over (3), and (2) over (3), and (1) over (2).

Merger

v1

v2

v3

1. It takes data through v1, and writes it through v3.
2. Or, it takes data through v2, and writes it through v3.
3. Or, it idles.

It prioritizes (1) over (3), and (2) over (3).

Join

v1

v2

v3
×

1. It takes data through v1 and v2, and writes the set containing
them through v3.

2. Or, it idles.

It prioritizes (1) over (2).

Replicator

v1

v2

v3

1. It takes data through v1, and writes it through v2 and v3.
2. Or, it idles.

It prioritizes (1) over (2).

ExclRouter

v1

v2

v3

+

1. It takes data through v1, and writes it through v2.
2. Or, it takes data through v1, and writes it through v3.
3. Or, it idles.

It prioritizes (1) over (3), and (2) over (3).

Fig. 2: Name, syntax, and informal semantics of common primitives



(1, 1) It takes data through v1, writes/takes it through v2, and loses it.
(2, 2) Or, it takes data through v1 and v3, and loses it.
(2, 3) Or, it takes data through v1 and loses it.
(3, 2) Or, it takes data through v3 and loses it.
(3, 3) Or, it idles.
It prioritizes (1, 1) over (3, 3), and (1, 1) over (2, 3), and (2, 2) over (3, 3), and (2, 3)
over (3, 3), and (3, 2) over (3, 3).

Fig. 3: Informal semantics of Fig. 1a.

A data-flow through one connector is consistent with a data-flow through
another connector, if each of their shared vertices is either active or passive in
both data-flows. This ensures data can flow between connectors, through their
shared vertices. The behavioral composition of two connectors is the set consist-
ing of the pairs of consistent data-flows, endowed with their product order. Every
global data-flow through a compound connector, thus, is the concatenation of
local data-flows.

For instance, the connector in Fig. 1a is composed of LossySync and ExclDrain
in Fig. 2. As these connectors both have three local data-flows, the compound
has at most nine global data-flows. Figure 3 shows which of those data-flows
are consistent; (n,m) means “the pair consisting of (n) of LossySync and (m)
of ExclDrain”. As the compound prioritizes (1, 1) over (2, 3), and because (1, 1)
and (2, 3) are always enabled together, it never enacts (2, 3).

Formal semantics. Behaviorally (formal), in the connector coloring framework,
a connector is a set of total functions, called colorings, from vertices to natural
numbers, called colors [CCA07,Cos10,JKA11,CP12]. Every coloring models a
data-flow; every color models the activeness/passiveness of a vertex in a data-
flow. Depending on the number of colors the framework is instantiated with, dif-
ferent levels of activeness/passiveness can be distinguished, to lesser or greater
expressiveness. In particular, colors can be used to model priorities, as an alter-
native to endowing sets of colorings with partial orders (exemplified shortly).

Two colorings are consistent if they map the vertices in the intersection
of their domains to the same colors. The behavioral composition of two con-
nectors, denoted by operator ./, is the set consisting of the unions of their
consistent colorings. As such, behavioral composition in the connector color-
ing framework straightforwardly models concatenation of consistent data-flows.5

Behavioral composition is associative and commutative.
The structure and behavior of a connector are related through a denotation

function
q
·
y
: it consumes as input a connector structure (graph) and produces

as output a connector behavior (set of colorings), by decomposing the connector
into primitives, looking up the local behavior of every primitive in a predefined
type-indexed table, and composing the local behaviors into a global one.

5 The composition operator can be extended with the flip-rule [CCA07,Cos10], to
reduce sets of colorings. I do not pursue this in this paper.



# Meaning

0 Passive
1 Active
2 Passive, for no write

3 Passive, for no take

4 Active; metadata-flow downstream (to propagate priorities)
5 Active; metadata-flow upstream (to propagate priorities)
6 Active; metadata-flows downstream + upstream (to propagate priorities)
7 Passive, for no write, for conflicting propagated priorities upstream
8 Passive, for no take, for conflicting propagated priorities downstream

Fig. 4: Colors

γ1
γ2
γ3

r

v1 v2

z

{v1 7→ 1, v2 7→ 1}
{v1 7→ 1, v2 7→ 0}
{v1 7→ 0, v2 7→ 0}

(a) LossySync

γ4
γ5
γ6

r

v2 v3

z

{v2 7→ 1, v3 7→ 0}
{v2 7→ 0, v3 7→ 1}
{v2 7→ 0, v3 7→ 0}

(b) ExclDrain

γ1 ./ γ4
γ2 ./ γ5
γ2 ./ γ6
γ3 ./ γ5
γ5 ./ γ6

r

v1 v2 v3

z

{v1 7→ 1, v2 7→ 1, v3 7→ 0}
{v1 7→ 1, v2 7→ 0, v3 7→ 1}
{v1 7→ 1, v2 7→ 0, v3 7→ 0}
{v1 7→ 0, v2 7→ 0, v3 7→ 1}
{v1 7→ 0, v2 7→ 0, v3 7→ 0}

(c) Figure 1a

Fig. 5: Examples of two-color semantics

To exemplify the connector coloring framework, Fig. 4 shows nine colors.
Colors 0, 1, 2, 3 already exist in the literature; colors 4, 5, 6, 7, 8 are new. The
following lists summarizes three existing instantiations of the framework:

– With two colors [CCA07,Cos10], {0, 1}, one can model data-flows, but not
priorities. Figure 5 shows examples. As the figure shows, colorings can be
represented both textually and graphically (using the notation in Fig. 4).
Figure 5a shows the behavior of LossySync. Coloring γ1 models a data-flow
from v1 to v2 (both vertices are active); coloring γ2 models the loss of data
taken through v1 (only v1 is active); coloring γ3 models idling. Figure 5b
and 5c can be explained similarly. The colorings in Fig. 5 model exactly, one-
to-one, the data-flows in Figs. 2 and 3. However, priorities are not modeled.

– With three colors [CCA07,Cos10], {1, 2, 3}, one can model both data-flows
and priorities. Specifically, color 0 is refined into colors 2, 3, to model not
only that a vertex is passive, but also why. Figure 6 shows examples. I write



γ1
γ2
γ3
γ4

r

v1 v2

z

{v1 7→ 1, v2 7→ 1}
{v1 7→ 1, v2 7→ 3}
{v1 7→ 2, v2 7→ 2}
{v1 7→ 3, v2 7→ 3}

(a) LossySync

γ5
γ6
γ7
γ8
γ9

r

v2 v3

z

{v2 7→ 1, v3 7→ 2}
{v2 7→ 1, v3 7→ 3}
{v2 7→ 2, v3 7→ 1}
{v2 7→ 3, v3 7→ 1}
{v2 7→ 2, v3 7→ 2}

(b) ExclDrain

γ1 ./ γ5
γ1 ./ γ6
γ2 ./ γ8
γ3 ./ γ7
γ3 ./ γ9
γ4 ./ γ8

r

v1 v2 v3

z

{v1 7→ 1, v2 7→ 1, v3 7→ 2}
{v1 7→ 1, v2 7→ 1, v3 7→ 3}
{v1 7→ 1, v2 7→ 3, v3 7→ 1}
{v1 7→ 2, v2 7→ 2, v3 7→ 1}
{v1 7→ 2, v2 7→ 2, v3 7→ 2}
{v1 7→ 3, v2 7→ 3, v3 7→ 1}

(c) Figure 1a

Fig. 6: Examples of three-color semantics

“the environment can write/take through v” to mean that either a write/
take is pending on v (if the environment at v is a process) or a data-flow
can be concatenated at v (if the environment at v is another connector).
The expressive power of the three-color semantics is best exemplified with
LossySync, as follows. Coloring γ2 in Fig. 5a and coloring γ2 in Fig. 6a both
model the loss of data taken through v1. However, γ2 in Fig. 6a additionally
models that this data-flow can be chosen/enacted only if no take can be
resolved at v2. As v2 is a target vertex of LossySync (i.e., LossySync can
only write through v2), this happens only if the environment cannot take

through v2. Thus, if the environment can write through v1, but not take

through v2, LossySync can lose (γ2). But, if the environment can both write

and take, LossySync must choose to not-lose (γ1) instead of to lose (γ2), just
as its informal semantics demands (Fig 2).
The three-color semantics of LossySync? is the same as the three-color seman-
tics of LossySync, plus coloring γ′2 = {v1 7→ 1, v2 7→ 2}. This extra coloring
models the loss of data taken through v1, just as γ2 in Fig. 6a. However,
γ′2 additionally models that this data-flow can be chosen/enacted only if no
write can be resolved at v2. As v2 is a target vertex of LossySync? (i.e.,
the environment can only take through v2), this happens only if LossySync?
cannot write through v2. This is a condition that LossySync? always can
satisfy (independent of the environment). Thus, if the environment can both
write and take, LossySync? nondeterministically chooses between not-losing
(γ1) and losing (γ′2); in the former case, it writes through v2, while in the
latter case, it does not. Thus, γ′2 is the three-color equivalent of γ2 in Fig. 5a.



Name & Syntax Informal semantics

Sync!>

v1 v2

!>

Same data-flows and priorities as Sync (Fig. 2). It always
propagates others’ priorities downstream and upstream; it always
propagates its own priority downstream.

Sync<!

v1 v2

<!

Same data-flows and priorities as Sync (Fig. 2). It always
propagates others’ priorities downstream and upstream; it always
propagates its own priority upstream.

Sync)

v1 v2

)

Same data-flows and priorities as Sync (Fig. 2). It always
propagates others’ priorities upstream; it never propagates
priorities downstream

Sync(

v1 v2

(

Same data-flows and priorities as Sync (Fig. 2). It always
propagates others’ priorities downstream; it never propagates
priorities upstream.

Fig. 7: Name, syntax, and informal semantics of priority primitives

LossySync and LossySync? illustrate that by carefully modeling why vertices
are passive, using colors 2, 3, priorities may emerge. Graphically, the triangle
markings always point away from the root cause for passiveness. For instance,
in coloring γ3 ./ γ7, vertex v2 is passive, because there is no write on v2
(cause), because the environment cannot write through v1 (root cause).

– With four colors [CP12], {0, 1, 2, 3}, one can model data-flows, priorities,
and partiality. The latter is useful to allow parts of a connector to skip clock
ticks; this is subtly different from idling, and particularly useful in distributed
connector implementations. The details do not matter in this paper.

3 Problem

Informally, propagation of priorities entails the following:

If a connector propagates the priority of a “superior” data-flow over
an “inferior” one into the environment, it enacts the inferior data-flow
only if: (i) another connector simultaneously propagates a priority into
the environment, and (ii) the environment can facilitate only one of the
two priorities—they are conflicting—and (iii) the environment chooses
the other one. In all other cases, facilitated by the environment, the
connector enacts the superior data-flow.

A connector can propagate priorities downstream (i.e., in the direction of data-
flow), upstream, or in both directions.

The problem of formalizing propagation of priorities is perhaps best studied
in terms of concrete connectors. To this end, the presentation of Reo so far is
extended, as follows. First, Figure 7 shows four new foundational primitives that



start (Sync!> and Sync<!) and end (Sync) and Sync() propagation of priorities.
Second, the informal semantics of every primitive in Figure 2 is extended with:

“It always propagates others’ priorities downstream and upstream, but
never its own.”

4 Solution

Idea. The idea is to decompose the abstract concept of propagation of priorities
into two more concrete auxiliary metadata-flows: one from a connector to the en-
vironment and one from the environment to the connector. Through the former,
called propagation metadata-flow, a connector informs its environment on which
shared vertices the environment must perform reciprocal writes and takes to
facilitate the propagated priority of the connector; through the latter, called
conflict metadata-flow, the environment informs the connector on which shared
vertices it cannot perform reciprocal writes and takes, due to conflicting prop-
agated priorities. The direction of metadata-flows is completely independent of
the direction of data-flows: metadata can flow both upstream and downstream,
whereas data can flow only downstream.

Now, the plan is to model metadata-flows using colors. The problem is that
metadata-flows conceptually precede normal data-flows (i.e., they happen be-
tween clock ticks), which cannot be directly modeled in the connector coloring
framework (i.e., the framework only models what happens at clock ticks). The
solution is to conflate metadata-flows and normal data-flows.

To model propagation metadata-flows from a connector to the environment,
I introduce three new activeness colors: 4, 5, 6 (Fig. 4). In a coloring, entry v 7→ 4
(v 7→ 5) models that vertex v is active in the current data-flow, and was ac-
tive in the preceding propagation metadata-flow downstream (upstream). To
model metadata-flows from the environment to the connector, I introduce two
new passiveness colors: 7, 8 (Fig. 4). In a coloring, entry v 7→ 7 (v 7→ 8) models
that vertex v is passive in the current data flow, but was active in the preced-
ing conflict metadata-flow downstream (upstream); this means the environment
cannot write (take) through v, because of conflicting priorities upstream (down-
stream). Thus, the new instantiation of the connector coloring framework has
eight colors: {1, 2, 3, 4, 5, 6, 7, 8}.

Priority primitives. Figure 8 shows the eight-color semantics of the new, pri-
ority primitives. Coloring γ1 of Sync!> models a data-flow from v1 to v2, pre-
ceded by a propagation metadata-flow downstream from v2 (into the environ-
ment). Through this metadata-flow, Sync!> informs the environment that it must
perform a reciprocal take on v2. Coloring γ2 is similar to γ1, except that the
metadata-flow does not start at v2, but further upstream; the metadata simply
flows from v1 to v2. Coloring γ3 is similar to γ1, but beside modeling a propaga-
tion metadata-flow downstream from v2 (into the environment), it also models
a propagation metadata-flow upstream from v2 to v1. Coloring γ4 combines γ2



γ1
γ2
γ3
γ4
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γ6
γ7
γ8

r

v1 v2

!> z r

v1 v2
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v1 v2

) z r

v1 v2

( z

Fig. 8: Eight-color semantics of priority primitives

and γ3. Colorings γ5–γ8 all model idling. Specifically, γ5 and γ7 permit idling if
the environment cannot write through v1, while γ6 and γ8 permit idling if the
environment cannot take through v2 because of conflicting propagated priori-
ties. Note that there is no coloring that permits idling if the environment cannot
take through v2, not because of conflicting propagated priorities. The colorings
of Sync<! are symmetric.

The key colorings of Sync) are γ2, γ3, and γ6. Coloring γ2 models a data-flow
from v1 to v2, preceded by a propagation metadata-flow downstream to v1, but no
further. In this way, Sync) blocks propagation of priorities downstream. Coloring
γ3 models a data-flow from v1 to v2, preceded by a propagation metadata-flow
upstream from v2 to v1. This shows that the blockade works only in one di-
rection. Coloring γ6 models idling, supposedly caused by conflicting propagated
priorities. However, such a conflict does not really exist: Sync) only pretends
it has a conflict, to enable anyone further downstream to truly ignore priori-
ties propagated through v1, as part of its blockade. The colorings of Sync( are
symmetric.

Common primitives. Figure 9 shows the eight-color semantics of the existing,
common primitives (unary and binary); a “+M” annotation below a coloring
means that the “horizontally mirrored” version of that coloring is part of the
semantics as well. I highlight two salient aspects. First, the three-color semantics
of every primitive [CCA07,Cos10] is strictly contained in its eight-color semantics
(cf. the three-color semantics of ExclDrain and LossySync in Fig. 6). Second,
coloring γ4 of ExclDrain is a premier example of a propagation metadata-flow
(from connector to environment) that induces a conflict metadata-flow (from
environment to connector).

Figure 9 shows the eight-color semantics of the existing, common primitives
(ternary). Again, the eight-color semantics strictly contain the three-color se-
mantics. The interesting colorings are γ6, γ16, and γ12–γ14 of Merger. Coloring
γ6 and γ16 are similar to coloring γ4 of ExclDrain. Colorings γ12–γ14 are notable,
because they model propagation metadata-flows, but no conflict metadata-flows,
in contrast to colorings γ6 and γ16. This is because propagation metadata-flows
upstream have no bearing on the choices made by Merger: regardless of whether
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z
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z
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v1 v2
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v1 v2
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+M
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+M
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r

v1 v2

? z r

v1 v2

z

Fig. 9: Eight-color semantics of common unary and binary primitives

Merger chooses one of γ12–γ14, or one of their “vertically mirrored” versions,
shared vertex v3 is always active; this is all the propagated priority needs.

Next, to evaluate whether the eight-color semantics of the primitives compose
as expected, I state and prove a number of eight-color semantics equalities.

5 Evaluation

Basic properties of common primitives. The following four propositions state
that the common binary primitives in Fig. 2 (except LossySync) can be con-
structed out of unary and ternary primitives.6

Proposition 1.
r
v1 v2

z
=

t

v1

v2

|

Proposition 2.
r
v1 v2

z
=

u

v
v1

v2

×
}

~

Proposition 3.
r
v1 v2

z
=

u

v
v1

v2

}

~

6 All propositions in this paper should be interpreted modulo application of an hide
operator, to remove internal vertices from the domains of colorings. This is straight-
forward to explicitly formalize.
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Fig. 10: Eight-color semantics of common ternary primitives
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The following proposition states that LossySync? and LossySync behave dif-
ferently when composed with Drain. Specifically, according to its eight-color
semantics, LossySync? can (nondeterministically choose to) lose data before it
reaches Drain, which LossySync cannot. This difference in semantics is intended:
LossySync prioritizes not-losing over losing, whereas LossySync? does not.
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Basic properties of priority primitives. The following two propositions state that
Sync!> and Sync<!, and Sync) and Sync(, commute. Both compounds have the
same data-flows and priorities as Sync in Fig. 2. But, the former compound
always propagates priorities downstream and upstream, whereas the latter com-
pound connector, in contrast, never propagates priorities downstream or up-
stream.
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The following proposition states that Sync) is not the “inverse” of Sync!>:
starting and ending propagation of priorities is not “neutral”. The reason is that
Sync) ends the downstream propagation of all priorities; not just those of Sync!>.
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Imagine a variant of ExclDrain that, informally, has the same data-flows and
priorities as ExclDrain in Fig. 2, but additionally prioritizes (1) over (2). The
following proposition states that this connector, called ExclDrain! in Fig. 11, can
be constructed out of Sync!> and ExclDrain.
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The following proposition states that conflicting propagated priorities “cancel
out”: the composition of ExclDrain! and Sync<! is almost the same as ExclDrain.
The only difference is that the compound is saturated : the extra coloring (cf.
ExclDrain) means that the compound can always ignore propagated priorities, by
pretending there is a conflict. As a result, it is actually impossible to (re)construct
ExclDrain! from the compound.
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Fig. 11: Eight-color semantics of additional priority primitives

Advanced properties: context-sensitivity. Perhaps the litmus test for any for-
malization of propagation of priority is the construction of the context-sensitive
LossySync out of the nondeterministic LossySync? and the priority primitives.

The construction proceeds in three steps. First, compose LossySync? and
Sync<!. The idea is that, through propagation of its own priorities, the latter
forces the former to prioritize not-losing over losing. This works, but there is an
undesirable side effect: the compound connector, called LossySync<! in Fig. 11,
propagates its own priorities upstream, which LossySync? does not. To solve this,
second, compose Sync( and LossySync<!. The idea is that the former blocks the
upstream propagation of LossySync<!’s priorities. This works, but there is again
an undesirable side effect: the compound connector, called LossySync(! in Fig. 11,
blocks the upstream propagation of all priorities (cf. Prop. 15). To solve this,
finally, compose LossySync(! with ExclRouter and Merger. The idea is that the
upstream propagation of others’ priorities is not blocked, essentially because the
propagation can proceed via a different upstream path through the graph.

The following propositions state that using the eight-color semantics, this
construction roughly works: the only discrepancy is the presence of two color-
ings in the eight-color semantics of the final compound—absent in the eight-color
semantics of LossySync—that model partial metadata-flows. This is an interest-
ing phenomenon: relative to the informal semantics, the colorings are not wrong.
They essentially mean that it is not really necessary to propagate priorities up-
stream, if a data-flow from vertex v1 to vertex v2 is already possible without
such propagation. Through the construction of LossySync, this property “in-
cidentally” emerges. I conjecture that if this property is consistently included



in the eight-color semantics of all primitives, including LossySync, the resulting
formalization of propagation of priority fully passes this litmus test.
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Advanced properties: ranks. Imagine a variant of Merger that, informally, has the
same data-flows and priorities as Merger in Fig. 2, but additionally prioritizes
(1) over (2). The following proposition states that this primitive, called Merger!>,
can be composed out of Sync!> and Merger (cf. Prop. 8).
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Imagine a variant of Merger with three sources instead of two. Informally, it
has a data-flow from each of its sources to its targets, one of which it prioritizes
over the other two. The following proposition states that this primitive, called
Merger3!>, can be composed out of Merger!> and Merger.

Proposition 15.
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Imagine a variant of Merger3!> with three sources instead of two. Informally,
it has a data-flow from each of its sources to its targets, one of which it prioritizes
over the other two (rank #1), and one of those two (rank #2) of which it pri-
oritizes over the other one (rank #3). The following proposition states that this
primitive, called Merger3!!>,!>, can be composed out of Merger!> and Merger!>.

Proposition 16.
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6 Discussion

I conclude this paper with some open issues and future work. Section 5 revealed
already one open issue, namely the minor discrepancy between LossySync the
primitive and LossySync the compound.

A second issue with the current formalization is exemplified by the connector
in Fig. 1b: the eight-color semantics of this compound contains only one coloring
that models idling, and moreover, this coloring has a causality loop (i.e., it is
non-constructive, in Costa’s sense [Cos10]). This problem is surprisingly difficult
to solve in a proper way; the obvious solution (adding coloring {v1 7→ 3, v2 7→
3, v3 7→ 3}) has quite adverse side effects. Perhaps the problem can be solved by
adding one or more colors.

The eight-color semantics of the connector in Fig. 1c allows for a nonde-
terministic choice between an “upper” data-flow (from v1 to v3) and a “lower”
data-flow (from v1 to v4 and v3), because Sync!>’s priorities are propagated only
downstream, not affecting the nondeterministic choice of ExclRouter, upstream.
This is a reasonable interpretation of the informal semantics. An alternative
interpretation, and arguably equally reasonable, is that Merger should propa-
gate priorities from v5 not only to v3 but also to v6, reversing the direction of
propagation from downstream to upstream. Under this interpretation, the non-
deterministic choice of ExclRouter is affected by Sync!>’s priorities, and the lower
data-flow should never be chosen. It would be interesting to investigate how to
model this alternative interpretation in the connector coloring framework.

Finally, the eight-color semantics of primitives and compounds quickly be-
come prohibitively large. This makes manually reasoning about these semantics
quite challenging. The development of software tooling to automate the compo-
sition of sets of colorings is imperative to continue this line of research.
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A Definitions

Definition 1 (Structure). V is the set of all vertices. T is the set of all types.
The structure of a connector is a tuple g = (V,E), where V ⊆ V and E ⊆
(2V × T× 2V ) \ {(∅, t, ∅) | t ∈ T}. G is the set of all structures.

Definition 2 (Structural composition). S,T : 2(2
V×T×2V) → 2V are the func-

tions defined by the following equations:

S(E) =
⋃
{V | (V, t, V ′) ∈ E} \

⋃
{V ′ | (V, t, V ′) ∈ E}

T(E) =
⋃
{V ′ | (V, t, V ′) ∈ E} \

⋃
{V | (V, t, V ′) ∈ E}

./ : G×G→ G is the partial operation defined by the following equation:

(V1, E1) ./ (V2, E2) =

{
(V1 ∪ V2, E1 ∪ E2) if: S(E1) ∩ T(E2) = S(E2) ∩ T(E1)

⊥ otherwise

Definition 3 (Behavior). C is the set of all colors. A coloring γ over V is a
function from V to C. Col(V ) = V → C is the set of all colorings over V . The
behavior of a connector (V,E) is a set Γ ⊆ Col(V ) of colorings.

Definition 4 (Behavioral composition).

./ : (Col(V1)× Col(V2) ⇀ Col(V1 ∪ V2)) ∪ (2Col(V1) × 2Col(V2) ⇀ 2Col(V1∪V2))
is the partial function defined by the following equations:

γ1 ./ γ2 =

{
γ1 ∪ γ2 if: γ1(p) = γ2(p) for-all p ∈ dom(γ1) ∩ dom(γ2)

⊥ otherwise

Γ1 ./ Γ2 = {γ1 ./ γ2 | γ1 ∈ Γ1 and γ2 ∈ Γ2 and γ1 ./ γ2 ∈ dom(./)}

Definition 5 (Denotation). With T : T→ (2V × 2V)→
⋃
{2Col(V ) | V ⊆ V},q

·
y

: G→
⋃
{Col(V ) | V ⊆ V} is the function defined by the following equation:

q
(V,E)

y
= ./{T (t)(V, V ′) | (V, t, V ′) ∈ E}

Theorem 1.
q
g1 ./ g2

y
=

q
g1

y
./

q
g2

y

www.arxiv.org

	Formalizing Propagation of Priorities in Reo, using Eight Colors

