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Modular Programming of Synchronization and Communication
among Tasks in Parallel Programs

Bernie van Veen∗ and Sung-Shik Jongmans∗†
∗Department of Computer Science, Open University of the Netherlands

†Department of Computing, Imperial College London

Abstract—Implementing synchronization and communica-
tion among tasks in parallel programs is a major challenge.
We present a high-level DSL geared toward this challenge,
by generalizing the existing protocol language Reo from sup-
porting only a compile-time/statically set number of tasks
(unsuitable for parallel programming), to supporting also a
run-time/dynamically set number of tasks. Our contribution
comprises new syntax, a new compilation/execution approach,
and experimental results. Most surprisingly, the new approach
can outperform the existing approach, even though the new
approach requires more work to be done at run-time.

Keywords-DSL; synchronization; communication; coordina-
tion; interaction

I. INTRODUCTION

A. Synchronization and Communication

Implementing synchronization and communication among
tasks in parallel programs is a major challenge. Broadly,
there are two strategies.

The first strategy is to use a language/library that com-
pletely hides the complexities of synchronization and com-
munication (e.g., implicit/data parallelism [1]–[5]; algorith-
mic skeletons [6]–[8]; DSLs [9]–[11]). This strategy is char-
acterized by two properties. First, getting synchronization
and communication right is not the responsibility of the
programmer, but of the implementor of the language/library
(e.g., a pipe skeleton ensures safe communication of values
between the parallel stages of a computation). Second, the
language/library is typically less generally applicable (e.g.,
the parallel program needs to “fit” the algorithmic skeletons).

The second strategy is to use a language/library that
reduces the complexities of synchronization and communi-
cation, without completely hiding them (e.g., transactional
memory [12], [13]; coordination languages [14], [15]). In
this second strategy, getting synchronization and commu-
nication right is the responsibility of the programmer, but
the language/library makes it simpler and is typically more
generally applicable.

This paper is about the design and implementation of
languages/libraries that support the second strategy. We
argue that such languages/libraries should be built upon the
principle of separation of concerns [16].

B. Separation of Concerns

In the context of synchronization and communication,
“separation of concerns” entails dividing a parallel program
into syntactically separate task modules and protocol mod-
ules. Every task module encapsulates a task; every protocol
module encapsulates synchronization and communication
between those tasks. We use the qualifier “protocol” because
synchronization and communication forces tasks to (inter)act
only according to well-defined “rules of engagement” (=
protocol); harmful interference among tasks, in particular,
should be ruled out.

Examples of simple protocol modules are semaphores,
barriers, and concurrent queues (channels). More complex
protocol modules may be multiparty, stateful, and/or asym-
metric. A basic example of such a protocol is the following:

Example 1. First task A communicates a message to task
C, then task B communicates a message to C.

The synchronization and communication required to enforce
this protocol should ensure not only the fidelity of the
message communications between the tasks (e.g., avoid data
races), but also that the communication from A to C strictly
precedes the communication from B to C.

Already in the early 1970s, Parnas attributed three general
advantages to modularity [17]:

“(1) managerial—development time should be
shortened because separate groups would work on
each module with little need for communication;
(2) product flexibility—it should be possible to
make drastic changes to one module without a
need to change others; (3) comprehensibility—it
should be possible to study the system one module
at a time.”

A fourth advantage is (4) reusability—it should be possible
to straightforwardly “plug in” a module from a previous
program into a new one.

But despite these advantages, and while separation of
concerns has pervaded many software engineering practices,
implementing synchronization and communication in par-
allel programs is not one of them. For instance, popular
frameworks, as MPI and OpenMP, do not provide linguistic
support to separate tasks from protocols. To implement Ex. 1



in MPI, the real communications need to be supplemented
with an auxiliary barrier or communication, but MPI has no
constructs to correlate the corresponding auxiliary function
calls with the function calls for the real communications, as
a single protocol implementation. As a result, the previous
four advantages do not apply.

C. Contribution and Organization

Our longer-term research aim is:
To provide parallel programmers a language with
high-level abstractions for synchronization and
communication, built upon the principle of sep-
aration of concerns, to provide the advantages of
modularity (1), (2), (3), (4), as described above.

In pursuit of this aim, one existing language has our par-
ticular interest: Reo [18]. Originally, Reo is a language for
specification of protocols among components in component-
based systems. However, it has qualities that make it at-
tractive for our purpose as well: Reo provides high-level,
graphical abstractions (protocols are specified as graphs,
reminiscent of data-flow diagrams, but more expressive); it is
intimately built upon the principle of separation of concerns
(components in Reo are oblivious to the synchronization
and communication between them); it has formal semantics
and rigorous tool support (e.g., compilers for code gener-
ation [19]–[21]; model checkers for verification [22]–[24]).
As a well-studied language, under research and development
for over a decade, Reo seems exactly what we aim parallel
programmers to provide. But, it is not.

A core assumption in Reo is that the subjects of syn-
chronization and communication are known at compile-time.
Although this is fine for Reo’s original use cases, it is
unreasonable in parallel programming, where (numbers of)
tasks are typically set at run-time. Essentially, using Reo for
parallel programming results in programs “able to use only a
fixed number of processors”, which are “bad programs” [25].

Thus, there exists a language—Reo—for defining syn-
chronization and communication, built upon a principle—
separation of concerns—that has a number of important
advantages; this is exactly what we want. Yet, we cannot use
this language in parallel programming, because it yields “bad
programs”. The main contribution of this paper is, therefore,
a generalization of Reo to support parallel programming:
• We present new syntax that allows protocols specified

in Reo to be parametrized in numbers of tasks.
• We present a new compilation/execution approach for

the new syntax. This is challenging, as Reo’s existing
compilation/execution approach relies on compile-time
knowledge of numbers of tasks.

• We present experimental results. Most surprisingly, the
experimental results show that the new approach can
outperform the existing approach, even though the new
approach requires more work to be done at run-time.

1 publicpublicpublic interfaceinterfaceinterface Outport { // implemented by OutportImpl
2 voidvoidvoid send(Object o); }
3 publicpublicpublic interfaceinterfaceinterface Inport { // implemented by InportImpl
4 Object recv(); }
5 publicpublicpublic interfaceinterfaceinterface Channel { // implemented by ChannelImpl
6 voidvoidvoid connect(Outport out, Inport in); }

Figure 1: Foster-Chandy model

1 publicpublicpublic classclassclass Tasks {
2 publicpublicpublic staticstaticstatic voidvoidvoid a(Outport out) {
3 Object o = ...; out.send(o); }
4 publicpublicpublic staticstaticstatic voidvoidvoid b(Inport y, Outport out) {
5 Object o = ...; // ^^ auxiliary
6 y.recv(); // << auxiliary
7 out.send(o); }
8 publicpublicpublic staticstaticstatic voidvoidvoid c(Inport in1, Inport in2, Outport x) {
9 Object o1 = in1.recv(); // auxiliary ^^

10 x.send(0); // << auxiliary
11 Object o2 = in2.recv();
12 ...; }
13 publicpublicpublic staticstaticstatic voidvoidvoid main(String[] args) {
14 Outport ao = newnewnew OutportImpl();
15 Outport bo = newnewnew OutportImpl();
16 Inport ci1 = newnewnew InportImpl();
17 Inport ci2 = newnewnew InportImpl();
18 newnewnew ChannelImpl().connect(ao, ci1);
19 newnewnew ChannelImpl().connect(bo, ci2);
20 // auxiliary:
21 Outport x = newnewnew OutportImpl();
22 Inport y = newnewnew InportImpl();
23 newnewnew ChannelImpl().connect(x, y);
24 // tasks as threads:
25 newnewnew Thread() { publicpublicpublic voidvoidvoid run() { a(ao); } }.start();
26 newnewnew Thread() { publicpublicpublic voidvoidvoid run() { b(y, bo); } }.start();
27 newnewnew Thread() { publicpublicpublic voidvoidvoid run() {
28 c(ci1, ci2, x); } }.start(); } }

Figure 2: Example 1 (Foster-Chandy model)

Sect. II motivates the programming model. Sect. III
summarizes Reo. Sect. IV presents the design of the new
syntax and the new compilation/execution approach. Sect. V
presents an implementation and experimental results.

II. PROGRAMMING MODEL

Our starting point is the Foster-Chandy model for paral-
lel programming [25], [26]. In this model, every parallel
program consists of tasks, which execute concurrently. To
synchronize/communicate with other tasks, every task has
an interface consisting of outports and inports, enabling it
to send and receive messages. An outport/inport pair can be
connected by a channel with an unbounded buffer. Send
operations on the inport are nonblocking, while receive
operations on the outport are blocking (they complete only
once a message becomes available). Fig. 1 shows three
interfaces in Java to implement the Foster-Chandy model.

Example 2. Fig. 2 shows a Java implementation of Ex. 1
(Sect. I), using the interfaces in Fig. 1 (Foster-Chandy
model). Class Tasks defines four static methods, which
implement (stubs for) tasks A, B, and C, and a main task.
The main task creates outports, inports, and channels.

Example 2 illustrates two important points.
(i) It shows that the level of abstraction in Ex. 1, is higher

than the level of abstraction supported by the Foster-



1 publicpublicpublic interfaceinterfaceinterface Connector { // implemented by ConnectorEx11
2 voidvoidvoid connect(Outport[] out, Inport[] in); }

Figure 3: Generalized Foster-Chandy model (cf. Fig. 1)

1 publicpublicpublic classclassclass Tasks {
2 publicpublicpublic staticstaticstatic voidvoidvoid a(Outport out) {
3 Object o = ...; out.send(o); }
4 publicpublicpublic staticstaticstatic voidvoidvoid b(Outport out) {
5 Object o = ...; out.send(o); }
6 publicpublicpublic staticstaticstatic voidvoidvoid c(Inport in1, Inport in2) {
7 Object o1 = in1.recv(); Object o2 = in2.recv(); ...; }
8 publicpublicpublic staticstaticstatic voidvoidvoid main(String[] args) {
9 Outport ao = newnewnew OutportImpl();

10 Outport bo = newnewnew OutportImpl();
11 Inport ci1 = newnewnew InportImpl();
12 Inport ci2 = newnewnew InportImpl();
13 newnewnew ConnectorEx11().connect({ao, bo}, {ci1, ci2});
14 // tasks as threads:
15 newnewnew Thread() { publicpublicpublic voidvoidvoid run() { a(ao); } }.start();
16 newnewnew Thread() { publicpublicpublic voidvoidvoid run() { b(bo); } }.start();
17 newnewnew Thread() { publicpublicpublic voidvoidvoid run() {
18 c(ci1, ci2); } }.start(); } }

Figure 4: Example 1 (generalized Foster-Chandy model)

Chandy model: Ex. 1 orders the communications,
which in the Foster-Chandy model can be enforced
only with an auxiliary communication from C to B.

(ii) It shows that, although the Foster-Chandy model sup-
ports modularity between tasks, it does not support
modularity between task and protocol. In particular,
the synchronization and communication required to
enforce the protocol is implemented as part of the
three tasks; it is not encapsulated in a separate module
and cannot, for instance, straightforwardly be reused.

To improve on these points, the Foster-Chandy model can
be generalized (i) to support a higher level of abstraction
and (ii) to support modularity between task and protocol.
The idea is to allow custom n-ary synchronization/commu-
nication mediums among arbitrary numbers of outports and
inports, called connectors, instead of allowing only channels
(i.e., fixed binary mediums between a single outport and a
single inport). Moreover, in the generalized model, not only
receive operations are blocking, but also send operations.1

Fig. 3 shows an interface for a Java implementation
of the generalized Foster-Chandy model; we also need
interfaces Outport and Inport (Fig. 1), but with different
implementations. While interface Channel (Fig. 1) has only
one implementation, interface Connector has many, each
of which comprehensively encapsulates all synchronization
and communication required to enforce one protocol.

Example 3. Fig. 4 shows a Java implementation of Ex. 1,
using the interfaces in Fig. 3 (generalized Foster-Chandy
model). Class ConnectorEx11 (omitted) implements in-
terface Connector; it comprehensively encapsulates all
synchronization and communication.

1However, a connector with an internal buffer may immediately accept
any message sent on an outport, and store it in its buffer (if the buffer is
not yet full), thereby making the send operation essentially nonblocking.
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Figure 5: Example 1 (Reo; cf. Fig. 4)

Example 3 illustrates two points opposite to Ex. 2:
(i) There is no need for an auxiliary communication from

C to B; the internals of ConnectorEx11 ensure that
a send operation on bo will not complete—sends are
blocking in the generalized Foster-Chandy model—
before a receive operation has completed on ci1.

(ii) All synchronization and communication required to
enforce the protocol is encapsulated in a separate
module: class ConnectorEx11. As such, it is provides
the four advantages listed in Sect. I.

To implement programs that consist of n > 1 different
protocols, n different connectors are needed. The advantages
of the generalized Foster-Chandy model are also significant
in this case: per-protocol encapsulation of synchronization
and communication means that each of the n protocols can
be implemented as a connector, in isolation. In contrast,
in the basic Foster-Chandy model, at least n channels
are needed, while the code for every protocol (i.e., usage
patterns of those channels) is mixed not only with the task
code, but also with code for other protocols.

Of course, it is possible to program ConnectorEx11

manually. However, doing so places the complexities of
implementing synchronization and communication, using
rather low-level constructs (shared memory, locks, etc.), on
the programmer. Instead, higher-level abstractions should be
available, from which lower-level code can automatically be
generated (and integrated with the rest of the program).

This is what Reo provides: Reo is a language to specify
connectors (protocol modules) among “connectees” (task
modules), each of which comprehensively encapsulates syn-
chronization and communication to enforce a protocol, built
on the generalized Foster-Chandy model. The connectors can
subsequently be formally verified through model checking
(e.g., to prove deadlock freedom or temporal logic prop-
erties), fully automatically [22]–[24]. Once everything is
shown to be in order, the Reo compiler can be used to
generate lower-level code.

III. REO

A. Syntax and Informal Semantics

Example 4. Fig. 5 shows a Reo implementation of Ex. 1.
Reo has a graphical syntax. A Reo diagram consists of
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Figure 6: Example primitives

connectors (protocol modules; the graph in the middle) and
connectees (task modules; the boxes on the sides), which
are linked (thin dotted lines) through outports and inports
(outward and inward pointing triangles). The idea is that the
graph gives an impression of the possible data-flows among
the connectees; their internals are not defined in Reo, but in
another language (e.g., the Java implementation of the tasks
in Fig. 4). Shortly, we discuss Fig. 5 in more detail.

A connector (V,A) is a directed (hyper)graph of vertices
V and (hyper)arcs A. Every arc a ∈ A consists of a set
of tails, denoted as tl(a) ⊆ V , a set of heads, denoted as
hd(a) ⊆ V , and a type (graphically indicated by markings).

We use the following terminology. A connector is primi-
tive if it consists of one arc; it is composite if it consists of
more than one arc. A vertex is public if it has at most one
incoming or outgoing arc; otherwise, it is private.

Example 5. The connector in Fig. 5 is a composite. It has
four public vertices.

Connectors can be composed using the union operator for
graphs, denoted by ⊕: (V1, A1)⊕ (V2, A2) = (V1∪V2, A1∪
A2). Operator ⊕ gives rise to an alternative representation of
a connector (V,A), namely as a set of primitives Γ. More
precisely, let prim(a) = (hd(a) ∪ tl(a), {a}) (i.e., prim
translates an arc to a corresponding primitive). Then, Γ =
{prim(a) | a ∈ A} implies (V,A) =

⊕
Γ. Henceforth, we

use only this alternative representation, because it allows for
a more concise presentation of the key concepts.

We now briefly explain Reo’s informal semantics.
Whenever a task performs a send/receive operation on one

of its outports/inports, it effectively offers/accepts a message
to/from the linked vertex in the connector. However, the
operation is not immediately completed (i.e., a message is
not directly sent/received): only whenever the connector is
ready to handle the operation, it completes the operation.
If the task should not block on the operation, this can be
achieved in the connector by using asynchronous primitives,
some of which are presented below (cf. Footnote 1).

The role of a connector is to transport messages between
vertices, along its arcs, in response to messages being
offered/accepted by tasks. Exactly when and where trans-
portation of messages happens, is determined by the (global)

semantics of the connector; this, in turn, is determined by
the (local) semantics of its constituent primitives; this, in
turn, is determined by the types of the arcs. Reo supports
multiple arc types [18], a subset of which is shown in Fig. 6.

A sync primitive has synchronous semantics: in every
execution step, a message synchronously flows from its tail
to its head. A fifo primitive, in contrast, has asynchronous
semantics: in every execution step, either a message flows
from its tail into an internal unbounded buffer (always
possible), or a message flows out of the buffer to its head
(possible if the buffer is not empty). A fifon primitive (for
some n) has similar semantics, except that its internal buffer
is bounded by n: if the buffer is full, no new messages can
enter. A seq2 primitive has two tails: in its first execution
step, a message flows past the left tail (and is lost), and
in its second execution step, a message flows past the
right tail (and is lost). Graphically, the semicolon marking
indicates “left and right” (i.e., which tail goes first). A
mergn primitive has n tails and one head: in every execution
step, a message synchronously flows from one of its tails
(nondeterministically selected) to its head. A repln primitive
has one tail and n heads: in every execution step, a message
synchronously flows from its tail to each of its heads. By
definition, primitives repeat their execution steps infinitely.

In every instant, every constituent primitive of a connector
has a number of possible local execution steps, according to
its type. Before any of them does anything, all primitives
first need to reach consensus about how to act collectively,
to ensure that each of them acts individually in a way that
is compatible with the others. For instance, a primitive must
not offer a message to one of its heads, if that head is the
tail of a fifon primitive whose buffer is already full. Once
consensus is reached, all primitives act accordingly, and a
global execution step of the connector emerges.

Example 6. The (global) execution steps of the connector
in Fig. 5 can be derived from the (local) execution steps of
its constituent primitives as follows.

Initially, the seq2 primitives accept a message only from
their left tails. For the top seq2 primitive, this is prev1; for
the bottom one, it is next1 (the semicolon is upside down).

Since a message can flow past prev1, and since a
message can flow also past v1 (because the buffer is initially
empty), a message can flow past tl1. Thus, a send operation
on the outport of A can immediately be completed. In
fact, this is the only thing that initially can happen: for
a send operation on the outport of B to complete, the
message must flow past both prev2 and v2, but the seq2
primitive connected to prev2 does not (yet) accept messages
from prev2; for a receive operation on an inport of C to
complete, a message must be available in one of the buffers.

Thus, initially, only a send operation on the outport of A
can be completed. Subsequent (global) execution steps of the
connector can similarly be derived (and yield Ex. 1).
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Figure 7: Example automata (cf. Fig. 6)

B. Formal Semantics and Compilation

Perhaps an obvious compilation approach for Reo is to
translate every constituent primitive of a connector to a sep-
arate piece of lower-level code, and then run these pieces of
code concurrently, while synchronizing their local execution
steps through a consensus algorithm. Although conceptually
simple (and close to the informal semantics), the consensus
algorithm inflicts much overhead. To avoid this, Reo’s most
recent compilation approach works differently [20]. It is
built on an automata-based formalization of Reo’s informal
semantics [27]; we explain this formalization next.

The idea is to represent the behavior of a connector Γ
(i.e., a set of primitives) as a finite-state automaton α =
JΓK. States represent the connector’s internal configurations,
while transitions represent its (global) execution steps. Fig. 7
shows example automata. Every transition is labeled with a
set of the vertices through which messages synchronously
flow (in the execution step modeled by the transition).
For instance, the transition in the automaton for a sync
between vertices v1 (tail) and v2 (head) is labeled with
{v1; v2}, where the semicolon separates tail(s) from head(s).
In contrast, the automaton for a fifo1 has two transitions, to
represent asynchrony. The automaton for a seq2 looks very
similar; the only difference is the polarity of v2. We remark
that the transition labels in Fig. 7 are simplified relative
to the transition labels used in the compiler (which have
more information, notably about the content of messages),
but these technicalities do not matter in the rest of this paper.

Automata can be composed using a (synchronous) mul-
tiplication/product, denoted by ×/

∏
[27]. Roughly, it con-

sumes two automata α1 and α2 and produces a new au-
tomaton α1 × α2 in which the transitions of α1 and α2

have been synchronized. This means that a transition of α1

that involves shared vertices fires iff a transition of α2 that
involves exactly the same shared vertices fires; transitions of
αi that involve no shared vertices can fire independently. Let
aut denote a function that maps primitives to automata. The
automaton for a connector Γ is then computed as follows:

JΓK =
∏
{aut(γ) | γ ∈ Γ} (1)

To generate code for a connector Γ, first, the compiler
looks up a “small automaton” aut(γ), for every γ ∈ Γ,

based on its type. Then, the compiler computes a “large
automaton” by composing all the “small automata” (Eq. 1).
Finally, the compiler generates a piece of lower-level code
for a (sequential) state machine that reactively simulates JΓK.

At run-time, a generated state machine monitors the
outports/inports linked to its vertices. Whenever a task
performs a send/receive on one of its outports/inports, the
state machine reacts by checking whether this operation
enables a transition. If so, the state machine makes the
transition, distributes messages accordingly among inports/
outports, and completes all operations involved. If not, the
state machine does nothing and awaits the next send or
receive; all operations remain pending, and the sending/
receiving tasks blocked.

The advantage of this compilation approach is that it
completely avoids the need for consensus at run-time. In
particular, by composing the “small automata” into a “large
automaton”, the compiler already statically computes all
global execution steps that consist of mutually compatible
local execution steps (as Reo’s informal semantics demands).
The reason this works, is because × is defined such that
it synchronizes transitions of the “small automata” iff the
corresponding local execution steps are compatible.

Reo is fully independent from both the host language in
which code is generated and the platform on which it is run.
For instance, tools exist that generate code for Reo connec-
tors in C [19], Java [20], JavaScript [21], and Scala [28].
Due to this independence, Reo can in principle be used
to abstract away from platform-dependent synchronization
and communication constructs and runtimes, and enforce
protocols among tasks across heterogeneous platforms.

C. Remark on Actor Languages

Actor languages/libraries (e.g., Erlang, Scala) may seem
similar to Reo, but there are fundamental differences.

First, the provided level of abstraction differs. For in-
stance, Ex. 1 can surely be implemented with actors, but
it requires the programmer to manually add an auxiliary
communication from C to B, to ensure that B does not send
to C prematurely (cf. Ex. 2). With Reo, in contrast, the pro-
grammer can write protocols at a higher level of abstraction,
without manually programming such auxiliary interactions
(which become lower-level implementation details).

Second, the automata (Fig. 7) for the primitive connectors
(Fig. 6) can be implemented as actors, but to implement their
synchronous composition, an extra consensus algorithm is
necessary; it is more complex than just running primitive
actors in parallel. For instance, the pipeline composition of
two sync channels should behave as a sync channel, but if
we run two actors for the sync channels in a pipeline without
extra provisions, their compound behavior is asynchronous.



IV. DESIGN

A. Overview

As stated in Sect. I, using Reo for parallel programming
results in programs “able to use only a fixed number of
processors”, which are “bad programs”. Indeed, as Sect. III
showed, Reo has no notation to parametrize diagrams in
the number of connectees. This makes Reo inadequate
for implementing parallel programs, in spite of providing
separation of concerns and the four advantages in Sect. I.

The main contribution of this paper is a generalization of
Reo to support parallel programming. To achieve this, the
following three issues need to be addressed.
• First, new syntax to express parametrization needs to be

developed. The problem is that Reo’s graphical syntax
does not easily lend itself to an intuitive and expressive
extension for parametrization.
We solve this problem with a new textual syntax.

• Next, the compilation approach needs to be extended
with support for the new textual syntax, and notably,
for parametrization. The problem is that the existing
compilation/execution approach relies on the assump-
tion that all primitives in a connector Γ are known at
compile-time, to compute Eq. 1. This assumption fails
to hold with parametrization: Γ may depend on the
number of connectees, known only at run-time.
We solve this problem with a new parametrized com-
pilation approach, which splits the work to be done
(computation of Eq. 1) into a compile-time share and
a run-time share. What can be done at compile-time, is
done at compile-time; only the work that depends on
the number of connectees, is deferred to run-time.

• Finally, the run-time system needs to be extended with
the capability of performing the remaining work. The
problem is that this should be done with minimal over-
head: by moving work from compile-time to run-time,
we may reasonably expect performance will suffer, but
the price we pay should be as low as possible.
We solved this problem with a parametrized execution
approach, which uses “just-in-time composition” to do
only the work that is really necessary.

The rest of this section presents the textual syntax, parame-
trized compilation, and parametrized execution in detail.

B. Textual Syntax

We first describe the basic idea behind the textual syntax
without parameters, and then add parametrization to it.

The basic idea is to, instead of drawing a connector as a
graph, write down a list of its constituents.

Example 7. Fig. 8 shows a textual implementation of Ex. 1
(cf. the graphical implementation in Fig. 5). It consists of
three connector definitions (lines 1–5, 7–9, and 11–12) and
one main definition (lines 14–15).

1 ConnectorEx11a(tl1,tl2;hd1,hd2) =
2 Repl2(tl1;prev1,v1) multmultmult Repl2(tl2;prev2,v2)
3 multmultmult Fifo1(v1;w1) multmultmult Fifo1(v2;w2)
4 multmultmult Repl2(w1;next1,hd1) multmultmult Repl2(w2;next2,hd2)
5 multmultmult Seq2(next1,prev2;) multmultmult Seq2(prev1,next2;)
6

7 ConnectorEx11b(tl1,tl2;hd1,hd2) =
8 X(tl1;prev1,next1,hd1) multmultmult X(tl2;prev2,next2,hd2)
9 multmultmult Seq2(next1,prev2;) multmultmult Seq2(prev1,next2;)

10

11 X(tl;prev,next,hd) =
12 Repl2(tl;prev,v) multmultmult Fifo1(v;w) multmultmult Repl2(w;next,hd)
13

14 mainmainmain = ConnectorEx11a(aOut,bOut;cIn1,cIn2) amongamongamong
15 Tasks.a(aOut) andandand Tasks.b(bOut) andandand Tasks.c(cIn1,cIn2)

Figure 8: Example 1 (textual; cf. Figs. 4 and 5)

1 ConnectorEx11N(tl[];hd[]) =
2 ififif (#tl == 1) {
3 Fifo1(tl[1];hd[1])
4 } elseelseelse {
5 prodprodprod (i:1..#tl) X(tl[i];prev[i],next[i],hd[i])
6 multmultmult prodprodprod (i:1..#tl-1) Seq2(next[i];prev[i+1])
7 multmultmult Seq2(prev[1];next[#tl])
8 }
9

10 mainmainmain(N) = ConnectorEx11N(out[1..N];in[1..N]) amongamongamong
11 forallforallforall (i:1..N) Tasks.pro(out[i]) andandand Tasks.con(in[1..N])

Figure 9: Example 8 (textual; cf. Fig. 8)

Every connector definition consists of a signature (e.g.,
line 1) and a body (e.g., lines 2–5). A signature consists of
a name (ConnectorEx11a) and a list of formal parameters
(tl1, tl2, hd1, hd2). A body lists the connector’s con-
stituents, separated by keyword multmultmult, alluding to operator
×. A constituent is either the instantiated signature of a
primitive (defined as part of the language, including the
Reo types) or composite (defined manually). Lines 7–12
exemplify the latter, where instances of X are constituents of
ConnectorEx11b. Signatures are instantiated with formal
parameters (for public vertices) or local variables (for
private vertices; prev1, v1, w1, next1, etc.). All local
variables are bound to a unique vertex (implicitly created),
statically scoped, and inaccessible from outside the defi-
nition. The main definition consists of lists of instantiated
connector signatures and task signatures.

To extend the basic textual syntax with parametrization in
the number of tasks, we add a number of constructs: arrays,
conditional expressions, and iteration expressions.

Example 8. Imagine a parametrized version of Ex. 1, where
task C receives messages from N tasks instead of two. Fig. 9
shows a textual implementation of this protocol.

In the signature of the connector definition, the square
brackets indicate that formal parameter tl contains an
array of vertices (line 1); we stipulate that arrays are
nonempty. The length of tl is denoted by #tl (lines 2, 5,
and 6), and it determines which particular constituents an
instance of the connector consists of, through conditional
and iteration expressions. If tl consists of one vertex, there
is exactly one constituent (line 3). If tl consists of more than



one vertex, in contrast, the number of constituents depends
on the length of tl (lines 4–8). This is implemented using
iteration expressions (lines 5 and 6), each of which consists
of three parts: the declaration of an iteration variable, a
range, and a body. The idea is that the body is instantiated
for every value in the range (by binding the iteration
variable to that value), and that each of these instantiated
bodies is “in-lined” into the parent expression. Here, the
bodies contain only a single constituent, but in general, it
can be an arbitrary expression.

In the signature of the main definition, parameter N is
declared. This parameter is an input for the program, and
used at run-time to spawn an appropriate number of tasks,
and to create correspondingly sized connectors.

The intended workflow is, first, to draw a connector in
the graphical syntax; doing so gives a good impression of
the intended flows between vertices, and it offers a means
of rapid prototyping. Then, translate the (nonparametrized)
graphical syntax to (nonparametrized) textual syntax. Fi-
nally, parametrize the textual representation by adding ar-
rays, conditions, and iterations.

C. Parametrized Compilation
The main advantage of the existing compilation approach

is that it completely avoids the need for consensus at run-
time, by composing the “small automata” into a “large
automaton” at compile-time. To do this, however, the set
of all primitives in connector Γ must be known at compile-
time. This depends on the constituents in the connector’s
definition; this, in turn, depends on the instantiation of con-
ditions and ranges; this, in turn, depends on array lengths;
this, in turn, depends on the number of connectees; and this,
problematically, is not known at compile-time.

There is no way around this problem. The best we can
do, to avoid run-time consensus as much as possible, is
perform at compile-time all composition work that does not
depend on the number of connectees; all remaining work is
deferred to run-time. We discuss the compile-time share in
this subsection, and the run-time share in the next.

To compile a connector definition, the first step is to
flatten its body: all (non-primitive) constituents that occur
in the body are (recursively) expanded and in-lined. Local
variables in-lined in this way first need to be renamed
to ensure they have unique names (their exact names are
immaterial, because their scope is local; only uniqueness
matters). After flattening, the body contains only primitive
constituents, some of which may be nested in conditional
and/or iteration expressions.

Example 9. Flattening ConnectorEx11b in Fig. 8 yields
ConnectorEx11a, up to associativity and commutativity of
multmultmult (and renaming v and w before in-lining X).

The second step is to look up a “small automaton” for
every constituent and compose as many of them as possible

1 publicpublicpublic classclassclass ConnectorExN implementsimplementsimplements Connector {
2 privateprivateprivate List<Automaton> automata = newnewnew ArrayList<>();
3

4 @Override
5 publicpublicpublic voidvoidvoid connect(Outport[] out, Inport[] in) {
6 // construct "medium automata":
7 ififif (out.length == 1) {
8 automata.add(newnewnew Automaton1()); }
9 elseelseelse {

10 automata.add(newnewnew Automaton2(out.length))
11 forforfor (intintint i = 0; i < out.length) {
12 automata.add(newnewnew Automaton3(i)); }
13 forforfor (intintint i = 0; i < out.length - 1) {
14 automata.add(newnewnew Automaton4(i)); } }
15 // link outports/inports to vertices:
16 ...; }
17

18 // state machine for Fifo1(tl[1];hd[1]), line 3:
19 privateprivateprivate classclassclass Automaton1 implementsimplementsimplements Automaton { ... }
20 // state machine for Seq2(prev[1];next[#tl]), line 7:
21 privateprivateprivate classclassclass Automaton2 implementsimplementsimplements Automaton { ... }
22 // state machine for X(tl[i];prev[i],next[i],hd[i]), line 5:
23 privateprivateprivate classclassclass Automaton3 implementsimplementsimplements Automaton { ... }
24 // state machine for Seq2(next[i];prev[i+1]), line 6:
25 privateprivateprivate classclassclass Automaton4 implementsimplementsimplements Automaton { ... } }

Figure 10: Example 8 (Java; generated for Fig. 9)

into a number of “medium automata” (instead of into one
“large automaton”). To this end, the flattened body is first
normalized into a form where all “small automata” occur
together (which is necessary to subsequently compose them).
Generally, an expression is in normal form iff:
• From left to right (separated by multmultmult), it consists of:

first a section with only (primitive) constituents, then
a section with only iteration expressions, and finally a
section with only conditional expressions.

• Nested expressions (i.e., bodies of iterations; branches
of conditionals) are in normal form.

Computing normal forms is computationally easy.

Example 10. To normalize ConnectorEx11N in Fig. 9, X
is first expanded and in-lined (the body of X is already in
normal form), and line 7 is then moved up.

After normalization, every expression in the flattened
body (starting from the whole body) is translated to lower-
level code, according to the following rules:
• For every instantiated signature in the constituents

section, a “small automaton” is looked up. These “small
automata” are composed into a “medium automaton”,
and lower-level code for a state machine is generated.

• For every prodprodprod <var>:<range> <body> in the iter-
ations section, lower-level code for iteration is gener-
ated (e.g., for-loop), whose body consists of the code
recursively generated for <body>.

• For every ififif <cond> <branch1> <branch2> in the
conditionals section, lower-level code for conditional
is generated, whose branches consist of the code recur-
sively generated for <branch1> and <branch2>.

In Java, for instance, the generated code constitutes an
implementation of interface Connector in Fig. 3.



Example 11. Fig. 10 shows a Java implementation of
the protocol specified in Ex. 8, generated from the textual
implementation in Fig. 9 (simplified to save space).

For every “medium automaton”, a class that implements
an interface Automaton is generated (lines 19–25; de-
tails omitted). Instances of these classes are constructed in
method connect (lines 5–16).

We call this new compilation approach parametrized. It
strictly generalizes the existing compilation approach, in this
sense: for connector definitions without arrays, conditionals,
and iterations, the two approaches coincide.

D. Parametrized Execution

Execution of the generated code at run-time (e.g., method
connect in Fig. 10), when numbers of connectees (i.e.,
array lengths) are known, yields a list of state machines
for “medium automata”. What remains to be done, is the
work to compose these “medium automata” into one “large
automaton”. There are two approaches to do this.

The naive approach is to compose them immediately
after they are constructed, before the actual computations
have started. We call this ahead-of-time composition. The
advantage is that it is easy to implement; the disadvantage
is that resources may be spent unnecessarily, which happens
if the “large automaton” has states that are never actually
reached (not because they are theoretically unreachable, but
because some paths are never followed).

A better approach is to generate only the part of the state
space of the “large automaton” that is actually reached, as
the program is executed. We call this just-in-time composi-
tion. The idea is to initially compute only the initial state
(formed as the tuple of the initial states in the “medium au-
tomata”), plus the initial state’s outgoing transitions (formed
by synchronizing the outgoing transitions of the initial states
in the “medium automata”, as prescribed by ×). Only once a
transition out of the initial state fires, that transition’s target
state is “expanded” by computing its outgoing transitions (in
the same way as for the initial state)—and so on.

V. IMPLEMENTATION

A. Tools

We implemented the design in Java, extending the ex-
isting Reo-to-Java tools [20], although we do not use any
Java-specific features; the design can implemented in other
languages equally well. The implementation consists of the
following components (Figure 11): an API, a graph-to-text
translator, a text-to-Java compiler, and a runtime system.
They are all implemented as plug-ins for Eclipse, as an
extension to existing Eclipse plug-ins for Reo development
[http://reo.project.cwi.nl], including a graphical editor, ani-
mation engine, and model checker.

The API consists, essentially, only of interfaces Outport
and Inport (Fig. 1). Using this API, programmers can
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Figure 11: Bold font/thick lines indicate components of
our implementation. Arrows represent workflow of the pro-
grammer. Rectangles indicate software artifacts. All software
artifacts inside the dashed rectangle are Java sources (par-
tially generated from Reo), which collectively constitute the
executable parallel program (compiled by the Java compiler).

implement tasks as static methods in Java (Fig. 3). The
graph-to-text translator consumes as input a Reo diagram,
and it produces as output an equivalent textual representation
(e.g., Fig. 5 to Fig. 8). The textual representation can
then be parametrized (e.g., Fig. 8 to Fig. 9). The compiler
consumes as input a textual representation, and produces
as output lower-level Java code, as explained in Sect. IV.
Finally, the runtime system provides an implementation of
the API and some auxiliary classes. Notably, the runtime
system supports both ahead-of-time composition and just-
in-time composition of “medium automata” into a “large
automaton”; this is set using a command-line flag.

B. Experiments: Connector Benchmarks

In our first series of experiments, we compared the perfor-
mance of code generated for connectors using the existing
compilation approach vs. the new one. In these experiments,
thus, we concentrated on individual connectors instead of
on full programs. We made a comprehensive selection of
eighteen connectors, fully covering the major examples of
parametrizable connectors in the Reo literature.

In every experiment, we first compiled the respective
experimental connector for N ∈ {2, 4, 8, 16, 32, 64} senders
or receivers (depending on whether the connector is one-
to-many, many-to-one, or many-to-many), with both the
existing compiler and the new compiler. With the existing
compiler, we needed to compile the connector six times,
once for every value of N ; with the new compiler, only
one compilation was necessary. After compilation, we ran
all generated code thrice for all N , on a machine with an
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Figure 12: Experimental results: Connectors (summary)

Intel i5-5300U processor (two cores2 Hyper-Threading and
Turbo Boost disabled), Windows 7 (64-bit), Oracle JDK 1.8
(max heap: 2 GB). For every run, we measured the number
of global execution steps the connector (i.e., its generated
code) made in four minutes. As we wanted to study the
performance of the generated code, the tasks performed no
computations; every task just tried to send and receive as
often as possible.

Fig. 12 shows a summary of the experimental results;
details are available elsewhere [29]. The overall trend to
observe is that for smaller N , the existing approach generally
outperforms the new approach, but for larger N , the new
approach generally outperforms the existing approach. More
in-depth analysis yields the following insights.

The two most interesting reasons why the existing ap-
proach can outperform the new approach:

1) The existing compiler does optimizations at compile-
time, by simplifying transition labels (in a semantics-
preserving way) [30]. This makes firing of single tran-
sitions at run-time (much) faster. These optimizations
are also applicable in the new approach (but not yet
implemented). For instance, in previous benchmarks
with the existing compiler [30], speedups relative to
unoptimized transition execution ranged from 1.2-fold
for a single sync channel to 48.9-fold for a complex
data-dependent connector (i.e., this optimization gets
more effective as the size of the connector increases).
As the complexity of applying this optimization is
only linear in the size of the (unoptimized) transition
label, we expect similar speedups in the new approach
for protocols with loops (where run-time optimization
costs are amortized over multiple iterations).

2The fact that the processor has only two cores, is not a problem given
the aim of these experiments, as the generated code itself is not parallel.

2) The existing compiler applies an optimization at com-
pile-time, by analyzing the “large automaton” as a
whole and manipulate its transition structure (in a
semantics-preserving way) [19]. This makes firing
of sets of transitions (much) faster. Contrasting the
previous point, this optimization is not applicable in
the new approach, because its application requires full
knowledge of the “large automaton”.

The connectors that suffer from point 1, are not fundamen-
tally problematic: the transition-local optimizations applied
in the existing approach, can be implemented in the new
approach as well. The connectors that suffer from point 2, in
contrast, do constitute an interesting next research challenge:
we do not know yet if/how a transition-global optimization
can be implemented in the new approach. This problem is
important to solve, because it is the main reason why the
existing approach outperforms the new approach up to two
orders of magnitude in 8% of cases (red bins).

The most interesting reason why the new approach can
outperform the existing approach is the very use of just-
in-time composition. In particular, “large automata” that in
theory have a number of states exponential in the number
of “medium automata”, can perfectly be handled in the
new approach, because only a small part of such state
spaces are actually reached at run-time, and because just-
in-time composition computes only the part of the state
space that is actually reached. In contrast, with ahead-of-
time composition, the entire state space must necessarily
be computed upfront, which the existing compiler cannot
handle. Thus, in these cases, the existing approach failed,
while the new approach worked fine.

In cases where the state-space is both exponentially large
and each of those states may be reached at run-time in a
sufficiently long run (unlike in the previous experiments),
even then the new approach can have an advantage over the
existing approach, when using a bounded state cache. The
idea (not yet properly implemented) is to evict previously
computed states from the cache if the cache is full (instead
of saving them for eternity, as our runtime system currently
does). The disadvantage is the possible need to recompute
states that have already been computed, but also evicted,
previously; the advantage is that arbitrarily large state spaces
can be handled. We leave implementing such caches, and
studying effective eviction policies, for future work.

C. Experiments: NAS Parallel Benchmarks

We compared the performance of hand-written code for
a full program (“real” computations, plus synchronization
and communication) vs. compiler-generated code using the
new parametrized compilation approach. In these experi-
ments, thus, we concentrated on full programs instead of
on individual connectors. To this end, we took the Java
reference implementation of the NAS Parallel Benchmarks
(NPB) [31], which consists of seven programs: four kernels
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Figure 13: Experimental results: NPB (excerpt)

and three applications, derived from computational fluid
dynamics software. In all programs, tasks are organized in a
master–slaves structure; in one of the programs, additionally,
the slaves are organized in a pipeline structure. We stripped
the tasks in each of the programs from all synchronization
and communication, and replaced it with (operations on)
outports and inports.

In every experiment, we compiled the connectors in the
respective program for N ∈ {2, 4, 8, 16, 32, 64} slaves. After
compilation, we ran both the original and its Reo-based
variant, on a machine with four Intel E7-8890V3 processors
(72 cores;3 Hyper-Threading and Turbo Boost disabled),
RedHat 7.3, OpenJDK 1.8 (max heap: 8 GB). NPB comes
with a number of predefined workloads for all programs,
of varying size (in increasing order: S, W, A, B, C). We
measured the total run time.

Fig. 13 shows an excerpt of the experimental result; details
are available elsewhere [29]. Our main findings:

1) The workloads of classes S and W are small; the
overhead of the generated code dominates.

2) The workloads of classes A, B, and C are larger, and
in those cases, the overhead of the generated code is
amortized over the substantial work that the tasks need
to do. As a result, the performance of the original
programs and the Reo-based variants is comparable,
for N ∈ {2, 4, 8}. This shows the new approach is
also viable beyond synthetic benchmarks.

3Unlike in the connector benchmarks, the number of cores matters here.

3) For N ∈ {16, 32, 64}, the Reo-based variants did not
terminate within the time alloted, because the “large
automaton” for the connector has some states with a
number of transitions exponential in the number of
slaves; just-in-time compilation does not help, because
once such a state is reached, it is expanded, which
requires computing its exponentially many transitions.
This problem can be overcome by extending the
new compiler with another existing optimization tech-
nique [32] (i.e., earlier experiments with NPB using
the existing compiler, which does employ this opti-
mization technique, showed comparable performance
to the original programs [20]). This technique involves
static analysis of the “small automata” (linear com-
plexity), before they are composed into (a possibly
exponentially) “large automaton”. Based on this anal-
ysis (ahead-of-time), the set of “small automata” is
partitioned (ahead-of-time), after which only automata
in the same subset are composed (ahead-of-time or
just-in-time). Using this technique, and with appro-
priate run-time support (of constant complexity, but
non-zero), exponential growth can be avoided.

VI. CONCLUSION

Separation of concerns is an important software engi-
neering principle, with several well-documented advantages.
However, when it comes to implementing synchronization
and communication (= protocols) among tasks, concerns
are typically not separated. To improve this, we aim to
provide programmers a language with high-level abstractions
for synchronization and communication, that naturally lets
programmers separate tasks from protocols.

Reo is an existing language for specification of protocols
among tasks, under research and development for over a
decade, with a number of attractive qualities. Problemati-
cally, however, as Reo’s original use cases did not demand it,
Reo does not support specification of protocols parametric in
the number of tasks. This makes Reo inadequate for parallel
programming, despite its useful features and tools.

Reporting on a substantial initial effort, the main contri-
bution of this paper is a generalization of Reo to support
parallel programming. More specifically, we presented new
syntax that allows specification of protocols that are para-
metric in the number of tasks; we presented the design and
implementation of a new compilation/execution approach for
the new syntax; we reported on experimental results. Most
surprisingly, the new compilation/execution approach can
outperform Reo’s existing approach, even though the new
approach requires more work to be done at run-time.
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