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Abstract

Protocol programming languages are domain-specific lan-

guages that offer higher-level abstractions for programming

of synchronization and communication protocols among

participants. However, most implementations of protocol

programming languages on shared memory architectures

use pointer passing to exchange data in communications, so

programs can still run into data races. We report on our ongo-

ing efforts toward the first shared memory implementation

of a protocol programming language that guarantees free-

dom of data races, without excessive copying, by leveraging

the programming language Rust and its type system.
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1 Introduction

With the advent of multicore processors, concurrent pro-

gramming has become an indispensable skill for many gener-

al-purpose programmers tomaster. However, concurrent pro-

gramming remains difficult: despite new features in general-

purpose programming languages that offer higher-level ab-

stractions on top of bare threads and locks (e.g., the fork/join

framework in Java; actor-based concurrency in Scala and
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Erlang; channel-based message-passing in Go and Rust), pro-

grammers continue to struggle with classical concurrency

errors, such as deadlocks and data races.
1

A major challenge that programmers of concurrent pro-

grams face, pertains to the implementation of protocols (i.e.,
synchronization and communication patterns) among partic-
ipants (i.e., concurrent computations): while general-purpose

programming languages offer concurrency primitives to

program the local actions of participants (e.g., lock/unlock;
send/recv), they lack linguistic support to ensure local ac-

tions truly result in the global interactions of the protocol (e.g.,
“a synchronization between threads T1 and T2 is followed by

a communication between T2 and thread T3”). Aggravated
by the many possible interleavings in which threads can

be scheduled, purely action-centric protocol programming
techniques are hard to reason about and error-prone to use.

In recent years, several interaction-centric protocol pro-
gramming techniques have been developed that offer several

advantages. The idea is that programmers continue to use

an existing base language (e.g., Java, C, etc.) to program the

sequential computations of a program. Complementary, pro-

grammers are also provided a supplemental language specifi-
cally for protocols (i.e., a domain-specific language), in which

they can program the interactions of protocols directly and

explicitly. Using such a supplemental language, specifically,

programmers can program the desired data exchanges using

higher-level and more appropriate abstractions, and auto-

matically generate lower-level code that uses concurrency

primitives in the base language. Thus, protocols programmed

in the supplemental language are ultimately compiled into

code in the base language, after which thewhole program can

be compiled/run using the base language’s standard tools.

This way of working has several key advantages: the pro-

tocol code can be considered modularly from the actual com-

putation code, enabling protocol code and computation code

to be formally verified separately (e.g., model-checking pro-

tocol code [8], or type-checking computation code against

local protocol specifications [4]). Modularity also simplifies

reuse of both computation code and protocol code in other

programs, as the sequential parts can be replaced by other

algorithms. Premier examples of interaction-centric protocol

programming languages are Reo [1] and Scribble [9].

1
E.g., Gartner (a leading IT advisory company in industry) recently reported

that “multicore programming is generally seen as a hard-to-achieve and

time-consuming task, so many programmers avoid it as far as possible” [3].
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2 Research Questions

To avoid data races, a key assumption in the designs of many

supplemental languages for protocols (including Reo and

Scribble) is that every participant has private memory—even

if the base language supports shared memory—and that all

interaction proceeds viamessage-passing; under this assump-

tion, data races by definition cannot occur. In the implemen-
tations of these languages, however, this assumption is not

always upheld. Specifically, for base languages with shared

memory, the following two approaches have been used to

implement communications between participants:

always-copy The runtime system for the protocol pro-
gramming language always makes a copy of every value
communicated. The advantage is that freedom of data

races is statically guaranteed, because the privatemem-

ory assumption is faithfully “simulated” by always

copying. The disadvantage is that excessively many

copies of data may be created (e.g., if a sender does not

use a value after sending, no copy is necessary).

never-copy The runtime system never makes a copy,
relying on the programmer to make a copy upon send
and/or receive. The advantage is that the programmer

can fine-tune the number of copies to improve perfor-

mance; the disadvantage is that the programmer may

make too few copies—intentionally (e.g., to maximize

performance) or by mistake—so freedom of data races

is no longer statically guaranteed.

For instance, the most recent Java implementation of Reo

uses only the second approach [6]; the Java implementation

of Scribble works with both approaches [5].

In an ongoing research project, we aim to find a middle

ground between these two approaches, consolidating their

strengths, while alleviating their weaknesses. Specifically,

taking the more practical never-copy approach as our basis,

we seek answers to the following research questions:

Q1a How to statically guarantee, using never-copy, that

if a participant P sends a valuev , P will not usev after

it has sent v? (I.e., P can only use a copy of v .)
Q1b How to statically guarantee, using never-copy, that

if a participant P receives a value v , no other partici-
pant will usev after P has received it? (I.e., every other

participant can use only copies of v .)
Q2 What is the trade-off between freedom of data races

and maximal performance (i.e., use never-copy and

knowingly run the risk of data races)?

To resolve Q1a and Q1b, we need an analysis tool to reason

about usage of heap data and aliasing. The type system of the

Rust programming language does exactly this. Our approach

is, thus, to adopt Rust as a base language, compile an existing

supplemental language for protocols to Rust, and leverage

Rust’s type system to statically guarantee freedom of data

races. Doing so, we aim to develop the first shared memory

A
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(a) Alternator

A

B

C

(b) BufferReplicator

Figure 1. Example Reo graphs

implementation of a protocol programming language that

guarantees freedom of data races, without excessive copying.

3 Rust

The Rust programming language was initiated at Mozilla and

has, for instance, been used to reimplement the rendering

code in Firefox. The syntax is similar to C++, but the memory

management model is based on a linear type system (the

Rust terminology is ownership and borrowing), without the
aid of a garbage collector, as explained next.

Ownership Rust gives strong guarantees about the re-

lationship between values and variables: each value is

assigned to a unique variable, called its owner. A value

can be reassigned to a different variable, thereby mov-
ing it to a different owner, but the type system forbids

further mutations or accesses of that value through the

original variable after the move (statically checked).

Thememory occupied by a value is automatically freed

whenever its owner goes out of scope.

Borrowing Although every value has a unique owner,

Rust’s type system does allow other variables to tem-

porarily borrow mutation or access rights to a value

from the owner, without moving ownership, using ref-

erences (akin to pointers and references in languages

like C++ and Java). However, references are bound

to rules: at any one time, either there is exactly one

reference that allows mutation of the value, or there

are zero or more references that allow (read) accesses.

Essentially, ownership and borrowing remove the root cause

of data races, namely having a shared mutable state.

The ownership model enables the refinement of never-

copy implementations, providing a third alternative: whereas

in the existing never-copy implementations in Java, C, etc., a

sender transfers only a reference, in our new implementation

in Rust, a sender transfers also ownership during the transfer
to the receiver. Thus, in the event that a sender must access

or modify a value after sending it, it must create a copy

before sending, or it will be in violation of the rules set out

by Rust’s type system. Such a violation is treated by the Rust

compiler as a programming error and will cause the compiler

to emit an error message instead of a binary executable.

4 Reo in Rust

We are currently developing a Rust implementation of Reo,

a premier example of a supplemental language for protocols.
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{A, B, C}, [C := A; x := B]

{C}, [C := x]

(a) Alternator

{A}, [x := A]

{B, C}, [B := x;C := x]

(b) BufferReplicator

Figure 2. Example automata

Background. Reo [1] is a graphical language to draw proto-

cols among participants as graphs. Figure 1 shows examples.

To send a value, a participant can perform a blocking put op-

eration on an input vertex of a graph (e.g.,A or B in Figure 1a).

Operation put initially suspends the participant: only once

the graph is ready to accept the value, the put will complete,

and the participant resumes. Similarly, to receive a value, a

participant can perform a blocking get operation on an out-
put vertex of a graph (e.g., C in Figure 1a). Once a graph has

accepted a value through input vertices, it transports that

value along its edges, possibly through one or more anony-

mous internal vertices (e.g., the middle vertex in Figure 1b),

and dispenses it through one or more output vertices. Every

edge has a type that determines its local transport behav-

ior. The graphs in Figure 1 feature edges of three different

types: a sync edge has synchronous channel semantics (e.g.,

the edge between A and C in Figure 1a); a fifo1 edge has

asynchronous channel semantics, with an internal buffer of

capacity 1 (e.g., the edge between B and C; the box signifies
an internal buffer); a syncdrain edge has synchronous drain

semantics (e.g., the edge between A and B in Figure 1a); other

channel types appear in the literature [1].

Recent implementations of Reo are based on its opera-

tional semantics [2, 7]. The idea is to model the behavior of

a Reo graph as a finite-state automaton, where states model

configurations of the graph (e.g., buffer emptiness/fullness),

and transitions model synchronous value transports along

the edges. Figure 2 shows examples. Every transition label

consists of two elements: the set of input and output vertices

that collectively participate in the transition (e.g., {A,B,C}),
called the synchronization constraint, and a specification that

states how values are transported from input vertices to out-

put vertices (e.g., [C := A; x := B]), called the data constraint.
For instance, the bottom transition in Figure 2a states that

a value accepted through A is dispensed through C, while
synchronously, a value accepted through B is stored in local

variable x (i.e., the internal buffer of the diagonal fifo edge in
Figure 1a); the top transition states that the value previously

stored in x is dispensed through C.
To compile a Reo graph to code in a base language, in

its most basic form, the Reo compiler takes the following

steps. First, the compiler determines for every constituent of

the graph (i.e., vertices and edges) a “small automaton” that

models the local transport behavior only of that constituent.

Next, the compiler composes the small automata into one

“large automaton”, using a synchronous product operator;

Automaton An Automaton holds the complete set of States

and the current State.

State A State consists of a list of Transitions and a label

to help the Reo programmer to relate it to the graph.

Transition A Transition contains the associated syn-

chronization and data constraints (i.e., its label) that is

to be met in order to let the automaton fire it. Further-

more, the Transition contains the target State.

Figure 3. Core structs in generated code

in this step, the compiler also abstracts away all internal

vertices. Finally, the compiler translates the automaton to a

piece of state machine code in the base language.
2

Compilation to Rust. The final compilation step, when

Rust is used as the base language, is implemented as a code

generator. This generator takes a tuple representing an au-

tomaton as input. The output consists of a Rust application

in source code form. This application can then be compiled

into a binary executable, using the standard Rust toolchain.

Every participant is programmed as a sequential Rust

function, executed in its own Rust thread. The moment the

thread is started, the function is called and passed a generated

Automaton struct,3 which offers the following interface:

pub fn put(&mut self, vertex: usize, val: Message)
pub fn get(&mut self, vertex: usize) -> Message

Whenever put or get is called, the calling thread “enters”

the generated protocol code, tries to find an enabled tran-

sition from the current state, and if one exits, actually fires
that transition. A transition is enabled iff every vertex in

its synchronization constraint has a pending put or get; a

transition has fired iff values have been distributed accord-

ing to its data constraint. Specifically, to distribute data, the

generated code has separate variables to temporarily store

values to be exchanged, namely one for every vertex and

local variable controlled by the automaton (e.g., A, B, C, x for
the automaton in Figure 2a); it simply transfers data from in-

puts to outputs according to the data constraint. For instance,
[C := A; x := B] in Figure 2a is morally translated to:

4

... // puts write to aut.val_A and aut.val_B
aut.val_C = aut.val_A; // move ownership
aut.val_x = aut.val_B; // move ownership
... // get reads from aut.val_C

If there are no enabled transitions (e.g., puts have been

issued on vertices A and B, but a get has not been issued yet

on vertex C in Figure 2a), the thread “leaves” the generated

protocol code, and suspends; it resumes whenever another

2
We omit a number of optimizations from this overview, which are essential

to improve performance, but beyond our current scope.

3
Specifically, Arc<Mutex<Automaton>>, to allow mutably sharing the same

protocol among all participant functions.

4
The assignments in the actual implementation are a bit more involved, to

ensure the aut struct is left in a valid state (i.e., fields have values).
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thread successfully fires a transition later on (e.g., after a

get on C). A mutex ensures that only one thread can fire a

transition at a time. Figure 3 summarizes the structs.

Resolving Q1a and Q1b. Both the put function and the get

function make use of pass-by-value to pass in a message-to-

send, or to retrieve a message-to-receive via the return value.

In Rust, passing by value implies a transfer of ownership as

the type system prescribes that a value can only be assigned

to a unique variable. Indeed, after transferring ownership,

the Rust compiler will emit a detailed error message if the

participant tries to mutate or access the value. For instance:

error[E0382]: use of moved value: `v`
--> producer_consumer.rs:25:30
|

24 | aut.put(self.port, v);
| - value moved here

25 | println!("{:?}", v);
| ^ value used here after move

Thus, we statically guarantee that if a participant sends a

value, it loses ownership (i.e., it cannot use that value in the

future), and that if a participant receives a value, it gains

ownership (i.e., no other participant can use that value in the

future). The former resolves Q1a; the latter almost resolves
Q1b, but special care is needed to support multi-casts.

The problem with multi-casts pertains to our translation

of data constraints. Specifically, by assigning the value of one

vertex to another, ownership of the value is transferred. This

allows for a copy-free transport of the value, but because the

type system guarantees that the value cannot be assigned to

multiple variables, it does not work with multi-casts. This

situation arises if a vertex in a Reo diagram is attached to

multiple edges (e.g., the middle vertex in Figure 1b). In that

case, the message value needs to be transported to all receiv-

ing vertices, which cannot be achieved bymeans of transferal

of ownership. The solution is to make an explicit copy of

the value and assign ownership of the copies.
5
For instance,

[B := x;C := x] in Figure 2b is translated to:
4

... // prev. transition wrote to aut.val_x
aut.val_B = aut.val_x.clone(); // explicit copy
aut.val_C = aut.val_x; // move ownership
... // get calls read from aut.val_B and aut.val_C

Our code generator recognizes such multiple assignments

of a value and inserts the appropriate clone calls in the data

constraint statements. Importantly, the copies are made inter-

nally by the generated code, transparent to the programmer.

With this extra multi-cast care, Q1b is resolved as well.

Toward resolving Q2. We are currently setting up experi-

ments to study the performance trade-offs between always-

copy, never-copy, and never-copy+ownership. Our plan

is to use the Rust code that is generated for Reo graphs

as described above for never-copy+ownership, to simulate

5
Such an explicit copy is created by requiring themessage type to implement

the Clone trait built-in defined in the Rust language.

always-copy by adding additional copying to the generated

code, and to simulate never-copy by always passing the

same tiny value around (1 byte, so the costs of copying are

negligible). In this way, we can compare the performance of

the three approaches within the same framework.

We are planning two kinds of benchmarks. In protocol
benchmarks, we aim to measure purely the overhead of copy-

ing for a representative set of Reo graphs, by running the gen-

erated code among “zealous” participants (i.e., participants

that try to put/get as often as possible, without performing

any real computations). In whole-program benchmarks, we
aim to measure the effect of copying in real(istic) concurrent

programs, such as pipelined computations where the same

large data is processed by multiple threads in sequence.

5 Conclusion

We reported on our ongoing efforts toward the first shared

memory implementation of a protocol programming lan-

guage that guarantees freedom of data races, without exces-

sive copying, by leveraging the programming language Rust

and its type system. To this end, we briefly explained how

protocol programming language Reo can be implemented in

Rust to resolve Q1a and Q1b, and we outlined our plans to

resolve Q2. Other future work includes:

• Improve static guarantees.We are curious to study how,

and to what extent, Rust’s type system can also be

leveraged to implement linear session type systems [4]

(i.e., Scribble’s theoretical foundation).

• Optimize. The existing Java implementation of Reo has

optimizations that have not been implemented yet in

our Rust implementation (e.g., the Java implementa-

tion parallelizes execution of the generated code).

• Relaxations. In practice, it may be desirable to relax the

model to allow senders to keep a read-only reference

to sent data (e.g., to improve performance). We are

interested to investigate how to balance this relaxed

setting with freedom of data races.
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