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Abstract

Calculating the energies of and the couplings between electronic transi-

tions on aggregated molecules is the problem being faced when simulating

excitation energy transfers in nanomaterials like artificial and natural

light harvesting systems. A method is developed to calculate the pa-

rameters of the Frenkel exciton Hamiltonian with high efficiency using

time-dependent density functional based tight-binding (TD-DFTB). In this

vein it is possible to describe the electronic structure of the monomers and

the exciton coupling in the aggregate in a consistent way by defining the

transition densities in a TD-DFTB manner. This overcomes discrepancies

between different levels of approximations applied to the excitation spec-

tra of the monomers and the aggregates’ excitations. At the same time

the method does not suffer from charge transfer problems between the

monomers and is able to include effects of intra- as well as intermolecular

vibrations. The computational effort is manageable even for complex or-

ganic aggregates, since a TD-DFTB calculation has to be done only for the

isolated monomers. The method is evaluated by means of a formaldehyde

oxime dimer and is compared with standard TD-DFTB. Here it has shown

its applicability for not too small intermolecular distances. Furthermore

it is tested and applied to a dimer of perylene bisimide dyes. The ease

of calculating coupling strengths enables us to systematically analyse the

possible aggregation structures.
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Zusammenfassung

Die Berechnung von Anregungsenergien ist ebenso wie die Berechnung

der Kopplungen zwischen elektronischen Anregungen ein Schlüssel zur

Simulation des Exzitonenergietransfers in molekularen Aggregaten, unter

anderem in künstlichen wie auch natürlichen Lichtsammelkomplexen.

Um eben diese Frenkel-Exzitonparameter zu berechnen, wird eine neue,

hoch effiziente Methode entwickelt, die auf der time-dependent density

functional based tight-binding (TD-DFTB) Methode aufbaut. Auf diese

Weise ist es möglich, unter Vermeidung inkonsistenter Näherungen in der

Beschreibung von Anregung der Monomere und des Aggregats, sowohl

die elektronische Struktur der Moleküle als auch die Exzitonenkopplung

konsistent zu TD-DFTB zu beschreiben. Gleichzeit vermeidet diese Me-

thode problematische Ladungstransferprozesse und kann prinzipiell auch

intra- und intermolekulare Vibrationen berücksichtigen. Dabei ist der

rechnerische Aufwand gering, da sie auf Größen der TD-DFTB Rechnung

für das isolierte Monomer beruht. Diese neue Methode wird anhand

eines Formaldoxim-Dimers getestet und mit herkömmlicher TD-DFTB

verglichen, was ihre Anwendbarkeit für nicht zu kleine Abstände zeigt.

Weitere Vergleiche können anhand von Perylenbisimid-Dimeren angestellt

werden. Es ist damit gangbar die möglichen Aggregationsstrukturen

dieses Chromophors systematisch zu untersuchen.
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Chapter 1.

Introduction

The process of relocating an excitation on a molecule over its surrounding is called exci-

tation energy transfer (EET). Due to a Coulomb interaction a deexcitation in the donor

may cause an excitation in the acceptor. These processes play an important role in light-

harvesting systems, artificial [1] as well as natural [2], for example in the pigment-protein

complexes of photosynthetic antennae [3, 4]. Moreover is the EET in metallic quantum

dots [5, 6] and organic semiconductors [7] of huge interest. The latter have promising

features for applications in photovoltaics [8, 9]. For a detailed description the knowledge

of the Coulomb coupling is essential. This parameter connects the monomeric chromophore

spectra with the spectra of aggregates in solution and therefore, it is vital for describing

the collective excitation of an assembly of molecules.

Depending on the sign of the coupling parameter these aggregates can form either J- or

H-aggregates which were observed spectroscopically for the first time independently by

Jelley [10] and Scheibe et al. [11] (J-aggregates are occasionally also called Scheibe-

aggregates). They discovered a concentration-dependent shift in the absorption maximum

of pseudoisocyanine chloride in water, which was in contradiction to the Beer-Lambert

law but could be explained by a reversible aggregation [12]. The absorption band was

red-shifted compared to the monomer, which is the major spectroscopic property of J-

aggregates. This bathochromic (from the ancient greek βαθύς, deep) shift comes along

with a shifted fluorescence band. The absorption spectra of H-aggregates are blue-shifted,

they show no or a minimal fluorescence. They are named after this hypsochromic shift

(ὕψος, height).

These spectroscopic properties are explainable in the point-dipole model of a dimer (see

Section 2.3.1). For a parallel-oriented molecules with a translation vector perpendicular to

the transition dipole moment (see Figure 2.3) two possible transitions exist with different

transition energies resulting in a level splitting. Due to the Coulomb repulsion the transi-
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Introduction 3

tion with parallel transition dipole moments is energetically higher than the monomeric

transition and the antiparallel transition (blue-shifted absorption). The latter has in the

ideal case no total transition dipole moment (~dm+ ~dn = 0) and is therefore forbidden. Any

population from the higher level may undergo a nonradiative relaxation to the lower one.

Here it cannot contribute to the fluorescence and must relax non-radiately, thus, explaining

the described properties of an H-aggregate. Associated to such a configuration is a positive

value of J .

A J-aggregate configuration can be characterised by a parallel configuration of the dipole

moments and translation vector. In this case the transition including two parallel dipole

moments is energetically below the transition with antiparallel transition dipole moments.

Since the latter is spectroscopically forbidden (or has for a non-ideal configuration a very

low oscillator strength) the absorption spectrum is red-shifted and a fluorescence from this

state can be observed. The spectra were later described by Franck and Teller with Frenkel’s

exciton theory [13].
This reversible aggregation is driven by non-covalent bonds, which include Van der Waals

forces, π-π stacking and H-Bonds. It is a dynamical process between accumulation and

dissolution, the equilibrium is influenced by the solvent and the concentration.

Since the calculation of the coupling as key parameter in EET is very demanding, several

approximations have to be introduced to model these supermolecular structures and to

estimate the Coulomb coupling. Very often these approximations are not congruent with

the remaining description of the system. This work tries to develop a method to calculate

the Coulomb coupling within the time-dependent density functional based tight-binding

(TD-DFTB) description of the aggregate. This technique is characterised by specific approx-

imations which strongly reduce the calculation effort compared to conventional density

functional theory (DFT) without an extensive loss of accuracy. Such a feasible tool may

help to enlarge the set of systems where simulations of the EET can be carried out.

In addition to a better description of natural processes in light-harvesting systems a more

precise way of modelling these interactions may help to describe and develop nanoscale

optical devices [14, 15] and other devices with molecular sizes.

One system which is subject of recent scientific work are aggregates of perylene bisimides

(PBI). These self organising dyes feature a high quantum efficiency, thermal- and photosta-

bility [16] and are used, e.g. as lacquers. There is a large number of PBI derivatives, most

of them assemble as H-aggregates [17] offering only a small amount of fluorescence. In

contrast to these the PBI-1 derivative shows a typical absorption spectrum of J-aggregates

and is fluorescent. Because of its high exciton mobility [18] and the related possibilities of

offering an efficient energy transport they are of special interest in recent research.



4 Introduction

This thesis is organised in the following way. The first part after this introduction deals

with the theory of Frenkel excitons. It underlines the significance of the coupling strength

and presents important methods how this may be calculated. The next part lays out the

TD-DFTB theory. This is used to develop a new method to calculate the Coulomb coupling.

At the end of the first part a brief overview of the computational implementation is given.

In the second part this method is evaluated with a formaldehyde oxime dimer and is finally

applied to PBI aggregates.



Chapter 2.

Theory of Frenkel Excitons

This chapter presents the basic theory of exciton coupling within the Frenkel exciton

picture. It explains the different methods to calculate the Coulomb coupling before the

TD-DFTB methods is described. Using this, a Frenkel exciton formulation is developed

which leads to the calculation of the Coulomb coupling consistent within TD-DFTB.

2.1. Excitation Energy Transfer

A molecule which is brought into an excited state by absorbing light (amongst others)

may transfer its energy to a neighbouring atom. Such a donor (D) acceptor (A) process is

described in a reaction formula (with ∗ marking the excitation) as

D+
light
  → D∗

D∗+ A→ D+ A∗

A∗→ A+
light
  .

(2.1)

The excited acceptor can alternatively take the role as a donor in the next EET step, leading

to a migration of the exciton. If A and D are identical molecules, the process is named

homogeneous, if not, it is named heterogeneous. Especially in the homogeneous case

the excitation can be delocalised over several monomers (Wannier-Mott exciton) which

would mean a large separation of the electron and the hole. In contrast, excitons which are

located on one or a few molecules are named Frenkel excitons (electron and hole stay at

the same monomer), these are mainly treated in this work. The former are typically found

in highly ordered molecular crystals while a loose assembly of molecules tends to form the

5



6 Theory of Frenkel Excitons

Figure 2.1.: EET in HOMO-LUMO representation

latter. Figure 2.1 shows an EET in the HOMO-LUMO representation.

Since it is a deexcitation similar to a spontaneous photon emission of the donor the

process may be seen as a fluorescence resonant energy transfer (FRET), resonant because

of the necessity to have close excitation levels in donor and acceptor. This process was

explained for the first time by Th. Förster [19] (therefore, also Förster resonant energy

transfer). In his interpretation of the phenomenon he did not assume a photon mediated

process. Instead it is described without radiation but in a direct dipole-dipole interaction.

The oscillation during the deexcitation in the donor stimulates an oscillation in the acceptor

which is excited in this way. The transfer rate constant kT for a FRET with a distance X

between donor and acceptor is [20]

kT = kD

(
R0

X

)6

. (2.2)

Here, kD represents the emission rate constant of the excited free donor. The Förster radius

R0 is set to be equal to the value of X which fulfils the condition kT = kD. This means,

R0 is the distance in which 50% of the energy is transferred. This process differs from

a radiation-driven process because of the 1
X 6 proportionality. A process involving a real

photon would be proportional to 1
X 2 .

At distances with a sufficient overlap of the wave functions of the donor and the acceptor

the EET can be affected via the Dexter electron transfer [21]. In this process the excited

electron skips directly to the acceptor as well as an electron in the HOMO is transferred

as well. The total spin of the donor acceptor system is conserved and the rate constant is

given by [22]

kDex ∼ exp
(
−

2X

L

)
, (2.3)
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Figure 2.2.: Dexter transfer in HOMO-LUMO representation; left singlet-singlet transfer; right
triplet-triplet transfer

with L being the "effective average Bohr radius" [21] which is connected to the sum of

the Van der Waals radii of the donor and acceptor. This process is illustrated in Figure

2.2. It shows the two possibilities for the transfer which are the singlet-singlet and the

triplet-triplet transfer.

2.2. Frenkel Excitons

Analysing the excitons in aggregated systems the Frenkel exciton description is used. In

this section a derivation is presented following Ref. [23]. For an aggregation of molecules

the Hamiltonian can be constructed as

Hagg =
∑

m

Hm+
1

2

∑
m,n

Vmn . (2.4)

Here, Vmn describes all kinds of intermolecular interactions, including the electron-electron

interaction (V (el−el)
mn ), the repulsion of the nuclei V (nuc−nuc)

mn and the electron-nuclei coupling

V (el−nuc)
mn . The first sum of Eq. (2.4) represents the intramolecular contributions. Hm itself

is the Hamiltonian for monomer m which is separable into the nuclear kinetic energy

operator Tm and the electronic Hamiltonian H(el), given as

Hm = Tm+H(el)
m . (2.5)

Staying restricted to Frenkel excitons, the electrons and holes will remain localised and

the aggregate Hamiltonian can be expanded into the adiabatic electronic states of the

particular monomers ϕmam
(~rm;~Rm) (With ~rm for the electronic coordinates of molecule m
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and ~Rm for the nuclear coordinates.) They can be obtained by solving

H(el)
m (~Rm)ϕmam

(~rm;~Rm) = Umam
(~Rm)ϕmam

(~rm;~Rm) . (2.6)

Here, Umam
(~Rm) = Emam

(~Rm) + Vnuc−nuc(~Rm) is the sum of electronic energy eigenvalue and

the nucleus-nucleus potential and represents the single-molecule PES of molecule m in

state am. These monomer states are used to define the Hartree product

φ(HP)
A (~r;~R) =

∏
m

ϕmam
(~rm;~Rm) . (2.7)

For a compact formulation A includes all quantum numbers am and ~r (~R) includes the set

of monomer coordinates ~rm (~Rm). An antisymmetric wave function is obtained by

φ(AS)
A (~r;~R) =

1√
Np!

∑
perm

(−1)pP
[
φ(HP)

A (~r;~R)
]

. (2.8)

P creates one of Np permutations of the electronic coordinates of different molecules

(counted by p). The total wave function |ψ〉 can be expanded into these antisymmetric

wave functions

|ψ〉=
∑

A

cA |φ(AS)
A 〉 . (2.9)

Inserted into the Schrödinger equation

Hagg |ψ〉= E |ψ〉 , (2.10)

this leads by multiplying with 〈ψ| to∑
B

(
〈φ(AS)

A |Hagg |φ(AS)
B 〉 − E 〈φ(AS)

A |φ(AS)
B 〉

)
= 0 . (2.11)

The Hamiltonian matrix will be

〈φ(AS)
A |Hagg |φ(AS)

B 〉=
∑

m

〈φ(AS)
A |Hm |φ(AS)

B 〉+
1

2

∑
mn

〈φ(AS)
A |Vmn |φ(AS)

B 〉 . (2.12)

Picking a pair of m and n out of the second sum the elements will only differ from zero

if the permutation is restricted to electronic states on the molecules m and n. Any other

permutation will lead to a multiplication by zero. In the restricted case the part of the
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electron-electron interaction can be simplified to

〈φ(AS)
aman
|V (el−el)

mn |φ(AS)
bm bn
〉=
∫

d~rmd~rn

1√
Np!

∑
perm

(−1)pP ϕ∗mam
(~rm;~Rm)ϕ

∗
nan
(~rn;~Rn)

× V (el−el) 1√
Np!

∑
perm

(−1)pP φnbn
(~rn;~Rn)φmbm

(~rm;~Rm)

=
∫

d~rmd~rnϕ
∗
mam
(~rm;~Rm)ϕ

∗
nan
(~rn;~Rn)V

(el−el)ϕnbn
(~rn;~Rn)ϕmbm

(~rm;~Rm)

−
∫

d~rmd~rnϕ
∗
mam
(~rn;~Rn)ϕ

∗
nan
(~rm;~Rm)V

(el−el)ϕnbn
(~rn;~Rn)ϕmbm

(~rm;~Rm)

≡ J (el−el)
mn (aman, bn bm)− K (el−el)

mn (aman, bn bm) .

(2.13)

The first integral is the direct Coulomb interaction and abbreviated by Jmn. The exchange

part Kmn groups several contributions, accruing from the spatial overlap of the participating

orbitals on molecules m and n. They can be neglected for sufficient large distances

between the monomers, since the overlap decreases exponentially with the separation

of the molecules. This assumption also implies the orthogonality of states on different

monomers.

〈ϕmam
|ϕnan

〉= δmam,nan
(2.14)

This approximation allows the utilisation of the Hartree ansatz, since all terms of Hagg

except V (el−el) are independent of permutations in the electronic wave function. The states

φ
(HP)
A form an orthogonal basis, expanding the Hamiltonian into

Hagg =
∑
A,B

〈φ(HP)
A |Hagg |φ(HP)

B 〉 · |φ(HP)
A 〉 〈φ(HP)

B | . (2.15)

The matrix elements are

〈φ(HP)
A |Hagg |φ(HP)

B 〉=
∑

m

〈φ(HP)
A |Hagg |φ(HP)

B 〉+
1

2

∑
m,n

〈φ(HP)
A |Vmn |φ(HP)

B 〉

=
∑

m

〈ϕmam
|Hm |ϕmbm

〉︸ ︷︷ ︸
Hm(am bm)

∏
k 6=m

δak ,bk

+
1

2

∑
m,n

〈ϕmam
ϕnan
|Vmn |ϕnbn

ϕmbm
〉︸ ︷︷ ︸

Jmn(aman,bn bm)

∏
k 6=m,n

δak ,bk
.

(2.16)
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With these one obtains the Hamiltonian for the aggregate in its compact form:

Hagg =
∑

m

∑
am,bm

Hm(am bm) |ϕmam
〉 〈ϕmbm

|+
1

2

∑
m,n

∑
am,an,bn,bm

Jmn(aman, bn bm) |ϕmam
ϕnbn
〉 〈ϕnbn

ϕmbm
|

(2.17)

2.3. Calculating Coupling Parameters

Having derived the expression for the aggregate Hamiltonian and assuming that the

monomer elements Hm(ab) are known, this section will present different ways to calculate

the coupling elements Jmn(aman, bn bm) before the method within the TD-DFTB scheme

is introduced in Section 2.5. The coupling matrix elements have to be extended by

contributions of the interaction with the nuclei. The elements are defined as

Jmn(ab, cd) =
∫

d~rmd~rnϕ
∗
ma(~rm;~Rm)ϕ

∗
nb(~rn;~Rn)Vϕnc(~rn;~Rn)ϕmd(~rm;~Rm)

=
∫

d~rmd~rnϕ
∗
ma(~rm)ϕ

∗
nb(~rn)V

(el−el)(~rm,~rn)ϕnc(~rn)ϕmd(~rm)

+δb,c

∫
d~rmϕ

∗
ma(~rm)V

(el−nuc)(~rm,~Rn)ϕmd(~rm)

+δa,d

∫
d~rnϕ

∗
nb(~rm)V

(nuc−el)(~Rm,~rn)ϕnc(~rn)

+δa,dδb,cV
(nuc−nuc)

mn (~Rm,~Rn) .

(2.18)

The nomenclature of the electronic states is modified in this formula, the indices are

dropped out. In a statement like Jmn(ab, cd) a and d are electronic states of monomer m,

b and c belong to monomer n. It should be recalled that ~rm is the compact notation for

all electronic coordinates in molecule m (~rm1
,~rm2

, ....). Since ϕma(~rm) and its conjugated

counterpart are antisymmetric the transition charge density may be defined as [23]

ρ
(m)
ad (~x) = N

∫
d~rmδ(~x −~rm1

)ϕ∗ma(~rm)ϕmd(~rm) , (2.19)
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with N being the number of electrons in molecule m. Covering only the electronic part, it

is possible to define the molecular charge density including the nuclei:

n(m)ad (~x) = ρ
(m)
ad (~x)−δa,d

∑
α∈m

Zαδ(~x − ~Rα) (2.20)

Here, Zα is the charge of nucleus α in molecule m. With this formulation Eq. 2.18 simplifies

to

Jmn(ab, cd) =
∫

d~x
∫

d~x ′
ρ
(m)
ad (~x)ρ

(n)
bc (~x

′)
|~x − ~x ′|

−δb,c

∫
d~x
∑
β∈n

ρ
(m)
ab (~x)Zβ
|~x − ~Rβ |

−δa,d

∫
d~x ′
∑
α∈m

ρ
(n)
bc (~x

′)Zα
|~x ′− ~Rα|

−δa,dδb,cV
nuc−nuc

=
∫

d~xd~x ′
n(m)ad (~x)n

(n)
bc (~x

′)
|~x − ~x ′|

.

(2.21)

In practice this double integral is hard to evaluate. In most case it is principally impossible,

since the wave function is only given on a grid. The following sections will summarise

common approximations.

2.3.1. Dipole-Dipole Coupling

One of the crudest approximations is the dipole-dipole coupling [23]. The Coulomb

interaction is developed into a multipole expansion. If the intermolecular distance is

large enough, the transition dipole moment (second term) is sufficient to describe the

Coulomb coupling. The center of mass coordinates for every molecule ~Xm and their distance
~Xmn = ~Xm− ~Xn is introduced. Both ~x and ~x ′ are expressed by coordinates originating at

these centers (~x = ~xm+ ~Xm, ~x ′ = ~xn+ ~Xn). This allows for the introduction of the relative

coordinate ~xmn = ~xm− ~xn. The dominator in Eq. (2.21) is expanded into powers of xmn

Xmn
:

1

|~x − ~x ′|
=

1

|~Xmn+ ~xmn|

=
1

Xmn
−
~xmn
~Xmn

X 3
mn

+
1

2

(
−

x2
mn

X 3
mn

+
3(~xmn

~Xmn)2

X 5
mn

)
+ · · ·

(2.22)
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This implies for Jmn

Jmn(ab, cd) =
∫

d~xmd~xnnad(~xm+ ~Xm)nbc(~xn+ ~Xn)
1

|~x − ~x ′|

≈
∫

d~xmd~xnnad(~xm+ ~Xm)nbc(~xn+ ~Xn)

(
1

Xmn
−
~xmn
~Xmn

X 3
mn

−
x2

mn

2X 3
mn

+
3(~xmn

~Xmn)2

2X 5
mn

)
.

(2.23)

Here, the total charge of the molecule is zero and remains zero in the case of a local

excitation, which can be expressed as∫
d~xnad(~x) = 0 . (2.24)

All terms in Eq. (2.23) not containing ~xm and ~xn at once are zero, which leads to

Jmn(ab, cd) =
∫

d~xmd~xnnad(~xm+ ~Xm)nbc(~xn+ ~Xn)

(
~xm~xn

X 3
mn

−
3(~xm

~Xmn)(~xn
~Xmn)

X 5
mn

)
.

(2.25)

At this point the transition dipole moment is introduced. For an arbitrary ~Xm it is defined

for a transition from state a to d:

~dmad =
∫

d~rmnad(~xm+ ~Xm)~xm (2.26)

Inserting ~dmad into Eq. (2.25) one obtains

Jmn(ab, cd)≈
~dmad

~dnbc

X 3
mn

− 3
(~Xmn

~dmad)(~Xmn
~dnbc)

X 5
mn

. (2.27)

In this picture it is easy to see the orientation dependency of the change between H- and

J-aggregates which comes along with a change of sign of J . As it is shown in Figure 2.3

for a parallel alignment of the transition dipole moments the angle between these and the

distance vector determines the character of the aggregate. Eq. (2.27) can be reformulated

for a parallel alignment of equal dipole moments d into

Jmn(ab, cd) =
d2

X 3
mn

(1− 3cos2α) , (2.28)
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Figure 2.3.: Configurations of H- and J-dimers in point-dipole approximation (adapted from [24])

with α being the angle between ~d and ~Xmn. Its root is

α= arccos

√
1

3
= 54.74◦ .

(2.29)

This angle is often called the magic angle since the coupling strength is zero at this

configuration and the characteristics of the aggregate changes between that of an H- and a

J-aggregate.

Since the numeric effort of the dipole-dipole approximation is the lowest of all methods, it

is used in a wide range of applications [25, 26, 27].

2.3.2. Extended Dipole Moment

While Eq. (2.27) uses an infinitive small dipole extension (point dipoles) it can be upgraded

to the extended dipole approximation (EDA) where the coupling is calculated by two point

like transition charges per molecule (M ,N)[28]:

Jmn(ab, cd) =
2∑

M∈m

2∑
N∈n

qad
M qbc

N

|~RM − ~RN |
(2.30)

The point charges are placed along the direction of the transition dipole. Their distance,

the extension s, may be seen as a parameter determined by a fit to experimental results.

The transition charges of the monomer must have the same absolute value and have to
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fulfil the relation

qad =±
dmad

s
. (2.31)

In this way the extension of the involved molecules can be taken into account, which

normally improves the dipole-dipole results.

2.3.3. Atomic-Centred Charges

The next extension to a more precise concept to calculate the Coulomb coupling is to

define a distribution of atomic transition charges [29] qad
α

(on atomic site α). In this

approximation the total coupling is the summation over all Coulomb interactions:

Jmn(ab, cd) =
∑

α∈m,β∈n

qad
α qbc

β

|~Rα− ~Rβ |
(2.32)

The question which arises is how to partition a given transition density to the atomic

sites. There are different methods used so far. If the monomer calculation has been

performed using orthonormal basis functions the transition monomers can be derived from

a configuration interaction singles (CIS) expansion [30, 31]

qad
α =

p
2
∑
ν∈α

unocc∑
l

occ∑
m

Aad
ml c

ν
l cνm , (2.33)

whereas the index ν runs over all atomic orbitals χν belonging to atom α, cνl is the atomic

orbital coefficient of the molecular orbital φl =
∑
ν cνl χν . Aad

ml is the CI coefficient of the

transition from a to d from the CIS calculation corresponding to the excitation m → l.

If the basis set is not orthogonal, Eq. (2.33) is generalised by the Mulliken partitioning

analysis [32] with the overlap matrix Sνµ = 〈χν |χµ〉:

qad
α =

p
2
∑
ν∈α

∑
µ

unocc∑
l

occ∑
m

Aad
ml c

ν
l cµmSνµ (2.34)

Another option to distribute the (transition) charges to the atomic sites is the stockholder

method, where it is distributed by the fraction of the free atomic charges at each point of

the molecule [29, 33]. The TrEsp (transition charge from electrostatic potential) uses the

ab-initio electrostatic potential, obtained by ab-initio calculations to fit qad
α [34].
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2.3.4. Transition Density Cube Method

The transition density cube method does not situate the transition density elements on the

atomic sites. Instead the transition density is partitioned into cubes on a three-dimensional

grid of points [35] (σ is the spin variable).

qad(x , y, z) = Vδ

∫ z+δz

z

∫ y+δy

y

∫ x+δx

x

∫
σ

Ψd(~r)Ψa(~r)dσdxdydz . (2.35)

The cube element is given by the product of the step sizes along the coordinate axes

(Vδ = δxδyδz). Since the cube size is finite the sum of all qad may differ from zero. In this

cases the residual charge is balanced by an equal addition on every cube [36].

2.3.5. Electronic Coupling Matrix Elements

Another possibility is to calculate the electronic coupling matrix elements in a Förster-

Dexter type of approach [37]. The transition densities for the involved monomers are

calculated separately by TD-DFT on an atomic centred grid of basis functions φκ. The

transition density for the transition (a, d) in the molecule m is

Ψ∗a(~r)Ψd(~r) =
∑
κλ

c∗a,κcd,λφ
∗
κ(~r)φλ(~r) . (2.36)

At the end of this approach Eq. (2.13) is for the closed shell case reformulated in the

Mulliken form

〈φ(AS)
ab |V

(el−el)
mn |φ(AS)

dc 〉=
∑
κλ∈m

∑
µν∈n

c∗a,κcd,λc∗b,µcc,ν

[
2(κλ|µν)− (κν |µλ)

]
. (2.37)

In this equation the abbreviated form for the Coulomb integrals is used

(κλ|µν) =
∫ ∫

φ∗
κ
(~r)φλ(~r)

1

|~r −~r ′|
φ∗µ(~r

′)φν(~r
′)d~rd~r ′ . (2.38)

By summing the exchange part (second term of the sum in Eq. (2.37)) separately it is

possible to specify K (el−el)
mn (ab, cd).



16 Theory of Frenkel Excitons

2.3.6. Molecular Dynamic Issues

Principally it is possible to include intra- as well as intermolecular vibrations in the pre-

sented methods to calculate the Frenkel exciton parameters. All changes of the molecular

structure will influence the obtained values. For this purpose it needs a calculation for every

structural propagation step. The effort of this differs from method to method. Including this

in a description of Frenkel exciton parameters with all structural dependencies one needs

to calculate the local transitions and the coupling for each time step along a MD trajectory.

The calculation of the local transitions has to be done for each monomer including the

influence of its surrounding in terms of the charge distribution. It can be expressed by

transition couplings like Jmn(eg, g g) which indicate the interaction matrix element of a

monomer n in the ground state g and an electronic transition on monomer m from the

ground state to an excited state e.

2.3.7. Supermolecule

With every method that calculates the transition energies it is possible to calculate the

coupling indirectly by the energy splitting of the coupled excitations and to use it as a

reference. The advantage is that it is fully consistent to the monomer calculation. Despite

the considerably grown effort, the drawback is the difficulty to identify the involved

transitions. Sometimes it is possible by a structural symmetry to identify the exicitation

qualitativly by point group analysis. In other cases it is not possible to be restricted to

Frenkel excitons. Nevertheless it is a benchmark calculation for all methods mentioned

above.

At least DFT methods suffer from principal problems since conventional functionals provoke

the delocalisation error. For large distances the repulsive interaction for the electrons is

too large due to the Coulomb term and fractional charges are underestimated. Hybrid

functionals may produce an error canceling of the delocalisation error [38]. Nevertheless

charge transfer (CT) states are systemetically underestimated [39]. A method to overcome

the problem is the subsystem formulation of TD-DFT [40].
The next section describes the TD-DFTB method. With this method it is possible to describe

the propagation of the aggregate along a MD trajectory and the electronic excitation in a

consistent way. The formulation of the coupling within this scheme, which is the missing

element in a Frenkel exciton simulation, is developed in the succeeding section.
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2.4. Density-Functional Based Tight-Binding

The density-functional based tight-binding method (DFTB) is an approximation to con-

ventional density functional theory (DFT). It is based on the total energy expression, as

obtained by the density functional theory. By approximations beyond those of DFT, DFTB

offers a gain in calculation effort, since no integrals have to be calculated within run time.

This fact allows to run calculations for much larger systems.

The DFTB method has been developed since 1995 [41] and is enhanced continuously. Be-

sides a formulation in second order with self-consistent charge description (SCC-DFTB)[42]
has been existent since 1998. Analogously to the time-dependent DFT (TD-DFT) it has

been extended to time-dependent density-functional based tight-binding (TD-DFTB) [43],
which allows for describing excited states. Since 2007 an assemblage of further extensions,

including the third order energy expansion is known in literature as DFTB3 [44].
So far DFTB has been used in a wide field of applications like molecular electronic

conduction[45], water clusters [46], electronic structure of quantum dots [47] and many

more. It is implemented in the standalone codes DFTB+ and hotbit as well as included,

amongst others, in deMon, AMBER and Gaussian.

2.4.1. Theory

The main idea of DFTB is to consider the electronic density as a perturbed reference density.

The reference density is the superposition of free neutral atomic densities. All deviations

are formed by atomic centred charge fluctuations. With these assumptions it is possible to

reformulate all expressions needed to calculate the final charge distribution in a manner

where no demanding calculations have to be performed. The interaction of the charge

distribution and their energies are determined via parametrised expressions. The set of

parameters has to be built up beforehand by using a set of molecules. This last statement

prevents to label the DFTB method purely ab initio.
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Zeroth Order DFTB

Starting point is the total energy expression as developed in DFT. For a system of M atomic

cores and N electrons with the electronic probability density function ρ(~r) [42]:

E =
occ∑

i

〈
Ψi

∣∣− ∇2

2
+ Vext[ρ(~r)] +

1

2

∫
ρ(~r ′)
|~r −~r ′|

d~r ′
∣∣Ψi

〉
+ Exc[ρ(~r)] +

1

2

M∑
α,β

ZαZβ∣∣∣~Rα− ~Rβ ∣∣∣
(2.39)

The summation runs over all occupied Kohn-Sham eigenstates (Ψi). Here and in the

following the orbitals are either completely occupied or unoccupied. In a description for

finite temperature every orbital would be weighted with its occupation f which would not

change the principal conclusions presented in this chapter.

Exc in Eq. (2.39) denotes the exchange-correlation term. The last term gives the amount of

repulsion between the nuclei. The basic idea of DFTB is to treat the electronic density as

the sum of a reference density and the deviation to the factual density:

ρ(~r) = ρ0(~r) +δρ(~r) (2.40)

The reference density itself is the superposition of free, neutral atoms. Thus Eq. (2.39)

turns to

E =
occ∑

i

〈Ψi|−
∇2

2
+ Vext[ρ0(~r)] +

∫
ρ0(~r ′)
|~r −~r ′|

d~r ′+ Vxc[ρ0(~r)]︸ ︷︷ ︸
Ĥ0

|Ψi〉

−
1

2

∫ ∫
ρ0(~r ′)(ρ0(~r) +δρ(~r))

|~r −~r ′|
d~rd~r ′−

∫
Vxc[ρ0(~r)](ρ0(~r) +δρ(~r))d~r

+
1

2

∫ ∫
δρ(~r ′)(ρ0(~r) +δρ(~r))

|~r −~r ′|
d~rd~r ′+ Exc[ρ0(~r) +δρ(~r)] + Ecc .

(2.41)

The Coulomb interactions between the nuclei (last term in Eq. (2.39)) are combined to

Ecc. After the expansion of the exchange-correlation energy at ρ0 the total energy may be
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expressed as

E =
occ∑

i

〈Ψi| Ĥ0 |Ψi〉 −
1

2

∫ ∫
ρ0(~r ′)ρ0(~r)
|~r −~r ′|

d~rd~r ′+ Exc[ρ0(~r)]−
∫

Vxc[ρ0(~r)]ρ0(~r)d~r + Ecc

+
1

2

∫ ∫  1

|~r −~r ′|
+

∂ 2Exc

∂ρ(~r)∂ρ(~r ′)

∣∣∣∣∣
ρ0(~r)

δρ(~r)δρ(~r ′) .
(2.42)

In zeroth order of non SCC tight-binding theory the last term would be neglected and the

Hamiltonian Ĥ0 is calculated from the reference density. To keep the computational effort

low, the frozen-core approximation can be applied. This implies that only valence orbitals

are considered. Thus, all remaining terms in Eq. (2.42) depend on the reference density,

respectively describe the repulsion of two atomic cores (including the core electrons) and

the total energy within DFTB can be summarised to

ETB
0 =

occ∑
i

〈Ψi| Ĥ0 |Ψi〉+ Erep . (2.43)

The repulsive potential Erep can be calculated pairwise and it only depends on the distance

(and the species of the atoms). It is expressed as

Erep = Erep(~Rα− ~Rβ) . (2.44)

With the help of the LCAO method (linear combination of atomic orbitals) the Kohn-Sham

equations can be solved. The one-particle wave function Ψi is expanded into atomic

(valence) orbitals:

Ψi(~r) =
∑
ν

cν iϕν(~r − ~Rα) (2.45)

Applying the variation principle to Eq. (2.43) one obtains the following set of equations:

M∑
ν

cν i(H
0
µν − εiSµν) = 0 , ∀µ , i , (2.46)

H0
µν = 〈ϕµ| Ĥ0 |ϕν〉 , Sµν =

〈
ϕµ

∣∣∣ϕν〉 , ∀µεα , νεβ (2.47)
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Within the two-center approximation the matrix elements of the Hamiltonian become

H0
µν =


εfree neutral, if µ= ν

〈ϕµ| T̂ + V α0 + V β0 |ϕν〉 , if µεα∧ νεβ ∧α 6= β

0, else .

(2.48)

The diagonal elements commensurate to the eigenvalues of the orbitals of the free neutral

atoms. The nondiagonal elements differ only from zero, if both orbitals belong to different

atoms. The potential in this case consists of the atomic potentials V α0 and V β0 . Solving Eq.

(2.46) Eq. (2.43) becomes

ETB
0 =

occ∑
i

εi + Erep . (2.49)

In the calculation of the repulsive potential DFTB leaves a strictly formulated classification

of ab initio methods. To calculate Erep the first term in Eq. (2.49) is compared with

DFT calculations. In doing so a set of molecules including the sought bond (or several

equivalents) is manipulated systematically. The distance dependent repulsive potential for

a certain pair of elements is obtained by the differences to DFTB without Erep,

Erep(R) =

{
EDFT(R)−

occ∑
i

niεi(R)

}∣∣∣∣∣
reference system

. (2.50)

The set of molecules and the values of R that are included in the fit for this function

is different in every parameter set. This level of DFTB works well for systems with a

ground state density close to the reference density [48]. Since the reference density is the

superposition of free atoms these systems are those whose electronegativities are close to

each other. These are homo-nuclear systems and to a limited extent hydrocarbon systems.

Self-Consistent DFTB in Second Order (SCC-DFTB)

If the electron density differs considerably from the reference density the SCC-DFTB level

of approximation offers a more precise description of the electronic structure. This is

especially the case for molecules governed by heteronuclear bonds with very different

electronegativities. In this extension terms of second order in Eq. (2.42) are not neglected

but included in the following derivation. The deviation to the reference density is split

into components centred on the atomic sites and separated into radial function Fαml and
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spherical harmonics Ylm:

δρ(~r) =
∑
α

δρα(~r) (2.51)

δρα(~r) =
∑
l,m

Kml F
α
ml

(∣∣~r − ~Rα∣∣)Ylm

(
~r − ~Rα∣∣~r − ~Rα∣∣

)
(2.52)

The next approximation is to suppose that the major contribution is coming from the

monopoles. Neglecting a possible contribution by higher order terms the expansion can

be truncated after the monopole term. The deviation to the reference density on atom α

becomes

δρα(~r)≈∆qαFα00

(∣∣~r − ~Rα∣∣)Y00 , (2.53)

where the total charge is maintained,

∑
α

∆qα =
∫
δρ(~r)d~r . (2.54)

The interaction of two such monopoles can be calculated from the Coulomb interaction

and the exchange-correlation-energy [43]:

EWW =∆qα∆qβ

∫ ∫  1

|~r −~r ′|
+

∂ 2Exc

∂ρ(~r)∂ρ(~r ′)

∣∣∣∣∣
ρ0

 Fα(~r)Fβ(~r
′)d~rd~r ′

︸ ︷︷ ︸
γαβ (R)

(2.55)

For large distances (R= |~Rα− ~Rβ | →∞) the exchange-correlation term vanishes and Eq.

(2.55) will be the Coulomb interaction between two point charges

lim
R→∞

γαβ(R) =
1

R
(2.56)

For an interatomic distance between two identical atoms close to zero the integral in Eq.

(2.55) describes the energy of an altered charge situated at atom α, or in other words an

electron-electron interaction on the same atom which can be approximated by

lim
R→0
γαβ(R) =

∂ 2Eα
∂ q2

α

= Uα . (2.57)
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For this the homonuclear parameters are estimated by Pariser’s observation [49]:

γαα ≈ Iα− Aα (2.58)

This means that it can be approximated by the difference between the ionisation potential

Iα and the electron affinity Aα, which is at the same time two times the chemical hardness

ηα [50] or the Hubbard parameter Uα:

γαα ≈ Iα− Aα ≈ 2ηα ≈ Uα (2.59)

The major advantage of DFTB is that the γαβ can be calculated beforehand for every

combination of included elements. To achieve such a parametrisation it has to be interpo-

lated for intermediate values of R. This can be done by the Klopman-Ohno approximation

[51, 52]:

γαβ(R) =

√√√√√ 1

R2+ 1
4

(
1

Uα
+ 1

Uβ

)2 (2.60)

It was used in early DFTB versions, but has led to convergence problems. Alternatively

an analytical expression can be derived [42]. It starts with assuming a charge density

distribution represented by a Slater-type orbital

Fα(~r) =
τ3
α

8π
e−τα|~r− ~Rα| . (2.61)

The Coulomb interaction between two spheres of such a form is given by (for the derivation

see A.1 in the appendix):

γαβ(R) =
∫ ∫

1

|~r −~r ′|
τ3
α

8π
e−τα|~r

′− ~Rα|
τ3
β

8π
e−τβ |~r− ~Rβ |d~rd~r ′ (2.62)

=
1

R
−

[
e−ταR

(
τ4
βτα

2(τ2
α
−τ2

β
)2
−
τ6
β − 3τ4

βτ
2
α

(τ2
α
−τ2

β
)3R

)
+ e−τβR

(
τ4
ατβ

2(τ2
β
−τ2

α
)2
−
τ6
α− 3τ4

ατ
2
β

(τ2
β
−τ2

α
)3R

)]
.

(2.63)
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If γαβ is considered as a function of R,τα and τβ , its special case γαα is given by

γαα = lim
R→0
γ(τα,τα, R) (2.64)

=−
5

16
τα . (2.65)

The derivation may be found in the appendix. Combining it with Eq. (2.59) one obtains a

connection between the size of the charge sphere and the Hubbard parameter:

τα =
16

5
Uα . (2.66)

The Hubbard parameter for a spin-unpolarised atom can be calculated by [50, 53]

Uα =
∂ εi

∂ ni
. (2.67)

If this derivative is calculated with an ab initio method the exchange correlation part is

included, leading to γαβ(R) = γαβ(Uα, Uβ , R) and the total energy in second order DFTB

ETB =
occ∑

i

〈Ψi| Ĥ0 |Ψi〉+
1

2

N∑
αβ

γαβ∆qα∆qβ + Erep . (2.68)

The perturbation of the density expressed in these atomic centred charge fluctuations needs

to be determined self-consistently. To this end, the single particle function Ψi is expanded

into an set of (pseudo-) atomic orbitals.

Ψi(~r) =
∑
ν

cν iϕν(~r) (2.69)

Generally, there would be other possibilities, but in the parametrisation used in this work

confined Slater-type atomic orbitals are used. They are the solution of a Schrödinger

equation for a free atom with a potential modified to (see section 2.4.4 for more details):

V (r) = Vnuc(r) + VHartree[ρ(r)] + Vxc+
(

r

r0

)N

(2.70)

With this Eq. (2.68) gets

ETB =
occ∑

i

∑
νµ

c∗ν icµiH
0
µν +

1

2

N∑
αβ

γαβ∆qα∆qβ + Erep . (2.71)
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Before deriving ∆qα the charge localised on atom α needs to be calculated [54]:

qα =
occ∑

i

∫
Vα

∣∣ψi(~r)
∣∣ d~r = occ∑

i

∑
µν

c∗ν icµi

∫
Vα

φ∗ν(~r)φν(~r)d~r (2.72)

This integral has to be evaluated on the volume Vα assigned to atom α. It is approximated

as follows: All integrals with neither µ nor ν belonging to atom α do not contribute to

qα. If both belong to α the integral is set to δνµ, because of the orthogonality on the same

atom. For the case that only ν belongs to α the integral can be approximated by:∫
Vα

∣∣ψi(~r)
∣∣ d~r ≈ 1

2

∫
V
φ∗
µ
(~r)φν(~r)d~r =

1

2
Sµν =

1

2

〈
φµ

∣∣∣φν〉 . (2.73)

This Mulliken population analysis [32] implies

qα =
occ∑

i

∑
µ∈α

∑
ν

1

2

(
c∗ν icµiSµν + cν ic

∗
µiSνµ

)
. (2.74)

Since in the reference structure the charge of an atom would be the number of valence

electrons q0α the charge fluctuation is

∆qα = qα− q0α (2.75)

By applying the variational principle on Eq. (2.71) one arrives at

M∑
ν

cν i(Hµν − εiSµν) = 0 , ∀µ , i , (2.76)

Hµν = H0
µν
+

1

2
Sµν
∑
ξ

(
γαξ+ γβξ

)
∆qξ︸ ︷︷ ︸

H1
µν

,µ ∈ α ν ∈ β . (2.77)

In this way the deviation from the reference density can be described, incorporating the

characteristics of the atom types. How this allows molecular dynamics simulation is shown

in the next section.
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2.4.2. Forces

To perform a molecular dynamics simulation the interatomic forces can be calculated by

the gradient of the total energy. The force acting on atom α is [42]

~Fα =−
∂ E0

∂ ~Rα

=
occ∑

i

∑
ν

∑
µ

cν icµi

[
∂ H0

µν

∂ ~Rα
−

(
εi −

H1
µν

Sµν

)
∂ Sµν
∂ ~Rα

]

−∆qα
∑
β 6=α

∂ γαβ

∂ ~Rα
∆qβ −

∑
β 6=α

∂ Erep(|~Rα− ~Rβ |)
∂ ~Rα

.

(2.78)

The derivative of γαβ can be done analytically while the other gradients have to be

performed via interpolation.

2.4.3. Time-dependent DFTB

To calculate excited states the time-dependent extension of DFTB [43] is used. It is derived

analogously to the time-dependent form of DFT (TD-DFT) where excited states can be

calculated by linear response to a time-dependent perturbation. One possibility to achieve

this goal in TD-DFT as well as in TD-DFTB is the frequency domain response. After a

ground state SCC-DFTB calculation one obtains the Kohn-Sham-orbitals with the coupling

matrix K in adiabatic approximation [55]:

Ki jσ,klτ =
∫ ∫

ψi(~r)ψ j(~r)

(
1

|~r −~r ′|
+

∂ 2Exc

∂ ρσ(~r)∂ ρτ(~r ′)

)
ψk(~r

′)ψl(~r
′)d~rd~r ′ (2.79)

In this representation the exchange energy Exc is derived with the spin densities nσ(~r)
and nτ(~r). This will lead to an eigenvalue problem of the dimension Nocc × Nvirt where

Nocc denotes the number of occupied Kohn-Sham orbitals (with indices i,j,..) and Nvirt the

number of unoccupied Kohn-Sham orbitals (k,l,...) for a closed-shell system[56]:∑
j,b,σ

[
ω2

iaδi jδabδστ+ 2
p
ωiaKiaσ, j bτ

√
ω j b

]
F I

j bσ =ω
2
I F I

iaτ . (2.80)

Where ωia = εi − εa and ωI is the sought excitation energy for the excitation I and F I its

corresponding excitation vector. Correct up to this point, the coupling matrix needs to be



26 Theory of Frenkel Excitons

approximated next. To be consistent to the DFTB ground state formalism with its density

fluctuations the transition density ρi j is decomposed into atomic contributions:

ρi j(~r) =ψi(~r)ψ
∗
j(~r) =

∑
α

ραi j(~r) (2.81)

Staying within the DFTB scheme, these atomic centred parts are approximated as monopols

ραi j(~r) = qαi j Fα(~r) , (2.82)

which defines the Mulliken atomic transition charges:

qαi j =
1

2

∑
µ∈α

∑
ν

(
cµicν iSµν + cν icµiSνµ

)
. (2.83)

The derivative of the exchange-correlation energy in Eq. (2.79) can be split into one part

differentiate Exc with respect to the total charge density ρ(~r) = ρ↑(~r) +ρ↓(~r) and one part

with respect to the spin-density m(~r) = ρ↑(~r)−ρ↓(~r):

∂ 2Exc

∂ ρτ(~r)∂ ρτ(~r ′)
=

∂ 2Exc

∂ ρ(~r)∂ ρ(~r ′)
+ (2δστ− 1)

∂ 2Exc

∂m(~r)∂m(~r ′)
(2.84)

This leads to the approximated coupling matrix

Ki jσ,klτ =
∑
αβ

qαi jq
β
kl

[
γ̃αβ + (2δστ− 1)mαβ

]
(2.85)

with

γ̃αβ =
∫ ∫  1

|~r −~r ′|
+

∂ 2Exc

∂ρ(~r)∂ρ(~r ′)

∣∣∣∣∣
ρ

 Fa(~r)Fb(~r
′)d~rd~r ′ and (2.86)

mαβ =
∫ ∫

∂ 2Exc

∂m(~r)∂m(~r ′)

∣∣∣∣∣
ρ

Fa(~r)Fb(~r
′)d~rd~r ′ . (2.87)

The slight difference between γ and γ̃ is the density at which the derivative is evaluated.

This difference is found to be small and is usually neglected [43]. Because of its short

range character the second term mαβ is set to zero for all off-site terms (α 6= β). The
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on-site terms are given by

mαα =
1

2

(
∂ εHomo
↑

∂n↑
−
∂ εHomo
↑

∂n↓

)
. (2.88)

This Hubbard-like parameter is obtained from atomic DFT calculations of a neutral atom.

The short range character has its reasons in the absence of the Coulomb part (compared to

γ̃αβ). The oscillator strengths of a transition I can be calculated with

f I =
2

3
ωI

∑
k=x ,y,z

∣∣∣∣∣∣
∑

i j

〈ψi|~rk |ψ j〉
√
ωi j

ωI

(
F I

ji↑+ F I
ji↓

)∣∣∣∣∣∣
2

. (2.89)

2.4.4. Parametrisation

As mentioned above many calculations can be done before a DFTB run, no integrals have

to be evaluated within it. These parametrisation includes the Hubbard parameters Uα,

the matrix elements Hµν , Erep and other values. All these were included in the so called

Slater-Koster files. For this work the mio-1-1 package is used [42]. Starting with the

pseudoatomic wave function in terms of Slater-type orbitals and spherical harmonics [41]

φν(~r) =
∑

n,κ,lν ,mν

anκr lν+ne−κr Ylνmν

(
~r

r

)
(2.90)

a sufficient large basis with different values for κ and n needs to be found. In [41] these

were 5 different values for κ and n= 0,1,2,3 which were found to be sufficient enough

for a convergence of all atoms in the first three rows. With this ansatz a self consistent

solution of the atomic Kohn-Sham equation

[
T̂ + V (r)

]
φν(~r) = ενφν(~r) (2.91)

is performed with a modified potential as given in Eq. (2.70). The last term causes an

artificial confinement and leads to bound electrons whose wave functions are not as diffuse

as pure atomic orbitals. For the used parameter set, N was set to 2 and r0 to the covalent

radius of the respective element.

The next step is to calculate the overlap matrix Sµν . It is possible to decompose any

overlap integral for a given interatomic distance R in a linear combination of orthogonal

configurations of atomic basis functions with the same R [57]. For example the overlap
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Figure 2.4.: Slater-Koster overlap integral of two p-orbitals

integral between two p-orbitals can be decomposed into

Sx ,x(R) = cos2(θ)Sppσ(R) + (1− cos2(θ))Sppπ(R) . (2.92)

As illustrated in figure 2.4 Sppσ(R) is the overlap of two p-orbitals in σ configuration and

Sppπ the same in π configuration. According to the angle θ between the p-orbitals they

contribute to the overlap integral.

In a Slater-Koster file all necessary integrals are stored for discrete values of R. The

grid distance in the mio-1-1 package is 0.02. Between these configurations the values

are interpolated. The diagonal elements of H0
µν are the eigenvalues of Eq. (2.91). The

non-diagonal elements are calculated in the two-center approximation

H0
µν = 〈ϕµ| T̂ + V α0 + V β0 |ϕν〉 (2.93)

= 〈ϕµ| T̂ + Veff[ρ
0
α+ρ

0
β] |ϕν〉 , µ ∈ α , ν ∈ β , (2.94)

assuming a negligible contribution of third atoms. The integrals are stored in the same

manner as the overlap integrals.

The most difficult part of the parametrisation is the repulsive potential. The first approxi-

mation is to consider Erep as a sum of diatomic contributions. It is defined as

Erep(R) =

ESCF
DFT(R)−

 occ∑
i

〈Ψi| Ĥ0 |Ψi〉+
1

2

N∑
αβ

γαβ∆qα∆qβ

∣∣∣∣∣∣
reference structure

. (2.95)

The fitting process is very complex and can be done via minimising for example forces

or energy differences. It is the most laborious work in the developing of a Slater-Koster

package.

All current Slater-Koster files are parametrised with the functional of Perdew, Burke and
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Ernzerhof (PBE) [58]. Using these parameters the DFTB method can not outperform

a conventional DFT calculation using this functional. Quite the opposite, it will inherit

the deficits of this functional which are typical for a generalised gradient approximation

(GGA) functional. They include the overestimation of polarisabilities and delocalisation of

excess charges in conjugated systems [59], the local exchange kernel leads to problems

of CT states [60]. This comes along with a not reproduced 1/r asymptotic description

for separated charges what is based on the self-interaction error [61]. Additionally, no

dispersion interactions are included. Like in DFT calculation most implementations of

DFTB include the possibility to add an empirically corrected van-der-Waals interaction.

It is either embedded via the Slater-Kirkwood polarisable atomic model [62] or via a

Lennard-Jones potential [63] with parameters from the Universal Force Field (UFF) [64]
like it is done in this work.

2.5. Coulomb Coupling within the DFTB-Scheme

In this section a method is presented, enabling the calculation of the Coulomb coupling

from the electronic transition of the monomers obtained by a TD-DFTB calculation. It is

derived in two ways. Firstly, the derivation starts with the expression for the Coulomb

coupling defined in Section 2.2 and formulates the quantities by TD-DFTB representations

(Mulliken transition charges). The second way formulates the TD-DFTB in a Frenkel exciton

way.

2.5.1. Coulomb Coupling by Mulliken Transition Charges

The intermolecular Coulomb coupling for the transition a → b in molecule m and the

transition c→ d in molecule n splits up into different contributions (see Eq. (2.18)). The

coupling between two transitions (a 6= b ∧ c 6= d) is described by

Jmn(ab, cd) =
∫

d~rd~r ′ϕ∗ma(~r)ϕ
∗
nb(~r

′)V (el−el)
mn ϕnc(~r

′)ϕmd(~r) . (2.96)

It contains the transition charge ρad which can be expressed in the TD-DFTB scheme by

the Mulliken transition charges qad
α :

ρ
(m)
ad (~r) = ϕ

∗
ma(~r)ϕmd(~r)≈

∑
α∈m

qad
α Fα(|~r − ~Rα|) (2.97)
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For a pure Coulomb coupling the interaction potential is

V (el−el)
mn =

1

|~r −~r ′|
. (2.98)

With this the coupling becomes

Jmn(ab, cd) =
∑
α∈m

∑
β∈n

qad
α

qbc
β

∫ ∫
d~rd~r ′

(
1

|~r −~r ′|

)
Fα(|~r − ~Rα|)Fβ(|~r ′− ~Rβ |)︸ ︷︷ ︸

ζαβ (|~Rα−~Rβ |)

, (2.99)

where the integral ζαβ(R) can be calculated analogously to γαβ(R) as described in Section

2.4.1. It is likewise dependent on the species of the two atoms and the distance R between

them. To accommodate the different potentials (only Coulomb and no exchange-correlation

potential) to a pure Coulomb interaction, a changed Hubbard parameter is used which is

calculated without exchange interaction. The Mulliken transition charges qad
α for every

atomic site can be calculated by summing up all Kohn-Sham Mulliken transition charges

qad
α =

∑
i j

c I
i jσqi j

α , (2.100)

weighted by the coefficients [65]

c I
i jσ =

√
ωi j

ωI
F I

i jσ (2.101)

with the transition vector F I for the transition I = {ad} respectively {cb}. The index σ

indicates the spin of the transition. It is specified by the type of transition I .

All other terms of the coupling matrix in Eq. (2.18) have to be treated together since

a nucleus including its associated electrons has the total charge ∆qα. The molecular

transition charge density as defined in Eq. (2.20) is expressed in TD-DFTB as

n(m)g,a (~r) =
∑
α∈m

qad
α Fα(|~r − ~Rα|) +δg,a

∑
α∈m

∆q(g)α Fα(|~r − ~Rα|) (2.102)

for a transition from the ground state g to an arbitrary state a (which could be likewise the

g). Here qad
α are the Mulliken transition charges on monomer m while ∆q(g)α are the net

atomic charges, on monomer n, as defined in Eq. (2.75). With the same argumentation

as above, the Coulomb coupling between a transition on monomer m and charges of the
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ground state g on monomer n is given as

Jmn(ag, gd) =
∫

d~rd~r ′
n(m)a,d (~r)n

(n)
g,g(~r

′)

|~r −~r ′|
=
∑
α∈m

∑
β∈n

qad
α ∆q(g)β ζαβ(|~Rα− ~Rβ |) .

(2.103)

The coupling between two ground states including all terms of Eq. (2.18) can be expressed

by

Jmn(g g, g g) =
∫

d~rd~r ′
n(m)g,g (~r)n

(n)
g,g(~r

′)

|~r −~r ′|
=
∑
α∈m

∑
β∈n

∆q(g)α ∆q(g)β ζαβ(|~Rα− ~Rβ |) .
(2.104)

An interaction with the charge distribution of an excited state e is not defined in the present

formulation of TD-DFTB as a linear response.

2.5.2. Coupled System Formulation

Alternatively the coupling can be derived by considering two subsystems and their interac-

tion. Reviewing Eq. (2.80)∑
j,b,σ

[
ω2

iaδi jδabδστ+ 2
p
ωiaKiaσ, j bτ

√
ω j b

]
F I

j bσ =ω
2
I F I

iaτ , (2.105)

which is adapted to the problem of two subsystems A and B (w.l.o.g with the same number

of electrons). Assuming that the sets of Kohn-Sham orbitals are known for A and B and

stay separated (postulates a sufficient large separation and no second order effects) F I
i jσ

can be sectioned into

F I
i jσ =



F I(AA)
i jσ , for i, j ∈ A

F I(AB)
i jσ , for i ∈ A∧ j ∈ B

F I(BA)
i jσ , for i ∈ B ∧ j ∈ A

F I(BB)
i jσ , for i, j ∈ B ,

(2.106)
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whereas the dimension of F I
i jσ grows by a factor of 4. Introducing X and Y as new variables

(X , Y ∈ {(AA), (AB), (BA), (BB)}) Eq. (2.105) will be∑
j,b,σ,X

[
ω2

iaδi jδabδστδX Y + 2
p
ωiaKX Y

iaσ, j bτ

√
ω j b

]
F IX

jbσ =ω
2
I F IY

iaτ . (2.107)

K (AA,AA) and K (BB,BB) stay unchanged, whereby it should be noted that the summation over

all atoms has to be performed within the corresponding molecule. K (AA,BB) and K (BB,AA)

are the couplings between two Kohn-Sham transitions, one on molecule A and one on

molecule B:

K (AA,BB)
i jσ,klτ =

∑
α∈A

∑
β∈B

qi j
α qkl

β

[
γ̃αβ + (2δστ− 1)mαβ

]
(2.108)

This describes the interaction of the Mulliken transition charges on molecule α (qi j
α ) with

those on molecule β.

Terms like K (AA,AB)
i jσ,klτ describe a coupling between a local excitation and a charge transfer

which is excluded in the Frenkel exciton picture. Therefore they are neglected. This holds

true for K (AB,AB)
i jσ,klτ , K (BA,BA)

i jσ,klτ , K (AB,BA)
i jσ,klτ and K (BA,AB)

i jσ,klτ describing a 2-electron CT. Neglecting the

sections F I(AB)
i jσ and F I(BA)

i jσ of the transition vector is justified by the same argument. In this

way the dimension of the eigenvalue problem is reduced by the factor 2 and can be written

as MAA CAB

CBA MBB

F I(AA)

F I(BB)

=ω2
D

F I(AA)

F I(BB)

 (2.109)

where MAA MBB are the matrices from Eq. (2.80) for monomer A resp. B. CAB describes the

interaction and is given by

CAB,i jσ,klτ = 2
√
ωi jK

(AA,BB)
i jσ,klτ

p
ωkl . (2.110)

The formulation of treating this is consistent to Ref. [66]. The transitions for the isolated

monomers can be found by solving MAAF I(AA) =ω2
I F I(AA) and the equation corresponding

to monomer B. To calculate the coupling between a pair of resonant transitions (transition

frequency ω0 and eigenvector FA as solution for monomer A, ωB and FB for monomer

B) the interaction will be considered as a perturbation. The solution are two transition
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frequencies ω+ and ω−. The zeroth order eigenvector is

F I
D± =

1
p

2

 FA

±FB

 (2.111)

with the modified transition frequencies

ω2
± =

(
F T

A ,±F T
B

)MAA CAB

CBA MBB

 FA

±FB


(
F T

A ,±F T
B

) FA

±FB

 . (2.112)

Since

ω± =ω0± J , (2.113)

it follows that

J =
ω2
+−ω

2
−

4ω0

=
1

2ω0
F T

A CAB FB

=
1

2ω0

∑
i, j∈A

∑
k,l∈B

FA
i jσ2
√
ωi jKi jσ,klτ

p
ωkl F

B
klτ

=
∑

i, j,α∈A

∑
k,l,β∈B

FA
i jσ

√
ωi j

ω0
F B

klτ

√
ωkl

ω0
qi j
α qkl

β

[
γ̃αβ + (2δστ− 1)mαβ

]
.

(2.114)

With Eq. (2.100) the coupling is derived as

J =
∑
α∈A

∑
β∈B

qad
α qcb

β

[
γ̃αβ + (2δστ− 1)mαβ

]
. (2.115)

Since mαβ is only non zero on the diagonal it reduces to

J =
∑
α∈A

∑
β∈B

qad
α qcb

β γ̃αβ(R) . (2.116)

The definition the Coupling by half of the energy gap (Eq. (2.113)) includes the exchange

interaction. This can be subsequently corrected by replacing γ̃αβ(R) with ζαβ(R). The result
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is the same equation as derived earlier (Eq. (2.99)):

J (el−el)
mn (ab, cd) =

∑
α∈m

∑
β∈n

qad
α qcb

β ζαβ(R) (2.117)

Both ways of establishing an expression result in the same equation for the Coulomb

coupling. The principle assumption in both ways is that the transition is set up by local

transitions which follows from the definition of a Frenkel exciton. These local transitions

are the same as they are in the separated monomer. This assumption is either formulated

in expressing the transition density by the Mulliken transition charges of a monomer

transition (Eq. (2.97)) or by defining the eigenvector for a transition of the dimer as a

combination of the monomer transition vectors (Eq. (2.111)).

Without further assumptions the presented method has not the ability to determine more

than the absolute value of the Coulomb coupling since the sign of F I
A is arbitrary. Therefore

the sign of J can only be concluded by a comparison to the dipole-dipole approximation,

to a supermolecular calculation or to similar configurations.

The TD-DFTB formulation of a Frenkel exciton Hamiltonian, labelled with the acronym

TBFE, is applied on two different dimers in the next chapter. It is as well compared to other

methods calculating the Coulomb coupling, as they are described above.

2.6. Computational Details

For (TD-)DFTB calculations of the monomers, supermolecules and geometry optimisations

the unpublished package TDDFTB+ by Th. Niehaus (University of Regensburg) is used.

It originates from the DFTB+ program package [42, 62, 67]. Back-end of the Mulliken

transition density calculation is the NG branch of the DFTB+ program package in version

1.4. The subroutine, responsible to calculate the electronic transition, is taken from a

development version provided by Th. Niehaus. To achieve a better performance the

diagonalisation algorithm for the transition matrix, originally used in this development

version, is substituted by the implicitly restarted Arnoldi iteration as implemented in the

ARPACK package [68]. Further change is the implementation of the Mulliken transition

charges calculation according to Eq. (2.100). This change is done to be able to calculate

the Coulomb coupling as proposed.

All parameters are taken from the mio-1-1 Slater-Koster files [42]. The function ζαβ(R) is

calculated analogously to γαβ(R). The difference is the use of modified Hubbard parameters

Ũ which are derived without exchange correlation interaction. The utilised values are
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[69]:

ŨH = 0.57962094

ŨC = 0.51864556

ŨN = 0.63092682

ŨO = 0.74161363 .

DFT calculations are performed with TURBOMOLE [70, 71, 72] by using a 6-311G** basis

set with the functionals B3LYP [73, 74], PBE [58, 75] and PBE0 [76]. The electronic

coupling matrix elements are calculated by the pre-release version of the "intact" module

of TURBOMOLE implemented by A. Köhn (University of Mainz).



Chapter 3.

Results

3.1. Formaldehyde Oxime Dimer

The aim of this chapter is to test the method, introduced above and to compare it with

other methods. For this purpose a formaldehyde oxime (Figure 3.1) dimer is used as a

model. The dimer is build up by two monomers, whereas one is shifted with respect to

the other perpendicular to the monomer’s symmetry plane. This initial configuration is

not the equilibrium of the dimer. It is chosen because of its symmetry of the transition

dipole moments. The conformation of the dimer is varied by the distance X between the

monomers (Figure 3.2) and by the tilt angle (Figure 3.3).

Figure 3.1.: Formaldehyde oxime monomer (N-methylidenehydroxylamine,
CAS number: 75-17-2 ) and the orientation of the transition dipole vector ~d

36
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Figure 3.2.: Varying the distance (orthogonal to transition dipole moment)

Figure 3.3.: Varying the tilt angle θ (tilt axis perpendicular to transition dipole moment, the
distance between the monomer in the calculation is larger compared to the distance
indicated in this picture)

3.1.1. Dependence of the Coupling Strength on the Distance

In order to test the presented coupling-calculating method the TBFE is compared with the

following calculations explained in detail in Section 2.3:

• Supermolecular TD-DFTB: The dimer is calculated as a supermolecule with TD-DFTB.

Among the resulting transitions the two representing the coupled S0→ S1 excitation

are identified by comparing the structure of the Kohn-Sham orbitals involved in the

leading transitions. The coupling strength is obtained by the half energy split which

includes additionally to J also K .

• Dipole Approximation: The transition dipole moments ~dm are calculated via TD-DFTB

(TD-DFT respectively). The coupling is estimated by Eq. (2.27)

• Supermolecular DFT: It follows the same procedure as the supermolecular TD-DFTB

ansatz. Details including the used functionals are mentioned in Chapter 2.6.

• Electronic Coupling Matrix Elements: Alternatively the transition charges of the

monomers can be calculated in independent calculations. They are used to estimate

the coupling strength by the Electronic Coupling Matrix Analysis.
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Figure 3.4.: From left to right: 1) Mulliken Transition charges for the S0→ S1 transition; the colors
indicate the sign and the radii the absolute value of q0,1

α 2) HOMO-1 3) LUMO; the
HOMO-1→LUMO is the main contribution to the S0→ S1 transition
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Figure 3.5.: TD-DFTB based methods to calculate the coupling strength of the formaldehyde oxime
(values are calculated with a stepsize of 0.5 Å, for a better viewing the lines result
from a fitting procedure)

The Mulliken transition charges of the monomer are pictured in Figure 3.4. For a parallel

orientation the distance X between the two monomers is varied from 0.5 Å to 20.5 Å. The

values of J obtained by the different methods mentioned above are compared.

Before the tight-binding procedure is compared to results based on common DFT, the

TBFE method is classified in the context of the other TD-DFTB based methods like the

supermolecule calculation and the dipole-dipole approximation (with ~d calculated by

TD-DFTB). Additionally to that, Figure 3.5 shows the TBFE coupling calculated with the

original Hubbard derivatives U .
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For large distances the supermolecular calculation, the subsystem-TD-DFTB and the

dipole-dipole approximation, which has a 1/X 3 dependency, show good agreement. For

intermediate distances the three tight-binding methods fall below the most simple approxi-

mation. This is congruent with the fact that in a parallel transition dipole orientation the

next best approximation, the extended dipole approximation, is always below the point

dipole-dipole approximation which can be shown.

At 3 Å the supermolecular calculation shows a salient point and differs from the TBFE

calculation for smaller distance. A detailed analysis of the contributing Kohn-Sham transi-

tions revealed that there are two CT transition with energies below the coupled S0→ S1

for larger distances. For approaching monomers these energies are increasing. At 3 Å they

reached the lowest non-CT transition, leading to a mixing of CT and non-CT transitions.

Such CT transition are excluded in TBFE and therefore it deviates from the supermolecular

calculation below this distance.

The deviation resulting for the coupled system method according the choice of U or Ũ indi-

cates the contribution of exchange part to the coupling. The magnified detail in Figure 3.5

shows that TBFE, which includes the full coupling, is practically not distinguishable from

the supermolecular calculations. Neglecting this contribution which is approximatively

equivalent to use Ũ , in the calculation of ζαβ(R) provides slightly larger coupling strengths.

It can be gathered that the Coulomb part is dominant in the total coupling for the distance

as presented here.

The comparison with DFT based methods starts with the calculation of the transition dipole

moments d of the monomer by the different methods:

TD-DFTB : d = 1.44

TD-DFT(B3LYP) : d = 1.08

TD-DFT(PBE) : d = 0.92 .

While the spatial orientation is nearly the same, the absolute values differ clearly and can

be explained by the TD-DFTB faults discussed in Section 2.4.4. This is a first indication of

a difference between the methods, at least for large intermolecular distances, where the

coupling strength should converge to the dipole-dipole approximation.

The comparison of the coupling strength to conventional DFT based methods is shown

in Figure 3.6. For large distances they are all smaller than the TBFE method, like it has

been expected from the transition dipole calculations. The DFTB(PBE) supermolecule

calculation shows a non-monotonic behaviour for distance larger than 9 Å. For distances

smaller than 5 Å it is not possible to identify the transitions in both supermolecular
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Figure 3.6.: TBFE compared to various DFT based methods (values are calculated with a stepsize
of 0.5 Å, for a better viewing the lines result from a fitting procedure)

DFT calculation. These behaviours indicate the suffering from fractional charge errors.

At certain configurations a CT transition with an underestimated transition energy may

fall below the transition which represents a local excitation and modifies the results for

the coupling strengths by a transition mixing [77]. Such problems are excluded in the

calculations with the intact program. In contrast to the statements above its results are

above the point-dipole-dipole coupling strength. For distances below 4 Å the exchange

part is dominating, indicating that the spatial overlap between the molecular orbitals is not

negligible.

3.1.2. Dependence of the Coupling Strength on the Angle

With a center of mass distance fixed at 5 Å both molecules are tilted in a sense that the

transition dipole moment is slanted towards ~X as indicated in Figure 3.3. The progression

of the coupling for TD-DFTB based methods may be found in Figure 3.7.

Again, the sub-system like formulation of the coupling strength gives results in accordance

to the supermolecular TD-DFTB. For small angles both are below the dipole-dipole approx-

imation, which is analysed above. An equivalent explanation can be used for tilt angles

close to 90◦. For these angles it can be shown that any extended dipole approximation
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Figure 3.7.: TD-DFTB based methods to calculate the coupling of the formaldehyde oxime for
different tilt angles θ (values are calculated with a stepsize of 2.5◦, for a better viewing
the lines result from a fitting procedure)

leads to a stronger coupling than the point dipole-dipole approximation. In this range the

deviation between the two differently parametrised TBFE calculations grows significantly,

since the extension of the molecule is not negligible compared to the displacement. This

means the overlap between the orbitals of the different molecules contributes to the results.

Unfortunately, the TBFE results cannot be reproduced by the supermolecular TD-DFT

calculations (B3LYP as well as PBE and PBE0, both not shown) as it is illustrated in Figure

3.8. They do not produce a dipole-approximation-like behaviour and the coupling strengths

differ strongly for close tilt angles. The reasons may be found in the fractioned charge.

The intact calculations reproduce qualitatively the dipole-dipole behaviour. Comparing the

Coulomb interaction (J) with the full coupling (J −K), the difference is much smaller than

the TD-DFTB calculations would indicate. Since the transition dipole moment is larger

calculated by TD-DFTB than by TBFE predicts a stronger coupling than the electronic

coupling matrix calculation based on DFT does, without being able to say which is closer

to experimental results.

These two geometry manipulations have shown that the TBFE method is consistent

with supermolecular TD-DFTB calculations. Differences to TD-DFT calculations are related
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to the differences of transition dipoles. The case of tilted monomers shows that TD-DFT

calculations for separated systems cannot be used as a benchmark for the proposed method.

3.2. Perylene Bisimide Dye

As the coupled-system TD-DFTB method has been tested on the formaldehyde oxime

dimer as a model, it is now applied to a system of larger chromophores. Perylene

Bisimide has an extensive set of derivatives composing to different forms of aggre-

gates [78]. Those arranging to J-aggregates are of special interest since they offer a

high fluorescence. PBI-1 (N,N’-di(N-(2-aminoethyl)-benzamide-)-1,6,7,12-tetra(4-tert-

butylphenoxy)-3,4:9,10-perylenbiscarboximide) (see Figure 3.9 ) is one of these dyes with

spectra pointing to a J-aggregate-like characteristic [79]. It is synthesised by imidisa-

tion of tert-butyl-phenoxy perylene tetracarboxylic acid bisanhydride with aminoethyl-

tris(dodecyloxy)benzamide in quinoline using Zn(OAc)2 as catalyst [80]. Its aggregation

structure itself is still unclear.
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Highly Fluorescent Lyotropic Mesophases and Organogels Based
on J-Aggregates of Core-Twisted Perylene Bisimide Dyes

Xue-Qing Li, Xin Zhang, Suhrit Ghosh, and Frank W!rthner*[a]

Over the past decade, low molecular weight organic gela-
tors have attracted considerable interest because of their di-
verse applications as supramolecular soft materials.[1] The
formation of organogels[2] is facilitated by highly directional
self-assembly through non-covalent interactions such as p–p
stacking, hydrogen bonding, metal–ion coordination, dipole–
dipole interactions. In the last few years, several functional
dye based building blocks have been reported to form orga-
nogels and the unique features of the 3D network super-
structures have been applied for example, for sensors, optoe-
lectronic devices, light harvesting, nucleation of inorganic
materials.[3–8]

Organogelators based on numerous electron-rich aromatic
building blocks such as porphyrins, phthalocyanines, oligo
(phenylenevinylenes), oligothiophenes and tetrathiafulva-
lenes have been investigated in the recent past.[7] However,
such examples for electron-poor aromatic systems are still
rare.[8] Perylene bisimides (PBIs) have been extensively
studied as n-type semiconductors in various applications
such as optical recording media, organic photo- and semi-
conductors, and solar cells.[9] Recently, the groups of Shinkai
and Yagai as well as our group have reported the first PBI
based organogelators.[10–12] In these examples, well-defined
fibrous aggregates were observed by atomic force microsco-
py (AFM) and their formation has been attributed to p–p
stacking and intermolecular hydrogen bonding between the
constituent PBI molecules. However, for these gels broad-
ened UV/Vis absorption bands and inferior emission proper-
ties were observed compared to solutions of the monomeric
dyes. In this work, we introduce a new perylene bisimide
based organogelator (PBI1) with an unprecedented sharp J-
type absorption band and favorable emission properties.

These features can be attributed to strong excitonic coupling
as demanded for exciton transport in photonic and photo-
voltaic applications.

The structures of PBI1 and PBI2[11b] are shown in
Scheme 1. PBI1 was synthesized by imidization of tert-
butyl-phenoxy perylene tetracarboxylic acid bisanhydride
with aminoethyltris(dodecyloxy)benzamide in quinoline
using Zn ACHTUNGTRENNUNG(OAc)2 as catalyst and isolated as a purple powder
in 51% yield (details for synthesis and characterization of
PBI1 are given in Supporting Information). The calculated

molecular models as well as several crystal structures for re-
lated compounds indicate that PBI2 possesses a planar per-
ylene core, whereas PBI1 exhibits a distorted perylene core
with a twist angle of about 25–308 due to the presence of
four bulky tert-butylphenoxy substituents at the bay posi-
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Scheme 1. Molecular structures of PBI1 and PBI2.

# 2008 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim Chem. Eur. J. 2008, 14, 8074 – 80788074

Figure 3.9.: Molecular structure of PBI-1[80]

Figure 3.10.: Molecular structure in its dissected form [81], the groups R and R’ are replace by H

3.2.1. Geometry of Monomer and Dimer

A DFT(B3LYP) geometry optimisation as it has been described and published in [81] is

used for further calculation and comparison. This monomer structure as well as the dimer

structure [82] have been optimised for a reduced molecule (see Figure 3.10). The tert-butyl

groups on the phenoxy groups as well as the six dodecyloxy groups are replaced by a

hydrogen atom. Various tests have shown that a geometry for this structure can be well

reproduced by a DFTB geometry optimisation as shown in Figure 3.11. The root mean

square distance between the atomic sites predicted by the two methods is for the PBI-core

(as shown in Figure 3.10 without rests) 0.21 Å.

3.2.2. Electronic Structure of the PBI Monomer

To exclude effects of different structures and to allow a comparison with the DFT(B3LYP)

results all calculations are carried out by the geometries obtained with the DFTB geometry

optimisation. DFT calculations are performed with different functionals (B3LYP, PBE and
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Figure 3.11.: Geometry optimisation with DFTB (blue) and DFT/B3LYP (red)

PBE0). Using the B3LYP functional the S0 → S1 excitation energy results in 2.11 eV, the

hybrid functional PBE0 results in 2.18 eV for this transition. The PBE functional offers

several transitions which can be identified as CT transition by their oscillator strength close

to zero. In contrast to other transitions they are typically composed of only one Kohn-Sham

transition. A third criterion is that the two involved orbitals are located in different regions

of the molecule. The first non-CT transition is for a calculation using a PBE functional at

1.82 eV. By comparing the Kohn-Sham orbitals of the leading transitions qualitatively it is

possible to connect the transition between the different methods. Table 3.1 summarises the

transitions. Since PBE0 is a hybrid functional it is not susceptible to problems connected to

CT states in the present case.

In the TD-DFTB scheme it is as well possible to calculate the molecular orbitals and as

the electronic transitions of the PBI monomer. The TD-DFTB calculations (the input may

be found in Appendix C) suffer from the CT-excitation like DFT(PBE) does. Figure 3.12

shows a qualitatively good agreement of the HOMO and LUMO for TD-DFTB and DFT

computations.

This facilitates the possibility to assign the transitions obtained by the different methods

listed in Table 3.1. Similar to DFT(PBE) TD-DFTB provides CT transitions below the first

excitation offered by DFT(B3LYP). They are easily identified as described above.
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Figure 3.12.: HOMO and LUMO obtained by TD-DFT and TD-DFTB

B3LYP PBE PBE0 TDDFTB

Leading f E/eV Leading f E/eV Leading f E/eV Leading f E/eV

272-275 0.02 0.65

271-275 0.01 1.76

193-195 0.00 1.47

192-195 0.00 1.47

274-275 0.58 2.11 274-275 0.38 1.82 274-275 0.61 2.18 194-195 0.40 1.81

187-195 0.03 2.04

273-275 0.24 2.39 273-275 0.19 1.85 273-275 0.26 2.52 191-195 0.16 2.11

272-275 0.10 2.67 272-275 0.01 2.80

271-275 0.00 2.68 271-275 0.00 2.84

Table 3.1.: Assignment of the transition obtained by the different methods, one line signifies
transition including same orbitals in the leading transition; the S0 → S1 excitation
(π→ π∗) is highlighted in colour

The transition dipole moments according to TD-DFT(PBE) and TD-DFTB for the S0→ S1

excitation are

~dPBE =


2.83

0.59

0.47

 ~dTB =


2.91

0.62

0.50


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which results in a deviation of the absolute values of 3% and of 0.41◦ in orientation

∆d = 0.03 · dTB ,Θ= 0.41◦ .

Together with the structure of the HOMO and the LUMO orbitals this leads to the assump-

tion TD-DFTB can reproduce the DFT(PBE) results of the S0 → S1 transition. With this

identification the electronic structure of the dimer is calculated to evaluate the coupling

strength.

3.2.3. Electronic Structure of the PBI Dimer

Knowing that the TD-DFTB calculation for the PBI-1 monomer can reproduce at least the

DFT(PBE) results, it is applied to the PBI-1 dimer in the following. Starting from a dimer

geometry realised in [81] the structure is optimised in DFTB with a Slater-Koster dispersion

correction. Since the size of the system is much larger than in the monomer, the dimer

with its two conjugated systems is more prone to CT transitions. Due to a distinct mixing

of the local excitation, it is more difficult to identify the excitation originating from the

local S0→ S1 transition. In the end the following numbers are found:

E/eV Osc. strength lead. transit. weight 2nd transition weight

1.711 0.0176388 385-390 0.846 386-389 0.470

1.866 0.4162492 386-390 0.723 385-389 0.571

These transitions are presented in Figure 3.13. Since the blue-shifted transition is brighter,

this dimer has H-aggregate character. By the difference of the transition it results that the

coupling strength is 0.078 eV. Additionally the Coulomb coupling strength is calculated by

TBFE which results in 0.073 eV. For a pure Coulomb coupling, Ũ values are used instead of

the Hubbard parameters.

3.2.4. Coupling Strength in Dependence on the Dimer Configuration

The result ascribing an H-aggregate character to the PBI-1 dimers at first glance disagrees

to the spectroscopic observation suggesting a J-aggregate [79]. This contradiction can be

resolved either with another dimer configuration or with an aggregate structure which

is not a sequel of dimers. To form pure J-aggregates a dimer structure bringing forth a
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Figure 3.13.: Excitation scheme for a PBI-1 dimer (TD-DFTB supermolecule calculation), energies
in eV

negative coupling is needed for both cases.

As Figure 3.12 shows at least the S0 → S1 transition is mainly connected to a charge

redistribution on the PBI-core. To purify the coupling to its contribution by these cores

a dimer of PBI-cores is regarded for different configurations. Despite removing the side

groups the monomers themselves are not modified. This diminishment is not motivated in

the numerical effort of the coupling calculation which is a relatively fast process. Keeping

the phenoxy and the peptide group would require a geometry optimisation for these groups

since the molecule could not be translated as freely as without.

The starting geometry is the dimer optimised with DFT(B3LYP) [82] where all side groups

are replaced by hydrogens. In a following geometry optimisation only the position of these

added hydrogen atoms are changed. The axes are defined by the principle axes of inertia

of monomer one where the x-axis is the long axis. The y-axis is likewise in the PBI-plane

and the z-axis is pointing from monomer one to monomer two (see also Figure 3.14).

The configurations are scanned by displacing the second monomer along the three axes

and by turning it with the angle φ around the z-axis. The calculations are performed in a

supermolecule manner with TD-DFTB. Output quantities are the total energy, the gap for

the lowest (non CT) excitation, the S1 energy and the coupling strength.

The first scan is presented in Figure 3.15 for x- and y-direction. On the x-y surface there

are four unfavourable areas, where two of the oxygen atoms being originally part of the

phenoxy groups come close. The S1-level is mainly influenced by this effect. Both in the gap

and in the coupling presentation a fine structure is expressed on top of the basis structure.

This pattern is existent in both transitions. In these local minima the description of the

Kohn-Sham composition of the transition given above and summarised in Figure 3.13 stays

true. In the local maxima the Kohn-Sham transition, contributing normally to the lower
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Figure 3.14.: PBI-core with axes

and electronic transition, are present in the bright electronic transition.

Neglecting the areas which are energetically inaccessible the coupling switches to negative

values, in simple terms, by a translation of more than 7 Å in x-direction.

This is still the case for an increased intermolecular distance z. These scans are shown

in Figure 3.16 for z = 1 Å and in Figure 3.17 for z = 2 Å. Here, if not before, it becomes

clear that the coupling reaches the lowest values if the monomer is shifted in y-direction

as well. The dependency of the coupling on z is shown in Figure 3.18. Again areas with

close oxygen atoms show an extremely high energy. In this scan a negative coupling can

again only be achieved for translation of ±7 Å. It should be noted that a logarithmic plot is

partially used in Figure 3.18.

Varying the twist of the dimer while scanning the translation in x-direction leads to the

same results (see Figure 3.19). Again a negative coupling can only be achieved for a clear

translation in x-direction.

3.2.5. Coulomb Coupling by the TBFE Approach

The TBFE approach provides a way to calculate the coupling in a more efficient way. At

the same time any CT transition between the molecules, which make the Frenkel exciton

picture not applicable, and a mix between different transitions is avoided. Preparing

these calculations the Mulliken transition charges are determined for both molecules. The

results for one monomer can be found in Figure 3.20. The resulting coupling for the

scans are presented in Figure 3.21. All main features of the supermolecule calculation are

reproduced, at least in the energetically accessible configurations. Only the fine patter
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Figure 3.15.: Scan of the deformed dimer in x- and y-direction
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Figure 3.18.: Scan of the deformed dimer in x- and z-direction
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Figure 3.19.: Scan of the deformed dimer in x-direction and turning around the z-axis
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Figure 3.20.: Mulliken transition charges of PBI-1 monomer, radii are proportional to the absolute
value

of the x-y scan around the equilibrium geometry is not visible. Since this stems from the

mixing of the transition, it is not visible in this formulation which strictly separates the

transition by definition. The change between the values parametrised obtained by using U

instead of Ũ would be too small to cause a difference in this picture.

The current investigation has only examined the interaction between two transitions

(J(eg, eg)). All other terms like J(eg, ge) and J(g g, g g) and especially J(ee, eg) are

excluded in this state of description. The deviations of the Mulliken charges in the

ground state of a dimer compared to two non interacting monomers can only be an

indication of the impact of these neglected contributions. In the basic configuration

(∆x =∆y =∆z =∆φ = 0) the difference of the net atomic charges ∆qα is up to 8% of

the net charges in the monomers in the ground state. The main differences are found on

the atomic sites which are close to the oxygen atoms of the neighboured molecule. The

root mean square of this relative deviations is 0.28. Since the global distribution of the

charge fluctuation is not appreciably changed in the dimer, the characteristics of the local

transitions should be maintained, but an impact cannot be excluded in general.

The general pattern indicates, as well as the supermolecular calculation does, that there

are configurations of the dimer with negative values of J which would result in J-aggregate

characteristics. The necessary changes are rather huge and include a translation of one
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monomer of ±7 Å in x-direction. It is examined in the next section whether these structures

are existent for the dimer and for the aggregate.

3.2.6. Aggregation Structure

The results of several works [78, 83, 84, 85] suggest that the actual aggregation structure

depends to a great extent on minor changes of the side groups and not only on the

π-stacking forces. Consequently, it is questionable for a geometry optimisation to crop

the molecule. In contrast to this, the complete molecule would be too demanding for a

common DFT based geometry optimisation. Even for a DFTB based optimisation the limits

are reached. Nevertheless an annealing DFTB-MD as described in Section 2.4.2 may help

finding possible aggregation structures.

Two configurations can be identified. One is found when starting from the cropped dimer

configuration. After adding all tert-butyl and dodecyloxy groups an annealing MD with

DFTB (for details see Appendix C) is performed and leads to an overlapping configuration

shown in Figure 3.23.

This structure stays clearly in the scope of positive coupling constants as determined in the

previous chapter. The extension to a tetramer would cause a problematic interlocking of

the phenoxy groups including tert-butyl groups. In the dimer configuration the distance

can be maximised by groups pointing out of the PBI-plane. This is not possible for

longer aggregates which could hinder an aggregation to longer chains in this structure

(schematically shown in Figure 3.22).

Alternatively the initial structure is chosen to be a shifted dimer (both dimers may be

found in Figure 3.23). One of the monomers is shifted by 10 Å in x-direction. For this

configuration an annealing DFTB-MD shows a local minimum for the total energy (see

Figure 3.23). While the total energy minimum is of clearly higher value (+4 eV1) than the

total energy of the structure, described above, the phenoxy groups are not interlocked. That

fact seems to allow for J-aggregate formation which is in agreement with the spectroscopic

observations. The structure can be found for a tetramer in Figure 3.24, which is calculated

in a similar annealing DFTB-MD. The starting point has been two shifted dimers, as

obtained in the previous calculation, set together respectively to the translation within the

shifted dimer.

These two configurations are candidates for the dimer model proposed by S. Lochbrunner

(University Rostock) et al. They observe a change in the absorption/emission spectrum

1This value should be viewed with caution, since it strongly depends on the starting configuration of the
dodecyloxy groups.
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Figure 3.21.: Scan of the deformed dimer, coupled-system method, from top to bottom: 1) scan in
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Figure 3.22.: Illustration of the different types of PBI-1 dimers; the shifted dimer (left) is the basic
component of the aggregate; the planar dimer (right) energetically preferred but
cannot form longer chains

Figure 3.23.: Top: planar dimer; bottom: shifted dimer; left: complete structure; right: framework
without side groups

Figure 3.24.: Tetramer structure; left: including all groups; right: framework without side groups
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when rising the temperature of a PBI-1 solution. While at room temperature the absorption

spectra have J-aggregate characteristics, upon raising the temperatures substantial changes

appear (reduced flourescence quantum yield) that are in accord with an H-type aggregation

as it is calculated for a dimer in the overlapping case.



Chapter 4.

Conclusion

This thesis has considered the theoretical description of Frenkel excitons which are cen-

tral for understanding excitation energy transfer (EET) in nanomaterials and biological

light harvesting systems. The main parameter in the description of these processes is the

Coulomb coupling between monomers’ excitations. The aim of this work was to develop a

new approach for its calculation within the TD-DFTB framework. It was successfully imple-

mented and thus, it was shown that the new method is consistent with supermolecular

calculations of conventional TD-DFTB.

TD-DFTB expresses the coupling between Kohn-Sham transitions by Mulliken transition

charges. Using them to calculate the Frenkel exciton parameters was the first ansatz. The

Coulomb coupling could be expressed by atomic centred transition charges which are a

weighted summation of Mulliken transition charges. Since the latter are available from a

monomer TD-DFTB calculation the numerical effort to calculate the Coulomb coupling is

relatively low.

Alternatively, the Frenkel exciton TD-DFTB formulation starts from an extended formula-

tion of the excitation vector and its corresponding coupling matrix. The dimer is separated

into two sub-systems and the interaction between them is formulated. Fixing the allowed

transitions to a superposition of the monomers’ transitions, which is equivalent to local

excitations as assumed in the Frenkel exciton definition, leads to the same expression as

obtained with the first ansatz.

This formulation of the Coulomb coupling has been implemented in a TD-DFTB program

package which has enabled the comparison to other methods. For this purpose a formalde-

hyde oxime dimer has been utilised. The geometry of the dimer has been manipulated by

varying the distance between the monomers and by tilting them against the displacement

vector. For each configuration the introduced method has been compared to other methods.

The results of the supermolecular TD-DFTB calculations could be reproduced for large and

59
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intermediate distances. Only for small distances, where the overlap between the orbitals of

the monomers is not negligible, deviations are observed. Since common DFT-based meth-

ods generate smaller transition dipole moments, they produce lower coupling strengths for

all distances. Especially for the tilted monomers the DFT calculations have suffered from

known charge transfer problems.

In general, therefore, the proposed method provides the same results as TD-DFTB and

is devoid of problems of separated systems. At the same time it is restricted to Frenkel

excitons by construction. Above all, the identification of the combined electronic monomer

transitions is feasible without limitation. The numerical effort allows for treatment of large

systems.

The DFT calculations in a conventional formulation have shown that they are not a possible

benchmark for interacting systems. Therefore, it is recommended that further research

be undertaken to use other references like the subsystem TD-DFT [86]. Moreover, the

reliability of the method developed in this work has to be further tested on a variety of

systems.

The progressions in DFTB, like DFTB3 [87], a multipole development of the charge fluctua-

tion [88] and the use of range separated functionals [89], may lead to a better performance

of the DFTB ground state calculations and the calculations of the electronic transitions of

the monomers.

This perception is encouraged by the results for the PBI-1 dimer. Although the electronic

transition energies obtained by TD-DFTB differ from the DFT(B3LYP) transition energies,

they are in accordance with the DFT(PBE) results. The coupling is calculated for a wide

range of configurations and compared to supermolecular calculations. In general they

match in their values and in their dependence of the displacement. Slight differences

arise from the transition mixing in the supermolecular calculation which are excluded in

the proposed method. Nevertheless, the latter is orders of magnitude faster and does not

comprise any problem to identify the transitions.

Both methods show that the PBI-1 dimer in a planar configuration without offset between

the PBI cores has a positive coupling. At first sight, this is in contradiction to the ex-

perimental results where PBI-1 aggregates show an absorption spectrum that indicates a

J-aggregate characteristic. The necessary negative values of the Coulomb coupling can be

found for a large displacement of one monomer against the other. This proposes a possible

aggregation structure.

With this first application of the new method to calculate the Coulomb coupling consistent

to TD-DFTB it may offer a possibility, surely after additional modification and further

analysis as described above, to determine Frenkel exciton parameters along a MD trajectory.
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In such an implementation the structural propagation is described by the DFTB forces. The

electronic transitions of the separated monomers can be calculated for each step. Using

these to obtain the Coulomb coupling in the described way would include all intra- and

intermolecular vibrational effects and structural changes in the aggregate.

This procedure may help to achieve the long time goal having a efficient, flexible and

broadly applicable method for Frenkel exciton simulations for a broad class of materials

met in organic electronics and complex light harvesting systems.
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Appendix A.

Derivations

A.1. Coulomb Interactions of Two Slater-Type Orbitals

Starting from Eq. (2.62) the integrations over ~r ′ is carried out. W.l.o.g the system is

translated to ~Rα, the distance between the atomic sites is ~R= ~Rα− ~Rβ .

γαβ =
∫ ∫
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The integration over ~r is performed by translating the system by ~R/2 and by introducing

prolate spheroidal coordinates:

ξ=
|~r|+ |~r − ~R

R
| (A.8)

η=
|~r| − |~r − ~R|

R
(A.9)

(A.10)

Hence, from this definition it follows that
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A.2. Limit for γαα

For τβ = τα Eq. (A.14) is
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Its limits for R→ 0 is derived by expanding the exponential term:
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Appendix B.

Program Source Code

B.1. Extract of Modified Linear Response Calculation

This extract shows how the atomic centred Mulliken transition charges are extracted from

a linear response calculation in TDDFTB+ .

C repmax: Maximal size of respnse matrix

nexc: Number of excitations
nmat: Number of KS transitions
mxditr: Number of maximal iterations
ido: Status of diogonalisation
z: Excitation vector
nn: Number of atoms
idm: List of all possible transitions
qovers: Weighted sum of qover for transition

....

C diagonalizing response matrix

abstol = 2* dlamch(’S’)
do i=1,( repmax *( repmax +1))/2
enddo
ncv = 3*nexc
if(ncv.gt.nmat) ncv = nmat
lworkl = ncv*(ncv +8)
info = 0
ido = 0

66
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iparam (1) = 1
iparam (3) = mxditr
iparam (7) = 1

102 continue

call dsaupd (ido , ’I’, nmat , ’SM’, nexc , tol , resid , ncv ,
& z, repmax , iparam , ipntr , workd , workl , lworkl , info)

if (ido .eq. -1 .or. ido .eq. 1) then
C The matrix -vector product (TDDFT or RPA Casida)

call omegatvec(workd(ipntr (1)), workd(ipntr (2)),wij ,nmat ,nn,
& ’S’ ,win ,nocc ,nhel ,ndim ,ind ,stimc ,c,qij ,gamma)

go to 102
end if
if ( info .lt. 0 ) then

print *, ’␣Error␣with␣saupd ,␣info␣=␣’, info
stop

else
rvec = .true.
call dseupd ( rvec , ’All’, select , w, z, repmax , sigma ,

& ’I’, nmat , ’SM’, nexc , abstol , resid , ncv , z, repmax ,
& iparam , ipntr , workd , workl , lworkl , ierr )

if ( ierr .ne. 0) then
print *, ’␣Error␣with␣seupd ,␣info␣=␣’, ierr
stop

endif
if ( info .eq. 1) then

print *, ’␣Maximum␣number␣of␣iterations␣reached.’
print *, ’␣Increase␣#␣of␣excited␣states␣to␣solve␣for.’
stop

endif
end if

if(info.ne.0) then
print *,’Eigenvalue -solver␣not␣converged!’
stop

endif
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....

C calculate osz. strength

do i = 1,nexc
sym(i) = ’S’
osz(i) = 0.0d0
do l = 1,3

rfoo = 0.0d0
do indm = 1,nmat

rfoo = rfoo +
& transd(indm ,l)* dsqrt(wij(indm ))*z(indm ,i)

enddo
osz(i) = osz(i) + 2.0d0*twothi*rfoo*rfoo

enddo
enddo

c calculate transition -dipole -moments

do i = 1,nexc
do l = 1,3

transdip(i,l) = 0.0d0
do indm = 1,nmat

transdip(i,l)= transdip(i,l)+ transd(indm ,l)*
& dsqrt(wij(indm ))*z(indm ,i)* dsqrt (2/ dsqrt(w(i)))

enddo
enddo

enddo

.....

c Calculation of the atomic centred Mulliken transition charges

do transition = 1,3
write(filename ,1234) transition

1234 FORMAT(’QS’,I2.2,’.DAT’)
write(*,*) filename
open(46,FILE=filename)
write(46,’(1x,a,␣4x,␣a,␣10x,␣a,␣10x,␣a,␣10x,␣a)’) ’Atom’,’x’,
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& ’y’,’z’, ’q10’, ’in␣au’

rsqw = 1.0d0/dsqrt(w(transition ))
do i=1,nn

qovers(transition ,i)=0.0d0
do j = 1,nmat
qovers(transition ,i)= qovers(transition ,i)

& +qover(j,i)*z(j,transition )* dsqrt(wij(j)*rsqw *2)
enddo
write(46,’(1x,i3 ,4f11 .5)’) i, rat(1,i), rat(2,i),

& rat(3,i),qovers(transition ,i)
enddo

c transition dipol moment by M. trans. charges. to check calc.

do l=1,3
transtest(l)=0.0d0
do k=1,nn
transtest(l)= transtest(l)+

& rat(l,k)* qovers(transition ,k)
enddo
enddo
write(46,’(3f10.3)’) transtest (1), transtest (2),

& transtest (3)
close (46)
enddo

B.2. Calculating the Coupling Strength

The following code displays the program to calculate the coupling strenght within the

TD-DFTB scheme. For a detailed description see Section 2.6.

c max number of atoms per monomer , maximal types

integer maxat , maxtype
parameter (maxat =200)

c to do: automatically same in subroutine
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parameter (MAXTYPE =4)
c names of read files

character *65 transqm1 , transqm2 , geom1 , geom2
c temp strings

character *20 st1 , st2 , st3 , st4 , st5
c number of atoms in monomers

integer natoms (2), sumatoms
c elements in monomers

character type(2,4)
integer element (2* MAXAT)

c position of atom

real*8 pos(2,3,MAXAT), rat(3,2* MAXAT)
c transition charge

real*8 charge(2,MAXAT)
c loop vars

integer i,m,j, k
c strength of coupling , distance of pair ,

c coulombian part (point -point), full Coulomg

real*8 coupling , r, coulomb , coulombfull
c Uhubb of atom , inputs , of types

real*8 uhubb (8), uhubbH , ubhubbC , uhubbN ,UhubbO
c Achtung: Bisher alles Us, noch zu klaeren

parameter (uhubbH =0.4195d0, uhubbC =0.3647d0 , uhubbN =0.4309d0,
& UhubbO =0.4954 d0)

c Uhubb ohne XC

real*8 uhubbCoul (8), uhubbHCoul , ubhubbCCoul , uhubbNCoul ,
& UhubbOCoul

parameter (uhubbHCoul =0.57962094d0 , uhubbCCoul =0.51864556d0,
& uhubbNCoul =0.63092682d0, UhubbOCoul =0.74161363 d0)

c gammamatrix

real*8 gamma (2*MAXAT ,2* MAXAT)
c gammatrix for Coulomb case

real*8 gammaCoul (2*MAXAT ,2* MAXAT)
C conversion hartree -> eV

real*8 conv
parameter (conv = 27.21139908 d0)
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write(*,*) ’Daten␣werden␣gelesen ’
read *, transqm1 , transqm2 , geom1 , geom2
open(1,file=transqm1 , status=’old’)
open(2,file=transqm2 , status=’old’)
open(3,file=geom1 , status=’old’)
open(4,file=geom2 , status=’old’)
sumatoms =0
k=0
do m=1,2

read(m+2,*) natoms(m), st1
if(natoms(m).gt.MAXAT) then

write(*,*)’Monomer␣zu␣gross ,␣MAXAT␣anpassen ’
endif
read(m+2,*) type(m,1), type(m,2), type(m,3), type(m,4)

c Uhubb: has to be built like in gettab.r (later)

do i=1,4
if(type(m,i).EQ.’H’) then

uhubb(i+4*(m-1))= uhubbH
uhubbCoul(i+4*(m -1))= uhubbHCoul

else if(type(m,i).EQ.’C’) then
uhubb(i+4*(m-1))= uhubbC
uhubbCoul(i+4*(m -1))= uhubbCCoul

else if(type(m,i).EQ.’N’) then
uhubb(i+4*(m-1))= uhubbN
uhubbCoul(i+4*(m -1))= uhubbNCoul

else if(type(m,i).EQ.’O’) then
uhubb(i+4*(m-1))= uhubbO
uhubbCoul(i+4*(m -1))= uhubbOCoul

else
write(*,*) ’Element␣not␣in␣list’
endif

enddo

read(m,*)
read(m,*)
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do i=1,natoms(m)
k=k+1
read(m+2,*) st1 , element(k)
element(k)= element(k)+(m -1)*4
read(m,*) st1 , pos(m,1,i), pos(m,2,i), pos(m,3,i),

& charge(m,i)
rat(1,k)=pos(m,1,i)
rat(2,k)=pos(m,2,i)
rat(3,k)=pos(m,3,i)

enddo
sumatoms=sumatoms+natoms(m)

enddo

c write (*,*) element (126), pos(2,1,2), pos(2,2,2), pos(2,3,2),

c & charge (2,2)

c write (*,*) element (126), rat(1,126), rat(2,126), rat(3,126),

c & charge (2,2)

do i=1,124
c write (*,*) pos(2,1,i), rat(1,i+124)

enddo

C build up gamma matrix

call gammamatrixc(sumatoms ,rat ,element ,uhubb ,gamma ,tr)
C build up gamma matrix for Coulomb case

call gammamatrixc(sumatoms ,rat ,element ,uhubbCoul ,gammaCoul ,tr)

do k=1,sumatoms
do j=k+1,sumatoms

gamma(k,j) = gamma(j,k)
gammaCoul(k,j) = gammaCoul(j,k)
tr(k,j)=tr(j,k)

enddo
enddo

c loop over monomer1

coupling =0.0d0
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coulomb =0.0d0
coulombfull =0.0d0
do i=1,natoms (1)

c loop over monomer2

do j=1,natoms (2)
r=dsqrt((pos(1,1,i)-pos(2,1,j))**2+( pos(1,2,i)-pos(2,2,j))**2

& +(pos(1,3,i)-pos(2,3,j))**2)
coulomb=coulomb+charge(1,i)* charge(2,j)/r
coupling=coupling+charge(1,i)* charge(2,j)*

& gamma(i,natoms (1)+j)
coulombfull=coulombfull+charge(1,i)* charge(2,j)*

& gammaCoul(i,natoms (1)+j)
enddo

enddo

write(*,*) coupling , ’␣=␣’, coupling*conv , ’eV’
write(*,*) coulomb , ’␣=␣’, coulomb*conv , ’eV␣(pp-Coulomb)’
write(*,*) coulombfull , ’␣=␣’, coulombfull*conv , ’eV

␣␣␣␣␣&␣␣␣␣(Full -Coulomb)’
end

c=========================================

c Build lower triangular matrix containing Ewald potentials + short

c range terms

c VERSION for CLUSTER !!!!

c

c INPUT Parameter:

c INTEGER nat number of atoms

c REAL*8 rat(3,*) position of atoms

c REAL*8 u(*) hubbard parameters

c

c OUTPUT:

c REAL*8 gammamat (*,*) matrix containing the values of the ew pot

c in the upper triangular part

c !!! NOTE THAT phi(ri - rj) = phi(rj - ri) !!!
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c !!! NOTE THAT shortrange(ri - rj) = shortrange(rj - ri) !!!

c

c=========================================

SUBROUTINE gammamatrixc(nat ,rat ,atomtype ,u,gammamat ,testr)
IMPLICIT NONE
INTEGER nat
integer maxat
parameter (maxat =200)
REAL*8 rat(3,*),u(8), gammamat (2*MAXAT ,2* MAXAT)
REAL*8 testr (2*MAXAT ,2* MAXAT)
INTEGER i,j,atomtype (*)
REAL*8 r(3)
REAL*8 gval ,norm

do i=1,nat
do j=1,i
r(1)= rat(1,i)-rat(1,j)
r(2)= rat(2,i)-rat(2,j)
r(3)= rat(3,i)-rat(3,j)

norm = sqrt(r(1)**2+r(2)**2+r(3)**2)

c get value for Gamma

CALL GAM12(norm ,u(atomtype(i)),u(atomtype(j)),gval)
gammamat(i,j)=gval
END DO
END DO

END

c=========================================

c

c gamma resulting from exact Coulomb interaction of normalized

c exp(-a*r) charge distribution

c Attention: subroutine gamsub needed
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c

c input: r: distance

c uhub1: Hubbard parameter orbital 1

c uhub2: Hubbard parameter orbital 2

c output: gval: gamma12 function value

c

c=========================================

subroutine gam12(r,uhub1 ,uhub2 ,gval)
IMPLICIT NONE
REAL*8 zero
parameter(zero =1.0d-4)
REAL*8 gval ,a1,a2,src ,avg ,uhub1 ,uhub2 ,rrc ,rrc3
REAL*8 val12 ,val21 ,drv12 ,drv21 ,r,fac ,fac2 ,efac

c neu fuer H-bonds

real*8 fhbond ,uhubh
real*8 kl1

c open(111,file=’switch ’)

c read (111 ,*) kl1

c close (111)

kl1 = 4.0
uhubh= 0.4195007 d0
fhbond = 1.0

c if((uhub1.eq.uhubh).and.(uhub2.ne.uhubh)) then

c write (*,*) ’uhubh , gamma on’,uhubh ,uhub1 ,uhub2

if ((uhub1.eq.uhubh).or.(uhub2.eq.uhubh )) then
fhbond= exp(-((( uhub1+uhub2 )/2)** kl1)*r**2)

endif
c if (uhub2.eq.uhubh) then

c if((uhub2.eq.uhubh).and.(uhub1.ne.uhubh)) then

c fhbond= exp(-((( uhub1+uhub2 )/2)** kl1)*r**2)

c endif

c end neu hbond

c gamma besteht aus einem 1/r Term , und etwas ,

c was fuer r=0 gegen Hubbard geht:

c multipliziere einfach den zweiten Term mit fhbond!
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gval= 0.0
a1= 3.2* uhub1
a2= 3.2* uhub2
IF (a1+a2 .lt. zero) THEN

RETURN
ENDIF
src= 1.0/(a1+a2)
fac= a1*a2*src
avg= 1.6*( fac+fac*fac*src)
IF (r .lt. zero) THEN

gval= 0.3125* avg
ELSE

rrc= 1.0/r
rrc3= rrc*rrc*rrc
IF (abs(a1-a2) .lt. 1.0d-5) THEN

fac= avg*r
fac2= fac*fac
efac= exp(-fac )/48.0
gval= (1.0- fhbond *(48.0+33* fac+fac2 *(9.0+ fac))* efac)*rrc

ELSE
call gamsub(a1,a2,r,rrc ,val12 ,drv12)
call gamsub(a2,a1,r,rrc ,val21 ,drv21)
gval= rrc -fhbond*val12 -fhbond*val21

ENDIF
ENDIF
RETURN
END

c=========================================

c auxiliary routine needed by gam12 and gam121

c

c input a: alpha1

c b: alpha2

c r: distance

c rrc: 1/ distance

c output: gval: function value
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c gdrv: function derivative

c

c=========================================

subroutine gamsub(a,b,r,rrc ,gval ,gdrv)
IMPLICIT NONE
REAL*8 a,a2 ,b,b2,b4,b6,drc ,drc2 ,r,efac ,rrc ,fac ,gval ,gdrv
a2= a*a
b2= b*b
b4= b2*b2
b6= b4*b2
drc= 1.0/(a2 -b2)
drc2=drc*drc
efac= exp(-a*r)
fac= (b6 -3*a2*b4)*drc2*drc*rrc
gval= efac *(0.5*a*b4*drc2 -fac)
gdrv= -a*gval+efac*fac*rrc
RETURN
END



Appendix C.

TDDFTB+ Inputs

C.1. Electronic Transitions

The following input calculates the electronic transitions in the PBI monomer:

Geometry = GenFormat {<<<geom.out.gen}
Driver = {}
Hamiltonian = DFTB {

SCC = Yes
SCCTolerance = 1.0E-008
MaxSCCIterations = 1000
Mixer = Anderson {

MixingParameter = 5.00E-002
Generations = 8 }

MaxAngularMomentum = {
O = "p"
N = "p"
C = "p"
H = "s" }

Charge = 0.00E+000
SpinPolarisation = {}
Eigensolver = Standard {}
Filling = Fermi {

Temperature [Kelvin] = 0.000 }
SlaterKosterFiles = Type2FileNames {

Prefix ="/usr/local/Slater -Koster -Lib/mio -1-1/"

78
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Separator = "-"
Suffix = ".skf" }

Dispersion = {}
ReadInitialCharges = Yes
LinearResponse = {

NrOfExcitations = 10
StateOfInterest = 0
Symmetry = singlet
HubbardDerivatives{

# G_up ,up G_up ,down
N = 0.57770 0.62370
O = 0.68464 0.73464
H = 0.34710 0.49190
C = 0.341975 0.387425
}

WriteTransitions = Yes } }
Options = {

WriteAutotestTag = No
WriteDetailedXML = No
WriteEigenvectors = No }

ParserOptions = {
ParserVersion = 4}

C.2. Annealing MD

This is an example for the annealing procedure used to obtain geometries of the PBI-1

dimers and tetramers.

Geometry = GenFormat {
<<<geom_start.gen}

Driver = VelocityVerlet{
MovedAtoms = 1:-1
KeepStationary = Yes
Timestep[fs] = 0.25 # 0.25
OutputPrefix = "geom_end"
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MDRestartFrequency = 5
ConvergentForcesOnly = Yes
Thermostat = Berendsen{

Temperature[Kelvin ]= TemperatureProfile {
constant 4000 400 # 4000 steps at T=400K
exponential 4000 100 # Exp. decreasing in 4000 steps to T=100K
constant 4000 100
}

Timescale[fs]=50}
}

Hamiltonian = DFTB {
SCC = Yes
SCCTolerance =1.0E-003 # 1.0E-008 # Extremely small!
MaxSCCIterations = 1000
Mixer = Anderson {

MixingParameter = 5.000000000000000E-002
Generations = 8

}
MaxAngularMomentum = {

O = "p"
N = "p"
C = "p"
H = "s"

}
Charge = 0.000000000000000E+000
SpinPolarisation = {}
Eigensolver = Standard {}
Filling = Fermi {

Temperature [Kelvin] = 300.0
}

SlaterKosterFiles = Type2FileNames {
Prefix ="/usr/local/Slater -Koster -Lib/mio -1-1/"
Separator = "-"
Suffix = ".skf"

}



TDDFTB+ Inputs 81

Dispersion = LennardJones {
Parameters = UFFParameters {}
}

ReadInitialCharges = No
}

Options = {
WriteAutotestTag = No

}

ParserOptions = {
ParserVersion = 4

}

C.3. NG-Branch Input

Calculation of electronic transition of a separated monomer and their atomic centred

Mulliken transition charges are base on the NG-branch of TDDFTB+. An example input is

given here. It is structured as followed:

1: mode max-force scc-on scctol read-charges dispersion external-field-charges

2: ’structure.gen’ # geometry in .gen format

3: charge

4: constraints # redundant for single point calculation

5: nb-excited-states ex-state-of-interest trans output

6: ’output.gen’

7: L1 L2 .. LN # basis set size for atoms 1...N, 1 for H, 2 for C, O, N, 3 for S, P, Zn

8:..M: Slater-Koster-Files

M+1: stepsize atomic-temperature electronic-temperatur scalfactor number-of-steps

10 0.0001 T 0.000001 F F ’NO’ T
’mono1.gen’
0
0
10 3 ’S’ T
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’out’
2 2 1 2

’/usr/local/Slater -Koster -Lib/mio -1-1/C-C.skf’
’/usr/local/Slater -Koster -Lib/mio -1-1/C-N.skf’
’/usr/local/Slater -Koster -Lib/mio -1-1/C-H.skf’
’/usr/local/Slater -Koster -Lib/mio -1-1/C-O.skf’
’/usr/local/Slater -Koster -Lib/mio -1-1/N-C.skf’
’/usr/local/Slater -Koster -Lib/mio -1-1/N-N.skf’
’/usr/local/Slater -Koster -Lib/mio -1-1/N-H.skf’
’/usr/local/Slater -Koster -Lib/mio -1-1/N-O.skf’
’/usr/local/Slater -Koster -Lib/mio -1-1/H-C.skf’
’/usr/local/Slater -Koster -Lib/mio -1-1/H-N.skf’
’/usr/local/Slater -Koster -Lib/mio -1-1/H-H.skf’
’/usr/local/Slater -Koster -Lib/mio -1-1/H-O.skf’
’/usr/local/Slater -Koster -Lib/mio -1-1/O-C.skf’
’/usr/local/Slater -Koster -Lib/mio -1-1/O-N.skf’
’/usr/local/Slater -Koster -Lib/mio -1-1/O-H.skf’
’/usr/local/Slater -Koster -Lib/mio -1-1/O-O.skf’
0 0.0 0.0 0.0 2000



Bibliography

[1] Yohei Ishida, Tetsuya Shimada, and Shinsuke Takagi. Artificial Light-Harvesting

Model in a Self-Assembly Composed of Cationic Dyes and Inorganic Nanosheet. The

Journal of Physical Chemistry C, 117(18):9154–9163, 2013.

[2] Krishna K Niyogi and Thuy B Truong. Evolution of flexible non-photochemical

quenching mechanisms that regulate light harvesting in oxygenic photosynthesis.

Current Opinion in Plant Biology, 16(3):307 – 314, 2013.

[3] Thomas Renger, Volkhard May, and Oliver Kühn. Ultrafast excitation energy transfer

dynamics in photosynthetic pigment‚Äìprotein complexes. Physics Reports, 343(3):137

– 254, 2001.

[4] GregoryS. Orf and RobertE. Blankenship. Chlorosome antenna complexes from green

photosynthetic bacteria. Photosynthesis Research, pages 1–17, 2013.

[5] Eunwoo Lee, Chanhoi Kim, and Jyongsik Jang. High-Performance Förster Resonance

Energy Transfer (FRET)-Based Dye-Sensitized Solar Cells: Rational Design of Quan-

tum Dots for Wide Solar-Spectrum Utilization. Chemistry – A European Journal,

19(31):10280–10286, 2013.

[6] Urartu Ozgur Safak Seker, Evren Mutlugun, Pedro Ludwig Hernandez-Martinez,

Vijay K. Sharma, Vladimir Lesnyak, Nikolai Gaponik, Alexander Eychmuller, and

Hilmi Volkan Demir. Bio-nanohybrids of quantum dots and photoproteins facilitating

strong nonradiative energy transfer. Nanoscale, 5:7034–7040, 2013.

[7] R. Smith, B. Liu, J. Bai, and T. Wang. Hybrid III-Nitride/Organic Semiconductor

Nanostructure with High Efficiency Nonradiative Energy Transfer for White Light

Emitters. Nano Letters, 13(7):3042–3047, 2013.

[8] Organic Electronics for a Better Tomorrow: Innovation, Accessibility, Susteinabillity.

A White Paper from the Chemical Science and Society Summit (CS3), September

2012.

xv



xvi BIBLIOGRAPHY

[9] G. Grancini, M. Maiuri, D. Fazzi, A. Petrozza, H.-J. Egelhaaf, D. Brida, Cerullo G.,

and Lanzani G. Hot exciton dissociation in polymer solar cells. Nature Materials,

12:29–33, 2013.

[10] Jelley. Spectral Absorption and Flourescence of Dyes in the Molecular State. Nature,

pages 1009–1010, 1936.

[11] G. Scheibe. VII. Fachgebiet Photochemie und Photographische Chemie. Angewandte

Chemie, 49(31):563, 1936.

[12] G. Scheibe. Über die Veränderlichkeit der Absorptionsspektren in Lösungen und die

Nebenvalenzen als ihre Ursache. Angewandte Chemie, 50(11):212–219, 1937.

[13] James Franck and Edward Teller. Migration and Photochemical Action of Excitation

Energy in Crystals. The Journal of Chemical Physics, 6(12):861–872, 1938.

[14] Frank C. Spano, Stefan C. J. Meskers, Emanuelle Hennebicq, and David Beljonne.

Probing Excitation Delocalization in Supramolecular Chiral Stacks by Means of

Circularly Polarized Light: Experiment and Modeling. Journal of the American

Chemical Society, 129(22):7044–7054, 2007. PMID: 17497856.

[15] Motoichi Ohtsu, T. Kawazoe, Takashi Yatsui, and M. Naruse. Nanophotonics: Applica-

tion of Dressed Photons to Novel Photonic Devices and Systems. Selected Topics in

Quantum Electronics, IEEE Journal of, 14(6):1404–1417, 2008.

[16] Dobrinka Dotcheva, Markus Klapper, and Klaus Müllen. Soluble polyimides containing

perylene units. Macromolecular Chemistry and Physics, 195(6):1905–1911, 1994.

[17] Frank Wurthner. Perylene bisimide dyes as versatile building blocks for functional

supramolecular architectures. Chem. Commun., pages 1564–1579, 2004.

[18] Henning Marciniak, Xue-Qing Li, Frank Würthner, and Stefan Lochbrunner. One-

Dimensional Exciton Diffusion in Perylene Bisimide Aggregates. The Journal of

Physical Chemistry A, 115(5):648–654, 2011.

[19] Th. Förster. Zwischenmolekulare Energiewanderung und Fluoreszenz. Annalen der

Physik, 437(1-2):55–75, 1948.

[20] IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Compiled

by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford

(1997). XML on-line corrected version: http://goldbook.iupac.org (2006-) created

by M. Nic, J. Jirat, B. Kosata; updates compiled by A. Jenkins. ISBN 0-9678550-9-8.



BIBLIOGRAPHY xvii

doi:10.1351/goldbook.

[21] D. L. Dexter. A Theory of Sensitized Luminescence in Solids. The Journal of Chemical

Physics, 21(5):836–850, 1953.

[22] Mitio Inokuti and Fumio Hirayama. Influence of Energy Transfer by the Exchange

Mechanism on Donor Luminescence. The Journal of Chemical Physics, 43(6):1978–

1989, 1965.

[23] V. May and O. Kühn. Charge and Energy Transfer Dynamics in Molecular Systems. John

Wiley & Sons, 2004.

[24] Hiroyuki Asanuma, Taiga Fujii, Tomohiro Kato, and Hiromu Kashida. Coherent

interactions of dyes assembled on DNA. Journal of Photochemistry and Photobiology

C: Photochemistry Reviews, 13(2):124 – 135, 2012.
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