

Universidad Católica de Santa María

Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas Escuela Profesional de Farmacia y Bioquímica

"VALIDACIÓN DE UNA TÉCNICA PARA LA DETERMINACIÓN DE METANOL Y CONGÉNERES POR CROMATOGRAFÍA DE GASES CON DETECTOR DE IONIZACIÓN DE LLAMA (FID) EN PISCOS –AREQUIPA 2018"

Tesis presentada por el Bachiller:

Chijcheapaza Flores, Henry Richard

Para optar el Título Profesional de:

Químico Farmacéutico

Asesor:

PhD. Cárdenas García, Jaime

AREQUIPA-PERÚ 2018

UNIVERSIDAD CATOLICA DE SANTA MARIA Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas

Expediente N° . 2018000005007

N° Trámite en Fac. **1741-2018** Fecha **29-01-2018**

Escu	ela Profesional de Farmacia y	Bioquímica	Fee	cha	29-01-2018
	FORMATO DE	TITULACI	ON PROFE	ESIONAL	
DE:	CHIJCHEAPAZA FLORES	S, Henry Ric	hard		
TITU	JLO DEL PROYECTO DE T	ESIS:			
	IDACION Y DESARROLLO DE L ERMINACION DE METANOL Y CO				SES (GC) PARA
DIC	ΓAMINADORES: 1) Q. F. Jua	n Ramírez Ore	llana 2)	Dra. Jesús Zamb	rano Salas
ntención nismo, CROMA lespués	a su designación, como Dictaminadores del sugiriendo se cambie el título a: "VALI TOGRAFICA DE GASES (GC) PARA DE de realizadas las correcciones y sugerencias stipulados en el Reglamento de Grados y Títul nte	Plan de Tesis preso DACION, DESAI TERMINACION L correspondientes, los de la Facultad	entado por el recu RROLLO E IMI DE METANOL Y	CONGENERES, A encuentra APTO par	do a la revisión del DE LA TECNICA REQUIPA-2018", y
ASE	SOR: Dr. Jaime Cárdenas Garcia				
debe car CROMA verificade	1 11/	O PARA LA DE E IONIZACIÓN DE 1 del informe con los	TERMINACIÓN I E LLAMA (FID) E resultados, discusio	DE METANOL Y O EN PISCOS-AREQUIA ón y conclusiones corr los de nuestra Facultad	CONGÉNERES POR PA 2018" y luego de espondientes considero
DIC	TAMINADORES BORRADO	OR DE TESI	IS:		
2 2	Q. F. Juan Ramírez Orellana Dra, Jesús Zambrano Salas	Joun Y		cedes Jave Márq	uez fans
en atenci "VALID DE GAS las correct conformi Atentame Firm	a	ar el Borrador de Te EERMINACIÓN DE ELLAMA (FID) E. Inte trabajo de investa facultad. (Devolver ar	esis presentado por E METANOL Y CO N PISCOS-AREQ tigación se encuen ntes de 15 días	el recurrente, debiene ONGÉNERES POR O QUIPA 2018", y habi tra APTO para contin hábiles) Fecha	do cambiar el título a. CROMATOGRAFÍA éndose cumplido con
JUR	ADOS: Presidente Q.F. Vocal Dea. Secretario Q. E.	IAN PANIE SUS ZAMI ERCEDES	ez Orecias Brano Sp Gruz Raci	JA BLAS BU₹≥	
	TENTACIÓN DE TRABAJO				
	Fecha: ///07	7/18 Hor	ra: 14.00	Local : C	- 402 (SUM)
			MANQ		

Dedicatoria

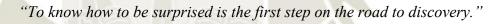
A Dios por todas las bendiciones que me ha dado, por darme unos padres maravillosos y por permitirme conocer a las personas indicadas en cada etapa de mi vida.

A mis padres Simona Flores y Ricardo Chijcheapaza; a quienes les debo todo cuanto soy, quienes se sacrificaron para darme una educación y siempre estuvieron a mi lado para apoyarme y guiarme.

A mi tía y tío, Marlene Céspedes y Julio Hernández quienes fueron una guía, un apoyo y a quienes quiero como a unos segundos padres.

Agradecimientos

Agradezco al Laboratorio de ensayo y control de calidad por el apoyo y por permitirme el uso de sus instalaciones para el desarrollo de esta tesis.


Al Ricardo, Tiffany y Rodrigo por su apoyo durante la realización de este trabajo y por su amistad..

Al Doctor Jaime Cárdenas García, por su disposición y confianza al permitirme la realización de este trabajo.

A quienes estuvieron apoyándome al momento de realizar este trabajo

A todos ellos infinitas gracias!

"Savoir s'étonner à propos est le premier pas fait sur la route de la découverte."

"Saber sorprenderse es el primer paso en la ruta del descubrimiento. "

Louis Pasteur

ÍNDICE

IntroducciónXIII
Resumen XIV
AbstractXV
HipótesisXVI
ObjetivosXVII
Objetivo GeneralXVII
Objetivos EspecíficosXVII
CATOLICA
CAPITULO I MARCO TEÓRICO
1.1. Bebidas alcohólicas destiladas01
1.1.1. Pisco01
1.1.1.1 Historia
1.1.1.2. Composición química aportante de la uva03
1.1.1.3. Proceso de producción en el Perú
1.1.1.4. Fermentación Alcohólica
1.1.1.5. Fermentación Maloláctica
1.2. Norma Técnica Peruana 211.001 2006
1.2.1. Requisitos organolépticos
1.2.2. Requisitos fisicoquímicos
1.2.2.1. Metanol
1.2.2.2. Etanol
1.2.2.3. Acetato de etilo
1.2.2.4. Alcoholes superiores presentes en Piscos
1.2.2.4.1. Iso-propanol(2-Propanol)
1.2.2.4.2. 1-Propanol
1.2.2.4.3. 1-Butanol
1.2.2.4.4. Iso-butanol (2-metilpropan-1-ol)
1.2.2.4.5. Alcohol Iso-amílico (3-metilbutan-1-ol)12
1.3. Destilación12
1.3.1. Destilación discontinua
1 2 1 1 El clambique

1.4. Cromatografía1	5
1.4.1. Cromatografía de gases	5
1.4.1.1. Descripción del equipo	6
1.4.1.1.1. Sistema de inyección de muestra	7
1.4.1.1.2. Tipo de inyección de muestra	7
1.4.1.1.3. Inyección en split	8
1.4.1.1.4. Inyección splitless	8
1.4.1.1.5. Tipos de detectores	8
1.4.1.1.6. Detector de ionización de Llama (FID)1	8
1.4.1.2. Columnas para cromatografía1	9
1.4.1.2.1. Tipos de columna en cromatografía de gases	9
1.4.1.2.1.1. Columnas empaquetadas	9
1.4.1.2.1.2. Columnas capilares	0
1.4.1.2.2. Fase estacionaria	
1.5. Validación	2
1.5.1. Linealidad	3
1.5.2. Sensibilidad	3
1.5.3. Precisión	3
1.5.3.1. Repetibilidad	3
1.5.3.2. Precisión intermedia	4
1.5.4. Exactitud	4
CAPITULO II MATERIALES Y MÉTODO	
2.1 Muestras de estudio	5
2.2 Materiales	
2.3 Reactivos	5
2.4 Equipos	5
2.5 Método	6
2.5.1 Procedimiento	6
2.5.1.1 Preparación de la muestra2	6
2.5.1.2 Requisitos cromatográficos	6
2.5.1.3 Preparación del estándar2	7
2.5.1.4 Solución Control	7
2.5.2 Validación2	8

2.5.2.1 Linealidad	28
2.5.2.2 Sensibilidad	29
2.5.2.3 Precisión	30
2.5.2.3.1 Repetibilidad	30
2.5.2.3.2 Precisión intermedia	30
2.5.2.4 Exactitud	31
CAPITULO III RESULTADOS Y DISCUSIÓN	
3.1 Resultados de las requisitos cromatográficos	32
3.2 Resultados de linealidad	33
3.2.1 Acetato de etilo	33
3.2.2 Metanol	35
3.2.3 Alcoholes superiores	36
3.2.3.1 Iso-propanol(2-Propanol)	
3.2.3.2 1-Propanol	
3.2.3.3 1-Butanol	39
3.2.3.4 Iso-butanol (2-metilpropan-1-ol)	
3.2.3.5 Alcohol Iso-amílico (3-metilbutan-1-ol)	
3.2.4 Patrón control	42
3.3 Resultados de sensibilidad	44
3.4 Resultados precisión	44
3.4.1 Repetibilidad	44
3.4.2 Precisión intermedia	45
3.5 Resultados de exactitud	
3.6 Resultados de muestras evaluadas	47
3.7 Ventajas de la técnica desarrollada	50
Conclusiones	51
Sugerencias	52
Bibliografías	53
Anexos	56
Anexo 1	57
Anexo 2	73
Anexo 3	101

Anexo 4	103
Anexo 5	104
Anexo 6	105
Anexo 7	109
Anexo 8	110
Anexo 9	111
Anexo 10	112
Anexo 11	113
Anexo 12	114
Anexo 13	117
Anexo 14	118

ÍNDICE DE FIGURAS

Figura	1.1: Fermentación alcohólica	03
Figura	1.2: Fermentación malo-láctica	04
MOLÉ	CCULAS:	
•	Figura 1.3: Metanol	06
•	Figura 1.4: Etanol	09
•	Figura 1.5: Acetato de etilo	09
•	Figura 1.6: 1-Propanol	10
•	Figura 1.7: Iso-Propanol(2-Propanol)	11
•	Figura 1.8: 1-Butanol	11
•	Figura 1.9: Iso-Butanol (2-metilpropan-1-ol)	11
•	Figura 1.10: Alcohol Iso-Amílico (3-metilbutan-1-ol)	12
Figura	1.11: Alambique para fermentación y destilación	12
Figura	1.12: Esquema de funcionamiento del Cromatógrafo de gases	14
Figura	1.13: Partes del sistema de inyección de muestra	16
Figura	1.14: Detector de ionización de llama (FID)	17
Figura	1.15: Imagen de dos columnas cromatográficas empaquetadas	19
Figura	1.16: Imagen de columna capilar	20
Figura	2.1: Proceso de destilación realizado a las muestras para análisis	26
Figura	3.1: Cromatograma del mix de alcoholes	32

GRÁFICAS DE CALIBRACIÓN

Figura 3.2: Acetato de Etilo	34
• Figura 3.3: Metanol	35
• Figura 3.4: Iso-Propanol (2-Propanol)	36
• Figura 3.5: 1-Propanol	38
• Figura 3.6: 1-Butanol	39
• Figura 3.7: Iso-butanol (2-metilpropan-1-ol)	40
Figura 3.8: Alcohol Iso-amílico (3-metilbutan-1-ol)	41
Figura 3.9: 2-Butanol (Patrón control)	43
Figura 3.10: Comparación entre distintas variedades de "Piscos"	49

ÍNDICE DE TABLAS

Tabla 1.1: Requisitos Organolépticos en "Pisco"	07
Tabla 1.2: Requisitos Fisicoquímicos en "Piscos"	08
Tabla 2.1: Puntos de ebullición de estándares usados	27
Tabla 3.1: Tiempos de retención de estándares usados en la validación	33
Tabla 3.2: Concentraciones y áreas de Acetato de etilo	34
Tabla 3.3: ANOVA de regresión lineal para Acetato de etilo	34
Tabla 3.4: Concentraciones y áreas de Metanol	35
Tabla 3.5: ANOVA de regresión lineal para Metanol	36
Tabla 3.6: Concentraciones y áreas de Iso-Propanol (2-Propanol)	37
Tabla 3.7: ANOVA de regresión lineal para Iso-Propanol(2-Propanol)	37
Tabla 3.8: Concentraciones y áreas de 1-Propanol	38
Tabla 3.9: ANOVA de regresión lineal para 1-Propanol	38
Tabla 3.10: Concentraciones corregidas y áreas de 1-Butanol	39
Tabla 3.11: ANOVA de regresión lineal para 1-Butanol	39
Tabla 3.12: Concentraciones corregidas y áreas de Iso-Butanol	40
Tabla 3.13: ANOVA de regresión lineal para Iso-Butanol	41
Tabla 3.14: Concentraciones y áreas de Alcohol Iso-Amílico	42
Tabla 3.15: ANOVA de regresión lineal para Alcohol Iso-Amílico	42
Tabla 3.16: Concentraciones corregidas y áreas de 2-Butanol	43
Tabla 3.17: ANOVA de regresión lineal para 2-Butanol	43
Tabla 3.18: Limites de cuantificación y detección	44
Tabla 3.19: Resultados de repetibilidad	45
Tabla 3.20: Resultados de precisión intermedia	46
Tabla 3.21: Resultados de exactitud	47

Tabla 3.22: Resultados "Pisco acholado"	48
Tabla 3.23: Resultados "Pisco mosto verde"	48
Tabla 3.24: Resultados "Pisco puro no aromático"	48
Tabla 3.25: Resultados "Pisco puro aromático"	49

INTRODUCCIÓN

La industria de las bebidas alcohólicas es una de las de más demanda y consumo a nivel mundial. Cada año aumentan los consumidores de estas bebidas, desde las no destiladas como la cerveza, hasta las destiladas como el ron.

En tal sentido, el sur Peruano es reconocido por ser una zona netamente productora de "Pisco", la cual es considerada como una bebida bandera. Dada la demanda de este producto tanto a nivel nacional como internacional, su producción ha ido aumentando considerablemente los últimos años. Al año 2017 se presentó un crecimiento del 4% con respecto al año 2016, según datos del Ministerio de Producción.

Al haber una gran demanda se ha visto necesario aumentar el control en cuanto a los estándares de calidad de este producto. Se ha visto productos con una baja calidad o adulterados en su composición. Esto por consecuencia genera complicaciones financieras, legales y de la salud. Tales complicaciones de salud son producidas al consumirse bebidas con bajos estándares de calidad. Dichos estándares de calidad presentes en la Norma Tecnica Peruana 211.001, estipulan los valores considerados como aceptables.

Actualmente el Perú ha comenzado a implementar normas que aseguren la calidad de sus productos. La Norma Técnica Peruana 211.001.2006 presenta estándares de calidad (tanto a nivel organoléptico como fisicoquímico) los cuales son considerados como óptimos para el consumo humano así como estándares para reconocer esta bebida con la denominación de origen.

El presente estudio busca colaborar la normativa ya mencionada, así como proponer una técnica de mayor practicidad, con resultados exactos y fiables. Para su desarrollo se utilizaron las instalaciones del área instrumental del Laboratorio de Ensayo y Control de Calidad de la Universidad Católica de Santa María, el equipo usado fue un Cromatografo Shimadzu GCMS-QP2010 y una columna RESTEK Stabilwax-DA.

RESUMEN

En el proceso de producción de bebidas alcohólicas son producidos distintos congéneres del metanol. Si bien es cierto el principal objetivo es la fermentación alcohólica y evitar valores excesivos de otros congéneres, este proceso se puede ver afectado al momento realizar la destilación del mosto. Normalmente en el proceso de destilado del "Pisco" se puede distinguir 3 etapas: La cabeza, el cuerpo y la cola. La cabeza, es la parte inicial del destilado, el cuerpo es la parte de mayor importancia por ser de donde se obtienen el "Pisco" y la cola, que es el desecho con otro tipo de alcoholes que en su mayoría son los considerados como derivados de aceite de fusel o alcoholes superiores.

En tal sentido, el Perú es un gran productor de "Pisco". Desde el año 2012 la producción de "Pisco" ha crecido ininterrumpidamente. Al año 2017 se estimaba una producción de 10.9 millones de litros, según el Ministerio de Producción.

El presente trabajo constituye un aporte en el control y vigilancia de sustancias tóxicas que son indicadores de una deficiente calidad. Se validó una técnica de cromatografía de gases con detector de ionización de llama (FID) para identificar distintos congéneres del Metanol (Acetato de Etilo, Metanol, Iso-Propanol, 1-Propanol, Iso-Butanol, Alcohol Iso-amílico y 1-Butanol) en "Piscos". El desarrollo de esta técnica busca mejorar el control sobre estas bebidas, dando resultados más exactos y precisos que los métodos existentes a la actualidad.

Primeramente se determinó los requisitos cromatográficos adecuados para una óptima resolución. Posteriormente se procedió a determinar los parámetros mínimos para la validación de una técnica, los cuales fueron: Linealidad, Sensibilidad Precisión y Exactitud. Finalmente se procedió a evaluar "Piscos" de distintas variedades: Acholado, Mosto verde, Puro no aromático y Puro aromático. Como resultado los congéneres más comunes de encontrar son el Acetato de etilo, Metanol, Propan-1-ol, Iso-propanol (2-Propanol), Iso-butanol (2-metilpropan-1-ol) y Alcohol Iso-amílico (3-metilbutan-1-ol).

Palabras claves: Cromatografía de gases, validación, destilación, alcoholes superiores y "Piscos".

ABSTRACT

In the process of alcoholic beverages production differents congeners of methanol are produced. Although the principal aim is the alcoholic fermentation and to avoid excessive values of other congeners, this process can meet at the moment to realize the distillation of the wine. Normally in distillation process is possible to distinguish 3 stages: The head, body and tail. The head, it is the initial part of the distilled one, the body is the part of major importance for being wherefrom there are obtained the "Pisco" and the tail, which is the waste with another type of alcohols like derivatives of fusel oil or higher alcohols.

To this respect, Peru is a great producer of "Pisco". From the year 2012 the production of "Piscos" has grown uninterrupted. At year 2017 there was estimated a production of 10.9 million liters, according to the Department of Production.

The present work constitutes a contribution in the control and vigilance of toxic substances that are indicators of a deficient quality. A technical chromatography of gases was validated by detector of ionization of flame (FID) to identify different congeneres of the Methanol (Acetate of Ethyl, Methanol, Iso-propanol, 1-Propanol, Iso-butanol, Alcohol Iso-amílico and 1-Butanol) in "Piscos". The development of this technology seeks to improve the control on these drinks, giving more exact and precise results that the existing methods.

Firstly the chromatographic requirements were adapted for an ideal resolution. Later one proceeded to determine the minimal parameters for the validation, which were: Linearity, Sensibility Precision and Accuracy. Finally were evaluated "Piscos" of different varieties: "Acholado", "Green Must", "Pure not aromatic" and "Pure aromatic". As result the most common congeners of finding are the Acetate of ethyl, Methanol, Propan-1-ol, Isopropanol (2-Propanol), Iso-butanol (2-metilpropan-1-ol) and Alcohol Iso-amílico (3-metilbutan-1-ol).

Key words: Gas chromatography, validation, distillation, fusel alcohols and "Piscos".

HIPÓTESIS

La técnica de cromatografía de gases es usada para la detección y cuantificación de compuestos orgánicos volátiles, termoestables y de bajo peso molecular.

Es probable que al validar una técnica cromatográfica de gases, nos permita obtener resultados confiables en "Piscos".

OBJETIVOS

OBJETIVO GENERAL

 Validar una técnica cromatográfica de gases para determinar metanol y congéneres en "Piscos".

OBJETIVOS ESPECÍFICOS

- **1.** Determinar los parámetros de linealidad, sensibilidad, precisión y exactitud para la validación de la técnica.
- 2. Evaluar congéneres presentes en "Pisco" de distintas variedades.
- **3.** Definir las ventajas de la cromatografía de gases para determinar congéneres como: Acetato de etilo, Metanol, Iso-propanol, 1-Propanol, Iso-butanol, 1-Butanol y Alcohol Iso-Amílico en ensayos de control y vigilancia.

CAPITULO I

MARCO TEÓRICO

1.1. BEBIDAS ALCOHÓLICAS DESTILADAS

Dentro del grupo de bebidas alcohólicas destiladas tenemos a los aguardientes y licores, por lo general estas bebidas superan los 20° de Alcohol. Las bebidas que comprenden este grupo son: ¹

- Whisky
- Vodka
- Ron
- Brandy o Cognac
- Tequila
- Aguardiente aromáticas
- Licores

1.1.1. **PISCO**

El "Pisco" es un aguardiente conocido internacionalmente, se obtiene por un proceso de destilación de uvas fermentadas y se hace especialmente con uvas conocidas como pisqueras.^{2, 3} Su antigüedad data desde el siglo XVI. ⁴

La vid, cuya antigüedad data de la época de cristo, fue traída a América por los españoles procedentes de las Islas Canarias a inicios de la época colonial. Según la historia, el nombre se origina de la palabra "pisqu" el cual pertenece al nombre de un ave propio de la región de Ica. ⁴

La zona costera del Perú es la que se encarga de cultivar y producir esta bebida. Dentro de esta zona tenemos a los valles de Lima, Ica, Arequipa, Moquegua y Tacna.⁵ Así como en otras bebidas, existen variedades de "Piscos" según el tipo de Uva usado para su producción. Estas variedades se encuentran agrupadas en 3 grupos:

"Pisco Puro": Se obtiene de una uva pisquera y puede ser aromático y no aromático.
Los "Piscos puros aromáticos" son aquellos que son elaborados a partir de uvas
aromáticas como: Moscatel, Albilla, Torontel o Italia. Los piscos puros no aromáticos
son elaborados con uvas no aromatizadas como Quebranta, Negra criolla y Uvina. 6

- 2. "Pisco Mosto verde": obtenido del mosto que aún no ha terminado su proceso de fermentación. Es decir aun se puede encontrar azúcar en el contenido del mosto. Generalmente estos piscos son aquellos a los cuales les queda 4º de alcohol aproximadamente. El grado de azúcar restante dependerá del productor. 6
- 3. "Pisco acholado": Es el pisco que se obtiene de la mezcla de al menos 2 variedades de uva. Por lo general se combina las uvas aromáticas con las no aromáticas, dándole mayor cuerpo al "Pisco" así como un mejor aroma ⁶

El proceso de producción de esta bebida consiste en una fermentación inicial del vino y posterior destilado.

La fermentación inicial es la etapa principal de todo el proceso; en este se produce el vino y se lleva a cabo dos procesos bioquímicos: La fermentación alcohólica y la fermentación malo-láctica.⁷

La fermentación alcohólica es la que permite la transformación de los azúcares presentes en la uva y los convierte en etanol. Por otro lado, la fermentación malo-láctica implica la degradación del ácido málico en ácido láctico con el fin de disminuir la acidez. Este proceso no es fundamental en la producción de esta bebida y dependerá del productor realizarla. ^{7,8}

Según la Norma Técnica Peruana 211.001, es reconocido como "Pisco" toda bebida que sea producida y tenga el principio tradicional de calidad establecido en las zonas de producción reconocidas. De igual forma, esta norma establece los estándares de calidad tanto organolépticos como fisicoquímicos. Entre los contaminantes más comunes tenemos: metanol y sus congéneres.⁶

1.1.1.1. **HISTORIA**

Tras la llegada de los españoles a Lima, fue necesario surtir a la ciudad con vino y fue así como se comenzó a dar las primeras plantaciones de vid en el Perú.⁹

Posteriormente la producción de vid hizo propicia la producción de un aguardiente. Según historiadores, se presume que dicha producción habría comenzado a inicios del siglo XVI. ¹⁰

Comenzada ya la producción de esta bebida, se procedió a poblar otras zonas del Perú, con el fin de plantar vid y a su vez producir este aguardiente. En tal proceso se comenzó la población de la hoy ciudad de Pisco. La producción de "Pisco" en esta ciudad atrajo la

atención de los pobladores de la época colonial debido a que era considerada la principal zona de producción de esta bebida espirituosa.^{11, 12}

1.1.1.2. COMPOSICIÓN QUÍMICA APORTANTE DE LA UVA

La composición de la Uva es la que aporta posteriormente propiedades al producto final. Estas propiedades se ven principalmente en la fase de producción inicial, donde el mosto es fermentado.⁷

Una uva está compuesta por agua principalmente. Sus valores varían entre un 80-90%. Por otro lado, está compuesto por azúcares como: glucosa y fructosa. ¹³ Dichos azúcares, están presentes principalmente en las vacuolas de las células de la pulpa, estas son las que posteriormente se convierten en etanol. ^{7, 13}

Los ácidos orgánicos también están presentes en la Uva y lo están en forma de ácido málico y tartárico. Estos ácidos constituyen más del 90% de los ácidos presentes en la Uva, y son los que confieren la propiedad ácida al vino.⁷

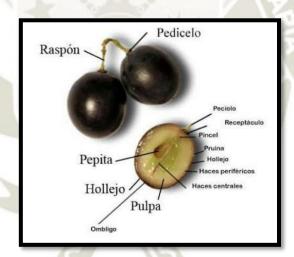


Figura 1.1: Partes de la Uva Fuente: Guía básica de Vinos

1.1.1.3. PROCESO DE PRODUCCIÓN DE PISCO EN PERÚ

En el momento de la producción, es importante considerar que sobre las características de la uva que se use recaerá la calidad de nuestro producto final. ¹⁴ La característica principal a considerar es el grado de glucosa que contenga la uva, el grado de glucosa óptimo es de 12° (aunque puede variar y dependerá mucho del productor), este influenciará directamente en el grado alcohólico. ^{15,16} Posteriormente se debe proceder al molido de las uvas y a extraer todo aquello que no corresponda al jugo de uva netamente.

Finalmente nos quedamos con las hollejas (pieles de las pasas), por la gran cantidad de glucosa que contienen y ya habremos obtenido el mosto (vino joven) con baja graduación de alcohol todavía.¹⁷

Se deja en reposo este producto durante 8 a 15 días y finalmente se lleva a destilación. Cada empresa tiene un protocolo para determinar las temperaturas bajo las cuales destilar, pero por lo general podemos decir que la cabeza se destila a 70°C, el cuerpo a unos 44°C y la cola a 15°C. ¹⁷

El proceso de destilación determina la calidad del "Pisco" que obtengamos. Por tal motivo los contaminantes mencionados en la Norma Técnica Peruana 211.001 se producen generalmente cuando el productor intenta recuperar un mayor cuerpo.⁶

1.1.1.4. FERMENTACIÓN ALCOHÓLICA

La fermentación alcohólica se lleva a cabo por *Saccharomyces cerevisiae*, una levadura la cual se encarga de convertir la glucosa en acido pirúvico y luego en etanol. Este es un organismo unicelular, su reproducción se da de forma asexual por gemación. Ha sido bastante estudiada a través de los años, lográndose determinar su genoma completo. El uso de esta levadura en particular se ha visto destinado a la producción de panes, vino y cerveza.

En el caso de la fermentación del mosto es necesario agregar levaduras, la cual comercialmente viene deshidratada. Para su uso es necesario reconstituirla con agua y en algunos casos activarlas con algún carbohidrato. La cantidad de su uso dependerá del tipo de uva, usualmente se encuentra en el intervalo de 10-210 mg/L y para aislar su crecimiento se usa anhídrido sulfuroso, el cual actúa como antioxidante y antimicrobiano. Por otro lado, el crecimiento de esta levadura se va inhibiendo hasta extinguirse (en algunos casos) según el grado alcohólico del mosto. La tolerancia al etanol va desde los 8° hasta los 14° de alcohol. ¹⁹

La reacción llevada a cabo por la *Saccharomyces cerevisiae* se caracteriza por desprender CO₂, además de ser una reacción exotérmica. La finalidad de este tipo de fermentación es la de proporcionar energía en ausencia de oxígeno. ^{14, 15,16}

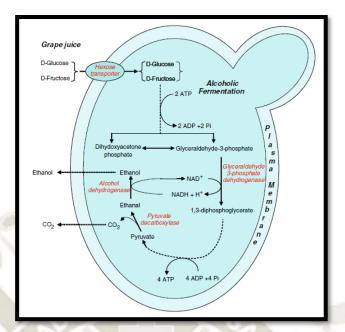


Figura 1.2: Fermentación alcohólica a partir de glucosa. Fuente:. Wine Chemistry and Biochemistry

Para la obtención del etanol a partir de los azúcares presentes en el vino, es necesario primeramente que se realice la glicólisis. El primer paso para llevar a cabo la glicolisis es la fosforilación de la Glucosa y Fructosa por enzimas conocidas como hexoquinasas, esta reacción da como producto Glucosa-6-fosfato y Fructosa-6-fosfato. Luego de esto, las moléculas de Glucosa-6-Fosfato son transformadas en Fructosa-6-fosfato por acción de la enzima Fosfoglucosa-isomerasa. Al estar ya todo transformado en Fructosa-6-fosfato, por acción de una molécula de ATP, esta gana una molécula de fosforo, obteniéndose Fructosa-1,6-difosfato. ²⁰

Posteriormente por acción de una aldosa esta molécula es transformada en Dihidroxiacetona-fosfato y Gliceraldehido-3-fostato, la molécula de interés en este paso es el gliceraldehido-3-fosfato; por tal motivo, la enzima Triosafosfo-isomerasa es la encargada de transformar la Dihidroxiacetona fosfato en Gliceraldehido-3-fosfato. ²⁰

Una vez obtenido la mayor cantidad de Gliceraldehido-3-fosfato, por acción de la enzima gliceraldehido-3-fosfato deshidrogenasa se obtiene una molécula de 1,3-Difosfoglicerato. El 1,3-Difosfoglicerato obtenido es posteriormente desfosforado por acción de la Fosfoglicerato-quinasa convirtiendo la molécula en 3-Fosfoglicerato. El 3-fosfoglicerato es luego transformado en 2- Fosfoglicerato por acción de la Fosforogliceromutasa, la molécula de 2-Fosfoglicerato es luego transformada en Fosfoenol-

piruvato por acción de una enolasa y finalmente se obtiene la molécula de piruvato por acción de la piruvato-quinasa.²⁰

Finalmente, el Piruvato es descarboxilado por acción de la Piruvato-Descarboxilasa, y se obtiene etanol. ²⁰

1.1.1.5. FERMENTACIÓN MALO-LÁCTICA

Este tipo de fermentación es llevada a cabo por bacterias lácticas, caracterizadas por ser anaerobias aerotolerantes. Usualmente estas bacterias se encuentran en la capa externa de los frutos usados entre estos tenemos *Lactobacillus*, *Pediococcus*, *Leuconostoc*, *Weissella* y, sobre todo, de *Oenococcus*. Esta conversión si bien es cierto es conocida como fermentación, es más una reacción enzimática, la cual consiste en la reducción de ácido málico (encontrado usualmente en las cáscaras de la uva) a ácido láctico y se da cuando se necesita reducir el grado de acidez de las bebidas. El ácido láctico tiene un pH menor al del ácido málico, lo cual ayuda a disminuir la acidez de la bebida.^{21, 22}

La reacción consiste en una descarboxilación simple del ácido málico, obteniéndose como producto final ácido láctico.²³

Figura 1.3: Fermentación malo-láctica

1.2. NORMA TÉCNICA PERUANA 211.001 2006

La Norma Técnica Peruana 211.001 2006 (Anexo 1) establece cuales deben ser los requisitos tanto organolépticos como fisicoquímicos. ⁶

1.2.1. REQUISITOS ORGANOLÉPTICOS

Los requisitos organolépticos son las propiedades percibidas por los sentidos, tales propiedades dan evidencia de la calidad de estas bebidas. Estas propiedades son apreciadas por catadores experimentados, usualmente estas evaluaciones son llevadas a cabo en concursos con el fin de calificar la calidad de los "Piscos". La siguiente tabla muestra los requisitos que se consideran según la Norma técnica Peruana 211.001.

Tabla 1.1: Requisitos Organolépticos en "Pisco".

Fuente: N.T.P. 211.001

Requisitos Organolépticos	Pisco						
Descripción	Pisco Puro: De Uvas No Aromáticas	Pisco Puro: De Uvas Aromáticas	Pisco Acholado	Pisco Mosto Verde			
Aspecto	Claro, límpido y color brillantes	Claro, límpido y color brillantes	Claro, límpido y color brillantes	Claro, límpido y color brillantes			
Color	Incoloro	Incoloro	Incoloro	Incoloro			
Olor	Ligeramente alcoholizado, no predomina el aroma a la materia prima de la cual procede, limpio, con estructura y equilibrio exento de cualquier elemento extraño.	Ligeramente alcoholizado, recuerda a la materia prima de la cual procede, frutas maduras o sobre maduradas, intenso, amplio, perfume fino, estructura y equilibrio, exento de cualquier elemento extraño	Ligeramente alcoholizado, intenso, recuerda ligeramente a la materia prima de la cual procede, frutas maduras o sobremaduradas, muy fino, estructura y equilibrio, exento de cualquier elemento extraño.	Ligeramente alcoholizado, no predomina el sabor a la materia prima de la cual procede o puede recordar ligeramente a la materia prima de la cual procede, muy fino y delicado, aterciopelado, con estructura y equilibrio, exento de cualquier elemento.			
Sabor	Ligeramente alcoholizado, ligero sabor, no predomina el sabor a la materia prima de la cual procede, limpio, con estructura y equilibrio, exento de cualquier elemento extraño.	Ligeramente alcoholizado, sabor que recuerda a la materia prima de la cual procede, intenso, con estructura y equilibrio, exento de cualquier elemento extraño.	Ligeramente alcoholizado, ligero sabor que recuerda ligeramente a la materia prima de la cual procede, intenso, muy fino, con estructura y equilibrio, exento de cualquier elemento extraño.	Ligeramente alcoholizado, no predomina el sabor a la materia prima de la cual procede o puede recordar ligeramente a la materia prima de la cual procede, muy fino y delicado, aterciopelado, con estructura y equilibrio, exento de cualquier elemento extraño.			

1.2.2. REQUISITOS FISICOQUÍMICOS

Los requisitos fisicoquímicos son aquellos que le confieren las propiedades sensoriales a un "Pisco". La tabla siguiente especifica las características fisicoquímicas de un "Pisco", así como los valores normales de la presencia de cada uno según la NTP 211.001.⁶

Tabla 1.2: Requisitos Fisicoquímicos.

Fuente: NTP 211.001

Requisitos Físicos y Químicos	Mínimo	Máximo	Tolerancia al valor declarado	Método de ensayo
Grado alcohólico volumétrico a 20/20°C	38,0	48,0	+/- 1,0	NTP 210.003: 2003
Extracto seco a 100°C (g/l)		0,6		NTP 211.041:2003
Componentes Volátiles Y Congéneres (mg/100 ml A.A.)	1			17
Ésteres Formiato de etilo Acetato de etilo Acetato de Iso-Amilo	10,0 - 10,0 -	330,0 - 280,0		NTP 211.035:2003
Furfural		5,0		NTP 210.025:2003 NTP 211.035:2003
Aldehídos como acetaldehído	3,0	60,0		NTP 211.035:2003
Alcoholes superiores como alcoholes superiores totales	60,0	350,0		
Iso-Propanol Propanol Butanol	41	961	1	
Iso-Butanol 3-metil-1-butanol/ 2metil-1- Butanol	3			
Acidez Volátil como Ácido acético		200,0		NTP 210.040:2003 NTP 211.035:2003
Alcohol Metílico Pisco Puro y Mosto verde de uvas no aromáticas	4,0	100,0		NTP 211.022:2003
Pisco Puro y Mosto verde de uvas aromáticas y pisco acholado	4,0	150,0		NTP 211.022:2003 NTP 211.035:2003
Total componentes volátiles y congéneres	150,0	750,0		

1.2.2.1. METANOL

El metanol también conocido como "alcohol de madera" es un tipo de alcohol que se forma a partir de sustancias pépticas como es la cascara de la uva o también en pulpas. Es uno de los principales componentes del cuerpo del destilado. Este alcohol es un componente principalmente de la "cabeza" en la destilación del mosto. No es toxico de por sí, pero puede causar graves consecuencias al ser metabolizado y convertirse en Acido fórmico, ya que puede llegar a producir ceguera. Por otro lado puede producir fatiga, náuseas, epigastralgias, cefalea, taquipnea, cianosis, convulsiones y visión borrosa ^{24, 25}

1.2.2.2. ETANOL

El etanol es el principal producto de la fase de fermentación alcohólica del vino. A condiciones normales se caracteriza por ser incoloro. Su toxicidad viene a darse al oxidarse, dado que puede formar Acetaldehído y Ácido acético. El acetaldehído es considerado como el principal factor de la resaca. Por otro lado el Ácido acético puede causar daños sobre la superficie de los órganos implicados en su digestión, así como dolores de garganta, vómitos y diarrea. ^{24, 25}

Figura 1.5: Etanol

1.2.2.3. ACETATO DE ETILO

Se forman por reacciones entre alcoholes y ácidos, en el caso de los "Piscos" estos provienen de la unión del ácido acético presente y etanol. El etanol como se sabe proviene de la fermentación alcohólica. El ácido acético es un producto secundario de la fermentación alcohólica, donde el acetaldehído puede llegar a oxidarse hasta Ácido acético o se puede obtener a partir del tipo de levadura usado. Por ejemplo la *Saccharomyces cerevisiae* produce entre 0.1 a 0.4 g/l de ácido acético durante la fermentación alcohólica.^{24,} 15,25

$$H_3C$$
 O CH_3

Figura 1.6: Acetato de etilo

1.2.2.4. ALCOHOLES SUPERIORES PRESENTES EN PISCOS

Son considerados dentro de este grupo todos aquellos compuestos que son formados en el proceso de fermentación y que no son propios de una bebida alcohólica. Si bien es cierto estos contribuyen al aroma en el "Piscos", también es importante considerar de que dichos compuestos pueden malograr el aroma si estos se empiezan a acumular por encima de las 300 ppm. Dentro de este grupo de alcoholes en "Piscos" tenemos: 1-Propanol, Iso-Propanol (Propan-2-ol), 1 Butanol, Iso-butanol (2-metilpropan-1-ol) y Alcohol Iso-Amílico (3-metilbutan-1-ol). Estos alcoholes se obtienen mediante desaminación de aminoácidos por parte de las levaduras con el fin de que obtengan nitrógeno amoniacal para su consumo o para formar otros aminoácidos consumibles. ^{24, 26, 25}

Finalmente, en presencia de exceso de nitrógeno, la formación de alcoholes superiores es baja y relativamente independiente de la concentración de los compuestos nitrogenados. Sin embargo, la formación de 1-propanol, no parece obedecer reglas definidas a concentraciones bajas de nitrógeno pues se hace independiente de la concentración de compuestos nitrogenados cuando rebasa un cierto valor. La temperatura de fermentación influye sobre la formación de alcoholes. Entre 25-35 °C la formación de 1-Propanol y 2-Metil-1-Butanol varía ligeramente. La formación de 2-metil-1-propanol y 3-metil-1-butanol es relativamente poco afectada por los cambios de temperatura. La presencia de partículas en suspensión en el medio fermentativo incrementa la producción de alcoholes superiores. Los tratamientos de clarificación de las melazas también afectan su contenido. Durante la fermentación, el contenido de ácidos y ésteres puede aumentar mientras que el del contenido de fusel, disminuye.^{25, 27}

1.2.2.4.1. ISO-PROPANOL (2-Propanol)

También conocido como Alcohol Iso-Propílico, es un compuesto incoloro e inflamable. Es uno de los dos isómeros del Propanol. La ingestión de este alcohol en valores

altos puede producir somnolencia, inconsciencia y muerte. Así mismo se ha observado dolor abdominal, náuseas, vómitos y diarrea.^{24, 25}

Figura 1.8: Iso-Propanol (2-Propanol)

1.2.2.4.2. 1-PROPANOL

1.2.2.4.3.

Es un producto no deseado de la fermentación. Este tiende a formarse en la primera fase de fermentación y se ha visto que el aumento del tiempo de fermentación disminuye los niveles de este alcohol por ende los "Piscos mosto verde" son aquellos en donde se verán incrementados los niveles de este alcohol que en los vinos base secos recién fermentados. 24, 25

También llamado alcohol n-butílico es un alcohol incoloro de olor similar al vino. Su ingestión puede tener efecto narcótico. Causar dolor abdominal, náuseas, dolor de cabeza, mareos y diarrea. A dosis altas este puede afectar los riñones, hígado y la audición.^{24, 25}

Figura 1.9: 1-Butanol

1.2.2.4.4. ISO-BUTANOL (2-metilpropan-1-ol)

El Iso-Butanol es un líquido transparente con un olor a alcohol fuerte. Es soluble en agua. Los efectos sobre la salud comprenden irritación de ojos, piel, sarpullido, irritación de la nariz, garganta y tos. Además de esto es el causante de dolor de cabeza, mareo, somnolencia, confusión y pérdida de coordinación.^{24, 25}

Figura 1.10: Iso-Butanol (2-metilpropan-1-ol)

1.2.2.4.5. ALCOHOL ISO-AMÍLICO (3-metilbutan-1-ol)

El 3-metilbutan-1-ol pertenece a una familia de 8 isómeros. Es un alcohol incoloro, con olor característico. Es ligeramente soluble en agua. Entre las reacciones adversas comunes tenemos a la irritación tanto de piel como de las mucosas, depresión del sistema nervioso, dolor de cabeza, náuseas, mareo, vértigos, vómitos y diarrea. ^{24, 25}

Figura 1.11: Alcohol Iso-Amílico (3-metilbutan-1-ol)

1.3. DESTILACIÓN

La destilación es un proceso el cual consiste en separar, mediante el calor, los distintos componentes de una mezcla. Para lograr este proceso, los componentes volátiles de nuestra mezcla han de evaporarse y pasar posteriormente a un proceso de condensación por enfriamiento.²⁸

El principal objetivo de este proceso es lograr separar los distintos tipos de alcoholes producidos en la fermentación alcohólica. Mediante este proceso logramos dividir la cabeza, el cuerpo y la cola.²⁸

En lo que concierne a bebidas alcohólicas destiladas existe 2 métodos por los cuales son obtenidas:

- Continuo: Tiene este nombre debido a que es un proceso sin interrupción
- Discontinuo: Se caracteriza principalmente debido a que se hace una doble destilación con alambiques. Tiene por finalidad conseguir destilados más puros y de mayor calidad.

1.3.1. DESTILACIÓN DISCONTINUA

Es un proceso donde una matriz es separada por medio de condensación a fin de tener mayor pureza de uno de los componentes de la matriz inicial. Este proceso es típico de vinos y se ha usado desde hace muchos años para obtener productos destilados como los aguardientes, vodka, whisky, entre otros. En el caso de la producción de "Piscos" este es llevado a cabo en un alambique.²⁸

1.3.1.1. EL ALAMBIQUE

El alambique es un instrumento el cual se usa únicamente para la obtención de destilados. El material idóneo de un alambique es el cobre, debido a que:

- Forma compuestos insolubles con ácidos grasos y productos azufrados residuales del vino, de manera que no pasan al destilado.
- Es un buen conductor de calor.
- Es resistente a la corrosión de ácidos del vino.
- Cataliza las reacciones de esterificación.

Consta de una olla la cual calienta el vino, y posteriormente pasa por un cuello de cisne donde algunas de los componentes empiezan a condensarse, mientras otros se condensan cuando pasan por un refrigerante llamado 'serpentín''. ²⁸

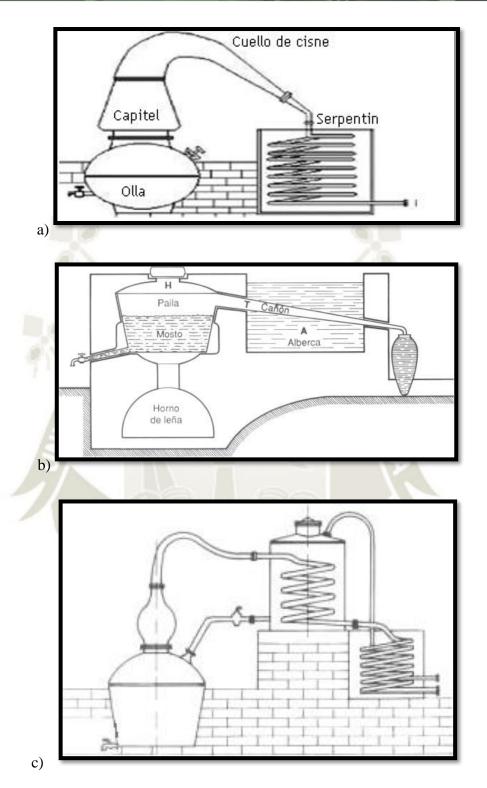


Figura 1.12: a) Alambique para fermentación y destilación b) Falca c) alambique con calientavinos

Fuente: N.T.P. 211.001

1.4. CROMATOGRAFÍA

La cromatografía es un proceso de separación donde la muestra se distribuye en dos fases: una estacionaria y una móvil. La fase estacionaria puede ser un material sólido (poroso, de superficie activa a manera de pequeñas partículas) o una película delgada de líquido que cubre un soporte sólido o una columna. La fase móvil es gaseosa o líquida. Por lo tanto, si la fase móvil es gaseosa se denomina cromatografía gaseosa o si es líquida se denomina cromatografía líquida. De este modo, al pasar la fase móvil sobre una fase estacionaria, una mezcla de sustancias puede ser separada en sus componentes.^{29, 30}

1.4.1. CROMATOGRAFÍA DE GASES

La cromatografía de gases es una técnica que permite la separación de una mezcla a través de una columna. Un gas inerte empuja, moviliza y eluye el analito a través de la columna. El principio para la utilización de este método es considerar la volatilidad del analito, el cual es inyectado volatilizado a una columna de cromatografía. En este tipo de cromatografía, la fase móvil no interactúa con las moléculas del analito y solo se encarga de transportar el analito a través de la columna. ³⁰

Esta técnica a su vez posee dos tipos: La cromatografía gas-sólido y la cromatografía gas-liquido. 30

La cromatografía de gases gas-sólido ha sido una técnica no muy usada debido a que depende de la adsorción física en la fase estacionaria sólida. Ha sido usada principalmente para la separación de especies gaseosas de bajo peso molecular. ³⁰

Por otro lado, la cromatografía de gases gas-liquido es la más usada hoy en día. Se basa en la distribución del analito en una fase móvil gaseosa y una fase liquida inmovilizada sobre la superficie de un sólido inerte.³⁰

Para realizarse es necesario tener gases de alta pureza. El gas portador es el gas de mayor importancia en cromatografía de gases, debido a que este nos ayuda a ver con claridad la línea base en la determinación de los picos de la muestra que estemos identificando. Por tal motivo es muy importante usar un gas de alta pureza y que no interaccione con la muestra.

Los gases portadores más comunes son:

- Helio
- Nitrógeno
- Argón

De todos los mencionados es el Helio el gas de mayor uso. Este se caracteriza por obtener una línea base sin mucho ruido, permitiendo una mejor resolución del cromatograma.

Por otro lado, tenemos 2 gases de apoyo: Oxígeno e Hidrógeno, ambos gases contribuyen con el detector, ya que la llama del FID (Flame ionization detector) utiliza ambos gases para encender.³¹

1.4.1.1. DESCRIPCIÓN DEL EQUIPO

Un cromatógrafo de gases está compuesto básicamente por: 32

- Fase móvil: Gas transportador
- Fase estacionaria: Columna
- Inyector
- Horno

La siguiente figura muestra el proceso al momento de realizar un ensayo por GC: 33

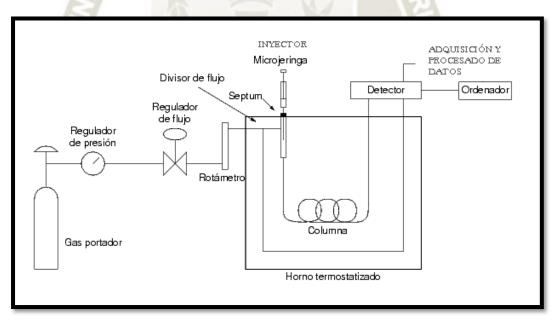


Figura 1.13: Esquema de funcionamiento del Cromatógrafo de gases.

Fuente: Principles of Gas Chromatography

El sistema funciona de la siguiente manera: la muestra liquida es inyectada, volatilizada y pasa a la columna que se encuentra en el horno (debidamente programado). Posteriormente la muestra es quemada por la llama del FID (Flame Ionization Detector) emitiendo señales las cuales son detectadas por los detectores ubicados a los costados de la

llama de hidrógeno. Estas señales son enviadas al software y son evidenciadas en el cromatograma. 32

1.4.1.1.1. SISTEMAS DE INYECCIÓN DE LA MUESTRA

La muestra es inyectada con una jeringa hipodérmica a través de un septum de silicona a un alineador de vidrio contenido en un bloque metálico, donde es vaporizada y barrida hacia la columna. El bloque se calienta a una temperatura que se fija en un valor suficientemente alto para convertir prácticamente en forma instantánea la muestra liquida en vapor.³³

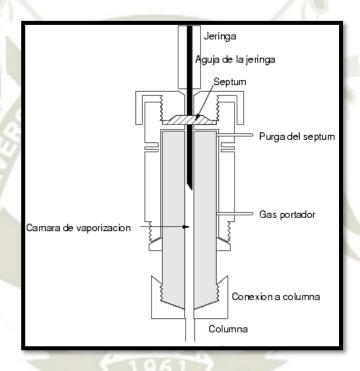


Figura 1.14: Partes del sistema de inyección de muestra. Fuente: Wikimedia Commons

1.4.1.1.2. TIPOS DE INYECCIÓN DE MUESTRA

La cantidad de muestra inyectada comúnmente suele ser la menor posible dada la sensibilidad de esta técnica y a la susceptibilidad de la columna por los solventes. Así mismo tenemos 2 tipos de inyección: SPLIT y SPLITLESS. ³³

1.4.1.1.2.1. INYECCIÓN SPLIT

El inyector de SPLIT se caracteriza por tener un sistema de división de flujo a la salida de la cámara de mezcla. Por medio de este sistema, el flujo de gas portador que pasa a través

del inyector se divide en dos: una parte es introducida en la columna y la otra va fuera del sistema a través de una válvula de aguja que permite regular la proporción de gas que es introducido a la columna.^{33, 34}

1.4.1.1.2.2. INYECCIÓN SPLITLESS

En esta técnica la totalidad de la muestra es dirigida hacia la columna, la cual se mantiene durante la inyección a una temperatura inferior al punto de ebullición del componente más volátil de la muestra. Al ser una inyección directa, esta técnica permite realizar análisis de trazas.^{32, 34}

1.4.1.1.3. TIPOS DE DETECTORES

El detector se encargará de detectar las señales emitidas por el equipo y de transmitirlo al software. Entre los más utilizados tenemos:³⁵

- Detector de ionización de llama (FID, Flame Ionization Detector).
- Detector de conductividad térmica (TCD, Thermical Conductivity Detector).
- Detector termoiónico (TID, Thermoionic Detector).
- Detector de captura de electrones (ECD, Electrón-Capture Detector).
- Detector de emisión atómica (AED, Atomic Emission Detector).

Dentro de los mencionados el detector FID es el más usado hoy en día, dado su alta versatilidad y adaptabilidad a distintas condiciones de trabajo.³⁵

1.4.1.1.4. DETECTOR DE IONIZACIÓN DE LLAMA (FID)

Este tipo de detector utiliza hidrógeno como fuente de llama para ionización de las moléculas a través del detector. El detector dispone de un sistema de electrodos. El electrodo negativo está situado en la base de la llama y el positivo en forma de cestilla o cilindro alrededor de la llama cargada con +300V. La corriente gaseosa que sale de la columna se mezcla con una corriente de hidrógeno y entra en el detector donde se produce la combustión. Para soportar la llama se introduce aire por la base del detector. ³⁵

Durante la combustión producida al llegar un compuesto orgánico a la llama, se forman partículas cargadas que depende de la naturaleza y velocidad del flujo del soluto y por tanto directamente relacionada con la cantidad de este.³⁵

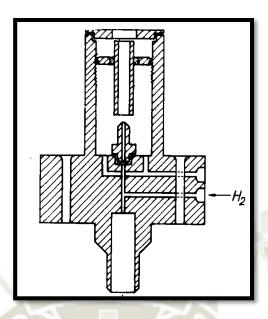


Figura 1.15: Detector de ionización de llama (FID). Fuente: Detectors in gas Chromatography

1.4.1.2. COLUMNAS PARA CROMATOGRAFÍA

La columna es el componente principal que permite la separación de componentes. Existen distintos tipos dependiendo del ensayo a realizar. La columna se encuentra compuesta por un tubo, dentro del cual se encuentra la fase estacionaria. Puede ser de tres tipos:

- Líquido depositado sobre partículas de un sólido portador(columnas empaquetadas o de relleno)
- Liquido depositado sobre las propias paredes del tubo (columnas tubulares abiertas).³⁴

1.4.1.2.1. TIPOS DE COLUMNA EN CROMATOGRAFÍA DE GASES

1.4.1.2.1.1. COLUMNAS EMPAQUETADAS

Las columnas empaquetadas corresponden a los inicios de la cromatografía gaseosa. Dada su antigüedad y limitado uso, no son de mucho uso hoy en día. Estas columnas se caracterizaban por ser un tubo (que podía ser de vidrio o acero inoxidable) con un diámetro de entre 2 – 5 mm y de una longitud que oscila entre 1 y 15 m, los cuales eran enrollados de tal forma que pudieran introducirse en el horno del cromatógrafo.

Al interior del tubo, se encuentra la fase estacionaria bajo la forma de un líquido soportado sobre un material adecuado finamente pulverizado. El diámetro de las partículas

del relleno debe ser al menos 10 veces inferior al diámetro del tubo, con el fin de conseguir una distribución uniforme. El relleno que se encuentra dentro del tubo normalmente suele ser de lana de vidrio o lana de cuarzo.³⁶



Figura 1.16: Columnas empaquetadas o de relleno. Fuente: Sigma-Aldrich

1.4.1.2.1.2. COLUMNAS CAPILARES

También conocidas como columnas tubulares abiertas, son columnas compuestas por una fina película de entre 0,1-10µm de fase estacionaria. Normalmente esta fase es un polímero térmicamente estable y con un alto peso molecular. Así mismo, el tubo que recubre esta capa fina suele ser de vidrio o de sílice fundida de un diámetro de 0,05-0,53 mm de diámetro interno. Dentro de este tipo de columnas podemos encontrar 2 tipos de columnas capilares:

- Columnas Wall Coated open tubular(WCOT): Actualmente son las más usadas, se caracterizan por tener a la fase estacionaria formando una película liquida directamente sobre las paredes del tubo.
- Columnas Porous Layer Open Tubular (PLOT) En estas columnas la pared interna del tubo se encuentra recubierta de una capa adsorbente. Una variación de esta corresponde a las columnas Support Coated Open tubular (SCOT) en las que se tiene impregnado una fase liquida en el soporte. ³⁶

Figura 1.16: columna capilar. Fuente: Interchim

Debido a sus características de permeabilidad, estas columnas pueden ser de mayor longitud, ya que esta propiedad permite mantener un flujo estable en la columna.³⁶ Las características que le confieren este gran uso son:

- Cantidad de platos: La cantidad de platos de estas columnas se encuentra entre 30.000 a 50.000 platos, esta propiedad específica permite una buena separación de mezclas complejas.
- No se requiere una gran selectividad, esto ayuda a separar una amplia variedad de compuestos sin mayor problema.

El inconveniente principal es que no se pueden usar grandes cantidades de muestra por lo que se debe de tener cuidado con la cantidad de muestra a inyectar, ya que los compuestos podrían enlazarse con la fase estacionaria y producir sangrado de la columna.³⁶

1.4.1.2.2. FASE ESTACIONARIA

Es importante hablar sobre la fase estacionaria ya que la fase móvil, en cromatografía de gases, es un gas inerte. Según la afinidad de nuestra muestra por la fase estacionaria es que se producirá la retención y separación de los distintos componentes de la solución a

analizar. Las fases estacionarias deberán ser estables en un amplio rango de temperaturas para poder soportar los cambios de temperaturas a las cuales serán sometidos. Esta propiedad permitirá un mayor rango de utilización para la columna. ³⁷

Por otro lado, también es necesario considerar la adherencia a la pared de la columna. Esta adherencia permitirá que nuestra fase estacionaria no sea arrastrada ni presente sangrado cada que se realice un ensayo.^{30, 37}

Al realizar un ensayo por cromatografía de gases, se deberá de tomar en cuenta la naturaleza del analito. Solo la afinidad entre el analito y la fase estacionaria permitirá una buena separación. Esta separación y retención por parte de la columna se puede explicar por distintas fuerzas intermoleculares. ³⁷

Entre las fases estacionarias más comunes tenemos a:

- Hidrocarburos: Son utilizados como fases estacionarias apolares, para su utilización son tomados en cuenta hidrocarburos de alto peso molecular.
- Polisiloxanos: Conocidos también como siliconas, es considerado como las fases estacionarias con mayor utilidad hoy en día, dada su alta estabilidad térmica y a la posibilidad de modificar químicamente la estructura de base para obtener fases con diferentes polaridades y selectividades.
- Polifeniléteres: De moderada polaridad, poseen gran estabilidad térmica.
- Poliésteres: Son polímeros resinosos productos de la policondensación de un ácido polibásico con un polialcohol.
- Polietilenglicoles: Separan compuestos polares y que puedan formar enlaces de puente de hidrogeno.

1.5. VALIDACIÓN

Validación es el término que se usa para el proceso que busca definir un requisito analítico y la confirmación de que cuenta con capacidades consistentes con las aplicaciones requeridas. La validación de una técnica se realiza con el fin de demostrar que sus características de desempeño son las adecuadas para el uso que se le dará. El alcance de este dependerá de la aplicación, la naturaleza de los cambios realizados y de las circunstancias en que el método se va a utilizar.³⁸

Los métodos analíticos deben ser validados o revalidados:

- Antes de su introducción al uso.
- Siempre que cambien las condiciones para las cuales el método ha sido validado (por ejemplo, un instrumento con diferentes características o muestras con una matriz diferente).
- Cada vez que se cambia el método y el cambio está fuera del alcance original del método

1.5.1. LINEALIDAD

La linealidad es la capacidad de un método analítico de obtener resultados proporcionales entre la concentración de analito y su respuesta. Para determinar la linealidad será necesario realizar un análisis estadístico de varianza, así como determinar el coeficiente de correlación (r²).Para su determinación se debe de trabajar con al menos 5 puntos de calibración. ³⁹

1.5.2. SENSIBILIDAD

Un método es sensible cuando hasta la menor variación de concentración generará una variación de respuesta que podrá ser determinada por el método. El límite de detección y el límite de cuantificación son parámetros que permitirán realizar un análisis adecuado de la sensibilidad. ³⁹

El límite de detección es la menor concentración, o cantidad de analito detectable.³⁸

El límite de cuantificación es la mínima concentración de analito cuantificable por el método.³⁸

1.5.3. PRECISIÓN

Es el grado de concordancia entre los resultados de mediciones obtenidas de una serie repetida de análisis sobre una muestra homogénea bajo condiciones establecidas. Es conocida también como la función de los errores accidentales.³⁹

1.5.3.1. REPETIBILIDAD

Es la medida de la precisión de una técnica efectuada en las misma condiciones, sobre el mismo analito, con la misma técnica, mismo analista, haciendo uso del instrumento de medida y durante un intervalo corto de tiempo. ³⁹

1.5.3.2. PRECISIÓN INTERMEDIA

Es la medida de la precisión de una técnica efectuada en las mismas condiciones, sobre el mismo analito, con la misma técnica, mismo analista, haciendo uso del mismo instrumento de medida y durante un intervalo de tiempo. ³⁹

1.5.4. EXACTITUD

La exactitud viene a ser el grado de concordancia existente entre el resultado de un valor medido y el valor verdadero. ³⁹

CAPITULO II

MATERIALES Y MÉTODO

2.1. MUESTRAS DE ESTUDIO

A fin de validar la técnica analítica, se utilizaron muestras provenientes de la ciudad de Arequipa. Las variedades escogidas fueron: "Acholado", "Puro no aromático", "Puro aromático" y "Mosto verde" de una misma marca.

2.2. MATERIALES

- Jeringa 10 µL para GC Marca: Shimadzu
- Micropipeta de 25-250µL Marca: Boeco
- Micropipeta 1-1000 µL Marca: DragonLab
- Matraces aforados 10mL Marca: Boeco
- Viales para cromatografía de gases Marca: Shimadzu
- Equipo de destilación

2.3. REACTIVOS

- Agua Ultrapura(obtenido de un destilador PureLab Classic de marca: ELGA)
- Metanol Densidad (Densidad: 0.792 Kg/L Pureza: 99.8% MERCK)
- Acetato de etilo (Densidad: 0.90 Kg/L Pureza: 100.0% J.T BAKER)
- 2-Propanol Densidad (0.79 Kg/L Pureza: 99.9% J.T BAKER)
- 1-Propanol (Densidad: 0.804 Kg/L Pureza: 99.0% C.D.H)
- 1-Butanol (Densidad: 0.81 Kg/L Pureza: 99.8% J.T BAKER)
- 2-metilpropan-1-ol (Densidad: 0.80 Kg/L Pureza: 99.0% MERCK)
- 3-metilbutan-1-ol (Densidad: 0.81 Kg/L Pureza: 99.5% J.T BAKER)
- 2-Butanol (Densidad: 0.808 Kg/L Pureza: 99.5% FLUKA CHEMIKA)

2.4. EQUIPOS

- Equipo para cromatografía de gases GC/MS-QP2010 ULTRA SHIMADZU con detector FID (Flame Ionization Detector).
- Columna capilar RESTEK STABILWAX DA 11023 (sílice fundido de 30m de largo y 0.25mm de diámetro interior cubierto con una fase estacionaria de polietilenglicol (PEG) con un espesor de 0.25μM).
- Balanza analítica no automática de 4 dígitos marca KERN

2.5. MÉTODO

2.5.1. PROCEDIMIENTO

2.5.1.1. PREPARACIÓN DE LA MUESTRA

A 100 ml de muestra se le agregaron 5ml de una solución stock de 2-Butanol (Solución control) a 10000ppm y se procedió a realizar el destilado. La concentración de los distintos congéneres se obtuvo a partir de la gráfica de calibración.

Figura 2.1: Proceso de destilación realizado a las muestras para análisis

Para la determinación del grado alcohólico de la muestra, se procedió según la Norma Técnica Peruana 210.003 para la determinación del Grado Alcohólico. (Anexo2).

2.5.1.2 REQUISITOS CROMATOGRÁFICOS

Se evaluaron distintas técnicas y se procedió a elegir la que mejor resolución tuviera. Los requisitos cromatográficos son:

Volumen de inyección: 0.2 uL

Temperatura de inyección: 250.0°C

Modo: Split

• Split ratio: 134.3

• Presión: 279.3 KPa

• Flujo total: 121.4 KPa

• Flujo de la columna: 1,44 mL/min

Posteriormente se muestra las temperaturas aplicadas a la pendiente de condiciones cromatográficas:

- Temperatura inicial: 45.0°C x 3 minutos
- Temperatura intermedia: 70.0°C x 2minutos
- Temperatura final: 210.0°C x 4 minutos

El método fue evaluado usando un mix de los estándares a 1500 ppm y posteriormente se procedió a identificar cada pico usando los estándares por separado. La técnica bajo la cual se basó inicialmente para el desarrollo de la validación es la Norma Técnica Peruana 211.035: Determinación de metanol y congéneres por cromatografía de gases en bebidas alcohólicas destiladas, emitido por el Instituto Nacional de Calidad.

2.5.1.3 PREPARACIÓN DEL ESTÁNDAR

Los cálculos se hicieron con el fin de obtener una solución stock inicial de 10000ppm. Así mismo, para realizar dicho procedimiento y disminuir el error en la gráfica de calibración, cada estándar fue pesado antes de ser agregado a la fiola. De dicho stock se procedieron a sacar alícuotas para la preparación de la gráfica de calibración. Se procedió de igual manera en el caso de la solución control.

2.5.1.4 SOLUCIÓN CONTROL

La solución control es un compuesto de características físicas y químicas similares a los componentes de la matriz en estudio, en tal sentido, para escoger el patrón de control ideal para desarrollar la técnica. Los componentes volátiles en la matriz de estudio son los que siguen a continuación:

Tabla 2.1: Puntos de ebullición de estándares usados

Congénere	Temperatura de ebullición (°C)
Metanol	64.7
Acetato de etilo	77.1
Iso-Propanol (Propan-2-ol)	82.6
Propan-1-ol	97.0
Iso-butanol (2-metilpropan-1-ol)	108.0
1-Butanol	117.7
Alcohol Iso-Amílico (3-metilbutan-1-ol)	132.0

Tales temperaturas se encuentran en un intervalo de 60-130°C. En tal sentido, se procedió a escoger el 2-Butanol como solución control. Este alcohol se caracteriza por tener un punto de ebullición en 100°C y no se encuentra presente en nuestra matriz de estudio. Por tal razón es el alcohol idóneo para su utilización como patrón de control de calidad.

2.5.2. VALIDACIÓN

2.5.2.1. LINEALIDAD

Para desarrollar la linealidad fue necesario desarrollar una gráfica de calibración, la cual fue desarrollada tomando en cuenta el intervalo de valores normales de los distintos congéneres en "Piscos".

Se procedió a determinar los puntos tomando en cuenta los valores considerados como normales en la Norma Técnica Peruana 211.001. Se realizó un stock inicial a 10000ppm y posteriormente a partir de este stock se realizaron diluciones en fiolas de 10mL. A cada fiola se le agregó 40μL, 200 μL, 500 μL, 1000 μL y 1500 μL, para los puntos 40ppm, 200ppm, 500ppm, 1000ppm y 1500ppm respectivamente. En el caso del 2-Butanol las concentraciones de la gráfica de calibración fueron distintas, se preparó un stock de 10000ppm pero de diluyó a concentraciones de 80ppm, 400ppm, 1000ppm, 1500ppm y 2000ppm en fiolas de 10 mL. Todas las concentraciones fueron recalculadas según la variación de la pesada.

Para determinar la linealidad se realizaron 3 inyecciones de cada estándar y se procede a determinar la gráfica de calibración. Para esto se debe de despejar las variables a y b de la siguiente ecuación:

$$Y = bX + a$$

Ec. 2.1

Para despejar esos valores es necesario realizar las siguientes operaciones matemáticas:

$$b = \frac{\sum Xi * Yi - \frac{\sum Xi * \sum Yi}{n}}{\sum X^{2}i - \frac{(\sum Xi)^{2}}{n}}$$

$$a = \frac{\sum Yi - b * \sum Xi}{n}$$
Ec. 2.2
Ec.2.3

Siendo:

- a: Ordenada a origen
- *b*: Pendiente
- *n*: Numero de mediciones
- X_i: La concentración
- Y_i: El valor medido en el ensayo

Así mismo para calcular el r:

$$r = \frac{\sum Xi * Yi \frac{\sum Xi * \sum Xi}{n}}{\sqrt{(\sum X^{2}i - \frac{(\sum Xi)^{2}}{n})(\sum Y^{2}i - \frac{(\sum Yi)^{2}}{n})}}$$
Ec.2.4

Para interpretar las variables de esta ecuación, se usaron las mismas variables que para las ecuaciones 2.2 y 2.3.

Además se realizó un Análisis ANOVA de regresión, este tiene la siguiente premisa:

En el caso de la hipótesis nula (h₀), se acepta que la pendiente sea igual a b, por lo tanto no existe correlación en la gráfica de calibración. La hipótesis alternativa (H₁), afirma que no existe igualdad entre ambos valores y por lo tanto, existe correlación en la gráfica de calibración.

2.5.2.2. SENSIBILIDAD

Para hallar el límite de detección y cuantificación se usaron las gráficas de calibración obtenidas con cada estándar. El límite de detección determina la concentración mínima la cual es determinada por la técnica. El límite de cuantificación corresponde a la cantidad mínima bajo la cual el instrumento puede producir una señal cuantificable.

La sensibilidad fue detectada para cada uno de los estándares usados. La ecuación 2.5 y 2.6 muestran las fórmulas para los parámetros ya mencionados:

$$Limite de \ Detecci\'on = \frac{Y_{bl} + 3S_{bl}}{b} * \frac{1}{\sqrt{n}}$$

Ec. 2.5.

Límite de Cuantificación =
$$\frac{Y_{bl} + 10S_{bl}}{b} * \frac{1}{\sqrt{n}}$$

Donde:

- Y_{bl} = variable "a" obtenido de la gráfica de calibración.
- S_{bl} = variable "a" obtenido de la gráfica de Concentración vs Desviación estándar.
- b = Intercepto de la gráfica de calibración.
- n = número de muestras.

2.5.2.3. PRECISIÓN

Para determinar el coeficiente de variación (C.V.) tanto en el caso de repetibilidad y precisión intermedia, se usó la siguiente formula:

$$C.V.(\%) = \frac{s}{\overline{U}} * 100$$

Ec. 2.7

Donde:

- s = desviación estándar
- \overline{U} = Promedio de los valores hallados

2.5.2.3.1. REPETIBILIDAD

La repetibilidad se desarrolló mediante el análisis de 6 muestras. La variabilidad entre las distintas mediciones fue evaluada mediante el coeficiente de variación de Horwitz, cuya fórmula para repetibilidad se muestra en la ecuación 2.7.

$$CV(\%) = 0.5 * 2^{1-0.5 \log c}$$

Ec. 2.8

Donde:

- CV = Coeficiente de variación de Horwitz
- c = Concentración del analito

2.5.2.3.2. PRECISIÓN INTERMEDIA

Así como en la repetibilidad, fueron evaluadas 6 muestras. La variabilidad entre las distintas mediciones fue evaluada mediante el coeficiente de variación de Horwitz, cuya fórmula para precisión intermedia es la siguiente:

$$CV(\%) = 2^{1-0.5 \log c}$$

Donde:

- CV = Coeficiente de variación de Horwitz
- c = Concentración del analito

2.5.2.3.3 **EXACTITUD**

Los distintos estándares fueron sometidos a un proceso de recuperación. Dicha recuperación se realizó con el fin de obtener el porcentaje de error en la medición. Dicho porcentaje de error fue contrastado con el % aceptado según la Guía QUAM (Quantifying Uncertainity of Analytical Mesurements) A partir de los resultados obtenidos, se procedió al cálculo tomando en cuenta la cantidad agregada y el valor obtenido. La ecuación que representa dicha diferencia es la siguiente:

$$\% de error = \frac{Valor\ teórico - Valor\ práctico}{Valor\ Práctico} * 100$$

Ec. 2.10

CAPITULO III

RESULTADOS Y DISCUSIÓN

3.1. RESULTADOS DE LOS REQUISITOS CROMATOGRÁFICOS

El cromatograma obtenido quedo con una pequeña aproximación entre los picos del Acetato de etilo y del Metanol. Esta proximidad entre ambos picos no afecta la calidad del cromatograma, ya que ambos picos no se encuentran superpuestos entre sí. La Figura 18 nos muestra el cromatograma obtenido:

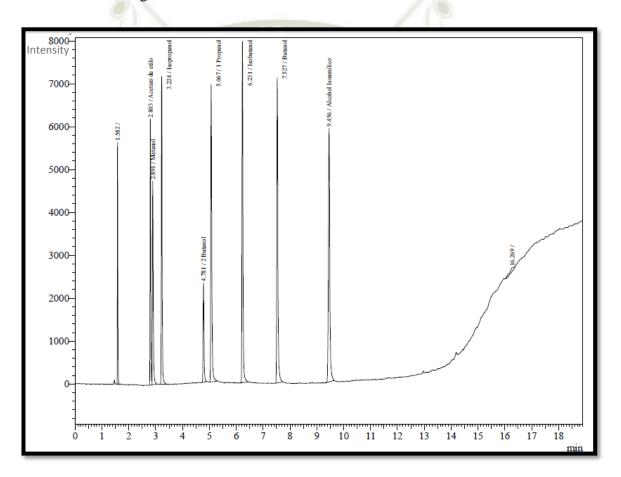


Figura 3.1: Cromatograma del mix de alcoholes

La Figura 3.1 nos permite ver una separación optima de todos los picos, con una duración de 18.8 minutos. La determinación de los tiempos de retención se halló evaluando los estándares por separado. Posteriormente para determinar los tiempos de retención para cada pico se corrieron los estándares por separado (ver anexo 6).

Los tiempos de retención hallados para esta técnica fueron los siguientes:

Tabla 3.1: Tiempos de retención de estándares usados en la validación.

Congéneres	Tiempo de retención (minutos)
Acetato de etilo	2.803
Metanol	2.891
Iso-Propanol (Propan-2-ol)	3.224
2-Butanol	4.781
1-Propanol	5.067
Iso-Butanol (2-metilpropan-1-ol)	6.231
1-Butanol	7.527
Alcohol Iso- amílico (3-metilbutan-1-ol)	9.456

3.2. RESULTADOS DE LINEALIDAD

La linealidad fue hallada para cada uno de los estándares, todo fue realizado por un análisis de cromatografía de gases con detector FID. Para la elaboración de la gráfica de calibración, se realizó la previa determinación del rango lineal. Tomando en cuenta los rangos de valores normales en "Piscos", se realizaron 5 puntos de calibración los cuales inicialmente fueron preparados para que cada punto contenga: 40 ppm, 200 ppm, 500 ppm, 1000 ppm y 1500 ppm. Como se mencionó inicialmente, todos los estándares fueron pesados al momento de realizar stock. Por tanto, presentan variación en la concentración final. Cada variación fue calculada para cada estándar usado.

La grafica se realizó por triplicado y se preparó la gráfica final tomando en cuenta el promedio de las tres áreas encontradas por cada punto de calibración.

3.2.1. ACETATO DE ETILO

La figura 3.2 nos muestra la gráfica de calibración obtenida. Posteriormente la tabla 3.2 nos muestra las áreas obtenidas y la concentración bajo las cuales se trabajó la gráfica de calibración:

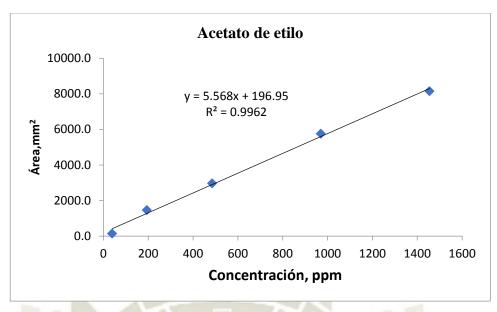


Figura 3.2: Gráfica de calibración del Acetato de Etilo

Tabla 3.2: Concentraciones y áreas para Acetato de etilo

Concentración (ppm)	Área 1	Área 2	Área 3	Promedio
38.8	142.9	140.2	147.6	143.6
194.0	1465.9	1460.0	1463.9	1463.3
485.0	2965.7	2967.4	2969.9	2967.7
970.0	5761.2	5761.3	5758.2	5760.2
1455.0	8148.1	8150.7	8148.6	8149.1

Como se observa en la gráfica, se obtuvo un coeficiente de correlación de 0.9962. Para determinar si existe correlación entre las áreas obtenidas se procedió a realizar un análisis ANOVA y este se muestra en la tabla 3.3:

Tabla 3.3: ANOVA de regresión lineal para Acetato de etilo

ANÁ	LISIS DE VA	ARIANZA	15		
	Grados de	Suma de	Promedio de	F	Valor
	libertad	cuadrados	los cuadrados	Г	crítico de F
Regresión	1	42066012.9	42066012.9	784.9	0.0001
Residuos	3	160790.1	53596.7		
Total	4	42226802.9			

El valor F encontrado es 784.9 y se encuentra por encima del Valor crítico F, el cual es 0.0001. Por tal motivo, se tiene evidencia experimental al 95% para rechazar la hipótesis nula y aceptar la hipótesis alternativa. Lo que significa que existe correlación entre las áreas encontradas tras las mediciones de los puntos para la gráfica de calibración del Acetato de etilo.

3.2.2. METANOL

La figura 3.3 nos muestra la gráfica de calibración obtenida. Posteriormente la tabla 3.4 nos muestra las Áreas obtenidas y la concentración bajo las cuales se trabajó la gráfica de calibración:

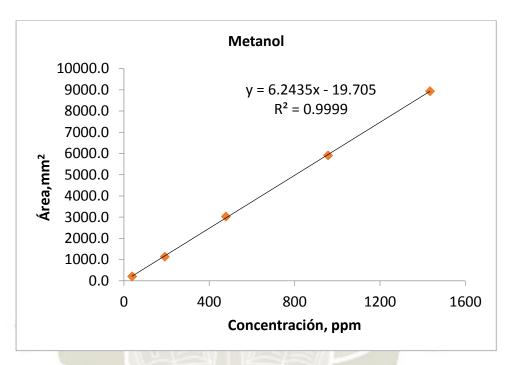


Figura 3.3: Gráfica de calibración del Metanol

Tabla 3.4: Concentraciones corregidas y áreas para Metanol

Concentración (ppm)	Área 1	Área 2	Área 3	Promedio
38.2	211.5	215.8	211.8	213.0
191.2	1137.7	1138.8	1140.2	1138.9
478.0	3031.3	3040.7	3035.4	3035.8
956.0	5918.0	5911.5	5918.0	5915.8
1434.0	8939.3	8933.2	8937.9	8936.8

Como se observa en la gráfica, se obtuvo un coeficiente de correlación de 0.9999. Para determinar si existe correlación entre los datos obtenidos se procedió a realizar un análisis ANOVA y este se muestra en la tabla 3.5:

Tabla 3.5: ANOVA de regresión lineal para Metanol

ANÁLISIS	DE VARIAN	IZA			
	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	1	51376249.2	51376249.2	20701.7	0.000001
Residuos	3	7445.2	2481.7		
Total	4	51383694.4			

El valor F encontrado es 20701.7 y se encuentra por encima del Valor crítico F, el cual es 0.000001. Por lo tanto, se tiene evidencia experimental para rechazar la hipótesis nula y aceptar la hipótesis alternativa a un nivel de confianza del 95%. Lo que significa que existe correlación entre las áreas encontradas tras las mediciones de los puntos para la gráfica de calibración del Metanol.

3.2.3. ALCOHOLES SUPERIORES

3.2.3.1. ISO-PROPANOL(2-Propanol)

La figura 3.4 nos muestra la gráfica de calibración obtenida. Posteriormente la tabla 3.6 nos muestra las Áreas obtenidas y la concentración bajo las cuales se trabajó la gráfica de calibración:

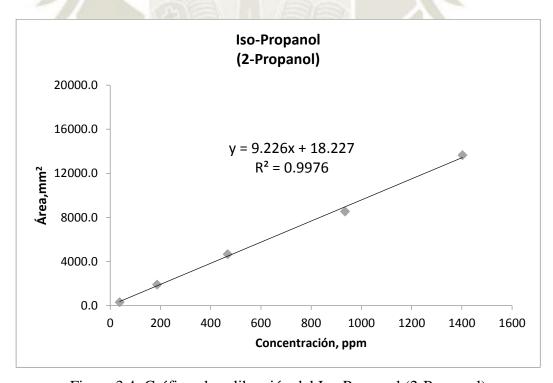


Figura 3.4: Gráfica de calibración del Iso-Propanol (2-Propanol)

Tabla 3.6: Concentraciones corregidas y áreas para Iso-Propanol (2-Propanol)

Concentración (ppm)	Área 1	Área 2	Área 3	Promedio
37.4	307.1	307.5	311.9	308.8
187.0	1916.1	1912.9	1914.2	1914.4
467.5	4663.9	4665.1	4673.1	4667.4
935.0	8537.8	8540.2	8538.2	8538.7
1402.5	13654.4	13663.4	13654.4	13657.4

Como se observa en la gráfica, se obtuvo un coeficiente de correlación de 0.9976. Para determinar si existe correlación entre los datos obtenidos se procedió a realizar un análisis ANOVA y este se muestra en la tabla 3.7:

Tabla 3.7: ANOVA de regresión lineal para Iso-Propanol (2-Propanol)

ANÁLISIS DE VARIANZA							
	Grados de	Suma de	Promedio de los	F	Valor crítico		
1	libertad	cuadrados	cuadrados		de F		
Regresión	K.T	115495075.0	115495075.0	1253.2	0.00005		
Residuos	3	276472.2	92157.4				
Total	4	115771547.0		N.A			

El valor F encontrado es 1253.2 y se encuentra por encima del Valor crítico F, el cual es 0.00005. Por tanto, tengo evidencia experimental para rechazar la hipótesis nula y aceptar la hipótesis alternativa a nivel de confianza del 95%. Lo que significa que existe correlación entre las áreas encontradas tras las mediciones de los puntos para la gráfica de calibración del Iso-Propanol.

3.2.3.2. 1-PROPANOL

La figura 3.5 nos muestra la gráfica de calibración obtenida. Posteriormente la tabla 3.8 nos muestra las áreas obtenidas y la concentración bajo las cuales se trabajó la gráfica de calibración:

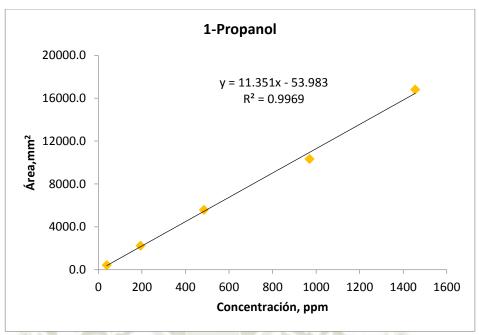


Figura 3.5: Gráfica de calibración del 1-Propanol

Tabla 3.8: Concentraciones corregidas y áreas de 1-Propanol

		5 5 5 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5	j directs are r	1 Topullor
Concentración (ppm)	Área 1	Área 2	Área 3	Promedio
38.8	432.0	434.3	434.4	433.6
194.0	2236.7	2239.3	2239.6	2238.5
485.0	5576.2	5576.2	5570.2	5574.2
970.0	10339.5	10337.3	10337.2	10338.0
1455.0	16821.1	16817.5	16821.0	16819.9

Como se observa en la gráfica, se obtuvo un coeficiente de correlación de 0.9969. Para determinar si existe correlación entre los datos obtenidos se procedió a realizar un análisis ANOVA y este se muestra en la tabla 3.9:

Tabla 3.9: ANOVA de regresión lineal para 1-Propanol

ANÁLISI	S DE VARI	ANZA			
	Grados de	Suma de	Promedio de los	F	Valor crítico
	libertad	cuadrados	cuadrados	Г	de F
Regresión	1	174825564.9	174825564.9	977.9	0.00007
Residuos	3	536307.5	178769.2		
Total	4	175361872.4			

El valor F encontrado es 977.9 y se encuentra por encima del Valor crítico F, el cual es 0.00007. Por tal motivo, se tiene evidencia experimental para rechazar la hipótesis nula y aceptar la hipótesis alternativa con un nivel de confianza del 95%. Lo que significa que existe correlación entre los valores encontrados tras las mediciones de los puntos para la gráfica de calibración del 1-Propanol.

3.2.3.3. 1-BUTANOL

La figura 3.6 nos muestra la gráfica de calibración obtenida. Posteriormente la tabla 3.10 nos muestra las Áreas obtenidas y la concentración bajo las cuales se trabajó la gráfica de calibración:

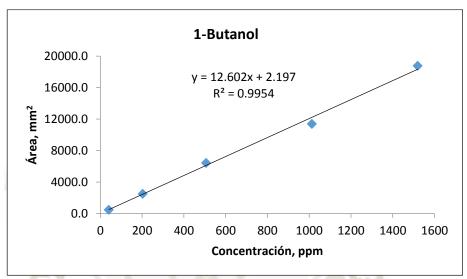


Figura 3.6: Gráfica de calibración del 1-Butanol

Tabla 3.10: Concentraciones corregidas y áreas de 1-Butanol obtenidas

Concentración (ppm)	Área 1	Área 2	Área 3	Promedio
40.5	487.9	484.0	483.2	485.0
202.6	2519.0	2512.7	2521.0	2517.6
506.5	6448.1	6440.3	6448.2	6445.5
1013.0	11399.7	11396.6	11400.7	11399.0
1519.5	18771.4	18770.5	18770.9	18770.9

Como se observa en la gráfica, se obtuvo un coeficiente de correlación de 0.9954. Para determinar si existe correlación entre los datos obtenidos se procedió a realizar un análisis ANOVA y este se muestra en la tabla 3.11:

Tabla 3.11: ANOVA de regresión lineal para 1-Butanol

ANÁLISIS	S DE VARIA	NZA			
	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	1	215498880.8	215498881.0	655.5	0.0001
Residuos	3	986316.4	328772.1		
Total	4	216485197.1			

El valor F encontrado es 655.5 y se encuentra por encima del Valor crítico F, el cual es 0.0001. Por tanto, tengo evidencia experimental para rechazar la hipótesis nula y aceptar la hipótesis alternativa con un nivel de confianza del 95%. Lo que significa que existe correlación entre los valores encontrados tras las mediciones de los puntos para la gráfica de calibración del 1-Butanol.

3.2.3.4. ISO-BUTANOL(2-metilpropan-1-ol)

La gráfica 3.7 muestra la gráfica de calibración obtenida y la tabla 3.12 los valores que le corresponden. Así mismo, los puntos de calibración mostrados en la tabla 3.12 se encuentran modificados según la variación en la pesada:

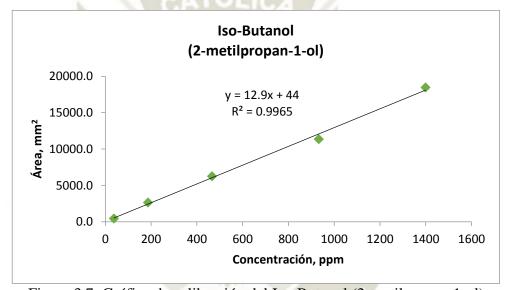


Figura 3.7: Gráfica de calibración del Iso-Butanol (2-metilpropan-1-ol)

Tabla 3.12: Concentraciones corregidas y áreas de Iso-Butanol (2-metilpropan-1-ol)

Concentración (ppm)	Área 1	Área 2	Área 3	Promedio
37.32	450.6	444.8	447.9	447.8
186.6	2658.7	2648.7	2647.3	2651.6
466.5	6265.7	6271.1	6270.4	6269.1
933.0	11370.2	11372.5	11373.5	11372.1
1399.5	18476.6	18475.3	18477.9	18476.6

Como se observa en la gráfica, se obtuvo un coeficiente de correlación de 0.9965. Para determinar si existe correlación entre los datos obtenidos se procedió a realizar un análisis ANOVA y este se muestra en la tabla 3.13:

Tabla 3.13: ANOVA de regresión lineal para Iso-Butanol (2-metilpropan-10l)

ANÁLISIS	DE VARIA	NZA			
	Grados de	Suma de	Promedio de los	F	Valor
	libertad	cuadrados	cuadrados	Г	crítico de F
Regresión	1	208911917.8	208911918.0	854.4	0.00009
Residuos	3	733564.0	244521.4		
Total	4	209645481.9			

El valor F encontrado es 854.4 y se encuentra por encima del Valor Crítico F, el cual es 0.00009. Por lo tanto, se tiene evidencia experimental para rechazar la hipótesis nula y aceptar la hipótesis alternativa a un nivel de confianza del 95%. Lo que significa que existe correlación entre los valores encontrados tras las mediciones de los puntos para la gráfica de calibración del Iso-Butanol.

3.2.3.5. ALCOHOL ISO-AMÍLICO (3-metilbutan-1-ol)

Los valores obtenidos en la tabla 3.14 muestran las áreas correspondientes a cada punto de calibración para el Alcohol Iso-Amílico. Así mismo los puntos de calibración mostrados en la tabla 3.14 se encuentran modificados según la variación en la pesada:

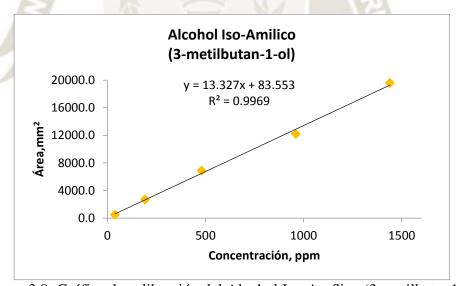


Figura 3.8: Gráfica de calibración del Alcohol Iso-Amílico (3-metilbutan1-ol)

Tabla 3.14: Concentraciones corregidas y áreas de Alcohol Iso-Amílico (3-metilbutan1-ol)

Concentración (ppm)	Área 1	Área 2	Área 3	Promedio
38.4	508.3	505.3	504.9	506.2
192	2705.5	2703.7	2697.1	2702.1
480	6875.7	6878.1	6877.4	6877.1
960	12192.0	12188.7	12189.1	12189.9
1440	19594.8	19595.0	19597.0	19595.6

La gráfica nos muestra tener un coeficiente de correlación de 0.9969. Así mismo, se procedió a realizar un análisis de varianza (ANOVA) para determinar si había diferencia significativa entre las áreas encontradas, los resultados son los siguientes:

Tabla 3.15: ANOVA de regresión lineal para Alcohol Iso-Amílico (3-metilbutan1-ol)

ANAI	LISIS DE VA	RIANZA			
	Grados de	Suma de	Promedio de los	F	Valor
	libertad	cuadrados	cuadrados	Г	crítico de F
Regresión	1	236055082.2	236055082.0	951.0	0.00007
Residuos	3	744631.7	248210.6		
Total	4	236799714.0		10	

El valor F encontrado es 951.0 y se encuentra por encima del Valor crítico F, el cual es 0.00007. Por lo tanto, se tiene evidencia experimental para rechazar la hipótesis nula y aceptar la hipótesis alternativa a un nivel de confianza del 95%. Lo que significa que existe correlación entre los valores encontrados tras las mediciones de los puntos para la gráfica de calibración del Alcohol Iso-Amílico.

3.2.4 PATRÓN CONTROL

Al igual que en los demás casos se preparó una curva del patrón control, de esta forma aseguramos que nuestro cálculo sea más exacto y no tengamos problemas al momento de evaluar si la técnica ha sido bien desarrollada. La Tabla 3.16 nos muestra los resultados obtenidos y la Figura 3.9 la gráfica correspondiente:

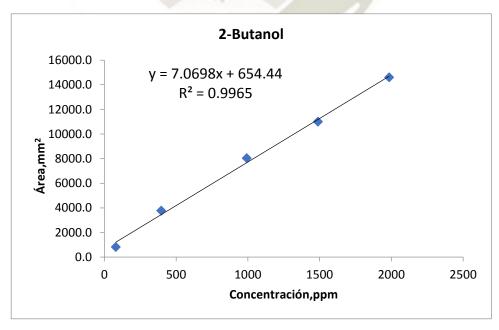


Figura 3.9: Gráfica de calibración del 2-Butanol (Patrón control)

Tabla 3.16: Concentraciones corregidas y áreas de 2-Butanol obtenidas

Concentración (ppm)	Área 1	Área 2	Área 3	Promedio
79.4	816.2	818.1	817.7	817.4
397.0	3767.5	3767.8	3774.7	3770,0
992.5	8035.9	8036.7	8028.9	8033.8
1488.8	10993.2	11001.0	10993.6	10995.9
1985.0	14601.3	14599.7	14594.6	14598.5

La gráfica nos muestra tener un coeficiente de correlación de 0.9965. Así mismo, se procedió a realizar un análisis de varianza (ANOVA) para determinar si había diferencia significativa entre las áreas encontradas, los resultados son los siguientes:

Tabla 3.17: ANOVA de regresión lineal para 2-Butanol

ANÁLISIS	ANÁLISIS DE VARIANZA						
	Grados de	Suma de	Promedio de los	10	Valor crítico		
_ A	libertad	cuadrados	cuadrados	F	de F		
Regresión		120936510.0	120936510.0	848.9	0.00008		
Residuos	3	427352.8	142450.9				
Total	4	121363863.0					

El valor F encontrado es 848.9 y se encuentra por encima del Valor crítico F, el cual es 0.00008. Por lo tanto, se tiene evidencia experimental para rechazar la hipótesis nula y aceptar la hipótesis alternativa a un nivel de confianza del 95%. Lo que significa que existe correlación entre los valores encontrados tras las mediciones de los puntos para la gráfica de calibración del 2-Butanol.

3.3. RESULTADOS DE SENSIBILIDAD

Como se mencionó anteriormente, la determinación de la sensibilidad se realizó por cálculo matemático. Al reemplazar la fórmula matemática utilizando los datos que se ven en el Anexo 8, se obtuvieron los resultados presentados en la siguiente tabla:

Tabla 3.18: Limites de cuantificación y detección para los estándares usados

Congéneres	Límite de detección (ppm)	Límite de cuantificación (ppm)	Valor mínimo aceptado según Norma Técnica Peruana 211.001 (ppm)
Acetato de etilo	16.63	18.52	42.00
Metanol	1.94	3.18	16.80
Iso-Propanol (2-Propanol)	1.22	2.02	(no especifica)
1-Propanol	2.35	2.87	(no especifica)
1-Butanol	0.52	1.55	(no especifica)
Iso-Butanol (2-metilpropan-1- ol)	1.99	3.08	(no especifica)
Alcohol Iso- Amílico (3-metilbutan-1-ol)	3.12	3.79	(no especifica)
2-Butanol	41.40	42.96	多 V -

Como podemos ver en la Tabla 3.18 la técnica da resultados sensibles a comparación de los requeridos por la Norma Técnica Peruana 211.001.

En el caso del Acetato de etilo se vio una variación en el caso del límite de detección y cuantificación, con valores de 16.63 y 18.52 ppm respectivamente. Haciendo una comparación entre los valores de la Norma Técnica Peruana 211.001 (cuyos valores mínimos son de 42ppm) los valores encontrados en la técnica desarrollada se encuentran por debajo de los valores mínimos exigidos.

En cuanto a los valores para alcoholes superiores (Iso-Propanol, 1-Propanol, 1-Butanol, Iso-Butanol y alcohol Iso-amílico) la Norma Técnica Peruana 211.001 no especifica un valor mínimo para cada uno, sino más bien lo hace en conjunto como Alcoholes superiores. Tomando en cuenta esta característica, podemos decir que la técnica ofrece sensibilidad, ya que el valor que especifica la Norma Técnica Peruana 211.003 para este total de alcoholes superiores es 252 ppm (60mg% en Alcohol Anhidro).

Finalmente, por todo lo dicho anteriormente, se puede afirmar que la técnica ofrece sensibilidad para su utilización en análisis de "Piscos".

3.4. RESULTADOS DE PRECISIÓN

3.4.1. REPETIBILIDAD

Para llevar a cabo la repetibilidad se usó 6 muestras de estándar diluidas, los valores teóricos y prácticos hallados se muestran en el anexo 9. A continuación la tabla de análisis de los datos obtenidos:

Tabla 3.19: Resultados de repetibilidad

Congénere	Promedio Práctico (ppm)	Coeficiente de variación (%)	Coeficiente de Horwitz (%)
Acetato de etilo	482.9	0.27	3.15
Metanol	475.0	0.20	3.16
Iso-Propanol (2-propanol)	465.7	0.32	3.17
1-Propanol	481.5	0.26	3.16
Iso-Butanol (2-metilpropan-1-ol)	466.5	0.27	3.17
1-Butanol	505.5	0.39	3.13
Alcohol Iso-Amílico (3-metilbutan-1-ol)	478.1	0.40	3.16
2-Butanol	491.1	0.29	3.15

Para determinar repetibilidad de los datos, se determinó el coeficiente de variación y se lo comparo con el Coeficiente de Horwitz, el cual nos estima los valores máximos del coeficiente de variación según la concentración teórica del analito que usemos. Dichos valores se encuentran en un rango de 3.15 a 3.17%

En cuanto a los valores prácticos, usando la ecuación 2.7, los coeficientes de variación hallados varían entre 0.2-0.4%, dicho valor se encuentra por debajo del valor máximo hallado para el coeficiente de Horwitz en todos los casos.

Por tal motivo se puede aseverar que no existe variación significativa entre los resultados prácticos y por lo tanto, los resultados son repetibles.

3.4.2. PRECISIÓN INTERMEDIA

Como se explicó anteriormente se realizó usando 6 muestras de estándar evaluadas en distintos días. Los resultados de cada medida se muestran en el anexo 10.

A continuación, la tabla 3.20 muestra los resultados obtenidos en el análisis de la precisión intermedia:

Tabla 3.20: Tabla con resultados de precisión intermedia

Congénere	Promedio Práctico (ppm)	Coeficiente de variación (%)	Coeficiente de Horwitz (%)
Acetato de etilo	485.6	0.41	6.31
Metanol	477.9	0.30	6.32
Iso-Propanol (2-propanol)	465.6	0.29	6.34
1-Propanol	482.7	0.41	6.31
Iso-Butanol (2-metilpropan-1-ol)	466.9	0.42	6.34
1-Butanol	505.5	0.34	6.27
Alcohol Iso-Amílico (3-metilbutan-1-ol)	477.9	0.22	6.32
2-Butanol	491.5	0.29	6.30

Para determinar la precisión intermedia se utilizó la ecuación de Horwitz para precisión intermedia. Los valores máximos de coeficiente de variación se hallaron para cada uno de los estándares utilizados y estos muestran estar en un rango de 6.30 a 6.31%.

En cuanto a los valores prácticos hallados, como se muestra en la tabla 3.20, todos lo congéneres evaluados están entre 0.2-0.4%, este valor se encuentra por debajo del coeficiente de Horwitz en todos los casos.

De esta manera podemos afirmar que no existe variación significativa entre los resultados encontrados y existe una óptima precisión intermedia.

3.5. RESULTADOS DE EXACTITUD

Por tal motivo, se evaluaron las 6 muestras de estándar. Los resultados obtenidos se compararon versus la concentración teórica y se muestran en el anexo 9.

La siguiente tabla muestra los resultados obtenidos por cada estándar:

Tabla 3.21: Tabla con resultados de exactitud obtenidos

Congéner e	Valor Práctico (ppm)	Desviació n estándar	Valor Teórico (ppm)	Porcentaje de error (%)
Acetato de etilo	484.0	0.3	485.0	0.2
Metanol	476.8	0.6	478.0	0.3
Iso-Propanol (2-propanol)	466.5	1.0	467.5	0.2
1-Propanol	483.3	0.3	485.0	0.4
Iso-Butanol (2-metilpropan-1-ol)	465.7	0.2	466.5	0.2
1-Butanol	504.7	0.4	506.7	0.4
Alcohol Iso-Amílico (3-metilbutan-1-ol)	479.2	0.2	480.0	0.2
2-Butanol	491.1	0.8	491.5	0.1

Como se ve en la tabla 3.21 el porcentaje de error va desde 0.1 a 0.4%. Los valores encontrados no son demasiado altos.

Dichos valores se deben a las concentraciones bajo las cuales se trabajó la técnica, ya que a concentraciones más altas el porcentaje de error tiende a disminuir.

Por otro lado según la guía de validación QUAM (Quantifying Uncertainty in Analytical Measurement)⁴¹ la variación aceptada en la evaluación de la exactitud es del 20%, por lo cual se puede afirmar de que mis valores se encuentran dentro de los que considera esta guía y existe una buena recuperación en la técnica.

Para concluir se puede afirmar que no existe variación bastante amplia entre los resultados obtenidos por la técnica y el valor teórico.

3.6. RESULTADOS DE MUESTRAS EVALUADAS

Fueron analizadas 4 tipos distintos de "Piscos", los que mostraron una buena resolución ante la técnica; cabe resaltar que los "Piscos" analizados son de la misma marca.

Los resultados se encuentran en las tablas de a continuación:

Tabla 3.22: "Pisco acholado"

PIS	CO ACHOLADO	Concentración (ppm)	Grado alcohólico (°)	mg% en A.A.
Acetato de e	tilo	206.7	43.1	48.0
Metanol		140.1	43.1	32.5
	1-Propanol	58.6	43.1	13.6
Alcoholes	Iso-Butanol (2-metilpropan-1-ol)	179.2	43.1	41.6
superiores	Alcohol Iso-Amílico (3-metilbutan-1-ol)	567.1	43.1	131.6
	Iso-Propanol (2-propanol)	- /	43.1	-
	1-Butanol	0110	43.1	-

Tabla 3.23: "Pisco mosto verde"

PISCO M	IOSTO VERDE	Concentración (ppm)	Grado alcohólico (°)	mg% en A.A.
Acetato de etilo	YLL	97.8	42.0	23.3
Metanol		239.3	42.0	57.0
A	1-propanol	102.5	42.0	24.4
	Iso-Butanol (2-metilpropan-1-ol)	307.8	42.0	73.3
Alcoholes superiores	Alcohol Iso- Amílico (3-metilbutan-1-ol)	1479.8	42.0	352.3
•	Iso-Propanol (2-propanol)		42.0	-
	1-Butanol	- 4	42.0	_

Tabla 3.24:" Pisco puro no aromático"

PISCO PURO NO AROMÁTICO		Concentración (ppm)	Grado alcohólico (°)	mg% en A.A.
Acetato de etilo		34.8	43.8	8.7
Metanol		100.5	43.8	23.9
Alcoholes superiores	1-propanol	45.1	43.8	10.7
	Iso-Butanol (2-metilpropan-1-ol)	109.7	43.8	26.1
	Alcohol Iso- Amílico (3-metilbutan-1-ol)	594.3	43.8	141.5
	Iso-Propanol (2-propanol)	-	43.8	-
	1-Butanol	-	43.8	

Tabla 3.25: "Pisco puro aromático"

PISCO PURO AROMÁTICO		Concentración (ppm)	Grado alcohólico(°)	mg% en AA
Acetato de etilo		118.3	41.3	28.6
Metanol		175.8	41.3	42.6
	1-propanol	115.1	41.3	27.9
	Iso-Butanol (2-metilpropan-1-ol)	229.3	41.3	55.5
Alcoholes superiores	Alcohol Iso-amílico (3-metilbutan-1-ol)	933.9	41.3	226.1
	Iso-Propanol (2-propanol)	-	41.3	-
	1-butanol	-	41.3	

Haciendo un análisis según las tablas mostradas, se puede observar que el "Pisco aromático" de esta marca se caracteriza principalmente por tener mayor contenido de Metanol, así como de Acetato de etilo. Ambos compuestos son a los que se le atribuyen la característica frutada de su aroma.

En la siguiente figura vemos una comparación gráfica entre los resultados encontrados por cada congénere en los "Piscos" analizados:

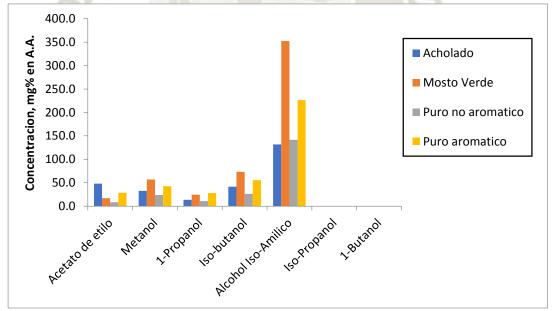


Figura 3.10: Comparación entre congéneres presentes en los "Piscos" analizados

Haciendo la comparación por compuestos presentes en el "Pisco", se puede observar que la concentración de Acetato de etilo presente en el Pisco Acholado es de 48mg% en Alcohol Anhidro.

En cuanto al grado de Metanol está presente mayormente en el "Pisco Mosto Verde" y en el "Pisco Puro Aromático" con unos porcentajes de 57 y 42.6mg% en Alcohol Anhidro.

En ambos casos esto es normal, ya que el metanol es propio de esta bebida alcohólica y además no se encuentra fuera de los valores normales.

En cuanto a los demás congéneres, todos con clasificados como alcoholes superiores. Se puede ver que en el 1-Propanol e Iso-Butanol, los valores se encuentran equilibrados; con valores que se encuentran entre 10-27 y 26 y 73mg% en alcohol anhidro respectivamente. Es decir, no existen valores que están muy por encima de los límites permisibles.

En el caso del Alcohol Iso-Amílico, se pudo observar valores extremadamente altos para el "Pisco mosto verde", con un valor de 352.3 mg% en alcohol anhidro. Comparando dicho valor con la Norma Técnica Peruana 211.003, este se encuentro demasiado alto y sumando los demás congéneres llega a un nivel demasiado elevado de alcoholes superiores, con un valor de 450mg% en Alcohol Anhidro.

En cuanto a Iso-propanol y el 1-Butanol, ambos congéneres no fueron encontrados en ninguno de los "Piscos" analizados. Estos resultados se asimilan a los encontrados por Garrido A. et al (2008) en su estudio de la composición del "Pisco" de diferentes variedades de uvas pisqueras. Dicho estudio determina que tanto el Iso-Propanol y el 1-Butanol no se encuentran presentes en todos los "Piscos" que analizaron.

3.7. VENTAJAS DE LA TÉCNICA DESARROLLADA

Las técnicas tradicionales usadas por laboratorios de ensayo, cuyas técnicas se encuentran en el Anexo 10, tienen una demora de 9 horas. Por otro lado en el caso de alcoholes superiores no se puede cuantificar la cantidad de cada alcohol superior presente en la muestra.

En tal sentido, la técnica desarrollada tiene una duración máxima de 4 horas, lo cual resulta ventajoso tanto en el tiempo y por los congéneres que son analizados. Los resultados obtenidos en el caso de alcoholes superiores son mucho más específicos que las técnicas tradicionales, ya que los resultados son reportados por cada congénere presente en el "Pisco".

CONCLUSIONES

Primero: Utilizando la columna Restek Stabilwax DA y un cromatógrafo de gases Shimadzu GC/MS-QP2010, se logró validar la técnica para cuantificar: Acetato de etilo, Metanol, 1-Propanol, 2-Butanol, Iso-butanol (2-metilpropan-1-ol), Alcohol Iso-amílico (3-metilbutan-1-ol), Iso-propanol (2-Propanol) y 1-Butanol. Los tiempos de retención hallados para estos son 2.803, 2.891, 3.224, 4.781, 5.067, 6.231, 7.527 y 9.456 respectivamente.

Segundo: Se realizó el análisis de "Piscos" de distintas variedades una misma marca. Se determinó que de los "Piscos" analizados, el "Pisco aromático" tienen una mayor presencia de Acetato de etilo que el "Pisco no aromático" con valores de 28.6 mg% en Alcohol Anhidro, mientras que el "Piscos no aromático" son los que presentan una menor concentración de congéneres en general con un porcentaje de 8.7, 23.9, 10.7, 26.1, 141.5 mg% en Alcohol anhidro para Acetato de etilo, Metanol 1-Propanol, Iso-Butanol (2-metilpropan-1-ol), Alcohol Iso-amílico (3-metilbutan-1-ol) respectivamente . Por otro lado, el "Pisco mosto verde" analizado presentó valores altos de alcoholes superiores, con un total de 450 mg% en Alcohol Anhidro. En cuanto al "Pisco acholado" este resalta por su concentración de Acetato de etilo con un valor de 48mg% en Alcohol Anhidro. Además se pudo determinar de que los congéneres más encontrados en las distintas variedades de "Piscos" son: Acetato de etilo, Metanol, 1-Propanol, Iso-butanol (2-metilpropan-1-ol) y Alcohol Iso-Amílico (3-metilbutan-1-ol).

Tercero: Esta técnica de análisis tiene una duración de 4 horas, lo cual resulta ventajoso sobre las técnicas tradicionales, los cuales demoran hasta 9 horas en realizarse. Además de esto se puede tener un resultado más específico en cuanto a los congéneres presentes en "Piscos", dado que al usar estándares por cada congénere nos permite afirmar que clase de congénere se está determinando.

SUGERENCIAS

- 1. Determinar la incertidumbre de la técnica
- **2.** Realizar un estudio de la cantidad de congéneres y su relación con sus características organolépticas.
- **3.** Realizar un estudio de la influencia del tipo de uva en los congéneres encontrados en "Piscos".
- 4. Realizar pruebas con destilados de otro tipo de bebidas alcohólicas.

BIBLIOGRAFÍA

- 1. Liebman J. Distilled Alcoholic Beverages. Journal of Agricultural and Food Chemistry. 1953; 1(19): p. 1146–1152.
- Cacho J. Moncayo L. Palma J. Ferreira V. Culleré L. Characterization of the aromatic profile of the Italia variety of Peruvian Pisco by gas chromatography-Olfactometry and gas coupled with flame ionization and mass spectrometry detection systems. ELSEVIER. 2012; 49(1): p. 117-125.
- 3. Ruiz Figuerola ER. Portal Peruano del Guajiro. [Online]; 1996. Acceso 11 de Julio de 2018. Disponible en: http://eruizf.com/peruano/index.html.
- 4. Lorenzo H. Historia de la producción de Vinos y Piscos en el Perú. Revista Universum 19(2): p. 44-61.
- 5. Instituto del vino y del pisco (IDVIP). Pisco: Definición, Variedades y Zonas de Producción. El pisco es del Perú. 2008; 2(24).
- 6. Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad Intelectual. Norma Técnica Peruana 211.001. Comisión de Normalización y de Fiscalización de Barreras Comerciales No Arancelarias.
- 7. Victoria M, Wine chemistry and Biochemistry. 1st ed. M. MA, V. PC, Editores. Madrid, España: Springer; 2009.
- 8. Sociedad de Bioquímica y Biología Molecular. Bioquímica del Vino. 176th ed. de la Rosa M., editor. Junio: Sociedad Española de Bioquímica y Biología; 2013.
- 9. José G. Lo que España llevó a América. En Taurus, editor. Boletín Hispánico. Madrid: Universidad de Bordeux; 1961. p. 293-294.
- 10. Pablo L. La vid y el Vino en América del sur: desplazamiento de los polos vitivinícolas (siglos XVI al XX). Revista Universum. 2004; 2(19): p. 62-93.
- 11. Huertas Vallejos L. Historia de la producción de Vinos y Piscos en el Perú. Revista Universum. 2004; 2(19): p. 44-61.
- 12. Ángeles Caballero C. Peruanidad del Pisco, la Vendimia, diccionario del Pisco. 6th ed. S.A. EI, editor. Lima: San Marcos; 2008.
- 13. R. W, M. E. Natural antioxidants: Chemistry, health effects and applications. 1st ed. Shahidi F, editor. Champaign, Illinois: AOCS PRESS; 1997.
- 14. Cacho J. Moncayo L. Palma J. Ferreira V. Culleré L. Comparaison of the aromatic profile of three aromatic varieties of Peruvian Pisco (Albilla, Muscat and Torontel)

- by chemical analysis and gas chromatography-olfactometry. Flavour and Fragance Journal. 2013; 28(5).
- 15. Juan C. Moncayo L. Palma J. Ferreira V. Culleré L. The impact of grape variety on the aromatic chemical composition of non aromatic Peruvian Pisco. ELSEVIER. 2013; 54(1): p. 373-381.
- 16. Lea A. Fermented Beverage Production. 2nd ed. John P, editor.: Springer; 2003.
- 17. Ferrer Espinosa J. Elaboración de vino, otras bebidas alcohólicas, aguas, cafés e infusiones Buitrago VM, Pulido C, editores. España: IC EDITORIAL; 2017.
- 18. Gunther D., Lees N., Bard M., Dickson R. Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae. 1998; 14(16): p. 1471-1510.
- 19. Instituto de investigación y formación agraria y pesquera. Sulfuroso en la elaboración de vinos. Consejería de Agricultura, pesca y desarrollo rural. Andalucía, España
- 20. Paul C. Isak P. Fermenting knowledge: the history of winemaking, science and yeast research. Science and Society series on food and science. 2010; 11(12): p. 914-920.
- 21. Gianluca B. Tufariello M. Vetrano C. Mita G. Grieco F. Simultaneous alcoholic and malolactic fermentation by Saccharomyces cerevisiae and Oenococcus oeni Cells Co-inmobilized in alginate beads. Frontiers in Microbiology. 2016; 7(943).
- 22. P. WO. Biotecnología de la Fermentación. 1st ed. Rebollar MC, editor. Zaragosa: Acribia S.A.; 1991.
- 23. Christina S, Herbert M, Eder R, M. Del Hierro A, D Kulbe K, Mathiesen G, et al. Heterologous expression of Oenococcus oenimalolactic enzyme in lactobacillus plantarum forn improved malolactic fermentation. AMB Express. 2012; 2(1): p. 19.
- 24. Dasgupta A. The science of drinking. 1st ed. Plymouth: Rowman and Little Publishers; 2010.
- 25. Basile A, Dalena F. Alcohols and Bioalcohols. 1st ed. Angelo B, editor. Calabria, Italia: Nova Science Publisher; 2015.
- 26. Lachenmeier DW, Haupt, Schulz K. Defining maximum levels of higher alcohols in alcoholic beverages and surrogate alcohols productos. Regulatory Toxicology and Pharmacology. 2008; 50.
- 27. Hidalgo Y, Hatta B, Palma J. Influencia del nivel de fermentación del vino base sobre algunos compuestos volátiles del pisco peruano de uva Italia. Sociedad Química del Perú. 2016; 82(2): p. 128-140.

- 28. Palma J., Rauch J. Evaluación del efecto de tres sistemas de destilación en la calidad del pisco de uva quebranta en el Perú. III Congreso Nacional del Pisco.
- 29. Olguín Pérez LP, Rodríguez Magadan HM. Métodos en Biotecnología. Instituto de Biotecnología, Universidad Autónoma de México.
- 30. Jennings W, Mittlefehldt E, Stremple P. Analitycal Gas Chromatography. 2nd ed. Jennings W, editor. London: Academic Press; 1997.
- 31. Sidisky L, Baney G, Stenerson K, Desorcie J. Carrier gas For Capillary Gas Chromatography. Sigma-Aldrich.
- 32. Eiceman G. Instrumentation of Gas Chromatography. 1st ed. Meyers RA, editor. Las Cruces USA: John Wiley and Sons.
- 33. Garcia Piantanida A, Barron A. Principles of Gas Chromatography. Ellis Horwood Series in Food Science and Technology.
- 34. Grob K. Split and splitless injection for quantitative gas chromatography: Concepts, Process, Practical Guidelines, Sources of error. 4th ed. Switzerland: Wiley-VCH; 2007.
- 35. Secvik J. Detectors in gas chromatography. Journal of Chromatography Library. 1976; 4(1).
- 36. Barry E, Grob R. Columns for Gas Chromatography: Performance and selection. 1st ed. New Jersey: John Wiley and sons; 2007.
- 37. Rotzche H. Stationary Phases in Gas Chromatography. Journal of Chromatography Library. 1991; 48(1).
- 38. Quattrocchi OA, De Andrizzi SA, Laba RF. Introducción a la HPLC Buenos Aires: Artes Graficos Farro; 1992.
- 39. Barwick V, Morillas Bravo P, Ellison S, Engman J, Gjengedal E, Oxenboll Lund U, et al. La adecuación al uso de los métodos analíticos. 1st ed. Magnusson B, editor. España: Eurachem; 2016.
- 40. Garrido A., Linares T., Cárdenas L. Estudio de la composición del Pisco e diferentes variedades de uva pisqueras desde el mosto hasta el producto (parte II-El pisco). Revista Peruana de Química 2008,11(1): p. 58-60.
- 41. Eurachem, Quatifying Uncertainity in Analytical Mesurements. Europa Third Edition 2012.

ANEXO 1

NORMA TÉCNICA PERUANA

NTP 211.001 2006

Comisión de Reglamentos Técnicos y Comerciales - INDECOPI Calle de La Prosa 138, San Borja (Lima 41) Apartado 145

Lima, Perú

BEBIDAS ALCOHÓLICAS. Pisco. Requisitos

ALCOHOLIC BEVERAGES. Pisco. Requirements

2006-11-02 7° Edición

R.0091-2006/INDECOPI-CRT.Publicada el 2006-11-12

Precio basado en 11 páginas

I.C.S: 67.160.10

Descriptores: Pisco, bebida alcohólica, aguardiente de uva

ÍNDICE

		página
	ÍNDICE	i
	PREFACIO	ii
I.	OBJETO	1
2.	REFERENCIAS NORMATIVAS	1
3.	CAMPO DE APLICACIÓN	2
4.	DEFINICIÓN	2
5.	CLASIFICACIÓN	3
6.	ELABORACIÓN Y EQUIPOS	3
7.	REQUISITOS	6
8.	MUESTREO	9
9.	MÉTODO DE ENSAYO	9
10.	ROTULADO	9
11.	ENVASE	10
12.	ANTECEDENTE	10

PREFACIO

A. RESEÑA HISTÓRICA

A.1 La presente Norma Técnica Peruana ha sido elaborada por el Comité Técnico de Normalización de Bebidas Alcohólicas Vitivinícolas, mediante el Sistema 2 u Ordinario, durante los meses de octubre 2004 a junio 2006, utilizando como antecedente a la NTP 211.001:2002.

A.2 El Comité Técnico de Normalización de Bebidas Alcohólicas Vitivinícolas presentó a la Comisión de Reglamentos Técnicos y Comerciales - CRT, con fecha 2006-06-20, el PNTP 211.001:2006, para su revisión y aprobación; siendo sometida a la etapa de Discusión Pública el 2006-07-20. No habiéndose presentado observaciones fue oficializado como Norma Técnica Peruana NTP 211.001:2006 BEBIDAS ALCOHÓLICAS. Pisco. Requisitos, 7º Edición, el 12 de noviembre de 2006.

A.3 Esta Norma Técnica Peruana reemplaza y fue tomada en su totalidad de la NTP 211.001:2002. La presente Norma Técnica Peruana ha sido estructurada de acuerdo a las Guias Peruanas GP 001:1995 y GP 002:1995.

B. INSTITUCIONES QUE PARTICIPARON EN LA ELABORACIÓN DE LA NORMA TÉCNICA PERUANA

Secretaria COMITÉ DE LA INDUSTRIA

VITIVINÍCOLA - S.N.I.

Presidente Alfredo San Martin N.

Secretario Edwin Landeo

ENTIDAD REPRESENTANTES

BODEGAS VISTA ALEGRE S.A. Rodolfo Vasconi

BODEGAS Y VIÑEDOS TABERNERO S.A.C. Carlos Rotondo VIÑA OCUCAJE S.A. Carlos Rubini

VIÑA TACAMA S.A. Francisco Hernández

VITIVINÍCOLA EL FUNDADOR

DE CAÑETE

Miguel Mirez Crisóstomo

EL ALAMBIQUE SAC

José Américo Vargas de la Jara

ASOCIACIÓN DE PRODUCTORES DE VINOS Y PISCOS DEL VALLE

DE ICA - APROPICA

Jesús Hernández

José Carrasco

ASOCIACIÓN VITIVINÍCOLA DE

LUNAHUANA

Juan Carlos Alvarado

BODEGA LA NUEVA VICUÑA Hugo Castellano

BODEGA EL CATADOR

PISCO PAYET Guillermo Payet

INVERSIONES ALEPA S.A. James Bosworth

BODEGA SOTELO Julio Sotelo

LICORES SAN FRANCISCO Nicanor Revilla

SOC. IND. E. COPELLO S.A.C. Luis López Palomino

BODEGA LA BLANCO Carlos Arturo Mejía

SANTIAGO QUEIROLO S.A.C. Jorge Queirolo

CORPISCO José Moquillaza

BODEGA GRAN CRUZ Alfredo Gordillo Uribe

INDECOPI José Dajes

Ray Meloni

MINISTERIO DE LA PRODUCCIÓN Luis Guerrero

ASPEC Samuel Ureña

COFRADÍA NACIONAL DE CATADORES

DEL PERÚ

John Schuler

INASSA Emma Aguinaga

SAT Clotilde Huapaya

Dany Urbina

REPOSITORIO DE TESIS UCSM

CERPER Gloria Reyes

LA MOLINA CALIDAD TOTAL Juan Carlos Palma

LABORATORIOS

CITEvid Manuel Morón

UNIVERSIDAD AGRARIA LA MOLINA Beatriz Hatta

Consultora Lyris Monasterio

Consultor Marco Antonio Zúñiga Díaz

---000O000---

NORMA TÉCNICA	NTP 211.001
PERUANA	1 de 11

BEBIDAS ALCOHÓLICAS. Pisco. Requisitos

1. OBJETO

Esta Norma Técnica Peruana establece los requisitos que debe cumplir el Pisco.

2. REFERENCIAS NORMATIVAS

Las siguientes normas contienen disposiciones que al ser citadas en este texto, constituyen requisitos de esta Norma Técnica Peruana. Las ediciones indicadas estaban en vigencia en el momento de esta publicación. Como toda norma está sujeta a revisión, se recomienda a aquellos que realicen acuerdos en base a ellas, que analicen la conveniencia de usar las ediciones recientes de las normas citadas seguidamente. El Organismo Peruano de Normalización posee, en todo momento, la información de las Normas Técnicas Peruanas en vigencia.

2.1	Normas Técnicas Peruanas		
2.1.1	NTP 210.001:2003	BEBIDAS ALCOHÓLICAS. Extracción de muestras	
2.1.2	NTP 210.027:2004	BEBIDAS ALCOHÓLICAS. Rotulado	
2.1.3	NTP 209.038:2003	ALIMENTOS ENVASADOS. Etiquetado	
2.1.4	NTP 210.003:2003	BEBIDAS ALCOHÓLICAS. Determinación del grado alcohólico volumétrico. Método por picnometría.	
2.1.5	NTP 210.022:2003	BEBIDAS ALCOHÓLICAS. Método de ensayo. Determinación del metanol.	

NORMA PERUAN	TÉCNICA A	NTP 211.001 2 de 11
2.1.6	NTP 210.025:2003	BEBIDAS ALCOHÓLICAS. Método de ensayo. Determinación de furfural.
2.1.7	NTP 211.035:2003	BEBIDAS ALCOHÓLICAS. Método de ensayo. Determinación de metanol y de congéneres en bebidas alcohólicas y en alcohol etilico empleado en su elaboración, mediante cromatografía de gases.
2.1.8	NTP 211.038:2003	BEBIDAS ALCOHÓLICAS. Método de ensayo. Determinación de aldehídos
2.1.9	NTP 211.040:2003	BEBIDAS ALCOHÓLICAS. Método de ensayo. Determinación de acidez.
2.1.10	NTP 211.041:2003	BEBIDAS ALCOHÓLICAS. Método de ensayo. Determinación de extracto seco total.
2.2	Norma Metrológica	Peruana
	NMP 001:1995	PRODUCTOS ENVASADOS. Rotulado

3. CAMPO DE APLICACIÓN

Esta Norma Técnica Peruana se aplica a los tipos de Piscos indicados en el Capítulo 5 CLASIFICACIÓN.

4. DEFINICIÓN

Para los propósitos de esta Norma Técnica Peruana se aplica la siguiente definición:

NORMA TÉCNICA NTP 211.001 PERUANA 3 de 11

ptsco: Es el aguardiente obtenido exclusivamente por destilación de mostos frescos de "Uvas Pisqueras" recientemente fermentados, utilizando métodos que mantengan el principio tradicional de calidad establecido en las zonas de producción reconocidas¹.

5. CLASIFICACIÓN

- 5.1 Pisco puro: Es el Pisco obtenido exclusivamente de una sola variedad de uva pisquera.
- 5.2 Pisco mosto verde: Es el Pisco obtenido de la destilación de mostos frescos de uvas pisqueras con fermentación interrumpida
- 5.3 Pisco acholado: Es el Pisco obtenido de la mezcla de:
 - Uvas Pisqueras, aromáticas y/o no aromáticas.
 - Mostos de uvas pisqueras aromáticas y/o no aromáticas.
 - Mostos frescos completamente fermentados (vinos frescos) de uvas aromáticas y/o no aromáticas.
 - Piscos provenientes de uvas pisqueras aromáticas y/o no aromáticas.

6. ELABORACIÓN Y EQUIPOS

6.1 Elaboración:

6.1.1 Varledades de uvas pisqueras: El Pisco debe ser elaborado exclusivamente utilizando las variedades de uva de la especie Vitis Vinifera L, denominadas "Uvas Pisqueras" y cultivadas en las zonas de producción reconocidas. Estas son:

_

¹ D.S. Nº 001-91-ICTI/IND

NORMA TÉCNICA	NTP 211.001
PERUANA	4 de 11

- 6.1.1.1 Quebranta
- 6.1.1.2 Negra Criolla
- 6.1.1.3 Mollar
- 6.1.1.4 Italia
- 6.1.1.5 Moscatel
- 6.1.1.6 Albilla
- 6.1.1.7 Torontel
- 6.1.1.8 Uvina2
- 6.1.2 Son uvas no aromáticas las uvas Quebranta, Negra Criolla, Mollar y Uvina; y uvas aromáticas las uvas Italia, Moscatel, Albilla y Torontel.
- 6.1.3 Los equipos, máquinas, envases y otros materiales utilizados en la elaboración de Pisco así como la instalación o área de proceso deben cumplir con los requisitos sanitarios establecidos por la entidad competente para asegurar la calidad del producto.
- 6.1.4 El proceso de fermentación puede realizarse sin maceración o con maceración parcial o completa de orujos de uvas pisqueras, controlando la temperatura y el proceso de degradación de los azúcares del mosto.

Variedad aceptada para elaborar pisco, hasta obtener la opinión favorable de la OIV (la misma que deberá ser obtenida en un plazo no mayor de 3 años), cuyo cultivo y producción se circunscribe únicamente a los distritos de Lunahuaná, Pacarán y Zúñiga (zona de producción reconocida con D.S. 001-91-ICTI/IND).

NORMA TÉCNICA	NTP 211.001
PERUANA	5 de 11

- 6.1.5 El inicio de la destilación de los mostos fermentados debe realizarse inmediatamente después de concluida su fermentación, a excepción del Pisco mosto verde.
- 6.1.6 El Pisco debe tener un reposo mínimo de tres (03) meses en recipientes de vidrio, acero inoxidable o cualquier otro material que no altere sus características físicas, químicas y organolépticas antes de su envasado y comercialización con el fin de promover la evolución de los componentes alcohólicos y mejora de las propiedades del producto final.
- 6.1.7 El Pisco debe estar exento de coloraciones, olores y sabores extraños causados por agentes contaminantes o artificiales que no sean propios de la materia prima utilizada.
- 6.1.8 El Pisco no debe contener impurezas de metales tóxicos o sustancias que causen daño al consumidor.
- 6.2 Equipos: La elaboración de Pisco será por destilación directa y discontinua, separando las cabezas y colas para seleccionar únicamente la fracción central del producto llamado cuerpo o corazón. Los equipos serán fabricados de cobre o estaño; se puede utilizar pailas de acero inoxidable. A continuación se describen estos equipos:
- 6.2.1 Falca: Consta de una olla, paila o caldero donde se calienta el mosto recientemente fermentado y, por un largo tubo llamado "Cañón" por donde recorre el destilado, que va angostándose e inclinándose a medida que se aleja de la paila y pasa por un medio frío, generalmente agua que actúa como refrigerante. A nivel de su base está conectado un caño o llave para descargar las vinazas o residuos de la destilación. Véase Figura 1.

Se permite también el uso de un serpentín sumergido en la misma alberca o un segundo tanque con agua de renovación continúa conectando con el extremo del "Cañón".

6.2.2 Alambique: Consta de una olla, paila o caldero donde se calienta el mosto recientemente fermentado, los vapores se elevan a un capitel, cachimba o sombrero de moro para luego pasar a través de un conducto llamado "Cuello de cisne" llegando finalmente a un serpentín o condensador cubierto por un medio refrigerante, generalmente agua. Véase Figura 2.

NORMA TÉCNICA NTP 211.001 PERUANA 6 de 11

6.2.3 Alambique con calienta vinos: Además de las partes que constituyen el alambique, lleva un recipiente de la capacidad de la paila, conocido como "Calentador", instalado entre ésta y el serpentín. Calienta previamente al mosto con el calor de los vapores que vienen de la paila y que pasan por el calentador a través de un serpentín instalado en su interior por donde circulan los vapores provenientes del cuello de cisne intercambiando calor con el mosto allí depositado y continúan al serpentín de condensación. Véase Figura 3.

No se permitirán equipos que tengan columnas rectificadoras de cualquier tipo o forma ni cualquier elemento que altere durante el proceso de destilación, el color, olor, sabor y características propias del Pisco.

7. REQUISITOS

7.1 Requisitos organolépticos

El Pisco debe presentar los requisitos organolépticos indicados en la Tabla 1.

NTP 211.001 7 de 11

TABLA 1 - Requisitos organolépticos del pisco

REQUISITOS ORGANOLÉPTICOS	PISCO				
DESCRIPCIÓN	PISCO PURO: DE UVAS NO AROMÁTICAS	PISCO PURO: DE UVAS AROMÁTICAS	PISCO ACHOLADO	PISCO MOSTO VERDE	
ASPECTO	Claro, límpido y brillante	Claro, limpido y brillante	Claro, limpido y brillante	Claro, limpido y brillante	
COLOR	Incoloro	Incoloro	Incoloro	Incoloro	
OLOR	Ligeramente alcoholizado, no predomina el aroma a la materia prima de la cual procede, limpio, con estructura y equilibrio, exento de cualquier elemento extraño.	recuerda a la materia prima de la cual procede, frutas maduras o sobre maduradas, intenso,	Ligeramente alcoholizado, intenso, recuerda ligeramente a la materia prima de la cual procede, frutas maduras o sobre maduradas, muy fino, estructura y equilibrio, exento de cualquier elemento extraño.	Ligeramente alcoholizado, intenso, no predomina el aroma a la materia prima de la cual procede o puede recordar ligeramente a la materia prima de la cual procede, ligeras frutas maduras o sobre maduradas, muy fino, delicado, con estructura y equilibrio, exento de cualquier elemento extraño	
SABOR	Ligeramente alcoholizado, ligero sabor, no predomina el sabor a la materia prima de la cual procede, limpio, con estructura y equilibrio, exento de cualquier elemento extraño	que recuerda a la materia prima de la cual procede, intenso, con estructura y equilibrio, exento de	sabor que recuerda ligeramente a la materia prima de la cual procede, intenso, muy fino, con estructura y equilibrio,	muy fino y delicado aterciopelado, con estructura	

- 7.1.1 El Pisco no debe presentar olores y sabores o elementos extraños que recuerden a aromas y sabores de sustancias químicas y sintéticos que recuerden al barniz, pintura, acetona, plástico y otros similares; sustancias combustibles que recuerden a kerosene, gasolina y otros similares; sustancias en descomposición que recuerden a abombado; sustancias empireumáticas que recuerden a quemado, leña, humo, ahumado o cocido y otros similares así como otros semejantes a las grasas, leche fermentada y caucho.
- 7.1.2 Los olores y sabores enunciados líneas arriba son referenciales y no limitados.

NORMA TÉCNICA	NTP 211.001
PERUANA	8 de 11

7.2 Requisitos físico-químicos

7.2.1 El Pisco debe presentar los requisitos físicos y químicos indicados en la Tabla 2.

TABLA 2 - Requisitos físicos y químicos del pisco

REQUISITOS FÍSICOS Y QUÍMICOS	Minimo	Máximo	Tolerancia al valor declarado	Método de ensayo
Grado alcohólico volumétrico a 20/20 °C (%) (1)	38,0	48,0	+/- 1,0	NTP 210.003:2003
Extracto seco a 100 °C (g/l)	-	0,6		NTP 211.041:2003
COMPONENTES VOLÁTILES Y CONGÉNERES (mg/100 ml A.A.) (2))	
Formiato de etilo Acetato de etilo Acetato de etilo Acetato de Iso-Amilo (3)	10,0	330,0 - 280,0		NTP 211.035:2003
Furfural		5,0		NTP 210.025:2003 NTP 211.035:2003
Aldehidos, como acetaldehido	3,0	60,0		NTP 211.038:2003 NTP 211.035:2003
Alcoholes superiores, como alcoholes superiores totales • Iso-Propanol (*) • Propanol (*) • Butanol (*) • Iso-Butanol (*) • 3-metil-1-butanol/2-metil-1-butanol (*)	60,0	350,0 - - -		NTP 211.035;2003
Acidez volátil (como ácido acético)		200,0		NTP 211.040:2003 NTP 211.035:2003
Alcohol metilico Pisco Puro y Mosto Verde de uvas no aromáticas Pisco Puro y Mosto Verde de uvas	4,0	100,0 150,0		NTP 210.022:2003 NTP 211.035:2003
aromáticas y Pisco Acholado TOTAL COMPONENTES VOLÁTILES Y CONGÉNERES	150,0	750,0		

NOTAS ADICIONALES AL CUADRO Nº2:

(1) Esta tolerancia se aplica al valor declarado en la etiqueta pero de ninguna manera

NORMA TÉCNICA	NTP 211.001
PERUANA	9 de 11

deberá permitirse valores de grado alcohólico menores a 38 ni mayores a 48.

- (2) Se consideran componentes volátiles y congéneres del Pisco, las siguientes sustancias: ésteres, furfural, ácido acético, aldehídos, alcoholes superiores y alcohol metilico.
- (3) Es posible que no estén presentes, pero de estarlos la suma con el acetato de etilo no debe sobre pasar 330 mg. / 100 ml.
- (4) Es posible que no esté presente.
- (5) Deben estar presentes sin precisar exigencias de máximos y mínimos

8. MUESTREO

Las muestras se deberán extraer de conformidad con la NTP 210.001.

9. MÉTODOS DE ENSAYO

Los métodos de ensayo a seguir serán los establecidos en el capítulo 2 de esta NTP.

10. ROTULADO

- 10.1 El rotulado debe estar de acuerdo con la NTP 210.027, NTP 209.038 y NMP 001.
- 10.2 En la etiqueta se debe indicar la variedad de la uva pisquera y el valle de ubicación de la bodega elaboradora.
- 10.3 El uso de la denominación de la "Zona de Producción" está reservado exclusivamente al Pisco que se elabore y envase en la misma zona de donde proceden las uvas pisqueras utilizadas en su elaboración.

NORMA TÉCNICA NTP 211.001 PERUANA 10 de 11

11. ENVASE

- 11.1 El recipiente utilizado para conservar, trasladar y envasar el Pisco debe ser sellado, no deformable y de vidrio neutro u otro material que no modifique el color natural del mismo y no transmita olores, sabores y sustancias extrañas que alteren las características propias del producto.
- 11.2 El envase utilizado para comercializar el Pisco debe ser sellado y sólo de vidrio o cerámica.
- 11.3 El envase debe proteger al Pisco de la contaminación.

12. ANTECEDENTE

12.1 NTP 211.001:2002 Bebidas Alcohólicas. Pisco. Requisitos

NTP 211.001 11 de 11

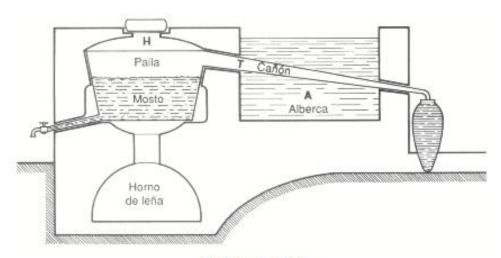
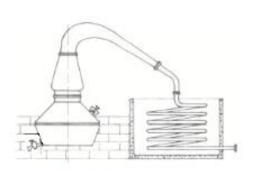



FIGURA 1 - Falca

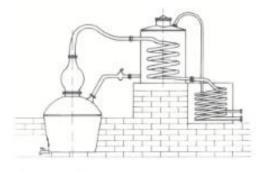


FIGURA 3 - Alambique con calientavinos

ANEXO 2

NORMA TÉCNICA NTP 210.003 PERUANA 2003

Comisión de Reglamentos Técnicos y Comerciales - INDECOPI Calle de La Prosa 138, San Borja (Lima 41) Apartado 145

Lima, Perú

BEBIDAS ALCOHÓLICAS. Determinación del grado alcohólico volumétrico. Método por picnometría

ALCOHOLIC BEVERAGES. Determination of volumetric alcoholic grade. Pycnometer method

2003-12-11 2ª Edición

R.0120-2003/INDECOPI-CRT. Publicada el 2004-01-17

Precio basado en 22 páginas

I.C.S.: 67.160.10; 71.080.60

ESTA NORMA ES RECOMENDABLE

Descriptores: Bebidas alcohólicas, grado alcohólico volumétrico, método de ensayo, picnometría

ÍNDICE

			página
	INDICE		i
	PREFACIO		ii
1.	OBJETO		, 1
2.	REFERENCIAS NORMATIVAS		1
3.	CAMPO DE APLICACIÓN		1
4.	DEFINICIONES		1
5.	MUESTREO		2
6.	PRINCIPIO DEL MÉTODO	•	2
7.	EQUIPO Y MATERIALES		2
8.	REACTIVOS		2
9.	PROCEDIMIENTO		4
10.	EXPRESIÓN DE RESULTADOS		6
11.	ANTECEDENTE	•	6
	ANEXOS		
	ANEXO A ANEXO B		9 10

PREFACIO

A. RESEÑA HISTÓRICA

A.1 La presente Norma Técnica Peruana fue elaborada por el Comité Técnico de Normalización de Bebidas Alcohólicas, mediante el Sistema 2 u Ordinario, durante los meses de agosto y setiembre del 2003, utilizando como antecedente a los indicados en el capítulo correspondiente.

A.2 El Comité Técnico de Normalización de Bebidas Alcohólicas presentó a la Comisión de Reglamentos Técnicos y Comerciales -CRT-, con fecha 2003-09-24, el PNTP 210.003:2003, para su revisión y aprobación, siendo sometido a la etapa de Discusión Pública el 2003-10-10. No habiéndose presentado observaciones fue oficializada como Norma Técnica Peruana NTP 210.003:2003 BEBIDAS ALCOHÓLICAS. Determinación del grado alcohólico por volumetría. Método por picnometría, 2º Edición, el 17 de enero de 2004.

A.3 Esta Norma Técnica reemplaza a la NTP 210.003:1966. La presente Norma Técnica Peruana ha sido estructurada de acuerdo a las Guias Peruanas GP 001:1995 y GP 002:1995.

B. INSTITUCIONES QUE PARTICIPARON EN LA ELABORACIÓN DE LA NORMA TÉCNICA PERUANA

Secretaria Sociedad Nacional de Industrias-

Comité de la Industria de Bebidas

Alcohólicas y Destilados

Presidente Mario Maggi Pacheco

Secretario Luis Taipe Palacios

ENTIDAD REPRESENTANTE

Agroindustrial Casa Grande S.A.A Victor Ruiz Valera

Agroindustrial Paramonga S.A. Marino Rodriguez

Agro Industrial Laredo S.A.A. Alejandro Sanchez
Carlos Carrión

José Jiménez ALKOHLER E.I.R.L.

Maribel Espinoza CERPER

Carlos Torres COLAROMO S.R.L.

Fredy Chávez Destilerías Unidas S.A.C

FYAREPSA Félix Arce Fredy Mejía

Sonia Palomino FOOD SOLUTIONS S.A.C. Elsa Zubiate

Danko Miskulin GRUPO COMERCIAL BARI S.A.

José Pizarro

INASSA Emma Aguinaga

La Molina Calidad Total Laboratorios Lourdes Hernández

Nicanor Revilla Licores San Francisco S.A.

Ministerio de Salud-DIGESA Francisco Loayza

Ministerio de la Producción Luis Guerrero

SGS del Perú Bertha Sulca

Esther Benites

S.A.T. S.A.C. Lylyams Inga

Gloria Reyes Consultora

--000O000---

NORMA TÉCNICA		NTP 210.003
		N1F 210.003
PÉRUANA		. 1 de 22

BEBIDAS ALCOHÓLICAS. Determinación del grado alcohólico volumétrico. Método por picnometría

OBJETO

Esta Norma Técnica Peruana establece el método por picnometría para la determinación del grado alcohólico en muestras de bebidas alcohólicas o alcohol etílico.

2. REFERENCIAS NORMATIVAS

Las siguientes normas contienen disposiciones que al ser citadas en este texto, constituyen requisitos de esta Norma Técnica Peruana. Las ediciones indicadas estaban en vigencia en el momento de esta publicación. Como toda Norma está sujeta a revisión, se recomienda a aquellos que realicen acuerdos en base a ellas, que analicen la conveniencia de usar las ediciones recientes de las normas citadas seguidamente. El Organismo Peruano de Normalización posee, en todo momento, la información de las Normas Técnicas Peruanas en vigencia.

Normas Técnicas Peruanas

2.1	NTP 210.001:2003	BEBIDAS Definiciones	ALCOHÓLICAS.
2.2	NTP 210.019:2003	BEBIDAS Extracción de muest	ALCOHÓLICAS. ras
2.3	NTP 211.020:2003	BEBIDAS ALCOH etílico. Definiciones	
2.4	NTP 211.039:2003	BEBIDAS ALCOH	

NORMA TÉCNICA	NTP 210.003
PERUANA	2 de 22
TERCHANT	

3. CAMPO DE APLICACIÓN

Esta Norma Técnica Peruana se aplica a las bebidas alcohólicas y a los diferentes tipos de alcohol etílico definidos en el NTP 210.019 y NTP 211.020, respectivamente.

4. DEFINICIONES

Para los propósitos de esta Norma Técnica Peruana se aplican las siguientes definiciones:

- 4.1 **temperatura de referencia:** La temperatura de referencia para la determinación del grado alcohólico queda fijada en 20 °C .
- 4.2 **picnómetro:** Frasco que se emplea para determinar la densidad de los líquidos.

5. MUESTREO

El muestreo se efectúa de acuerdo al NTP 210.001.

6. PRINCIPIO DEL MÉTODO

El método del picnómetro se basa en la determinación del grado alcohólico volumétrico por gravimetría.

NORMA TÉCNICA			NTP 210.003
PERUANA	 		 1 de 22

BEBIDAS ALCOHÓLICAS. Determinación del grado alcohólico volumétrico. Método por picnometría

1. OBJETO

Esta Norma Técnica Peruana establece el método por picnometría para la determinación del grado alcohólico en muestras de bebidas alcohólicas o alcohol etílico.

2. REFERENCIAS NORMATIVAS

Las siguientes normas contienen disposiciones que al ser citadas en este texto, constituyen requisitos de esta Norma Técnica Peruana. Las ediciones indicadas estaban en vigencia en el momento de esta publicación. Como toda Norma está sujeta a revisión, se recomienda a aquellos que realicen acuerdos en base a ellas, que analicen la conveniencia de usar las ediciones recientes de las normas citadas seguidamente. El Organismo Peruano de Normalización posee, en todo momento, la información de las Normas Técnicas Peruanas en vigencia.

Normas Técnicas Peruanas

2.1	NTP 210.001:2003	BEBIDAS Definiciones	ALCOHÓLICAS.
2.2	NTP 210.019:2003	BEBIDAS Extracción de muestr	ALCOHÓLICAS. as
2.3	NTP 211.020:2003	BEBIDAS ALCOHetilico. Definiciones	ÓLICAS. Alcohol
2.4	NTP 211.039:2003	BEBIDAS ALCOH de ensayo. Destilació	

NORMA TÉCNICA	NTP 210.003
PERUANA	2 de 22

3. CAMPO DE APLICACIÓN

Esta Norma Técnica Peruana se aplica a las bebidas alcohólicas y a los diferentes tipos de alcohol etílico definidos en el NTP 210.019 y NTP 211.020, respectivamente.

4. DEFINICIONES

Para los propósitos de esta Norma Técnica Peruana se aplican las siguientes definiciones:

- 4.1 **temperatura de referencia:** La temperatura de referencia para la determinación del grado alcohólico queda fijada en 20 $^{\circ}$ C .
- 4.2 **picnómetro:** Frasco que se emplea para determinar la densidad de los líquidos.

MUESTREO

El muestreo se efectúa de acuerdo al NTP 210,001.

6. PRINCIPIO DEL MÉTODO

El método del picnómetro se basa en la determinación del grado alcohólico volumétrico por gravimetria.

NORMA TÉCNICA

NTP 210.003 3 de 22

PÉRUAN	VA ·
7.	EQUIPOS Y MATERIALES
7,1	Balanza analítica, con sensibilidad de 0,0001 g .
7.2	Picnómetro calibrado de 100 mL ó 50 mL. Véase Figura 1.
7.3	Baño de agua a 20 °C ± 0,2 °C .
7.4	Sistema de destilación: Véase Anexo A, de ser necesario.
8.	REACTIVOS
8.1	Agua destilada o desionizada.

NORMA TÉCNICA NTP 210.003
PERUANA 4 de 22

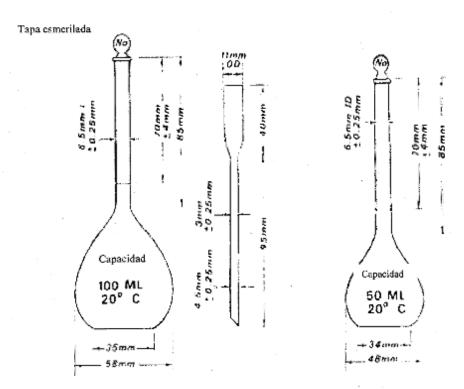


FIGURA 1 -Picnómetro calibrado de 100 mL ó 50 mL

9. PROCEDIMIENTO

(Algunas bebidas destiladas no requieren destilación previa a la determinación, por ejemplo whisky bourbon, mezclas de alcohol-agua conteniendo trazas de ingredientes volátiles.)

82

NORMA TÉCNICA	NTP 210.003
PERUANA	 5 de 22

Muestras de ensayo conteniendo 60 % Alc. Vol. o menos por volumen

- Calibración a 20 °C del picnómetro de 100 ml (véase Figura 1).
 - a) Llenar completamente el picnómetro limpio con agua recientemente destilada, tapar y sumergirlo en un baño de agua a la temperatura de referencia, nivelar el baño por encima de la marca de graduación del picnómetro.
 - Luego de 30 minutos, remover la tapa y con un tubo capilar ajustar hasta poner el menisco tangente a la marca de graduación.
 - c) Con pequeños rollos de papel de filtro, secar el interior del cuello del picnómetro, tapar y sumergir en un baño de agua a temperatura de referencia por 15 minutos.
 - Retirar el picnómetro, secar, dejar reposar 15 minutos y pesar.
 - e) Vaciar el pienómetro, enjuagar con acetona y secar completamente con una corriente de aire.
 - Dejar que el picnómetro vacío llegue a la temperatura de referencia, tapar y pesar.
 - g) El peso de agua contenido en el aire = Peso del picnómetro lleno Peso del picnómetro vacío
- 9.1.2 Llenar el picnómetro limpio y seco con la porción de ensayo y ajustar el volumen a la temperatura de calibración como en el apartado 9.1.1.

NOTA: Si el extracto seco de la muestra es menor o igual a 6 g/L, la muestra no requiere destilación. En este caso los pasos 9.1.3 al 9.1.8 no son de aplicación.

NORMA TÉCNICA		NTP 210.003
PERUANA	·	6 de 22

- 9.1.3 Transferir el contenido del picnómetro a un matraz de destilación previamente enjuagado con agua fría y conteniendo algunos reguladores de ebullición o equivalente.
- 9.1.4 Enjuagar el picnómetro 3 veces usando un total de 25 mL de agua fría (40 mL para vinos y aperitivos) y añadir el agua de enjuague al matraz de destilación.
- 9.1.5 Colocar el picnómetro húmedo de tal manera que el adaptador conectado a la parte inferior del refrigerante llegue casi al fondo del picnómetro.
- 9.1.6 Rodear el picnómetro con hielo o agua helada. Completar las conexiones haciendo pasar a través del condensador una corriente de agua manteniendo la temperatura a ≤ 25 °C a la salida.
- 9.1.7 Destilar aproximadamente 96 mL entre 30 min 60 min, usando mayor tiempo para alto porcentaje de alcohol.
- 9.1.8 Remover y tapar el picnómetro. Mezclar el destilado por rotación y arrastrar con agua algunas gotas que puedan estar sobre la marca de graduación del picnómetro.
- 9.1.9 Sumergir el picnómetro en baño de agua a la temperatura de referencia y después de 30 min diluir a volumen cuidadosamente, con ayuda del tubo capilar, por adición de agua previamente hervida y enfriada a la misma temperatura.
- 9.1.10 Determinar la gravedad específica del destilado y del Anexo B obtener el % de alcohol por volumen.

9.2 Muestras conteniendo mas de 60 % Alc.Vol

Proceder como en el apartado 9.1 con los siguientes cambios:

9.2.1 Calibrar a 20 °C los picnómetros de 100 mL y 50 mL (véase Figura 1).

NORMA TÉCNICA			NTP 210.003
PERUANA	 	•	7 de 22

- 9.2.2 Llenar el pienómetro de 50 mL con la porción de ensayo y ajustar el volumen a 20 °C. Transferir el contenido del pienómetro a una matraz de destilación previamente enjuagado con agua fría y conteniendo algunos reguladores de ebullición o equivalente.
- 9.2.3 Adicionar 50 mL de agua fría al matraz de destilación y colectar el destilado en un picnómetro de 100 mL .
- 9.2.4 Enrasar el picnómetro a 20 °C.
- 9.2.5 Determinar la gravedad específica del destilado y del Anexo B obtener el % de alcohol por volumen.

10. EXPRESIÓN DE RESULTADOS

10.1 Determinar la gravedad específica del destilado como en el apartado 9.1.1 para la porción de ensayo.

Gravedad específica en el aire =
$$\frac{S}{W}$$

donde:

S = peso de la porción de ensayo

W = peso del agua

- 10.2 Obtener el correspondiente grado alcohólico a 20 °C de acuerdo a las tablas del Anexo B.
- 10.3 Para muestras conteniendo mas 60 % Alc.Vol., se hace la siguiente corrección:

NORMA TÉCNICA	NTP 210.003
PERUANA	8 de 22

% Alcohol a 20 °C = D x W

Donde:

 $D_{\rm }=\%$ Alcohol por volumen a 20 °C (Valor obtenido en 10.2) $W_{\rm }=$ Peso del picnómetro de 100 mL con agua a 20 °C $W_{\rm }=$ Peso del picnómetro de 50 mL con agua a 20 °C

11.	ANTECEDENTES	
11.1	AOAC 942.06:2000	Alcohol by volume in distilled liquors
11.2	AOAC 945.06:2000	Specific gravity (apparent) of distilled liquors
11.3	NTP 210.003:1966	BEBIDAS ALCOHÓLICAS, Método usual por picnometría para determinar la densidad y la densidad relativa
11.4	NTP 319.229:2003	BEBIDAS ALCOHÓLICAS. Alcohol etílico. Método de ensayo. Determinación del grado alcohólico volumétrico
11.5	Diario Oficial de las Con	nunidades Europeas 2000-12-29

NTP 210.003 9 de 22

ANEXO A (INFORMATIVO)

SISTEMA DE DESTILACIÓN

NOTA1: En el caso de bebidas alcohólicas con extracto seco mayor a 6 g/L, destilar la muestra como se indica en el apartado 9.1.3 al 9.1.8 ó en la NTP 211.039, y se determina el grado alcohólico del destilado.

NOTA 2: En el caso de bebidas alcohólicas con un contenido de extracto seco menor o igual a 6 g/L, la muestra no requiere destilación.

- A.1 Matraz de destilación: Matraz de fondo redondo de 500 mL.
- **A.2** Refrigerante recto, tipo Leibig con camisa (chaqueta) de \geq 400 mm de longitud con un tubo interior de 9 mm \pm 1 mm, de diámetro interno. Este refrigerante se coloca verticalmente y al extremo inferior se le adapta un tubo de vidrio de longitud adecuada para que llegue casi hasta el fondo del recipiente en que se recoge el destilado.
- A.3 Manta de calentamiento con control de temperatura
- **A.4** Reguladores de ebullición: Fragmentos de piedra pómez, porcelana porosa, perlas de vidrio o cualquier otro material adecuado. Debe asegurarse su completa limpieza antes de ser utilizado.

NTP 210.003 10 de 22

ANEXO B (NORMATIVO)

Grado alcohólico a 20 °C correspondiente a gravedad específica a 20/20 °C

Sp-gr a 20 °C/20 °C	Densidad a 20 °C, g/L	% Alc.Vol. (20 °C)
	- 10	
1,0000	998,20	0,0
0,9998	998,05	0,1
0,9997	997,90	0,2
0,9995	997,75	0,3
0,9994	997,59	0,4
0,9992	997,44	0,5
0,9991	997,29	0,6
0,9989	997,14	0,7
0,9988	996,99	0,8
0,9986	996,85	0,9
0,9985	996,70	1,0
0,9983	996,55	1,1
0,9982	996,40	1,2
0,9980	996,25	1,3
0,9979	996,11	1,4
0,9978	995,96	1,5
0,9976	995,81	1,6
0,9975	995,67	1,7
0,9973	995,52	1,8
0,9972	995,38	1,9
0,9970	. 995,23	2,0
0,9969	995,09	2,1
0,9967	994,94	2,2
0,9966	994,80	2,3
0,9965	994,66	2,4
0,9963	994,51	2,5
0,9962	994.37	2,6
0,9960	994,23	2,7
0,9959	994,09	2,8
0,9957	993,95	2,9
0,9956	993,81	3,0
0,9955	993,66	3,1
0,9953	993,52	3,2
0,9952	993,38	3,3
0,9950	993,24	3,4
0,9949	993,11	3,5
0,9948	992,97	3,6
0,9946	992,83	3,7
0,9945	992,69	3,8
0,9943	992,55	3,9

Sp-gr n	Densidad a	% Alc.Vol.
20 °C/20 °C	20 °C, g/L	(20 °C)
0,9942	992,41	4,0
0,9941	992,28	4,1
0,9939	992,14	4,2
0,9938	992,00	4,3
0,9937	991,87	4,4
0,9935	991,73	4,5
0,9934	991,59	4,6
0,9932	991,46	4,7
0,9931	991,32	4,8
0,9930	991,19	4,9
0,9928	991,06	5,0
0,9927	990,92	5,1
0,9926	990,79	5,2
0,9924	990,65	5,3
0,9923	990,52	5,4
0,9922	990,39	5,5
0,9920	990,26	5,6
0,9919	990,12	5,7
0,9918	989,99	5,8
0,9916	989,86	5,9
0,9915	989,73	6,0
0,9914	989,60	6,1
0,9913	989,47	6,2
0,9911	989,34	6,3
0,9910	989,21	6,4
0,9909	989,08	6,5
0,9907	988,95	6,6
0,9906	988,82	6,7
0,9905	988,69	6,8
0,9903	988,56	6,9
0,9902	988,43	7,0
0,9901	988,30	7,1
0,9900	988,18	. 7,2
0,9898	988,05	7,3
0,9897	987,92	7,4
0,9896	987,79	7,5
0,9895	987,67	7,6
0,9893	987,54	7,6 7,7
0,9892	987,42	7,8
0,9891	987,29	7,9

NTP 210.003 11 de 22

.. continuación

Sp-gr a	Densidad a	% Alc.Vol
20 °C/20 °C	20 °C, g/L	(20 °C)
0,9889	987,16	8,0
0,9888	987,04	8,1
0,9887	986,91	8,2
0,9886	986,79	8,3
0,9884	986,66	8,4
0,9883	986,54	8,5
0,9882	986,42	8,6
0,9881	986,29	8,7
0,9879	986,17	8,8
0,9878	986,05	8,9
0,9877	985,92	9,0
0,9876	985,80	9,1
0,9875	985,68	9,2
0,9873	985,56	9,3
0,9872	985,44	9,4
0,9871	985,31	9,5
0,9870	985,19	9,6
0,9868	985,07	9,7
0,9867	984,95	9,8
0,9866	984,83	9,9
0,9865	984,71	10,0
0,9864	984,59	10,1
0,9862	984,47	10,2
0,9861	984,35	10,3
0,9860	984,23	10,4
0,9859	984,11	10,5
0,9858	983,99	10,6
0,9857	983,88	10,7
0,9855	983,76	10,8
0,9854	983,64	10,9
0,9853	983,52	11,0
0,9852	983,40	11,1
0,9851	983,29	11,2
0,9849	983,17	
0,9848	983,05	11,3
0,9847	982,94	11,4 11,5
0,9846	982,82	11,3
0,9845	a area caracter en encrenées acades	11,6
	982,70	11,7
0,9844	982,59	11,8
0,9842	982,47	11,9

Sp-gra	Densidad a	% Alc.Vol
20 °C/20 °C		(20 °C)
0,9841	982,35	12.0
0,9840	982,24	12,1
0,9839	982,12	12,2
0,9838	982,01	12,3
0,9837	981,89	12,4
0,9836	981,78	12,5
0,9834	981,67	12,6
0,9833	981,55	. 12,7
0,9832	981,44	12,8
0,9831	981,32	12,9
0,9830	981,21	13,0
0,9829	981,10	13,1
0,9827	980,98	13,2
0,9826	980,87	13,3
0,9825	980,76	13,4
0,9824	980,64	13,5
0,9823	980,53	13,6
0,9822	980,42	13,7
0,9821	980,31	13,8
0,9820	980,19	13,9
0,9818	980,08	14,0
0,9817	979,97	14,1
0,9816	979,86	14,2
0,9815	979,75	14,3
0,9814	979,64	14,4
0,9813	979,52	14,5
0,9812	979,41	14,6
0,9811	979,30	14,7
0,9810	979,19	14,8
0,9808	979,08	14,9
0,9807	978,97	15,0
0,9806	978,86	15,t
0,9805	978,75	15,2
0,9804	978,64	15,3
0,9803	978,53	15,4
0,9802	978,42	15,5
0,9801	978,31	15,6
0,9800	978,20	15,7
0,9799	978,09	15,8
0,9797	977,98	15,9

NTP 210.003 12 de 22

.. continuación

Sp-gr a	Densidad a	% Alc.Vol
20 °C/20 °C	20 °C, g/L	(20 °C)
0,9796	977,87	16,0
0,9795	977,76	16,1
0,9794	977,65	16,2
0,9793	977,55	16,3
0,9792	977,44	16,4
0,9791	977,33	16,5
0,9790	977,22	16,6
0,9789	977,11	16,7
0,9788	977,00	16,8
0,9787	976,89	16,9
0,9786	976,79	17,0
0,9784	976,68	17,1
0,9783	976,57	17,2
0,9782	976,46	17,3
0,9781	976,35	17,4
0,9780		17,5
0,9779	976,14	17,6
0,9778	976,03	17,7
0,9777		
0,9776		17,9
0,9775		18.0
0,9774		18,1
0,9772		18,2
0,9771		
0,9770		18,4
0,9769	Control of the Contro	18,5
0,9768		18,6
0,9767		18,7
0,9766	974,85	18,8
0,9765	974,74	18,9
0,9764	974,63	19,0
0,9763	974,52	19,1
0,9762		19,2
0,9761	V	19,3
0,9760		
0,9758		
0,9757		
0,9756		
0,9755		
0,9754	973,66	19,9

Sp-gra	Densidad a	% Alc.Vol
20 °C/20 °C	20 °C, g/L	(20 °C)
0.9753	973,56	20,0
0,9752	973,45	20,1
0,9751	973,34	20,2
0,9750	973,24	20,3
0,9749	973,13	20,4
0,9748	973,02	20,5
0,9747	972,91	20,6
0,9746	972,80	20,7
0,9745	972,70	20,8
0,9743	972,59	20,9
0,9742	972,48	21,0
0,9741	972,37	21,1
0,9740	972,27	21,2
0,9739	972,16	21,3
0,9738	972,05	21,4
0,9737	971,94	21,5
0,9736	971,83	21,6
0,9735	971,73	21,7
0,9734		21,8
0,9733	971,51	21,9
0,9732	971,40	22,0
0,9730	971,29	22,1
0,9729	971,18	22,2
0,9728	971,08	22,3
0,9727	970,97	22,4
0,9726	970,86	22,5
0,9725	970,75	22,6
0,9724		22,7
0,9723	970,53	22,8
0,9722	970,42	22,9
0,9721	970,31	23,0
0,9719		23,1
0,9718	THE RESERVED THE PROPERTY.	
0,9717		
. 0,9716		23,4
0,9715		23,5
0,9714		23,6
0,9713		23,7
0,9712	969,43	23,8
0,9711	969,32	23,9

NTP 210.003 13 de 22

Sp-gr a	Densidad a	% Alc.Vol
20 °C/20 °C	20 °C, g/L	(20°C)
0,9710	969,21	24,0
0,9708	969,10	24,1
0,9707	968,99	24,2
0,9706	968,88	24,3
0,9705	968,77	24,4
0,9704	968,66	24,5
0,9703	968,55	24,6
0,9702	968,43	24,7
0,9701	968,32	24,8
0,9700	968,21	24,9
0,9698	. 968,10	25,0
0,9697	967,99	25,1
0,9696	967,87	25,2
0,9695	967,76	25,3
0,9694	967,65	25,4
0,9693	967,53	25,5
0,9692	967,42	. 25,6
0,9691	967,31	25,7
0,9689	967,19	25,8
0,9688	967,08	25,9
0,9687	966,97	26,0
0,9686	966,85	26,1
0,9685	966,74	26,2
0,9684	966,62	26,3
0,9683	966,51	26,4
0,9681	966,39	26,5
0,9680	966,28	26,6
0,9679	966,16	26,7
0,9678	966,05	26,8
0,9677	965,93	26,9
0,9676	965,81	27,0
0,9674	965,70	27,1
0,9673	965,58	27,2
0,9672	965,46	27,3
0,9671	965,35	27,4
0,9670	965,23	27,5
0,9669	965,11	27,6
0,9667	964,99	27,7
0,9666	964,88	27,8
0,9665	964,76	27,9

Sp-gr a	Densidad a	% Alc.Vol
20 °C/20 °C	20 °C, g/L	(20 °C)
0,9664	964,64	28,0
0,9663	964,52	28,1
0,9661	964,40	28,2
0,9660	964,28	28,3
0,9659	964,16	28,4
0,9658	964,04	28,5
0,9657	963,92	28,6
0,9655	963,80	28,7
0,9654	963,68	. 28,8
0,9653	963,56	28,9
0,9652	963,44	29,0
0,9651	963,32	29,1
0,9649	963,20	29,2
0,9648	963,07	29,3
0,9647	962,95	29,4
0,9646	962,83	29,5
0,9644	962,71	29,6
0,9643	962,58	29,7
0,9642	962,46	29,8
0,9641	962,33	29,9
0,9639	962,21	30,0
0,9638	962,09	30,1
0,9637	961,96	30,2
0,9636	961,84	30,3
0,9634	961,71	30,4
0,9633	961,59	30,5
0,9632	961,46	30,6
0,9631	961,33	30,7
0,9629	961,21	30,8
0,9628	961,08	30,9
0,9627	960,95	31,0
0,9626	960,82	31,1
0,9624	960,70	31,2
0,9623	960,57	31,3
0,9622	960,44	31,4
0,9620	960,31	31,5
0,9619	960,18	31,6
0,9618	960,05	31,7
0,9617	959,92	31,8
0,9615	959,79	31,9

NTP 210.003 14 de 22

Sp-gr a	Densidad a 20 °C, g/L	% Alc.Vol (20 °C)
20 °C/20 °C		32,0
0,9614	959,66	32,1
0,9613	959,53	32,2
0,9611	959,40	32,3
0,9610	959,27	32,4
0,9609		32,5
0,9607	959,01 958,87	32,6
0.9606		32,7
0,9605	958,74	32,8
0,9603	958,61	32,9
0,9602	958,47 958,34	33,0
0,9601		33,1
0,9599		33,2
0,9598		33,2
0,9597	2.50 00	33,4
0,9595		33,5
0,9594		
0,9593		
0,9591	and the second s	The state of the s
0,9588		
0,9587		A STATE OF THE PARTY OF THE PAR
		A COLUMN TO SERVICE AND ADDRESS OF THE PARTY
0,9586	556 50	and the second s
0,9583		
0,9582	to produce a service of the service of	
0,9580		
0,9579		
0,9577		
0,9576	A STREET, MARKET PROPERTY AND ADDRESS.	
0,957		The second section of the second second
0,957		
0,957		
0,957		
0,956		
0,956		The second of th
0,956		
0,956		
0,956		
0,956		
0,956		

Sp-gr a	Densidad a	% Alc.Vol
20 °C/20 °C	20 °C, g/L	(20 °C)
0.9559	954,15	36,0
0,9557	954,01	36,1
0,9556	953,86	36,2
0,9554	953,72	36,3
0,9553	953,57	36,4
0,9551	953,42	36,5
0,9550	953,28	36,6
0,9548	953,13	36,7
0,9547	952,98	36,8
0,9545	952,83	36,9
0,9544	952,69	37.0
0,9543	952,54	37,1
0,9541	952,39	37,2
0,9540	952,24	37,3
0,9538	952,09	37,4
0,9537	951,94	37,5
0,9535	951,79	37.6
0,9533	951,63	37,7
0,9532	951,48	37,8
0,9530		37,9
0,9529		38,0
0,9527	0.11.57	38,1
0,9526	950,87	38,2
0,9524		38.3
0,9523	950,56	38,4
0,9521	950,41	38,5
0,9520	950,25	38,6
0,9518	950,10	
0,9517	949,94	38,8
0,9515	949,79	38,9
0,9513	949,63	
0,9512	949,47	39,1
0,9510	949,32	39,2
0,9509		
0,9507		39,4
0,9506	948,84	39,5
0,9504	948,68	
0,9502	948,52	39,7
0,9501	948,37	39,8
0,9499	948,21	39,9

NTP 210.003 15 de 22

Sp-gr a	Densidad a	% Alc.Vol
20 °C/20 °C	20 °C, g/L	(20°C)
0,9498	948,05	40,0
0,9496	947,88	40,1
0,9494	947,72	40,2
0,9493	947,56	40,3
0,9491	947,40	40,4
0,9489	947,24	40,5
0,9488	947,08	40,6
0,9486	946,91	40,7
0,9485	946,75	40,8
0,9483	946,58	40,9
0,9481	946,42	41,0
0,9480	946,26	41,1
0,9478	946,09	41,2
0,9476	945,93	41,3
0,9475	945,76	41,4
0,9473	945,59	41,5
0,9471	945,43	41,6
0,9470	945,26	4[,7
0,9468	945,09	41,8
0,9466	944,93	41,9
0,9465	944,76	42,0
0,9463	944,59	42,1
0,9461	944,42	42,2
0,9460	944,25	42,3
0,9458	944,08	42,4
0,9456	943,91	42,5
0,9454	943,74	42,6
0,9453	943,57	42,7
0,9451	943,40	42,8
0,9449	943,23	42,9
0,9448	943,06	43.0
0,9446	942,88	43,1 43,2
0,9444	942,71	43,2
0,9442	942,54	43,3
0,9441	942,37	43,4
0,9439	942,19	43,5
0,9437	942,02	43,6
0,9435	941,84	43,7
0,9434	941,67	43,8
0,9432	941,49	43,9

Sp-gr a	Densidad a	% Alc.Vol
20 °C/20 °C	20 °C, g/L	(20 °C)
0,9430	941,32	44,0
0,9428	941,14	44,1
0,9427	940,97	44,2
0,9425	940,79	44,3
0,9423	940,61	44,4
0,9421	940,43	44,5
0,9420	940,26	44,6
0,9418	940,08	44,7
0,9416	939,90	44,8
0,9414	939,72	44,9
0,9412	939,54	45,0
0,9411	939,36	45,1
0,9409	939,18	45,2
0,9407	939,00	45,3
0,9405	938,82	45,4
0,9403	938,64	45,5
0.9402	938,46	45,6
0,9400	938,28	45,7
0,9398	938,10	45,8
0,9396	937,91	45,9
0,9394	937,73	46,0
0,9392	937,55	46,1
0,9391	937,36	46,2
0,9389	937,18	46,3
0,9387	937,00	46,4
0,9385	936,81	46,5
0,9383	936,63	46,6
0,9381	936,44	46,7
0,9379	936,26	46,8
0,9378	936,07	46,9
0,9376	935,88	47,0
0,9374	935,70	47,1
0,9372	935,51	47,2
0,9370	935,32	47,3
0,9368	935,14	47,4
0,9366	934,95	47,5
0,9364	934,76	47,5
0,9363	934,57	47,7
0,9361	934,38	47,8
0,9359	934,19	47,9
0,9339	734,191	47.9

NTP 210.003 16 de 22

Sp-gr a	Densidad a	% Alc.Vol
20 °C/20 °C	20 °C, g/L	(20 °C)
0,9357	934,00	48,0
0,9355	933,81	48,1
0,9353	933,62	48,2
0,9351	933,43	48,3
0,9349	933,24	48,4
0,9347	933,05	48,5
0,9345	932,86	48,6
0,9344	932,67	48,7
0,9342	932,47	48,8
0,9340	932,28	48,9
0,9338	932,09	49,0
0,9336	931,90	49,1
0,9334	931,70	49,2
0,9332	931,51	49,3
0,9330	931,31	49,4
0,9328	931,12	49,5
0,9326	930,92	49,6
0,9324	930,73	49,7
0,9322	930,53	49,8
0,9320	930,34	49,9
0,9318	930,14	50,0
0,9316	929,95	50,1
0,9314	929,75	50,2
0,9312	929,55	50,3
0,9310	929,35	50,4
0,9308	929,16	50,5
0,9306	928,96	50,6
0,9304	928,76	50,7
0,9302	928,56	50,8
0,9300		50,9
0,9298		51,0
0,9296	927,96	51,1
0,9294		51,2
0,9292	927,57	51,3
0,9290		51,4
. 0,9288	927,16	51,5
0,9286	926,96	51,6
0,9284	926,76	51,7
0,9282	926,56	51,8
0,9280		51,9

Sp-gra	Densidad a	% Alc.Vol
20 °C/20 °C	20 °C, g/L	(26 °C)
0,9278	926,16	52,0
0,9276	925,95	52,1
0,9274	925,75	52,2
0,9272	925,55	52,3
0,9270	925,35	. 52,4
0,9268		52,5
0,9266	924,94	52,6
0,9264	924,73	52,7
0,9262	924,53	52,8
0,9260	924,32	52,9
0,9258	924,12	53,0
0,9256	923,91	53,1
0,9254	923,71	53,2
0,9252	923,50	53,3
0,9250	923,30	53,4
0,9248	923,09	53,5
0,9245	922,88	53,6
0,9243	922,68	53,7
0,9241	922,47	53,8
0,9239	922,26	53,9
0,9237	AND DESCRIPTION OF PERSONS ASSESSED.	54,0
0,9235		54,1
0,9233	921,64	54,2
0,9231	921,43	54,3
0,9229	921,22	54,4
0,9227		54,5
0,9225		54,6
0,9223	920,59	54,7
0,9220	920,38	54,8
0,9218	920,17	54,9
0,9216	919,96	55,0
0,9214	919,75	55,1
0,9212	919,54	55,2
0,9210	919,33	55,3
0,9208	919,12	55,4
0,9206	918,91	55,5
0,9203	918,69	55,6
0,9201	918,48	55,7
0,9199	918,27	55,8
0,9197	918,06	55,9
0,9197	210,00	33,3

NTP 210.003 17 de 22

Sp-gr a	Densidad a	% Alc.Vol
20°C/20°C	20°C, g/L	(20°C)
0,9195	917,84	56,0
0,9193	917,63	56,1
0,9191	917,42	56,2
0,9189	917,20	56,3
0,9186	916,99	56,4
0,9184	916,77	56,5
0,9182	916,56	56,6
0,9180	916,35	56,7
0.9178	916,13	56,8
0,9176	915,91	56,9
0,9174	915,70	57,0
0,9171	915,48	57,1
0,9169	915,27	57,2
0,9167	915,05	57,3
0,9165	914,83	57,4
0,9163	914,62	57,5
0,9160	914,40	57,6
0,9158	914,18	57,7
0,9156	913,97	57,8
0,9154	913,75	. 57,9
0,9152	913,53	58,0
0,9150	913,31	58,1
0,9147	913,09	58,2
0,9145	912,87	58,3
0,9143	912,65	58,4
0,9141	912,43	58,5
0,9139	912,22	58,6
0,9136	912,00	58,7
. 0,9134	911.78	58,8
0,9132	911,55	58,9
0,9130	911,33	59,0
0,9128	911,11	59,1
0,9125	910,89	59,2
0,9123	910,67	59,3
0,9121	910,45	59,4
0,9119	910,23	59,5
0,9117	910,01	59,6
0,9114	909,78	59,7
0,9112	909,56	59,8
0,9110	909,34	59,9

Sp-gr a 20°C/20°C Densidad a 20°C, g/L % Alc.Vol (20°C) 0.9107 909,11 60,0 0.9105 908,89 60,1 0.9101 908,67 60,2 0.9101 908,44 60,3 0,9099 908,22 60,4 0,9096 908,00 60,5 0,9092 907,77 60,6 0,9093 907,32 60,8 0,9087 907,10 60,9 0,9088 906,87 61,0 0,9083 906,64 61,1 0,9084 905,74 61,2 0,9078 906,19 61,3 0,9078 906,19 61,3 0,9079 905,74 61,5 0,9071 905,74 61,5 0,9072 905,06 61,8 0,9069 905,29 61,7 0,9067 905,06 61,8 0,9068 904,33 61,9 0,9069 904,37 62,1 0,9053 903,			
0.9107 909,11 60,0 0.9105 908,89 60,1 0.9103 908,67 60,2 0.9101 908,44 60,3 0,9099 908,22 60,4 0,9096 908,00 60,5 0,9094 907,77 60,6 0,9092 907,55 60,7 0,9099 907,32 60,8 0,9087 907,10 60,9 0,9085 906,87 61,0 0,9083 906,64 61,1 0,9084 905,97 61,4 0,9078 906,19 61,3 0,9076 905,97 61,4 0,9079 905,74 61,5 0,9071 905,74 61,5 0,9069 905,29 61,7 0,9067 904,83 61,9 0,9067 904,83 61,9 0,9065 904,83 61,9 0,9065 904,83 61,9 0,9058 904,60 62,0 <th>Sp-gra</th> <th>Densidad a</th> <th>% Alc.Vol</th>	Sp-gra	Densidad a	% Alc.Vol
0,9105 908,89 60,1 0,9103 908,67 60,2 0,9101 908,44 60,3 0,9099 908,22 60,4 0,9096 908,00 60,5 0,9094 907,77 60,6 0,9092 907,55 60,7 0,9090 907,32 60,8 0,9087 907,10 60,9 0,9085 906,87 61,0 0,9081 906,64 61,1 0,9078 906,19 61,3 0,9078 906,19 61,3 0,9076 905,97 61,4 0,9074 905,74 61,5 0,9079 905,29 61,7 0,9069 905,29 61,7 0,9067 905,06 61,8 0,9068 904,83 61,9 0,9069 905,29 61,7 0,9061 904,83 61,9 0,9062 904,60 62,0 0,9053 904,15 62,2 <th>20°C/20°C</th> <th>20°C, g/L</th> <th>(20°C)</th>	20°C/20°C	20°C, g/L	(20°C)
0,9105 908,89 60,1 0,9103 908,67 60,2 0,9101 908,44 60,3 0,9099 908,22 60,4 0,9096 908,00 60,5 0,9094 907,77 60,6 0,9092 907,55 60,7 0,9090 907,32 60,8 0,9087 907,10 60,9 0,9085 906,87 61,0 0,9081 906,64 61,1 0,9078 906,19 61,3 0,9078 906,19 61,3 0,9076 905,97 61,4 0,9074 905,74 61,5 0,9079 905,29 61,7 0,9069 905,29 61,7 0,9067 905,06 61,8 0,9068 904,83 61,9 0,9069 905,29 61,7 0,9061 904,83 61,9 0,9062 904,60 62,0 0,9053 904,15 62,2 <td>0,9107</td> <td>909,11</td> <td>60,0</td>	0,9107	909,11	60,0
0,9101 908,44 60,3 0,9099 908,22 60,4 0,9096 908,00 60,5 0,9094 907,77 60,6 0,9092 907,55 60,7 0,9090 907,32 60,8 0,9087 907,10 60,9 0,9085 906,87 61,0 0,9083 906,64 61,1 0,9078 906,19 61,3 0,9076 905,97 61,4 0,9074 905,74 61,5 0,9071 905,51 61,6 0,9069 905,29 61,7 0,9067 905,06 61,8 0,9065 904,83 61,9 0,9065 904,83 61,9 0,9065 904,60 62,0 0,9058 904,15 62,2 0,9059 903,92 62,3 0,9051 903,46 62,5 0,9049 903,23 62,6 0,9049 903,23 62,6 <td></td> <td></td> <td></td>			
0,9101 908,44 60,3 0,9099 908,22 60,4 0,9096 908,00 60,5 0,9094 907,77 60,6 0,9092 907,55 60,7 0,9090 907,32 60,8 0,9087 907,10 60,9 0,9085 906,87 61,0 0,9083 906,64 61,1 0,9081 906,42 61,2 0,9078 906,19 61,3 0,9074 905,74 61,5 0,9074 905,74 61,5 0,9069 905,29 61,7 0,9067 905,06 61,8 0,9065 904,83 61,9 0,9065 904,83 61,9 0,9065 904,60 62,0 0,9058 904,15 62,2 0,9058 904,15 62,2 0,9059 903,92 62,3 0,9051 903,46 62,5 0,9049 903,23 62,6 <td>0,9103</td> <td>908,67</td> <td>60,2</td>	0,9103	908,67	60,2
0,9099 908,22 60,4 0,9096 908,00 60,5 0,9094 907,77 60,6 0,9092 907,55 60,7 0,9090 907,32 60,8 0,9087 907,10 60,9 0,9085 906,87 61,0 0,9083 906,64 61,1 0,9081 906,42 61,2 0,9078 906,19 61,3 0,9076 905,97 61,4 0,9074 905,74 61,5 0,9071 905,51 61,6 0,9069 905,29 61,7 0,9067 905,06 61,8 0,9065 904,83 61,9 0,9062 904,60 62,0 0,9063 904,37 62,1 0,9058 904,15 62,2 0,9058 904,15 62,2 0,9059 903,92 62,3 0,9051 903,46 62,5 0,9049 903,23 62,6 <td>0,9101</td> <td></td> <td>60,3</td>	0,9101		60,3
0,9096 908,00 60,5 0,9094 907,77 60,6 0,9092 907,55 60,7 0,9090 907,32 60,8 0,9087 907,10 60,9 0,9085 906,87 61,0 0,9083 906,64 61,1 0,9081 906,42 61,2 0,9078 906,19 61,3 0,9076 905,97 61,4 0,9074 905,74 61,5 0,9071 905,51 61,6 0,9069 905,29 61,7 0,9067 905,06 61,8 0,9065 904,83 61,9 0,9062 904,60 62,0 0,9058 904,15 62,2 0,9059 903,92 62,3 0,9059 903,92 62,3 0,9059 904,37 62,1 0,9058 904,15 62,2 0,9059 903,92 62,3 0,9051 903,46 62,5 <td>0,9099</td> <td>908,22</td> <td></td>	0,9099	908,22	
0,9094 907,77 60,6 0,9092 907,55 60,7 0,9090 907,32 60,8 0,9087 907,10 60,9 0,9085 906,87 61,0 0,9083 906,64 61,1 0,9078 906,19 61,3 0,9076 905,97 61,4 0,9074 905,74 61,5 0,9071 905,51 61,6 0,9069 905,29 61,7 0,9067 905,06 61,8 0,9065 904,83 61,9 0,9062 904,60 62,0 0,9058 904,15 62,2 0,9059 903,92 62,3 0,9059 903,92 62,3 0,9059 904,37 62,1 0,9058 904,15 62,2 0,9059 903,92 62,3 0,9051 903,46 62,5 0,9049 903,23 62,6 0,9049 903,23 62,6 <td>0,9096</td> <td></td> <td></td>	0,9096		
0,9092 907,55 60,7 0,9090 907,32 60,8 0,9087 907,10 60,9 0,9085 906,87 61,0 0,9083 906,64 61,1 0,9081 906,42 61,2 0,9078 906,19 61,3 0,9076 905,97 61,4 0,9074 905,74 61,5 0,9071 905,51 61,6 0,9069 905,29 61,7 0,9067 905,06 61,8 0,9065 904,83 61,9 0,9062 904,60 62,0 0,9063 904,37 62,1 0,9058 904,15 62,2 0,9059 903,92 62,3 0,9059 903,92 62,3 0,9059 904,37 62,1 0,9058 904,15 62,2 0,9059 903,92 62,3 0,9051 903,46 62,5 0,9049 903,23 62,6 <td>0,9094</td> <td>907,77</td> <td></td>	0,9094	907,77	
0,9090 907,32 60,8 0,9087 907,10 60,9 0,9085 906,87 61,0 0,9083 906,64 61,1 0,9081 906,42 61,2 0,9078 906,19 61,3 0,9076 905,97 61,4 0,9074 905,74 61,5 0,9071 905,51 61,6 0,9069 905,29 61,7 0,9067 905,06 61,8 0,9065 904,83 61,9 0,9062 904,60 62,0 0,9058 904,15 62,2 0,9058 904,15 62,2 0,9059 903,92 62,3 0,9051 903,46 62,5 0,9049 903,23 62,6 0,9049 903,23 62,6 0,9049 903,23 62,6 0,9044 902,77 62,8 0,9049 903,23 63,6 0,9039 902,31 63,0 <td>0,9092</td> <td>907,55</td> <td></td>	0,9092	907,55	
0,9087 907,10 60,9 0,9085 906,87 61,0 0,9083 906,64 61,1 0,9081 906,42 61,2 0,9078 906,19 61,3 0,9076 905,97 61,4 0,9071 905,74 61,5 0,9069 905,29 61,7 0,9067 905,06 61,8 0,9065 904,83 61,9 0,9060 904,37 62,1 0,9058 904,15 62,2 0,9059 903,92 62,3 0,9059 904,37 62,1 0,9059 904,37 62,1 0,9059 903,92 62,3 0,9059 903,92 62,3 0,9059 903,23 62,6 0,9049 903,23 62,6 0,9049 903,23 62,6 0,9044 902,77 62,8 0,9049 903,23 63,0 0,9039 902,31 63,0 <td>0,9090</td> <td>907,32</td> <td>60,8</td>	0,9090	907,32	60,8
0,9085 906,87 61,0 0,9083 906,64 61,1 0,9081 906,42 61,2 0,9078 906,19 61,3 0,9076 905,97 61,4 0,9074 905,74 61,5 0,9071 905,51 61,6 0,9069 905,29 61,7 0,9067 905,06 61,8 0,9065 904,83 61,9 0,9062 904,60 62,0 0,9063 904,37 62,1 0,9058 904,15 62,2 0,9059 903,92 62,3 0,9053 903,92 62,3 0,9054 903,09 62,4 0,9059 903,23 62,6 0,9049 903,23 62,6 0,9049 903,23 62,6 0,9049 903,23 62,6 0,9044 902,77 62,8 0,9039 902,31 63,0 0,9037 902,08 63,1 <td>0,9087</td> <td>907,10</td> <td>60,9</td>	0,9087	907,10	60,9
0,9083 906,64 61,1 0,9081 906,42 61,2 0,9078 906,19 61,3 0,9076 905,97 61,4 0,9074 905,74 61,5 0,9071 905,51 61,6 0,9069 905,29 61,7 0,9067 905,06 61,8 0,9065 904,83 61,9 0,9060 904,37 62,1 0,9058 904,15 62,2 0,9059 903,92 62,3 0,9053 903,92 62,3 0,9054 903,09 62,4 0,9051 903,46 62,5 0,9049 903,23 62,6 0,9049 903,23 62,6 0,9040 902,77 62,8 0,9041 902,77 62,8 0,9039 902,31 63,0 0,9037 902,08 63,1 0,9038 901,85 63,2 0,9039 901,85 63,2 <td>0,9085</td> <td></td> <td></td>	0,9085		
0,9081 906,42 61,2 0,9078 906,19 61,3 0,9076 905,97 61,4 0,9074 905,74 61,5 0,9071 905,51 61,6 0,9069 905,29 61,7 0,9067 905,06 61,8 0,9065 904,83 61,9 0,9060 904,37 62,1 0,9058 904,15 62,2 0,9055 903,92 62,3 0,9055 903,92 62,3 0,9053 903,69 62,4 0,9051 903,46 62,5 0,9049 903,23 62,6 0,9046 903,00 62,7 0,9044 902,77 62,8 0,9049 902,54 62,9 0,9039 902,31 63,0 0,9037 902,08 63,1 0,9039 90,31 63,0 0,9035 901,85 63,2 0,9030 901,85 63,2 <td>0,9083</td> <td></td> <td>61,1</td>	0,9083		61,1
0,9078 906,19 61,3 0,9076 905,97 61,4 0,9074 905,74 61,5 0,9071 905,51 61,6 0,9069 905,29 61,7 0,9067 905,06 61,8 0,9065 904,83 61,9 0,9060 904,37 62,1 0,9058 904,15 62,2 0,9059 903,92 62,3 0,9053 903,69 62,4 0,9051 903,46 62,5 0,9049 903,23 62,6 0,9046 903,00 62,7 0,9044 902,77 62,8 0,9039 902,31 63,0 0,9037 902,08 63,1 0,9038 901,85 63,2 0,9039 901,85 63,2 0,9030 901,85 63,2 0,9031 63,0 63,1 0,9032 901,62 63,3 0,9033 901,85 63,2	0,9081	906,42	61,2
0,9076 905,97 61,4 0,9074 905,74 61,5 0,9071 905,51 61,6 0,9069 905,29 61,7 0,9067 905,06 61,8 0,9065 904,83 61,9 0,9060 904,37 62,1 0,9058 904,15 62,2 0,9055 903,92 62,3 0,9053 903,69 62,4 0,9051 903,46 62,5 0,9049 903,23 62,6 0,9046 903,00 62,7 0,9044 902,77 62,8 0,9039 902,31 63,0 0,9037 902,08 63,1 0,9035 901,85 63,2 0,9030 901,85 63,2 0,9032 901,62 63,3 0,9039 901,85 63,2 0,9039 901,85 63,2 0,9030 901,39 63,4 0,9028 901,15 63,5 <td>0,9078</td> <td>906,19</td> <td>61,3</td>	0,9078	906,19	61,3
0,9074 905,74 61,5 0,9071 905,51 61,6 0,9069 905,29 61,7 0,9067 905,06 61,8 0,9065 904,83 61,9 0,9062 904,60 62,0 0,9060 904,37 62,1 0,9058 904,15 62,2 0,9055 903,92 62,3 0,9053 903,69 62,4 0,9051 903,46 62,5 0,9049 903,23 62,6 0,9046 903,00 62,7 0,9044 902,77 62,8 0,9039 902,31 63,0 0,9037 902,08 63,1 0,9038 901,85 63,2 0,9039 901,85 63,2 0,9030 901,39 63,4 0,9028 901,15 63,5 0,9025 90,92 63,6 0,9025 90,92 63,6 0,9021 90,69 63,7	0,9076		
0,9071 905,51 61,6 0,9069 905,29 61,7 0,9067 905,06 61,8 0,9065 904,83 61,9 0,9062 904,60 62,0 0,9060 904,37 62,1 0,9058 904,15 62,2 0,9055 903,92 62,3 0,9051 903,69 62,4 0,9049 903,23 62,6 0,9046 903,00 62,7 0,9044 902,77 62,8 0,9049 902,54 62,9 0,9039 902,31 63,0 0,9039 902,31 63,0 0,9037 902,08 63,1 0,9038 901,85 63,2 0,9030 901,85 63,2 0,9032 901,62 63,3 0,9028 901,15 63,5 0,9025 90,92 63,6 0,9025 90,92 63,6 0,9021 90,69 63,7	0,9074		
0,9067 905,06 61,8 0,9065 904,83 61,9 0,9062 904,60 62,0 0,9060 904,37 62,1 0,9058 904,15 62,2 0,9055 903,92 62,3 0,9051 903,69 62,4 0,9049 903,23 62,6 0,9046 903,00 62,7 0,9044 902,77 62,8 0,9039 902,31 63,0 0,9037 902,08 63,1 0,9035 901,85 63,2 0,9030 901,39 63,4 0,9028 901,15 63,5 0,9025 90,92 63,6 0,9021 90,69 63,7 0,9021 90,69 63,7 0,9021 90,69 63,7 0,9021 90,46 63,8	0,9071	905,51	
0,9067 905,06 61,8 0,9065 904,83 61,9 0,9062 904,60 62,0 0,9060 904,37 62,1 0,9058 904,15 62,2 0,9055 903,92 62,3 0,9051 903,69 62,4 0,9049 903,23 62,6 0,9046 903,00 62,7 0,9044 902,77 62,8 0,9039 902,31 63,0 0,9037 902,08 63,1 0,9035 901,85 63,2 0,9030 901,39 63,4 0,9030 901,39 63,4 0,9028 901,15 63,5 0,9025 90,92 63,6 0,9021 90,69 63,7 0,9021 900,46 63,8	0,9069	905,29	61,7
0,9065 904,83 61,9 0,9062 904,60 62,0 0,9060 904,37 62,1 0,9058 904,15 62,2 0,9055 903,92 62,3 0,9053 903,69 62,4 0,9051 903,46 62,5 0,9049 903,23 62,6 0,9046 903,00 62,7 0,9044 902,77 62,8 0,9039 902,31 63,0 0,9037 902,08 63,1 0,9035 901,85 63,2 0,9030 901,85 63,2 0,9030 901,39 63,4 0,9028 901,15 63,5 0,9025 90,92 63,6 0,9023 90,69 63,7 0,9021 900,46 63,8	0,9067		61,8
0,9062 904,60 62,0 0,9060 904,37 62,1 0,9058 904,15 62,2 0,9055 903,92 62,3 0,9053 903,69 62,4 0,9051 903,46 62,5 0,9049 903,23 62,6 0,9046 903,00 62,7 0,9044 902,77 62,8 0,9039 902,31 63,0 0,9037 902,08 63,1 0,9035 901,85 63,2 0,9030 901,39 63,4 0,9028 901,15 63,5 0,9025 90,92 63,6 0,9023 90,69 63,7 0,9021 900,46 63,8	0,9065		61,9
0,9060 904,37 62,1 0,9058 904,15 62,2 0,9055 903,92 62,3 0,9053 903,69 62,4 0,9051 903,46 62,5 0,9049 903,23 62,6 0,9046 903,00 62,7 0,9044 902,77 62,8 0,9039 902,31 63,0 0,9037 902,08 63,1 0,9035 901,85 63,2 0,9030 901,39 63,4 0,9028 901,15 63,5 0,9025 90,92 63,6 0,9023 900,69 63,7 0,9021 900,46 63,8	0,9062	904,60	
0,9055 903,92 62,3 0,9053 903,69 62,4 0,9051 903,46 62,5 0,9049 903,23 62,6 0,9046 903,00 62,7 0,9044 902,77 62,8 0,9042 902,54 62,9 0,9039 902,31 63,0 0,9037 902,08 63,1 0,9035 901,85 63,2 0,9032 901,62 63,3 0,9030 901,39 63,4 0,9028 901,15 63,5 0,9025 900,92 63,6 0,9023 900,69 63,7 0,9021 900,46 63,8	0,9060	904,37	
0,9055 903,92 62,3 0,9053 903,69 62,4 0,9051 903,46 62,5 0,9049 903,23 62,6 0,9046 903,00 62,7 0,9044 902,77 62,8 0,9042 902,54 62,9 0,9039 902,31 63,0 0,9037 902,08 63,1 0,9035 901,85 63,2 0,9032 901,62 63,3 0,9030 901,39 63,4 0,9028 901,15 63,5 0,9025 900,92 63,6 0,9023 900,69 63,7 0,9021 900,46 63,8	0,9058	904,15	62,2
0,9053 903,69 62,4 0,9051 903,46 62,5 0,9049 903,23 62,6 0,9046 903,00 62,7 0,9044 902,77 62,8 0,9042 902,54 62,9 0,9039 902,31 63,0 0,9037 902,08 63,1 0,9035 901,85 63,2 0,9030 901,62 63,3 0,9030 901,39 63,4 0,9028 901,15 63,5 0,9025 900,92 63,6 0,9023 900,69 63,7 0,9021 900,46 63,8	0,9055	903,92	62,3
0,9051 903,46 62,5 0,9049 903,23 62,6 0,9046 903,00 62,7 0,9044 902,77 62,8 0,9042 902,54 62,9 0,9039 902,31 63,0 0,9037 902,08 63,1 0,9035 901,85 63,2 0,9030 901,62 63,3 0,9030 901,39 63,4 0,9028 901,15 63,5 0,9025 900,92 63,6 0,9023 900,69 63,7 0,9021 900,46 63,8	0,9053	903,69	62,4
0,9049 903,23 62,6 0,9046 903,00 62,7 0,9044 902,77 62,8 0,9042 902,54 62,9 0,9039 902,31 63,0 0,9037 902,08 63,1 0,9035 901,85 63,2 0,9032 901,62 63,3 0,9030 901,39 63,4 0,9028 901,15 63,5 0,9025 900,92 63,6 0,9023 900,69 63,7 0,9021 900,46 63,8	0,9051	903,46	62,5
0,9044 902,77 62,8 0,9042 902,54 62,9 0,9039 902,31 63,0 0,9037 902,08 63,1 0,9035 901,85 63,2 0,9032 901,62 63,3 0,9030 901,39 63,4 0,9028 901,15 63,5 0,9025 900,92 63,6 0,9023 900,69 63,7 0,9021 900,46 63,8	0,9049	903,23	
0,9042 902,54 62,9 0,9039 902,31 63,0 0,9037 902,08 63,1 0,9035 901,85 63,2 0,9032 901,62 63,3 0,9030 901,39 63,4 0,9028 901,15 63,5 0,9025 900,92 63,6 0,9023 900,69 63,7 0,9021 900,46 63,8	0,9046	903,00	62,7
0,9039 902,31 63,0 0,9037 902,08 63,1 0,9035 901,85 63,2 0,9032 901,62 63,3 0,9030 901,39 63,4 0,9028 901,15 63,5 0,9025 900,92 63,6 0,9023 900,69 63,7 0,9021 900,46 63,8	0,9044	902,77	62,8
0,9039 902,31 63,0 0,9037 902,08 63,1 0,9035 901,85 63,2 0,9032 901,62 63,3 0,9030 901,39 63,4 0,9028 901,15 63,5 0,9025 900,92 63,6 0,9023 900,69 63,7 0,9021 900,46 63,8	0,9042	902,54	62,9
0,9037 902,08 63,1 0,9035 901,85 63,2 0,9032 901,62 63,3 0,9030 901,39 63,4 0,9028 901,15 63,5 0,9025 900,92 63,6 0,9023 900,69 63,7 0,9021 900,46 63,8	0,9039		63,0
0,9032 901,62 63,3 0,9030 901,39 63,4 0,9028 901,15 63,5 0,9025 900,92 63,6 0,9023 900,69 63,7 0,9021 900,46 63,8	0,9037		63,1
0,9032 901,62 63,3 0,9030 901,39 63,4 0,9028 901,15 63,5 0,9025 900,92 63,6 0,9023 900,69 63,7 0,9021 900,46 63,8	0,9035	901,85	63,2
0,9030 901,39 63,4 0,9028 901,15 63,5 0,9025 900,92 63,6 0,9023 900,69 63,7 0,9021 900,46 63,8	0,9032		63,3
0,9028 901,15 63,5 0,9025 900,92 63,6 0,9023 900,69 63,7 0,9021 900,46 63,8	0,9030		63,4
0,9025 900,92 63,6 0,9023 900,69 63,7 0,9021 900,46 63,8	0,9028	901,15	63,5
0,9023 900,69 63,7 0,9021 900,46 63,8		900,92	63,6
0,9021 900,46 63,8	0,9023	900,69	63,7
0,9019 900,23 63,9		- -	
	0,9019	900,23	63,9

NTP 210.003 18 de 22

Sp-gr a	Densidad a	% Alc.Vol
20°C/20°C	20°C, g/L	(20°C)
0,9016	899,99	64,0
0,9014	899,76	64,1
0,9012	899,53	64,2
0,9009	899,29	64,3
0,9007	899,06	64,4
0,9004	898,82	64,5
0,9002	898,59	64,6
0,9000	898,36	64,7
0,8997	898,12	64,8
0,8995	897,89	64,9
0,8993	897,65	65,0
0,8990	897,42	65,1
0,8988	897,18	65,2
0,8986	896,94	65,3
0,8983	896,71	65,4
0,8981	896,47	65,5
0,8978	896,23	65,6
0,8976	896,00	65,7
0,8974	895,76	65,8
0,8971	895,52	65,9
0,8969	895,28	66,0
0,8967	895,05	66,l
0,8964	894,81	66,2
0,8962	894,57	66,3
0,8959	894;33	66,4
0,8957	894,09	. 66.5
0,8955	893,85	66,6
0,8952	893,61	66,7
0,8950	893,37	66,8
0.8947	893,13	66,9
0,8945	892,89	67,0
0,8943	892,65	67,1
0,8940	892,41	67,2
0,8938	892,17	67,3
0,8935	891,93	67,4
0,8933	891,69	67,5
0,8931	891,45	67,6
0,8928	891,20	67,7
0,8926	890,96	67,8
0,8923	890,72	67,9

Sp-gr n	Densidad a	% Alc.Vol
20°C/20°C	20°C, g/L	(20°C)
0,8921	890,48	68,0
0,8918	890,23	68,1
0,8916	889,99	68,2
0,8914	889,75	68,3
0,8911	889,50	68,4
0,8909	889,26	68,5
0,8906	889,01	68,6
0,8904	888,77	68,7
0,8901	888,52	68,8
0,8899	888,28	68,9
0,8896	888,03	69,0
0,8894	887,79	69,1
0,8891	887,54	69,2
0,8889	887,29	69,3
0,8886	887,05	69,4
0,8884	886,80	69,5
0,8881	886,55	69,6
0,8879	886,31	69,7
0,8877	886,06	69,8
0,8874	18,788	69,9
0,8872	885,56	70,0
0,8869	885,31	70,1
0,8867	885,06	70,2
0,8864	884,82	70,3
0,8862	884,57	70,4
0,8859	884,32	70,5
0,8857	884,07	70,6
0,8854	883,82	70,7
0,8852	883,57	70,8
0,8849	883,32	70,9
0,8847	883,06	71,0
0,8844	882,81	71,1
0,8842	882,56	71,2
0,8839	882,31	71,3
0,8837	882,06	71,4
0,8834	881,81	71,5
0,8831	881,55	71,6
0,8829	881,30	71,7
0,8826	881,05	71,8
0,8824	880,79	. 71,9

NTP 210.003 19 de 22

	Densidad a	
20°C/20°C	- 0	(20°C)
0,8821	880,54	72,0
0,8819	880,29	72,1
0,8816	880,03	72,2
0,8814	879,78	72,3
0.8811	879,52	72,4
0,8809	879,27	72,5
0,8806	879,01	72,6
0,8803	878,75	72,7
0,8801	878,50	72,8
0,8798	878,24	72,9
0,8796	877,99	73,0
0,8793	877,73	73,1
0,8791	877,47	73,2
0,8788	877,21	73,3
0,8785	876,96	73,4
0,8783	876,70	73,5
0,8780	876,44	73.6
0,8778	876,18	73,7
0,8775	875,92	73,8
0,8772	875,66	73,9
0,8770	875,40	74,0
0,8767	875,14	74,1
0,8765	874,88	74,2
0,8762	874,62	74,3
0,8759	874,36	74,4
0,8757	874,10	74,5
0,8754	873,84	74,6
0,8752	873,58	74,7
0,8749	873,32	74,8
0,8746	873,06	74,9
0,8744	872,79	75,0
0,8741	872,53	75,1
0,8738	872,27	75.7
0,8736	872,00	75,2 75,3
	871.74	75,4
0,8733 0,8731	871,74	
	871,48	75,5
0,8728	871,21	75,6
0,8725	870,95	75,7
0,8723	870,68	75,8
0,8720	870,42	75,9

Sp-gr 2 20°C/20°C	Densidad a 20°C, g/L	% Alc.Vol (20°C)
0,8717	870,15	76,0
0,8715		76,1
0,8712	869,62	76,2
0,8709	869,35	76,3
0,8707	869,09	76,4
0,8704	868,82	76,5
0,8701	868,55	76,6
0,8698	868,28	76,7
0,8696	868,02	76.8
0,8693	867,75	76,9
0,8690	. 867,48	77,0
0,8688	867,21	77,1
0,8685	866,94	77,2
0,8682	866,67	77,3
0,8680	866,40	77,4
0,8677	866,13	77,5
0,8674	865,86	77,6
0,8672	865,59	77,7
0,8669	865,32	77,8
0,8666	865,05	77,9
0,8663	864,78	78.0
0,8661	864,50	. 78,1
0,8658	864,23	78,2
0,8655	863,96	78,3
0,8652	863,69	78,4
0,8650	863,41	78,5
0,8647	863,14	78,6
0,8644	862,86	78,7
0,8641	862,59	78,8
0,8639	862,31	78,9
0,8636	862,04	79,0
0,8633	861,76	79,1
0,8630	861,49	79,2
0,8628	861,21	79,3
0,8625	860,94	79,4
0,8622	860,66	79,5
0,8619	860,38	79,6
0,8617	860,10	79,7
0,8614	859,83	79,8
0,8611	859,55	79,9

NTP 210.003 . 20 de 22

Sp-gr a	Densidad a	% Alc.Vol
20°C/20°C	20°C, g/L	(20°C)
0,8608	859,27	80,0
0,8605	858,99	80,1
0,8603	858,71	80,2
0,8600	858,43	80,3
0,8597	858,15	80,4
0,8594	857,87	80,5
0,8591	857,59	80,6
0,8589	857,31	80,7
0,8586	857,03	80,8
0,8583	856,75	80,9
0,8580	856,46	81,0
0,8577	856,18	81,1
0,8574	855,90	81,2
0,8572	855,62	81,3
0,8569	855,33	81,4
0,8566	855,05	81,5
0,8563	854,76	81,6
0,8560	854,48	81,7
0,8557	854,19	81,8
0,8554	853,91	81,9
0,8552	853,62	82,0
0,8549	853,34	82,1
0,8546	853,05	82,2
0,8543	852,76	82,3
0,8540	852,48	82,4
0,8537	852,19	82,5
0,8534	851,90	82,6
0,8531	851,61	82,7
0,8529	851,32	82,8
0,8526	851,03	82,9
0,8523	850,74	83,0
0,8520	850,45	83,1
0,8517	850,16	83,2
0,8514	849,87	83,3
0,8511	849,58	83,4
0,8508	849,29	83,5
0,8505	848,99	83,6
0,8502	848,70	83,7
0,8499	848,41	83,8
0,8496	848,11	83,9

0,8493 847,82 84,0 0,8491 847,53 84,1 0,8488 847,23 84,2 0,8485 846,93 84,3 0,8482 846,64 84,4 0,8479 846,34 34,5 0,8476 846,05 84,6 0,8473 845,75 84,7 0,8470 845,45 84,8 0,8467 845,15 84,9 0,8461 844,85 85,0 0,8461 844,55 85,1 0,8461 844,55 85,2 0,8452 843,65 85,2 0,8453 843,95 85,3 0,8452 843,65 85,4 0,8449 843,35 85,5 0,8449 843,35 85,5 0,8440 842,14 85,9 0,8437 842,14 85,9 0,8430 841,53 86,1 0,8427 841,23 86,2 0,8418 840,92 86,3 <th>Sp-gr a</th> <th>Densidad a</th> <th>% Alc.Vol</th>	Sp-gr a	Densidad a	% Alc.Vol
0,8491 847,53 84,1 0,8488 847,23 84,2 0,8485 846,93 84,3 0,8482 846,64 84,4 0,8479 846,34 34,5 0,8476 846,05 84,6 0,8473 845,75 84,7 0,8470 845,45 84,8 0,8467 845,15 84,9 0,8461 844,85 85,0 0,8461 844,55 85,1 0,8458 844,25 85,2 0,8458 844,25 85,2 0,8458 843,65 85,4 0,8459 843,65 85,4 0,8452 843,65 85,4 0,8449 843,35 85,5 0,8440 842,44 85,8 0,8441 842,44 85,8 0,8437 842,14 85,9 0,8430 841,53 86,1 0,8421 840,62 86,4 0,8418 840,31 86,5 <th>20°C/20°C</th> <th>20°C, g/L</th> <th>(20°C)</th>	20°C/20°C	20°C, g/L	(20°C)
0,8488 847,23 84,2 0,8485 846,93 84,3 0,8482 846,64 84,4 0,8479 846,34 84,5 0,8476 846,05 84,6 0,8473 845,75 84,7 0,8470 845,45 84,8 0,8467 845,15 84,9 0,8464 844,85 85,0 0,8461 844,55 85,1 0,8458 844,25 85,2 0,8455 843,95 85,3 0,8452 843,65 85,4 0,8449 843,35 85,5 0,8449 843,05 85,6 0,8440 842,44 85,8 0,8443 842,14 85,9 0,8430 841,53 86,1 0,8431 846,2 86,3 0,8421 840,62 86,4 0,8421 840,62 86,4 0,8418 840,31 86,5 0,8409 839,39 86,8 <td>0,8493</td> <td>847,82</td> <td>84,0</td>	0,8493	847,82	84,0
0,8488 847,23 84,2 0,8485 846,93 84,3 0,8482 846,64 84,4 0,8479 846,34 84,5 0,8476 846,05 84,6 0,8473 845,75 84,7 0,8470 845,45 84,8 0,8467 845,15 84,9 0,8464 844,85 85,0 0,8461 844,55 85,1 0,8458 844,25 85,2 0,8455 843,95 85,3 0,8452 843,65 85,4 0,8449 843,35 85,5 0,8449 843,05 85,6 0,8440 842,44 85,8 0,8443 842,14 85,9 0,8430 841,53 86,1 0,8431 846,2 86,3 0,8421 840,62 86,4 0,8421 840,62 86,4 0,8418 840,31 86,5 0,8409 839,39 86,8 <td>0,8491</td> <td>847,53</td> <td>84,1</td>	0,8491	847,53	84,1
0,8485 846,93 84,3 0,8482 846,64 84,4 0,8479 846,34 34,5 0,8476 846,05 84,6 0,8473 845,75 84,7 0,8470 845,45 84,8 0,8467 845,15 84,9 0,8464 844,85 85,0 0,8461 844,55 85,1 0,8458 844,25 85,2 0,8455 843,95 85,3 0,8452 843,65 85,4 0,8449 843,35 85,5 0,8449 843,35 85,5 0,8440 842,44 85,8 0,8437 842,14 85,9 0,8434 841,84 86,0 0,8430 841,53 86,1 0,8421 840,92 86,3 0,8421 840,62 86,4 0,8415 840,00 86,6 0,8409 839,39 86,8 0,8409 839,08 86,9 <td>0,8488</td> <td>847,23</td> <td>84,2</td>	0,8488	847,23	84,2
0,8479 846,34 84,5 0,8476 846,05 84,6 0,8473 845,75 84,7 0,8470 845,45 84,8 0,8467 845,15 84,9 0,8461 844,85 85,0 0,8458 844,25 85,2 0,8458 844,25 85,2 0,8455 843,95 85,3 0,8452 843,65 85,4 0,8449 843,35 85,5 0,8440 842,44 85,8 0,8443 842,75 85,7 0,8440 842,44 85,8 0,8437 842,14 85,9 0,8434 841,84 86,0 0,8427 841,23 86,2 0,8421 840,62 86,3 0,8421 840,62 86,4 0,8418 840,31 86,5 0,8409 839,39 86,8 0,8406 839,08 86,9 0,8400 838,46 87,1 <td>0,8485</td> <td></td> <td>84,3</td>	0,8485		84,3
0,8479 846,34 84,5 0,8476 846,05 84,6 0,8473 845,75 84,7 0,8470 845,45 84,8 0,8467 845,15 84,9 0,8461 844,85 85,0 0,8458 844,25 85,2 0,8458 844,25 85,2 0,8455 843,95 85,3 0,8452 843,65 85,4 0,8449 843,35 85,5 0,8440 842,44 85,8 0,8443 842,75 85,7 0,8440 842,44 85,8 0,8437 842,14 85,9 0,8434 841,84 86,0 0,8427 841,23 86,2 0,8421 840,62 86,3 0,8421 840,62 86,4 0,8418 840,31 86,5 0,8409 839,39 86,8 0,8406 839,08 86,9 0,8400 838,46 87,1 <td>0,8482</td> <td></td> <td>84,4</td>	0,8482		84,4
0,8476 846,05 84,6 0,8473 845,75 84,7 0,8470 845,45 84,8 0,8467 845,15 84,9 0,8461 844,85 85,0 0,8461 844,55 85,1 0,8458 844,25 85,2 0,8455 843,95 85,3 0,8452 843,65 85,4 0,8449 843,35 85,5 0,8446 843,05 85,6 0,8447 842,75 85,7 0,8443 842,44 85,8 0,8437 842,14 85,9 0,8430 841,84 86,0 0,8427 841,23 86,2 0,8421 840,62 86,3 0,8421 840,62 86,4 0,8418 840,31 86,5 0,8409 839,39 86,8 0,8406 839,08 86,9 0,8400 838,46 87,1 0,8397 838,15 87,2 <td>0,8479</td> <td>846,34</td> <td>84,5</td>	0,8479	846,34	84,5
0,8473 845,75 84,7 0,8470 845,45 84,8 0,8467 845,15 84,9 0,8464 844,85 85,0 0,8461 844,55 85,1 0,8458 844,25 85,2 0,8455 843,95 85,3 0,8452 843,65 85,4 0,8449 843,35 85,5 0,8446 843,05 85,6 0,8443 842,75 85,7 0,8444 85,8 0,8437 842,14 85,9 0,8434 841,84 86,0 0,8430 841,53 86,1 0,8427 841,23 86,2 0,8421 840,62 86,4 0,8418 840,31 86,5 0,8415 840,00 86,6 0,8409 839,39 86,8 0,8406 839,08 86,9 0,8400 838,46 87,1 0,8397 838,15 87,2	0,8476		84,6
0,8470 845,45 84,8 0,8467 845,15 84,9 0,8464 844,85 85,0 0,8461 844,55 85,1 0,8458 844,25 85,2 0,8455 843,95 85,3 0,8452 843,65 85,4 0,8449 843,35 85,5 0,8446 843,05 85,6 0,8443 842,75 85,7 0,8440 842,44 85,8 0,8437 842,14 85,9 0,8434 841,84 86,0 0,8430 841,53 86,1 0,8427 841,23 86,2 0,8421 840,62 86,4 0,8421 840,62 86,4 0,8418 840,31 86,5 0,8419 839,70 86,7 0,8409 839,39 86,8 0,8406 839,08 86,9 0,8400 838,46 87,1 0,8397 838,15 87,2 <td>0,8473</td> <td></td> <td>84,7</td>	0,8473		84,7
0,8467 845,15 84,9 0,8464 844,85 85,0 0,8461 844,55 85,1 0,8458 844,25 85,2 0,8455 843,95 85,3 0,8452 843,65 85,4 0,8449 843,35 85,5 0,8446 843,05 85,6 0,8443 842,75 85,7 0,8440 842,44 85,8 0,8437 842,14 85,9 0,8434 841,84 86,0 0,8430 841,53 86,1 0,8427 841,23 86,2 0,8424 840,92 86,3 0,8421 840,62 86,4 0,8418 840,31 86,5 0,8419 839,70 86,7 0,8409 839,39 86,8 0,8406 839,08 86,9 0,8400 838,46 87,1 0,8397 838,15 87,2 0,8394 837,34 87,3 <td>0,8470</td> <td>845,45</td> <td>84,8</td>	0,8470	845,45	84,8
0,8464 844,85 85,0 0,8461 844,55 85,1 0,8458 844,25 85,2 0,8455 843,95 85,3 0,8452 843,65 85,4 0,8449 843,35 85,5 0,8446 843,05 85,6 0,8443 842,75 85,7 0,8440 842,44 85,8 0,8437 842,14 85,9 0,8434 841,84 86,0 0,8434 841,84 86,0 0,8434 841,23 86,3 0,8427 841,23 86,3 0,8424 840,92 86,3 0,8421 840,62 86,4 0,8418 840,31 86,5 0,8412 839,70 86,7 0,8409 839,39 86,8 0,8406 839,08 86,9 0,8400 838,46 87,1 0,8397 838,15 87,2 0,8394 837,84 87,3 <td>0,8467</td> <td></td> <td>84,9</td>	0,8467		84,9
0,8461 844,55 85,1 0,8458 844,25 85,2 0,8455 843,95 85,3 0,8452 843,65 85,4 0,8449 843,35 85,5 0,8446 843,05 85,6 0,8443 842,75 85,7 0,8440 842,44 85,8 0,8437 842,14 85,9 0,8434 841,84 86,0 0,8430 841,53 86,1 0,8427 841,23 86,2 0,8424 840,92 86,3 0,8421 840,62 86,4 0,8418 840,31 86,5 0,8418 840,00 86,6 0,8419 839,39 86,8 0,8409 839,39 86,8 0,8403 838,77 87,0 0,8400 838,46 87,1 0,8397 838,15 87,2 0,8390 837,52 87,4 0,8384 836,90 87,5 <td>annum community and conversion of</td> <td></td> <td>85,0</td>	annum community and conversion of		85,0
0,8458 844,25 85,2 0,8455 843,95 85,3 0,8452 843,65 85,4 0,8449 843,35 85,5 0,8446 843,05 85,6 0,8443 842,75 85,7 0,8440 842,44 85,8 0,8437 842,14 85,9 0,8434 841,84 86,0 0,8430 841,53 86,1 0,8427 841,23 86,2 0,8424 840,92 86,3 0,8421 840,62 86,4 0,8418 840,31 86,5 0,8415 840,00 86,6 0,8419 839,70 86,7 0,8406 839,08 86,9 0,8400 838,46 87,1 0,8397 838,15 87,2 0,8390 837,52 87,4 0,8381 836,90 37,6 0,8381 836,59 87,7 0,8378 836,27 87,8 <td>0,8461</td> <td></td> <td>85,1</td>	0,8461		85,1
0,8455 843,95 85,3 0,8452 843,65 85,4 0,8449 843,35 85,5 0,8446 843,05 85,6 0,8443 842,75 85,7 0,8440 842,44 85,8 0,8437 842,14 85,9 0,8434 841,84 86,0 0,8430 841,53 86,1 0,8427 841,23 86,2 0,8424 840,92 86,3 0,8421 840,62 86,4 0,8418 840,31 86,5 0,8415 840,00 86,6 0,8412 839,70 86,7 0,8409 839,39 86,8 0,8406 839,08 86,9 0,8400 838,46 87,1 0,8397 838,15 37,2 0,8394 837,84 87,3 0,8390 837,52 87,4 0,8384 836,90 37,6 0,8384 836,90 37,6 <td>0,8458</td> <td>844,25</td> <td>The second secon</td>	0,8458	844,25	The second secon
0,8452 843,65 85,4 0,8449 843,35 85,5 0,8446 843,05 85,6 0,8443 842,75 85,7 0,8440 842,44 85,8 0,8437 842,14 85,9 0,8434 841,84 86,0 0,8430 841,53 86,1 0,8427 841,23 86,2 0,8424 840,92 86,3 0,8421 840,62 86,4 0,8418 840,31 86,5 0,8412 839,70 86,7 0,8409 839,39 86,8 0,8406 839,08 86,9 0,8400 838,46 87,1 0,8397 838,15 37,2 0,8394 837,84 87,3 0,8390 837,52 87,4 0,8384 836,90 37,6 0,8384 836,90 37,6 0,8378 836,27 87,8			
0,8449 843,35 85,5 0,8446 843,05 85,6 0,8443 842,75 85,7 0,8440 842,44 85,8 0,8437 842,14 85,9 0,8434 841,84 86,0 0,8430 841,53 86,1 0,8427 841,23 86,2 0,8424 840,92 86,3 0,8421 840,62 86,4 0,8418 840,31 86,5 0,8415 840,00 86,6 0,8412 839,70 86,7 0,8409 839,39 86,8 0,8406 839,08 86,9 0,8400 838,46 87,1 0,8397 838,15 37,2 0,8394 837,84 87,3 0,8390 837,52 87,4 0,8384 836,90 37,6 0,8384 836,90 37,6 0,8378 836,27 87,8			85,4
0,8446 843,05 85,6 0,8443 842,75 85,7 0,8440 842,44 85,8 0,8437 842,14 85,9 0,8434 841,84 86,0 0,8430 841,53 86,1 0,8427 841,23 86,2 0,8424 840,92 86,3 0,8421 840,62 86,4 0,8418 840,31 86,5 0,8415 840,00 86,6 0,8412 839,70 86,7 0,8409 839,39 86,8 0,8406 839,08 86,9 0,8400 838,46 87,1 0,8397 838,15 37,2 0,8394 837,84 87,3 0,8390 837,52 87,4 0,8387 837,21 87,5 0,8384 836,90 37,6 0,8378 836,27 87,8 0,8378 836,27 87,8			
0,8443 842,75 85,7 0,8440 842,44 85,8 0,8437 842,14 85,9 0,8434 841,84 86,0 0,8430 841,53 86,1 0,8427 841,23 86,2 0,8424 840,92 86,3 0,8421 840,62 86,4 0,8418 840,31 86,5 0,8415 840,00 86,6 0,8412 839,70 86,7 0,8409 839,39 86,8 0,8406 839,08 86,9 0,8400 838,46 87,1 0,8397 838,15 37,2 0,8394 837,84 87,3 0,8390 837,52 87,4 0,8384 836,90 37,6 0,8381 836,59 87,7 0,8378 836,27 87,8	· · · · · · · · · · · · · · · · · · ·		
0,8440 842,44 85,8 0,8437 842,14 85,9 0,8434 841,84 86,0 0,8430 841,53 86,1 0,8427 841,23 86,2 0,8424 840,92 86,3 0,8421 840,62 86,4 0,8418 840,31 86,5 0,8415 840,00 86,6 0,8412 839,70 86,7 0,8409 839,39 86,8 0,8406 839,08 86,9 0,8400 838,46 87,1 0,8397 838,15 37,2 0,8394 837,84 87,3 0,8390 837,52 87,4 0,8384 836,90 37,6 0,8384 836,90 87,6 0,8378 836,27 87,8			
0,8437 842,14 85,9 0,8434 841,84 86,0 0,8430 841,53 86,1 0,8427 841,23 86,2 0,8424 840,92 86,3 0,8418 840,62 86,4 0,8418 840,00 86,6 0,8415 840,00 86,6 0,8412 839,70 86,7 0,8409 839,39 86,8 0,8406 839,08 86,9 0,8403 838,77 87,0 0,8400 838,46 87,1 0,8397 838,15 37,2 0,8394 837,84 87,3 0,8387 837,21 87,5 0,8384 836,90 37,6 0,8381 836,59 87,7 0,8378 836,27 87,8	a sa a missa sa a di misa meningi	BILL BILL DOLLARS AND ASSAULT TO THE PARTY OF THE PARTY O	
0,8434 841,84 86,0 0,8430 841,53 86,1 0,8427 841,23 86,2 0,8424 840,92 86,3 0,8421 840,62 86,4 0,8418 840,31 86,5 0,8415 840,00 86,6 0,8412 839,70 86,7 0,8409 839,39 86,8 0,8406 839,08 86,9 0,8403 838,77 87,0 0,8400 838,46 87,1 0,8397 838,15 87,2 0,8394 837,84 87,3 0,8387 837,21 87,5 0,8384 836,90 87,6 0,8378 836,27 87,8 0,8378 836,27 87,8			
0,8430 841,53 86,1 0,8427 841,23 86,2 0,8424 840,92 86,3 0,8421 840,62 86,4 0,8418 840,31 86,5 0,8415 840,00 86,6 0,8412 839,70 86,7 0,8409 839,39 86,8 0,8406 839,08 86,9 0,8403 838,77 87,0 0,8400 838,46 87,1 0,8397 838,15 87,2 0,8394 837,84 87,3 0,8387 837,21 87,5 0,8384 836,90 87,6 0,8378 836,27 87,8 0,8378 836,27 87,8	State to be seen in a second contract of		86,0
0,8427 841,23 86,2 0,8424 840,92 86,3 0,8421 840,62 86,4 0,8418 840,31 86,5 0,8415 840,00 86,6 0,8412 839,70 86,7 0,8409 839,39 86,8 0,8406 839,08 86,9 0,8403 838,77 87,0 0,8400 838,46 87,1 0,8397 838,15 87,2 0,8394 837,84 87,3 0,8387 837,21 87,5 0,8384 836,90 87,6 0,8381 836,59 87,7 0,8378 836,27 87,8			
0,8424 840,92 86,3 0,8421 840,62 86,4 0,8418 840,31 86,5 0,8415 840,00 86,6 0,8412 839,70 86,7 0,8409 839,39 86,8 0,8406 839,08 86,9 0,8403 838,77 87,0 0,8400 838,46 87,1 0,8397 838,15 87,2 0,8394 837,84 87,3 0,8387 837,21 87,5 0,8384 836,90 87,6 0,8381 836,59 87,7 0,8378 836,27 87,8		841,23	86,2
0,8421 840,62 86,4 0,8418 840,31 86,5 0,8415 840,00 86,6 0,8412 839,70 86,7 0,8409 839,39 86,8 0,8406 839,08 86,9 0,8403 838,77 87,0 0,8400 838,46 87,1 0,8397 838,15 87,2 0,8394 837,84 87,3 0,8389 837,52 87,4 0,8387 837,21 87,5 0,8384 836,90 87,6 0,8381 836,59 87,7 0,8378 836,27 87,8			
0,8418 840,31 86,5 0,8415 840,00 86,6 0,8412 839,70 86,7 0,8409 839,39 86,8 0,8406 839,08 86,9 0,8403 838,77 87,0 0,8400 838,46 87,1 0,8397 838,15 87,2 0,8394 837,84 87,3 0,8380 837,52 87,4 0,8387 837,21 87,5 0,8384 836,90 87,6 0,8381 836,59 87,7 0,8378 836,27 87,8			86,4
0,8415 840,00 86,6 0,8412 839,70 86,7 0,8409 839,39 86,8 0,8406 839,08 86,9 0,8403 838,77 87,0 0,8400 838,46 87,1 0,8397 838,15 87,2 0,8394 837,84 87,3 0,8390 837,52 87,4 0,8387 837,21 87,5 0,8384 836,90 37,6 0,8381 836,59 87,7 0,8378 836,27 87,8			
0,8412 839,70 86,7 0,8409 839,39 86,8 0,8406 839,08 86,9 0,8403 838,77 87,0 0,8400 838,46 87,1 0,8397 838,15 87,2 0,8394 837,84 87,3 0,8390 837,52 87,4 0,8387 837,21 87,5 0,8384 836,90 87,6 0,8381 836,59 87,7 0,8378 836,27 87,8	a annual a communication con exercises and	r.rr	86,6
0,8409 839,39 86,8 0,8406 839,08 86,9 0,8403 838,77 87,0 0,8400 838,46 87,1 0,8397 838,15 87,2 0,8394 837,84 87,3 0,8390 837,52 87,4 0,8387 837,21 87,5 0,8384 836,90 37,6 0,8381 836,59 87,7 0,8378 836,27 87,8	0,8412	839,70	86,7
0,8406 839,08 86,9 0,8403 838,77 87,0 0,8400 838,46 87,1 0,8397 838,15 37,2 0,8394 837,84 87,3 0,8390 837,52 87,4 0,8387 837,21 87,5 0,8384 836,90 37,6 0,8381 836,59 87,7 0,8378 836,27 87,8			41-2100000000000000000000000000000000000
0,8403 838,77 87,0 0,8400 838,46 87,1 0,8397 838,15 87,2 0,8394 837,84 87,3 0,8390 837,52 87,4 0,8387 837,21 87,5 0,8384 836,90 37,6 0,8381 836,59 87,7 0,8378 836,27 87,8			86,9
0,8400 838,46 87,1 0,8397 838,15 87,2 0,8394 837,84 87,3 0,8390 837,52 87,4 0,8387 837,21 87,5 0,8384 836,90 87,6 0,8381 836,59 87,7 0,8378 836,27 87,8			
0,8397 838,15 87,2 0,8394 837,84 87,3 0,8390 837,52 87,4 0,8387 837,21 87,5 0,8384 836,90 87,6 0,8381 836,59 87,7 0,8378 836,27 87,8	· · · · · · · · · · · · · · · · · · ·		
0,8394 837,84 87,3 0,8390 837,52 87,4 0,8387 837,21 87,5 0,8384 836,90 87,6 0,8381 836,59 87,7 0,8378 836,27 87,8	and the second second second second		
0,8390 837,52 87,4 0,8387 837,21 87,5 0,8384 836,90 87,6 0,8381 836,59 87,7 0,8378 836,27 87,8			
0,8387 837,21 87,5 0,8384 836,90 87,6 0,8381 836,59 87,7 0,8378 836,27 87,8			87,4
0,8384 836,90 87,6 0,8381 836,59 87,7 0,8378 836,27 87,8			DESCRIPTION OF THE PERSON OF T
0,8381 836,59 87,7 0,8378 836,27 87,8			
0,8378 836,27 87,8	announcement of the Property of the		
			87,8
0,00707 007,700 07,70	0,8375	835,96	87,9

NTP 210.003 21 de 22

20°C/20°C 20°C, g/L (20°C)	Sp-gr a	Densidad a	% Alc.Vol
0,8371 835,64 88,0 0,8368 835,32 88,1 0,8365 835,01 88.2 0,8362 834,69 88,3 0,8359 834,37 88,4 0,8356 834,05 88,5 0,8352 833,73 88,6 0,8349 833,41 88,7 0,8346 833,09 88,8 0,8343 832,77 88,9 0,8340 832,45 89,0 0,8340 832,45 89,0 0,8336 832,12 89,1 0,8333 831,80 89,2 0,8330 831,48 89,3 0,8326 831,15 89,4 0,8323 830,50 89,6 0,8317 830,17 89,7 0,8318 829,8 89,8 0,8310 829,81 89,8 0,8310 829,18 90,0 0,8303 828,85 90,1 0,8297 828,19 90,3 <th></th> <th></th> <th></th>			
0,8368 835,32 88,1 0,8365 835,01 88,2 0,8362 834,69 88,3 0,8359 834,37 88,4 0,8356 834,05 88,5 0,8352 833,73 88,6 0,8349 833,41 88,7 0,8346 833,09 88,8 0,8343 832,77 88,9 0,8340 832,45 89,0 0,8336 832,12 89,1 0,8333 831,80 89,2 0,8330 831,48 89,3 0,8326 831,15 89,4 0,8323 830,82 89,5 0,8320 830,50 89,6 0,8317 830,17 89,7 0,8313 829,84 89,8 0,8310 829,18 90,0 0,8303 828,85 90,1 0,8300 828,52 90,2 0,8297 828,19 90,3 0,8293 827,85 90,4 <td>0,8371</td> <td></td> <td>88.0</td>	0,8371		88.0
0,8365 835,01 88,2 0,8362 834,69 88,3 0,8359 834,37 88,4 0,8356 834,05 88,5 0,8352 833,73 88,6 0,8349 833,41 88,7 0,8346 833,09 88,8 0,8343 832,77 88,9 0,8340 832,45 89,0 0,8336 832,12 89,1 0,8333 831,80 89,2 0,8330 831,48 89,3 0,8326 831,15 89,4 0,8323 830,82 89,5 0,8320 830,50 89,6 0,8317 830,17 89,7 0,8313 829,84 89,8 0,8310 829,51 89,9 0,8307 829,18 90,0 0,8300 828,52 90,2 0,8297 828,19 90,3 0,8297 828,19 90,3 0,8293 827,85 90,4 <td>0,8368</td> <td></td> <td></td>	0,8368		
0,8362 834,69 88,3 0,8359 834,37 88,4 0,8356 834,03 88,5 0,8352 833,73 88,6 0,8349 833,41 88,7 0,8346 833,09 88,8 0,8343 832,77 88,9 0,8340 832,45 89,0 0,8336 832,12 89,1 0,8333 831,80 89,2 0,8330 831,48 89,3 0,8326 831,15 89,4 0,8323 830,82 89,5 0,8320 830,50 89,6 0,8317 830,17 89,7 0,8313 829,84 89,8 0,8310 829,51 89,9 0,8307 829,18 90,0 0,8303 828,85 90,1 0,8300 828,52 90,2 0,8297 828,19 90,3 0,8297 828,19 90,3 0,8293 827,52 90,5 <td>0,8365</td> <td></td> <td>***************************************</td>	0,8365		***************************************
0,8359 834,37 88,4 0,8356 834,05 88,5 0,8352 833,73 88,6 0,8349 833,41 88,7 0,8346 833,09 88,8 0,8343 832,77 88,9 0,8340 832,45 89,0 0,8336 832,12 89,1 0,8333 831,80 89,2 0,8330 831,48 89,3 0,8326 831,15 89,4 0,8323 830,82 89,5 0,8320 830,50 89,6 0,8317 830,17 89,7 0,8313 829,84 89,8 0,8310 829,51 89,9 0,8307 829,18 90,0 0,8303 828,85 90,1 0,8300 828,52 90,2 0,8297 828,19 90,3 0,8293 827,85 90,4 0,8290 827,52 90,5 0,8287 826,17 90,9 <td></td> <td></td> <td></td>			
0,8356 834,05 88,5 0,8352 833,73 88,6 0,8349 833,41 88,7 0,8346 833,09 88,8 0,8343 832,77 88,9 0,8340 832,45 89,0 0,8336 832,12 89,1 0,8333 831,80 89,2 0,8330 831,48 89,3 0,8326 831,15 89,4 0,8323 830,82 89,5 0,8320 830,50 89,6 0,8317 830,17 89,7 0,8313 829,84 89,8 0,8310 829,51 89,9 0,8307 829,18 90,0 0,8303 828,85 90,1 0,8300 828,52 90,2 0,8297 828,19 90,3 0,8293 827,85 90,4 0,8290 827,52 90,5 0,8287 827,18 90,6 0,8287 826,17 90,9 <td>0,8359</td> <td></td> <td>88,4</td>	0,8359		88,4
0,8352 833,73 88,6 0,8349 833,41 88,7 0,8346 833,09 88,8 0,8340 832,45 89,0 0,8336 832,12 89,1 0,8333 831,80 89,2 0,8330 831,48 89,3 0,8326 831,15 89,4 0,8323 830,82 89,5 0,8320 830,50 89,6 0,8317 830,17 89,7 0,8313 829,84 89,8 0,8310 829,51 89,9 0,8307 829,18 90,0 0,8303 828,85 90,1 0,8300 828,52 90,2 0,8297 828,19 90,3 0,8293 827,85 90,4 0,8290 827,52 90,5 0,8287 827,18 90,6 0,8287 826,17 90,9 0,8287 826,17 90,9 0,8277 826,17 90,9 <td></td> <td></td> <td>88,5</td>			88,5
0,8349 833,41 88,7 0,8346 833,09 88,8 0,8343 832,77 88,9 0,8340 832,45 89,0 0,8336 832,12 89,1 0,8333 831,80 89,2 0,8330 831,48 89,3 0,8326 831,15 89,4 0,8323 830,82 89,5 0,8320 830,50 89,6 0,8317 830,17 89,7 0,8313 829,84 89,8 0,8310 829,51 89,9 0,8307 829,18 90,0 0,8303 828,85 90,1 0,8300 828,52 90,2 0,8297 828,19 90,3 0,8293 827,85 90,4 0,8290 827,52 90,5 0,8287 827,18 90,6 0,8287 826,17 90,9 0,8280 826,51 90,8 0,8277 826,17 90,9 <td>0,8352</td> <td>833,73</td> <td>88,6</td>	0,8352	833,73	88,6
0,8346 833,09 88,8 0,8343 832,77 88,9 0,8340 832,45 89,0 0,8336 832,12 89,1 0,8333 831,80 89,2 0,8330 831,48 89,3 0,8326 831,15 89,4 0,8323 830,82 89,5 0,8320 830,50 89,6 0,8317 830,17 89,7 0,8313 829,84 89,8 0,8310 829,51 89,9 0,8307 829,18 90,0 0,8303 828,85 90,1 0,8300 828,52 90,2 0,8297 828,19 90,3 0,8293 827,85 90,4 0,8290 827,52 90,5 0,8287 827,18 90,6 0,8287 826,17 90,9 0,8280 826,51 90,8 0,8277 826,17 90,9 0,8270 825,49 91,1 <td>0,8349</td> <td></td> <td></td>	0,8349		
0,8343 832,77 88,9 0,8340 832,45 89,0 0,8336 832,12 89,1 0,8333 831,80 89,2 0,8330 831,48 89,3 0,8326 831,15 89,4 0,8320 830,50 89,6 0,8317 830,17 89,7 0,8313 829,84 89,8 0,8310 829,51 89,9 0,8307 829,18 90,0 0,8303 828,85 90,1 0,8300 828,52 90,2 0,8297 828,19 90,3 0,8293 827,85 90,4 0,8290 827,52 90,5 0,8287 827,18 90,6 0,8287 826,51 90,8 0,8287 826,17 90,9 0,8277 826,17 90,9 0,8270 825,49 91,1 0,8266 825,15 91,2 0,8260 824,47 91,4 <td>0,8346</td> <td>833,09</td> <td></td>	0,8346	833,09	
0,8340 832,45 89,0 0,8336 832,12 89,1 0,8333 831,80 89,2 0,8330 831,48 89,3 0,8326 831,15 89,4 0,8323 830,82 89,5 0,8320 830,50 89,6 0,8317 830,17 89,7 0,8313 829,84 89,8 0,8310 829,51 89,9 0,8307 829,18 90,0 0,8303 828,85 90,1 0,8300 828,52 90,2 0,8297 828,19 90,3 0,8293 827,85 90,4 0,8290 827,52 90,5 0,8287 827,18 90,6 0,8287 826,51 90,8 0,8287 826,17 90,9 0,8277 826,17 90,9 0,8273 825,49 91,1 0,8266 825,15 91,2 0,8266 825,15 91,2 <td>0,8343</td> <td></td> <td></td>	0,8343		
0,8336 832,12 89,1 0,8333 831,80 89,2 0,8330 831,48 89,3 0,8326 831,15 89,4 0,8323 830,82 89,5 0,8320 830,50 89,6 0,8317 830,17 89,7 0,8313 829,84 89,8 0,8310 829,51 89,9 0,8307 829,18 90,0 0,8303 828,85 90,1 0,8300 828,52 90,2 0,8297 828,19 90,3 0,8293 827,85 90,4 0,8290 827,52 90,5 0,8287 827,18 90,6 0,8287 827,18 90,6 0,8287 826,51 90,8 0,8287 826,17 90,9 0,8277 826,17 90,9 0,8270 825,49 91,1 0,8266 825,15 91,2 0,8263 824,81 91,3 <td>0,8340</td> <td>832,45</td> <td></td>	0,8340	832,45	
0,8333 831,80 89,2 0,8330 831,48 89,3 0,8326 831,15 89,4 0,8323 830,82 89,5 0,8320 830,50 89,6 0,8317 830,17 89,7 0,8313 829,84 89,8 0,8310 829,51 89,9 0,8307 829,18 90,0 0,8303 828,85 90,1 0,8300 828,52 90,2 0,8297 828,19 90,3 0,8293 827,85 90,4 0,8290 827,52 90,5 0,8287 827,18 90,6 0,8283 826,85 90,7 0,8280 826,51 90,8 0,8277 826,17 90,9 0,8273 825,49 91,1 0,8266 825,15 91,2 0,8263 824,81 91,3 0,8260 824,47 91,4 0,8256 824,13 91,5 <td>. 0,8336</td> <td></td> <td></td>	. 0,8336		
0,8330 831,48 89,3 0,8326 831,15 89,4 0,8323 830,82 89,5 0,8317 830,50 89,6 0,8317 830,17 89,7 0,8313 829,84 89,8 0,8310 829,51 89,9 0,8307 829,18 90,0 0,8303 828,85 90,1 0,8300 828,52 90,2 0,8297 828,19 90,3 0,8293 827,85 90,4 0,8290 827,52 90,5 0,8287 827,18 90,6 0,8283 826,85 90,7 0,8280 826,51 90,8 0,8277 826,17 90,9 0,8273 825,49 91,1 0,8266 825,15 91,2 0,8263 824,81 91,3 0,8260 824,47 91,4 0,8256 824,13 91,5 0,8249 823,44 91,7 <td>0,8333</td> <td>831,80</td> <td></td>	0,8333	831,80	
0,8326 831,15 89,4 0,8323 830,82 89,5 0,8320 830,50 89,6 0,8317 830,17 89,7 0,8313 829,84 89,8 0,8310 829,51 89,9 0,8307 829,18 90,0 0,8303 828,85 90,1 0,8300 828,52 90,2 0,8297 828,19 90,3 0,8293 827,85 90,4 0,8290 827,52 90,5 0,8287 827,18 90,6 0,8283 826,85 90,7 0,8280 826,51 90,8 0,8277 826,17 90,9 0,8273 825,49 91,1 0,8266 825,15 91,2 0,8266 825,15 91,2 0,8260 824,47 91,4 0,8256 824,13 91,5 0,8253 823,78 91,6 0,8249 823,44 91,7 <td>0,8330</td> <td></td> <td></td>	0,8330		
0,8323 830,82 89,5 0,8320 830,50 89,6 0,8317 830,17 89,7 0,8313 829,84 89,8 0,8310 829,51 89,9 0,8307 829,18 90,0 0,8303 828,85 90,1 0,8300 828,52 90,2 0,8297 828,19 90,3 0,8293 827,85 90,4 0,8290 827,52 90,5 0,8287 827,18 90,6 0,8283 826,85 90,7 0,8280 826,51 90,8 0,8277 826,17 90,9 0,8273 825,49 91,1 0,8266 825,15 91,2 0,8263 824,81 91,3 0,8260 824,47 91,4 0,8256 824,13 91,5 0,8249 823,44 91,7 0,8246 823,09 91,8	0,8326		
0,8320 830,50 89,6 0,8317 830,17 89,7 0,8313 829,84 89,8 0,8310 829,51 89,9 0,8307 829,18 90,0 0,8303 828,85 90,1 0,8300 828,52 90,2 0,8297 828,19 90,3 0,8293 827,85 90,4 0,8290 827,52 90,5 0,8287 827,18 90,6 0,8283 826,85 90,7 0,8280 826,51 90,8 0,8277 826,17 90,9 0,8273 825,83 91,0 0,8270 825,49 91,1 0,8266 825,15 91,2 0,8263 824,81 91,3 0,8260 824,47 91,4 0,8256 824,13 91,5 0,8249 823,44 91,7 0,8246 823,09 91,8	0,8323		89,5
0,8313 829,84 89,8 0,8310 829,51 89,9 0,8307 829,18 90,0 0,8303 828,85 90,1 0,8300 828,52 90,2 0,8297 828,19 90,3 0,8293 827,85 90,4 0,8290 827,52 90,5 0,8287 827,18 90,6 0,8283 826,85 90,7 0,8280 826,51 90,8 0,8277 826,17 90,9 0,8273 825,83 91,0 0,8270 825,49 91,1 0,8266 825,15 91,2 0,8263 824,81 91,3 0,8260 824,47 91,4 0,8256 824,13 91,5 0,8249 823,44 91,7 0,8246 823,09 91,8	0,8320	830,50	
0,8310 829,51 89,9 0,8307 829,18 90,0 0,8303 828,85 90,1 0,8300 828,52 90,2 0,8297 828,19 90,3 0,8293 827,85 90,4 0,8290 827,52 90,5 0,8287 827,18 90,6 0,8283 826,85 90,7 0,8280 826,51 90,8 0,8277 826,17 90,9 0,8273 825,83 91,0 0,8270 825,49 91,1 0,8266 825,15 91,2 0,8263 824,81 91,3 0,8260 824,47 91,4 0,8256 824,13 91,5 0,8253 823,78 91,6 0,8249 823,44 91,7 0,8246 823,09 91,8	0,8317	830,17	89,7
0,8310 829,51 89,9 0,8307 829,18 90,0 0,8303 828,85 90,1 0,8300 828,52 90,2 0,8297 828,19 90,3 0,8293 827,85 90,4 0,8290 827,52 90,5 0,8287 827,18 90,6 0,8283 826,85 90,7 0,8280 826,51 90,8 0,8277 826,17 90,9 0,8273 825,83 91,0 0,8270 825,49 91,1 0,8266 825,15 91,2 0,8263 824,81 91,3 0,8260 824,47 91,4 0,8256 824,13 91,5 0,8253 823,78 91,6 0,8249 823,44 91,7 0,8246 823,09 91,8	0,8313	829,84	89,8
0,8303 828,85 90,1 0,8300 828,52 90,2 0,8297 828,19 90,3 0,8293 827,85 90,4 0,8290 827,52 90,5 0,8287 827,18 90,6 0,8283 826,85 90,7 0,8280 826,51 90,8 0,8277 826,17 90,9 0,8273 825,83 91,0 0,8270 825,49 91,1 0,8266 825,15 91,2 0,8263 824,81 91,3 0,8260 824,47 91,4 0,8256 824,13 91,5 0,8253 823,78 91,6 0,8249 823,44 91,7 0,8246 823,09 91,8	0,8310	829,51	
0,8300 828,52 90,2 0,8297 828,19 90,3 0,8293 827,85 90,4 0,8290 827,52 90,5 0,8287 827,18 90,6 0,8283 826,85 90,7 0,8280 826,51 90,8 0,8277 826,17 90,9 0,8273 825,83 91,0 0,8270 825,49 91,1 0,8266 825,15 91,2 0,8263 824,81 91,3 0,8260 824,47 91,4 0,8256 824,13 91,5 0,8249 823,44 91,7 0,8246 823,09 91,8	0,8307	829,18	90,0
0,8297 828,19 90,3 0,8293 827,85 90,4 0,8290 827,52 90,5 0,8287 827,18 90,6 0,8283 826,85 90,7 0,8280 826,51 90,8 0,8277 826,17 90,9 0,8273 825,83 91,0 0,8270 825,49 91,1 0,8266 825,15 91,2 0,8263 824,81 91,3 0,8260 824,47 91,4 0,8253 823,78 91,6 0,8249 823,44 91,7 0,8246 823,09 91,8	0,8303	828,85	90,1
0,8293 827,85 90,4 0,8290 827,52 90,5 0,8287 827,18 90,6 0,8283 826,85 90,7 0,8280 826,51 90,8 0,8277 826,17 90,9 0,8273 825,83 91,0 0,8270 825,49 91,1 0,8266 825,15 91,2 0,8263 824,81 91,3 0,8260 824,47 91,4 0,8256 824,13 91,5 0,8249 823,44 91,7 0,8246 823,09 91,8	0,8300	828,52	90,2
0,8290 827,52 90,5 0,8287 827,18 90,6 0,8283 826,85 90,7 0,8280 826,51 90,8 0,8277 826,17 90,9 0,8273 825,83 91,0 0,8270 825,49 91,1 0,8266 825,15 91,2 0,8263 824,81 91,3 0,8260 824,47 91,4 0,8256 824,13 91,5 0,8253 823,78 91,6 0,8249 823,44 91,7 0,8246 823,09 91,8	0,8297	828,19	
0,8287 827,18 90,6 0,8283 826,85 90,7 0,8280 826,51 90,8 0,8277 826,17 90,9 0,8273 825,83 91,0 0,8270 825,49 91,1 0,8266 825,15 91,2 0,8263 824,81 91,3 0,8260 824,47 91,4 0,8256 824,13 91,5 0,8253 823,78 91,6 0,8249 823,44 91,7 0,8246 823,09 91,8	0,8293	827,85	90,4
0,8283 826,85 90,7 0,8280 826,51 90,8 0,8277 826,17 90,9 0,8273 825,83 91,0 0,8270 825,49 91,1 0,8266 825,15 91,2 0,8263 824,81 91,3 0,8260 824,47 91,4 0,8256 824,13 91,5 0,8253 823,78 91,6 0,8249 823,44 91,7 0,8246 823,09 91,8	0,8290	827,52	90,5
0,8280 826,51 90,8 0,8277 826,17 90,9 0,8273 825,83 91,0 0,8270 825,49 91,1 0,8266 825,15 91,2 0,8263 824,81 91,3 0,8260 824,47 91,4 0,8256 824,13 91,5 0,8253 823,78 91,6 0,8249 823,44 91,7 0,8246 823,09 91,8		827,18	90,6
0,8277 826,17 90,9 0,8273 825,83 91,0 0,8270 825,49 91,1 0,8266 825,15 91,2 0,8263 824,81 91,3 0,8260 824,47 91,4 0,8256 824,13 91,5 0,8253 823,78 91,6 0,8249 823,44 91,7 0,8246 823,09 91,8	0,8283		90,7
0,8273 825,83 91,0 0,8270 825,49 91,1 0,8266 825,15 91,2 0,8263 824,81 91,3 0,8260 824,47 91,4 0,8256 824,13 91,5 0,8253 823,78 91,6 0,8249 823,44 91,7 0,8246 823,09 91,8	0,8280	826,51	90,8
0,8270 825,49 91,1 0,8266 825,15 91,2 0,8263 824,81 91,3 0,8260 824,47 91,4 0,8256 824,13 91,5 0,8253 823,78 91,6 0,8249 823,44 91,7 0,8246 823,09 91,8	0,8277	826,17	90,9
0.8266 825,15 91,2 0.8263 824,81 91,3 0.8260 824,47 91,4 0.8256 824,13 91,5 0.8253 823,78 91,6 0.8249 823,44 91,7 0.8246 823,09 91,8	0,8273	825,83	91,0
0,8263 824,81 91,3 0,8260 824,47 91,4 0,8256 824,13 91,5 0,8253 823,78 91,6 0,8249 823,44 91,7 0,8246 823,09 91,8	0,8270		91,1
0,8263 824,81 91,3 0,8260 824,47 91,4 0,8256 824,13 91,5 0,8253 823,78 91,6 0,8249 823,44 91,7 0,8246 823,09 91,8	0,8266	825,15	91,2
0,8260 824,47 91,4 0,8256 824,13 91,5 0,8253 823,78 91,6 0,8249 823,44 91,7 0,8246 823,09 91,8		824,81	91,3
0,8256 824,13 91,5 0,8253 823,78 91,6 0,8249 823,44 91,7 0,8246 823,09 91,8	, —		91,4
0,8253 823,78 91,6 0,8249 823,44 91,7 0,8246 823,09 91,8	****		91,5
0,8249 823,44 91,7 0,8246 823,09 91,8			91,6
0,8246 823,09 91,8		823,44	91,7
0,8242 822,74 91,9			91,8
	0,8242	822,74	91,9

Sp-gr a	Densidad a	% Alc.Vol
20°C/20°C	20°C, g/L	(20°C)
0,8239	822,39	92,0
0,8235	822,04	92,1
0,8232	821.69	92,2
0,8228	821,34	92,3
0,8225	820,99	92,4
0,8221	820,63	92,5
0,8218	820,28	92,6
0,8214	819,92	92,7
0,8210	819,57	92,8
0,8207	819,21	92,9
0,8203	818,85	93,0
0,8200	818;49	93,1
0,8196	818,12	93,2
0,8192	817,76	93,3
0,8189	817,40	93,4
0,8185	817,03	93,5
0,8181	816,66	93,6
0,8178	816,30	93,7
0,8174	815,931	93,8
0,8170	815,55	93,9
0,8166	815,18	94,0
0,8163	814,81	94,1
0,8159	814,43	94,2
0,8155	814,06	94,3
0,8151	813,68	94,4
0,8148	813,30	94,5
0,8144	812,92	94,6
0,8140	812,54	94,7
0,8136	812.15	94,8
0,8132	811,77	94,9
0,8128	811,38	95,0
0,8125	810,99	95,1
0,8121	810,60	95,2
0,8117	810,21	95,3
0,8113	809,82	95,4
0,8109	809,42	95,5
0,8105	809,02	95,6
0,8101	808,63	95,7
0,8097	808,23	95,8
0,8093	807,82	95,9

NTP 210.003 22 de 22

Sp-gr a		% Alc.Vol
20°C/20°C	20°C, g/L	(20°C)
0,8089	807,42	96,0
0,8085	807,01	96.1
0,8081	806,61	96,2
0,8077	806,20	96,3
0,8072	805,78	96,4
0,8068	805,37	96,5
0,8064	804,96	96,6
0,8060	804,54	96,7
0,8056	804,12	96,8
0,8051	803,70	96,9
0,8047	803,27	97,0
0,8043	802,85	97,1
0,8039	802,42	97,2
0,8034	801,99	97,3
0,8030	801,55	97,4
0,8026	801,12	97,5
0,8021	800,68	97,6
0,8017	800,24	97,7
0,8012	799,80	97,8
0,8008	799,35	97,9

Sp-gr a 20°C/20°C	Densidad a 20°C, g/L	% Alc.Vol (20°C)
0,8003	798,90	98,0
0,7999	798,45	98,1
0,7994	798,00	98,2
0,7990	797,54	98,3
0,7985	797,08	98,4
0,7981	796,62	98,5
0,7976	796,15	98,6
0,7971	795,68	98,7
0,7966	795,21	98,8
0,7962	794,73	98,9
0,7957	794,25	99,0
0,7952	793,77	99,1
0,7947	793,28	99,2
0,7942	792,79	99,3
0,7937	792,30	99,4
0,7932	791,80	99,5
0,7927	791,29	99,6
0,7922	790,79	99,7
0,7917	790,28	99,8
0,7912	789,76	99,9
0,7907	789,24	100,0

LINEALIDAD

La linealidad de un método analítico se refiere a la proporcionalidad entre la concentración de analito y su respuesta. Además conjuntamente se realiza la determinación del rango lineal, es decir, el intervalo comprendido es la concentración mínima y máxima de analito para el cual el método ha sido probado y dentro del cual se puede efectuar el dosaje por la interpolación en una curva estándar. Para su determinación se prepara una serie de al menos cinco diluciones de un estándar comprendiendo los ámbitos estimados de trabajo con un exceso de al menos 50% sobre el límite superior y un defecto de 50% debajo del límite inferior. Las soluciones deberán e ser inyectadas al menos por duplicado y se determinara la curva de calibración:

$$b = \frac{\sum Xi * Yi - \frac{\sum Xi * \sum Yi}{n}}{\sum X^2i - \frac{(\sum Xi)^2}{n}}$$

$$a = \frac{\sum Yi - b * \sum Xi}{n}$$

Ec. 2.2

Ec.2.3

a: Ordenada a origen

b: Pendiente

n: Numero de mediciones

X_i: La concentración

Y_i: El valor medido en el ensayo

Independientemente de la apariencia de la recta, resulta conveniente evaluar los estimadores de regresión en un intervalo de confianza dado (por ejemplo, p=0.05)

- Del coeficiente de regresión lineal: se determina para evaluar el ajuste al modelo línea propuesto, Y=bx+a.
- De la pendiente (b): se determina como parámetro indicativo de la sensibilidad del método o para evaluar la correlación de diferentes métodos.
- De la ordenada al origen (a): se determina para evaluar la proporcionalidad de la función analítica, es decir, que la recta pase por el origen y que cualquier desviación pueda adjudicarse únicamente a un error aleatorio.

$$r = \frac{\sum Xi * Yi \frac{\sum Xi * \sum Xi}{n}}{\sqrt{(\sum X^2i - \frac{(\sum Xi)^2}{n})(\sum Y^2i - \frac{(\sum Yi)^2}{n})}}$$

Ec.2.4

La ecuacion 2.4 es interpretada con las variables de las ecuaciones 2.2 y 2.3. El valor r=1 indica una recta perfectamente lineal, r=-1 una recta perfectamente lineal de pendiente negativa y r=0 la no relación entre XeY. En la practica, r es generalmente mayor de 0.99 y los valores menores de 0.90 son raros.

Extraído de "Introduccion al HPLC" Quattochi et al (1992)

LIMITE DE DETECCIÓN Y DE CUANTIFICACIÓN

El límite de detección según la USP XXII, a la menor concentración de analito que puede detectarse, pero no necesariamente cuantificarse en una muestra, en las condiciones establecidas y se expresa en unidades de concentración (%,ppm, ppb, etc.)

El límite de cuantificación según USP XXII, a la menor concentración de analito que puede precisarse con exactitud y precisión razonables en las condiciones establecidas y se expresa también en unidades de concentración.

Para ambos casos existen dos métodos de cálculo. Un método sugiere el cálculo a partir de placebos; es decir, varios placebos son inyectados y evaluados por la técnica y se determina su desviación estándar. De tal manera podemos detectar el ruido y detectar cuanto afecta este a la detección y cuantificación de la muestra. Otro método sugiere el cálculo a partir de la gráfica de calibración, donde se toma como la desviación estándar del blanco al cálculo de la desviación estándar en concentración cero.

El método usado en el presente trabajo fue el método de cálculo a partir de la gráfica de calibración. Se usó la fórmula propuesta por Quattrochi et al (1992):

$$Limite \ de \ Detecci\'on = \frac{Y_{bl} + 3S_{bl}}{b} * \frac{1}{\sqrt{n}}$$

Ec. 2.5.

Límite de Cuantificación =
$$\frac{Y_{bl} + 10S_{bl}}{b} * \frac{1}{\sqrt{n}}$$

Ec. 2.6.

- Y_{bl} = variable "a" obtenido de la gráfica de calibración.
- S_{bl} =variable "a" obtenido de la gráfica de Concentración vs Desviación estándar.
- b = Intercepto de la gráfica de calibración.
- n =número de muestras.

Extraído de "Introduccion al HPLC" Quattochi et al (1992)

COEFICIENTE DE HORWITZ

En 1980, *Horwitz et al.* Exponen que el comportamiento de la dispersión de los resultados en pruebas puede presentarse con un gráfico del Coeficiente de Variacion expresado en potencia de 2 contra la contracción medida expresada en potencia de 10. Dicha variación es graficada y demostrada en la trompeta de Horwitz, dicho grafico se muestra a continuación:

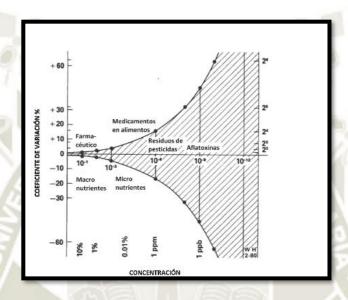


Figura 1 Anexo 5: Trompeta de Horwitz

Para condiciones de repetibilidad dicho coeficiente de Horwitz es aceptable multiplicar el coeficiente de Horwitz por 0.5.

$$CVh = 0.5 * 2^{1-0.5 \log c}$$

Ec. 2.7
 $CVh = 2^{1-0.5 \log c}$
Ec. 2.8

CVh = Coeficiente de variación de Horwitz

C = Concentración del analito

Extraido de "Evaluation of analytical methods used for regulation of foods and drugs", Horwitz W. (1982)

ANEXO 6 CROMATOGRAMAS OBTENIDOS POR CADA CONGÉNERE

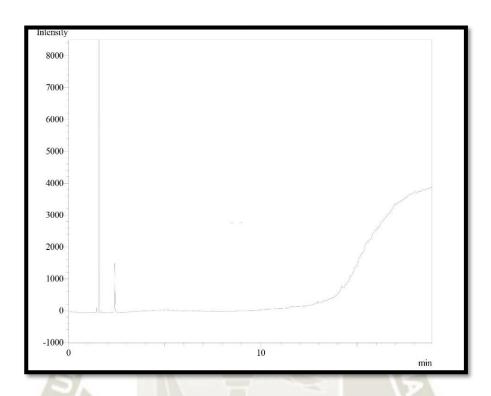


Figura 1 Anexo 6: Cromatograma Acetato de etilo a 200ppm

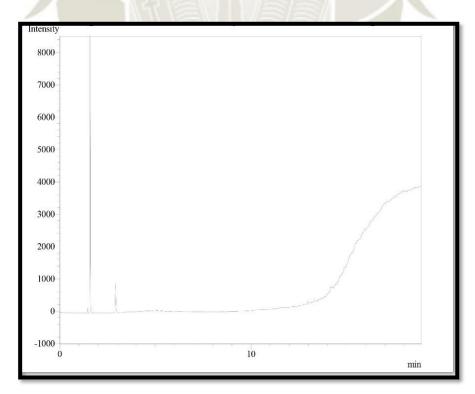


Figura 2 Anexo 6: Cromatograma Metanol a 200ppm

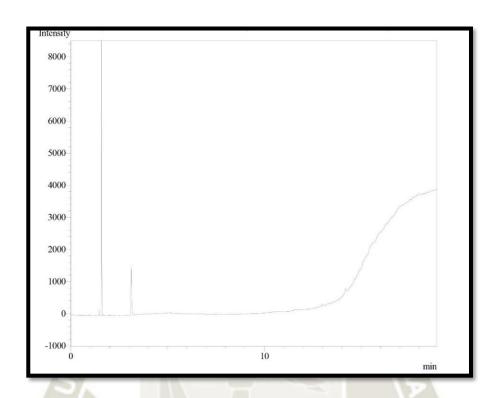


Figura 3 Anexo 6: Cromatograma Iso-propanol

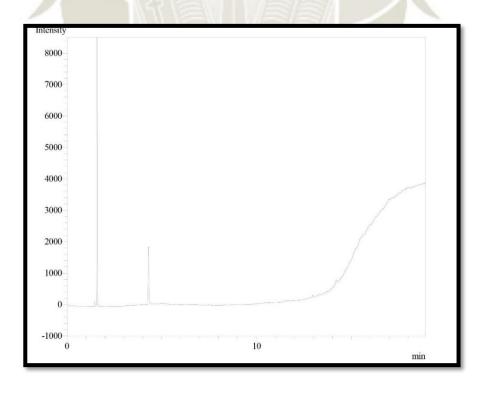


Figura 4 Anexo 6: Cromatograma 2-Butanol

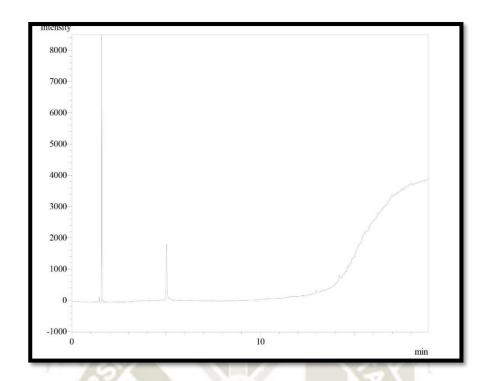


Figura 5 Anexo 6: Cromatograma 1-Popanol

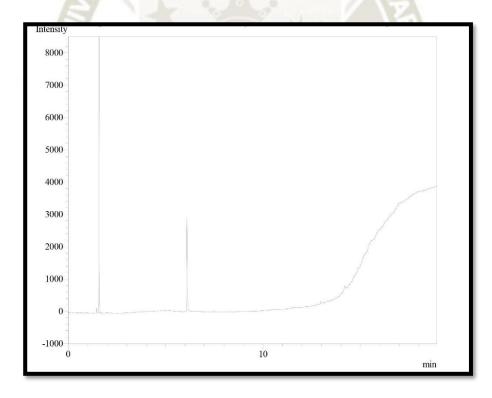


Figura 6 Anexo 6: Cromatograma Iso-Butanol

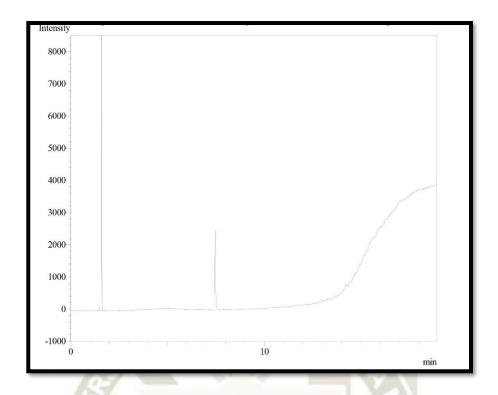


Figura 7 Anexo 6: Cromatograma 1-Butanol

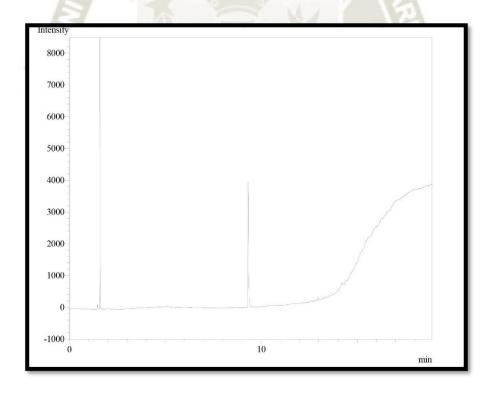


Figura 8 Anexo 6: Cromatograma Alcohol Iso-Amilico

ANEXO 7

Como se mencionó en la parte 2.5.1.3 los estándares fueron preparados según pesada, la pesa y los µL para cada caso se encuentran en la tabla 1 anexo 7. Los resultados por cada estándar se encuentran en las tablas para linealidad de cada estándar

Tabla 1 Anexo 7: Calculo de concentraciones por estándar

	Gramos		Concentración stock		0.00	Estándares		
Congénere	pesados (g)	μL	(ppm)	1	2	3	4	5
Acetato de etilo	0.970	1110	9700	38.8	194.0	485.0	970.0	1455.0
Metanol	0.956	1270	9560	38.2	191.2	478.0	956.0	1434.0
Iso-Propanol (2-Propanol)	0.935	1270	9350	37.4	187.0	467.5	935.0	1402.5
1-Propanol	0.964	1240	9640	38.6	192.8	482.0	964.0	1446.0
Iso-Butanol (2-metilpropan-1-ol)	0.933	1240	9330	37.3	186.6	466.5	933.0	1399.5
1-Butanol	1.013	1240	10130	40.5	202.6	506.5	1013.0	1519.5
Alcohol Iso-Amílico (3-metilbutan-1-ol)	0.960	1240	9600	38.4	192.0	480.0	960.0	1440.0
2-Butanol	0.992	1243	9925	79.4	397	992.5	1985	1488.75

Datos para realizar la evaluación de la sensibilidad. Los datos fueron extraídos según el método de la gráfica de calibración. El análisis de los datos se encuentra en la tabla 3.18

Tabla 1 Anexo 8: Variables para determinar límite de cuantificación y de detección

Congénere	Y _{bl}	S_{bl}	b	n
Acetato de etilo	196.951	3.361	5.568	5
Metanol	19.705	2.468	6.244	5
Iso-Propanol (2-Propanol)	18.227	2.343	9.571	5
1-Propanol	53.983	1.885	11.351	5
1-Butanol	44.000	4.484	12.900	5
Iso-Butanol (2-metilpropan-1-ol)	2.197	4.143	12.068	5
Alcohol Iso-Amílico (3-metilbutan-1-ol)	83.553	2.836	13.327	5
2-Butanol	654.442	2.464	7.069	5

ANEXO 9

Resultados obtenidos por cada ensayo para determinar la repetibilidad. El análisis de estos datos se encuentra en la tabla 3.19

Tabla 1 Anexo 9: Datos para determinar la variabilidad entre los resultados

Promedio Congénere 1 5 6 Valor Práctico 2 3 (ppm) Acetato de etilo 483.6 481.2 485.0 482.2 482.8 482.8 482.9 Metanol 475.8 475.0 473.9 474.8 474.0 476.3 475.0 **Iso-Propanol** 467.9 464.7 465.7 467.0 463.7 465.4 465.7 (2-propanol) 1-Propanol 480.4 480.3 482.0 483.6 480.7 481.9 481.5 Iso-Butanol 465.9 467.6 466.1 465.5 468.5 465.3 466.5 (2-metilpropan-1-ol) 1-Butanol 507.3 503.2 504.7 506.3 503.6 507.9 505.5 Alcohol Iso-Amílico 476.8 478.7 477.5 478.1 481.5 476.2 478.1 (3-metilbutan-1-ol) 2-Butanol 490.8 489.8 491.6 491.7 492.6 489.9 491.1

111

ANEXO 10

Resultados obtenidos por cada ensayo para determinar la precisión intermedia. El análisis de estos datos se encuentra en la tabla 3.20

Tabla 1 Anexo 10: Datos para determinar la variabilidad de la precisión intermedia

	0			/	70		Promedio
Congénere	1	2.A	COL3IC	4	5	6	Valor Práctico (ppm)
Acetato de etilo	484.7	483.2	487.0	488.3	486.6	483.8	485.6
Metanol	480.2	476.5	477.1	477.6	479.0	476.9	477.9
Iso-Propanol (2-propanol)	465.4	466.6	467.2	464.5	466.0	463.6	465.6
1-Propanol	484.9	480.1	483.2	483.0	484.5	480.8	482.7
Iso-Butanol (2-metilpropan-1-ol)	464.7	467.0	466.4	469.9	465.1	468.1	466.9
1-Butanol	507.1	506.6	506.7	502.8	505.8	504.0	505.5
Alcohol Iso-Amílico (3-metilbutan-1-ol)	477.8	477.0	476.4	479.3	478.7	478.1	477.9
2-Butanol	491.9	493.4	492.9	491.5	491.9	489.3	491.5

ANEXO 11

Resultados obtenidos luego de la evaluación de la exactitud. El análisis de los datos se encuentra en la tabla 3.21

Tabla 1 Anexo 11: Datos para determinar la exactitud

Congénere	1	2	ATC3_IC	4	5	6	Promedio Valor Práctico (ppm)
Acetato de etilo	483.9	484.6	483.6	483.9	484.1	483.9	484.0
Metanol	476.5	476.1	476.7	476.3	477.3	477.6	476.8
Iso-Propanol (2-propanol)	466.6	465.5	467.2	466.8	466.2	466.5	466.5
1-Propanol	483.5	482.8	483.4	483.2	483.7	483.3	483.3
Iso-Butanol (2-metilpropan-1-ol)	465.9	465.9	465.6	465.3	465.7	465.7	465.7
1-Butanol	504.2	504.2	505.1	504.7	504.6	505.1	504.7
Alcohol Iso-Amílico (3-metilbutan-1-ol)	479.1	479.0	479.3	479.4	479.1	479.4	479.2
2-Butanol	489.7	492.0	490.9	490.7	491.7	491.4	491.1

TÉCNICAS PARA DETERMINACIÓN DE ESTERES, METANOL Y ALCOHOLES SUPERIORES

Para proceder al análisis de las muestras, primeramente se debe de realizar un destilado. En los laboratorios de ensayo y control de calidad de Perú, se realiza tomando en cuenta la Norma Técnica Peruana 210.003 (Anexo 2).

Duración promedio: 3-4hrs

ÉSTERES

- 1. Transferir 100 cm3 del destilado a un matraz balón de fondo plano de boca esmerilada, de 500 cm³
- 2. Neutralizar el ácido libre con hidróxido de sodio 0.1 N, utilizando fenolftaleína como indicador
- 3. Agregar un exceso de disolución de hidróxido de sodio 0.1 N.
- 4. Conectar el matraz al condensador de reflujo y calentar a ebullición durante dos horas.
- 5. Dejar enfriar y titular el exceso de álcali con disolución de ácido clorhídrico 0.1 N. Desechar las determinaciones en las que el exceso de álcali gaste ácido clorhídrico en un volumen menor de 2 cm3 o mayor de 10 cm³.
- 6. Preparar un testigo con la misma cantidad de reactivos utilizados en el problema sustituyendo la muestra por agua y trabajarlo como la muestra.
- 7. Calcular los ésteres como acetato de etilo, como se indica en el capítulo de expresión de resultados
- 8. El contenido de ésteres expresados en miligramos de acetato de etilo por 100 cm3 referidos a alcohol anhidro, se calcula con la siguiente ecuación:

$$E = \frac{E_1 \times 100}{G.A.R.} \text{ o sea:} E = \frac{(V_1.N_1 - V_2.N_2) \times 88 \times 100}{M} \times \frac{100}{G.A.R.}$$

En donde:

E = Ésteres expresados en miligramos de acetato de etilo por 100 cm³, referidos a alcohol anhídro.

 E_1 = Ésteres expresados en miligramos de acetato de etilo por 100 cm 3 de muestra.

 V_1 = Volumen de disolución de hidróxido de sodio utilizado para saponificar en cm³.

 V_2 = Volumen de disolución de ácido clorhídrico utilizado para titular el hidróxido de sodio sobrante de la saponificación, en cm³.

 N_1 = Normalidad de la disolución valorada de hidróxido de sodio.

 N_2 = Normalidad de la disolución valorada de ácido clorhídrico.

88 = Miliequivalente del acetato de etilo expresado en mg.

M = Parte alícuota (100 cm³).

G.A.R. = Grado alcohólico real de la muestra.

Duración promedio: 3hrs

METANOL

- 1. Poner 2 cm³ de la disolución de permanganato de potasio en ácido fosfórico en un matraz volumétrico de 50 cm³, colocándolo en un baño de hielo, adicionar 1 cm³ de la muestra diluida y fría, y dejar reposar 30 minutos en el baño de hielo.
- Decolorar con un poco de bisulfito de sodio sólido y agregar 1 cm³ de disolución de ácido cromotrópico al 5%.
- 3. Agregar lentamente, gota a gota, 15 cm³ de ácido sulfúrico concentrado, dejándolo escurrir por las paredes del matraz, agitando constantemente.
- 4. Colocar en baño maría entre 333 y 348 K (60 y 75 °C) durante 15 minutos. Enfriar y adicionar con agitación agua hasta un volumen próximo al aforo.
- 5. Enfriar a temperatura ambiente y llevar al aforo con agua, homogeneizar y reposar durante 5 minutos.
- 6. Preparar un blanco con alcohol etílico al 5.5 % en volumen y una solución patrón conteniendo 0.025 % en volumen de metanol en alcohol etílico al 5.5 % en volumen; tratar de igual manera que la muestra diluida, leer la absorbancia de la solución patrón y de la muestra a 575 nm utilizando el blanco para el ajuste del espectrofotómetro.

$$M = \frac{A}{A'} = x \ 0.025 \ x \ FD \ x \ 0.790 \ x \frac{100}{G.A.R.} x \ 1000$$

En donde:

M = Metanol expresado en mg por 100 cm³ de alcohol anhidro.

A = Absorbancia de la muestra.

A' = Absorbancia de la disolución patrón de metanol.

0.025 = % de metanol en la solución patrón.

F.D. = Factor de dilución

G.A.R. = Grado alcohólico real de la muestra.

Duración promedio: 1h30

ALCOHOLES SUPERIORES

- 1. En el tubo de ensayo poner 2 cm³ de la muestra preparada, en una serie de tubos poner 2 cm³ de cada una de las soluciones tipo preparadas.
- 2. En otro tubo poner 2 cm³ de disolución testigo y en otro tubo poner 2 cm³ de agua como blanco.
- 3. Los tubos se colocan en un baño de hielo, agregarles 1 cm³ de solución de p-dimetilamino benzaldehído, dejarlos en el baño de hielo durante 3 minutos.
- 4. Adicionar a cada tubo lentamente gota a gota por medio de una bureta 10 cm³ de ácido sulfúrico concentrado, dejándolo escurrir por las paredes del tubo, agitar los tubos individualmente, colocarlos nuevamente en el baño de hielo durante 3 minutos.
- 5. Pasarlos a un baño de agua en ebullición durante 20 minutos.
- 6. Colocarlos después en el baño de hielo entre 3 y 5 minutos sacarlos y llevarlos a la temperatura ambiente.
- 7. Leer el por ciento de transmitancia de los tipos y las muestras en el espectrofotómetro a una longitud de onda entre 538 y 543 nm contra el blanco usado como referencia. Usar la misma longitud de onda para tipos y problemas.
- 8. El contenido de alcoholes superiores (aceite de fusel), expresado en mg por 100 cm3 de alcohol anhidro, se calcula con la siguiente fórmula:

$$A.S. = \frac{P \times FD \times 100}{G.A.R.}$$

En donde:

A.S. = Alcoholes superiores (aceite de fusel) en mg por 100 cm³ de alcohol anhidro.

P = mg de aceite de fusel por 100 cm³ de muestra, calculados a partir de la curva de Calibración.

FD = Factor de dilución

G.A.R. = Grado alcohólico real de la muestra.

Duración promedio: 1h30

Extraído de Normas Técnicas Mexicanas V-005(1980), 014(1986) y 021(1986)

VALIDATION OF ANALYTICAL PROCEDURES: TEXT AND METHODOLOGY ICH Harmonised Tripartite Guideline

TABLE

Type of analytical procedure	IDENTIFICATION	TESTING FOR IMPURITIES	ASSAY - dissolution (measurement only) - content/potency
characteristics		quantitat. limit	
Accuracy	-	+ -	+
Precision			
Repeatability	-	+ -	+
Interm.Precision	-	+ (1)	+(1)
Specificity (2)	+	+ +	+
Detection Limit	-	- (3) +	-
Quantitation Limit	-	+ -	-
Linearity	-	+ -	+
Range	-	+ -	+

- signifies that this characteristic is not normally evaluated
- + signifies that this characteristic is normally evaluated
- in cases where reproducibility (see glossary) has been performed, intermediate precision is not needed
- (2) lack of specificity of one analytical procedure could be compensated by other supporting analytical procedure(s)
- (3) may be needed in some cases

Extraído de « Validation of analytical procedures: text and methodology Q2(r1) » International Conference of Harmonisation(1994)

"Pisco acholado"

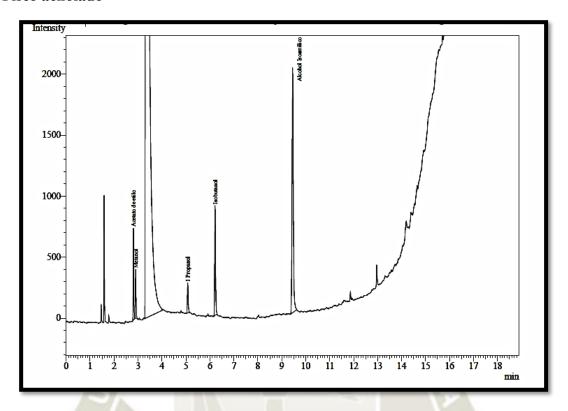


Figura 1 Anexo 14: Cromatograma "Pisco Acholado"

"Pisco Mosto verde"

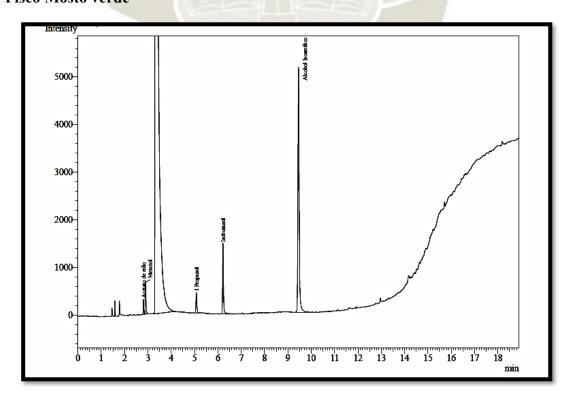


Figura 2 Anexo 14: Cromatograma "Pisco Mosto verde"

"Pisco No aromático"

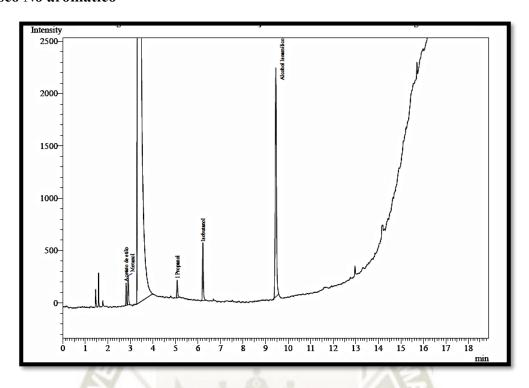


Figura 3 Anexo 14: Cromatograma del "Pisco No aromático"

"Pisco Aromático"

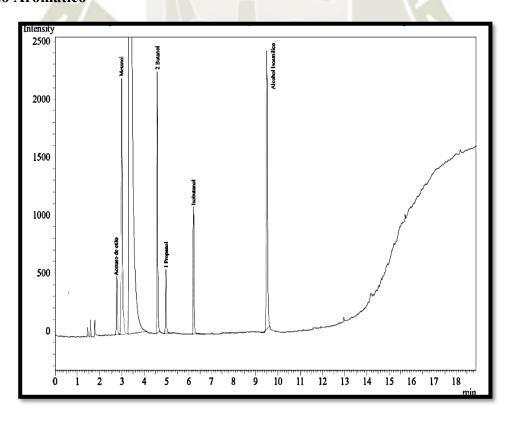


Figura 4 Anexo 14: Cromatograma del "Pisco Aromático"