

Universidad Católica de Santa María Facultad de Arquitectura e Ingenierías Civil y del Ambiente Escuela Profesional de Ingeniería Civil

"UTILIZACIÓN DE ELEMENTOS FINITOS Y ANÁLISIS NUMÉRICO PARA LA OBTENCIÓN DE LOS FACTORES DE SEGURIDAD EN EL TALUD DE SIGUAS (ENTRE KM. 920 – KM. 921), DISTRITO DE MAJES-CAYLLOMA Y DISTRITO SAN JUAN DE SIGUAS-AREQUIPA, AREQUIPA"

> Tesis presentada por las Bachilleres: Luque Castillo, Ximena Elizabeth Molina Velarde, Milagros Roxana

para optar el Título Profesional de: Ingeniera Civil.

Asesor: Ing. Gamarra Tuco, Rubén Francisco

AREQUIPA – PERÚ

2018

FACULTAD DE ARQUITECTURA E INGENIERÍAS CIVIL Y DEL AMBIENTE ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

DICTAMEN DE BORRADOR DE TESIS

VISTO El BORRADOR DE TESIS Titulado: "Utilización de elementos finitos y análisis numérico paro la oblención de los factores de segundad un el tallad de Siguas (entre distrito San Luan de Km 920. Km. 921) distribo de Majes - Caulliona y Siguas - Arequipa, Arequipa Presentado por el (la) (los) Bachiller (es): Luque Costillo Elizabe th Ximena Hilagros Roxama Kolina Velande Nuestro DICTAMEN es: Intobado **OBSERVACIONES:** Octubre del 2018 Arequipa, 16 de C=0 2778 1930 Janain 6 1. 3044

DEDICATORIA

A Dios, por permitirme lograr mis sueños con salud y rodeada de los que más quiero.

A mis padres Raúl y Eleana; por ser mi felicidad y mi apoyo eterno.

Ximena

A Dios, por su infinito amor y bondad, por cada detalle y momento de aprendizaje que me hicieron crecer como persona y culminar este proyecto.

A mi mamá, por ser la promotora incondicional de mis sueños, mi inspiración y un ejemplo de fortaleza y fe que me enseñó a salir adelante a pesar de los obstáculos.

A mi papá por guiarme en mi formación profesional y creer incondicionalmente en mí.

A mi abuela porque siempre fuiste y serás para mí el ejemplo de madre y mujer ideal.

A mis mejores amigas por tantos momentos de risas, tristezas y complicidad.

Milagros

ш

AGRADECIMIENTOS

A la Universidad Católica de Santa María, por habernos permitido formarnos académicamente.

A nuestras familias, por su comprensión y los constantes mensajes de aliento.

A nuestros maestros, por impartir sus conocimientos con mucho esfuerzo y hacer posible nuestra preparación profesional.

Al Ingeniero Olger Febres Rosado, por su continuo interés, motivación y consejos para la culminación de nuestra tesis.

Al Ingeniero Rubén Gamarra Tuco, por su apoyo incondicional desde el primer momento, su tiempo y sus enseñanzas.

Ximena y Milagros.

INTRODUCCIÓN

Los taludes a lo largo de los años han sido objeto de estudio con el fin de encontrar maneras de estabilización, control y/o prevención para mitigar los peligros que puedan causar sus fallas, teniendo en cuenta las diversas causas que pueden originarlos. Hoy en día existen diversas herramientas a disposición de la ingeniería para prevenir los niveles de amenaza y así mismo brindar soluciones para la estabilización de taludes.

Existen diferentes formas de análisis de la estabilidad de taludes. Las más utilizadas son los métodos de equilibrio límite, que toman en cuenta las fuerzas actuantes y resistentes que actúan a lo largo de una superficie de falla, y consideran que la estabilidad está asegurada con un factor de seguridad mayor a 1. Hoy en día se viene utilizando el método de elementos finitos, que se basa en dividir la masa de suelo en unidades pequeñas generando una malla de elementos finitos, este método considera los resultados en función de esfuerzos y desplazamientos utilizando el método de Newton Raphson para solucionar la ecuación diferencial de equilibrio.

En el desarrollo de esta tesis se hizo un análisis comparativo de los factores de seguridad entre softwares que utilicen los métodos antes mencionados. Se tuvo en cuenta los programas: GeoStudio 2012 para los métodos de equilibrio límite y Geo5 para el método de elementos finitos. Cabe resaltar que este análisis se desarrolló teniendo en cuenta un problema de geotecnia actual y preocupante en la ciudad de Arequipa y Caylloma, como es el Deslizamiento de Siguas, que lamentablemente está sufriendo deslizamientos severos debido a la infiltración de agua provocada por el Proyecto Majes Siguas I.

Este análisis nos permitió identificar cuál método es el más conservador en cuanto a factores de seguridad y cuál permite obtener mayor información del comportamiento del talud.

RESUMEN

El conocimiento de la existencia de problemas geotécnicos en la Ciudad de Arequipa y especialmente en el distrito de San Juan de Siguas, es un problema latente que está afectando a la industria y especialmente a la sociedad del lugar. Debido a este fenómeno se han producido deslizamientos de importante magnitud principalmente porque la irrigación del Proyecto Majes I no tuvo previsto las filtraciones y ruptura del canal, lo que ha provocado alarma en la zona.

Ingemmet realizó estudios que proporcionan la estratigrafía de la zona afectada; tratándose de una mezcla de arenas, gravas y conglomerado. En esta tesis se han estudiado los suelos para verificar dicho sustento bibliográfico para lo cual se han realizado muestreos en campo y también se ha revisado la bibliografía geológica respectiva; encontrándose cierta compatibilidad con los estudios de la institución anteriormente nombrada.

Paralelamente se hicieron los trabajos preliminares de extracción de muestras, ensayos para la determinación de las propiedades físicas y mecánicas. Para poder definir el estado actual del talud se hizo un levantamiento topográfico con drones, obteniendo la planta, el perfil y secciones. Con estos datos se realizó un análisis de estabilidad de taludes por elementos finitos y métodos numéricos con los programas GeoStudio 2012 y Geo5 2018, respectivamente. Para ello se analizó tres superficies de falla que variaron en el tiempo, con una altura del agua constante para calcular el factor de seguridad que evidencia la inestabilidad. Adicionalmente dentro del análisis descrito se ha determinado cuál es la variabilidad en la obtención de resultados utilizando ambos programas.

PALABRAS CLAVE:

Talud, estabilidad, deslizamientos.

ABSTRACT

The knowledge of the existence of geotecnics problems in the City of Arequipa and especially in the district of San Juan de Siguas, is a latent problem that is affecting the industry and especially the local society. Due to this phenomenon there have been landslides of considerable magnitude mainly because the irrigation of the Majes I project did not foresee the leaks and rupture of the canal, which has caused alarm in the area.

Ingemmet carried out studies that provide the stratigraphy of the affected area; being a mixture of sand, gravel and conglomerate. In this thesis the soils have been studied to verify this bibliographical support for which field samplings have been carried out and the respective geological bibliography has also been reviewed; finding some compatibility with the studies of Ingemmet.

At the same time, preliminary work was carried out on the extraction of samples, tests for the determination of physical and mechanical properties. In order to define the current status of the slope, a topographic survey was made with drones, obtaining the plant, the profile and sections. With these data, a stability analysis of finite element slopes and numerical methods was carried out with the GeoStudio 2007 and Geo5 2018 programs, respectively. To do this, three fault surfaces that varied in time were analyzed, with a constant water height to calculate the safety factor evidenced by the instability. Additionally, within the analysis described, the variability in obtaining results using both programs have been determined.

KEYWORDS:

Slope, stability, landslides.

ÍNDICE GENERAL

DEDICATORIA	III
AGRADECIMIENTOS	IV
	V
	\//
	VI
ABSTRACT	VII
ÍNDICE DE TABLAS	XII
ÍNDICE DE FIGURAS	XIV
ÍNDICE DE GRÁFICOS	XVIII
CAPÍTULO Ι	1
	 ວ
I. PLANTEAWIENTO DEL PROBLEMIA	Z
1.1. IDENTIFICACIÓN DEL PROBLEMA	2
1.2. DESCRIPCIÓN DEL PROBLEMA	2
1.3. HIPÓTESIS	3
1.4. OBJETIVOS	3
1.4.1. OBJETIVO GENERAL	
1.4.2. OBJETIVOS ESPECÍFICOS	
1.5. METODOLOGIA	
1.5.1. RECOPILACION DE INFORMACION	
1.5.2. ANALISIS DE INFORMACIÓN	
	8
2. MARCO TEORICO	9
2.1 ESTABILIDAD DE TALLIDES	9
2 1 1 DEFINICIÓN DE TALUD	9
2.1.2. CLASIFICACIÓN DE FALLAS	
2.1.2.1. Desprendimiento o caídas	
2.1.2.2. Volteo	
2.1.2.3. Reptación	
2.1.2.4. Expansiones laterales	11
2.1.2.5. Deslizamiento	12
2.1.3. FACTORES QUE INTERVIENEN EN LA INESTABILIDAD	
2.1.4. MÉTODOS DE EQUILIBRIO LÍMITE	15
2.1.4.1. ORDINARIO O DE FELLENIUS	
2.1.4.2. BISHOP SIMPLIFICADO	
2.1.4.3. JANBÚ SIMPLIFICADO	19
2.1.4.4. MORGENSTERN PRICE	20
2.1.4.5. SPENCER	21
2.1.5. NEWTON-RAPHSON	21
2.1.6. COMPARACIÓN DE LOS MÉTODOS DE EQUILIBRIO LÍMITE	23
2.1.7. FACTOR DE SEGURIDAD	24

2.1.8.	CRITERIO DE FALLA DE MOHR – COULOMB	25
2.1.9.	ELEMENTOS FINITOS	25
CAPITUL	D III	27
3. CAR	ACTERIZACIÓN DE LA ZONA DE ESTUDIO	28
3.1. C		
3.1.1.		
3.1.2. 2 1 2		
5.1.5. 2.1.2		
3.1.3		
314	τοροgrafía	
315	GEOLOGÍA	31
3.1.5	DESCRIPCIÓN GENERAL	
3.1.5	.2. GEOMORFOLOGÍA	
3.1.5	.3. DESLIZAMIENTOS	
3.1.5	.4. UNIDADES LITOLÓGICAS	
3.1.6.	COLUMNA GEOLÓGICA	38
3.1.7.	HIDROLOGÍA	39
3.1.7	.1. AGUA DE RIEGO	39
3.1.7	2.2. PROYECTO HIDROENERGÉTICO MAJES – SIGUAS	40
CAPÍTUL	D IV	42
4. EST	JDIOS DE MECÁNICA DE SUELOS	43
4.1. E	KTRACCIÓN DE MUESTRAS	43
4.2. E	NSAYOS DE LABORATORIO	43
4.2. El 4.2.1.	PROPIEDADE DE FASE	
4.2. El 4.2.1. 4.2.1	PROPIEDADE DE FASE	43 43 43
4.2. El 4.2.1. 4.2.1 4.2.1	NSAYOS DE LABORATORIO PROPIEDADE DE FASE .1. RELACION DE VACIOS .2. POROSIDAD	 43 43 43 44
4.2. E 4.2.1. 4.2.1 4.2.1 4.2.1 4.2.1	NSAYOS DE LABORATORIO PROPIEDADE DE FASE .1. RELACION DE VACIOS .2. POROSIDAD .3. GRADO SE SATURACIÓN PROPIEDADES EÍSICAS	43 43 44 44 44
4.2. Et 4.2.1. 4.2.1 4.2.1 4.2.1 4.2.2 4.2.2.	NSAYOS DE LABORATORIO PROPIEDADE DE FASE .1. RELACION DE VACIOS .2. POROSIDAD .3. GRADO SE SATURACIÓN PROPIEDADES FÍSICAS 2. CONTENIDO DE HUMEDAD (ASTM D2216 - 98)	 43 43 43 44 44 45 45
4.2. E 4.2.1. 4.2.1 4.2.1 4.2.1 4.2.2 4.2.2 4.2.2	NSAYOS DE LABORATORIO PROPIEDADE DE FASE .1. RELACION DE VACIOS .2. POROSIDAD .3. GRADO SE SATURACIÓN PROPIEDADES FÍSICAS .1. CONTENIDO DE HUMEDAD (ASTM D2216 - 98) .2. GRAVEDAD ESPECÍFICA (ASTM D854 - 02)	43 43 43 44 44 44 45 45 45 45
4.2. E 4.2.1. 4.2.1 4.2.1 4.2.1 4.2.2 4.2.2 4.2.2 4.2.2	NSAYOS DE LABORATORIO PROPIEDADE DE FASE	43 43 43 44 44 44 45 45 45 45 45
4.2. E 4.2.1. 4.2.1 4.2.1 4.2.2 4.2.2 4.2.2 4.2.2 4.2.2 4.2.2	NSAYOS DE LABORATORIO PROPIEDADE DE FASE .1. RELACION DE VACIOS .2. POROSIDAD .3. GRADO SE SATURACIÓN PROPIEDADES FÍSICAS 2.1. CONTENIDO DE HUMEDAD (ASTM D2216 - 98) 2.2. GRAVEDAD ESPECÍFICA (ASTM D854 - 02) 2.3. PESO ESPECÍFICO (NTP 339.139) 2.4. DENSIDAD RELATIVA (ASTM D4254 - 01).	43 43 44 44 44 45 45 45 45 45 45 45
4.2. E 4.2.1. 4.2.1 4.2.1 4.2.2 4.2.2 4.2.2 4.2.2 4.2.2 4.2.2 4.2.2 4.2.3	NSAYOS DE LABORATORIO PROPIEDADE DE FASE 1. RELACION DE VACIOS 2. POROSIDAD 3. GRADO SE SATURACIÓN PROPIEDADES FÍSICAS 1. CONTENIDO DE HUMEDAD (ASTM D2216 - 98) 2. GRAVEDAD ESPECÍFICA (ASTM D854 - 02) 3. PESO ESPECÍFICO (NTP 339.139) 2.4. DENSIDAD RELATIVA (ASTM D4254 - 01) PROPIEDADES MECÁNICAS	43 43 43 44 44 44 45 45 45 45 45 45 46 46
4.2. E 4.2.1. 4.2.1 4.2.1 4.2.2 4.2.2 4.2.2 4.2.2 4.2.2 4.2.2 4.2.3 4.2.3	NSAYOS DE LABORATORIO PROPIEDADE DE FASE	43 43 43 44 44 44 45 45 45 45 45 45 45 45 46 46 46 46
4.2. E 4.2.1. 4.2.1 4.2.1 4.2.2 4.2.2 4.2.2 4.2.2 4.2.2 4.2.3 4.2.3 4.2.3 4.2.3	NSAYOS DE LABORATORIO PROPIEDADE DE FASE	43 43 44 44 44 45 45 45 45 45 45 46 46 46 46 47
4.2.1 4.2.1 4.2.1 4.2.1 4.2.2 4.2.2 4.2.2 4.2.2 4.2.2 4.2.2 4.2.3 4.2.3 4.2.3 4.2.3	NSAYOS DE LABORATORIO. PROPIEDADE DE FASE. .1. RELACION DE VACIOS. .2. POROSIDAD. .3. GRADO SE SATURACIÓN	43 43 43 44 44 44 45 45 45 45 45 45 45 46 46 46 46 46 47 47
4.2.1 4.2.1 4.2.1 4.2.1 4.2.2 4.2.2 4.2.2 4.2.2 4.2.2 4.2.3 4.2.3 4.2.3 4.2.3 4.2.3 4.2.3 4.2.3	NSAYOS DE LABORATORIO PROPIEDADE DE FASE 	43 43 44 44 44 44 45 45 45 45 45 45 45 45 46 46 46 46 46 47 47 47 48
4.2.1 4.2.1 4.2.1 4.2.1 4.2.2 4.2.2 4.2.2 4.2.2 4.2.2 4.2.3 4.2.3 4.2.3 4.2.3 4.2.3 4.2.3 4.2.3 4.2.3 4.2.4 CAPÍTULO	NSAYOS DE LABORATORIO	43 43 44 44 44 45 45 45 45 45 45 45 46 46 46 46 46 47 47 48 50
4.2.1 4.2.1 4.2.1 4.2.1 4.2.2 4.2.2 4.2.2 4.2.2 4.2.2 4.2.3 4.2.3 4.2.3 4.2.3 4.2.3 4.2.3 4.2.3 4.2.3 5. ANA	PROPIEDADE DE FASE	43 43 44 44 44 45 45 45 45 45 45 46 46 46 46 46 46 47 47 47 48 50 51
4.2.1 4.2.1 4.2.1 4.2.1 4.2.2 4.2.2 4.2.2 4.2.2 4.2.2 4.2.3 4.2.3 4.2.3 4.2.3 4.2.3 4.2.3 4.2.3 4.2.4 CAPÍTULO 5. ANÁ	PROPIEDADE DE FASE .1. RELACION DE VACIOS .2. POROSIDAD .3. GRADO SE SATURACIÓN PROPIEDADES FÍSICAS .1. CONTENIDO DE HUMEDAD (ASTM D2216 - 98) .2. GRAVEDAD ESPECÍFICA (ASTM D854 - 02) .3. PESO ESPECÍFICO (NTP 339.139) .4. DENSIDAD RELATIVA (ASTM D4254 - 01) PROPIEDADES MECÁNICAS .1. GRANULOMETRÍA (ASTM D422 - 98) .2. CLASIFICACIÓN DEL SUELO .3. CORTE DIRECTO (ASTM D3080 - 98) 	43 43 43 44 44 45 45 45 45 45 45 45 45 45 46 46 47 48 50 51
 4.2. 4.2.1. 4.2.1 4.2.1 4.2.1 4.2.1 4.2.2 4.2.2 4.2.2 4.2.3 4.2.3 4.2.3 4.2.4 CAPÍTULO 5. ANÁ 	NSAYOS DE LABORATORIO PROPIEDADE DE FASE .1. RELACION DE VACIOS .2. POROSIDAD .3. GRADO SE SATURACIÓN PROPIEDADES FÍSICAS .1. CONTENIDO DE HUMEDAD (ASTM D2216 - 98) .2. GRAVEDAD ESPECÍFICA (ASTM D854 - 02) .3. PESO ESPECÍFICO (NTP 339.139) .4. DENSIDAD RELATIVA (ASTM D4254 - 01) PROPIEDADES MECÁNICAS	43 43 44 44 44 45 45 45 45 45 45 45 46 46 46 46 46 46 47 47 48 50 51 51
 4.2. 4.2.1. 4.2.1 4.2.1 4.2.1 4.2.1 4.2.2 4.2.2 4.2.2 4.2.3 4.2.3 4.2.3 4.2.4 CAPÍTULO 5. ANÁ 	NSAYOS DE LABORATORIO	43 43 44 44 44 45 45 45 45 45 45 45 45 46 46 46 46 46 46 47 47 47 48 50 51 51
4.2.1 4.2.1 4.2.1 4.2.1 4.2.1 4.2.2 4.2.2 4.2.2 4.2.2 4.2.3 4.2.3 4.2.3 4.2.3 4.2.3 4.2.3 5. ANA 5.1. A 5.2. A	NSAYOS DE LABORATORIO PROPIEDADE DE FASE .1 RELACION DE VACIOS .2 POROSIDAD .3. GRADO SE SATURACIÓN PROPIEDADES FÍSICAS	43 43 44 44 44 45 45 45 45 45 45 46 46 46 46 46 46 47 47 48 50 51 51 51 52
 4.2. E 4.2.1. 4.2.1 4.2.1 4.2.1 4.2.1 4.2.2 4.2.2 4.2.2 4.2.3 4.2.3 4.2.3 4.2.4 CAPÍTULO 5. ANÁ 5.1. A 5.2. A 	NSAYOS DE LABORATORIO PROPIEDADE DE FASE	43 43 44 44 44 45 45 45 45 45 45 46 46 46 46 46 46 46 46 46 46 50 51 51 51
 4.2. 4.2.1. 4.2.1 4.2.1 4.2.1 4.2.1 4.2.2 4.2.2 4.2.2 4.2.3 4.2.3 4.2.3 4.2.4 CAPÍTULO 5. ANÁ 5.1. A 5.2. A 5.3. A 	NSAYOS DE LABORATORIO PROPIEDADE DE FASE	43 43 43 44 44 45 45 45 45 45 45 45 45 45 46 46 47 48 50 51 51 52 53

	ANO 2014	57
5.6.	AÑO 2015	57
5.7.	AÑO 2017	59
5.8.	AÑO 2018	68
5.9.	COMPARACIÓN A TRAVÉS DEL TIEMPO	72
5.10.	PROBABILIDAD DE AFECTACIÓN A LAS INFRAESTRUCTURAS EXISTENTES	74
CAPÍTU	LO VI	. 76
6. RI	ESGO SÍSMICO	. 77
6.1. ZON	IFICACIÓN	77
6.2. TFCT	ONISMO DE LA REGIÓN AREOLUPA	
0.2		
6.3. SISN		78
6.4. ÚLTI	MOS EVENTOS SÍSMICOS	79
6.5. DESI	IZAMIENTOS POR SISMOS EN AREQUIPA	80
6.6. ACEI	ERACION MAXIMA	80
CAPITU	LO VII	. 82
7. AN	IÁLISIS DE ESTABILIDAD	. 83
7.1.	CONSIDERACIONES GENERALES	83
7.1. 7.1.1.	CONSIDERACIONES GENERALES ASIGNACIÓN DE PROPIEDADES MECÁNICAS	 83
7.1. 7.1.1. 7.1.2.	CONSIDERACIONES GENERALES ASIGNACIÓN DE PROPIEDADES MECÁNICAS TOPOGRAFÍA DE LA ZONA	83 83
7.1. 7.1.1. 7.1.2. 7.1.3.	CONSIDERACIONES GENERALES ASIGNACIÓN DE PROPIEDADES MECÁNICAS TOPOGRAFÍA DE LA ZONA NIVEL FREÁTICO	83 83 85
7.1. 7.1.1. 7.1.2. 7.1.3. 7.1.4.	CONSIDERACIONES GENERALES ASIGNACIÓN DE PROPIEDADES MECÁNICAS TOPOGRAFÍA DE LA ZONA NIVEL FREÁTICO SUPERFICIES DE FALLA	83 83 83 85 86
7.1. 7.1.1. 7.1.2. 7.1.3. 7.1.4. 7.1.5.	CONSIDERACIONES GENERALES ASIGNACIÓN DE PROPIEDADES MECÁNICAS TOPOGRAFÍA DE LA ZONA NIVEL FREÁTICO SUPERFICIES DE FALLA DETERMINACIÓN DE SOBRECARGA ACTUANTE	83 83 83 85 86 92
7.1. 7.1.1. 7.1.2. 7.1.3. 7.1.4. 7.1.5. 7.1.6.	CONSIDERACIONES GENERALES ASIGNACIÓN DE PROPIEDADES MECÁNICAS TOPOGRAFÍA DE LA ZONA NIVEL FREÁTICO SUPERFICIES DE FALLA DETERMINACIÓN DE SOBRECARGA ACTUANTE FACTOR DE SISMO	83 83 83 85 86 92 93
7.1. 7.1.1. 7.1.2. 7.1.3. 7.1.4. 7.1.5. 7.1.6. 7.1.7.	CONSIDERACIONES GENERALES ASIGNACIÓN DE PROPIEDADES MECÁNICAS TOPOGRAFÍA DE LA ZONA NIVEL FREÁTICO SUPERFICIES DE FALLA DETERMINACIÓN DE SOBRECARGA ACTUANTE FACTOR DE SISMO FACTOR DE SEGURIDAD	83 83 85 86 92 93 94
7.1. 7.1.1. 7.1.2. 7.1.3. 7.1.4. 7.1.5. 7.1.6. 7.1.7.	CONSIDERACIONES GENERALES	83 83 85 86 92 93 94
7.1. 7.1.1. 7.1.2. 7.1.3. 7.1.4. 7.1.5. 7.1.6. 7.1.7. 7.2.	CONSIDERACIONES GENERALES	83 83 85 86 92 93 94
7.1. 7.1.1. 7.1.2. 7.1.3. 7.1.4. 7.1.5. 7.1.6. 7.1.7. 7.2. 7.2.1.	CONSIDERACIONES GENERALES ASIGNACIÓN DE PROPIEDADES MECÁNICAS TOPOGRAFÍA DE LA ZONA NIVEL FREÁTICO SUPERFICIES DE FALLA DETERMINACIÓN DE SOBRECARGA ACTUANTE FACTOR DE SISMO FACTOR DE SEGURIDAD	83 83 85 86 92 93 94 94
7.1. 7.1.1. 7.1.2. 7.1.3. 7.1.4. 7.1.5. 7.1.6. 7.1.7. 7.2. 7.2.1. 7.2.2. 7.2.2	CONSIDERACIONES GENERALES ASIGNACIÓN DE PROPIEDADES MECÁNICAS TOPOGRAFÍA DE LA ZONA NIVEL FREÁTICO SUPERFICIES DE FALLA DETERMINACIÓN DE SOBRECARGA ACTUANTE FACTOR DE SISMO FACTOR DE SEGURIDAD REALIZACIÓN DEL MODELO ESTÁTICO MODELAMIENTO CON GEOSTUDIO RESULTADOS CON GEOSLOPE RESULTADOS DEL AVANCE DE LA ESCARDA DEL TALUD SEGUÍN GEOSLOPE	83 83 83 85 92 93 94 94 94 113
7.1. 7.1.1. 7.1.2. 7.1.3. 7.1.4. 7.1.5. 7.1.6. 7.1.7. 7.2. 7.2.1. 7.2.1. 7.2.2. 7.2.3. 7.2.4	CONSIDERACIONES GENERALES	83 83 83 85 92 93 94 94 94 .113 .114
7.1. 7.1.1. 7.1.2. 7.1.3. 7.1.4. 7.1.5. 7.1.6. 7.1.7. 7.2.1. 7.2.1. 7.2.2. 7.2.3. 7.2.4. 7.2.5	CONSIDERACIONES GENERALES	83 83 85 86 92 93 94 94 94 .113 .114 .116 .122
7.1. 7.1.1. 7.1.2. 7.1.3. 7.1.4. 7.1.5. 7.1.6. 7.1.7. 7.2.1. 7.2.1. 7.2.2. 7.2.3. 7.2.4. 7.2.5. 7.2.6	CONSIDERACIONES GENERALES	83 83 85 86 92 93 94 94 .113 114 .116 .122 122
7.1. 7.1.1. 7.1.2. 7.1.3. 7.1.4. 7.1.5. 7.1.6. 7.1.7. 7.2.1. 7.2.1. 7.2.2. 7.2.3. 7.2.4. 7.2.5. 7.2.6. 7.2.7	CONSIDERACIONES GENERALES	83 83 83 85 86 92 93 94 94 94 .113 .114 .116 .122 .122 2012
7.1. 7.1.1. 7.1.2. 7.1.3. 7.1.4. 7.1.5. 7.1.6. 7.1.7. 7.2. 7.2.1. 7.2.2. 7.2.3. 7.2.4. 7.2.5. 7.2.6. 7.2.7.	CONSIDERACIONES GENERALES	83 83 83 85 92 93 94 94 .113 114 116 122 122 2012
7.1. 7.1.1. 7.1.2. 7.1.3. 7.1.4. 7.1.5. 7.1.6. 7.1.7. 7.2. 7.2.1. 7.2.2. 7.2.3. 7.2.4. 7.2.5. 7.2.6. 7.2.7. 7.2.8.	CONSIDERACIONES GENERALES ASIGNACIÓN DE PROPIEDADES MECÁNICAS TOPOGRAFÍA DE LA ZONA NIVEL FREÁTICO	83 83 83 85 92 93 94 94 .113 114 116 122 122 2012
7.1. 7.1.1. 7.1.2. 7.1.3. 7.1.4. 7.1.5. 7.1.6. 7.1.7. 7.2. 7.2.1. 7.2.2. 7.2.3. 7.2.4. 7.2.5. 7.2.6. 7.2.7. 7.2.8. 7.3.	CONSIDERACIONES GENERALES	83 83 85 86 92 93 94 94 .113 .114 .122 .122 2012 135 139
7.1. 7.1.1. 7.1.2. 7.1.3. 7.1.4. 7.1.5. 7.1.6. 7.1.7. 7.2. 7.2.1. 7.2.2. 7.2.3. 7.2.4. 7.2.5. 7.2.6. 7.2.7. 7.2.8. 7.3.1.	CONSIDERACIONES GENERALES	83 83 83 85 92 94 94 94 .113 114 116 122 122 2012 135 139 139
7.1. 7.1.1. 7.1.2. 7.1.3. 7.1.4. 7.1.5. 7.1.6. 7.1.7. 7.2. 7.2.1. 7.2.2. 7.2.3. 7.2.4. 7.2.5. 7.2.6. 7.2.7. 7.2.8. 7.3.1. 7.3.2.	CONSIDERACIONES GENERALES	83 83 83 85 86 92 94 94 94 94 94 113 114 122 122 2012 135 139 143
7.1. 7.1.1. 7.1.2. 7.1.3. 7.1.4. 7.1.5. 7.1.6. 7.1.7. 7.2. 7.2.1. 7.2.2. 7.2.3. 7.2.4. 7.2.5. 7.2.6. 7.2.7. 7.2.8. 7.3.1. 7.3.2. 7.3.3.	CONSIDERACIONES GENERALES ASIGNACIÓN DE PROPIEDADES MECÁNICAS	83 83 85 86 92 94 94 94 .113 .114 94 116 22 2012 135 139 139 143 143

vi

CONCLUSIONES	149
RECOMENDACIONES	153
BIBLIOGRAFIA	154
ANEXOS	157
ANEXO 1: COLUMNA LITO ESTRATIGRÁFICA DE LA ZONA	158
ANEXO 2: CUADRÁNGULO DE APLAO.	160
ANEXO 3: PERFIL ESTRATIGRÁFICO	162
ANEXO 4: ESTUDIO DE MECÁNICA DE SUELOS	167
ANEXO 5: FOTOS AÉREAS	205
ANEXO 6: PLANO DE PLANTA	208
ANEXO 7: PLANO DE SECCIONES TRANSVERSALES Y PERFIL LONGITUDINAL	210
ANEXO 8: REPORTE DE SISMOS EN AREQUIPA	214
ANEXO 9: MANUAL GEOSTUDIO 2012	223
ANEXO 10: MANUAL GEO5	236

ÍNDICE DE TABLAS

TABLA 3.1. POBLACIÓN DEL DISTRITO DE MAJES EN EL 2007	. 29
TABLA 3.2. POBLACIÓN DEL DISTRITO DE SAN JUAN DE SIGUAS EN EL 2007	. 29
TABLA 3.3. LITOLOGÍA MOQUEGUA INFERIOR	. 35
TABLA 3.4. LITOLOGÍA MOQUEGUA SUPERIOR	. 36
TABLA 3.5. RESULTADOS DE LA PONDERACIÓN DEL SUELO DE LAS PAMPAS DE MAJES-	
SIGUAS	. 39
TABLA 4.1. CUADRO RESUMEN DE RELACIÓN DE VACÍOS	. 44
TABLA 4.2. CUADRO RESUMEN DE POROSIDAD	. 44
TABLA 4.3. CUADRO RESUMEN DE GRADO DE SATURACIÓN	. 44
TABLA 4.4. CUADRO RESUMEN DE CONTENIDO DE HUMEDAD.	. 45
TABLA 4.5. CUADRO RESUMEN DE GRAVEDAD ESPECÍFICA.	. 45
TABLA 4.6. CUADRO RESUMEN DE PESO ESPECÍFICO	. 45
TABLA 4.7. CUADRO RESUMEN DE DENSIDAD RELATIVA.	. 46
TABLA 4.8. CUADRO RESUMEN DE GRANULOMETRÍA.	. 46
TABLA 4.9. CUADRO RESUMEN DE CLASIFICACIÓN SUCS-AASHTO	. 47
TABLA 4.10. CUADRO RESUMEN DE CORTE DIRECTO.	. 47
TABLA 4.11. CUADRO RESUMEN DE PROPIEDADES DEL SUELO	. 48
TABLA 5.1. PROBABILIDAD DE AFECTACIÓN EXTREMA, NORMAL Y LENTA DE LA	
INFRAESTRUCTURA AMENAZADA, EN EL SECTOR 1.	. 64
TABLA 5.2. PROBABILIDAD DE AFECTACIÓN EXTREMA, NORMAL Y LENTA DE LA	
INFRAESTRUCTURA AMENAZADA, EN EL SECTOR 2.	. 65
TABLA 5.3. PROBABILIDAD DE AFECTACIÓN EXTREMA, NORMAL Y LENTA DE LA	
INFRAESTRUCTURA AMENAZADA, EN EL SECTOR 3.	. 66
TABLA 5.4. PROBABILIDAD DE AFECTACIÓN EXTREMA, NORMAL Y LENTA DE LA	
INFRAESTRUCTURA AMENAZADA, EN EL SECTOR 4.	. 67
TABLA 5.5. DISTANCIAS ACTUALES A LA ESCARPA SECTOR 1.	. 74
TABLA 5.6. DISTANCIAS ACTUALES A LA ESCARPA SECTOR 2.	. 74
TABLA 5.7. DISTANCIAS ACTUALES A LA ESCARPA SECTOR 3.	. 74
TABLA 6.1. CLASIFICACIÓN DE SUELOS DE ACUERDO A LA AMPLIFICACIÓN SÍSMICA	. 81
TABLA 7.1. RESULTADOS SECCIÓN I POR GEOSLOPE	113
TABLA 7.2. RESULTADOS SECCIÓN II POR GEOSLOPE	113
TABLA 7.3. RESULTADOS SECCIÓN III POR GEOSLOPE	113
TABLA 7.4. RESULTADOS SECCIÓN VI POR GEOSLOPE	114
TABLA 7.5. COMPARACIÓN DE DISTANCIAS DEL DESLIZAMIENTO A PUNTOS DE REFERENC	IA.
	115
	122
TABLA 7.0. VENTAJAS Y DESVENTAJAS ENTRE METUDOS DE GEOSLOPE.	134
TABLA 7.8. VARIACION ENTRE ES DE LAS SUPERFICIES CRITICAS - SECCION I.	132
TABLA 7.9. VARIACION ENTRE ES DE LAS SUPERFICIES CRITICAS - SECCION II.	136
IABLA /.10. VARIACION ENTRE FS DE LAS SUPERFICIES CRITICAS – SECCION III	137
TABLA 7 .11. VARIACION ENTRE FS DE LAS SUPERFICIES CRITICAS – SECCIÓN IV	138

TABLA 7.12. RESULTADOS POR GEO5 CON SISMO	. 143
TABLA 7.13. RESULTADOS POR GEOSTUDIO CON SISMO – SECCIÓN I	. 143
TABLA 7.14. RESULTADOS POR GEOSTUDIO CON SISMO – SECCIÓN II	. 143
TABLA 7.15. RESULTADOS POR GEOSTUDIO CON SISMO – SECCIÓN III	. 144
TABLA 7.16. RESULTADOS POR GEOSTUDIO CON SISMO – SECCIÓN IV	. 144
TABLA 7.17. COMPARACIÓN DE FS DE LAS SUPERFICIES MÁS CRÍTICAS CON SISMO	. 144

ÍNDICE DE FIGURAS

FIGURA 1.1. BOSQUEJO DE SUPERFICIES DE FALLA CON RESPECTO AL TIEMPO	6
FIGURA 1.1. GRÁFICO DE LA ALTURA DE NIVEL FREÁTICO.	7
FIGURA 2.1. DESLIZAMIENTO CAUSADO POR SISMO DE EL SALVADOR DEL 13 DE ENERO DE 2001.	9
FIGURA 2.2. MECANISMO DE DESPRENDIMIENTO Y COLAPSO	0
FIGURA 2.3. MECANISMO DE RUPTURA MEDIANTE VUELCO	0
FIGURA 2.4. PROCESO DE REPTACIÓN	1
FIGURA 2.5. EXPANSIONES LATERALES	1
FIGURA 2.6. DESLIZAMIENTO EN SUELOS BLANDOS 12	2
FIGURA 2.7. DESLIZAMIENTO ROTACIONAL	3
FIGURA 2.8. DESLIZAMIENTO DE TRASLACIÓN	3
FIGURA 2.9. ESQUEMA DEL ANÁLISIS DE ESTABILIDAD DE TALUDES POR EL MÉTODO DE FELLENIUS	6
FIGURA 2.10. ESQUEMA DE LAS FUERZAS QUE ACTÚAN EN LA DMA DOVELA, DE ACUERDO AL MÉTODO DE FELLENIUS	6
FIGURA 2.11. ANÁLISIS DE ESTABILIDAD DE TALUDES POR EL MÉTODO DE BISHOP. (A) ESQUEMA DE LAS FUERZAS QUE ACTÚAN EN LA DMA DOVELA. (B) DIAGRAMA DE FUERZAS EN EQUILIBRIO DE LA DMA DOVELA	8
FIGURA 2.12. DIAGRAMA DEL FACTOR FO UTILIZADO EN EL MÉTODO DE JANBÚ	0
FIGURA 2.13. FUERZAS ACTUANTES SOBRE LAS DOVELAS.	1
FIGURA 2.14. TANGENTE A PARTIR DE UN PUNTO	2
FIGURA 2.15. FALLA DE TALUD	4
FIGURA 2.16. EJEMPLO DE IDEALIZACIÓN DE UN TALUD A ELEMENTOS FINITOS 25	5
FIGURA 3.1. UBICACIÓN DEL DESLIZAMIENTO DE SIGUAS	8
FIGURA 3.2. VISTA SATELITAL DEL DESLIZAMIENTO 29	9
FIGURA 3.3. CONGLOMERADO	2
FIGURA 3.4. CONOS DE DEYECCIÓN EN EL MARGEN IZQUIERDO DEL RÍO	2
FIGURA 3.5. FOTO DEL VALLE DE SIGUAS	3
FIGURA 3.6. LEYENDA DEL MAPA GEOLÓGICO DEL CUADRÁNGULO DE APLAO 34	4
FIGURA 3.7. SISTEMA DE RIEGO DEL DISTRITO DE MAJES	0
FIGURA 3.8. EL PROYECTO MAJES-SIGUAS I	0
FIGURA 3.9. EL PROYECTO MAJES-SIGUAS II	1
FIGURA 5.1. CARTOGRAFIADO DE DESLIZAMIENTOS EN LA PARTE BAJA DEL VALLE DE SIGUAS, AÑO 20045:	1

xν

FIGURA 5.2. CARTOGRAFIADO DE DESLIZAMIENTOS EN LA PARTE BAJA DEL VALLE DE SIGUAS, AÑO 2004
FIGURA 5.3. PERFIL TRANSVERSAL "CORTE A - A' "DEL DESLIZAMIENTO DE SIGUAS, AÑO 2010
FIGURA 5.4. CARTOGRAFIADO DE DESLIZAMIENTOS DEL VALLE DE SIGUAS, AÑO 2012 56
FIGURA 5.5. FORMACIÓN DE LAGUNA COMO PRODUCTO DEL REPRESAMIENTO DEL RÍO SIGUAS, DEBIDO AL DESLIZAMIENTO, AÑO 201457
FIGURA 5.6. CARTOGRAFIADO DE DESLIZAMIENTO DEL VALLE DE SIGUAS, AÑO 2015 57
FIGURA 5.7. BLOQUE FRACTURADO SOBRE LA ZONA DE COMPRESIÓN DEL CUERPO DEL DESLIZAMIENTO, AÑO 2015
FIGURA 5. 8. CARTOGRAFIADO DE DESLIZAMIENTO DEL VALLE DE SIGUAS, AÑO 2017 59
FIGURA 5.9. VISTA DEL DESLIZAMIENTO ANTIGUO DE SANTA ISABEL DE SIGUAS
FIGURA 5.10. ÁREA DE INFLUENCIA DEL DESLIZAMIENTO DE SIGUAS
FIGURA 5.11. VISTA DE LA PLANTA DE LECHE GLORIA, INFRAESTRUCTURA AMENAZADA POR AVANCE DEL DESLIZAMIENTO. NÓTESE LA ESCARPA DEL DESLIZAMIENTO
FIGURA 5.12. TRAMO DEL CANAL DE IRRIGACIÓN EN EL SECTOR 2, UBICADO A 6 METROS DE LA ESCARPA PRINCIPAL
FIGURA 5.13. TRAZO DEL CANAL DE IRRIGACIÓN APERTURADO PARA FEBRERO DEL 2017 62
FIGURA 5.14. INTERFEROMETRÍA ÓPTICA DEL VALLE DE SIGUAS, LACROIX, 2017
FIGURA 5.15. EVOLUCIÓN DE LA ESCARPA PRINCIPAL DEL DESLIZAMIENTO Y DISTANCIAS MÍNIMAS A INFRAESTRUCTURA AMENAZADA -AGOSTO 2017
FIGURA 5.16. EVOLUCIÓN DE LA ESCARPA PRINCIPAL DEL DESLIZAMIENTO Y DISTANCIAS MÍNIMAS A INFRAESTRUCTURA AMENAZADA -AGOSTO 2017 – SECTOR 1
FIGURA 5.17. EVOLUCIÓN DE LA ESCARPA PRINCIPAL DEL DESLIZAMIENTO Y DISTANCIAS MÍNIMAS A INFRAESTRUCTURA AMENAZADA -AGOSTO 2017 – SECTOR 2
FIGURA 5.18. EVOLUCIÓN DE LA ESCARPA PRINCIPAL DEL DESLIZAMIENTO Y DISTANCIAS MÍNIMAS A INFRAESTRUCTURA AMENAZADA -AGOSTO 2017 – SECTOR 3
FIGURA 5.19. EVOLUCIÓN DE LA ESCARPA PRINCIPAL DEL DESLIZAMIENTO Y DISTANCIAS MÍNIMAS A INFRAESTRUCTURA AMENAZADA -AGOSTO 2017 – SECTOR 4
FIGURA 5.20. FOTO PANORÁMICA DEL DESLIZAMIENTO, AÑO 2018
FIGURA 5.21. FOTO DE UN COSTADO DEL TALUD, AÑO 201869
FIGURA 5.22. FOTO DE GRIETAS TENSIONALES EN LA BASE DEL TALUD
FIGURA 5.23. FOTO DE GRIETAS TENSIONALES EN EL BORDE DEL TALUD
FIGURA 5.24. FOTO DE LOS BLOQUES DESDE EL BORDE DEL TALUD
FIGURA 5.25. COMPARACIÓN DEL AVANCE DE LA ESCARPA A TRAVÉS DE LOS AÑOS HASTA EL 2018
FIGURA 6.1. ZONIFICACIÓN SÍSMICA DEL TERRITORIO NACIONAL, AÑO 2016

FIGURA 7.1. SECCIÓN I – DESLIZAMIENTO DE SIGUAS	
FIGURA 7.2. SECCIÓN II – DESLIZAMIENTO DE SIGUAS	
FIGURA 7.3. SECCIÓN III – DESLIZAMIENTO DE SIGUAS	
FIGURA 7.4. SECCIÓN IV – DESLIZAMIENTO DE SIGUAS 85	
FIGURA 7.5. GRÁFICO DE LA ALTURA DE NIVEL FREÁTICO	
FIGURA 7.6. BOSQUEJO DEL AVANCE EN EL TIEMPO DEL DESLIZAMIENTO	
FIGURA 7.7. SUPERFICIES DE FALLA, SECCIÓN 1	
FIGURA 7.8. SUPERFICIES DE FALLA, SECCIÓN 2	
FIGURA 7. 9. SUPERFICIES DE FALLA, SECCIÓN 390	
FIGURA 7.10. SUPERFICIES DE FALLA, SECCIÓN 491	
FIGURA 7.11. CANAL TIPO92	
FIGURA 7.12. EJEMPLO DE TALUD MODELADO EN GEOSLOPE	
FIGURA 7.13. SUPERFICIE DE FALLA GLOBAL-SECCIÓN I	
FIGURA 7.14. SUPERFICIE DE FALLA I- SECCIÓN I	
FIGURA 7.15. SUPERFICIE DE FALLA II- SECCIÓN I	
FIGURA 7.16 SUPERFICIE DE FALLA III- SECCIÓN I	
FIGURA 7.17. SUPERFICIE DE FALLA GLOBAL-SECCIÓN II	
FIGURA 7.18. SUPERFICIE DE FALLA I- SECCIÓN II 102	
FIGURA 7.19. SUPERFICIE DE FALLA II- SECCIÓN II	
FIGURA 7.20. SUPERFICIE DE FALLA III- SECCIÓN II 104	
FIGURA 7.21. SUPERFICIE DE FALLA GLOBAL- SECCIÓN III	
FIGURA 7.22. SUPERFICIE DE FALLA I - SECCIÓN III 106	
FIGURA 7.23. SUPERFICIE DE FALLA II- SECCIÓN III 107	
FIGURA 7.24. SUPERFICIE DE FALLA III- SECCIÓN III 108	
FIGURA 7.25. SUPERFICIE DE FALLA GLOBAL-SECCION IV 109	
FIGURA 7.26. SUPERFICIE DE FALLA I-SECCION IV	
FIGURA 7.27. SUPERFICIE DE FALLA II-SECCION IV	
FIGURA 7.28. SUPERFICIE DE FALLA III-SECCION IV 112	
FIGURA 7.29. SECCIÓN TRANSVERSAL DEL TALUD	
FIGURA 7.30. DIAGRAMA DEL AVANCE DEL DESLIZAMIENTO	
FIGURA 7.31. INTERFAZ DE GEO5 116	
FIGURA 7.32. VINCULACIÓN DE PROGRAMAS	
FIGURA 7.33. COMBINACIÓN DE MÉTODOS ANALÍTICOS Y MEF 117	
FIGURA 7.34 DIAGRAMA DE ESFUERZOS DEL TALUD Y FACTOR DE SEGURIDAD -SECCIÓN I 118	

FIGURA 7.35. DIAGRAMA DE ESFUERZOS DEL TALUD Y FACTOR DE SEGURIDAD -SECCIÓN II
FIGURA 7.36 DIAGRAMA DE ESFUERZOS DEL TALUD Y FACTOR DE SEGURIDAD -SECCIÓN III 120
FIGURA 7.37 DIAGRAMA DE ESFUERZOS DEL TALUD Y FACTOR DE SEGURIDAD -SECCIÓN IV
FIGURA 7.38. DIAGRAMA DE ESFUERZOS DEL TALUD Y FACTOR DE SEGURIDAD CON SISMO - SECCIÓN I
FIGURA 7.39. DIAGRAMA DE ESFUERZOS DEL TALUD Y FACTOR DE SEGURIDAD CON SISMO - SECCIÓN II
FIGURA 7.40. DIAGRAMA DE ESFUERZOS DEL TALUD Y FACTOR DE SEGURIDAD CON SISMO - SECCIÓN III
FIGURA 7.41. DIAGRAMA DE ESFUERZOS DEL TALUD Y FACTOR DE SEGURIDAD CON SISMO - SECCIÓN IV

ÍNDICE DE GRÁFICOS

GRÁFICO 5.1. CUERPO DEL DESLIZAMIENTO, AÑO 200752
GRÁFICO 5.2. CUERPO DEL DESLIZAMIENTO, AÑO 21055
GRÁFICO 5.3. COMPARACIÓN DEL AVANCE DEL DESLIZAMIENTO A TRAVÉS DEL TIEMPO, AÑO 2010
GRÁFICO 5.4. ACERCAMIENTO EN LA ZONA DEL DESLIZAMIENTO
GRÁFICO 6.1. PRINCIPALES EVENTOS SÍSMICOS HASTA EL 2017 EN LA REGIÓN DE AREQUIPA
GRÁFICO 7.1. VARIACIÓN PORCENTUAL ENTRE FS. SUPERFICIE DE FALLA I - SECCIÓN I 126
GRÁFICO 7.2. VARIACIÓN PORCENTUAL ENTRE FS. SUPERFICIE DE FALLA II - SECCIÓN I 126
GRÁFICO 7.3. VARIACIÓN PORCENTUAL ENTRE FS. SUPERFICIE DE FALLA III - SECCIÓN I 127
GRÁFICO 7.4. VARIACIÓN PORCENTUAL ENTRE FS. SUPERFICIE DE FALLA IV - SECCIÓN I 127
GRÁFICO 7.5. VARIACIÓN PORCENTUAL ENTRE FS. SUPERFICIE DE FALLA I - SECCIÓN II 128
GRÁFICO 7.6. VARIACIÓN PORCENTUAL ENTRE FS. SUPERFICIE DE FALLA II - SECCIÓN II 128
GRÁFICO 7.7. VARIACIÓN PORCENTUAL ENTRE FS. SUPERFICIE DE FALLA III - SECCIÓN II 129
GRÁFICO 7.8. VARIACIÓN PORCENTUAL ENTRE FS. SUPERFICIE DE FALLA IV - SECCIÓN II 129
GRÁFICO 7.9. VARIACIÓN PORCENTUAL ENTRE FS. SUPERFICIE DE FALLA I - SECCIÓN III 130
GRÁFICO 7.10. VARIACIÓN PORCENTUAL ENTRE FS. SUPERFICIE DE FALLA II- SECCIÓN III. 130
GRÁFICO 7.11. VARIACIÓN PORCENTUAL ENTRE FS. SUPERFICIE DE FALLA III - SECCIÓN III.
GRÁFICO 7.12. VARIACIÓN PORCENTUAL ENTRE FS. SUPERFICIE DE FALLA IV - SECCIÓN III.
GRÁFICO 7.13. VARIACIÓN PORCENTUAL ENTRE FS. SUPERFICIE DE FALLA I - SECCIÓN IV. 132
GRÁFICO 7.14. VARIACIÓN PORCENTUAL ENTRE FS. SUPERFICIE DE FALLA I - SECCIÓN IV. 132
GRÁFICO 7.15. VARIACIÓN PORCENTUAL ENTRE FS. SUPERFICIE DE FALLA I - SECCIÓN IV. 133
GRÁFICO 7.16. VARIACIÓN PORCENTUAL ENTRE FS. SUPERFICIE DE FALLA I - SECCIÓN IV. 133
GRÁFICO 7.17. VARIACIÓN ENTRE FS DE LAS SUPERFICIES CRÍTICAS – SECCIÓN I 135
GRÁFICO 7.18. VARIACIÓN ENTRE FS DE LAS SUPERFICIES CRÍTICAS – SECCIÓN II
GRÁFICO 7.19. VARIACIÓN ENTRE FS DE LAS SUPERFICIES CRÍTICAS – SECCIÓN III
GRÁFICO 7.20. VARIACIÓN ENTRE FS DE LAS SUPERFICIES CRÍTICAS – SECCIÓN IV

GRÁFICO 7.21. VARIACIÓN ENTRE FS DE LAS SUPERFICIES CRÍTICAS CON SISMO – SECCIÓN I. 145
GRÁFICO 7.22. VARIACIÓN ENTRE FS DE LAS SUPERFICIES CRÍTICAS CON SISMO – SECCIÓN II. 145
GRÁFICO 7.23. VARIACIÓN ENTRE FS DE LAS SUPERFICIES CRÍTICAS CON SISMO – SECCIÓN III 146
GRÁFICO 7.24. VARIACIÓN ENTRE FS DE LAS SUPERFICIES CRÍTICAS CON SISMO – SECCIÓN

N	1	14	16
1 V	/	14	ŧΟ

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis

UNIVERSIDAD CATÓLICA DE SANTA MARÍA

CAPÍTULO I

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis

1. PLANTEAMIENTO DEL PROBLEMA

1.1. IDENTIFICACIÓN DEL PROBLEMA

El Perú es un país variado en suelos, pero esta variedad nos lleva a un desconocimiento del comportamiento de cierto tipo de éstos. Como ingenieros civiles debemos tener en cuenta de que el no saber las propiedades de los suelos que serán parte de nuestra obra es una negligencia, ya que estas pueden determinar la capacidad de realizar un proyecto.

Es así que, según Huamán-Murillo et al. (2016), cuando se inició el Proyecto Majes Siguas Etapa I no se realizó un adecuado estudio de comportamiento de suelos frente a las infiltraciones que podrían darse producto de los sistemas de riego, produciéndose tiempo después infiltraciones y posteriormente deslizamientos que ponen en un peligro inminente a la comunidad, no solo por la alta probabilidad de pérdidas de áreas de cultivo, sino también por perdida de infraestructura industrial, infraestructura de riego, viviendas y de la Carretera Panamericana Sur.

1.2. DESCRIPCIÓN DEL PROBLEMA

El deslizamiento de Siguas ha provocado diversos peligros en las laderas del Río Siguas provocados por infiltraciones que no fueron previstas en el proyecto, principalmente por el sistema de riego.

Este deslizamiento tiene una longitud aproximada de escarpa de casi 1400 m que compromete propiedades aledañas, haciendo perder parcelas de cultivo en una de las irrigaciones más importantes de la zona, y a la vez convirtiéndolas en inutilizables. También ha provocado pérdidas de infraestructura industrial (Seal, Gloria S.A.), ya que estas entidades tendrán que ser reubicadas por el peligro que representa el avance del deslizamiento.

El área de estudio compromete carreteras de importancia nacional para el tránsito vehicular, su destrucción seria alarmante en el traslado terrestre de los viajantes y al mismo tiempo afectarían los ingresos económicos de la población, al limitarlos en el traslado y venta de sus recursos.

1.3. HIPÓTESIS

El programa GeoStudio y Geo5 modelan de manera adecuada y real el deslizamiento del talud de Majes – Siguas por ambos métodos, equilibrio límite y elementos finitos. Los análisis comparativos entre ambos resultados obtenidos deben variar en un porcentaje mínimo, lo que corroboraría la validez y veracidad de dichos programas para futuras investigaciones.

1.4. OBJETIVOS

1.4.1. OBJETIVO GENERAL

Realizar un análisis de estabilidad por elementos finitos y análisis numérico para la obtención de los factores de seguridad en el talud de Siguas (entre km. 920 – km. 921), distrito de Majes – Caylloma y distrito de San Juan de Siguas - Arequipa, Arequipa.

1.4.2. OBJETIVOS ESPECÍFICOS

- Obtener los parámetros de los suelos considerados representativos del deslizamiento de Siguas.
- ↓ Obtener la topografía del lugar para tener la forma geométrica del talud.
- Comparar resultados de los análisis por los métodos utilizados por GeoStudio 2012 para las cuatro secciones, además de evaluar los resultados obtenidos.
- Comparar resultados de los análisis por elementos finitos y por GeoStudio 2012 para las cuatro secciones, además de evaluar los resultados obtenidos.
- Evaluar los beneficios que da el programa computacional Geo5 y demostrar su validez con la comparación del software GeoStudio 2012.
- Analizar la dinámica de la evolución del deslizamiento mediante monitoreo de Ingemmet y datos propios.

1.5. METODOLOGÍA

La metodología de la presente investigación tiene como objetivo explicar los procedimientos para su desarrollo y la obtención de resultados.

1.5.1. RECOPILACIÓN DE INFORMACIÓN

Se obtuvo información del repositorio del Ingemmet, de donde se obtuvieron estudios geológicos y monitoreo del deslizamiento.

De acuerdo a estudios geotécnicos e hidrológicos realizados por AUTODEMA se obtuvo parámetros como: la altura inicial del nivel freático para la modelación del talud, coeficiente de permeabilidad y estratigrafía primaria.

Además, se realizó el estudio de la topografía del talud con el uso de drones para la posterior obtención de la geometría, perfil y secciones críticas.

Finalmente, se recopiló información de los estudios de suelos para obtener propiedades físicas y de resistencia del suelo, para ser introducidos en los modelos de análisis de estabilidad de Geo5 y GeoSlope

1.5.2. ANÁLISIS DE INFORMACIÓN

Con la información obtenida, se analizó las propiedades físicas y de resistencia; paralelamente se obtuvo el perfil estratigráfico y cuatro secciones críticas del talud mediante Autocad Civil 3D 2019 para la definición de las propiedades geo mecánicas para cada uno de los estratos definidos.

Suposiciones para la geometría de las secciones:

- Asumiremos que el material es homogéneo por lo que cada capa de suelo se extiende paralelo al plano horizontal.
- El suelo que se encuentra en la base del deslizamiento será una arena pobremente graduada, según la columna lito estratigráfica de Ingemmet.
 Ver ANEXO 1 Columna Lito Estratigráfica de la zona.
- Sí hay presión de poros debido a la infiltración de agua: los ensayos realizados por AUTODEMA demuestran que para el año 2009 el nivel freático se encuentra a 92m debajo de la superficie libre.
- La Superficie de Falla circular se asume de acuerdo a que es la superficie de falla más crítica ya que un círculo tiene la menor superficie por unidad de masa.

1.5.3. VARIABLES ESTUDIADAS

Las variables utilizadas en el análisis del talud son datos de entrada en Geo5 y GeoStudio, los parámetros de suelo se definieron teniendo en cuenta que el modelo a utilizar corresponde a un modelo "Elástico".

UNIVERSIDAD

ÓLICA

5

SANTA MARÍA

Las propiedades de los estratos a estudiar son el peso específico γ (gf/cm^3), ángulo de fricción φ (°), y la cohesión c (kgf/cm^2). La geometría del talud se adoptó según la información recopilada de planos existentes de Ingemmet y del estudio topográfico.

1.5.4. MODELACIÓN NUMÉRICA

Para obtener los factores de seguridad, se realizó la modelación numérica usando el programa de elementos finitos llamado Geo5 y el programa GeoSlope utilizando la Teoría del equilibrio limite (SLOPE/W).

Primero, se establecieron los puntos para ubicar las 3 superficies de falla con respecto al tiempo en GeoSlope de acuerdo a la topografía identificando deslizamientos específicos en cada sección:

FIGURA 1.1. Bosquejo de superficies de falla con respecto al tiempo.

Fuente: Propia

Paralelamente se realizó el análisis de estabilidad de los taludes con el programa Geo5 para las 4 secciones con sus respectivas superficies de falla, con una altura de nivel freático constante de 92m.

FIGURA 1.1. Gráfico de la altura de nivel freático.

Fuente: Propia

Finalmente se obtuvo el factor de seguridad correspondiente. Se procedió a evaluar el incremento de las distancias con respecto al borde del talud.

1.5.5. ANÁLISIS DE RESULTADOS

Se obtuvo un Factor de Seguridad (FS) para cada superficie de falla en cada sección con ambos programas. Para el tiempo presente, se buscó el factor de seguridad mínimo entre las 4 secciones. Los factores de seguridad obtenidos por los programas Geo5 y GeoSlope fueron comparados al analizar el porcentaje de variación con diferentes softwares. Paralelamente se analizó la evolución final del avance del talud.

Esta disposición de herramientas computacionales acelera la obtención de los datos de salida (en este caso el FS); ya que estos métodos se basan en procesos iterativos; lo cual es de mucha ayuda para la planificación de proyectos.

UNIVERSIDAD CATÓLICA DE SANTA MARÍA

8

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis

2. MARCO TEÓRICO

2.1. ESTABILIDAD DE TALUDES

2.1.1. DEFINICIÓN DE TALUD

De acuerdo a Suarez Diaz (1998) se define como talud a un determinado volumen de suelo que experimenta cambios significativos en su altura y pendiente, dichos cambios pueden ser causados de forma natural o artificial.

Se constituye de ciertos elementos característicos que determinan el comportamiento geotécnico de dicha masa como: altura, pie, escarpe, altura de nivel freático, pendiente, longitud, convexidad y curvatura.

FIGURA 2.1. Deslizamiento causado por sismo de El Salvador del 13 de enero de 2001.

Fuente: USGS.

2.1.2. CLASIFICACIÓN DE FALLAS

2.1.2.1. Desprendimiento o caídas

Es un movimiento rápido en caída libre que se produce por la separación del suelo de una estructura con pendiente pronunciada.

Al impactar el suelo con una pendiente mayor a 75° los materiales son considerados "caídos de caída libre", sin embargo, cuando el ángulo de inclinación es menor a 45°, los suelos ruedan. Estas son las características de los dos tipos de movimiento respectivamente: colapso y desprendimiento. (Corominas y Garcias Yagüe, 1997)

FIGURA 2.2. Mecanismo de desprendimiento y colapso

Fuente: Corominas y Garcias Yagüe, (1997)

2.1.2.2. Volteo

Cierta masa del talud experimenta una rotación cuyo centro de giro se ubica abajo del centro de gravedad, es característico en taludes de macizos rocosos. Las fuerzas que causan la condición de desequilibrio son las producidas por sismos, por expansiones, agua entre grietas, etc. Podemos identificar dos tipos de movimientos: por flexión y desplome. (Corominas y Garcias Yagüe, 1997)

FIGURA 2.3. Mecanismo de ruptura mediante vuelco.

Fuente: Corominas y Garcias Yagüe, (1997)

CATÓLICA de santa maría

2.1.2.3. Reptación

De acuerdo a Suarez Díaz (1998), este desplazamiento se produce durante largos periodos de tiempo y es catálogo como el más lento, además no tiene superficie de rotura definida. Generalmente es producido por el clima en suelos blandos o alterados.

FIGURA 2.4. Proceso de reptación.

Fuente: Suarez Diaz J. (1998)

2.1.2.4. Expansiones laterales

Según Varnes (1978) se identifican dos tipos:

- 4 Movimientos de fracturación de suelo compacto, de progreso rápido y típico en sedimentos arcillosos.
- Desplazamientos sin áreas de cizalla definidas que afectan a toda la formación, de movimientos muy lentos y típicos en suelos blandos y deformables.

FIGURA 2.5. Expansiones laterales.

Fuente: Suarez Diaz J. (1998)

2.1.2.5. Deslizamiento

Movimiento de corte sobre una o más superficies de cizalla. El proceso puede iniciarse progresivamente a lo largo de la superficie de falla por lo que puede ser detectado a tiempo. Son causados por fenómenos naturales o deforestación, cortes y rellenos. Para un adecuado análisis de estabilidad es necesario clasificar este desplazamiento en rotacional y traslacional. (Corominas y Garcias Yagüe, 1997)

FIGURA 2.6. Deslizamiento en suelos blandos

Fuente: Suárez Díaz Jaime. (1998)

Se divide en 2 subgrupos:

2.1.2.5.1. Deslizamiento Rotacional

En un deslizamiento rotacional la superficie de falla es formada por una curva cuyo centro de giro se encuentra encima del centro de gravedad del cuerpo. Una característica típica es la presencia de dos zonas: superior de hundimiento e inferior de deslizamiento. Debido a esto se puede encontrar otro tipo de materiales fluyendo abajo del pie del talud.

Los suelos cohesivos y homogéneos experimentan generalmente este tipo de movimientos. Pueden reactivarse continuamente a pesar de estabilizarse al principio debido al aumento en las condiciones freáticas o la remoción del pie. (Suárez Díaz, 1998).

FIGURA 2.7. Deslizamiento rotacional.

Fuente: Highland y Bobrowsky, (1998)

2.1.2.5.2. Deslizamiento de Traslación

Se produce en una superficie de rotura plana o ligeramente ondulada, los componentes de masa tienen una velocidad constante. Si esta velocidad aumenta, puede llegar a romperse convirtiéndose en flujo. Se debe mencionar una subdivisión: resbalamientos (movimientos en superficies únicas sin trocearse) y deslizamientos en cuña (dos planos de rotura)

Este deslizamiento puede conservarse indefinidamente si la superficie tiene una pendiente muy pronunciada, a diferencia de la rotación que recuperará su condición de equilibrio. (Suárez Díaz Jaime, 1998).

FIGURA 2.8. Deslizamiento de traslación.

Fuente: Highland y Bobrowsky, (1998)

Se pueden identificar aún más tipos de movimientos como avalanchas, corriente de derrubios, coladas de tierra, golpes de arena y limo, solifluxión, combadura, rotura confinada, cabeceo, deformación gravitacional profunda, etc.

2.1.3. FACTORES QUE INTERVIENEN EN LA INESTABILIDAD

Según Mateo Martinez (2016), la condición de desequilibrio de una masa de suelo es consecuencia de factores pasivos (la rotura se forma lentamente) o activos (consecuencia de los pasivos para la rotura final del suelo). Todos estos cambian en el tiempo por lo que se debe determinar cuáles perjudican o favorecen el equilibrio:

Factores constantes:

- Composición y características geológicas del suelo
 - Presencia de cobertura vegetal
- Altura e inclinación del talud
- Relación talud-estructura

Factores variables:

- Acciones externas como deforestaciones, construcción de edificaciones, etc.
- Agentes climatológicos
- Peligrosidad sísmica
- 4 Infiltraciones
- Erosión fluvial y costera
- 4 Sismicidad de la zona

Tratándose del talud a estudiar, está comprobado que la infiltración del agua ha generado cambios en la textura, la composición y la mineralogía del suelo que desencadenó la reducción de los parámetros resistentes. Por lo que se puede decir que el agua es el factor con más acción en la modificación de las condiciones de estabilidad de un talud.

2.1.4. MÉTODOS DE EQUILIBRIO LÍMITE

Según Pérez de Ágreda (2005), dichos procesos son aplicables a todo tipo de suelo y permiten analizar las fallas rotacionales, traslacionales, de inclinación y de cuña. Son los más sencillos porque sus resultados terminan siendo coherentes con el análisis de la estabilidad de un talud.

Para estos métodos son necesarios determinados datos de entrada como la topografía de la zona de estudio, parámetros mecánicos como (cohesión y fricción obtenidos por el ensayo de corte directo), el peso específico, altura del nivel de agua y cargas exteriores como sismo, cargas puntuales y distribuidas. Además, se asume al talud como indefinido horizontalmente.

Sin embargo, se deben mencionar algunas desventajas según Suárez Díaz (s.f.), por ejemplo; no proporcionan una evaluación de las deformaciones; por su gran variedad de mecanismos sus resultados difieren entre ellos y para diferentes mecanismos de falla solo permite obtener un número único de FS.

Como para cualquier tipo de cálculo, debemos de seguir los siguientes pasos según Pérez de Ágreda (2005):

- La superficie de rotura debe ser conocida, geométricamente simple (rectas, circunferencias y espirales) y admisible. Sin embargo, si el suelo es heterogéneo (tiene varios estratos), se considerará superficies con un mayor nivel de complejidad.
- Se debe establecer relaciones de equilibrio entre fuerzas externas y fuerzas resistentes. Generalmente estas son dos ecuaciones de fuerzas horizontales y verticales y una ecuación de momentos. Para algunos casos de análisis como una superficie circular solo basta con una ecuación de momentos.
- Finalmente se despeja el factor de seguridad de las tres ecuaciones de equilibrio. Este es un proceso iterativo porque al cambiar la superficie de rotura cambiará el FS, el objetivo es encontrar el menor valor.

Los métodos de cálculo para principales métodos según Sanhueza Plaza y Rodríguez Cifuentes (2013), son:

2.1.4.1. ORDINARIO O DE FELLENIUS

(Fellenius 1927). Supone una superficie de falla definida con el arco AB. Seguidamente se divide en dovelas el área de falla, identificando fuerzas actuantes y resultantes para cada dovela. Finalmente se realiza la ecuación de equilibrio de momentos con respecto al centro del círculo para obtener el FS. El talud será analizado por cada metro lineal.

FIGURA 2.9. Esquema del análisis de estabilidad de taludes por el método de Fellenius

Fuente: Revista de la Construcción Vol. 12 nº 1

Procedimiento de cálculo:

Identificación de fuerzas

FIGURA 2.10. Esquema de las fuerzas que actúan en la dma dovela, de acuerdo al método de Fellenius

Fuente: Revista de la Construcción Vol. 12 nº 1

UNIVERSIDAD

de santa maría

CATÓLICA

Dónde,

- *W*: Resultante peso dovela.
- *R*: Fuerza que actúa como reacción al peso de la dovela.
- $N_n y N_{n+1}$: Fuerzas normales que actúan en cada lado de la dovela.
- T_n y $T_{(n+1)}$: Fuerzas tangenciales que actúan en cada lado de la dovela.
 - *N_r*: Componente normal de la reacción R.
 - Tr: Componente tangencial de la reacción R.

Se considera que N_n y T_n tienen la misma magnitud que N_{n+1} y $T_{(n+1)}$ y que sus líneas de acción coinciden.

Entonces, por la consideración de equilibrio tomada (ec.1):

$$N_r = W_n * \cos(\alpha_n) \tag{ec.1}$$

La resistencia al corte que ofrece el suelo, se escribe como (ec.2):

$$T_r = \tau * (\Delta l) = \frac{\tau * (\Delta l)}{FS} = \frac{1}{FS} * [c + \sigma' * \tan(\phi)] * \Delta l \qquad (ec.2)$$

El esfuerzo normal σ' , es igual a (ec.3):

$$\frac{N_r}{\Delta l} = \frac{W_n * \cos(\alpha_n)}{\Delta l}$$
 (ec.3)

Equilibrio de momentos: Momento producido por las fuerzas sobre el centro O, es igual al que resulta del actuar de las fuerzas resistentes sobre O. Entonces (ec.4):

$$\sum_{n=1}^{n=p} W_n * sen(\alpha_n) = \sum_{n=1}^{n=p} \frac{1}{FS} * \left[c + \frac{W_n * \cos(\alpha_n)}{\Delta l} * \tan(\emptyset) \right] * \Delta l * r \quad (\text{ec.4})$$
De la ecuación anterior se despeja el FS (ec.5):

$$FS = \frac{\sum_{n=1}^{n=p} [c * \Delta l + W_n * \cos(\alpha_n) * \tan(\emptyset)]}{\sum_{n=1}^{n=p} [W_n * \operatorname{sen}(\alpha_n)]}$$
(ec.5)

Para obtener el FS mínimo se debe realizar un proceso iterativo, variando la ubicación del centro O.

2.1.4.2. BISHOP SIMPLIFICADO

(Bishop 1955). Supone una superficie de falla circular, una horizontalidad de las fuerzas entre dovelas así que las fuerzas de cortante son cero. Reduciendo el número de incógnitas. La solución bastante complicada por lo que se usa un método más simple, y aunque este solo satisface la condición de momentos, los FS obtenidos son certeros.

Al igual que el método de Fellenius se debe dividir en dovelas, identificar fuerzas y momentos hasta obtener el FS mínimo.

Fuente: Revista de la Construcción Vol. 12 nº 1(2013)

Se deducen las siguientes ecuaciones (ec.6, ec.7):

$$T_r = N_r * \tan(\emptyset) + c * \Delta l = N_r * \left[\frac{\tan(\emptyset)}{FS}\right] + \frac{c * \Delta l}{FS} \qquad (ec.6)$$

$$N_r = \frac{W_n + \Delta T - \left[\frac{c*\Delta l}{FS}\right] * sen(\alpha_n)}{cos(\alpha_n) + \frac{\tan(\emptyset) * sen(\alpha_n)}{FS}}$$
(ec.7)

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis REPOSITORIO DE TESIS UCSM UNIVERSIDAD Católica De Santa María

Se desarrolla las ecuaciones de equilibrio de fuerzas y de momentos, para la obtención del FS de cada superficie de falla analizada. De esta manera (ec.8):

$$\sum_{n=1}^{n=p} W_n * r * sen(\alpha_n) = \sum_{n=1}^{n=p} T_r * r$$
 (ec.8)

Donde (ec.9),

$$T_r = \frac{1}{FS} * \left[c + \sigma' * \tan(\emptyset)\right] * \Delta l = \frac{1}{FS} * \Delta l + N_r * \tan(\emptyset) \text{ (ec.9)}$$

Se puede obtener el valor de las fuerzas N, reemplazarlas en la ecuación 9 y obtener lo siguiente (ec.10):

$$FS = \frac{\sum_{n=1}^{n=p} [c * b + W_n * \tan(\phi) + \Delta T * \tan(\phi)] * \frac{1}{m_{\alpha(n)}}}{\sum_{n=1}^{n=p} [W_n * \operatorname{sen}(\alpha_n)]}$$
(ec.10)

Donde (ec.11),

$$m_{\alpha(n)} = \cos(\alpha_n) + \frac{\tan(\emptyset) * sen(\alpha_n)}{FS}$$
 (ec.11)

Debido a la suposición de que las fuerzas entre dovelas es cero, que la (ec. 10) se puede simplificar (ec.12):

$$FS = \frac{\sum_{n=1}^{n=p} [c * b + W_n * \tan(\emptyset)] * \frac{1}{m_{\alpha(n)}}}{\sum_{n=1}^{n=p} [W_n * \operatorname{sen}(\alpha_n)]}$$
(ec.12)

Para resolver esta ecuación se debe iterar.

2.1.4.3. JANBÚ SIMPLIFICADO

(Janbú 1968). Asume que la cortante entre dovelas es cero y son horizontales, pero contrariamente a Bishop, no supone que las superficies de rotura sean circulares. Sólo satisface el equilibrio de esfuerzos. Los factores de seguridad son bajos. Alternativamente se puede usar un factor de corrección que varía según el nivel de curvatura de la superficie de rotura. Sin embargo, este factor puede mejorar al análisis para algunos taludes o provocar inexactitud.

FIGURA 2.12. Diagrama del factor f₀ utilizado en el método de Janbú

Fuente: Suárez. J. (2011)

Equilibrio de esfuerzos (ec.13):

$$FS = \frac{f_0 \sum \left\{ [c*b + W_n * \tan(\emptyset)] * \frac{1}{\cos(\alpha) * m_{\alpha(n)}} \right\}}{\sum W_n * \tan(\alpha)}$$
(ec.13)

2.1.4.4. MORGENSTERN PRICE

De acuerdo a Morgenstern y Price (1965) se presume la existencia de una relación entre las fuerzas de corte y las normales entre dovelas.

Esta relación puede considerarse constante u otro tipo de función. La suposición de una función para calcular los valores de las fuerzas entre dovelas, lo hace más complejo que el de Spencer.

A pesar de esto, esta suposición de funciones diferentes hace que el FS varíe de forma mínima cuando se satisface el equilibrio estático

La diferencia entre los resultados del método de Spencer y el de Morgenstern y Price es mínima.

FIGURA 2.13. Fuerzas actuantes sobre las dovelas.

Fuente: Suárez. J. (2011)

2.1.4.5. SPENCER

Spencer (1967). Supone que las fuerzas entre las dovelas son paralelas entre sí, y cumple con las condiciones de equilibrio de momentos y esfuerzos.

El ángulo de inclinación de las fuerzas entre dovelas y el FS son obtenidos por las ecuaciones de equilibrio. Para esto se debe realizar un proceso de prueba y error de forma iterativa hasta verificar un porcentaje mínimo de variación.

Aunque este método fue elaborado para superficies de rotura circulares, también puede ser aplicado para otros tipos.

2.1.5. NEWTON-RAPHSON

Según Gomez, M., éste método es de los más utilizados para localizar raíces ya que es muy eficiente y siempre converge para una función polinomial. Es necesario que las funciones sean diferenciables y continuas, para poder aplicar este método.

Se debe partir de un valor inicial para la raíz: x_n , este puede ser cualquier valor, el método convergirá a la raíz más cercana. Si se extiende una tangente desde el punto $(x_n, f(x_n))$, el punto donde esta tangente cruza al eje x representa una aproximación mejorada de la raíz x_{n+1} .

FIGURA 2.14. Tangente a partir de un punto.

Fuente: Olegalexandrov. (23 noviembre de 2004). JPG. Recuperado de http://metnum-utp01.blogspot.com/p/newton-raphson_10.html

La fórmula de Newton-Raphson se deduce a partir de la fórmula de la pendiente de una recta.

$m = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i} = \frac{0 - f(x_i)}{x_{i+1} - x_i}$	(ec.14)
$m(x_{i+1} - x_i) = -f(x_i)$	(ec.15)
$x_{i+1} - x_i = \frac{f(x_i)}{m}$	(ec.16)
$x_{i+1} = x_i - \frac{f(x_i)}{m}$	(ec.17)
$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$	(ec.18)

Hay que determinar un número máximo de iteraciones. Normalmente esto se hace considerando una tolerancia aceptable para el usuario.

Sin embargo, el método de Newton-Raphson algunas veces no converge, sino que oscila. Esto ocurre si no hay raíz real, si la raíz es un punto de inflexión o si el valor inicial está muy alejado de la raíz buscada.

Newton – Raphson en Geo5

Con el método de Newton-Raphson el curso de iteración se refiere a los siguientes parámetros:

- Factor de relajación representa el valor de la reducción de la etapa de carga actual para reiniciar la presentación de la solución no convergente.
- Máximo N° de relajaciones para una etapa de carga simple Este parámetro determina cuantas veces es posible invocar la acción anterior durante el análisis. Cuando se sobrepasa este valor se pide que el programa finalice el análisis. El resultado luego está disponible para el último nivel de carga exitosamente convergente.
 - Mínimo N° de iteraciones para una etapa de carga simple Este parámetro permite acelerar el análisis.

2.1.6. COMPARACIÓN DE LOS MÉTODOS DE EQUILIBRIO LÍMITE

De acuerdo a la comparación entre los métodos de equilibrio límite de Alva Hurtado (1994) se obtuvo las siguientes conclusiones:

- Bishop, Spencer y Morgenstern-Price son los métodos más populares y más usados por ingenieros en el mundo, a pesar de que hay Variaciónes entre sus factores de seguridad
- El factor de seguridad se subestima hasta un 30% de acuerdo a Janbú.
 Este porcentaje fue comprobado por Freddlund y Krahn (1977).
- El porcentaje de error en el factor de seguridad varía alrededor de 5%, si se cumple el equilibrio de momentos y esfuerzos.
- El factor de seguridad resulta constante con un $\varphi = 0$ de falla circular, si se cumple el equilibrio de momentos
- El factor de seguridad varía con la inclinación supuesta por las fuerzas laterales, si sólo se cumple el equilibrio de esfuerzos.
- Here Bishop se convierte en el método más adecuado de falla circular para un φ = 0 ó φ > 0, se con una presión de poros baja o alta.
- Fellenius se convierte en el método más adecuado para un φ > 0, con una presión de poros baja.

2.1.7. FACTOR DE SEGURIDAD

Fellenius (1922) definió el factor de seguridad como la relación entre la resistencia cortante promedio del suelo y el esfuerzo cortante promedio desarrollado a lo largo de la superficie de falla supuesta.

En un análisis de estabilidad, el objetivo es saber cuál es el factor de amenaza en la condición más crítica.

$$Fs = \frac{\tau_f}{\tau_d} \tag{ec.19}$$

JNIVERSIDAD

ÓL ICA

SANTA MARÍA

Dónde:

 τ_f : es la resistencia al corte máximo que se puede movilizar a lo largo de la superficie potencial de deslizamiento

 τ_d : es la resistencia al corte movilizado a lo largo de la superficie potencial de deslizamiento,

Es así, que, si el factor de seguridad calculado es igual a 1, el talud está en estado de falla inminente, por el contrario, si el factor de seguridad llega a un valor de 1,5 o superior este se considera estable y seguro; según DAS, Braja M. (2001).

FIGURA 2.15. Falla de Talud.

Fuente: Das, B. M., (2001)

Para el cálculo del factor de seguridad, la mayoría asume el criterio de falla de Coulomb. Este análisis estudia un único cuerpo, identificando sus fuerzas actuantes y resistentes. Al calcular la fuerza resistente, este es comparado con la disponible del suelo. Finalmente se obtiene el FS. Otra opción es la división de dovelas con un análisis de las condiciones de equilibrio de esfuerzos y momentos.

2.1.8. CRITERIO DE FALLA DE MOHR – COULOMB

Mohr (1900) afirmó que los materiales fallan debido a una combinación crítica de esfuerzo normal y esfuerzo cortante, y no solamente por la presencia de un esfuerzo máximo de uno de éstos.

De tal manera que la relación funcional entre estos esfuerzos sobre un plano de falla se expresa de la forma:

$$\tau = c + \sigma \tan \varphi \tag{ec.20}$$

2.1.9. ELEMENTOS FINITOS

Los elementos finitos es un método relativamente nuevo que se dio a conocer en el año 1967 por Clough y Woodward. El método divide la masa de suelo en unidades pequeñas a las cuales llaman elementos finitos.

Los elementos finitos se interconectan por medio de sus nodos y sus bordes predefinidos. Al conectarse se forma una malla de elementos finitos. (Azorín, C., A., 2014)

FIGURA 2.16. Ejemplo de idealización de un talud a elementos finitos.

Fuente: FEMAP V10.3 (2011)

El método consiste en evaluar los resultados que se dan en forma de esfuerzos y desplazamientos en los nodos. La condición de falla se evalúa como un fenómeno progresivo en donde no todos los elementos fallan al mismo tiempo. (Azorín, C., A., 2014)

El método es completo, es por ello que su utilización se viene popularizando en la ingeniería, ya sea para problemas prácticos o más complejos. (Wong, 1984). Para el análisis de estabilidad de taludes el método de elementos finitos es hoy el más utilizado mundialmente, ya que se le considera versátil y, como ya se dijo, completo.

El análisis por elementos finitos debe satisfacer las siguientes características:

Debe existir el equilibrio de esfuerzos en cada punto, el cual es realizado empleando la teoría elástica para describir los esfuerzos y deformaciones.

Las condiciones de esfuerzos de frontera se deben satisfacer.

CAPÍTULO III

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis

3. CARACTERIZACIÓN DE LA ZONA DE ESTUDIO

3.1. CARACTERÍSTICAS LOCALES

3.1.1. UBICACIÓN Y ACCESIBILIDAD

El deslizamiento de Siguas se encuentra en el margen derecho del Valle del río Siguas. Geográficamente entre los distritos de Majes y San Juan de Siguas. La escarpa principal del deslizamiento se ubica a aproximadamente 6 metros, en su zona más cercana, de la carretera Panamericana Sur, entre los kilómetros 920 y 921.

El deslizamiento es accesible por la carretera Panamericana Sur, a la altura de la Empresa Leche Gloria, y por una trocha carrozable que entra al Valle de Siguas por la Panamericana Sur.

FIGURA 3.1. Ubicación del deslizamiento de Siguas.

Fuente Ingemmet

FIGURA 3.2. Vista Satelital del Deslizamiento.

Fuente: Google Maps

3.1.2. POBLACIÓN

La población que se puede ver afectada por el deslizamiento es la de Majes y San Juan de Siguas. La distribución de esta población se muestra en la siguiente tabla:

TABLA 3.1. Población del distrito de Majes en el 2007

Población	Hombre		Mujer		
Total (2007)	Población	%	Población	%	
39 445	20 279	51.4	19 166	48.6	
	6.00	Fuente: Censo IN	IEI 2007		

TABLA 3.2. Población del distrito de San Juan de Siguas en el 2007

Población	Homb	ore	e Mujer		
Total (2007)	Población	%	Población	%	
1 535	832	54.2	703	45.8	

. Fuente: Censo INEI 2007

3.1.3. CLIMA

La zona de estudio está ubicada en plena Pampa de Majes, lo cual corresponde a un clima desértico, incluso es uno de los más áridos de la costa peruana.

Los estudios sobre procesos ecológicos señalan que la introducción de especies vegetales en un ámbito desértico modifica notablemente el microclima, mejorando sus condiciones para la habitación humana. En el caso del distrito de Majes, los factores climáticos se han modificado notablemente en los últimos 25 años, registrándose Variaciónes en todos los elementos del clima.

3.1.3.1. TEMPERATURA

Según el Plan de desarrollo urbano de ciudad Majes – Villa el Pedregal 2012 – 2021, el área de estudio presenta climas áridos, semiáridos en verano y húmedos en otoño e invierno. La distribución de pisos altitudinales de Pulgar Vidal (1940) clasifica la zona en la región Yunga.

Los datos de temperatura para el periodo 1982-2002 señalan que la media anual es de 18,4 °C, la máxima de 25,8 °C y la mínima de 8,3 °C.

La presencia de áreas de cobertura vegetal y de agua superficial ayuda a refrescar el aire durante el día y la noche, aunque sus efectos se limitan al área donde se encuentran. Por ello se considera que la mejora del indicador de temperatura sólo estaría beneficiando a las zonas agrícolas, mientras que, en las áreas urbanas y naturales, sus efectos no son aprovechados.

3.1.3.2. PRECIPITACIÓN

Según el Plan de desarrollo urbano de ciudad Majes – Villa el pedregal 2012 – 2021, la precipitación pluvial en la pampa Majes es escasa y esporádica, se da en forma de garúas poco intensas en los meses de enero a marzo. Para el periodo 1982 - 2002, el total anual se establece en 6 mm, con un máximo de 2,4 mm en febrero y un mínimo de 0. De acuerdo a estos valores se puede evidenciar una reducción de la precipitación en un 38% con respecto a periodos anteriores. El cambio puede ser consecuencia del proceso de Desertificación, el Fenómeno del Niño y el Cambio Climático, todos fenómenos regionales y globales.

Esta variación mensual da como consecuencia condiciones más extremas a la zona y no favorece el desarrollo de las actividades productivas primarias ni a la presencia de vegetación nativa.

Debido a que la precipitación es de menor intensidad a partir del 2002, y que esta fecha es próxima al inicio del deslizamiento consideramos que no es significativo para el aumento del nivel freático en la zona. Por ello asumimos el nivel freático constante de 92 m debajo de la superficie natural del terreno.

3.1.4. TOPOGRAFÍA

La zona presenta una topografía diversa, por un lado, en la zona de Majes, podemos encontrar una topografía llana. Por el lado de San Juan de Siguas encontramos accidentes geográficos como el Valle de Siguas, acompañado del río Siguas. A pesar de esto los recursos hídricos de la zona son escasos.

3.1.5. GEOLOGÍA

3.1.5.1. DESCRIPCIÓN GENERAL

El Instituto Geológico, Minero y Metalúrgico (1996), para estudiar la geología del Perú, divide a éste en cuadrantes. En base a ésta división, se observa que el área a tomar en cuenta para realizar los estudios pertinentes, se encuentra en el cuadrángulo de Aplao, perteneciente a la Hoja 33r.

Ver ANEXO 2 – Cuadrángulo de Aplao.

3.1.5.2. GEOMORFOLOGÍA

Según el Plan de Desarrollo Urbano de Majes, en gran parte de las pampas de Majes y en el corte de la Carretera Panamericana, se aprecian depósitos antiguos del Pleistoceno que conforman la secuencia sedimentaria reconocida como Conglomerado aluvial pleistoceno, formado por elementos de composición y tamaño muy variados, en bancos gruesos.

UNIVERSIDAD Católica De Santa María

FIGURA 3.3. Conglomerado

Fuente: Propia

Valle de Siguas

La formación del valle se da por procesos de levantamiento orogénico en la edad Mio-pliocénica, el mismo que separa las pampas de Majes y Siguas con un declive empinado de 200 metros de altura.

Conos de deyección

En la margen derecha e izquierda del valle de Siguas se tienen conos de deyección antiguos, con reactivaciones erosivas sobre la ladera del corte del Valle.

FIGURA 3.4. Conos de deyección en el margen izquierdo del Río Fuente: Propia

 Piso de Valle

> Está formado por depósitos aluviales y fluviales, debido a la actividad del río Siguas. El deslizamiento está afectando los terrenos de cultivos en el Valle.

FIGURA 3.5. Foto del Valle de Siguas

Fuente: Propia

Río Siguas

Según Huamán, Murillo, Maquerhua, Yarleque, Apaza, Cruz. (2016) el rio nace en los Andes Occidentales del nevado Ampato. Al igual que el río Majes, son los únicos que tienen agua durante todo el año y no reciben tributarios importantes en su recorrido.

Su trayecto tiene una dirección promedio de 35°N, su cauce es alterado en secciones por la existencia de movimientos en masas que provocan un ligero cambio de curso, generando barras arenosas sobre las extensiones del valle del río Siguas.

3.1.5.3. DESLIZAMIENTOS

Los límites de influencia en la geodinámica activa de deformación existente en el área del deslizamiento, abarcan aproximadamente 1.5 kilómetros alrededor de la escarpa principal del deslizamiento. Sin embargo, se debe considerar las velocidades de desplazamiento del deslizamiento que provocaran las condiciones normales, extremas y lentas del deslizamiento.

3.1.5.4. UNIDADES LITOLÓGICAS

El área de estudio está formada por unidades geológicas de edades Cenozoicas (Cuaternaria y Neogeno), estas son: La Formación Moquegua y depósitos cuaternarios.

ERATEMA	SISTEMA	SERIE	UNIDADES LITOESTRATIGRAFICAS	ROCAS INTRUSIVAS
۲ U	CUATERN IRIO	HOLOCENA	Depósito aluvíal Holocónico Qh-al Arenas, gravas, arcillas Depósitos eólicos Qh-æ Arenas, acumuladas en dunas Depósito de Terraza Cantos, arenas y arcillas Grupo Andagua Qh-antes Flujo de escorías afanitica gris negrusca	
1 0 Z 0 1		PLEISTOCENA	Depósito aluvial pleistocénico 🗍 🛱 🗐 Conglomerados, arenas, gravas	
U U U	NEOGE IO	PLIOCENA	Formación Millo Np-mi Conglomerados, areniscas y limolitas poco consolidadas Formación Moquegua Nmp-mo Conglomerados, areniscas tobáceas y limonitas grises	
		0.000		
	PALEOGENO	LOVEIN	Formación Sotillo P-so Limolitas, limoarcilítas, areniscas limosas pris rojiza a marrón rojiza	
4	CRETACEO	PALEOCENA SUPERIOR	Formación Arcurquina Kisar Galiza margosas, micritas, calcilutitas y brechas intraclásticas Fm. Murco Ki-mu Limoarciliftas abigarradas, arenisas cuarzosas blanquecinas Formación Hualhuani Ki-bu Areniscas cuarditcas blancas con estratificación sesoada	SUPER UNIDAD TIABAYA Granito Ks-ti/gr Tonalita Ks-ti/to Granodiorita Ks-ti/to Granodiorita Ks-ti/gd ROCAS BASICAS TEMPRANAS Diorita Ki-di Gabro Ki-gb
1 0 Z 0 1	- 0 22 SU 0		Formación Gramadal Js-gr Calizas gris oscuras con niveles de arcilitas grises Formación Labra Js-la Areniscas cuarciticas grises con limoarcilitas gris oscuras	
M E	JURASICO	MEDIA	Formación Cachios Jm-ca Arcilitas gris oscuras con niveles delgados de areniscas (facies de turbiditas) Formación Puente Jm-pu Areniscas, arcósicas, limoarcilitas gris oscuras (facies de turbiditas) Formación Socosani Jm-so Calcarenitas, calcilutitas azul oscuro, biomicritas y espongolita	5
		INFERIOR	Formación Chocolate Ji-cho Andesitas porfírica de textura fluidal	
ALEOZOICA	DEVONIANO	MEDIA	Grupo Cabanillas D-ca Conglomerados, areniscas bruno rojizas, limoarcilitas gris verdosas.	
4	ORDOVICIANO		Discordancia angular	Granito + Q-gr +
PALEOPRO- TEROZOICA			Complejo Basal de la Costa (facies de gneisses/granulitas de Mollendo-Camaná) PPe-gn	

FIGURA 3.6. Leyenda del mapa geológico del cuadrángulo de Aplao.

Fuente: Ingemmet

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis

FORMACIÓN MOQUEGUA (Nmp-mo)

El relleno sedimentario continental de la formación Moquegua se divide en dos fases distintas. La formación Moquegua Inferior, corresponde al relleno de una depresión estable sin influencia volcánica y la formación Moquegua Superior, muestra una movilidad de la cuenca que se confirma por la existencia de conos aluviales y materiales volcánicos.

La datación de la formación Moquegua inferior es aún difícil de corroborar, en cambio, la existencia de tobas ácidas permitió que se identificara la formación Moquegua superior con una edad Oligocena superior.

Moquegua Inferior (Peo-Mi)

La litología en la sección medida en la quebrada Caracharma, tributaria del río Siguas, es la siguiente:

	Suelo	Grosor en m
Arcillas rojizas	muy fracturad	las, con 176
intercalaciones de la	áminas de yeso	
Yeso fibroso		3
Arcillas rojizas con	capas delgadas a	medianas 59.75
Areniscas gris-roji	zas de grano fino	a medio, 120
en bancos de 150	cm., intercalaci	iones con
arcillas y láminas d	le yeso	
Areniscas y arci	illas rojizas en	bancos 170
medianos		
Areniscas gris clara	as de grano fino, e	en bancos 183.75
de 150 cm., int	tercaladas con	areniscas
arcósicas rojas de g	grano fino a grues	o, arcillas
rojas y conglomera	dos de cantos chio	cos
Discordancia		
TOTAL		712.5

TABLA 3.3. Litología Moquegua Inferior.

Fuente: Boletín N°20 Geología del Cuadrángulo de Aplao 33r, pág. 17-Ingemmet

Se presenta mayormente en laderas del Valle de Majes, pero sobre todo en la quebrada Caracharma. Las capas de esta formación descansan con discordancia angular sobre los grupos Ambo y Yura, soportado a su vez con débil discordancia al Moquegua superior, las capas se inclinan ligeramente al SW, salvo en aquellos lugares donde se han producido inclinaciones más fuertes por el reajuste de fallas existentes o por la compactación de los sedimentos sobre una topografía inclinada.

– Moquegua Superior (Po-Ms)

Reposa en discordancia angular sobre la formación Moquegua Inferior, litológicamente formados por conos aluviales, sedimentos conglomerádicos, con influencia de actividad volcánica.

Este miembro es fácilmente distinguido por sus tonalidades claras que contrastan con la formación Moquegua Inferior, por lo general sus capas tienen posición horizontal y en algunos casos muestran una ligera inclinación al suroeste.

La litología consiste principalmente de areniscas blanco grisáceas, de grano medio a fino, hasta conglomerádicas, con algunas capas de arcilla y conglomerado de cantos chicos.

Una sección medida en la ladera oriental del valle de Majes, frente a Punta Colorada, tiene la litología siguiente:

Suelo	Grosor en m
Areniscas tufáceas grises poco	35
consolidadas	55
Areniscas blanco-grisáceas, de grano fino,	
en bancos de 100 a 180 cm. con algunas	50
intercalaciones de arcillas marrón claras	50
con laminación cruzada	
Areniscas arcósicas gris brunáceas, de	
granos angulares a sub redondeados,	88
finamente estratificadas	

TABLA 3.4. Litología Moquegua Superior.

Suelo	Grosor en m
Areniscas tufáceas blanco-grisáceas de	
grano fino, friables, con algunas	67
intercalaciones de conglomerados	
Areniscas conglomerádicas grises con	105
laminación cruzada	125
Areniscas grises de grano medio, en capas	25
medianas, algunas bien laminadas	25
Areniscas grises y blanquecinas, en bancos	
medianos bien redondeados y débil	135
consolidación	
Areniscas feldespáticas grises de grano	
medio a grueso, sub-angulares, en capas	175
medianas que alternan con algunas	175
láminas de arcilla roja	B
Conglomerado consistente de cantos	3
chicos de gneis y rocas ígneas bien	25
redondeadas, en matriz arcillo arenosa	
Discordancia	
TOTAL	725
Fuente: Boletín N°20 Geología del Cuadrángulo de Aplao 33r, pag	17-Ingemmet

✤ DEPÓSITOS ALUVIALES (Q-al)

- Conglomerados pleistocénicos

Esta unidad litológica se ubica sobre la formación Moquegua Superior a lo largo de las pampas costaneras de Majes y San Juan de Siguas, tiene un ancho mayor a 50 metros. Su origen se debe a la intensa actividad regional erosiva en desglaciaciones andinas cuaternarias.

Está formada por Conglomerados de matriz areno – limosa, con clastos de 10 a 1 metros de diámetro de naturaleza volcánica, sedimentaria y metamórfica

- Depósitos aluviales cuaternarios

Los depósitos cuaternarios aluviales más recientes forman parte de la acumulación de materiales recientes en los drenajes y desembocaduras de quebradas. Tienen una dirección preferencial noreste - suroeste similar a la del río Siguas.

Litológicamente, los depósitos aluviales están constituidos por arenas mal seleccionadas con matriz arenosa, limosa arcillosa o limo-arenosa.

DEPÓSITOS COLUVIALES (Q-co)

Formados por el desprendimiento de sedimentos de conglomerados que cubren a la formación Moquegua.

DEPÓSITOS EÓLICOS (Q-e)

En el cuadrángulo de Aplao, las acumulaciones eólicas consisten de mantos de arena, dunas aisladas, cadenas de dunas y depósitos de ceniza volcánica.

3.1.6. COLUMNA GEOLÓGICA

La columna geológica obtenida del Boletín N°20 de Ingemmet muestra la estratigrafía de la zona. Según la topografía obtenida el talud tiene 150m de altitud, por lo tanto, basándonos en esta, nuestro talud ocuparía 120m que corresponden a depósitos recientes, derrames de basalto pleistocénico reciente, Conglomerado aluvial pleistocénico, y los 30m superiores de la Formación Moquegua Superior.

Estas unidades estratigráficas comprenden arenas eólicas, coluvios, depósitos fluviales aluviones y flujos volcánicos, así como, areniscas blancas grisáceas con intercalaciones de arcillas y tufos volcánicos.

Claramente este tipo de suelos tienen cierta similitud con los resultados obtenidos en nuestros ensayos (SP y SW). Paralelamente también son similares al perfil estratigráfico del primer informe "Estudio de pre inversión hidrogeológico y de aguas subterráneas de las pampas de Majes – Siguas y perforaciones de pozos con fines de investigación" (2009) realizado por

AUTODEMA. Se realizó una ponderación para calcular el tipo de suelo predominante según este estudio.

Los resultados son los siguientes:

TABLA 3.5. Resultados de la ponderación del suelo de las pampas de Majes-Siguas.

Suelos	
ARENA (%)	32.1
GRAVA (%)	29.0
CANTOS (%)	20.3
CONGLOMERADO (9	%) 18.7

Fuente: Propia

Ver ANEXO 1 – Columna lito estratigráfica de la zona.

Ver ANEXO 3 – Perfil Estratigráfico.

3.1.7. HIDROLOGÍA

La escasez del agua en estas cuencas ha obligado a su regulación a través de un sistema de represas que datan desde mediados del siglo pasado. En la región del sur se localizan 5 represas (cuatro de las cuales se localizan en Arequipa) que en su conjunto llegan a almacenar un máximo de 571 millones de m³.

De estas, la de menor capacidad es la Represa de Aguada Blanca, que almacena entre el 3% y el 9% del total regulado, mientras que las de mayor capacidad son las Represa de Condoroma y Pasto Grande, que almacenan alrededor del 64% del total regulado, de las cuales, Condoroma, es la que proporciona agua al distrito de Majes. (Plan de desarrollo urbano de Ciudad Majes – Villa El Pedregal 2012 – 2021).

3.1.7.1. AGUA DE RIEGO

La Irrigación Majes - Siguas ha modificado las características del recurso de agua en la zona, principalmente por la aparición de aguas superficiales en la pampa de Majes a través de un sistema artificial de riego, sistema que ha modificado profundamente los procesos ecológicos pre-existentes.

El sistema hidrológico artificial del distrito comprende: el Canal de Derivación (134 Km), los Canales Troncales (169 Km), los Vasos REPOSITORIO DE TESIS UCSM

Reguladores (23), las Tuberías Troncales (222 Km) y las Tuberías Menores (267 Km). Este sistema riega casi 18 000 Has de cultivo. (Plan de desarrollo urbano de Ciudad Majes – Villa El Pedregal 2012 – 2021).

FIGURA 3.7. Sistema de Riego del distrito de Majes.

Fuente: Plan de desarrollo urbano de Ciudad Majes - Villa El Pedregal 2012 - 2021.

3.1.7.2. PROYECTO HIDROENERGÉTICO MAJES - SIGUAS

El proyecto Majes – Siguas I comprende 2 etapas:

La primera etapa (Inversión Pública):

FIGURA 3.8. El Proyecto Majes-Siguas I.

Fuente: Plan de desarrollo urbano de Ciudad Majes - Villa El Pedregal 2012 - 2021.

Consta de las siguientes obras:

Represa de Condoroma

- Bocatoma de Tuti
- Aducción Colca Siguas
- Bocatoma de Pitay
- Derivación Siguas hacia Pampa de Majes
- Red de distribución e infraestructura de riego
- Carretera y servicios
- La segunda etapa (en concesión):

FIGURA 3.9. El Proyecto Majes-Siguas II.

Fuente: Plan de desarrollo urbano de Ciudad Majes - Villa El Pedregal 2012 - 2021

Consta de las siguientes obras:

- Presa de Angostura
- Derivación Angostura-Colca
- Derivación Siguas hacia Pampas de Siguas
- Red de Distribución e Infraestructura de riego hacia las Pampas de Siguas y a las Pampas de Majes.
- Componente Hidroeléctrico (513 MW)
- Carreteras y Servicios

El desencadenante principal del deslizamiento de Siguas es la sobresaturación de suelos que se produjo por el uso inadecuado del sistema de riego del proyecto de irrigación Agrícola Majes – Siguas I, según estudios de Ingemmet (Huamán-Murillo et al. (2016)).

CAPÍTULO IV

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis

4. ESTUDIOS DE MECÁNICA DE SUELOS

El fin de este capítulo es estudiar y describir las propiedades del terreno a estudiar. Aquí se muestras procedimientos, resultados y conclusiones de los ensayos necesarios.

Los ensayos requeridos para la investigación fueron:

- Contenido de humedad (ASTM D2216 98)
- **Gravedad especifica (ASTM D854 02)**
- Densidad Relativa (ASTM D4254 01)
- Peso específico (NTP 339.139)
- Granulometría (ASTM D422 98)
- Corte directo (ASTM D3080 98)

4.1. EXTRACCIÓN DE MUESTRAS

Utilizamos las fotos aéreas proporcionadas por el estudio topográfico con dron y mediante observación directa dividimos los estratos, finalmente procedimos a extraer las muestras teniendo en cuenta las características particulares de color, textura, tamaño de partícula

Se extrajeron 6 muestras, que consideramos son las más representativas en cuanto a propiedades del talud.

4.2. ENSAYOS DE LABORATORIO

Los ensayos se realizaron en las instalaciones del Laboratorio de Mecánica de Suelos y Concreto de la Universidad Católica de Santa María.

Ver ANEXO 4 – Estudio de Mecánica de Suelos.

4.2.1. PROPIEDADE DE FASE

4.2.1.1. RELACION DE VACIOS

Los resultados obtenidos se muestran en el siguiente cuadro:

		WIUES I KAS					
	N° 1	N° 2	N° 3	N° 4	N° 5	N° 6	
γ (gf/cm ³)	1.000	1.000	1.000	1.000	1.000	1.000	
γ _w (gf/cm ³)	1.890	1.360	1.780	1.840	1.730	1.650	
Gs	2.730	2.650	2.750	2.510	2.580	2.660	
ω%	0.017	0.012	0.013	0.041	0.055	0.023	
е	0.469	0.972	0.565	0.420	0.573	0.650	
			Fuente: Propi	a			

TABLA 4.1. Cuadro resumen de relación de vacíos.

MUESTDAC

4.2.1.2. POROSIDAD

Los resultados obtenidos se muestran en el siguiente cuadro:

TABLA 4.2. Cuadro resumen de porosidad. MUESTRAS

			MUL			
	N° 1	N° 2	N° 3	N° 4	N° 5	N° 6
e	0.469	0.972	0.565	0.420	0.573	0.650
n	31.93%	49.29%	36.08%	29.60%	36.41%	39.38%
			Fuente:	Propia		

4.2.1.3. GRADO SE SATURACIÓN

Los resultados obtenidos se muestran en el siguiente cuadro:

TABLA	4.3.	Cuadro	resumen	de	grado	de sa	aturac	ión.

	MUESTRAS						
	N° 1	N° 2	N° 3	N° 4	N° 5	N° 6	
Gs	2.730	2.650	2.750	2.510	2.580	2.660	
ω%	0.017	0.012	0.013	0.041	0.055	0.023	
e	0.469	0.972	0.565	0.420	0.573	0.650	
S	9.90%	3.27%	6.19%	24.65%	24.56%	9.54%	

Fuente: Propia

UNIVERSIDAD

de santa maría

CATÓLICA

4.2.2. PROPIEDADES FÍSICAS

4.2.2.1. CONTENIDO DE HUMEDAD (ASTM D2216 - 98)

Los resultados obtenidos se muestran en el siguiente cuadro:

TABLA 4.4. Cuadro resumen de contenido de humedad.

	MUESTRAS									
	N° 1	N° 2	N° 3	N° 4	N° 5	N° 6				
ω%	1.7 %	1.2 %	1.27 %	4.13 %	5.45 %	2.33 %				
			Fuente: Propi	a						

4.2.2.2. GRAVEDAD ESPECÍFICA (ASTM D854 - 02)

Los resultados obtenidos se muestran en el siguiente cuadro:

TABLA 4.5. Cuadro resumen de gravedad específica. MUESTRAS

			SIKAS		3	
	N° 1	N° 2	N° 3	N° 4	N° 5	N° 6
Gs	2.73	2.65	2.75	2.51	2.58	2.66
			Fuente: Pr	opia		

4.2.2.3. PESO ESPECÍFICO (NTP 339.139)

Los resultados obtenidos se muestran en el siguiente cuadro:

TABLA 4.6. Cuadro resumen de peso específico.

			MUESTRAS					
	N° 1	N° 2	N° 3	N° 4	N° 5	N° 6		
γ (gf/cm ³)	1.89	1.71	1.78	1.84	1.73	1.8		
		Fuer	nte: Propia					

UNIVERSIDAD

de santa maría

CATÓLICA

4.2.2.4. DENSIDAD RELATIVA (ASTM D4254 - 01)

Los resultados obtenidos se muestran en el siguiente cuadro:

TABLA 4.7. Cuadro resumen de densidad relativa.

	MUESTRAS						
	N° 1	N° 2	N° 3	N° 4	N° 5	N° 6	
Dmin (gf/cm ³)	1.51	1.36	1.28	1.43	1.27	1.38	
Dmax (gf/cm ³)	2.1	1.89	1.93	2.05	1.92	1.97	
Dr (%)	72	73	83	74	78	77	
	Denso	Denso	Denso	Denso	Denso	Denso	

Fuente: Propia

4.2.3. PROPIEDADES MECÁNICAS

4.2.3.1. GRANULOMETRÍA (ASTM D422 - 98)

Los resultados obtenidos se muestran en el siguiente cuadro:

TABLA 4.8. Cuadro resumen de granulometría.

MUESTDAS	b	Fraccione	Coeficientes			
NIUESIKAS	Grava	Arena	Finos	Cu	Cc	
Muestra N° 1	25.19	69.82	4.58	13.31	0.34	
Muestra N° 2	35.53	63.19	1.28	8.42	0.36	
Muestra N° 3	14.11	83.99	1.9	3.35	1.3	
Muestra N° 4	14.42	83.36	2.22	12.05	1.04	
Muestra N° 5	29.95	66.32	4.43	11.87	0.52	
Muestra N° 6	3.3	96.3	0.39	3.37	0.74	
		F (D				

Fuente: Propia

4.2.3.2. CLASIFICACIÓN DEL SUELO

Los resultados obtenidos se muestran en el siguiente cuadro:

TABLA 4.9. Cuadro resumen de clasificación SUCS-AASHTO.

MUESTRAS	AASHTO	SUCS	SIGLAS
Muestra N° 1	A -1 -b (0)	Arena pobremente graduada	SP
Muestra N° 2	A – 3 (0)	Arena pobremente graduada	SP
Muestra N° 3	A -1 -b (0)	Arena pobremente graduada	SP
Muestra N° 4	A -1 -b (0)	Arena Bien graduada	SW
Muestra N° 5	A -1 -b (0)	Arena pobremente graduada	SP
Muestra N° 6	A -1 -b (0)	Arena pobremente graduada	SP
	SX N-	Fuente: Propia	

4.2.3.3. CORTE DIRECTO (ASTM D3080 - 98)

Los resultados obtenidos se muestran en el siguiente cuadro:

TABLA 4.10. Cuadro resumen de Corte directo.

		MUESTRAS								
	N° 1	N° 2	N° 3	N° 4	N° 5	N° 6				
φ (°)	38	35	42	36	38	34				
c (kgf/cm ²)	0.03	0.05	0.089	0.028	0.18	0.09				
		Fuente	: Propia							

Observaciones:

Solo se ensayó 6 muestras porque estas son los estratos más representativos de acuerdo a fotos propias y de acuerdo a la observación hecha en campo.

4.2.4. RESUMEN DE PROPIEDADES

TABLA 4.11. Cuadro resumen de propiedades del suelo

	Clasificación de suelos			Prop	Propiedades físicas			Propiedades mecánicas		
MUESTRAS	AASHTO	SUCS	SIGLAS	ω %	Gs	γ (gf/cm ³)	ф (°)	c (kgf/cm ²)		
Muestra N° 1	A -1 -b (0)	Arena pobremente graduada	SP	1.7	2.73	1.89	38	0.03		
Muestra N° 2	A – 3 (0)	Arena pobremente graduada	SP	1.2	2.65	1.36	35	0.05		
Muestra N° 3	A -1 -b (0)	Arena pobremente graduada	SP	1.27	2.75	1.78	42	0.089		
Muestra N° 4	A -1 -b (0)	Arena Bien graduada	SW	4.13	2.51	1.84	36	0.028		
Muestra N° 5	A -1 -b (0)	Arena pobremente graduada	SP	5.45	2.58	1.73	38	0.18		
Muestra N° 6	A -1 -b (0)	Arena pobremente graduada	SP	2.33	2.66	1.65	34	0.09		
Base		Arena pobremente graduada	SP Fuente: Propia			1.79	34	0		

Observaciones:

La columna geológica obtenida del Boletín N°20 de Ingemmet muestra la estratigrafía de la zona. Según la topografía obtenida el talud tiene 150m de altitud, por lo tanto, basándonos en esta nuestro talud ocuparía 120m depósitos recientes, derrames de basalto pleistocénico reciente, Conglomerado aluvial pleistocénico, y los 30m superiores de la Formación Moquegua Superior. Tomando esto como referencia, la base del talud se encuentra en los primeros metros de la formación Moquegua Superior. Finalmente, de acuerdo al boletín ya mencionado, este estrato se conforma de areniscas tufáceas grises poco consolidadas.

4 De acuerdo a Casagrande, A. (1948), los parámetros de este suelo son:

 $c = 0 \text{ kgf/cm}^2$ φ= 34°

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis

UNIVERSIDAD CATÓLICA DE SANTA MARÍA

CAPÍTULO V

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis 50

5. ANÁLISIS DE LA DINÁMICA DEL DESLIZAMIENTO DE SIGUAS

Este análisis comparativo está basado en el informe técnico N° A6715 y N° A6772 de la Dirección de Geología Ambiental y Riesgo Geológico del Ingemmet.

Se llevaron a cabo estudios de cartografiado de imágenes satelitales multitemporales y en el monitoreo de puntos de geo control sobre la escarpa y cuerpo de deslizamiento que tiene un movimiento de lento a moderado de acuerdo a la escala de velocidades de Cruden y Varnes (1996).

5.1. AÑO 2004

FIGURA 5.1. Cartografiado de deslizamientos en la parte baja del valle de Siguas, Año 2004.

L

Fuente: Ingemmet

Delimitación: La zona afectada tenía como limites los conos aluviales y el corte del valle.

5.2. AÑO 2007

GRÁFICO 5.1. Cuerpo del deslizamiento, Año 2007.

Las imágenes muestran la evolución del deslizamiento en marzo del 2007 con características litográficas particulares cómo conos aluviales en la zona inferior de la sección transversal del valle. Ya se podía observar la reactivación de una escarpa. Para este año ya se observaban pequeños movimientos del talud, el volumen se extendió 90 metros encima de la superficie del valle; además fueron identificadas áreas con un porcentaje alto de humedad.

5.3. AÑO 2010

FIGURA 5.2. Cartografiado de deslizamientos en la parte baja del valle de Siguas, Año 2004.

Fuente: Ingemmet

Desde el 2004 hasta el 2010 ya se reportó la destrucción de una superficie con una velocidad de 6860 m/año. Para este año el borde del talud ya medía 1250 metros.
Se identifican tres zonas a partir de la **Figura 5.3**.

FIGURA 5.3. Perfil transversal "Corte A - A' "del deslizamiento de Siguas, Año 2010.

GRÁFICO 5.2. Cuerpo del deslizamiento, Año 210.

Agntes gravitaciones, la vibración y la erosion producida por la carretera y el viento respectivamente , incrementaron el despredimiento de suelo.

Visibilidad del material característico de la formación Moquegua Supeerior debido al plano de ruptura expuesto cuya altura varia entre los 20 a 25 metros.

Presencia de clastos, arenas y limos con grietas de 10 cm. de ancho; bloques diaclasados.

Los procesos de compresión generaron la presencia de clastos con segregación granular de 20 cm de diámetro.

FIgura 5.6. Zona de comprensión o depósito, Año 2010. Fuente: INGEMMET El volumen del deslizamiento aumento de 90 a 355 metros desde el 2007 sobre el valle con destrucción de cultivos de 170 000 m^2 , incremento de presencia de humedad.

FIgura 5.7. Zona de caída o pie de deslizamiento, Año 2010. Fuente: INGEMMET

5.4. AÑO 2012

FIGURA 5.4. Cartografiado de deslizamientos del valle de Siguas, Año 2012.

- El volumen de deslizamiento ya cubría 30 metros del valle; afectando terrenos de cultivo de hasta 200 000 m².
- Las grietas radiales y longitudinales tuvieron un desplazamiento de 75 metros en comparación con el 2010
- Velocidad de avance del talud de 32.5 m por año que fue clasificado como lento-muy lento de acuerdo a la Escala de Velocidades de Cruden y Varnes (1996).
- La escarpa del talud incremento su longitud en 100 metros después de 2 años; las grietas presentaron un ancho inicial de 10 cm con longitudes que variaban de 2 a 3 metros.

5.5. AÑO 2014

FIGURA 5.5. Formación de laguna como producto del represamiento del río Siguas, debido al deslizamiento,

Año 2014.

Fuente: Ingemmet

- El 2014 se produce un estrangulamiento del cauce del río Siguas, generando una laguna de 84,000 m².
- 5.6. AÑO 2015

FIGURA 5.6. Cartografiado de deslizamiento del valle de Siguas, Año 2015.

Fuente: Ingemmet

La parte baja del talud se desplazó 100 metros, la característica del material observado en esta zona es el estriamento radial que presentan sus estructuras.

- En comparación al 2012, la masa del talud se desplazó aproximadamente 33 metros por año.
- 4 La zona de arranque o escarpa ya alcanza una longitud de 1370 metros.
- En la zona de depósito, la masa del talud se movía a 22 metros anualmente por lo que llego a avanzar 65 metros al sureste.

- FIGURA 5.7. Bloque fracturado sobre la zona de compresión del cuerpo del deslizamiento, Año 2015. Fuente: Ingemmet
 - Estructuras de material conglomerado gravemente fracturados con un movimiento lento por la comprensión de la masa. Debajo de los bloques se puede observar material ignimbritico.

UNIVERSIDAD CATÓLICA DE SANTA MARÍA

5.7. AÑO 2017

FIGURA 5. 8. Cartografiado de deslizamiento del valle de Siguas, Año 2017.

- La actividad erosiva provocó relieves, también se observó conos de deyección antiguos.
- La topografía se ve afectada por movimientos mucho más complejos como derrumbes, avalanchas, huaycos en quebradas secas, por lo que Ingemmet ya clasifica a este deslizamiento el más destructivo (afecta la carretera y zonas de cultivo del Pedregal).

- El estudio cartográfico muestra tres tipos de movimientos: activos, antiguos y reactivos como el que se muestra en la siguiente figura. Se identificó a otros deslizamientos:
 - Tambillo
 - La Chimba
 - Candia
 - Tinajeras
- **4** Desprendimientos activos:
 - Siguas "El Alto", catalogado en peligro inminente porque ya se encontraba a 6 metros del canal de regadío del proyecto Majes Siguas I.
 - Pachaqui

FIGURA 5.9. Vista del deslizamiento antiguo de Santa Isabel de Siguas.

Fuente: Ingemmet

Deslizamiento de Santa Isabel de Siguas, el más grande, con 10 kilómetros de longitud en su escarpa principal.

El informe técnico N° A6772 de la Dirección de Geología Ambiental y Riesgo Geológico, fue el último presentado en septiembre del 2017; de acuerdo a este podemos extraer las siguientes conclusiones:

 Las principales infraestructuras afectadas son la Planta de Leche Gloria, el canal de regadío y áreas de cultivo de Majes.

UNIVERSIDAD Católica De Santa María

La zona de afectación del área de arranque del talud llega a 1.5 km alrededor de la misma.

FIGURA 5.10. Área de influencia del deslizamiento de Siguas. Fuente: Ingemmet

FIGURA 5.11. Vista de la planta de leche Gloria, infraestructura amenazada por avance del deslizamiento. Nótese la escarpa del deslizamiento.

Fuente: Ingemmet

Se estimó que, con condiciones extremas, para octubre del año 2017, el canal sería afectado, esto debido a que ya en agosto del 2016 la distancia entre el canal y el área de arranque del talud era de 6 metros.

FIGURA 5.12. Tramo del canal de Irrigación en el sector 2, ubicado a 6 metros de la escarpa principal.

FIGURA 5.13. Trazo del canal de Irrigación aperturado para febrero del 2017.

Fuente: Ingemmet

El deslizamiento de Siguas presenta deformaciones hasta de 50 metros de desplazamiento.

FIGURA 5.14. Interferometría óptica del valle de Siguas, Lacroix, 2017.

Fuente: Ingemmet

Las líneas rojas entrecortadas muestran una posible área del valle, donde se puede realizar la conexión de carretera, fuera del área de influencia del deslizamiento de Siguas.

La infraestructura en inminente peligro por presentar la menor distancia a la parte central del deslizamiento sería el canal del proyecto Majes Siguas I. Figura 5.15.

- Se muestran tablas de estimación elaboradas por Ingemmet durante el monitoreo del deslizamiento que predicen el tiempo de afectación con un análisis de velocidades.
- Dichos cuadros fueron estimados como proyectos de alerta temprana y para la elaboración de planes de mitigación.
- Las velocidades extremas, normales y lentas se obtuvieron a partir del análisis histórico de imágenes satelitales y monitoreo GPS de la zona de arranque del talud:

FIGURA 5.16. Evolución de la escarpa principal del deslizamiento y distancias mínimas a infraestructura

amenazada -agosto 2017 - Sector 1.

Fuente: Ingemmet

En agosto del 2019, el canal de irrigación sufriría las afectaciones más graves a condiciones extremas.

	DISTANCIA	PROBABILIDAD DE AFECTACIÓN A CONDICIONE		
SECTOR 1	MÍNIMA A LA ESCARPA (m)	EXTREMAS	NORMALES	LENTAS
Velocidad		12.8 m/año	5.6 m/año	4.7 m/año
Canal de Irrigación	27	Ago-19	Feb-22	May-23
Panamericana Sur	73	Dic-22	Nov-29	Nov-32
Caseta de SEAL	98	Oct-24	Ene-34	Feb-38
Poblado El Alto	165	Set-29	Mar-45	Ene-52

Tabla 5.1. Probabilidad de afectación extrema, normal y lenta de la infraestructura amenazada, en el sector 1.

FIGURA 5.17. Evolución de la escarpa principal del deslizamiento y distancias mínimas a infraestructura amenazada -agosto 2017 – Sector 2. Fuente: Ingemmet

Se pronostica que la Panamericana Sur seria afectada en condiciones extremas en junio del 2018 y a condiciones normales en el 2021.

El sector 2 de la escarpa del deslizamiento es el más cercano al canal de irrigación, por estar a solo 6 metros en agosto del 2017

Tabla 5.2. Probabilidad de afectación extrema, normal y lenta de la infraestructuraamenazada, en el sector 2.

	DISTANCIA	PROBABILIDAD DE AFECTACIÓN A CONDICIONES			
SECTOR 2	MÍNIMA A LA ESCARPA (m)	EXTREMAS	NORMALES	LENTAS	
Velocidad		61.57 m/año	12.5 m/año	8 m/año	
Canal de Irrigación	6.24	Oct-17	Feb-18	May-18	
Panamericana Sur	52.24	Jun-18	Jul-21	Oct-23	

FIGURA 5.18. Evolución de la escarpa principal del deslizamiento y distancias mínimas a infraestructura amenazada -agosto 2017 – Sector 3.

Fuente: Ingemmet

La distancia mínima en el sector 3 al canal de irrigación es de 46 metros; calculándose que sería afectado en condiciones extremas en abril del 2018.

Tabla 5.3. Probabilidad de afectación extrema, normal y lenta de la infraestructura

amenazada, en el sector 3.

	DISTANCIA	PROBABILIDAD DE AFECTACIÓN A CONDICION		
SECTOR 3	MÍNIMA A LA ESCARPA (m)	EXTREMAS	NORMALES	LENTAS
Velocidad		70.87 m/año	16.45 m/año	7.6 m/año
Canal de Irrigación	40.05	Abr-18	Abr-20	Abr-23
Panamericana Sur	92.05	Nov-18	Nov-22	Dic-28
Planta de leche	117.05	Mar-19	Abr-24	Ene-32
Gloria				

FIGURA 5.19. Evolución de la escarpa principal del deslizamiento y distancias mínimas a infraestructura amenazada -agosto 2017 – Sector 4.

Fuente: Ingemmet

El periodo de afectación de infraestructura amenazada en el sector 4 de la escarpa principal del deslizamiento es mayor a 20 años

Tabla 5.4. Probabilidad de afectación extrema, normal y lenta de la infraestructuraamenazada, en el sector 4.

	DISTANCIA	PROBABILIDAD DE AFECTACIÓN A CONDICION		
SECTOR 4	MÍNIMA A LA ESCARPA (m)	EXTREMAS	NORMALES	LENTAS
Velocidad		13.72 m/año	12.9 m/año	4.4m/año
Canal de Irrigación	303.53	+20 años	+20 años	+50 años
Panamericana Sur	349.53	+20 años	+20 años	+50 años
Planta de leche Gloria	374.53	+20 años	+20 años	+50 años

5.8. AÑO 2018

El estudio topográfico fue necesario debido a que no existían planos actualizados en los archivos de AUTODEMA ni en los informes hechos por el Gobierno Regional de Arequipa, teniendo que realizar el levantamiento topográfico con dron.

El terreno escaneado permitió la obtención de un modelo 3D con resolución cent métrica y una precisión de entre 1 y 5 cm.

La duración fue de un día.

Se optó este método debido a:

- Seguridad: La inaccesibilidad al talud no permitió que un operario lleve personalmente la estación total a lugares arriesgados.
- Mayor cobertura y una menor cantidad de tiempo de ejecución, además un menor consumo de recursos.
- 4 Mayor amplitud de información: Un levantamiento tradicional determina una serie de puntos que sirven para crear un plano preciso. El levantamiento topográfico de un dron captura a la vez millones de puntos y le añade además la información de color de las fotografías, con lo que consigue nubes de puntos de alta resolución que muestran la apariencia real del terreno.

A continuación, se muestra la fotogrametría y los planos obtenidos:

Ver ANEXO 5 – Fotos aéreas.

Ver ANEXO 6 – Plano de planta.

Ver ANEXO 7 – Plano de Secciones Transversales y Perfil Longitudinal.

Para observar la situación actual del talud comparamos datos propios que demuestran claramente aspectos importantes del deslizamiento.

↓ Escarpa principal de 1374 metros aproximadamente de longitud

FIGURA 5.20. Foto panorámica del deslizamiento, Año 2018.

Fuente: Google Maps

Humedad en la base del talud:

FIGURA 5.21. Foto de un costado del talud, Año 2018.

4 Grietas tensionales en las masas al pie del talud

FIGURA 5.22. Foto de grietas tensionales en la base del talud. Fuente: Propia

FIGURA 5.23. Foto de grietas tensionales en el borde del talud. Fuente: Propia

4 Bloques de conglomerado suspendidos en el área del deslizamiento

FIGURA 5.24. Foto de los bloques desde el borde del talud.

5.9. COMPARACIÓN A TRAVÉS DEL TIEMPO

Año 2004 - Se observa el	Año 2010 – Se ve masas de	2012 – la longitud de la escarpa
Valle de Majes definido. Pero	deslizamiento cada vez más	aumentó principalmente en la
se observa activaciones de	grandes y la longitud de la	zona central. No se observa ya
masa en la parte baja del valle.	escarpa aumentó	el Valle de Majes.
	considerablemente.	E
Año 2015 – el deslizamiento	Marzo 2017 – en la zona	Febrero 2018 – Se puede
avanzó, pero principalmente	central se observa un avance	observar que la escarpa
en el sector 4, y ligeramente	del deslizamiento	principal ha avanzado, pero no
en la zona central.	considerable.	es alarmante.
GRÁFICO 5.3. Comparaci	ón del avance del deslizamiento a	a través del tiempo. Año 2010.

UNIVERSIDAD CATÓLICA DE SANTA MARÍA

Mediante una superposición de nuestra topografía por dron con el último registro de Ingemmet, se puede observar un aumento del deslizamiento en la escarpa principal.

Gráfico 5.4. Acercamiento en la zona del deslizamiento

Fuente: Propia

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis

5.10.PROBABILIDAD DE AFECTACIÓN A LAS INFRAESTRUCTURAS EXISTENTES

La relación de distancias entre la escarpa principal para agosto del 2017 y la escarpa actual muestra un avance en la parte central del deslizamiento, siendo así el canal de irrigación y la planta de leche de Gloria las infraestructuras más vulnerables.

De continuar con este avance es inminente la desaparición primero del canal, que ahora tomaremos como un punto de referencia para saber las condiciones actuales.

El canal de irrigación del Proyecto Majes Siguas I, es una de las infraestructuras en riesgo, más cercana al corte de la escarpa, a solo 6 metros de distancia en agosto del 2017 (Araujo, G. (2017), *Área de Influencia del deslizamiento de siguas y geodinámica del Valle*. Arequipa). Con estas referencias se hicieron mediciones de los sectores 1, 2 y 3 desde la escarpa principal a los puntos de referencias en el canal de irrigación y en la misma línea a la Panamericana del Sur.

Tabla 5.5. Distancias	actuales a la escarpa Sector 1.

SECTOR 1	Distancia actual a
	la escarpa (m)
Canal de irrigación	25.1
Panamericana Sur	71.8
Fuente	: Propia

Tabla 5.6. Distancias actuales a la escarpa Sector 2.

SECTOR 2	Distancia actual a la
	escarpa (m)
Canal de irrigación	5.2
Panamericana Sur	50.6

Fuente: Propia

 Tabla 5.7. Distancias actuales a la escarpa Sector 3.

SECTOR 3	Distancia actual a la	
	escarpa (m)	
Canal de irrigación	39.4	
Panamericana Sur	85.9	
Fuente	: Propia	

Como podemos ver hay un avance del deslizamiento si comparamos estas cifras con las últimas del Ingemmet (Tablas 5.1, 5.2 y 5.3). El mayor avance que se ve es en Sector 3.

UNIVERSIDAD CATÓLICA DE SANTA MARÍA

CAPÍTULO VI

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis

6. RIESGO SÍSMICO

Se hizo un análisis De acuerdo a la Norma Técnica E030 "Diseño Sismo resistente" (2016) del Reglamento Nacional de Edificaciones, además de la historia sísmica de la zona de estudio para poder definir el sismo de diseño

6.1. ZONIFICACIÓN

El factor de zona "Z" que se interpreta como la aceleración máxima horizontal en suelo rígido y es expresado como una fracción de la aceleración de la gravedad corresponde a la zona 4; de acuerdo al distrito de Majes y San Juan de Siguas.

FIGURA 6.1. Zonificación sísmica del territorio nacional, Año 2016.

Fuente: Norma E.030

$$Z = 0.45 g$$

6.2. TECTONISMO DE LA REGIÓN AREQUIPA

El Según Kosaka, Gonzáles et al.(2006), la interacción de las placas litosfericas de Nazca y de Suramérica (región de subducción más extensa del planeta) y los efectos producidos por placas próximas en la zona norte (Cocos y del Caribe) y en la zona sur (Escocia), convierten al sur de nuestro país en una de las regiones activas con una mayor frecuencia de sismos.

6.3. SISMICIDAD HISTÓRICA

De acuerdo al Instituto Nacional de Defensa Civil, los sismos con mayor intensidad ocurridos en Arequipa a través del tiempo son:

De 1513 a 1515: VIII en la Escala de Mercalli en Arequipa, sismos de gran magnitud con deslizamientos de cerros de gran altura y marea alta

22 /01/1582: X en la Escala de Mercalli, magnitud de 8.1 (a 750 km. al NE de Arequipa) , destruccion completa de la ciudad con mas de 30 ciudadanos fallecidos entre escombros.

19/02/1600: XI en la Escala Modificada de Mercalli, colapso de todas las estructuras de altura. Dicho terremoto fue causado por la erupcion del Volcán Huaynaputina (Omate).

	H	

24/11/1604: VIII en la Escala Modificada de Mercalli en Arequipa, Moquegua, Tacna y Arica, una magnitud de 7.8, posterior tsunami que destruyó Arica y el puerto de Pisco con la muerte de 23 personas.

10/07/1821: de VII en la Escala Modificada de Mercalli,magnitud de 7.9, terremoto en los pueblos de Camaná, Ocoña, Caravelí, Chuquibamba y valle de Majes que ocasionó la muerte de 70 personas en, 60 en Chuquibamba y 32 en Caravelí.

_	-	_	-	

6/08/1913: Magnitud de 7.7 grados en Caravelí, con un muerto y mas de siete heridos.

24/08/1942: Magnitud de 8.4 grados en Camaná, Aplao y Mollendo con 30 muertos.

11/05/1948: VII en la Escala de Mercalli en Moquegua y VI en la Escala de Mercalli en Arequipa, con una magnitud de 7.1.

UNIVERSIDAD Católica De Santa María

Gráfico 6.1. Principales eventos sísmicos hasta el 2017 en la región de Arequipa

Fuente: INDECI

6.4. ÚLTIMOS EVENTOS SÍSMICOS

Según el Insituto Geológico del Perú(IGP) se reportaron 412 eventos sismológicos en el desde el 01/01/2018 hasta 08/09/2018. Mediante un conteo calculamos que 75 de estos sismos ocurrieron en Arequipa; de los cuales 20 fueron en Caylloma (ubicación del talud de estudio). Por lo que existe una alta peligrosidad sísmica en esta zona, debido a esto es necesario hacer un análisis pseudoestático para dicho talud.

Ver ANEXO 8 – Reporte de Sismos en Arequipa.

6.5. DESLIZAMIENTOS POR SISMOS EN AREQUIPA

Según el estudio de Alva Hurtado y Chang Chang (2006), hay antecedentes de deslizamientos causados por sismos en el Perú, de los cuáles seleccionamos los acontecidos en Arequipa:

- 4 22 /01/1582: Deslizamiento causado por el terremoto de 8.1 grados en Arequipa; grandes movimientos de masas de los cerros.
- 4 28/02/1600: El volcán Huaynaputina (Omate) causó enormes desprendimientos, torrentes de lavas y escombros que llegaron a represar al río Tambo.
- 6 /08/1913: Terremoto en Caravelí que fue de poca duración pero que causó el colapso de estructuras y deslizamientos en las laderas.
- 11/09/1914: Deslizamientos en los cerros alrededor de Caravelí como consecuencia de un violento movimiento
- 28/12/1915: Desprendimientos de material suelto de los cerros causados por el sismo en Caravelí.
- 15/01/1958: Terremoto de 6.2 grados en Arequipa. Deslizamientos de variada magnitud que cubrieron partes de la Panamericana que conecta Chala con Arequipa, desprendimiento de bloques de piedra de los cerros cercanos al Misti, daños en la línea del ferrocarril a Puno por deslizamientos.

6.6. ACELERACIÓN MÁXIMA

Según la Norma Técnica E030 "Diseño Sismoresistente" (2016), la clasificación de los suelos se determina tomando en cuenta las propiedades mecánicas del suelo, el espesor del estrato, el período fundamental de vibración y la velocidad de propagación de las ondas de corte.

Los tipos de perfiles de suelos son cuatro:

(ec.21)

	S1: Roca o suelos muy rígidos	S1: Roca o suelos muy rígidos	S2: Suelos Intermedios	S3: Suelos Blandos
Zona 4	0.80	1.00	1.05	1.10
Zona 3	0.80	1.00	1.15	1.20
Zona 2	0.80	1.00	1.20	1.40
Zona 1	0.80	1.00	1.60	2.00

Tabla 6.1. Clasificación de suelos de acuerdo a la amplificación sísmica.

Fuente: Norma -E030

La aceleración máxima horizontal de diseño (Amax-h) se determina de la siguiente forma:

$$A_{max-h} = PGA \times S$$

 $A_{max-h} = 0.45 * 1.1$

 $A_{max-h}=0.495g$

La norma sismo resistente E030 también establece que la aceleración máxima vertical deberá ser 2/3 del valor de la aceleración máxima horizontal.

$$A_{max-v} = (2/3) * A_{max-h}$$
 (ec.22)
 $A_{max-v} = 0.330g$

Por otro lado, se realizó otro análisis con las aceleraciones máximas registradas en Arequipa, las que corresponden al sismo de 2001:

Según Granados López (2006) para dichos códigos extranjeros como Recomendaciones de códigos extranjeros como el 'Seismic Zone Map of Continental US' de Algermissen no es apropiado usar el factor de zonificación sísmica de 0.45g de la Norma Antisísmica Peruana E.030 porque excede de manera muy amplia dichas recomendaciones y porque este fue diseñado para estructuras.

Sin embargo, por razones de seguridad y considerando al talud en peligro inminente decidimos usar las aceleraciones más amplificadas.

UNIVERSIDAD CATÓLICA DE SANTA MARÍA

CAPÍTULO VII

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis

7. ANÁLISIS DE ESTABILIDAD

7.1. CONSIDERACIONES GENERALES

7.1.1. ASIGNACIÓN DE PROPIEDADES MECÁNICAS

Para realizar el análisis de estabilidad del talud, previamente se determinó las propiedades geotécnicas de cada estrato.

Para la asignación de propiedades mecánicas se usaron los resultados obtenidos en los ensayos de corte directo a pesar de sus desventajas frente a los ensayos triaxiales como el hecho de que las muestras de corte directo sean pequeñas y poco representativas, o que el área de la muestra no sea constante durante la aplicación de la fuerza lateral, es así que los valores no son tan certeros, por lo que se hacen correcciones.

El corte directo es un ensayo muy criticado y controversial además que lo califican como poco confiable debido a sus limitaciones de ejecución y de resultados.

A pesar de todo esto, su practicidad, rapidez para obtención de resultados y costo de ensayo hacen que distintas empresas particularmente en nuestro país, lo usen como su principal opción para la determinación de parámetros de resistencia de los suelos; más aun tratándose de fines estudiantiles e investigación.

7.1.2. TOPOGRAFÍA DE LA ZONA

Este análisis de estabilidad se enfoca en la simulación de comportamiento de 4 secciones del talud, cuya obtención se basó en la utilización de software tales como AutoCAD 2019 y Civil CAD 2019.

Las secciones son perpendiculares a las caras de los taludes para obtener ángulos de diseño más reales: REPOSITORIO DE TESIS UCSM

FIGURA 7.3. SECCIÓN III - Deslizamiento de Siguas

Fuente: Propia

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis

FIGURA 7.4. SECCIÓN IV - Deslizamiento de Siguas

Fuente: Propia

7.1.3. NIVEL FREÁTICO

Consideramos el nivel freático constante de 92 m debajo de la superficie natural del terreno.

FIGURA 7.5. Gráfico de la altura de nivel freático.

7.1.4. SUPERFICIES DE FALLA

Se realizó un análisis a través del tiempo, específicamente a partir del año 2004 hasta el presente 2018 para evaluar la dinámica del movimiento del talud y las superficies de falla supuestas.

Por ello se está considerando tres superficies de falla, de las cuales obtuvimos factores de seguridad, para comprobar la ubicación de la falla más criticar y poder su avance para el tiempo presente. Asimismo, obtener una superficie de falla global que nos asegure que el talud permanece estable para conocer la distancia final del avance del deslizamiento.

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis

FIGURA 7.6. Bosquejo del avance en el tiempo del deslizamiento.

FIGURA 7.7. Superficies de falla, sección 1.

FIGURA 7.8. Superficies de falla, sección 2.

FIGURA 7. 9. Superficies de falla, sección 3.

FIGURA 7.10. Superficies de falla, sección 4.

7.1.5. DETERMINACIÓN DE SOBRECARGA ACTUANTE

Para la sobrecarga actuante en el talud, se ha considerado 2 factores:

Peso máximo de vehículos en la Panamericana

Según el Reglamento Nacional de Vehículos (2003), El peso bruto vehicular máximo permitido es de 48 toneladas, de acuerdo a lo establecido en el Anexo IV.

Para efectos del modelamiento se tomarán las siguientes unidades:

48 toneladas = 470.42 kN

Metrado del canal de regadío Se consideró un canal tipo

Fuente: Propia

Metrado del Concreto:

área transversal = $2 * (0.2 * 0.65) + (0.15 * 0.7) = 0.365m^2$

Carga
$$C^{\circ}A^{\circ} = 2.4 \frac{t}{m^3} * 0.365m^2 = 0.876 \frac{t}{m}$$

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis Peso del área ocupada por el agua del canal:

área transversal =
$$0.7 * 0.35 = 0.245m^2$$

Carga Agua = $1\frac{t}{m^3} * 0.245m^2 = 0.245\frac{t}{m}$

Sobrecarga tota del canal:

$$0.876\frac{t}{m} + 0.245\frac{t}{m} = 1.122\frac{t}{m}$$

Para efectos del modelamiento se tomarán las siguientes unidades:

$$1.122 \frac{t}{m} = 11 \ kN/m$$

Esta carga se puede despreciar debido a que es insignificante con respecto a las dimensiones del talud.

7.1.6. FACTOR DE SISMO

La aceleración máxima horizontal de diseño (A_{max-h}) se determinó de la siguiente forma:

$$A_{max-h} = PGA \times S$$
 (ec. 23)
 $A_{max-h} = 0.45*1.1$
 $A_{max-h} = 0.495g$

La norma sismo resistente E030 también establece que en el caso de considerar la influencia de la componente vertical en el movimiento sísmico esta deberá ser los 2/3 del valor de aceleración horizontal máxima.

7.1.7. FACTOR DE SEGURIDAD

Se presenta los factores de seguridad para el talud en el tiempo presente en condiciones saturadas; además de la dinámica de la evolución del deslizamiento. Para dichas secciones se evaluaron distintos escenarios y criterios

En la estabilidad de taludes los rangos del factor de seguridad son:

- Cuando es menor a uno (FS<1) el talud es inestable con una probabilidad de falla.
- Cuando es igual a uno (FS=1) el talud está en equilibrio, pero pudiendo acontecer una ruptura o falla
- Cuando es mayor a uno (FS>1) el talud es estable.
- Los criterios de aceptabilidad para este proyecto de tesis serán obtener factores de seguridad de al menos 1.3 en condiciones estáticas.

7.2. REALIZACIÓN DEL MODELO ESTÁTICO

7.2.1. MODELAMIENTO CON GEOSTUDIO

SLOPE / W es el software de estabilidad de taludes del paquete GeoStudio para pendientes de suelos y rocas. SLOPE / W puede analizar tanto problemas simples como complejos para una variedad de formas de superficie deslizante, condiciones de presión de agua intersticial, propiedades del suelo y condiciones de carga.

Con esta completa gama de funciones, SLOPE / W puede usarse para analizar casi cualquier problema de estabilidad de taludes.

Dado que SLOPE / W está integrado en el paquete GeoStudio tiene acceso a las funciones de GeoStudio para crear modelos, analizarlos y ver resultados.

FIGURA 7.12. Ejemplo de talud modelado en GeoSlope.

Fuente: GeoSlope Support

SLOPE / W calcula el factor de seguridad de las pendientes de tierra y rocas. SLOPE / W puede analizar eficazmente tanto problemas simples como complejos para una variedad de formas de superficie de deslizamiento, condiciones de presión de agua intersticial, propiedades del suelo, métodos de análisis y condiciones de carga. Utilizando el equilibrio límite, SLOPE / W puede modelar tipos de suelo heterogéneos, geometría de superficie estratigráfica y de deslizamiento compleja, y condiciones variables de presión de agua intersticial usando una gran selección de modelos de suelo.

El programa permite realizar los cálculos de estabilidad a través de una gran variedad de métodos:

- Ordinario (Fellenius).
- Bishop simplificado.
- 🖊 Janbu simplificado.
- **4** Spencer.
- **4** Morgenstern-Price.
- **4** Cuerpo de Ingenieros Americanos.
- Lowe-Karafiath.
- 🖊 Sarma
- 4 Método de equilibrio límite generalizado.
- 4 Método de elementos finitos

UNIVERSIDAD Católica De Santa María

En la versión estudiantil no todas las versiones están disponibles. Debido a esto, el análisis se llevó a cabo con por el método de Bishop Simplificado, Morgenstern-Price, Spencer y Janbú.

Ver ANEXO 9 – Manual GeoStudio

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis

A continuación, se muestra las 4 secciones con las tres superficies de falla:

FIGURA 7.13. Superficie de falla Global-SECCIÓN I

FIGURA 7.14. Superficie de falla I- SECCIÓN I

FIGURA 7.15. Superficie de falla II- SECCIÓN I

FIGURA 7.16 Superficie de falla III- SECCIÓN I

FIGURA 7.17. Superficie de falla Global-SECCIÓN II

FIGURA 7.18. Superficie de falla I- SECCIÓN II

FIGURA 7.19. Superficie de falla II- SECCIÓN II

FIGURA 7.20. Superficie de falla III- SECCIÓN II

FIGURA 7.21. Superficie de falla Global- SECCIÓN III

FIGURA 7.22. Superficie de falla I - SECCIÓN III

FIGURA 7.23. Superficie de falla II- SECCIÓN III

FIGURA 7.24. Superficie de falla III- SECCIÓN III

FIGURA 7.25. Superficie de falla Global-SECCION IV

FIGURA 7.26. Superficie de falla I-SECCION IV

FIGURA 7.27. Superficie de falla II-SECCION IV

FIGURA 7.28. Superficie de falla III-SECCION IV

7.2.2. RESULTADOS CON GEOSLOPE

 Primera Sección

TABLA 7.1. Resultados Sección I por GeoSlope.

	METODOS			
	Morgenstern - Price	Bishop	Janbu	Spencer
I Superficie de falla	0.378	0.373	0.312	0.374
II Superficie de falla	2.232	2.228	2.066	2.231
III Superficie de falla	1.975	1.993	1.742	1.979
Falla global	1.882	1.892	1.880	1.884
	Fuent	e: Propia		

Segunda Sección

TABLA 7.2. Resultados Sección II por GeoSlope.

MÉTODOS

A	Morgenstern - Price	Bishop	Janbu	Spencer
I Superficie de falla	0.448	0.448	0.445	0.414
II Superficie de falla	0.952	0.953	0.930	0.949
III Superficie de falla	2.478	2.501	2.410	2.487
Falla global	2.417	2.417	2.416	2.416

Fuente: Propia

4 Tercera Sección

1.

TABLA 7.3. Resultados Sección III por GeoSlope.

	9	METODO	DS		
	Morgenstern - Price	Bishop	Janbu	Spencer	
I Superficie de falla	0.599	0.592	0.548	0.599	
II Superficie de falla	2.393	2.392	2.161	2.393	
III Superficie de falla	1.826	1.995	1.826	2.003	
Falla global	2.212	2.204	2.101	2.120	

Fuente: Propia

UNIVERSIDAD

de santa maría

CATÓLICA

Cuarta Sección

TABLA 7.4. Resultados Sección V	I por GeoSlope
---------------------------------	----------------

		MÉTODO	S	
	Morgenstern - Price	Bishop	Janbu	Spencer
I Superficie de falla	0.450	0.426	0.440	0.450
II Superficie de falla	3.316	3.313	3.024	3.316
III Superficie de falla	2.755	2.755	2.754	2.754
Falla global	3.439	3.444	3.321	3.441
	. Fuent	e: Propia		

De acuerdo a las fallas globales que modelamos, podemos ver que en todos los casos el FS es mayor que lo requerido, por lo tanto, la estructura es estable. Este indicador nos permite tener las distancias máximas que avanzaría el deslizamiento según las condiciones dadas.

7.2.3. RESULTADOS DEL AVANCE DE LA ESCARPA DEL TALUD SEGÚN GEOSLOPE

FIGURA 7.29. SECCIÓN TRANSVERSAL DEL TALUD.

	INGEMMET 2017(m)	FEBRERO 2018 - medidas reales (m)	AVANCE RESPECTO A LA FALLA MÁS CRÍTICA (m)	AVANCE RESPECTO A LA FALLA GLOBAL (m)
SECTOR1				
CANAL (d2)	27	25.1	2.05	53.21
PANAMERICANA (d1)	73	71.8		
12		OLICA		
SECTOR2	2 st			
CANAL (d2)	6.24	5.2	2.87	55.71
PANAMERICANA (d1)	52.24	50.6		
R		and the second		
SECTOR3			13	
CANAL (d2)	40.05	39.4	3.12	62.04
PANAMERICANA (d1)	92.05	85.9	31	
				÷
SECTOR4				
CANAL (d2)	303.53		2.42	60.87
PANAMERICANA (d1)	349.53	-	2.12	00.07
		Fuente: Propia		

TABLA 7.5. Comparación de distancias del deslizamiento a puntos de referencia.

FIGURA 7.30. Diagrama del avance del deslizamiento.

UNIVERSIDAD

DE SANTA MARÍA

CATÓLICA

Fuente: Ingemmet

7.2.4. MODELAMIENTO CON GEO5

GEO5 ofrece un conjunto de soluciones de software que nos permiten resolver problemas geotécnicos por métodos analíticos tradicionales y por el método de elementos finitos (MEF).

Beneficios:

Interfaz Fácil de Usar: es una interfaz única. Con menús auxiliares que nos permiten hacer un diseño de manera fácil y rápida.

FIGURA 7.31. Interfaz de Geo5.

Fuente: Software Geotécnico – GEO5

Programas vinculados: Es posible transferir datos entre los diferentes programas, además varios programas permiten la transferencia de toda la estructura para su posterior análisis.

FIGURA 7.32. Vinculación de Programas.

Fuente: Software Geotécnico - GEO5

4 Combinación de Métodos Analíticos y MEF

Los métodos analíticos proveen de un rápido y eficaz diseño y verificación de la estructura. Es posible transferir el modelo analítico al programa MEF, donde la estructura se verifica por el método de elementos finitos. La comparación de dos soluciones independientes contribuye al aumento de la seguridad y la objetividad.

FIGURA 7.33. Combinación de Métodos Analíticos y MEF.

Fuente: Software Geotécnico - GEO5

Método de elementos finitos

Este programa puede modelar y analizar una amplia variedad de problemas geotécnicos, incluyendo asentamiento del terreno, muros diafragma/tablestacas, estabilidad de taludes, excavaciones, análisis de túneles. El programa cuenta con una base de datos de materiales para suelos y así mismo de elementos estructurales como muros, anclajes, geotextiles o geomallas.

El programa de GEO5 MEF se utiliza para cálculo de desplazamientos, fuerzas internas en elementos estructurales, tensiones y deformaciones, zonas de plástico en el suelo y otros en las diferentes etapas de construcción.

Los modelos de análisis disponibles son los siguientes: Modelo elástico lineal, elástico modificado, Mohr-Coulomb, Drucker-Prager.

Ver ANEXO 10 – Manual Geo5

Factor de seguridad FS = 0.39			
Parám	Parámetros de suelo en la última iteración terminada		
Zona número	φ _{ef} [°]	c _{ef} [kPa]	
1	87.76	0.23	
2	108.41	0.23	
3	98.08	0.08	
· ·			

FIGURA 7.34 Diagrama de esfuerzos del talud y Factor de seguridad -Sección I

Parámetr	os de suelo en la últi terminada	ma iteración
Zona número	φ _{ef} [°]	c _{ef} [kPa]
1	71.09	0.19
2	87.81	0.19
3	79.45	0.06
4	77 10	0.10

FIGURA 7.35. Diagrama de esfuerzos del talud y Factor de seguridad -Sección II

Factor de seguridad FS = 0.53			
Parámetros de suelo en la última iteración terminada			
Zona número	φ _{ef} [°]	c _{ef} [kPa]	
1	63.98	0.17	
2	79.03	0.17	
3	71.50	0.06	
A	60 OC	0.00	

FIGURA 7.36 Diagrama de esfuerzos del talud y Factor de seguridad -Sección III

Factor de seguridad FS = 0.43			
Parámetros de suelo en la última iteración terminada			
Zona número	φ _{ef} [°]	c _{ef} [kPa]	
1	78.98	0.21	
2	97.57	0.21	
3	88.28	0.07	
A	01 21	0.10	

FIGURA 7.37 Diagrama de esfuerzos del talud y Factor de seguridad -Sección IV

7.2.5. RESULTADOS POR GEO5

Sección	Factor de Seguridad
Sección I	0.39
Sección II	0.48
Sección III	0.53
Sección IV	0.43

TABLA 7.6. Resultados por Geo5.

Fuente: Propia

7.2.6. ANÁLISIS DE RESULTADOS

Según la Norma E.050 de SUELOS Y CIMENTACIONES asegura que el factor de seguridad mínimo de un talud, en consideraciones estáticas debe ser 1,5 y en condiciones sísmicas 1,25. Dadas estas condiciones analizaremos los resultados de nuestros análisis.

Para el análisis de los Factores de seguridad se realizaron los análisis de estabilidad con los métodos de Morgenstern-Price, Bishop, Janbu, Spencer y el Método de Elementos finitos.

GeoSlope:

- Sección I:

Para la Superficie de falla I el método que mayor FS brinda es el de Morgenstern – Price con un FS=0.378, y el de menor valor es el de Janbu con un FS=0.312; estos valores son muy bajos, por lo tanto, corroboramos la inestabilidad de la parte superior del talud. Sin embargo, la Superficie de falla II el método que mayor FS brinda es el de Morgenstern – Price con un FS=2.232, y el de menor valor es el de Janbu con un FS=2.066. Finalmente, en la Superficie de falla III el método que mayor FS brinda es el de Bishop con un FS=1.993, y el de menor valor es el de Janbu con un FS=1.971. Esto indica que la parte baja y media del talud son estables y no se encuentran en riesgo.

JNIVERSIDAD

TÓL ICA

de santa maría

Para la falla global el método que mayor FS brinda es el de Bishop con un FS=1.892, y el de menor valor es el de Janbu con un FS=1.88.

La máxima variación porcentual es de 7.99 % entre los valores más altos y bajos obtenidos; tomando como valores base los obtenido por Morgenstern – Price.

- Sección II:

Para la Superficie de falla I el método que mayor FS brinda es el de Morgenstern – Price y Bishop con un FS=0.448, y el de menor valor es el de Spencer con un FS=0.414; los valores son muy bajos, por lo tanto, corroboramos la inestabilidad de la parte superior del talud. De igual manera, la Superficie de falla II también falla con los siguientes valores: el método que mayor FS brinda es el de Bishop con un FS=0.953, y el de menor valor es el de Janbu con un FS=0.930. Finalmente, en la Superficie de falla III el método que mayor FS brinda es el de Bishop con un FS=2.501, y el de menor valor es el de Janbu con un FS=2.41. Esto indica que sólo la parte baja del talud es estable y no se encuentra en riesgo.

Para la falla global el método que mayor FS brinda es el de Morgenstern – Price y Bishop con un FS=2.417, y el de menor valor es el de Janbu y Spencer con un FS=2.416.

La máxima variación porcentual es de 6.97 % entre los valores más altos y bajos obtenidos; tomando como valores base los obtenido por Morgenstern – Price.

- Sección III:

Para la Superficie de falla I el método que mayor FS brinda es el de Morgenstern – Price y Spencer con un FS=0.599, y el de menor valor es el de Janbu con un FS=0.548; los valores son muy bajos, por lo tanto, corroboramos la inestabilidad de la parte superior del talud. Sin embargo, la Superficie de falla II el método que mayor FS brinda es el de Morgenstern – Price y Spencer con un FS=2.393, y el de menor valor es el de Janbu con un FS=2.161. Finalmente, en la Superficie de falla III el método que mayor FS brinda es el de Spencer con un FS=2.003, y el de menor valor es el de Morgenstern – Price y Janbu con un FS=1.826. Esto indica que la parte baja y media del talud son estables y no se encuentran en riesgo.

Para la falla global el método que mayor FS brinda es el de Bishop con un FS=2.204, y el de menor valor es el de Janbu con un FS=2.101.

La máxima variación porcentual es de 10.74 % entre los valores más altos y bajos obtenidos; tomando como valores base los obtenido por Morgenstern – Price.

Sección IV:

Para la Superficie de falla I el método que mayor FS brinda es el de Morgenstern – Price y Spencer con un FS=0.45, y el de menor valor es el de Bishop con un FS=0.426; los valores son muy bajos, por lo tanto, corroboramos la inestabilidad de la parte superior del talud. Sin embargo, la Superficie de falla II el método que mayor FS brinda es el de Morgenstern – Price y Spencer con un FS=3.316, y el de menor valor es el de Janbu con un FS=3.024. Finalmente, en la Superficie de falla III el método que mayor FS brinda es el de Morgenstern – Price y Bishop con un FS=2.755, y el de menor valor es el de Janbu y Spencer con un FS=2.754. Esto indica que la parte baja y media del talud son estables y no se encuentran en riesgo.

Para la falla global el método que mayor FS brinda es el de Bishop con un FS=3.444, y el de menor valor es el de Janbu con un FS=321.

La máxima variación porcentual es de 9.66 % entre los valores más altos y bajos obtenidos; tomando como valores base los obtenido por Morgenstern – Price.

- Los métodos que mayor factor de seguridad brindaron en la superficie de falla I fueron los de Spencer y Morgenstern-Price y los que más desfavorables fueron los de Janbu, Bishop y Spencer.
- Los métodos que mayor factor de seguridad brindaron en la superficie de falla II fueron los de Spencer y Morgenstern-Price y los que más desfavorables fueron los de Janbu.

- Los métodos que mayor factor de seguridad brindaron en la superficie de falla III fue el de Bishop y el más desfavorables fue el de Janbu.
- Como hemos podido ver las superficies de falla I son inestables en todas las secciones y en todos los métodos. Esto nos resume que las superficies de falla II, II y IV ya se han estabilizado con el paso del tiempo.

4 Geo5

Dado que el Geo5 solo muestra factores de seguridad para las zonas críticas del talud, de igual forma nos indica que el talud es inestable. Los factores de seguridad son considerablemente menores a lo requerido por la norma E.050

7.2.7. COMPARACIÓN DE RESULTADOS ENTRE LOS MÉTODOS DE EQUILIBRIO LÍMITE-GEOSTUDIO 2012

Al evaluar los resultados, debemos mencionar que los valores más diferentes son muestra de la incertidumbre que es propio del análisis de la estabilidad de taludes, ya que utiliza una gran variedad de métodos. No hay método completo que a la vez satisfaga todas las condiciones de equilibrio y sea sencillo.

Se obtuvieron los siguientes gráficos de variación para una más completa comparación:
• <u>SECCIÓN 1</u>

Para una misma superficie de falla en la sección 1, la gran mayoría de FS no existen variaciones mayores al 19.87 % entre los valores más altos y más bajos obtenidos.

GRÁFICO 7.1. Variación porcentual entre FS. Superficie de falla I - Sección I.

GRÁFICO 7.3. Variación porcentual entre FS. Superficie de falla III - Sección I.

GRÁFICO 7.4. Variación porcentual entre FS. Superficie de falla IV - Sección I.

• <u>SECCIÓN 2</u>

Para una misma superficie de falla en la sección 2, la gran mayoría de FS no existen variaciones mayores al 6.97 % entre los valores más altos y más bajos obtenidos.

GRÁFICO 7.5. Variación porcentual entre FS. Superficie de falla I - Sección II.

GRÁFICO 7.6. Variación porcentual entre FS. Superficie de falla II - Sección II.

GRÁFICO 7.7. Variación porcentual entre FS. Superficie de falla III - Sección II.

GRÁFICO 7.8. Variación porcentual entre FS. Superficie de falla IV - Sección II.

• SECCIÓN 3

Para una misma superficie de falla en la sección 3, la gran mayoría de FS no existen variaciones mayores al 10.74 % entre los valores más altos y más bajos obtenidos.

GRÁFICO 7.9. Variación porcentual entre FS. Superficie de falla I - Sección III.

GRÁFICO 7.10. Variación porcentual entre FS. Superficie de falla II- Sección III.

GRÁFICO 7.11. Variación porcentual entre FS. Superficie de falla III - Sección III.

GRÁFICO 7.12. Variación porcentual entre FS. Superficie de falla IV - Sección III.

• <u>SECCIÓN 4</u>

Para una misma superficie de falla en la sección 4, la gran mayoría de FS no existen variaciones mayores al 9.66 % entre los valores más altos y más bajos obtenidos.

GRÁFICO 7.13. Variación porcentual entre FS. Superficie de falla I - Sección IV.

GRÁFICO 7.14. Variación porcentual entre FS. Superficie de falla I - Sección IV.

GRÁFICO 7.15. Variación porcentual entre FS. Superficie de falla I - Sección IV.

GRÁFICO 7.16. Variación porcentual entre FS. Superficie de falla I - Sección IV.

TABLA 7.7. Ventajas y desventajas entre métodos de GeoSlope.

MORGENSTERN-PRICE

71

BISHOP SIMPLIFICADO

JANBU

SPENCER

obtenidos fueron los mismos que con el método de Spencer, con excepción de algunas superficies como la superficie III de la sección 3 o la superficie I de la sección 2 que, aunque no son iguales tienen una pequeña variación; la razón se debe a que ángulo de inclinación de la fuerza resultante no es constante. Fue el método que obtuvo los mayores factores de seguridad debida que es el más riguroso.

Ventajas y Desventajas

Este método es el más complejo debido a que satisface

más efectivamente el equilibrio. Los factores de seguridad

No es un análisis completo como el de Janbu ya que se basa en que las fuerzas entre dovelas son cero; sin embargo, este tipo de métodos más sencillos no involucran problemas numéricos lo que resulta más ventajoso. Se obtuvo FS similares a los obtenidos por Morgenstern-Price y Spencer; difiriendo con el primero en un máximo de 5.33%.

Por ese método se obtuvo los valores más bajos sin excepción, esto se debe a que no satisface completamente las condiciones de equilibrio de momentos. Sus valores son subestimados máximo en un 9.66 % con otros valores promedio.

Arrojó los mismos valores que el método de Morgenstern-Price como ya se mencionó anteriormente, al ser análisis más complejos involucran problemas numéricos que provocan la obtención de FS menos realísticos. Satisfacen de forma más completa las condiciones de equilibrio. Con respecto al método de Janbu; este método difiere en un máximo de 10.74 %.

7.2.8. COMPARACIÓN DE RESULTADOS ENTRE GEO5 Y GEOSTUDIO 2012

- Los factores de seguridad dados con el programa de Geo5 son hallados a partir de la reducción de los valores del ángulo de fricción y la cohesión, este resultado se da por la aparición de la insuficiencia asociada con la evolución de la región crítica, mientras que el GeoSlope utiliza diferentes métodos que se basan en el método de las dovelas.
- **4** En la Sección I, la variación entre FS se da de la siguiente manera:

TABLA 7.8. Variación entre FS de las superficies críticas – Sección I.

GRÁFICO 7.17. Variación entre FS de las superficies críticas – Sección I.

4 Sección II, la variación entre FS se da de la siguiente manera:

TABLA 7.9. Variación entre FS de las superficies críticas – Sección II.

Fuente: Propia

UNIVERSIDAD

DE SANTA MARÍA

4 Sección III, la variación entre FS se da de la siguiente manera:

Fuente: Propia

UNIVERSIDAD

DE SANTA MARÍA

4 Sección IV, la variación entre FS se da de la siguiente manera:

TABLA 7 .11. Variación entre FS de las superficies críticas – Sección IV.

Fuente: Propia

A pesar de las diferencias entre los resultados de GeoSlope y Geo5, podemos observar que en ambos programas los FS en la primera y cuarta Sección son menores que los de la segunda y tercera sección. Esto demuestra que, aunque los programas tienen diferentes métodos, pero los resultados tienen una correlación.

UNIVERSIDAD

DE SANTA MARÍA

7.3. VERIFICACIÓN DEL MODELO CON SISMO

7.3.1. SISMO CON GEO5

SECCIÓN I

Factor de seguridad FS = 0.09 Parámetros de suelo en la última iteración terminada		
Zona número	φ _{ef} [°]	c _{ef} [kPa]
1	37.78	0.10
2	46.67	0.10
3	42.22	0.03

FIGURA 7.38. Diagrama de esfuerzos del talud y Factor de seguridad CON SISMO -Sección I . Fuente: Propia

SECCIÓN II

Factor de s	Factor de seguridad FS = 0.178	
Parámetros de suelo en la última iteración terminada		
Zona número	φ _{ef} [°]	c _{ef} [kPa]
1	71.09	0.19
2	87.81	0.19
3	79.45	0.06
	70 10	0.10

FIGURA 7.39. Diagrama de esfuerzos del talud y Factor de seguridad CON SISMO -Sección II.

SECCIÓN III

Factor de seguridad FS = 0.229		
Parámetros de suelo en la última iteración terminada		
Zona número	φ _{ef} [°]	c _{ef} [kPa]
1	41.98	0.11
2	51.85	0.11
3	46.91	0.04
4	42.21	0.06

FIGURA 7.40. Diagrama de esfuerzos del talud y Factor de seguridad CON SISMO -Sección III.

SECCIÓN IV

Factor de seguridad FS = 0.13		
Parámetros de suelo en la última iteración terminada		
Zona número	φ _{ef} [°]	c _{ef} [kPa]
1	37.78	0.10
2	46.67	0.10
3	42.22	0.03
4	20.00	0.06

FIGURA 7.41. Diagrama de esfuerzos del talud y Factor de seguridad CON SISMO -Sección IV.

7.3.2. RESULTADOS POR GEO5

Sección	Factor de Seguridad
Sección I	0.09
Sección II	0.178
Sección III	0.229
Sección IV	0.13

TABLA 7.12. Resultados por Geo5 con Sismo

. Fuente: Propia

7.3.3. RESULTADOS CON GeoStudio

TABLA 7.13. Resultados por GeoStudio con Sismo – Sección I.

15. T		GeoStudio
		Sección I-Superficie I
S.	Morgenstern - Price	0.078
MÉTODOS	Bishop	0.073
METODOS	Janbu	0.062
	Spencer	0.076
	PROMEDIO	0.072
	Fuente: Propia	
TABLA 7.14. Resu	iltados por GeoStudio con S	Sismo – Sección II.

	9 8	GeoStudio
		Sección II-Superficie I
	Morgenstern - Price	0.168
MÉTODOS	Bishop	0.168
METODOS	Janbu	0.155
	Spencer	0.168
	PROMEDIO	0.165
	Fuente: Propia	

		GeoStudio
		Sección III-Superficie I
	Morgenstern - Price	0.301
IÉTODOS	Bishop	0.305
METODOS	Janbu	0.263
	Spencer	0.301
	PROMEDIO	0.2925
	Fuente: Propia	

		GeoStudio
	· · · · ·	Sección IV-Superficie I
MÉTODOS	Morgenstern - Price	0.148
	Bishop	0.145
	Janbu	0.132
	Spencer	0.151
	PROMEDIO	0.144
	Fuente: Propia	

7.3.4. COMPARACION ENTRE FS CON SISMO Y SIN SISMO

TABLA 7.17. Comparación de FS de las superficies más críticas con sismo

Sección	Factor de Seguridad con	Factor de Seguridad con
	sismo GeoStudio	sismo GEO5
Sección I	0.072	0.09
Sección II	0.165	0.178
Sección III	0.293	0.229
Sección IV	0.144	0.13

Fuente: Propia

UNIVERSIDAD

GRÁFICO 7.21. Variación entre FS de las superficies críticas con sismo – Sección I.

GRÁFICO 7.22. Variación entre FS de las superficies críticas con sismo – Sección II.

GRÁFICO 7.23. Variación entre FS de las superficies críticas con sismo – Sección III

GRÁFICO 7.24. Variación entre FS de las superficies críticas con sismo – Sección IV.

Para el análisis de los Factores de seguridad con sismo se realizaron los análisis de estabilidad con los métodos de Morgenstern-Price, Bishop, Janbu, Spencer y el Método de Elementos finitos.

GeoStudio:

\rm Sección I:

Para la Superficie de falla I el método que mayor FS brinda es el de Morgenstern – Price con un FS=0.078, y el de menor valor es el de Janbu con un FS=0.062; estos valores son muy bajos, por lo tanto, corroboramos la inestabilidad de la parte superior del talud. En comparación con el análisis sin sismo, los FS disminuyeron en un 80%. Observamos que este descenso fue drástico debido a la gran amplificación del sismo y que la superficie I es la más crítica y con menores dimensiones.

Sección II:

Para la Superficie de falla I el método que mayor FS brinda es el de Morgenstern – Price con un FS=0.168, y el de menor valor es el de Janbu con un FS=0.155; estos valores son muy bajos, por lo tanto, corroboramos la inestabilidad de la parte superior del talud. En comparación con el análisis sin sismo, los FS disminuyeron en un 73%. Observamos que este descenso fue drástico debido a la gran amplificación del sismo y que la superficie I es la más crítica y con menores dimensiones.

🔸 Sección III:

Para la Superficie de falla I el método que mayor FS brinda es el de Bishop con un FS=0.305, y el de menor valor es el de Janbu con un FS=0.263; estos valores son muy bajos, por lo tanto, corroboramos la inestabilidad de la parte superior del talud. En comparación con el análisis sin sismo, los FS disminuyeron en un 49%. Observamos que este descenso no fue drástico debido a que la sección 3 es mucho más estable.

Sección IV:

Para la Superficie de falla I el método que mayor FS brinda es el de Spencer con un FS=0.151, y el de menor valor es el de Janbu con un FS=0.132; estos

valores son muy bajos, por lo tanto, corroboramos la inestabilidad de la parte superior del talud. En comparación con el análisis sin sismo, los FS disminuyeron en un 66%.

- Como hemos podido ver todos los FS han disminuido entre un 50 80%. Las superficies de falla I son inestables en todas las secciones y en todos los métodos.
- Los factores de seguridad obtenidos por Geo5 en el análisis estático y pseudoestático se redujeron entre un 70 80%.

Comparando los FS con sismo entre Geo5 y GeoStudio estos difieren entre un 8 – 25%.

CONCLUSIONES

- Se concluye que de acuerdo al análisis de estabilidad por elementos finitos y análisis numérico para la obtención de parámetros de suelos en el talud de Siguas (entre km. 920 – km. 921), Majes – Siguas, Arequipa, el factor de seguridad más crítico se encuentra en la parte superior del talud por lo que se considera completamente inestable al tiempo presente.
- De los ensayos de granulometría se obtuvieron los siguientes resultados: 5 muestras se clasificaron como arena pobremente graduada SP con poca presencia de finos. La sexta muestra se clasificó como arena bien graduada SW.
- De los ensayos de peso específico los valores se encuentran entre 1.36- 1.89 gf/cm³, que de acuerdo a bibliografía se encuentran dentro del rango de valores de arenas.
- De los ensayos de corte directo, las propiedades mecánicas obtenidas para el análisis de estabilidad fueron: la fricción se encuentra entre 34-42°, la cohesión está entre 0.028-0.18 kgf/cm².
- De acuerdo a la topografía con el uso del dron, se concluye que al tiempo actual es la mejor opción básicamente por dos motivos: la inaccesibilidad a la zona de estudio y la mejor precisión y calidad de imagen para un mejor modelamiento.
- De acuerdo a la ponderación realizada para calcular el tipo de suelo predominante según el "Estudio de pre inversión hidrogeológico y de aguas subterráneas de las pampas de majes – siguas y perforaciones de pozos con fines de investigación" (2009) realizado por AUTODEMA, el suelo predominante es la arena; lo que corrobora nuestro estudio de suelos.

ARENA	(%)	32.1
GRAVA	(%)	29.0
CANTOS	(%)	20.3
CONGLOMER	ADO (%)	18.7

La columna geológica obtenida del Boletín N°20 de Ingemmet muestra la estratigrafía de la zona. Según la topografía obtenida el talud tiene 150 m de altitud, por lo tanto, basándonos en esta, nuestro talud ocuparía 120 m depósitos recientes, derrames de basalto pleistocénico reciente, Conglomerado aluvial pleistocénico, y los 30 m superiores de la Formación Moquegua Superior, dichas unidades estratigráficas comprenden arenas eólicas, depósitos fluviales aluviones y flujos volcánicos, así como, areniscas blancas grisáceas con intercalaciones de arcillas y tufos volcánicos. Claramente este tipo de suelos tienen cierta similitud con los resultados obtenidos en nuestros ensayos (SP y SW), lo que corrobora nuevamente la severidad de nuestros ensayos y estos han sido utilizados en los modelos.

- A partir de la comparación sin sismo entre los 4 métodos de equilibrio límite usados por el GeoStudio 2012 se concluye lo siguiente:
 - El método de Morgenstern-Price es el más complejo debido a que satisface más efectivamente el equilibrio, los factores de seguridad obtenidos fueron los mismos que con el método de Spencer y los más altos acercándose a 3.316 que asegura la estabilidad del talud.
 - Por Janbú se e obtuvo los valores de FS más bajos sin excepción, esto se debe a que no satisface completamente las condiciones de equilibrio de momentos con un valor mínimo de 0.312.

Bishop resulta tener valores muy cercanos a los obtenidos por Morgenstern-Price y Spencer.

- A partir de la comparación con sismo entre los 4 métodos de equilibrio límite usados por el GeoStudio 2012 se concluye lo siguiente: los FS disminuyeron en un máximo de 80%.
- Al evaluar los resultados, debemos mencionar que los valores más diferentes son muestra de la incertidumbre que es propio del análisis de la estabilidad de taludes, ya que utiliza una gran variedad de métodos. No hay método completo que a la vez satisfaga todas las condiciones de equilibrio y sea sencillo.
- Los FS obtenidos por Geo5 sin sismo difieren máximo en un 9.4% con respecto a GeoStudio. No podemos decir que uno sea mejor que otro porque cada uno utiliza diferentes métodos.
- Los FS obtenidos por Geo5 con sismo difieren máximo en un 25% con respecto a GeoStudio.

- Se puede concluir las siguientes características del software Geo 5: la herramienta de estabilidad en el programa de elementos finitos no brinda las suficientes opciones para hacer un análisis integro de un talud, el tiempo para la obtención de resultados excede al de GeoStudio, sin embargo, el programa nos permite obtener las superficies críticas de un talud a partir de datos básicos como la topografía, parámetros del suelo y nivel freático.
- De acuerdo a las distancias de la escarpa a los puntos de referencia (Canal y Panamericana Sur) de Ingemmet, se concluye que el avance tiene una velocidad entre condiciones normales y lentas. A partir del análisis con GeoStudio se pudo deducir que la velocidad de avance permanece constante, a finales del 2018 las distancias con respecto a los puntos de referencia:

	Distancias respecto a la falla más crítica (m)
Sector 1, Canal (D2) Panamericana (D1)	2.05
Sector2, Canal (D2) Panamericana (D1)	2.87
Sector3, Canal (D2) Panamericana (D1)	3.12
Sector4, Canal (D2) Panamericana (D1)	2.42

De igual manera se calculó la superficie de falla que dará estabilidad al talud, cuyas distancias con respecto a los puntos de referencia son:

	Distancias respecto a la falla global
	(m)
Sector1, Canal (D2)	53.21
Panamericana (D1)	
Sector2, Canal (D2) Panamericana (D1)	55.71
Sector3, Canal (D2)	62.04
Panamericana (D1)	
Sector4, Canal (D2)	60.87
Panamericana (D1)	A. 13

- El deslizamiento por sus características dinámicas analizadas en los informes técnicos de Ingemmet es de Peligro muy alto, cuyo avance puede afectará la Carretera Panamericana Sur, la Planta de Leche Gloria, terrenos de cultivo e infraestructura agrícola. Por ello se concluye que el deslizamiento de Siguas y su área de influencia se considera en Peligro Inminente
- Se concluye que de acuerdo a la información recopilada de los informes técnicos de Ingemmet y AUTODEMA citados en el capítulo III, el desencadenante principal del deslizamiento de Siguas es la sobresaturación de suelos que se produjo por el uso inadecuado del sistema de riego del proyecto de irrigación Agrícola Majes – Siguas I.

RECOMENDACIONES

- El corte directo es un ensayo muy criticado y controversial además que lo califican como poco confiable debido a sus limitaciones de ejecución y de resultados. A pesar de todo esto, su practicidad, rapidez para obtención de resultados y costo de ensayo hacen que distintas empresas particularmente en nuestro país, lo usen como su principal opción para la determinación de parámetros de resistencia de los suelos; más aun tratándose de fines estudiantiles e investigación. Por lo que para obtener parámetros más precisos es recomendable realizar el ensayo Triaxial.
- Se recomienda continuar con el monitoreo permanente del deslizamiento a cargo de las entidades correspondientes como Ingemmet y AUTODEMA.
- El Ministerio de Transportes, debe de tener un plan de contingencia para el cambio del trazo de la Carretera Panamericana para que de esta manera el tráfico no se interrumpa debido a que en un periodo no mayor a 10 años el deslizamiento la afecte.
- El Gobierno Regional de Arequipa debe habilitar el proyecto de los pozos tubulares para poder reducir el nivel freático, y consecuentemente disminuir la velocidad de avance del deslizamiento.
- Es necesario promover la realización de estudios utilizando softwares actuales y completos en la comunidad estudiantil, ya que brindan a los estudiantes una mayor visión de herramientas que permitan evaluar la mayor cantidad de parámetros en el área de estudio.
- Se recomienda ampliar el estudio de suelos a lo largo del valle de Siguas, ya que se ha evidenciado que los deslizamientos son constantes a lo largo del valle.
- Para que el análisis con software sea lo más real posible es importante y necesario que el estudio de mecánica de suelos cumpla con todas las recomendaciones dispuestas en las normas NTP Y ASTM nombradas.

BIBLIOGRAFIA

- Alva, J., Chang, L. (Abril,1987). Mapa de áreas de deslizamientos por sismos en el Perú.Trabajo presentado en V Congreso nacional de Mecánica de Suelos e ingeniería de Cimentaciones, Lima, Perú
- American Society for Testing and Materials. ASTM D2216: Método de ensayo para la determinación del contenido de agua (humedad) de suelos y rocas. Pensilvania
- American Society for Testing and Materials. ASTM D422: *Método de análisis granulométrico de suelos*. Pensilvania
- American Society for Testing and Materials. ASTM D2487: Método de ensayo para la clasificación geotécnica de suelos. Pensilvania
- American Society for Testing and Materials. ASTM D854: Método de ensayo para la determinación de la gravedad específica de los sólidos del suelo. Pensilvania
- American Society for Testing and Materials. ASTM D4253: Método de ensayo para la determinación de la densidad y el peso unitario índice máximos con una mesa vibratoria. Pensilvania
- American Society for Testing and Materials. ASTM D3080: Método de ensayo de corte directo de suelos con consolidación previa y drenaje. Pensilvania
- Autoridad Autónoma de Majes. (2009). Estudio de pre-inversión hidrogeológico y de aguas subterráneas de las Pampas de Majes – Siguas y perforaciones de pozos con fines de investigación. Arequipa
- Ayuda en Línea Geo5. *Newton Raphson*. Recuperado de https://www.finesoftware.es/ayudaen-linea/geo5/es/configuracion-del-metodo-newton-raphson-01/
- Azorin, R. C. (2014). Análisis de Estabilidad de Taludes mediante técnicas de modelación numérica en 3D utilizando Plaxis 3D Foundation. Villa Clara.
- Comisión de Reglamentos Técnicos y Comerciales INDECOPI. (2006). Normas Técnicas Peruanas. Lima
- Corominas, J. (2015). *Tipos de rotura en Laderas y Taludes*. Recuperado de https://www.researchgate.net/publication/260386631_TIPOS_DE_ROTURA_EN_L ADERAS_Y_TALUDES
- Das, B.M. (2001). *Fundamentos de ingeniería geotécnica*. 1era Edición. Sacramento: Cengage Learning
- Gómez, M.C. *Newton Raphson*. Universidad Autónoma Metropolitana Cuajimalpa. Recuperado de http://test.cua.uam.mx/MN/Methods/Raices/NewtonRaphson /NewtonRaphson.php
- Granados López, A. R. (2006). *Estabilización del talud de la Costa Verde en la zona del distrito de Barranco*. (Trabajo de grado). Pontificia Universidad Católica del Perú, Lima, Perú.
- Guizado J. (1968). Boletín N°20 Geología del Cuadrángulo de Aplao. Lima Perú

- Guizado Jol, J.(1968). *Geología del Cuadrángulo de Aplao.Lima*: Servicio de Geología y Minería.
- Instituto Geofísico del Perú (7, septiembre,2018). *Sismos Reportados en el Perú*. Recuperado de: https://www.intranet.igp.gob.pe
- Instituto Geológico, Minero y Metalúrgico. (2016). *Dinámica del deslizamiento de Siguas*.Recuperado de: http://repositorio.ingemmet.gob.pe/bitstream/ingemmet/1196/1/A6715-Dinamica_del_deslizamiento_de_Siguas-Arequipa.pdf.
- Instituto Geológico, Minero y Metalúrgico. (2017). *Área de influencia del deslizamiento de Siguas y Geodinámica del valle*.Recuperado de: http://sigrid.cenepred.gob.pe/sigridv3/documento/3807.
- Instituto Nacional de Defensa Civil. (2006). Compendio Estadístico de Prevención y Atención de Desastres. Recuperado de: https://www.indeci.gob.pe/compend_estad/2006/7_otras_estad/7.1_sismos/7.1.4_hist _sismos.pdf.
- López Pineda, G. *Introducción al uso del programa Slope/W 2007*. (Tesis de maestría). Universidad de Córdoba, Córdoba, España.
- Mateo Martinez, J. (2016). *Estabilización de deslizamiento de tierras mediante pilotes*. (Tesis de Maestría). Universidad Politécnica de Cataluña, Madrid, España.
- Ministerio de Transportes y Comunicaciones. (2016). Manual de ensayo y materiales. Lima.
- Ministerio de Transportes y Comunicaciones. (octubre de 2014). Manual de Carreteras Diseño Geométrico (DG-2014). Lima.
- Ministerio de Vivienda, Construcción y Saneamiento (2006). Norma Técnica E.050 Suelos y Cimentaciones. Lima.
- Ministerio de Vivienda, Construcción y Saneamiento. (2006). Norma Técnica de Edificación E.030 Diseño Sismorresistente. Reglamento Nacional de Edificaciones. Lima, Perú.
- Municipalidad Distrital de Majes. (2013). Plan de desarrollo urbano de ciudad Majes Villa el pedregal 2012 2021. Volumen A. Arequipa.
- Perez de Ágreda, E. (2005). *Estabilidad de Taludes*. 3 era Edicion. Madrid: Universidad Politécnica de Cataluña.
- Portilla H. (1999). Deslizamiento de depósitos continentales en la margen derecha del Rio Siguas. Arequipa
- Sanhueza Plaza, C., Rodríguez Cifuentes, L. (2013). Análisis comparativo de métodos de cálculo de estabilidad de taludes finitos aplicados a laderas naturales. Revista de la construcción.12(1),21-23. Recuperado de http://www.redalyc.org/pdf/1276/127628890003.pdf.
- Suárez, J. (1998). *Deslizamientos y Estabilidad de Taludes en Zonas Tropicales*. Bucaramanga: Ingenieria de Suelos Ltda.

- Urrutia, P. (2008). Análisis dinámico de estabilidad por Elementos Finitos de los taludes de la Costa Verde en el distrito de Miraflores. Lima
- Valiente Sanz,R.,Sobrecases Martí, S.,Diaz Orrrego, A. (2015). *Estabilidad de Taludes: Conceptos básicos, parámetros de diseño y métodos de cálculo.* Revista Civilizate.1(7),50-54. Recuperado de https://riunet.upv.es/bitstream/handle/10251/76781/taludes.pdf?sequence=1.

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis UNIVERSIDAD

DE SANTA MARÍA

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis

ANEXO 1: Columna Lito Estratigráfica de la Zona.

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis

UNIDADES ESTRATIGRAFICAS

UNIVERSIDAD Católica De Santa María

ANEXO 2: Cuadrángulo de Aplao.

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis 160

UNIVERSIDAD Católica De Santa María

CATOLICA SUPERIORI

ANEXO 3: Perfil Estratigráfico

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis 162

DROE			Alturo			SUELOS	
(m)	SÍMBOLO	OLO DESCRIPCIÓN DEL MATERIAL		ARENA (%)	GRAVA (%)	CANTOS (%)	CONGLOMERADO (%)
0.25	0.000	ARENA LIMOSA PARDO CLARO	0.17	0.17			
1.50	0°	GRAVAS SUBANGULOSAS Y MATRIZ ARENOSA	0.83	0.40	0.40		
5.00		ARENA MEDIA A GRUESA SUELTA CON CLASTOS DE CANTO Y GRAVAS	2.33	1.17	1.17		
10.0		CANTOS Y GRAVAS, MATRIZ ARENOSA,ARENISCAS SUELTAS	3.33	1.67	1.67		
15.0		CANTOS Y GRAVAS, MATRIZ ARENOSA,ARENISCAS SUELTAS	3.33	1.67	1.67	land and a second s	
20.0		CANTOS Y GRAVAS, MATRIZ ARENOSA,CLASTOS	3.33	1.11	1.11	1.11	
21.9		CANTOS Y ARENAS	1.27	0.63		0.63	
27.4		ARENA GRUESA A MEDIA	3.67	3.67			
31.9		CANTOS Y GRAVAS, MATRIZ ARENOSA	3.03	1.01	1.00	1.00	
34.0	° 0 °	CANTOS Y GRAVAS, MATRIZ ARENOSA	1.67	0.56	0.56	0.56	
37.9		CANTOS Y GRAVAS	2.63		1.32	1.32	

DDOC			Altura	SUELOS			
(m)	SÍMBOLO	DESCRIPCIÓN DEL MATERIAL	(%)	ARENA (%)	GRAVA (%)	CANTOS (%)	CONGLOMERADO (%)
40.0	0.0,0	CANTOS , GRAVAS Y ARENAS	1.67	0.56	0.56	0.56	
44.5		CANTOS , GRAVAS Y ARENAS	3.00	1.00	1.00	1.00	
45.5		BRECHA SEDIMENTARIA	0.67				
	0.0.0	CANTOS Y GRAVAS, MATRIZ ARENOSA	3.00	1.0	1.00	1.00	
50.0	000	CATOL	CA	4	1		
53.0	0.0	CANTOS Y GRAVAS	2.00	S?	1.00	1.00	
61.0		CANTOS Y GRAVAS, MATRIZ ARENOSA	5.33	1.78	1.78	1.78	
66.4		CANTOS Y GRAVAS	3.60	デ	1.80	1.80	
68.6		CANTOS Y GRAVAS, MATRIZ ARENOSA GRUESA SUELTA	1.47	0.49	0.49	0.49	
74.6		CONGLOMERADO, CANTOS MATRIZ ARENOSA	4.00	1.33		1.33	1.33
76.1		CONGLOMERADO, CANTOS Y GRAVA	1.00		0.33	0.33	0.33
78.5		CONGLOMERADO, GRAVA, MATRIZ ARENOSA	1.60	0.53	0.53		0.53
80.0	ř. Tř.	CONGLOMERADO	1.00				1.00
83.4	· · · · · · /	CANTOS Y GRAVAS, MATRIZ ARENOSA,CONGLOMERADO	2.27	0.57	0.60	0.60	0.60

DROF			Alturo			SUELOS	
(m)	SÍMBOLO	DESCRIPCIÓN DEL MATERIAL	(%)	ARENA (%)	GRAVA (%)	CANTOS (%)	CONGLOMERADO (%)
87.90		CANTOS Y ARENAS	3.00	1.50		1.50	
90.00		ARENA FINA	1.40	1.40			
100.45		CONGLOMERADO, MATRIZ GRAVA-ARENOSA Inicio de Nivel Freático	6.97	2.32	2.32		2.32
104.00		CONGLOMERADO	2.37	\mathcal{D}	1		2.37
105.00		GRAVA	0.67	7	0.67	d	
114.50		CONGLOMERADO, GRAVA, ARENAS	6.33	2.11	2.11		2.11
115.30		GRAVA Y AREA	0.53	0.25	0.25		
120.60		CONGLOMERADO Y ARENA	3.53	1.77			1.77

PROF			Altura	aSUELOS			
(m)	SIMBOLO	ÍMBOLO DESCRIPCIÓN DEL MATERIAL		ARENA (%)	GRAVA (%)	CANTOS (%)	CONGLOMERADO (%)
124.50		CONGLOMERADO	2.60				2.60
127.15		CONGLOMERADO CON MAYOR PRESENCIA DE GRAVA	1.77		1.10		0.70
128.85	0.0.0.0	CONGLOMERADO	1.13				1.13
129.35	0.00	ARENA LIMO-ARCILLOSA	0.40	0.40			
131.95		GRAVAS Y CANTOS	1.73	/	0.87	0.87	
142.20		CANTOS Y GRAVAS	6.83	A SYN	3.42	3.42	
143.00		ARENA	0.53	0.53	1	1	
144.55	0.0	CONGLOMERADO	1.03	\mathbf{F}			1.03
145.45		GRAVA Y ARENA	0.60	0.30	0.30		
148.00		CONGLOMERADO Y ARENA	1.70	0.85			0.85
150.00		ARENA DE BAJO PESO ESPECIFICO	1.33	1.33			

ANEXO 4: Estudio de Mecánica de Suelos

UNIVERSIDAD CATÓLICA DE SANTA MARÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE SUELOS Y CONCRETO

CONSTANCIA

El que suscribe, Dr. Ing. Alejandro Hidalgo Valdivia Coordinador de Laboratorio de Suelos y Concreto de la Escuela Profesional de Ingeniería Civil de la Universidad Católica de Santa María de Arequipa,

HACE CONSTAR Que el (los) Señor(es) Bachiller(es) en Ingeniería Civil: XIMENA LUQUE CASTILLO MILAGROS MOLINA VELARDE

Han realizado los ensayos en el Laboratorio de Suelos y Concreto correspondientes a su trabajo de tesis para optar el Título Profesional de Ingeniero Civil, con la tesis denominada: "UTILIZACIÓN DE ELEMENTOS FINITOS Y MÉTODOS NUMÉRICOS PARA LA OBTENCIÓN DE FACTORES DE SEGURIDAD DEL TALUD DE SIGUAS (ENTRE KM 920 – KM 921), DISTRITO DE MAJES – CAYLLOMA Y DISTRITO DE SAN JUAN DE SIGUAS - AREQUIPA, AREQUIPA".

Los ensayos efectuados por los señores bachilleres fueron los siguientes:

DESCRIPCIÓN	CANTIDAD
Contenido de Humedad de Suelos	22
Análisis Granulométrico por Tamizado	10
Peso Volumétrico o Densidad de Suelos Cohesivos (Met. De la Parafina)	8
Gravedad Específica de Sólidos de Suelo Mediante el Picnómetro de Agua	14
Densidad Máxima en Suelos Granulares (Material menor 3") - Con Mesa Vibratoria	6
Densidad Mínima en Suelos Granulares (Material menor 3")	6
Corte Directo Consolidado Drenado (Muestra Inalterada)	6

El costo total de los ensayos realizados asciende a: S/. 675.00

El costo cancelado por dichos ensayos asciende a: S/. 500.00* (Comprobante BO17-00001304) *Según autorización de la Dirección de la Escuela Profesional de Ingeniería Civil.

Los trabajos realizados en las instalaciones del Laboratorio de Suelos y Concreto, se llevaron a cabo entre el 31/01/18 y el 26/09/18.

Se expide la presente constancia a solicitud de los interesados para continuidad en el trámite de titulación.

Arequipa, 01 de Octubre del 2018

UNIVERSIDAD CATOLICA DE SANTA MARÍA

Dr. Ing. ALEIANDRO VICTOR HIDALGO VALDIVIA COORDINADOR DE LOS LABORATORIOS DE INCENTERIA UNI EPIC-FAICA - CAMPUS-PARQUE INDUSTRIAI

Telf : 054 382038 anexo 1465 email: labcivil@ucsm.edu.p

UNIVERSIDAD CATÓLICA **DE SANTA MARÍA**

ESTUDIO DE SUELOS

MUESTRA 1

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO (ASTM D41 ASTM D422)

NOMBRE DE TESIS: "Utilización de elementos finitos y análisis numérico para obtención de factores de seguridad en suelos del talud del Deslizamiento de Siguas (entre km. 920 km. 921), distrito de Majes-Caylloma y distrito San Juan de Siguas-Arequipa, Arequipa"

TAMIZ	DIÁMETRO (mm)	W RET + TARA (gf)	W RET (gf)	% RET	% PAS ACUM
	1		1	5	100
3"	76.2				
2"	50.8		15		10
1 1/2"	38.1		X		100
1"	25.4	356.0	20.1	2.0	98.0
3/4"	19.1	368.3	32.4	3.2	94.8
1/2"	12.7	348.2	12.3	1.2	93.6
3/8"	9.52	396.1	60.2	6.0	87.6
4	4.76	464.6	128.7	12.8	74.8
8	2.38	426.5	90.6	9.0	65.8
10	2	373.2	37.3	3.7	62.1
16	1.19	398.3	62.4	6.2	55.9
30	0.59	435.7	99.8	9.9	46.0
40	0.425	386.1	50.2	5.0	41.0
50	0.3	416.6	80.7	8.0	33.0
80	0.18	492.8	156.9	15.6	17.4
100	0.15	392.2	56.3	5.6	11.9
200	0.074	405.1	69.2	6.9	5.0
FONDO		386.1	50.2	5.0	0.0
TOTAL		Y	1007.3	100.0	1

FRACCI	ONES	
GRAVA	25.19	9
ARENA	69.82	9
FINOS	4.98	9

COEFICIEN	TES
Cu	13.31
Cc	0.34

CLASIFICACIÓN					
SUCS	SP				
AASHTO	A - 1 - b (

– u	(0)			
		_		

335.9 gf	Tara (gf)
S/A	
D60	1.72
D30	0.28
D10	0.13

Arena Mal Graduada

CONTENIDO DE HUMEDAD (ASTM D2216)

NOMBRE DE TESIS: "Utilización de elementos finitos y análisis numérico para obtención de factores de seguridad en suelos del talud del Deslizamiento de Siguas (entre km. 920 – km. 921), distrito de Majes-Caylloma y distrito San Juan de Siguas-Arequipa, Arequipa"

PROMEDIO (%)	1.70			
HUMEDAD	1.621	1.813	1.661	%
PESO DE TARA	123.3	117.4	114.1	gf
PESO DE MUESTRA SECA + TARA	240.5	227.7	228.5	gf
PESO DE MUESTRA HÚMEDA + TARA	242.4	229.7	230.4	gf
	1	2	3	

PESO ESPECÍFICO

NOMBRE DE TESIS: "Utilización de elementos finitos y análisis numérico para obtención de factores de seguridad en suelos del talud del Deslizamiento de Siguas (entre km. 920 – km. 921), distrito de Majes-Caylloma y distrito San Juan de Siguas-Arequipa, Arequipa"

		1 1 1 Th
PESO DE SUELO	gf	115
PESO SUELO + PARAFINA	gf	130.90
VOLUMEN PROBETA INICIA	cm ³	500
VOLUMEN PROBETA FINAL	cm ³	578.00
VOLUMEN DESPLAZADO	cm ³	78.00
PESO ESPECÍFICO PARAFINA	gf/cm ³	0.87
PESO DE LA PARAFINA	сŋ	15.90
VOLUMEN DE PARAFINA	cm ³	18.28
CONTENIDO DE HUMEDAD (ω)	%	1.7%
DENSIDAD NATURAL HUMEDAD	gf/cm³	1.93
DENSIDAD NATURAL SECA	gf/cm ³	1.89

DENSIDAD MÁXIMA Y MÍNIMA (ASTM D4254)

NOMBRE DE TESIS: "Utilización de elementos finitos y análisis numérico para obtención de factores de seguridad en suelos del talud del Deslizamiento de Siguas (entre km. 920 – km. 921), distrito de Majes-Caylloma y distrito San Juan de Siguas-Arequipa, Arequipa"

DENSIDAD MÁXIMA							
DESCRIPCIÓN	1	2	3				
PESO DE MOLDE MÁS							
MUESTRA (gf)	7512.00	7779	8120				
PESO DEL MOLDE (gf)	3560.50	3560.50	3560.50				
PESO DE LA MUESTRA (gf)	3951.50	4218.50	4559.50				
VOLUMEN DEL MOLDE (cm ³)	1923.46	1923.46	2213.79				
DENSIDAD (gf/cm ³)	2.054	2.193	2.060				
DENSIDAD MÁXIMA (gf/cm ³)	2.102						

DENSIDAD MÁXIMA

DENSIDAD MÍNIMA

DENSIDAD MÍNIMA							
DESCRIPCIÓN	1	2	3				
PESO DE MOLDE MÁS							
MUESTRA (gf)	7512.00	7779	8120				
PESO DEL MOLDE (gf)	3560.50	3560.50	3560.50				
PESO DE LA MUESTRA (gf)	3951.50	4218.50	4559.50				
VOLUMEN DEL MOLDE (cm ³)	2812.61	2812.61	2812.61				
DENSIDAD (gf/cm ³)	1.405	1.500	1.621				
DENSIDAD MÍNIMA (gf/cm ³)	1.509	. 63					

DENSIDAD RELATIVA

	1 1	1	
_ מח	γd min	$-\frac{1}{\gamma d}$	+ 100
DK -	1	1	* 100
	vd min	vd max	

RESUMEN	2
DENSIDAD MÁXIMA (gf/cm ³)	2.10
DENSIDAD MÍNIMA (gf/cm ³)	1.51
DENSIDAD NATURAL (gf/cm ³)	1.89
DENSIDAD RELATIVA	72%
ESTADO DEL SUELO	Denso
LSTRUG DEL SCELO	Dei

GRAVEDAD ESPECÍFICA (ASTM D854)

PESO DE MUESTRA SECA (gf)	61.8
PESO DE PICNÓMETRO + AGUA (gf)	649.1
PESO DE PICN. + AGUA + MUESTRA (gf)	688.3
TEMPERATURA °C	20
PESO UNITARIO DE AGUA (gf/cm ³)	1
GRAVEDAD ESPECÍFICA	2.73

CORTE DIRECTO (ASTM D3080)

NOMBRE DE TESIS: "Utilización de elementos finitos y análisis numérico para obtención de factores de seguridad en suelos del talud del Deslizamiento de Siguas (entre km. 920 – km. 921), distrito de Majes-Caylloma y distrito San Juan de Siguas-Arequipa, Arequipa"

Dimensiones de la caja de corte : Velocidad de carga: 6cm x 6cm 1mm/min Área: 36cm²

Peso	4 kgf			8 kgf			12 kgf		
	Lectura	T =	τ	Lectura	T =	τ	Lectura	T =	τ
δ (mm)	dial (LD)	f(LD)	(kgf/cm ²)	dial (LD)	f(LD)	(kgf/cm ²)	dial (LD)	f(LD)	(kgf/cm ²)
0.00	0	1.74	0.048	0	1.74	0.048	0	1.74	0.048
0.05	21	8.21	0.228	25	9.45	0.262	23	8.83	0.245
0.10	28	10.37	0.288	34	12.22	0.339	40	14.07	0.391
0.15	35	12.53	0.348	46	15.91	0.442	59	19.92	0.553
0.20	37	13.14	0.365	50	17.15	0.476	71	23.61	0.656
0.25	38	13.45	0.374	55	18.69	0.519	85	27.93	0.776
0.30	43	14.99	0.416	58	19.61	0.545	90	29.47	0.819
0.35	48	16.53	0.459	60	20.23	0.562	99	32.24	0.896
0.40	52	17.76	0.493	63	21.15	0.588	108	35.01	0.973
0.45	54	18.38	0.511	67	22.38	0.622	115	37.17	1.032
0.50	59	19.92	0.553	72	23.92	0.665	119	38.40	1.067
0.55	64	21.46	0.596	75	24.85	0.690	125	40.25	1.118
0.60	65	21.77	0.605	79	26.08	0.724	136	43.64	1.212
0.65	67	22.38	0.622	-83	27.31	0.759	138	44.25	1.229
0.70	68	22.69	0.630	87	28.54	0.793	145	46.41	1.289
0.75	70	23.31	0.647	91.5	29.93	0.831	153	48.87	1.358
0.80	71	23.61	0.656	97.5	31.78	0.883	157	50.11	1.392
0.85	72	23.92	0.665	104	33.78	0.938	160	51.03	1.417
0.90	73	24.23	0.673	106.5	34.55	0.960	163	51.95	1.443
0.95	75	24.85	0.690	111	35.94	0.998	170	54.11	1.503
1.00	76	25.15	0.699	117	37.78	1.050	175	55.65	1.546
1.05	77.5	25.62	0.712	124	39.94	1.109	181	57.50	1.597
1.10	78	25.77	0.716	131	42.10	1.169	186.5	59.19	1.644
1.15	79	26.08	0.724	136	43.64	1.212	190	60.27	1.674
1.20	81	26.70	0.742	139	44.56	1.238	195	61.81	1.717
1.25	82.5	27.16	0.754	140	44.87	1.246	199	63.04	1.751
1.30	84	27.62	0.767	145	46.41	1.289	204	64.58	1.794
1.35	86	28.24	0.784	147	47.03	1.306	209	66.12	1.837
1.40	89	29.16	0.810	154	49.18	1.366	215	67.97	1.888
1.45	91	29.78	0.827	158	50.41	1.400	221	69.82	1.939
1.50	92	30.08	0.836	161	51.34	1.426	226	71.36	1.982
1.55	93	30.39	0.844	167	53.19	1.477	232	73.21	2.034
1.60	94	30.70	0.853	169	53.80	1.494	236	74.44	2.068
1.65	94.5	30.85	0.857	173	55.03	1.529	237	74.75	2.076
1.70	95	31.01	0.861	174	55.34	1.537	239	75.36	2.093
1.75	96	31.32	0.870	178	56.57	1.572	245	77.21	2.145
1.80	96.5	31.47	0.874	182	57.81	1.606	247	77.83	2.162
1.85	97	31.62	0.878	185	58.73	1.631	256	80.60	2.239
1.90	98	31.93	0.887	187	59.35	1.649	261	82.14	2.282
1.95	99	32.24	0.896	189	59.96	1.666	265	83.37	2.316
2.00	99	32.24	0.896	190	60.27	1.674	270.5	85.07	2.363
2.05	99	32.24	0.896	191	60.58	1.683	274	86.15	2.393
2.10				192	60.89	1.691	276	86.76	2.410

Dimensiones de la caja de corte : Velocidad de carga:

6cm x 6cm 1mm/min Área: 36cm²

Peso	4 kgf			8 kgf			12 kgf		
	Lectura	T =	τ	Lectura	T =	τ	Lectura	T =	τ
δ (mm)	dial (LD)	f(LD)	(kgf/cm^2)	dial (LD)	f(LD)	(kgf/cm^2)	dial (LD)	f(LD)	(kgf/cm^2)
2.15				192	60.89	1.691	279	87.69	2.436
2.20				195	61.81	1.717	282	88.61	2.461
2.25				196	62.12	1.726	286	89.84	2.496
2.30				197	62.43	1.734	290	91.07	2.530
2.35				202	63.97	1.777	294	92.31	2.564
2.40				204	64.58	1.794	298	93.54	2.598
2.45		0		208	65.82	1.828	299	93.85	2.607
2.50				209	66.12	1.837	301	94.46	2.624
2.55				211	66.74	1.854	302	94.77	2.633
2.60	1			213	67.36	1.871	303	95.08	2.641
2.65				215	67.97	1.888	304	95.39	2.650
2.70			1-5	216	68.28	1.897	304	95.39	2.650
2.75		JA.		217	68.59	1.905	304	95.39	2.650
2.80				218	68.90	1.914	1.00		
2.85	911			219	69.20	1.922	14.8		
2.90				220	69.51	1.931			
2.95	1	3		220	69.51	1.931			
3.00	-			221	69.82	1.939			
3.05			~ ()	221	69.82	1.939			
3.10	B		5	221	69.82	1.939	2		

Peso (kgf)	σ (kgf/cm ²)	τ (kgf/cm ²)
4 kgf	1.11	0.896
8 kgf	2.22	1.939
12 kgf	3.33	2.650

Ángulo de fricción interna φ (°)::	38.3	
Cohesión c (kgf/cm ²):	0.07	

MUESTRA 2

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO (ASTM D41 ASTM D422)

TAMIZ	DIÁMETRO (mm)	W RET + TARA (gf)	W RET (gf)	% RET	% PAS ACUM	FRACO	CIONES	
						GRAVA	35.53	%
3"	76.2					ARENA	63.19	%
2"	50.8	51				FINOS	1.28	%
1 1/2"	38.1	100			110		1.4	
1"	25.4		5		100.0	COEFIC	CIENTES	
3/4"	19.1	526.7	190.8	20.4	79.6	Cu	8.42	
1/2"	12.7	379.3	43.4	4.6	75.0	Cc	0.36	
3/8"	9.52	392.1	56.2	6.0	69.0		1.9	
4	4.76	378.2	42.3	4.5	64.5	CLASIFI	ICACIÓN	
8	2.38	363.3	27.4	2.9	61.5	SUCS	SP	Arena Mal Graduada
10	2	342.1	6.2	0.7	60.9	AASHTO	A - 3(0)	
16	1.19	355.1	19.2	2.1	58.8	1/1	S	
30	0.59	361.3	25.4	2.7	56.1	335.9 gf	TARA	
40	0.425	357.8	21.9	2.3	53.8	4	1 PM	
50	0.3	675.0	339.1	36.2	17.6	D60	1.65	
80	0.18	417.7	81.8	8.7	8.8	D30	0.34	
100	0.15	406.5	70.6	7.5	1.3	D10	0.20	h.
200	0.074	336.0	0.1	0.0	1.3			
FONDO		347.9	12.0	1.3	0.0			
TOTAL			936.4	100.0				

CONTENIDO DE HUMEDAD (ASTM D2216)

NOMBRE DE TESIS: "Utilización de elementos finitos y análisis numérico para obtención de factores de seguridad en suelos del talud del Deslizamiento de Siguas (entre km. 920 – km. 921), distrito de Majes-Caylloma y distrito San Juan de Siguas-Arequipa, Arequipa"

PROMEDIO (%)	1.20			
HUMEDAD	1.381	0.994	1.239	%
PESO DE TARA	122.6	176.4	170.1	gf
PESO DE MUESTRA SECA + TARA	238.5	297.1	299.2	gf
PESO DE MUESTRA HÚMEDA + TARA	240.1	298.3	300.8	gf
	1	2	3	

PESO ESPECÍFICO

NOMBRE DE TESIS: "Utilización de elementos finitos y análisis numérico para obtención de factores de seguridad en suelos del talud del Deslizamiento de Siguas (entre km. 920 – km. 921), distrito de Majes-Caylloma y distrito San Juan de Siguas-Arequipa, Arequipa"

PESO DE SUELO	gf	147
PESO SUELO + PARAFINA	gf	175.00
VOLUMEN PROBETA INICIA	cm ³	500
VOLUMEN PROBETA FINAL	cm ³	618.00
VOLUMEN DESPLAZADO	cm ³	118.00
PESO ESPECÍFICO PARAFINA	gf/cm ³	0.87
PESO DE LA PARAFINA	g	28.00
VOLUMEN DE PARAFINA	cm ³	32.18
CONTENIDO DE HUMEDAD (@)	%	0.5%
DENSIDAD NATURAL HUMEDAD	gf/cm ³	1.71
DENSIDAD NATURAL SECA	gf/cm ³	1.71

7. DENSIDAD MÁXIMA Y MÍNIMA (ASTM D4253 ASTM D4254)

NOMBRE DE TESIS: "Utilización de elementos finitos y análisis numérico para obtención de factores de seguridad en suelos del talud del Deslizamiento de Siguas (entre km. 920 – km. 921), distrito de Majes-Caylloma y distrito San Juan de Siguas-Arequipa, Arequipa"

DENSIDAD MÁXIMA

DENSIDAD MÁXIMA						
DESCRIPCIÓN	1	2	3			
PESO DE MOLDE MÁS MUESTRA						
(gf)	7198.00	7189	7749			
PESO DEL MOLDE (gf)	3560.50	3560.50	3560.50			
PESO DE LA MUESTRA (gf)	3637.50	3628.50	4188.50			
VOLUMEN DEL MOLDE (cm ³)	1923.46	1923.46	2213.79			
DENSIDAD (gf/cm ³)	1.891	1.886	1.892			
DENSIDAD MÁXIMA (gf/cm ³)	1.890					

DENSIDAD MÍNIMA

DENSIDAD MÍNIMA						
DESCRIPCIÓN	1	2	3			
PESO DE MOLDE MÁS MUESTRA (gf)	7198.00	7189	7749			
PESO DEL MOLDE (gf)	3560.50	3560.50	3560.50			
PESO DE LA MUESTRA (gf)	3637.50	3628.50	4188.50			
VOLUMEN DEL MOLDE (cm ³)	2812.61	2812.61	2812.61			
DENSIDAD (gf/cm ³)	1.293	1.290	1.489			
DENSIDAD MÍNIMA (gf/cm ³)	1.358					

DENSIDAD RELATIVA

	1	1	
DR =	γd min	$-\frac{1}{\gamma d}$	* 100
DR -		1	. 100
1	γd min	γd max	
		7.00	2
	PESII	MEN	

RESUMEN	
DENSIDAD MÁXIMA (gf/cm ³)	1.89
DENSIDAD MÍNIMA (gf/cm ³)	1.36
DENSIDAD NATURAL (gf/cm ³)	1.71
DENSIDAD RELATIVA	73%
ESTADO DEL SUELO	Denso

GRAVEDAD ESPECÍFICA (ASTM D854)

PESO DE MUESTRA SECA (gf)	70.2
PESO DE PICNÓMETRO + AGUA (gf)	649.1
PESO DE PICN. + AGUA + MUESTRA	602.8
(gf)	092.8
TEMPERATURA °C	20
PESO UNITARIO DE AGUA (gf/cm ³)	1
GRAVEDAD ESPECÍFICA	2.65

CORTE DIRECTO (ASTM D3080)

NOMBRE DE TESIS: "Utilización de elementos finitos y análisis numérico para obtención de factores de seguridad en suelos del talud del Deslizamiento de Siguas (entre km. 920 – km. 921), distrito de Majes-Caylloma y distrito San Juan de Siguas-Arequipa, Arequipa"

Dimensiones de la caja de corte : Velocidad de carga: 6cm x 6cm 1mm/min Área: 36cm²

Peso		4 kgf			8 kgf		12 kgf		
δ (mm)	Lectura dial (LD)	T = f(LD)	τ (kgf/cm ²)	Lectura dial (LD)	T = f(LD)	τ (kgf/cm ²)	Lectura dial (LD)	T = f(LD)	τ (kgf/cm ²)
0.00	0	0.00	0.000	0	0.00	0.000	0	1.74	0.048
0.05	22	8.52	0.237	45	11.60	0.322	52	8.83	0.245
0.10	33	11.91	0.331	59	20.53	0.570	89	14.07	0.391
0.15	40	14.07	0.391	81	26.08	0.724	105	19.92	0.553
0.20	52	17.76	0.493	112	32.55	0.904	141	23.61	0.656
0.25	53	18.07	0.502	119	35.32	0.981	150	27.93	0.776
0.30	54	18.38	0.511	138	37.78	1.050	154	29.47	0.819
0.35	57	19.30	0.536	142	43.94	1.221	173	32.24	0.896
0.40	58.9	19.89	0.552	151	45.64	1.268	182	35.01	0.973
0.45	63	21.15	0.588	161.9	48.26	1.340	195	37.17	1.032
0.50	65	21.77	0.605	164	51.49	1.430	208	38.40	1.067
0.55	69	23.00	0.639	170.9	52.57	1.460	213	40.25	1.118
0.60	71	23.61	0.656	176	54.26	1.507	220	43.64	1.212
0.65	73	24.23	0.673	179	55.65	1.546	234	44.25	1.229
0.70	75.6	25.03	0.695	183	57.19	1.589	238	46.41	1.289
0.75	77	25.46	0.707	187	58.42	1.623	240	48.87	1.358
0.80	78.9	26.05	0.724	190.5	59.35	1.649	243	50.11	1.392
0.85	79	26.08	0.724	191.3	60.76	1.688	246	51.03	1.417
0.90	80.5	26.54	0.737	194	61.50	1.708	248	51.95	1.443
0.95	80.5	26.54	0.737	195.5	61.96	1.708	249.5	54.11	1.503
1.00				198	62.58	1.730	251	55.65	1.546
1.05				198	62.73	1.743	252.5	57.50	1.597
1.10		1	6	199	63.04	1.751	253	59.19	1.644
1.15				200.5	63.51	1.764	254	60.27	1.674
1.20				202	63.97	1.777	255	61.81	1.717
1.25			6	202	63.97	1.777	256.9	63.04	1.751
1.30			6	7	12		257	64.58	1.794
1.35					-		258.1	66.12	1.837
1.40							258.5	67.97	1.888
1.45							259	69.82	1.939
1.50							260	71.36	1.982
1.55							261	73.21	2.034
1.60							262	74.44	2.068
1.65							262	74.75	2.076

Peso (kgf)	σ (kgf/cm ²)	τ (kgf/cm ²)
4 kgf	1.11	0.74
8 kgf	2.22	1.78
12 kgf	3.33	2.29

MUESTRA 3

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO (ASTM D41 ASTM D422)

TAMIZ	DIÁMETRO (mm)	W RET + TARA (gf)	W RET (gf)	% RET	% PAS ACUM	FRAC	CIONES	
		10.00				GRAVA	14.11	%
3"	76.2	1				ARENA	83.99	%
2"	50.8					FINOS	1.90	%
1 1/2"	38.1		-	510	In			<u>-</u>
1"	25.4			2.00	1	COEFI	CIENTES	
3/4"	19.1		150		100	Cu	3.35	
1/2"	12.7	363.3	27.4	4.5	95.5	Cc	1.30	
3/8"	9.52	359.9	24.0	4.0	91.5	100	1.00	<u>-</u>
4	4.76	369.7	33.8	5.6	85.9	CLASIFICACIÓN		
8	2.38	362.0	26.1	4.3	81.6	SUCS	SP	Arena Mal Graduada
10	2	344.0	8.1	1.3	80.2	AASHTO	A - 1 - b (0)	
16	1.19	364.8	28.9	4.8	75.4		E	<u>-</u>
30	0.59	411.6	75.7	12.5	62.9	335.9 gf	TARA	
40	0.425	449.9	114.0	18.9	44.0	1	1 PM	<u>-</u>
50	0.3	455.2	119.3	19.8	24.3	D60	0.56	
80	0.18	415.5	79.6	13.2	11.1	D30	0.35	
100	0.15	353.0	17.1	2.8	8.3	D10	0.17	
200	0.074	374.3	38.4	6.4	1.9			-
FONDO		347.4	11.5	1.9	0.0			
TOTAL			603.9	100.0				

CONTENIDO DE HUMEDAD (ASTM D2216)

NOMBRE DE TESIS: "Utilización de elementos finitos y análisis numérico para obtención de factores de seguridad en suelos del talud del Deslizamiento de Siguas (entre km. 920 – km. 921), distrito de Majes-Caylloma y distrito San Juan de Siguas-Arequipa, Arequipa"

PROMEDIO (%)	1.27			
HUMEDAD	1.113	1.214	1.469	%
PESO DE TARA	233.1	169.3	114.5	gf
PESO DE MUESTRA SECA + TARA	376.9	317.6	271.1	gf
PESO DE MUESTRA HÚMEDA + TARA	378.5	319.4	273.4	gf
	1	2	3	

PESO ESPECÍFICO

NOMBRE DE TESIS: "Utilización de elementos finitos y análisis numérico para obtención de factores de seguridad en suelos del talud del Deslizamiento de Siguas (entre km. 920 – km. 921), distrito de Majes-Caylloma y distrito San Juan de Siguas-Arequipa, Arequipa"

	and the second
gf	141
gf	172.00
cm ³	500
cm ³	613.80
cm ³	113.80
gf/cm ³	0.87
gf	31.00
cm ³	35.63
%	1.3%
gf/cm³	1.80
gf/cm ³	1.78
	gf gf cm³ cm³ gf/cm³ gf cm³ gf/cm³ gf gf/cm³ gf/cm³ gf/cm³

DENSIDAD MÁXIMA Y MÍNIMA (ASTM D4253 ASTM D4254)

NOMBRE DE TESIS: "Utilización de elementos finitos y análisis numérico para obtención de factores de seguridad en suelos del talud del Deslizamiento de Siguas (entre km. 920 – km. 921), distrito de Majes-Caylloma y distrito San Juan de Siguas-Arequipa, Arequipa"

DENSIDAD MÁXIMA

DENSIDAD MÁXIMA						
DESCRIPCIÓN	1	2	3			
PESO DE MOLDE MÁS MUESTRA (gf)	7169.00	7023	7312			
PESO DEL MOLDE (gf)	3560.50	3560.50	3560.50			
PESO DE LA MUESTRA (gf)	3608.50	3462.50	3751.50			
VOLUMEN DEL MOLDE (cm ³)	1869.02	1796.44	1932.53			
DENSIDAD (gf/cm ³)	1.931	1.927	1.941			
DENSIDAD MÁXIMA (gf/cm ³)	1.933					

DENSIDAD MÍNIMA

DENSIDAD MÍNIMA							
DESCRIPCIÓN	1	2	3				
PESO DE MOLDE MÁS MUESTRA (gf)	7169.00	7023	7312				
PESO DEL MOLDE (gf)	3560.50	3560.50	3560.50				
PESO DE LA MUESTRA (gf)	3608.50	3462.50	3751.50				
VOLUMEN DEL MOLDE (cm ³)	2812.61	2812.61	2812.61				
DENSIDAD (gf/cm ³)	1.283	1.231	1.334				
DENSIDAD MÍNIMA (gf/cm ³)	1.283						

DENSIDAD RELATIVA

$DR = \frac{\frac{1}{\gamma d \min} - \frac{1}{\gamma d}}{\frac{1}{\gamma d \min} - \frac{1}{\gamma d \max}} * 100$
RESUMEN

RESUMER	
DENSIDAD MÁXIMA (gf/cm ³)	1.93
DENSIDAD MÍNIMA (gf/cm ³)	1.28
DENSIDAD NATURAL (gf/cm ³)	1.78
DENSIDAD RELATIVA	83%
ESTADO DEL SUELO	Denso

GRAVEDAD ESPECÍFICA (ASTM D854)

PESO DE M	IUESTRA SECA (gf)	69.6
PESO DE PICN	ÓMETRO + AGUA (gf)	649.1
PESO DE PICN	(gf). + AGUA + MUESTRA	693.4
TEMP	PERATURA °C	20
PESO UNITAI	RIO DE AGUA (gf/cm ³)	1
GRAVED	AD ESPECÍFICA	2.75

CORTE DIRECTO (ASTM D3080)

NOMBRE DE TESIS: "Utilización de elementos finitos y análisis numérico para obtención de factores de seguridad en suelos del talud del Deslizamiento de Siguas (entre km. 920 km. 921), distrito de Majes-Caylloma y distrito San Juan de Siguas-Arequipa, Arequipa"

Dir	nensiones d	e la caja de	e corte :	6cm x 6cm	n		Área:	36cm ²	
	Velocida	ad de carga	:	1mm	/min				
Peso		4 kgf			8 kgf			12 kgf	
				Lectura			Lectura		
δ	Lectura	T =	τ	dial	T =	τ	dial	T =	τ
(mm)	dial (LD)	f(LD)	(kgf/cm ²)	(LD)	f(LD)	(kgf/cm ²)	(LD)	f(LD)	(kgf/cm ²)
0.00	0	0.00	0.000	0	0.00	0.000	0.00	0.00	0.000
0.05	0.5	1.90	0.053	0	0.00	0.000	0.00	0.00	0.000
0.10	1	2.05	0.057	0	0.00	0.000	0.00	0.00	0.000
0.15	1	2.05	0.057	0	0.00	0.000	0.00	0.00	0.000
0.20	1	2.05	0.057	0	0.00	0.000	0.00	0.00	0.000
0.25	1	2.05	0.057	0	0.00	0.000	0.00	0.00	0.000
0.30	1	2.05	0.057	0	0.00	0.000	0.00	0.00	0.000
0.35	1	2.05	0.057	0	0.00	0.000	0.00	0.00	0.000
0.40	1	2.05	0.057	15	6.36	0.177	2.00	2.36	0.066
0.45	5	3.28	0.091	38	13.45	0.374	37.00	13.14	0.365
0.50	23	8.83	0.245	54	18.38	0.511	63.00	21.15	0.588
0.55	32	11.60	0.322	65	21.77	0.605	81.50	26.85	0.746
0.60	39	13.76	0.382	73	24.23	0.673	94.00	30.70	0.853
0.65	45	15.61	0.433	80	26.39	0.733	103.00	33.47	0.930
0.00	49	16.84	0.468	87	28.54	0.793	115.00	37.17	1.032
0.75	54	18.38	0.100	95	31.01	0.861	122.00	39.32	1.092
0.75	58	19.61	0.545	104	33.78	0.938	134.00	43.02	1.092
0.85	61	20.53	0.570	106	34.40	0.955	146.00	46.72	1.199
0.05	65	20.33	0.605	111	35.9/	0.998	153.00	40.72	1.258
0.95	69	23.00	0.639	115	37.17	1.005	161.00	51.3/	1.336
1.00	72	23.00	0.65	118.5	38.25	1.005	160.00	53.80	1.420
1.00	75	23.92	0.005	122	30.23	1.000	173.00	55.03	1.494
1.05	70	24.03	0.090	122	<u> </u>	1.092	180.00	57.10	1.529
1.10	01	26.00	0.724	120	42.71	1.144	185.00	59.72	1.509
1.13	01 01	20.70	0.742	120.5	42.71	1.100	100.00	60.27	1.031
1.20	04	27.02	0.707	139.3	44.72	1.242	190.00	61.50	1.074
1.23	0/	20.34	0.793	144	40.10	1.201	194.00	62.72	1.700
1.50	90	29.47	0.819	148	47.55	1.515	198.00	64.42	1.745
1.33	95	21.01	0.844	150	47.93	1.332	203.30	65.82	1.790
1.40	95	21.22	0.801	155	49.49 50.11	1.373	208.00	03.82	1.828
1.45	90	22.24	0.870	157	50.11	1.392	213.00	07.30	1.8/1
1.50	99	32.24	0.890	101	51.54	1.420	219.00	09.20	1.922
1.55	101	32.80	0.913	165	52.57	1.460	223.00	70.44	1.957
1.60	104	33.78	0.938	108	53.49	1.480	226.00	/1.30	1.982
1.65	105	34.09	0.94/	1/1	54.42	1.512	230.50	12.15	2.021
1.70	10/	34.70 25.22	0.964	1/5	55.65	1.546	234.00	/ 5.82	2.051
1.75	108.2	35.32	0.981	1/7/	56.27	1.563	238.50	75.21	2.089
1.80	109.4	35.44	0.985	180	57.19	1.589	242.50	/6.44	2.123
1.85	110	35.63	0.990	183	58.11	1.614	246.50	77.67	2.158
1.90	111.6	36.12	1.003	186	59.04	1.640	250.50	78.91	2.192
1.95	112	36.24	1.007	189	59.96	1.666	254.00	79.98	2.222
2.00	115	37.17	1.032	192	60.89	1.691	257.00	80.91	2.247

UNIVERSIDAD CATÓLICA DE SANTA MARÍA

Dimensiones de la caja de corte : Velocidad de carga:

6cm x 6cm 1mm/min Área: 36cm²

Peso		4 kgf			8 kgf			12 kgf	
				Lectura			Lectura		
δ	Lectura	T =	τ	dial	T =	τ	dial	T =	τ
(mm)	dial (LD)	f(LD)	(kgf/cm^2)	(LD)	f(LD)	(kgf/cm ²)	(LD)	f(LD)	(kgf/cm^2)
2.05	115.9	37.45	1.040	194	61.50	1.708	260.00	81.83	2.273
2.10	116	37.48	1.041	197	62.43	1.734	263.00	82.76	2.299
2.15	118	38.09	1.058	199.5	63.20	1.755	266.50	83.84	2.329
2.20	119	38.40	1.067	201	63.66	1.768	269.50	84.76	2.354
2.25	120.5	38.86	1.080	205	64.89	1.803	272.00	85.53	2.376
2.30	120.8	38.95	1.082	207	65.51	1.820	275.00	86.45	2.401
2.35	120.8	38.95	1.082	210	66.43	1.845	278.00	87.38	2.427
2.40		2		212	67.05	1.862	280.50	88.15	2.449
2.45		11		214.5	67.82	1.884	284.00	89.23	2.478
2.50			S 61	217	68.59	1.905	288.00	90.46	2.513
2.55				219	69.20	1.922	289.00	90.77	2.521
2.60	0		63	220.5	69.67	1.935	292.00	91.69	2.547
2.65	-			223	70.44	1.957	294.00	92.31	2.564
2.70	1211			225	71.05	1.966	296.50	93.08	2.585
2.75		NOV.		228	71.98	1.992	299.00	93.85	2.607
2.80		5.		230	72.59	2.016	301.00	94.46	2.624
2.85	K			231.5	73.05	2.029	302.00	94.77	2.633
2.90	E	1	1	233	73.52	2.042	305.00	95.69	2.658
2.95	E	7	150	235.5	74.29	2.064	307.00	96.31	2.675
3.00				236	74.44	2.068	309.00	96.93	2.692
3.05				239	75.36	2.093	311.50	97.70	2.714
3.10				240.5	75.83	2.106	312.50	98.00	2.722
3.15			151 18	242	76.29	2.119	314.50	98.62	2.739
3.20			11/11/2	243	76.60	2.128	316.00	99.08	2.752
3.25			Carter	244	76.90	2.136	317.50	99.54	2.765
3.30				245.5	77.37	2.149	319.50	100.16	2.782
3.35				247	77.83	2.162	321.00	100.62	2.795
3.40		~		247.5	77.98	2.166	322.00	100.93	2.804
3.45				249	78.44	2.179	323.50	101.39	2.816
3.50			100 A 10	250	78.75	2.188	324.50	101.70	2.825
3.55				252	79.37	2.205	325.50	102.01	2.834
3.60				253	79.68	2.213	327.00	102.47	2.846
3.65			(254	79.98	2.222	328.00	102.78	2.855
3.70			C	256	80.60	2.239	329.10	103.12	2.864
3.75				256	80.60	2.239	330.00	103.40	2.872
3.80							331.00	103.70	2.881
3.85							332.00	104.01	2.889
3.90							332.50	104.17	2.893
3.95							333.00	104.32	2.898
4.00							334.00	104.63	2.906
4.05							335.00	104.94	2.915
4.10							335.50	105.09	2.919
4.15							336.00	105.24	2.923
4.20							338.00	105.86	2.941
4.25							337.50	105.71	2.936
4.30							337.50	105.71	2.936
4.35							338.00	105.86	2.941
4.40							338.50	106.01	2.945
4.45							339.00	106.17	2.949

Dimensiones de la caja de corte : Velocidad de carga:

Área: 36cm²

Peso	4 kgf			8 kgf		12 kgf			
δ (mm)	Lectura dial (LD)	T = f(LD)	τ (kgf/cm ²)	Lectura dial (LD)	T = f(L,D)	τ (kgf/cm ²)	Lectura dial (LD)	T = f(LD)	τ (kgf/cm ²)
4.50	ului (LD)	I(LD)	(Kgi/elli)	(LD)		(Rgi/em/)	341.00	106.17	2.949
4.55							349.00	109.25	3.035
4.60							351.00	109.86	3.052
4.65							352.50	110.33	3.065
4.70							353.00	110.48	3.069
4.75							354.50	110.94	3.082
4.80							355.00	111.10	3.086
4.85							357.00	111.71	3.103
4.90							359.00	112.33	3.120
4.95							359.00	112.33	3.120

6cm x 6cm

1mm/min

Peso (kgf)	σ (kgf/cm ²)	τ (kgf/cm ²)
4 kgf	1.11	1.08
8 kgf	2.22	2.18
12 kgf	3.33	3.12

Ángulo de fricción interna φ (°):	42.5
Cohesión c (kgf/cm ²):	0.09

MUESTRA 4

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO (ASTM D41 ASTM D422)

TAMIZ	DIÁMETRO (mm)	W RET + TARA (gf)	W RET (gf)	% RET	% PAS ACUM	FRA	CCIONES	
		1				GRAVA	14.42	%
3"	76.2	1				ARENA	83.36	%
2"	50.8					FINOS	2.22	%
1 1/2"	38.1							
1"	25.4		0	N [0]		COEF	ICIENTES	
3/4"	19.1				100	CU	12.05	
1/2"	12.7	363.3	27.4	6.5	93.5	CC	1.04	
3/8"	9.52	359.4	23.5	5.5	88.0	00	1	_
4	4.76	346.1	10.2	2.4	85.6	CLASI	FICACIÓN	
8	2.38	378.2	42.3	10.0	75.6	SUCS	SW	Arena Bien Graduada
10	2	407.5	71.6	16.9	58.7	AASHTO	A - 1 – b (0)	
16	1.19	395.2	59.3	14.0	44.7	14		
30	0.59	398.8	62.9	14.8	29.9	335.9 gf	TARA	
40	0.425	378.6	42.7	10.1	19.8		3	
50	0.3	361.6	25.7	6.1	13.7	D60	2.03	
80	0.18	346.5	10.6	2.5	11.2	D30	0.60	
100	0.15	349.1	13.2	3.1	8.1	D10	0.17	
200	0.074	360.8	24.9	5.9	2.2			-
FONDO		345.3	9.4	2.2	0.0			
TOTAL			423.74	100.0				

CONTENIDO DE HUMEDAD (ASTM D2216)

NOMBRE DE TESIS: "Utilización de elementos finitos y análisis numérico para obtención de factores de seguridad en suelos del talud del Deslizamiento de Siguas (entre km. 920 – km. 921), distrito de Majes-Caylloma y distrito San Juan de Siguas-Arequipa, Arequipa"

	1	2	3	
PESO DE MUESTRA HÚMEDA + TARA	173.1	194.5	180.2	gf
PESO DE MUESTRA SECA + TARA	171.4	190.1	178.2	gf
PESO DE TARA	118.1	113.6	120.3	gf
HUMEDAD	3.189	5.752	3.454	%
PROMEDIO (%)	4.13			

PESO ESPECÍFICO

NOMBRE DE TESIS: "Utilización de elementos finitos y análisis numérico para obtención de factores de seguridad en suelos del talud del Deslizamiento de Siguas (entre km. 920 – km. 921), distrito de Majes-Caylloma y distrito San Juan de Siguas-Arequipa, Arequipa"

	and the second se	
PESO DE SUELO	gf	189.6
PESO SUELO + PARAFINA	gf	207.70
VOLUMEN PROBETA INICIA	cm ³	500
VOLUMEN PROBETA FINAL	cm ³	620.00
VOLUMEN DESPLAZADO	cm ³	120.00
PESO ESPECÍFICO PARAFINA	gf/cm ³	0.87
PESO DE LA PARAFINA	gf	18.10
VOLUMEN DE PARAFINA	cm ³	20.80
CONTENIDO DE HUMEDAD (ω)	%	4.1%
DENSIDAD NATURAL HUMEDAD	gf/cm ³	1.91
DENSIDAD NATURAL SECA	gf/cm ³	1.84

DENSIDAD MÁXIMA Y MÍNIMA (ASTM D4253 ASTM D4254)

NOMBRE DE TESIS: "Utilización de elementos finitos y análisis numérico para obtención de factores de seguridad en suelos del talud del Deslizamiento de Siguas (entre km. 920 – km. 921), distrito de Majes-Caylloma y distrito San Juan de Siguas-Arequipa, Arequipa"

DENSIDAD MÁXIMA

DENSIDAD MÁXIMA							
DESCRIPCIÓN	1	2	3				
PESO DE MOLDE MÁS MUESTRA (gf)	7468.00	7594	7726				
PESO DEL MOLDE (gf)	3560.50	3560.50	3560.50				
PESO DE LA MUESTRA (gf)	3907.50	4033.50	4165.50				
VOLUMEN DEL MOLDE (cm ³)	1905.31	1967.01	2032.33				
DENSIDAD (gf/cm ³)	2.051	2.051	2.050				
DENSIDAD MÁXIMA (gf/cm ³)	2.050						

DENSIDAD MÍNIMA

DENSIDAD MÍNIMA							
DESCRIPCIÓN	1	2	3				
PESO DE MOLDE MÁS MUESTRA (gf)	7468.00	7594	7726				
PESO DEL MOLDE (gf)	3560.50	3560.50	3560.50				
PESO DE LA MUESTRA (gf)	3907.50	4033.50	4165.50				
VOLUMEN DEL MOLDE (cm ³)	2812.61	2812.61	2812.61				
DENSIDAD (gf/cm ³)	1.389	1.434	1.481				
DENSIDAD MÍNIMA (gf/cm ³)	1.435						

DENSIDAD RELATIVA

	1	1	
DP -	γd min	$-\frac{1}{\gamma d}$	↓ 100
DR -	1	1	* 100
3	γd min [–]	γd max	

	ESTADO DEL SUELO	Denso
7	DENSIDAD RELATIVA	73%
<u>y</u>	DENSIDAD NATURAL	1.84
m.	DENSIDAD MINIMA	1.43
1.0	DENSIDAD MAXIMA	2.05
	RESUMEN	

GRAVEDAD ESPECÍFICA (ASTM D854)

NOMBRE DE TESIS: "Utilización de elementos finitos y análisis numérico para obtención de factores de seguridad en suelos del talud del Deslizamiento de Siguas (entre km. 920 – km. 921), distrito de Majes-Caylloma y distrito San Juan de Siguas-Arequipa, Arequipa"

PESO DE MUESTRA SECA (gf)	31.06
PESO DE PICNÓMETRO + AGUA (gf)	656.5
PESO DE PICN. + AGUA + MUESTRA (gf)	675.2
TEMPERATURA °C	20
PESO UNITARIO DE AGUA (gf/cm ³)	1
GRAVEDAD ESPECÍFICA	2.51

CORTE DIRECTO (ASTM D3080)

NOMBRE DE TESIS: "Utilización de elementos finitos y análisis numérico para obtención de factores de seguridad en suelos del talud del Deslizamiento de Siguas (entre km. 920 km. 921), distrito de Majes-Caylloma y distrito San Juan de Siguas-Arequipa, Arequipa"

Dir	Dimensiones de la caja de corte :			6cm x 6cm			Área:	36cm ²	
	Velocida	ad de carga	:	: 1mm/min					
Peso	o 4 kgf 8 kgf						12 kgf		
				Lectura			Lectura		
δ	Lectura	T =	τ	dial	T =	τ	dial	T =	τ
(mm)	dial (LD)	f(LD)	(kgf/cm ²)	(LD)	f(LD)	(kgf/cm ²)	(LD)	f(LD)	(kgf/cm ²)
0.00	0	1.74	0.048	0.00	1.74	0.048	0.00	1.74	0.048
0.05	0	1.74	0.048	0.05	2.36	0.066	0.05	8.83	0.245
0.10	0	1.74	0.048	0.10	4.82	0.134	0.10	14.07	0.391
0.15	0	1.74	0.048	0.15	6.36	0.177	0.15	15.30	0.425
0.20	0	1.74	0.048	0.20	7.29	0.202	0.20	16.53	0.459
0.25	2	2.36	0.066	0.25	8.21	0.228	0.25	18.07	0.502
0.30	3	2.67	0.074	0.30	10.99	0.305	0.30	20.53	0.570
0.35	6	3.59	0.100	0.35	12.83	0.356	0.35	22.69	0.630
0.40	8	4.21	0.117	0.40	13.76	0.382	0.40	24.85	0.690
0.45	10	4.82	0.134	0.45	14.07	0.391	0.45	27.00	0.750
0.50	12	5.44	0.151	0.50	15.61	0.433	0.50	29.16	0.810
0.55	14	6.06	0.168	0.55	16.53	0.459	0.55	30.39	0.844
0.60	16	6.67	0.185	0.60	17.30	0.481	0.60	31.93	0.887
0.65	17	6.98	0.194	0.65	18.69	0.519	0.65	35.63	0.990
0.70	19	7.60	0.211	0.70	20.53	0.570	0.70	37.48	1.041
0.75	20	7.91	0.220	0.75	21.46	0.596	0.75	38.55	1.071
0.80	22	8.52	0.237	0.80	23.92	0.665	0.80	40.25	1.118
0.85	23	8.83	0.245	0.85	24.85	0.690	0.85	41.17	1.144
0.90	25	9.45	0.262	0.90	26.54	0.737	0.90	43.33	1.204
0.95	27	10.06	0.279	0.95	28.24	0.784	0.95	46.72	1.298
1.00	28	10.37	0.288	1.00	30.08	0.836	1.00	48.57	1.349
1.05	30	10.99	0.305	1.05	31.01	0.861	1.05	49.49	1.375
1.10	31	11.29	0.314	1.10	32.24	0.896	1.10	51.95	1.443
1.15	32	11.60	0.322	1.15	33.78	0.938	1.15	53.19	1.477
1.20	35	12.53	0.348	1.20	35.01	0.973	1.20	54.11	1.503
1.25	37	13.14	0.365	1.25	36.55	1.015	1.25	55.65	1.546
1.30	40	14.07	0.391	1.30	37.17	1.032	1.30	57.04	1.584
1.35	45	15.61	0.433	1.35	39.02	1.084	1.35	58.42	1.623
1.40	46	15.91	0.442	1.40	40.86	1.135	1.40	59.65	1.657
1.45	50	17.15	0.476	1.45	41.79	1.161	1.45	60.58	1.683
1.50	53.5	18.22	0.506	1.50	43.64	1.212	1.50	61.19	1.700
1.55	58	19.61	0.545	1.55	44.56	1.238	1.55	62.12	1.726
1.60	60	20.23	0.562	1.60	45.18	1.255	1.60	63.35	1.760
1.65	62	20.84	0.579	1.65	46.41	1.289	1.65	64.89	1.803
1.70	65	21.77	0.605	1.70	47.64	1.323	1.70	65.51	1.820
1.75	67	22.38	0.622	1.75	49.80	1.383	1.75	66.43	1.845
1.80	69	23.00	0.639	1.80	51.03	1.417	1.80	66.74	1.854
1.85	69.5	23.15	0.643	1.85	52.57	1.460	1.85	67.66	1.880
1.90	70	23.31	0.647	1.90	53.19	1.477	1.90	69.51	1.931
1.95	70.5	23.46	0.652	1.95	53.49	1.486	1.95	70.59	1.961
2.00	72	23.92	0.665	2.00	53.80	1.494	2.00	71.36	1.982

Dimensiones de la caja de corte : Velocidad de carga: 6cm x 6cm 1mm/min Área: 36cm²

Peso		4 kgf			8 kgf		12 kgf			
δ	Lectura	T =	τ	Lectura dial	T =	τ	Lectura dial	T =	τ	
(mm)	dial (LD)	f(LD)	(kgf/cm ²)	(LD)	f(LD)	(kgf/cm ²)	(LD)	f(LD)	(kgf/cm ²)	
2.05	73	24.23	0.673	2.05	54.11	1.503	2.05	72.28	2.008	
2.10	74	24.54	0.682	2.10	54.42	1.512	2.10	73.82	2.051	
2.15	76	25.15	0.699	2.15	55.34	1.537	2.15	74.44	2.068	
2.20	77	25.46	0.707	2.20	55.96	1.554	2.20	74.75	2.076	
2.25	79	26.08	0.724	2.25	56.27	1.563	2.25	75.36	2.093	
2.30	80.5	26.54	0.737	2.30	56.88	1.580	2.30	75.83	2.106	
2.35	81	26.70	0.742	2.35	57.19	1.589	2.35	76.29	2.119	
2.40	82	27.00	0.750	2.40	57.50	1.597	2.40	76.60	2.128	
2.45	83	27.31	0.759	2.45	57.96	1.610	2.45	76.90	2.136	
2.50	84	27.62	0.767	2.50	58.73	1.631	2.50	77.52	2.153	
2.55	85	27.93	0.776	2.55	59.04	1.640	2.55	78.44	2.179	
2.60	87	28.54	0.793	2.60	59.35	1.649	2.60	78.75	2.188	
2.65	88	28.85	0.801	2.65	59.65	1.657	2.65	79.37	2.205	
2.70	89	29.16	0.810	2.70	60.27	1.674	2.70	79.98	2.222	
2.75	90	29.47	0.819	2.75	60.58	1.683	2.75	81.83	2.273	
2.80	90	29.47	0.819	2.80	60.89	1.691	2.80	82.45	2.290	
2.85	90	29.47	0.819	2.85	61.50	1.708	2.85	83.07	2.307	
2.90	90	29.47	0.819	2.90	61.81	1.717	2.90	83.37	2.316	
2.95	E	7	150	2.95	62.12	1.726	2.95	83.99	2.333	
3.00				3.00	62.73	1.743	3.00	84.30	2.342	
3.05		~		3.05	63.20	1.755	3.05	84.91	2.359	
3.10			AN CO	3.10	63.35	1.760	3.10	85.53	2.376	
3.15			19118	3.15	63.66	1.768	3.15	86.15	2.393	
3.20			177	3.20	63.97	1.777	3.20	86.76	2.410	
3.25			Car an	3.25	64.28	1.785	3.25	86.76	2.410	
3.30				3.30	64.58	1.794	3.30	86.76	2.410	
3.35		1.	~	3.35	64.89	1.803				
3.40		~		3.40	64.89	1.803				
3.45				3.45	64.89	1.803				

Peso (kgf)	σ (kgf/cm ²)	τ (kgf/cm ²)
4 kgf	1.11	0.82
8 kgf	2.22	1.80
12 kgf	3.33	2.41

Ángulo de fricción interna φ (°):	35.61
Cohesión c (kg/cm ²):	0.09

MUESTRA 5

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO (ASTM D41 ASTM D422)

NOMBRE DE TESIS: "Utilización de elementos finitos y análisis numérico para obtención de factores de seguridad en suelos del talud del Deslizamiento de Siguas (entre km. 920 – km. 921), distrito de Majes-Caylloma y distrito San Juan de Siguas-Arequipa, Arequipa"

TAMIZ	DIÁMETRO (mm)	W RET + TARA (gf)	W RET (gf)	% RET	% PAS ACUM	FRAG	CCIONES	
						GRAVA	29.25	%
3"	76.2	1 m				ARENA	66.32	%
2"	50.8		201	(0)	100	FINOS	4.43	%
1 1/2"	38.1	346.7	10.8	2.2	97.8		- 10	<u> </u>
1"	25.4	348.5	12.6	2.6	95.2	COEF	ICIENTES	
3/4"	19.1	341.3	5.4	1.1	94.1	CU	11.87	
1/2"	12.7	355.1	19.2	4.0	90.1	CC	0.52	
3/8"	9.52	368.4	32.5	6.7	83.4	1 × 1	1.1	<u> </u>
4	4.76	397.3	61.4	12.7	70.7	CLASI	FICACIÓN	
8	2.38	368.4	32.5	6.7	64.0	SUCS	SP	Arena Mal Graduada
10	2	363.5	27.6	5.7	58.4	AASHTO	A - 1 - b(0)	
16	1.19	370.4	34.5	7.1	51.2		3	
30	0.59	378.8	42.9	8.8	42.4	335.9 gf	TARA	
40	0.425	403.7	67.8	14.0	28.4		12	-
50	0.3	368.0	32.1	6.6	21.8	D60	2.11	
80	0.18	392.0	56.1	11.6	10.2	D30	0.44	
100	0.15	351.8	15.9	3.3	7.0	D10	0.18	1
200	0.074	348.2	12.3	2.5	4.4			•
FONDO		357.4	21.5	4.4	0.0			
TOTAL			485.1	100.0	. //			

CONTENIDO DE HUMEDAD (ASTM D2216)

NOMBRE DE TESIS: "Utilización de elementos finitos y análisis numérico para obtención de factores de seguridad en suelos del talud del Deslizamiento de Siguas (entre km. 920 – km. 921), distrito de Majes-Caylloma y distrito San Juan de Siguas-Arequipa, Arequipa"

	1	2	3	
PESO DE MUESTRA HÚMEDA + TARA	165.7	193.5	161.3	gf
PESO DE MUESTRA SECA + TARA	162.9	189.3	159.4	gf
PESO DE TARA	117.8	116.7	115.7	gf
HUMEDAD	6.208	5.785	4.348	%
PROMEDIO (%)	5.45			

PESO ESPECÍFICO

NOMBRE DE TESIS: "Utilización de elementos finitos y análisis numérico para obtención de factores de seguridad en suelos del talud del Deslizamiento de Siguas (entre km. 920 – km. 921), distrito de Majes-Caylloma y distrito San Juan de Siguas-Arequipa, Arequipa"

	PESO DE SUELO	gf	139.8
	PESO SUELO + PARAFINA	gf	173.00
R	VOLUMEN PROBETA INICIA	cm ³	500
2	VOLUMEN PROBETA FINAL	cm ³	615.00
2	VOLUMEN DESPLAZADO	cm ³	115.00
9	PESO ESPECÍFICO PARAFINA	gf/cm ³	0.87
	PESO DE LA PARAFINA	gf	33.20
	VOLUMEN DE PARAFINA	cm ³	38.16
	CONTENIDO DE HUMEDAD (ω)	%	5.5%
	DENSIDAD NATURAL HUMEDAD	gf/cm ³	1.82
	DENSIDAD NATURAL SECA	gf/cm ³	1.73

DENSIDAD MÁXIMA Y MÍNIMA (ASTM D4254)

NOMBRE DE TESIS: "Utilización de elementos finitos y análisis numérico para obtención de factores de seguridad en suelos del talud del Deslizamiento de Siguas (entre km. 920 – km. 921), distrito de Majes-Caylloma y distrito San Juan de Siguas-Arequipa, Arequipa"

DENSIDAD MÁXIMA

DENSIDAD MÁXIMA							
DESCRIPCIÓN	1	2	3				
PESO DE MOLDE MÁS MUESTRA (gf)	7115.00	7002	7320				
PESO DEL MOLDE (gf)	3560.50	3560.50	3560.50				
PESO DE LA MUESTRA (gf)	3554.50	3441.50	3759.50				
VOLUMEN DEL MOLDE (cm ³)	1869.02	1796.44	1932.53				
DENSIDAD (gf/cm ³)	1.902	1.916	1.945				
DENSIDAD MÁXIMA (gf/cm ³)	1.921						

DENSIDAD MÍNIMA

DENSIDAD MÍNIMA							
DESCRIPCIÓN	1	2	3				
PESO DE MOLDE MÁS MUESTRA (gf)	7115.00	7002	7320				
PESO DEL MOLDE (gf)	3560.50	3560.50	3560.50				
PESO DE LA MUESTRA (gf)	3554.50	3441.50	3759.50				
VOLUMEN DEL MOLDE (cm ³)	2812.61	2812.61	2812.61				
DENSIDAD (gf/cm ³)	1.264	1.224	1.337				
DENSIDAD MÁXIMA (gf/cm ³)	1.275						

DENSIDAD RELATIVA

	1	1	
DR -	γd min	$-\frac{1}{\gamma d}$	* 100
DR -	1	1	* 100
3	$\gamma d min^{-}$	γd max	

	RESUMEN	
10	DENSIDAD MÁXIMA	1.92
00	DENSIDAD MÍNIMA	1.27
5	DENSIDAD NATURAL	1.73
3	DENSIDAD RELATIVA	78%
1.	ESTADO DEL SUELO	Denso

GRAVEDAD ESPECÍFICA (ASTM D854)

TESO CIVITANO DE AGOA (gi/cili)	1
PESO LINITARIO DE AGUA $(\sigma f/cm^3)$	1
TEMPERATURA °C	20
(gf)	674.2
DEGO DE DICNI - ACUA - MUECTDA	
PESO DE PICNÓMETRO + AGUA (gf)	656.5
PESO DE MUESTRA SECA (gf)	28.93

CORTE DIRECTO (ASTM D3080)

NOMBRE DE TESIS: "Utilización de elementos finitos y análisis numérico para obtención de factores de seguridad en suelos del talud del Deslizamiento de Siguas (entre km. 920 – km. 921), distrito de Majes-Caylloma y distrito San Juan de Siguas-Arequipa, Arequipa"

Dimensiones de la caja de corte : Velocidad de carga: 6cm x 6cm 1mm/min Área: 36cm²

Peso	4 kgf		8 kgf			12 kgf			
				Lectura			Lectura		
δ	Lectura	T =	τ	dial	T =	τ	dial	T =	τ
(mm)	dial (LD)	f(LD)	(kgf/cm^2)	(LD)	f(LD)	(kgf/cm^2)	(LD)	f(LD)	(kgf/cm^2)
0.00	0	1.74	0.048	0	1.74	0.048	0	1.74	0.048
0.05	0	1.74	0.048	2	2.36	0.066	2	2.36	0.066
0.10	1	2.05	0.057	5	3.28	0.091	10	4.82	0.134
0.15	1	2.05	0.057	8	4.21	0.117	15	6.36	0.177
0.20	1	2.05	0.057	9	4.52	0.125	25	9.45	0.262
0.25	3	2.67	0.074	-11	5.13	0.143	36	12.83	0.356
0.30	3	2.67	0.074	17	6.98	0.194	45	15.61	0.433
0.35	5	3.28	0.091	24	9.14	0.254	50	17.15	0.476
0.40	7	3.90	0.108	28	10.37	0.288	55	18.69	0.519
0.45	8	4.21	0.117	30	10.99	0.305	60	20.23	0.562
0.50	10	4.82	0.134	34	12.22	0.339	63	21.15	0.588
0.55	12	5.44	0.151	36	12.83	0.356	70	23.31	0.647
0.60	15	6.36	0.177	39	13.76	0.382	75	24.85	0.690
0.65	17	6.98	0.194	45	15.61	0.433	82	27.00	0.750
0.70	20.5	8.06	0.224	51	17.45	0.485	89	29.16	0.810
0.75	25	9.45	0.262	55	18.69	0.519	95	31.01	0.861
0.80	28	10.37	0.288	59	19.92	0.553	98	31.93	0.887
0.85	30	10.99	0.305	63	21.15	0.588	105	34.09	0.947
0.90	33	11.91	0.331	65	21.77	0.605	115	37.17	1.032
0.95	36	12.83	0.356	72	23.92	0.665	120	38.71	1.075
1.00	38	13.45	0.374	78	25.77	0.716	127	40.86	1.135
1.05	41	14.37	0.399	80	26.39	0.733	135	43.33	1.204
1.10	45	15.61	0.433	86	28.24	0.784	144	46.10	1.281
1.15	50.5	17.30	0.481	91	29.78	0.827	151	48.26	1.340
1.20	58	19.61	0.545	99	32.24	0.896	162	51.65	1.435
1.25	60	20.23	0.562	107.5	34.86	0.968	177	56.27	1.563
1.30	61	20.53	0.570	111	35.94	0.998	185	58.73	1.631
1.35	62	20.84	0.579	120	38.71	1.075	196	62.12	1.726
1.40	64	21.46	0.596	127	40.86	1.135	208.5	65.97	1.832
1.45	66	22.07	0.613	134	43.02	1.195	215	67.97	1.888
1.50	68	22.69	0.630	138	44.25	1.229	220	69.51	1.931
1.55	69	23.00	0.639	145.5	46.56	1.293	227	71.67	1.991
1.60	70	23.31	0.647	156	49.80	1.383	230	72.59	2.016
1.65	72	23.92	0.665	158	50.41	1.400	232	73.21	2.034
1.70	73	24.23	0.673	161	51.34	1.426	240	75.67	2.102
1.75	75	24.85	0.690	165	52.57	1.460	243	76.60	2.128
1.80	76	25.15	0.699	167.5	53.34	1.482	248	78.14	2.170
1.85	77	25.46	0.707	170	54.11	1.503	250	78.75	2.188
1.90	77	25.46	0.707	172	54.73	1.520	253	79.68	2.213
1.95	78	25.77	0.716	178	56.57	1.572	256.5	80.75	2.243
2.00	79.5	26.23	0.729	182	57.81	1.606	257	80.91	2.247
2.05	82	27.00	0.750	186	59.04	1.640	260	81.83	2.273

Dimensiones de la caja de corte : Velocidad de carga: 6cm x 6cm 1mm/min Área: 36cm²

Peso	4 kgf			8 kgf			12 kgf		
δ	Lectura	T =	τ	Lectura dial	T =	τ	Lectura dial	T =	τ
(mm)	dial (LD)	f(LD)	(kgf/cm ²)	(LD)	f(LD)	(kgf/cm ²)	(LD)	f(LD)	(kgf/cm ²)
2.10	84	27.62	0.767	187	59.35	1.649	262	82.45	2.290
2.15	87	28.54	0.793	192.5	61.04	1.696	265	83.37	2.316
2.20	89	29.16	0.810	192	60.89	1.691	266	83.68	2.324
2.25	90	29.47	0.819	193	61.19	1.700	268	84.30	2.342
2.30	92	30.08	0.836	196	62.12	1.726	269	84.61	2.350
2.35	94	30.70	0.853	199	63.04	1.751	275	86.45	2.401
2.40	95	31.01	0.861	201	63.66	1.768	277	87.07	2.419
2.45	96	31.32	0.870	203	64.28	1.785	279	87.69	2.436
2.50	97	31.62	0.878	204	64.58	1.794	282	88.61	2.461
2.55	99	32.24	0.896	206	65.20	1.811	283	88.92	2.470
2.60	100	32.55	0.904	210	66.43	1.845	287	90.15	2.504
2.65	101	32.86	0.913	213	67.36	1.871	289	90.77	2.521
2.70	103	33.47	0.930	214	67.66	1.880	290	91.07	2.530
2.75	104	33.78	0.938	217	68.59	1.905	292	91.69	2.547
2.80	104.5	33.93	0.943	220	69.51	1.931	293	92.00	2.556
2.85	105	34.09	0.947	224	70.74	1.965	295	92.61	2.573
2.90	105	34.09	0.947	226	71.36	1.982	299.5	94.00	2.611
2.95	E		1	227	71.67	1.991	302	94.77	2.633
3.00	E		150	230.5	72.75	2.021	304	95.39	2.650
3.05				232	73.21	2.034	306	96.00	2.667
3.10		~		233	73.52	2.042	305	95.69	2.658
3.15			ME	235	74.13	2.059	305	95.69	2.658
3.2			15118	236	74.44	2.068	306	96.00	2.667
3.25			177	237	74.75	2.076	306	96.00	2.667
3.3				239	75.36	2.093	306	96.00	2.667
3.35				240	75.67	2.102			
3.4				240	75.67	2.102	1		
3.45				240	75.67	2.102			

Peso (kgf)	σ (kgf/cm ²)	τ (kgf/cm ²)
4 kgf	1.11	0.95
8 kgf	2.22	2.10
12 kgf	3.33	2.67

Ángulo de fricción interna φ (°):	37.74
Cohesión c (kgf/cm ²):	0.19

MUESTRA 6

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO (ASTM D41 ASTM D422)

NOMBRE DE TESIS: "Utilización de elementos finitos y análisis numérico para obtención de factores de seguridad en suelos del talud del Deslizamiento de Siguas (entre km. 920 – km. 921), distrito de Majes-Caylloma y distrito San Juan de Siguas-Arequipa, Arequipa"

TAMIZ	DIÁMETRO (mm)	W RET + TARA (gf)	W RET (gf)	% RET	% PAS ACUM	FRAC	CCIONES	
						GRAVA	3.30	%
3"	76.2					ARENA	96.30	%
2"	50.8					FINOS	0.39	%
1 1/2"	38.1			1 (0)	10	1	k	_
1"	25.4		3		LLZA	COEF	ICIENTES	
3/4"	19.1		1 S		100	CU	3.37	
1/2"	12.7				100.0	CC	0.74	
3/8"	9.52	344.6	8.7	0.7	99.3	CA.	1.3	_
4	4.76	369.1	33.2	2.6	96.7	CLASI	FICACIÓN	
8	2.38	453.1	117.2	9.2	87.5	SUCS	SP	Arena Mal Graduada
10	2	365.3	29.4	2.3	85.1	AASHTO	A -1 – b (0)	
16	1.19	422.8	86.9	6.8	78.3	VAS		-
30	0.59	677.0	341.1	26.9	51.4	335.9 gf	TARA	
40	0.425	464.0	128.1	10.1	41.3		1	-
50	0.3	645.4	309.5	24.4	16.9	D60	0.78	
80	0.18	491.0	155.1	12.2	4.7	D30	0.37	
100	0.15	369.0	33.1	2.6	2.1	D10	0.23	
200	0.074	357.6	21.7	1.7	0.4	8/1		-
FONDO		340.9	5.0	0.4	0.0			
TOTAL			1269	100.0				

CONTENIDO DE HUMEDAD (ASTM D2216)

NOMBRE DE TESIS: "Utilización de elementos finitos y análisis numérico para obtención de factores de seguridad en suelos del talud del Deslizamiento de Siguas (entre km. 920 – km. 921), distrito de Majes-Caylloma y distrito San Juan de Siguas-Arequipa, Arequipa"

	1	2	3	
PESO DE MUESTRA HÚMEDA + TARA	229.2	208.2	207.8	gf
PESO DE MUESTRA SECA + TARA	227	206.1	205.5	gf
PESO DE TARA	123.1	117.2	113.8	gf
HUMEDAD	2.117	2.362	2.508	%
PROMEDIO (%)		2.33		

PESO ESPECÍFICO

NOMBRE DE TESIS: "Utilización de elementos finitos y análisis numérico para obtención de factores de seguridad en suelos del talud del Deslizamiento de Siguas (entre km. 920 – km. 921), distrito de Majes-Caylloma y distrito San Juan de Siguas-Arequipa, Arequipa"

		1 11 2001
PESO DE SUELO	gf	190.6
PESO SUELO + PARAFINA	gf	206.80
VOLUMEN PROBETA INICIA	cm ³	500
VOLUMEN PROBETA FINAL	cm ³	622.30
VOLUMEN DESPLAZADO	cm ³	122.30
PESO ESPECÍFICO PARAFINA	gf/cm ³	0.87
PESO DE LA PARAFINA	g	16.20
VOLUMEN DE PARAFINA	cm ³	18.62
CONTENIDO DE HUMEDAD (ω)	%	2.3%
DENSIDAD NATURAL HUMEDAD	gf/cm ³	1.84
DENSIDAD NATURAL SECA	gf/cm ³	1.80

8. DENSIDAD MÁXIMA Y MÍNIMA (ASTM D4253 ASTM D4254)

NOMBRE DE TESIS: "Utilización de elementos finitos y análisis numérico para obtención de factores de seguridad en suelos del talud del Deslizamiento de Siguas (entre km. 920 – km. 921), distrito de Majes-Caylloma y distrito San Juan de Siguas-Arequipa, Arequipa"

DENSIDAD MÁXIMA

DENSIDAD MÁXIMA							
DESCRIPCIÓN	1	2	3				
PESO DE MOLDE MÁS MUESTRA (gf)	7320.00	7396	7602				
PESO DEL MOLDE (gf)	3560.50	3560.50	3560.50				
PESO DE LA MUESTRA (gf)	3759.50	3835.50	4041.50				
VOLUMEN DEL MOLDE (cm ³)	1905.31	1967.01	2032.33				
DENSIDAD (gf/cm ³)	1.973	1.950	1.989				
DENSIDAD MÁXIMA (gf/cm ³)	1.970						

DENSIDAD MÍNIMA

DENSIDAD MÍNIMA							
DESCRIPCIÓN	1	2	3				
PESO DE MOLDE MÁS MUESTRA (gf)	7320.00	7396	7602				
PESO DEL MOLDE (gf)	3560.50	3560.50	3560.50				
PESO DE LA MUESTRA (gf)	3759.50	3835.50	4041.50				
VOLUMEN DEL MOLDE (cm ³)	2812.61	2812.61	2812.61				
DENSIDAD (gf/cm ³)	1.337	1.364	1.437				
DENSIDAD MÁXIMA (gf/cm ³)	1.379						

DENSIDAD RELATIVA

$$DR = \frac{\frac{1}{\gamma d \min} - \frac{1}{\gamma d}}{\frac{1}{\gamma d \min} - \frac{1}{\gamma d \max}} * 100$$

	RESUMEN	
0	DENSIDAD MÁXIMA	1.97
	DENSIDAD MÍNIMA	1.38
37	DENSIDAD NATURAL	1.80
$\langle \rangle$	DENSIDAD RELATIVA	77%
	ESTADO DEL SUELO	Denso

GRAVEDAD ESPECÍFICA (ASTM D854)

NOMBRE DE TESIS: "Utilización de elementos finitos y análisis numérico para obtención de factores de seguridad en suelos del talud del Deslizamiento de Siguas (entre km. 920 – km. 921), distrito de Majes-Caylloma y distrito San Juan de Siguas-Arequipa, Arequipa"

$\frac{1}{1} \frac{1}{1} \frac{1}$	050.5
PESO DE PICN. + AGUA + MUESTRA	677.6
(gf)	
TEMPERATURA °C	20
PESO UNITARIO DE AGUA (gf/cm ³)	1

CORTE DIRECTO (ASTM D3080)

NOMBRE DE TESIS: "Utilización de elementos finitos y análisis numérico para obtención de factores de seguridad en suelos del talud del Deslizamiento de Siguas (entre km. 920 – km. 921), distrito de Majes-Caylloma y distrito San Juan de Siguas-Arequipa, Arequipa"

Dir	nensiones d	e la caja de	e corte :	6cm x 6ci	n		Área:	36cm ²	
	Velocida	ad de carga	:	1mm	/min				
Peso		4 kgf			8 kgf			12 kgf	
				Lectura			Lectura		
δ	Lectura	T =	τ	dial	T =	τ	dial	T =	τ
(mm)	dial (LD)	f(LD)	(kgf/cm^2)	(LD)	f(LD)	(kgf/cm^2)	(LD)	f(LD)	(kgf/cm^2)
0.00	0	0.00	0.000	0	1.74	0.048	0	0.00	0.000
0.05	25	9.45	0.262	32	11.60	0.322	35	12.53	0.348
0.10	28	10.37	0.288	61	20.53	0.570	68	22.69	0.630
0.15	43	14.99	0.416	79	26.08	0.724	85	27.93	0.776
0.20	46	15.91	0.442	100	32.55	0.904	102	33.16	0.921
0.25	50	17.15	0.476	109	35.32	0.981	115	37.17	1.032
0.30	52	17.76	0.493	117	37.78	1.050	129	41.48	1.152
0.35	56	18.99	0.528	137	43.94	1.221	139	44.56	1.238
0.40	58	19.61	0.545	142.5	45.64	1.268	154	49.18	1.366
0.45	61.5	20.69	0.575	151	48.26	1.340	163	51.95	1.443
0.50	65	21.77	0.605	161.5	51.49	1.430	172	54.73	1.520
0.55	68	22.69	0.630	165	52.57	1.460	180	57.19	1.589
0.60	70	23.31	0.647	170.5	54.26	1.507	192	60.89	1.691
0.65	72.5	24.08	0.669	175	55.65	1.546	200.5	63.51	1.764
0.70	74.9	24.82	0.689	180	57.19	1.589	207	65.51	1.820
0.75	76	25.15	0.699	184	58.42	1.623	211	66.74	1.854
0.80	77.9	25.74	0.715	187	59.35	1.649	218	68.90	1.914
0.85	78.9	26.05	0.724	191.6	60.76	1.688	221.5	69.97	1.944
0.90	79	26.08	0.724	194	61.50	1.708	227	71.67	1.991
0.95	79.5	26.23	0.729	195.5	61.96	1.708	230.9	72.87	2.024
1.00	79.9	26.36	0.732	197.5	62.58	1.726	234	73.82	2.051
1.05	80	26.39	0.733	198	62.73	1.743	238.6	75.24	2.090
1.10	80.6	26.57	0.738	199	63.04	1.751	240.1	75.70	2.103
1.15	81	26.70	0.742	200.5	63.51	1.764	244	76.90	2.136
1.20	81.5	26.85	0.746	202	63.97	1.777	245	77.21	2.145
1.25	81.9	26.97	0.749	203	64.28	1.785	247	77.83	2.162
1 30	82	27.00	0.750	205.7	65.11	1 809	248	78.14	2.170
1.35	82.5	27.16	0.754	206	65.20	1.811	248.5	78.29	2.175
1.40	82.8	27.25	0.757	209	66.12	1.837	249	78.44	2.179
1.10	82.8	27.25	0.757	211	66 74	1 854	249.2	78.51	2 181
1.10	02.0	27.20	0.757	211.5	66.89	1.858	249.8	78.69	2.186
1.50				211.0	67.05	1.862	21510	79.06	2.100
1.55				212	67.36	1.802	251.9	79.34	2.204
1.65				213 9	67.63	1.879	251.2	79.68	2.204
1.05				213.5	67.66	1.880	255	79.98	2.213
1.70				214	67.66	1.880	255 5	80.45	2.222
1.75				214	67.66	1.880	255.5	80.45	2.233
1.00				214	07.00	1.000	257.8	81.16	2.247
1.05							257.0	81.72	2.234
1.90							258	81.22	2.230
2.00							258.5	81.22	2.230
2.00							250.5	01.57	2.200

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis

Dimensiones de la caja de corte :6cm x 6cmÁrea:36cm²Velocidad de carga:1mm/min

Peso		4 kgf			8 kgf			12 kgf	
δ (mm)	Lectura dial (LD)	T = f(LD)	τ (kgf/cm ²)	Lectura dial (LD)	T = f(LD)	τ (kgf/cm ²)	Lectura dial (LD)	T = f(LD)	τ (kgf/cm ²)
2.05	()	-()	(8-,)	(/	-()	(8-,)	259	81.53	2.265
2.10							259.5	81.68	2.269
2.15							260.5	81.99	2.277
2.20							260.9	82.11	2.281

Peso (kgf)	σ (kgf/cm ²)	τ (kgf/cm ²)
4 kgf	1.11	0.76
8 kgf	2.22	1.81
12 kgf	3.33	2.28

REPOSITORIO DE TESIS UCSM

Ángulo de fricción interna φ (°):	34.44
Cohesión c (kgf/cm ²):	0.09

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis

UNIVERSIDAD Católica De Santa María

ANEXO 5: Fotos Aéreas

FP – *01 FP* – *02*

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis 205

IITOS Y ANALISIS DE LOS FACTORES SIGUAS (ENTRE MAJES - CAYLLOMA AREQUIPA - AREQUIPA"	FECHA:	D XIMENA E. DE MILAGROS R. ESCALA: 1/2500	ESCARPA PRINCIPAL CON REFERENCIA AL VALLE	FP - 01

FACULTAD DE ARQUITECTURA E INGENIERIAS CIVIL Y DEL AMBIENTE PROGRAMA PROFESIONAL INGENIERIA CIVIL

"UTILIZACION DE ELEMEN" NUMERICO PARA LA OBTEN DE SEGURIDAD EN EL TAI KM.920 - KM.921), DISTRIT Y DISTRITO DE SAN JUAN DE SIG

ENTOS FINITOS Y ANALISIS ENCION DE LOS FACTORES	TESISTAS: LUQUE CASTILLO MOLINA VELARD) XIMENA E. DE MILAGROS R.	ESCARPA PRINCIPAL CON REFERENCIA	
RITO DE MAJES - CAYLLOMA	FECHA:	ESCALA:	A LA PANAMERICANA SUR	FP - UZ
IGUAS - AREQUIPA - AREQUIPA"	SET-2018	1/2500		

UNIVERSIDAD Católica De Santa María

ANEXO 6: Plano de Planta

SP - 01

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis 208

FACULTAD DE ARQUITECTURA E INGENIERIAS CIVIL Y DEL AMBIENTE PROGRAMA PROFESIONAL INGENIERIA CIVIL

"UTILIZACION DE ELEME NUMERICO PARA LA OBTE DE SEGURIDAD EN EL TA KM.920 - KM.921), DISTR Y DISTRITO DE SAN JUAN DE SI

ENTOS FINITOS Y ANALISIS TENCION DE LOS FACTORES	TESISTAS: LUQUE CASTILLO MOLINA VELARD) XIMENA E. DE MILAGROS R.	UBICACION DE SECCIONES TRANSVERSALES Y	PLANO:
TREOD DE SIGUAS (ENTRE TRITO DE MAJES - CAYLLOMA SIGUAS - AREQUIPA - AREQUIPA"	FECHA: SET-2018	escala: 1/2500	PERFIL LONGITUDINAL DE ESTUDIO	26 - AT

ANEXO 7: Plano de Secciones Transversales y Perfil Longitudinal

OLIC

ST - 01 ST - 02 ST - 03

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis 210

FACULTAD DE ARQUITECTURA E INGENIERIAS CIVIL Y DEL AMBIENTE PROGRAMA PROFESIONAL INGENIERIA CIVIL

"UTILIZACION DE ELEMEN" NUMERICO PARA LA OBTEN DE SEGURIDAD EN EL TAI KM.920 - KM.921), DISTRIT Y DISTRITO DE SAN JUAN DE SIG

NTOS FINITOS Y ANALISIS ENCION DE LOS FACTORES ALUD DE SIGUAS (ENTRE RITO DE MAJES - CAYLLOMA IGUAS - AREQUIPA - AREQUIPA"	TESISTAS: LUQUE CASTILLO MOLINA VELARD FECHA: SET-2018	D XIMENA E. DE MILAGROS R. ESCALA: 1/2000	SECCIONES TRANSVERSALES 01 Y 02	plano: ST - 0	1

FACULTAD DE ARQUITECTURA E INGENIERIAS CIVIL Y DEL AMBIENTE PROGRAMA PROFESIONAL INGENIERIA CIVIL

"UTILIZACION DE ELEMENT NUMERICO PARA LA OBTEN DE SEGURIDAD EN EL TAL KM.920 - KM.921), DISTRITO Y DISTRITO DE SAN JUAN DE SIGU

ENTOS FINITOS Y ANALISIS TENCION DE LOS FACTORES TALUD DE SIGUAS (ENTRE RITO DE MAJES - CAYLLOMA SIGUAS - AREQUIPA - AREQUIPA"	TESISTAS: LUQUE CASTILLO MOLINA VELARD FECHA: SET-2018	O XIMENA E. DE MILAGROS R. ESCALA: 1/2000	– SECCIONES TRANSVERSALES 03 Y 04	plano: ST -	02

FACULTAD DE ARQUITECTURA E INGENIERIAS CIVIL Y DEL AMBIENTE PROGRAMA PROFESIONAL INGENIERIA CIVIL

"UTILIZACION DE ELEMENTOS FINITOS Y ANALISIS NUMERICO PARA LA OBTENCION DE LOS FACTORES DE SEGURIDAD EN EL TALUD DE SIGUAS (ENTRE KM.920 - KM.921), DISTRITO DE MAJES - CAYLLOMA Y DISTRITO DE SAN JUAN DE SIGUAS - AREQUIPA - AREQUIPA"

TESISTAS: LUQUE CASTILLO XIMENA E. MOLINA VELARDE MILAGROS R. ESCALA: SET-2018 1/2000

FECHA:

SECCIONES TRANSVERSALES 05 PERFIL LONGITUDINAL

PLANO:

ST - 03

ANEXO 8: Reporte de Sismos en Arequipa

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis

FECHA LOCAL	HORA LOCAL	LATITUD	LONGITUD °	PROFUNDIDAD	MAGNITUD Richter	REFERENCIA
07/09/2018	11:24	-15.85	-71.94	7 km	3.7	26 km al Sur de Cabanaconde, Caylloma - Arequipa
06/09/2018	17:19	-15.69	-71.78	13 km	3.4	5 km al Sur de Maca, Caylloma - Arequipa
04/09/2018	14:47	-17.66	-72.87	6 km	4.1	115 km al Sur-Oeste de Mollendo - arequipa
29/08/2018	12:43	-15.96	-74.70	33 km	4.6	38 km al Sur SO de Yauca, Caravelí - Arequipa
20/08/2018	23:45	-15.71	-71.83	15 km	3.6	8 km al Sur de Pinchollo, Caylloma - Arequipa
20/08/2018	13:53	-15.49	-72.19	145 km	4.0	10 km al Este de Chachas, Castilla-Arequipa
20/08/2018	01:13	-15.73	-71.88	13 km	4.0	11 Km al Sur-SO de Pinchollo, Caylloma-Arequipa
18/08/2018	01:01	-15.69	-71.86	12 km	3.5	7 km al SO de Pinchollo, Caylloma-Arequipa
17/08/2018	19:38	-15.70	-71.84	13 km	3.4	7 km al Sur-SO de Pinchollo, Caylloma-Arequipa

FECHA LOCAL	HORA LOCAL	LATITUD	LONGITUD °	PROFUNDIDAD	MAGNITUD Richter	REFERENCIA
17/08/2018	00:25	-15.69	-71.79	8 km	3.4	6 km al Sur-SO de Pinchollo, Caylloma - Arequipa
16/08/2018	13:29	-17.14	-73.48	CAT 19 km	4.3	89 km al Sur-SO de Ocoña , Camana - Arequipa
16/08/2018	01:18	-15.50	-71.97	43 km	3.9	14.km al Norte de Cabanaconde, Caylloma- Arequipa
13/08/2018	22:20	-15.70	-71.77	13 km	3.4	7 km al Sur de Maca, Caylloma - Arequipa
12/08/2018	02:21	-15.36	-73.08	134 km	4.2	26 km al SO de Cotahuasi, La Union - Arequipa
09/08/2018	02:55	-16.83	-73.14	44 km	4.1	51 km al Oeste-SO de Camana, Camana - Arequipa
07/08/2018	01:59	-15.69	-71.77	10 km	3.5	5 Km al Sur de Maca
05/08/2018	13:48	-16.15	-73.25	71 km	4.6	36 km al Norte-NO de Ocoña, Camaná - Arequipa
01/08/2018	21:38	-15.70	-71.77	10 km	3.3	6 km al Sur de Maca, Caylloma - Arequipa
01/08/2018	19:40	-15.69	-71.79	12 km	3.5	6 km al Sur-SO de Maca, Caylloma - Arequipa

FECHA LOCAL	HORA LOCAL	LATITUD	LONGITUD °	PROFUNDIDAD	MAGNITUD Richter	REFERENCIA
01/08/2018	13:09	-15.67	-71.81	14 km	3.6	3 km al Sur-SE de Pinchollo, Caylloma-Arequipa
27/07/2018	16:27	-15.98	-74.99	CAT 31 km	4.0	48 km al Sur-SO de Lomas, Caravelí-Arequipa
24/07/2018	13:27	-15.75	-71.77	9 km	3.4	13 km al Sur de Maca, Caylloma - Arequipa
22/07/2018	11:27	-15.67	-72.25	124 km	4.0	2 km al Este-NE de Choco, Castilla - Arequipa
11/07/2018	11:40	-16.80	-71.44	19 km	3.6	47 km al Sur-SE de Arequipa, Arequipa, Arequipa
08/07/2018	21:36	-15.88	-74.75	30 km	3.7	36 km al Sur-SE de Lomas, Caravelí-Arequipa
08/07/2018	01:54	-15.67	-71.92	10 km	3.6	8 km al SE de Cabanaconde, Caylloma - Arequipa
07/07/2018	09:33	-15.66	-71.90	12 km	3.4	10 km al Este-SE de Cabanaconde, Caylloma - Arequipa
07/07/2018	08:50	-15.64	-71.91	9 km	3.5	8 km al Este-SE de Cabanaconde, Caylloma - Arequipa
07/07/2018	07:54	-15.65	-71.92	14 km	3.5	8 km al Este-SE de Cabanaconde, Caylloma- Arequipa

FECHA LOCAL	HORA LOCAL	LATITUD	LONGITUD °	PROFUNDIDAD	MAGNITUD Richter	REFERENCIA
30/06/2018	23:24	-15.21	-74.43	92 km	4.6	30 km al NE de Acari, Caraveli-Arequipa
30/06/2018	15:40	-15.05	-72.53	122 km	4.1	42 km al Este-NE de Cotahuasi, La Unión-Arequipa
27/06/2018	20:13	-16.88	-71.76	22 km	3.5	32 km al Este-NE de Mollendo, Islay - Arequipa
27/06/2018	08:26	-15.69	-71.80	13 km	3.3	7 km al Sur-SO de Maca, Caylloma - Arequipa
25/06/2018	19:16	-15.48	-74.49	85 km	4.0	14 km al Este-SE de Acari, Caraveli - Arequipa
22/06/2018	14:55	-15.77	-72.02	13 km	3.6	11 km al Este-SE de Huambo- Arequipa
20/06/2018	18:37	-16.46	-73.30	40 km	4.1	23 Km al Oeste de Ocoña
18/06/2018	22:16	-15.79	-72.01	13 km	3.6	13 km al Este-SE de Huambo, Caylloma-Arequipa
17/06/2018	19:11	-17.48	-72.39	22 km	4.2	64 km al SO de Mollendo, Islay-Arequipa
16/06/2018	18:48	-15.70	-71.85	11 km	3.5	7 km al Sur-SO de Pinchollo, Caylloma-Arequipa

FECHA LOCAL	HORA LOCAL	LATITUD	LONGITUD °	PROFUNDIDAD	MAGNITUD Richter	REFERENCIA
16/06/2018	04:56	-15.93	-73.24	92 km	4.3	22 km al SE de Caraveli, Caraveli-Arequipa
14/06/2018	23:26	-15.32	-72.38	142 km	4.0	19 km al Norte de Andagua, Castilla - Arequipa
11/06/2018	00:04	-16.17	-73.42	67 km	4.5	21 Km al Este-NE de Atico, Caraveli - Arequipa
0/06/2018	14:07	-15.69	-71.94	8 km	3.3	9 km al Sur-SE de Cabanaconde, Caylloma - Arequipa
03/06/2018	22:07	-15.41	-74.79	69 km	3.9	18 km al Norte-NE de Lomas, Caravelí-Arequipa
02/06/2018	23:23	-15.92	-73.08	98 km	4.2	34 Km al Este-SE de Caravelí
1/05/2018	12:02	-15.85	-74.19	66 km	3.7	6 km al este de Chala, Caravelí-Arequipa
30/05/2018	00:10	-15.83	-75.27	31 km	3.8	53 km al Oeste-SO de Lomas, Caraveli-Arequipa
19/05/2018	18:18	-16.62	-71.75	25 km	3.7	26 km al Sur-Este de Vitor
19/05/2018	16:43	-16.61	-71.75	23 km	3.8	25 km al Sur-Este de Vitor

FECHA LOCAL	HORA LOCAL	LATITUD	LONGITUD °	PROFUNDIDAD	MAGNITUD Richter	REFERENCIA
19/05/2018	16:38	-16.62	-71.76	24 km	3.7	26 km al Sur-Este de Vitor
11/05/2018	13:48	-16.24	-72.23	125 km	4.9	34 km al Este-SE de Aplao
09/05/2018	23:01	-15.90	-74.25	45 km	4.3	5 km al Sur-SO de Chala
07/05/2018	06:31	-16.17	-74.28	23 km	4.4	36 km al Sur de Chala
02/05/2018	09:32	-16.33	-72.75	90 km	4.1	33 km al Norte de Camaná
02/05/2018	01:41	-16.23	-73.70	31 km	4.1	9 km al Oeste de Atico
27/04/2018	17:27	-16.16	-74.55	18 km	4.0	47 km al Sur-Oeste de Chala
15/04/2018	02:35	-16.94	-71.85	83 km	4.3	19 km al Este-NE de Mollendo
14/04/2018	13:52	-16.65	-72.87	52 km	4.0	18 km al Oeste de Camaná
26/02/2018	01:26	-15.20	-71.57	161 km	4.5	48 km al Norte de Chivay

FECHA LOCAL	HORA LOCAL	LATITUD	LONGITUD °	PROFUNDIDAD	MAGNITUD Richter	REFERENCIA
19/02/2018	03:56	-15.99	-74.07	49 km	4.6	24 km al Sur-Este de Chala
11/02/2018	21:11	-16.53	-72.15	53 km	3.8	26 km al Oeste-SO de Vitor
10/02/2018	23:11	-16.67	-74.08	32 km	5.2	71 km al Sur-Oeste de Atico
07/02/2018	08:55	-15.97	-74.66	31 km	4.3	37 km al Sur-SO de Yauca
05/02/2018	17:31	-16.02	-74.61	30 km	4.8	41 km al Sur-SO de Yauca
04/02/2018	13:11	-15.85	-74.64	49 km	4.4	25 km al Sur-SO de Yauca
30/01/2018	09:23	-16.09	-74.73	36 km	5.5	52 km al Sur-SO de Yauca
29/01/2018	06:25	-15.90	-74.33	77 km	4.3	11 km al Oeste-SO de Chala
27/01/2018	15:26	-16.01	-74.51	49 km	4.4	34 km al Oeste-SO de Chala
26/01/2018	09:31	-15.99	-74.49	47 km	4.4	31 km al Oeste-SO de Chala

FECHA LOCAL	HORA LOCAL		LONGITUD °	PROFUNDIDAD	MAGNITUD Richter	REFERENCIA
1/01/2018	01:40	-15.95	-74.77	48 km	5.0	42 km al Sur-Oeste de Yauca
20/01/2018	04:46	-16.88	-71.62	CAT 26 km	3.7	37 km al Norte-NE de Punta de Bombón
18/01/2018	23:23	-15.93	-74.56	23 km	4.1	31 km al Sur de Yauca
15/01/2018	09:27	-15.60	-71.28	177 km	4.5	34 km al Este de Chivay
12/01/2018	10:03	-15.55	-71.38	170 km	4.4	26 km al Este-NE de Chivay
11/01/2018	09:36	-15.92	-72.95	108 km	4.1	33 km al Oeste-SO de Chuquibamba
5 1967 9						

ANEXO 9: Manual GeoStudio 2012

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis A. Iniciamos con la creación del proyecto teniendo como base el El Sistema Internacional de Unidades (SI).

GeoStudio" 2012 Full license June 2013 Release	* *	
New Project Create a new empty project Create a project with this analysis: StOPEW SEEPW SIGMAW	Mew Ornale from Factory Defaults (St Units) Orrorse from this template: Trensition Bink document (respectal units) Elick document (St units)	? × rojects online s and workshops
I TEMPAN IIII CTRAAN IIIII AIII/W IIIII VADOSE/W	Crede From Suding	Creat Creat Statisty MacAntily with SLOPF,W Seepage Modeling with SEEP/W Suses: Deformation Modeling with SIGMAVW
		Dynamic Modeling with QUAKE/W Thermal Modeling with TEMP/W Contarminant Modeling with CTR/N/W Air Flow Modeling with ATR/W Vadose Zone Modeling with VADOSE/W

B. Añadimos el análisis en base a SLOPE para estabilidad de taludes, que usa los métodos de equilibrio limite

Andryesa: Andryesa: SLOPE/V Analysis SLOPE/V Analysis SLOPE/V Analysis SLOPE/V Analysis SLOPE/V Analysis SLOPE/V Analysis SLOPE/V Analysis SLOPE/V Analysis ModRed By: Tool II VAIX255/W Analysis VAIX255/W Analysis	🛛 🖬 Keyin Ana	yses		- D
Image: Second Connection Connection Stort Markysis Stort Markysis Stort Markysis Cluster, W Analysis Stort Markysis Markysis Stort Markysis <th>Analyses:</th> <th>Add</th> <th></th> <th></th>	Analyses:	Add		
SLOPEW Analysis Stimit Fauilibrium SIGMA/W Analysis SIGMA/W Stress GUAREW Stress GUAREW Stress GUAREW Newmark Deformation Rewaters #: 0 TEMP/W Analysis Price TEMP/W Analysis Price ARRW Analysis Price ARRW Analysis Price VALOSE/W Analysis Price VALOSE/W Analysis Price	untitie	D Clone		
SCEP/W Analysis SURACW Analysis SURACW Analysis CUARCW Newmark Deformation Research #: OUARCW Newmark Deformation Research #: OUARCW Newmark Deformation Research #: Ouarch	1	SLOPE/W Analysis Limit Equilibrium		
Image: Signal Augusts > OUAKE/W Nearmark Deformation Revision #: 0 Image: Signal Augusts > > > > Image: Signal Augusts > > > > > Image: Signal Augusts ><		SEEP/W Analysis OUAKE/W Stress		
■ CUARE/W Analysis > ■ TEMP/W Analysis > ■ CTETA/W Analysis > ■ AIR/W Analysis > ■ AIR/W Analysis > ■ AIR/W Analysis > ■ VALXUSE/W Analysis > ■ VALXUSE/W Analysis >		SIGMA/W Analysis OUAKE/W Newmark Deformation Re	Revision #:	0
Image: TEMP/W Analysis ModRed By: Tool In Image: Temp/W Analysis meanse: Image: Temp/W Analysis Image: Temp/W Analysis Image: VALX/SEr/W Analysis Image: Temp/W Analysis Image: Temp/W Analysis Image: Temp/W Analysis		QUAKE/W Analysis > por: Pil	ale	8.1
CTRANW Analysis > CTRANW Analy		TEMP/W Analysis > R Modified By: To	Tool	8.11.1.7283
ARK/W Analysis Immatis: VALXISE/W Analysis		CTRAN/W Analysis		
VALXOSE/W Analysis >		AIR/W Analysis > meets:		
		VALX/SE/W Analyss >		
Undo * Nodo *		VALX/SE/W Analysis >		

C. Se colocó el nombre y la descripción de la sección:

🚾 Keyln Analyses			— 🗆	×
Analyses: Add Delete Delete Utilización de elementos finitos y análisis num	Name Paren	SECCION 1-MORGENSTERN-PRICE	Description: ESTABILIDAD DE TALUDES	^ ~
SECCION 1 MORGENSIERA-PRICE	Analysis Type Settings Slip Surface F of S Distribution	Morgenstern-Price	\sim	

UNIVERSIDAD

DE SANTA MARÍA

CATÓLICA

D. Finalmente añadimos el Título del proyecto y los autores para obtener el entorno:

E. Definición del área de trabajo

El área de trabajo, es la establecida por el usuario para definir el problema.

Hacemos clic en Set en el desplegable Page y nos aparecerá el diálogo siguiente:

UNIVERSIDAD

DE SANTA MARÍA

CATÓLICA

🗾 (ur	(untitled)* - GeoStudio 2012 (SLOPE/W Define)							
File	Edit	Set	View Keyln Draw	Sketch Modify Window Help				
	2		Page					
2	Define		Units and Scale	🖢 🗟 🚩 📶 🖄 🥇 👘 🗜 🚣 🏙 🖄				
Analys	is Expl		Grid	a 🖬				
5	(eyIn A		Zoom					
8-14	Weigen A Utilización de elementos finitos y análisis numérico para obtención de parámetro SECCION 1-MORGENSTERN-PRICE							
_								

Para nuestro diseño elegimos un ancho de 3750 mm y un alto de 1700 mm. También podemos optar por colocar las dimensiones de la página en pulgadas.

			Institute 1: New Adv. AN ADVIDUATE In Last		
			the fail for they fight that their Walls Walles Hits		
Set Page	? X		□ ≅ 8 ⊕ ⊕ ≈ ⊕ n · e · 8 F < T	Y 진 만) ― 비골티比 厚 값 제	
-				D 🛃 🐔 🎪 🦓 🔤 🚥 🛛 🛛	
Printer Page			Analysis Dokown 🛛 🗮 🖬		
Friner Fage			State Section		
Witten DDE Creation (Dre. 10) and	He00:	Constanting of the second	to all as as do not a term of factory and us manifest part comparison of parts were		
Millio FDF Creator (Fro 10) on	neou,				
Width: 216 Heig	ht: 279				
Working Area					
Width: 3,750 Heig	ht: 1.700				
which, 0000 Hog	are strend				
		and the second se	()		
			Chaldmann A D		
Units			52 Mag + 10 Mag - 10		
			Altheat rank and a state		
			Resource prevariants a societed		
() inches ()	mm				
0					
OK	Cancel				
				of all the state of the	
				and the second se	

F. Definición de la escala y unidades de cálculo

Hacemos clic en Set en el desplegable Units and Scale y nos aparecerá el diálogo siguiente:

Engineering Units	Scale
Metric Imperial Length meters Force (F): Kilonewtons Pressure (p): kPa	Horz. 1: 200 Vert. 1: 200 Problem Extents Minimum: x: -5 γ: -5 Maximum: x: 745 γ: 335
Strength: kPa Unit Wt of Water: 9.807 kN/m ³	Calculate max extents from scale and origin View 2-Dimensional Axisymmetric Plan
	OK Cancel

- La escala horizontal y vertical está en 1: 200
- Marcamos como Unidades de ingeniería (Engineering Units) el Sistema Métrico
- Fijamos como unidades de Fuerza (Force) KiloNewtons kN.
- Se comprobó que la densidad del agua es de 9.807 kN/m³.
- Dejamos las demás casillas tal como marca la figura y hacemos clic en Ok.

G. Ejes del boceto

Para definir los ejes del perfil y poder acotar geométricamente nuestro talud se debe proceder como sigue:

• Seleccionar Set del menú Axes o el icono de ejes:

Ao Distance	dis Titles				
DISTAN	ICIA	<u> </u>			
Display Axis Numbers	Font Si	ze: 72	\sim		
X-Axis	Y-Axis				
Min: 0	Min:	0			
Max: 653	Max	238			
Incr. 10	Incr. Size:	10			
Auto Increment Size					
Auto Increment Size					

Escribir el título de los ejes:

- Bottom X: Distancia (m)
- Left Y: Elevación (m)

Seleccionamos el tamaño de la fuente y escribimos el máximo valor del eje x/y cada 10 m.

H. Importar Secciones

Nuestras cuatro secciones en formato dwg fueron convertidas en bloque en AUTOCAD 2019. Además, se guardaron en formato. Dxf; ya que solo este formato es compatible con GEOSLOPE.

He Edit Set View Ke	yin Draw Ske	Import Regions			
New	Ctrl+N	$\leftarrow \rightarrow \sim \uparrow \downarrow \rightarrow \downarrow$	ste equipo > notokar (D:) > TESIS >	V Ö Buscar en TESIS	
🍟 Open	Ctrl+O	Organizar • Nueva o	arpeta		
Close			Nombre	Fecha de modificación	
🚽 Save	Ctrl+S	A360 Drive	SC4	5/07/2018 14:23	
Save Ac.		🔈 Descargas	SC3	5/07/2018 14:07	
Sore 7 Shi	5	Documentos	SC2	5/07/2018 14:06	
Save As Template		he Escritorio	🗿 SC1	5/07/2018 14:04	
Import Regions		Imágenes	secciones	3/09/2018 20:31	
import negrones		Música	ing. liliana	3/09/2018 16:09	
Export		bjetos 3D	VIMENA ME DASÓ	31/08/2018 18:33	
Export as Previous Ve	rsion	Uídeos	AIMENA ME PIGO	12/07/2018 12:11	
Ch. aver	011.0	😓 Disco local (C)			
e Pont	Ctri+P	🥧 notokar (D:)			
Print Selected		🥌 Red 🗸 🗸	<		
1 Dt\TESIS\SECCION 1	-SLOPE	Nomb	ine: SC1	 AutoCAD DXF (*.dxf) 	

Menú FILE → Importar regiones

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis

Select levers to conv	ert DXF polylines to	GeoStudio regions	r.	
0			••	
_	×	Y		
🖉 Adjust problem m	inimum (origin) coor	dinates		
DXF minimum:	0.0000	0.0000		
Current problem:	-5.0000	-5.0000		
Suggested:	-5.0000	-5.0000		
Adjust problem se	cale			
	1: 200.0000	200.0000	OK	
Current problem:				_
Current problem:	1. 200.0000	200.0000		

Seleccionamos las secciones correspondientes, hacemos clic en la región a importar y Ok.

	GeoStudio - DXF to Region Conversion Successfully converted 1 polygons to regions.	×
	Acepter	
	~	
NCLONGTU		

Nuestra sección fue importada satisfactoriamente e inmediatamente aparecerá en el entorno principal.

I. Modificación de regiones y puntos

Debido a que importamos la sección del AUTOCAD, el programa lo determinó como una sola región, por ello en el menú "Key In /Regions" borramos la sección global para poder añadir otras.

Una vez que obtuvimos solo los puntos de la sección del talud; hicimos clic en el menú "Key In /Points" para modificar los puntos en sus coordenadas.

	Traw Regions ? X
	Dream @Reales O Circular Oscellas
	Stave Wegton October opening
(untilled)* - GeoStucio 2012 (SLOPF/W Define)	Selected Region: 1
File Fullt Set Wese Keylin Drove Slottish Modify Windows Help	Region Type: Background Polygon
🗅 😅 🖬 🖨 🖨 🔤 🚾 kajima. 💦 🤻 🔪	Region 6;8;18;5
Dutre 🚺 Roulis 👔 🥙 Roune K.	
kreijan bojorer 🥂 Materiaku 😃 📲	
🐒 Kayla Andywa Surface Layer Matariats	[122///////////////////////////////////
🛛 🗃 Utilización de elementos tra 🔰 Sirp Surface 🕴 entres	
Reive Leads.	•
📶 Surcharge Louds 🖇 💱	•
👗 Reinforcement Loads .	
📶 Contrain	•
Sectour Labels	
	•

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta <u>tesis</u>

Seguidamente hicimos clic en el menú "Draw /Regions" para unir los puntos y generar los estratos.

J. Materiales

viateriales			
	(untitled)* - GeoStudio 201	12 (SLOPE/W Define)	1.986
	File Edit Set View Keyln	Draw Sketch Modify Windo	w Hel;
	🗋 n 🧀 🖬 🗛 🗛 🛛	Regions	L.
15.J		Points	
KIN .	Define C Results		1
	Analysis Explorer	Materials	
ET 1	KevIn Analyses	Surface Layer Materials	
	Distinguión de elementes fir	a Slip Surface	•
	SECCION 1-MORGENS	n	0
		Point Loads	
		Surcharge Loads	
		Keinforcement Loads	
		1 Contours	
		K Cantaus Labaia	
		Contour Labers	
	Constant in	Sec. 1	
		VIEW OSSIGNES	
🛃 Keyin Materi	els		– 🗆 🗙
Materials			
Name		Color	∆dd -
SP ESTRATO 2			Delete
			Andread
Name:		Col	on:
SP ESTRATO 1			Set
Naterial Model:	Mohr-Coulomb ~		
Basic Suction	Drawdown Liquefaction Advanced		
Unit Weight:	Cohesion:		
16.107 kN/m ²	8.826 kPa		
34 °			
Undo 🝷	Recio I *		Close

Añadimos los tipos de suelos en el menú "Draw/Materials". Escribimos el nombre del suelo, cohesión (kPa), peso unitario (kN/m3) y el ángulo de fricción.

UNIVERSIDAD Católica De Santa María

Añadimos el color para cada estrato.

Draw Materials	?	\times
Select: Regions		
ORemove	Keyîn	
Aurine 7 - BASE CD		

Finalmente asignamos los materiales a los estratos de la sección.

Añadimos la magnitud de la carga puntual en kN, la dirección en este caso 90°, y la distancia a la que se encuentra aplicada.

Añadimos la carga y sus coordenadas en el menú "KeyIn/surcharge loads"

L. Nivel Freático

File Edit Set View Keyin Draw Sketch Modify Windo Image: Strength Functions Image: Strength
Image: Security Analyses Regions Image: Points Points Image: Strength Functions Image: Strength Functions Image: Strength Functions Image: Strength Functions
Image: Construction of the second constructin of the second construction of the second constructio
Analysis Explorer Points Points Points Points Keyfn Analyses Materials Materials Image: Complexity of the sector o
KeyIn Analyses Materials Image: Strength Functions Itencid Probability Functions Itencid
Image: Strength Functions Itencid Fonts: Metanals: Proporties Image: Strength Functions Fonts: Metanals: Proporties
Probability Functions
490.34900 31043003
Hydraulic Functions
Spatial Functions
Slip Surface
Pore Water Pressure
Pore Air Pressure
Point Loads
Surcharge Loads
Reinforcement Loads
Seismic Load
Solve Manager

Añadimos la presión de poros en coordenadas, en el menú "KeyIn/ pore water pressure".

En este caso está a 92 m debajo de la superficie de terreno natural.

M. Superficies de deslizamiento

File Edit Set View Keyln D	waw Sketch Modify Window H	Help
🗅 😂 🛃 🖨 🍓 🖣	Regions	K K K O C -
Z Define 【 Results 🛛 🔒 🕨	Points	🖺 🥇 🕅 学 ቿ 🎽
Analysis Explorer	Materials	Ф 🛛
🐔 KeyIn Analyses	Surface Layer Materials	
🖃 📶 Utilización de elementos finit	Slip Surface	Entry and Exit
SECCION 1-MORGENSTI	Pore-Water Pressure	🥇 Axis Point
1	Point Loads	Limits
<u></u>	Surcharge Loads	
1	Reinforcement Loads	
₫	Contours	
K	Contaura Labada	

Menu DRAW \rightarrow Slipe Suface

Hacemos clic en los dos puntos de la primera superficie de falla de izquierda a derecha.

	Draw Slip Surface Entry and Exit Range ? × Entry Range (Left Side) Exit Range (Right Side) Type: Left Point: Range V x: 130.11551 Y: 236.59991 Y: 236.59992 Y: 163.46918 Y: 163.36133 Number of increments over 4 Number of radius 4 Slip Surface Projection 135 Use Left (Active) Projection Angle: 135 Clear Apply Done
N. Iniciamos el análisis Seccon 1: PRMERA FALLA - GeoStudio 2012 (SLOPE/W Define) Fie Edi Set View Keylo Dew Steet Modif Wickow Helo Fie Edi Set View Keylo Dew Steet Modif Wickow Helo Fie Edi Set View Keylo Dew Steet Modif Wickow Helo Fie Edi Set View Keylo Dew Steet Modif Wickow Helo Fie Edit Set View Keylo Dew Steet Modif Wickow Helo Fie E	
Solve Manager	

Finalmente obtenemos el factor de seguridad para la primera superficie de falla de la primera sección y según el método de Morh Coulomb.

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis

UNIVERSIDAD Católica De Santa María

ANEXO 10: Manual Geo5

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis A. El programa geo5 cuenta, como ya se dijo, con múltiples programas especializados en diferentes ramas de la mecánica de suelos. En este caso, trabajaremos con la opción de MEF.

Nombre	Fecha de modifica	Tipo	Tamaño
😭 Asientos con excavaciones	27/07/2018 5:49 p.	Acceso directo	2 KE
Notes Asientos	27/07/2018 5:48 p.	Acceso directo	2 KE
🗊 Diseño de muros pantalla	27/07/2018 5:42 p.	Acceso directo	2 KE
霌 Estabilidad de rocas	27/07/2018 5:48 p.	Acceso directo	2 KE
溕 Estabilidad de taludes	27/07/2018 5:46 p.	Acceso directo	2 KE
冠 Estratigrafía	27/07/2018 5:42 p.	Acceso directo	2 KE
🔏 Estribo	27/07/2018 5:48 p.	Acceso directo	2 KE
🔢 Excavación en pozo	27/07/2018 5:47 p.	Acceso directo	2 KE
🗐 Gavión	27/07/2018 5:45 p.	Acceso directo	2 KE
🗊 Grupo de pilotes	27/07/2018 5:43 p.	Acceso directo	2 KE
🔝 Losa	27/07/2018 5:44 p.	Acceso directo	2 KE
MEF	27/07/2018 5:44 p.	Acceso directo	2 KE
Dicropilote	27/07/2018 5:45 p.	Acceso directo	2 KE
🌠 Muro claveteado	27/07/2018 5:43 p.	Acceso directo	2 KE
🗊 Muro de gravedad	27/07/2018 5:48 p.	Acceso directo	2 KE
周 Muro de mampostería	27/07/2018 5:45 p.	Acceso directo	2 KE
🌠 Muro de suelo reforzado	27/07/2018 5:47 p.	Acceso directo	2 KE
🗊 Muro en voladizo	27/07/2018 5:49 p.	Acceso directo	2 KE
🛐 Muro prefabricado	27/07/2018 5:47 p.	Acceso directo	2 KE
🗃 Muro Redi-Rock	27/07/2018 5:46 p.	Acceso directo	2 KE
M Pilote Anti-Deslizante	27/07/2018 5:47 p.	Acceso directo	2 KE
Pilote por CPT	27/07/2018 5:45 p.	Acceso directo	2 KE
🗊 Pilote	27/07/2018 5:50 p.	Acceso directo	2 KE
🌠 Presiones de tierra	27/07/2018 5:44 p.	Acceso directo	2 KE
😰 Terreno	27/07/2018 5:43 p.	Acceso directo	2 KE
n Update GEO5 2018	27/07/2018 5:50 p.	Acceso directo	2 KE
洞 Verificación de muros pantalla	27/07/2018 5:46 p.	Acceso directo	2 KE

B. Al iniciar el programa tenemos la interfaz con los limites predeterminados y como podemos ver, en el lado derecho un menú que permite desarrollar paso a paso un modelo de manera ordenada.

GEO5 2018 - MEF (Versión Demo) [Sin título.gmk]		– a ×
Archivo Editar Entrada Salidas Configuraciones Ayuda		
V V V V V V V V V V V V V V V V V V V	1	
		A value value value value
		Salidas _
Configuración de rangos 💠 Añadir interfez		Pegar
Nro. Interfaz		interfaz interfaz : 0
*	- Internet in the second se	Perfi 20 completa Total: 0 Usta de gráficos
	28	Na Copiar vista

C. Se introducen datos generales del modelo a analizar

1	- Proyecto -				1
	Tarea :	Analisis Corte 1	Autor :	Luque - Molina V	
	Parte :	Corte 1	Fecha :	10/08/2018	
	Descripción :	corte 1 - Talud de Majes	ID del proyecto :		
	Cliente :		Número de proyecto :		Ē.
	— Sistema de	unidades			oard
recto	Sistema de ur	nidades : métrico 💌			Clipb
Pro					Geo
	28.87; -6.	48 [m]			

Aquí es muy importante denotar que se debe escoger el tipo de análisis que se hará, en este caso, *Estabilidad de Taludes*. También hay la opción de escoger normas de diseño de estructuras en hormigón, dado que en nuestro análisis no contamos con cuerpos rígidos se deja la opción en el predeterminado.

D. Introducción de la topografía

Para esto se utiliza los comandos *Import* del Menú Archivo y se seleccionan Formato DXF a interfaces.

Publicación autorizada con fines académicos e investigativos En su investigación no olvide referenciar esta tesis

Es importante aclarar en el siguiente cuadro de texto las unidades en las que fueron dibujadas las secciones, en este caso: metros.

E. Definición de suelos

El programa divide automáticamente los estratos según la geometría que importó del archivo DXF.

Debemos Añadir los suelos que estamos modelando.

Jestificación Image: Color Nodelo de material ? Modelo de material ? Nodelo de material ? Modelo de material ? Nodelo de material ? Modelo de material ? Modelo de material ? Modelo de material ? Modelo de material ? Nodelo de material ? Nodelo de material ? Nodelo de material ? Niglez según la profundidad : constante ? Nodolo de suborsoin ? Modolo de suborsoin ! Peso unitario de suelo saturado ? Modulo de fricción interna : : : : : Angulo de fricción interna : : : : : : : Angulo de diatación : : : : : : : : : : : : : : : : : : : : :		Editar parámetros de suelo	×
Nombre : I Modelo de material I Modelo de material : I Modelo de material : I Modelo de material : I Indiduo de elasticidad : I Peso unitario : Y = Subpressin I Modelo de subpressin I Modelo de subpressin I Modelo de subpressin I Nodo de elasticidad : I Peso unitario : Y = Ober e double de subpressin I Modelo de subpressin I Modelo de descarga / recarga Eur = Angulo de filosción internas : Y = Angulo de distacción : Y = Modelo de distacción : Y = Impar I Modelo de distacción : Y = Impar I Impar		- Identificación	_ Dibujar
- Modelo de material * Categoria de trama - Modelo de material * * - Doiss Básicos ? * Peso unitario : ? = 16.50 [Min] Rigdez según la profundidad : constante * - Subpresión * * - Subpresión * * - Modelo de material * * - Subpresión * * - Subpresión * * - Modelo de foisson : * * - Subpresión * * - Modelo de foisson : * * - Subpresión * * - Modelo de foisson : * * - Modelo de foisson : * * - Modelo Mohr - Coulomb * * Modelo de foisson : * * - Cohesión de suelo : * * - Angulo de foisación : * * - Modelo de distación : * * - Modelo de distación : * * - One * * <td></td> <td>Nombre : 1</td> <td>Color</td>		Nombre : 1	Color
Image: Image			Categoría de trama
Model do Hateria : y = Datos Básicos y = Peso untario : y = Nidulo de discudad : E = Subpresión y = Oseficiente de Poisson : y = Oudro de cálculo de subpresión Etándar Peso untario de suelo saturado teat = Obasin de de sacarga / recarga fur = 60.00 (MPo) Angulo de fincción interna : eqer = Ochesión de suelo : eqer = Angulo de distoción : y = Ochesión de suelo : eqer = Angulo de distoción : y = Ox + Imper Angulo de distoción : y = Ox + Imper Angulo de distoción : y = Ox + Imper Ox + Imper Ox + Imper Imper Imper		Modelo de material ?	GINT
Obtors Bascos y = 15.50 Pess unitario : y = 15.50 Módulo de elstoidód : E = 15.00 Rigidez según la profundidad : constante Coeficiente de Poisson : v = 0.30 Subpresión Nodo de cálculo e subpresión Estándadr Peso unitario de suelo saturado Nat = 26.50 Módulo de de suelo saturado Nat = 26.50 Módulo de fraccón interna : eef = 34.00 Angulo de fraccón interna : eef = 34.00 Angulo de fraccón interna : eef = 0.000 (Pes) Cataficación Umpiar Impiar		Modelo de material : Monr - Coulomb	Trama
r = 1000 [MPa] $r = 1000 [MPa]$ $r = 100$		Pace unitaria :	
Inductor de casachada: L Rigidez según la profundidad : constante Coeficiente de Poisson : v = 0.30 [-] Subpresión V Modo de cálculo de subpresión Estándar Peso unitario de suelo saturado yeat = 26.59 [t4](m ³) Modelo Mohr - Coulomb ? Módulos de descarga / recargo Egr = 60.00 [MPa] Ángulo de fricción interna : egr = 34.00 [t] Cohesión de suelo :: c eff = 0.00 [MPa] Ángulo de fricción interna : egr = 34.00 [t] Chesión de suelo :: c eff = 0.00 [MPa] Ángulo de dilatación : v = 0.00 [t]		Peso unitario : $\gamma = 10.30$ [MV/II-]	
Coeficiente de Poisson : v = 0.30 [-] Subpresión Modo de cálculo de subpresión Estándar Peso unitario de suelo saturado jest = 26.50 [k9/m ³] Modelo Mohr - Coulomb Angulo de fricción interna : qef = 0.009 [kPa] Angulo de dilatación : v = 0.009 [kPa] Angulo de dilatación : v = 0.000 [s] Cohesión de suelo : v = 0.000 [s] Motelo metrica : v = 0.000 [s] Cohesión de suelo : v = 0.000 [s] Motelo metrica		Rinidez según la profundidad : constante	SP
Coefficiente de Poisson : v = 0.30 [-] - Subpresión Modo de cálculo de subpresión Estándar Peso unitario de sublo saturado ;set = 26.50 [kV/m ³] - Modelo Mohr - Coulomb Módulos de descarga / recargo E _k r = 60.00 [VPa] Angulo de fricción interno: cef = 34.00 [9] Cohesión de sublo : v = 0.000 [9] Cohesión de sublo : v = 0			
Subpression ? Mode de cálculo de subpressión Estándar Peso unitario de suelo saturado 1984 = Módelo Mohr - Coulomb ? Módulos de descarga / recarga Eur = 60.00 [MPa] Ángulo de fricción interna :		Coeficiente de Poisson : v = 0.30 [-]	
Mode de cálculo de subpresión Estándar Peso unitario de suelo saturado 'jset = 26.50 [M/m ³] Módelo Mohr - Coulomb ? Módelo Mohr - Coulomb ? Módulos de descarga / recarga Eur = 60.00 [MPa] Angulo de fricación interna : ? Angulo de fricación interna : ? Clasificación Clasificación Cohesión de suelo : Cef = 0.09 [Pa] Clasificación Ángulo de dilatación : v = 0.00 [?] Umpiar OK + ✓ oK ✓ cancelar ✓ oK Image: Concelar Image: Concelar Image: Concelar Image: Concelar		- Subpresión	
Peso unitario de suelo saturado 'feat = 26.50 [KV/m ³] - Modelo Mohr - Coulomb Angulo de discarga / recarga E _u r = 60.00 [MPa] Angulo de fricción interna : e _e f = 34.00 [°] Cohesión de suelo : c _e f = 0.00 [°] Chesión de suelo : v = 0.00 [°] Chesión de s		Modo de cálculo de subpresión Estándar	
$ \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Peso unitario de suelo saturado $\gamma_{sat} = 26.50 \text{ [kN/m^3]}$	
Modelo Mohr - Coulomb ? Módulos de descarga / recarga E _{st} = 60.00 [MPa] Ángulo de fricción interna : ·eef = 34.00 [°] Cohesión de suelo : ·ef = 0.09 [KPa] Ángulo de dilatación : ·v = 0.00 [°] OK + ♣ · OK ✓ OK · Cancelar			
Módulos de descarga / recargo E _x = 60.00 [MPa] Ángulo de fricción interna : qef = 34.00 [°] Cohesión de suelo : cef = 0.09 [kPa] Ángulo de dilatación : v = 0.00 [°] OK + ♥ OK ✓ OK ✓ Cancelar		- Modelo Mohr - Coulomb ?	
Angulo de fricción interna : $e_{ef} = 0.09$ [kPa] Clasificación Angulo de dilatación : $\psi = 0.00$ [9] Umpiar $K + \frac{1}{V}$ $V K$ $V K = 0$	1.	Módulos de descarga / recarga E _{ur} = 60.00 [MPa]	
Cobesión de suelo : cef = 0.09 [kPa] Ángulo de dilatación : ψ = 0.00 [°]		Ángulo de fricción interna : $\varphi_{ef} = 34.00$ [°]	Clasificación
Angulo de dilatación :		Cohesión de suelo : $c_{ef} = 0.09$ [kPa]	Clasificar
		Angulo de dilatación : $\psi = 0.00$ [°]	Limpiar
			ок + 👎
	11100		✓ ОК
	1.7		* Cancelar
	17		
			17
		0.06 00.00 00	4100 44630 44030 5000 5000 52000 54000 5000 50000 60100 62000 64000 64000 6 P)
	lq i	0	
		2	
		01	
	8	5	
	0000	Ð	
	8		
	8-	Ð	
	8		
	🕸 🗄 🛌		
		Adjunction pur dick-tequards 1	1 🔀 Copiar > augnación
Zona Sunka nagradu 1 3 • Conta A	Zona Suelo asignado	-	
	5 × 0		5
		а Э	People

F. Generamos la malla de elementos finitos

G. Se crea la etapa 1 de análisis donde se introducen las características externas al talud.

Archivo	o Editar E	ntrada Salid	las Configu	uraciones	Ayuda		
Archivo] 💾	• 🗐 •	Editar	- 🏞	・ Flantilla	Etapa	[Topo] [1]

Se introduce el Nivel Freático.

Introducimos la sobrecarga ya establecida.

Nro.	Nombre	Tipo	Ubicación / Punto 1	Origen / Punto 1	Longitud / Punto 2	Ancho / Punto 2	Pendiente	١	Magnitud		Γ
			z [m] / x1 [m]	x [m] / z ₁ [m]	l [m] / x ₂ [m]	b [m] / z ₂ [m]	α [°]	q, q ₁ , f, F	q 2	unidad	
1	canal	Franja	sobre el terreno	x = 118.80	l = 1.11		0.00	11.00		kN/m ²	
> 2	camion	lineal	sobre el terreno	x = 73.20			0.00	470.72		kN/m	
											-

H. Se realiza un análisis de la primera etapa de construcción (**análisis de tensión geo estática primaria**) que representa el estado inicial del talud.

I. Se crea la siguiente etapa de construcción 1, durante este análisis, el programa trata de encontrar una solución en donde las condiciones de equilibrio en el talud cumplan las condiciones límite especificadas.

En esta etapa se utiliza la opción de Estabilidad, donde se combinan los programas de Elementos finitos y Estabilidad.

Se deja correr el análisis y obtenemos el Factor de Seguridad y la zona Critica del talud.

De igual manera como se realizó el análisis de estabilidad se realizó el análisis de estabilidad con sismo.

La topografía, los suelos, el nivel freático y la sobrecarga se añaden de la misma manera.

Antes de hacer el análisis se introducen los coeficientes sísmicos horizontal y vertical. Y se selecciona la zona afectada por el sismo

	M -	0.70 5.7	Nro		x [m]	z [m]
oenciente sismico verticai :	Ny =	0.30 [-]	>	1	74.74	215.75
				2	57.48	216.76
				3	76.78	200.01