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KINETICS OF MOLECULAR REPLICATION AND SELECTION *

1. INTRODUCTION

In the last twenty years we learned from molecular biology that the nucleic acid molecules
in a living cell and especially the DNA molecules are the stable source of all the information
which is necessary in order to guarantee the structure and function of living organism and in
particular for the synthesis of proteins. DNA is a double stranded biopolymer consisting of four
types of monomers: A (Adenine), C (Cytosine), G (Guanine) and T (Thymine). Since the
biopolymers are string-shaped heteropolymers (sequences) with a length of about 10^ to 10*®

monomers their information content is enormeous. The total number of sequences of a length v

and a basis X (number of different monomers) is

N = \v (1)

with a length v = 1000 and X = 4 the possibilities of different DNA sequences are about

N = 41000 10**®®. On the other hand, if we consider protein biopolymers of the same length
consisting of X = 20 different units the number of different proteins is about

N = 20100 ° 1013°°. Since these numbers are much more greater than the total number of
molecules on earth (which is much smaller than 101

®®) a fundamental question arises: How can

coded sequences as carries of structure and information arise spontaneously on earth ■ What are
the differences between a random sequence and an ordered sequence ? What kind of measures
can be used to measure the “value” of a given macromolecule? Following the hypothesis of
Eigen that the evolution of biopolymers is a result of a molecular selection process, first we
consider the main ideas of E i g e n’s theory (Chapter 2). Than we give a short survey about the
stochastic description of sequence kinetics by master equations (Chapter 3). In the following
paragraph we focused our attention on the problem of complexity showing its increase
(Chapter 4). Finnaly in Chapter 5 we introduce a computer model of a selection-mutation
process.

2. MAIN IDEAS OF THE THEORY OF EIGEN

In the theory of selection and evolution of biopolymers [8] the main question which
Eigen considered is how self-organization of matter can come about. The objects of
E i g e n’s theory are macromolecules (sequences) i = Z^ ...Z^, where, Z^ standing on the /c-th

*Rozszerzony wyktad wygtoszony w Letniej Szkole nt. Biochemiczne i biofizyczne podejicia w biobgii
molekulamej, Jabtonna, 25 IX - 1 X 1977. (Przyp. red.)
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position in the string is an element of the collection of monomers. The fundamental properties
of the molecules are the ability to produce identical copies (replication) and error copies
(mutation):

(a) a + i -*■ i + i autocatalytic replication process

(b) a + i -*■ i + j mutation process

(a — building stone; j — error copy of template i)

In this so-called quasi-linear system there is up to now no internal coupling between the
different molecular species. If we consider certain enviromental contraints (e.g. constant overall
number of molecules) the kinetic rate equations become nonlinear due to the arising coupling
between the species. For the rate equations of such processes we find following E i g e n [8J:

*i = (A i ~ Di) xi +Z (A ij xj ~ Aji *;) ~ ko *,« (2)j* 1

where *.(t) represents the concentration of molecules of species i (i = 1, 2,..., S). The first termof the right side of eq.(2) describes the growth and the decay processes, the second — the
transition process corresponding to stochastic error copies with the mutation ratesA.j and the
last term — the dilution flux to control the concentration in order to keep the total number of
molecules constant.

s

5^ x. = n = const (3)f=l
With the selection constraint (3) eq. (2) can be rearranged to a new set of stochastic

differential equations.

x. = (E. -<£»*.+ g.(t) (4)

with

Ei = A (
— D. rate of reproduction

<£> = (££. x .)/n (5)

g,(t) = S (AyXj - Aji x (.) mutation rate.

The solution of eq.(4) has been studied by several authors [8,14, 20J. In the case of small
error terms (A.j being small compared to £.) the species with the highest reproduction rate
becomes dominant. If the mutation rates are of the same order as the reproduction rate several
species may coexist [4j.

The second step of E i g e n’s theory is the so-called hypercycle. This model of a cyclic
system which combines the complementary introduction with catalytic couplings has been
worked out by Eigen and Schuster [8, 9, 197. It consists of a number of
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polynucleotide information carriers I. like DNA sequences (each of which is able to reproduce

itself) and on the other hand each is reproduced with the catalytic help of the protein E._ ^
whose functional properties are encoded in the precursor nucleic acid J._j.

Numerical calculations by Schuster [19] and analytical results by Jones [15] have
shown that this model demonstrates how collections of different kinds of species may coexist
through internal couplings in the presence of constraints. This work is still in progress. Different
models for the evolution of biopolymers at all levels of biological organization have been
worked out-by Goldbeter [10] for regulatory processes at the subcellular level and
Babloyantz and Hiernaux [12] for processes during the embryogenesis.

3. STOCHASTIC DESCRIPTION OF SEQUENCE KINETICS
BY MASTER EQUATIONS

Now we switch from the description by stochastic differential equations to the description
by master equations [6, 7]. The sample space of our problem is the S-dimensional occupation
number space [6]

Î2 : = {j} = N2 > N
s I Ni = 0. !. 2 >

- }• (6)

jV.(t) denotes the number of molecules of sequence i. The state of our system at time t is
defined as the probability distribution

P(y, t) = P(NV N2 , .... Ns, t), (7)

which time evolution is given by the master equation

Jl P(y, 0 =XW ly’) PW t) - W(y1y) P(y, 0] • (8)

According to eq. (3) we keep the total number of molecules constant

= N = const.
i=l

(9)

Assuming that the transitions are one-step-processes the transition probabilities

Wi - + I ... JV. - 1 ... N
s I IVj ... N. ... Nj ... A) = A.j A. + ^ E. N. Njt (10)

describe the properties of the molecules, i.e. the term A.. Nj — the mutation process and the
second order term-the replication process with the replication rate E.. Then the following
master equation is derived [6,7]

hp<Ni . N. Nr - *> <kj 1)
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X P(Nl ... N. - 1 ... N. + 1 ... N
s )

V
E, v

,
'¡''IV,

(11)

* * ‘> p(Ni - ;Yi - ‘ V 1 •••"<>}

In order to find solutions we may use the method of generating functions. If we define
the S-dimensional generating function as follows

JV,F(Uv ...,U
s , 0 = 23 P(Nlt ...,Ns, t)^ 1

we get from eq. (11) a multi-dimensional Fokker-PIanck equation

9£ = T K d2F
dt rr V dC/. 317.i#; 1 i

+ TVT Ki d u: ■

(12)

(13)

The drift coefficients^. = f(A.j, U^,..., Us) and the diffusion coefficients AT- = g(E., U., U.)
are in general nonlinear functions. Many attempts have been made to discuss the properties
of eq. (13), see e.g. [11, 13,18]. But this work is still in progress.

Another aspect coming from coding theory which is very useful for the study of molecular
sequences is the concept of metric spaces. The metric distance between two sequences of a
length v is defined by

d(i,y) =¿(1 -5 •). (14)
k = 1

L k L k

This so-called Hamming distance between the sequences i and j is the number of events
required to convert one sequence into the other. Generalizations of the Hamming distance
between strings of different length can be found in [7], mathematical contributions to the
geometry of Hamming spaces in [1]. But let us consider the four nucleobases as members
of a finite ordered alphabet

u = (A, B, C, D) (15)

The set of all possible sequences (words) 1P(u) is constructed over this alphabet u, and
we are able to make a numeration in the following sense

W(u) : A, A, B, C, D, AA, AB, AC, AD, BA,...
(16)

g :0, 1, 2,3,4, 5, 6, 7, 8, 9, ...
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BD,DD,AAA, AAB,...
..., 12 , ..... 20 , 21 , 22 , ...

(A = empty sequence)

The number g(i) is called Gödel number of the word i. For every i there exist a g(i) and
vice versa, e.g. for a natural number n there exist a word g

_1
(n). To construct the mapping

the following expression gives the Gödel number of an arbitrary word {Z.
Z.^

... Z. },

*(lz, z, z,
1 ¿ v fc=l

e.g. g(A CD) = 1 • 42 + 3 • 41 +4-4° =32.

(17)

4. THE CONCEPT OF COMPLEXITY

After introducing the distance between two sequences d(i, f) (see Chapter 3, eq.(14)) we
want to discuss the question what measure can be used to decide if anarbitrary sequence is
complex or not. Complexity is one of those concepts which we know well by intuition but find
difficult to explain. If we consider for exarpple the following sequences

i = AAAAA CCCCCC

j = ACCDBBCACD
it is a matter of fact, that j is more complex than i. For i we find a short description like five
A’s to the left of six C’s, but for j we do not find a correspondingly short rule. Various
complexity measures have been suggested for areas like information theory, computer science,
automata theory, mathematics etc. [2, 16, 15, 22]. Some of the most important new concepts
go back to Kolmogorov [16]. In general, a system is deemed complex (or complicated)
when the interconnection or arrangement is difficult to trace or understand. The complexity of
an arbitrarily long randomized sequence is much more greater than a regular or ordered one
with high redundancy. In other words, we identify complexity of a sequence with the length of
its shortest description. We use the following definition of the complexity K(i) of a sequence i
[ 16,17]
K(i) : = l[S(U L)]
and note the inequality

K(i) < Z(i) + C

L : description language

S(i, L) : shortest description of i in L
I[S(i, L)] : length of S(i, L)

(18)
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l(i) : length of sequence i
C : constant independent of i.

K(i) depends on the description language, a general algorithm for the calculation of K(i) forgiven i is not known. In terms of Turing machines and partial recursive functions there exist
theorems which give upper and lower bounds for K(i) [167- The concept of complexity is also
associated with the problem of information in biology [lj. If the amount and value of
information stored in the sequence is increasing the richness of biological functions and
properties of the carries of information is also increasing (the link is given by the genetic code);
so to say the higher the K(i)-value, the richer is the object in contents, i.e. high complexity is
associated with high potentiality of behavior [5, 7]. That is why evolving biological macro¬
molecules must have the ability to produce something more complicated than themselves. The
sequences are more complicated than the elements which can be made of them and during the
evolution process the sequences become more and more complicated because of the increase in
their complexity which corresponds to the aperiodicity in the sense of Schrodinger ¿21J. For
this reason we assume that for an evolutionary process (see the selection and mutation process
in Chapter 2) the selection value E. of a given sequence i must increase with the complexity
K(i) of i or in other words the reproduction rate

VW0) (19)

is assumed to be an increasing function of the complexity of i. We believe that the complexity
is one of the most important quantitative characteristics of biopolymers; there are of course,
many other qualitative characteristics [2\]. For the mutation rates (see eq.(4),(5)) we dothe following assumption

Aij = FijWD)’ (20)

where F(x) is a decreasing function, that means the mutation probability between the
sequences i and j decreases with increasing metric distance between i and j. Point mutations
occur with greater probability, simultaneous mutations of two or more monomers are
improbable.

5. MODELS AND DISCUSSION

In order to give an example for these rather abstract concepts we discuss special models of
the evolution of sequences. We have to choose the two sets of parameters — the reproduction
rates, eq.(19), and the mutation rates, eq.(20) — in a special way. Since no algorithm for theKolmogorov complexity was available we have used in our model another simple measure
of complexity given by an arbitrarily chosen algorithm based on a doublet valuation.

The calculation of this complexity of a given sequence was done by a computer program.
The algorithm was described in detail elsewhere [ 3]. We only want to mention that the
algorithm works in the following way: The elements on position 1 of the sequence get the valueK = 1, 2, 3 or 4 if there is A, B, C or D. Then all following doublets are valued after a tabular
function. The connection between the complexity and the reproduction rate was given by
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E. = lnK(i). (21)

On the other hand our assumption about the mutation rates is very easy. We consider
only point mutations and destruction processes

A ij ~ m5M(w) + Cv3'

where the last term describes a destruction rate proportional to the length.

(22)

Fig. 1. Model for the stochastic replication of sequences of the units A, B, C and D by integration of the
stochastic differential equations

Fig. 2. Stochastic replication of A, B, C, D-sequences described by master equations with a low mutation
frequency
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Fig. 3. Another numerical realization with a relative high mutation frequency (master equation model)

Mutations are possible between sequences with the metric distance equal to one with the
mutation frequency ¡jl, e.g. one monomer is changed or one monomer is added. They appear at
random and discrete times tp t2 , tg, ... Between this time intervals the evolution of the system
is given by the deterministic eq. (4) or in a stochastic model by the master eq. (11).

Then we have to solve the master equation numerically. Figure 1 shows one realization with
numerical integration of the stochastic differential equation (adapted from [3], Fig. 2 and
Fig. 3 show results of the master equation model (adapted from [18]). In both cases the
behavior of new species is characterized by the following relation. If the reproduction rate E
of the new sequence n is greater than the rate Em of the equilibrated (selected) species m, the
new mutand will outgrow the former distribution. On the other hand, if £ < E holds, the
new mutant dies out because of the missing selection advantage. Detailed investigations of the
behavior of new species can be found in [6]. Another aspect is the influence of the mutation
frequency (the number of mutations per unit time) comparing Fig. 2 and Fig. 3. The computer
realizations states that there must be a so-called optimal mutation frequency. If the mutation
frequency is too small, the evolution progress is lengthy. In the opposite case no species is able
to survive because there are too many new mutants. Finally we want to mention a slightly
different version of our model [18]. The information stored in the sequence is read in codons.If we consider the allocation

A — Adenine, B — Guanine, C — Uracil, D — Cytosine

the beginning is indicated by the codon ACB, the end by the codon CBA (so-called nonsense
codons). Further we use the codon ABB as (artificial) active center, e.g.

DC ACB ADB DCC ABB BDA CBA CBDC.

We assume that the reproduction rate is given by
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E. = In [K(i) + «.] (23)

with

{
const > 0 for sequences with special triplets

0 otherwise

DACB \aBB\ADABOABBABACBACBACBACBABACCBACCBACCC 1526 109

DACB \abb\aDABDACBABACBACBACBAOBABACCBACCBACCC 1504 104

/
B

**

dacb\abE\bdaccccbacccc 498

DACBABABDACCCCBACCCC 496
C

DACBABABOACCCCBACCC 475

DACBABABDACCCCDA CCC 448
C

1
A

■w

OACBBBA 98
DACCBBA 91

DAC 42
DA
D
C 0

kT

42

30

28
22

I
is
13

9

3

Fig- 4. Selected sequences with increasing reproduction rates during the replication and mutation process
showing the appearance of special triple ts

The following (arbitrary) choice for the additional value a. was used: Sequences containing a start codon
ACB get a. = 2. Sequences containing a start codon followed by m triplet codons, between them n < m

active centers ABB, and furtheron a termination codon CBA get a. = (2 + n+15m)

Figure 4 gives the main steps of one realization showing the selected sequences during the
evolution. In this process more and more complicated sequences are formed.

The computer game of realizations is practically inexhaustible. Possibly the study of the
structure of evolution trees and of the kinetics of evolving systems of this kind discussed above
may be helpful for the understanding of at least certain aspects of molecular replication and
selection processes.

Maszynopis wptynql do Redakcji 9 XII 1977;
po rewizji autorskiej otrzymano 22 IV 1978



128 Werner Ebeling, Reinhard Mahnke

REFERENCES

[1] Ahlswede R., K a t o na G. 0. H., Discrete Math., 17,1 (1977).
[2] BremermannH.J.,[w:] Lecture Notes in Biomathematics, Vol. 4, Springer-Verlag 1974.
[3] Ebeling W., F e i s t e 1 R., studia biophysica, 46,183 (1974).
[4] E b e 1 i n g W., F e i s t e 1 R., Z. phys. Chemie, Leipzig, 257, 705 (1976).
[5] Ebeling W., Strukturbildung bei Irreversiblen Prozessen, Teubner Verlagsgesellschaft. Russian

translation to appear, Leipzig 1976.
[6] Ebeling W., F e i s t e 1 R., Ann. Phys. (Leipzig), 34, 81 (1977).
[7] Ebeling W., Feist el R., Jimenez-Montano M., [w:] Nichtlineare Irreversible Prozesse,

Rostock 1977.
[8] Eigen M., Naturwiss., 58, 465 (1971).
[9] Eigen M., Ber. Bunsenges., 80, 1059 (1976).
[10] Goldbeter A., Lefever R., Biophys. J., 12, 1302 (1972); G o 1 d b e t e r A.. N i c o 1 i s G.,

Biophysik, 8, 212(1972).
[11] H a k e n H., Z. Physik B., 24, 321 (1976); Phys. Lett., 55A, 323 (1976).fl2JHiernaux J., Babloyantz A., Nonequil J., Thermodynamics, 1, 33 (1976);Babloyantz A., HiernauxJ., Bull. Math. Biol., 37, 637 (1975).
[13] Horsthemke W., Bach A., Z. Physik B, 22,189 (1975).
[14] J o n e s B. L., E n n s R. H., R a n g n e k a r S. S., Bull. Math. Biol., 38,15 (1976).
[13] Jones B. L., J. Math. Biology, 4,187 (1977).
[lb] Kolmogorov A. N., Probl. Peredachi Inform., 1, 3 (1965); Z v o n k i n A. K., L e v i n L. A.,

Usp. Mat. Nauk, 25, 85 (1970).
[17] L ö f g r e n L., Int. J. General Systems, 3,197 (1977).
[18] Mahnke R., About the theory of replication processes, unpublished results (MS.-№. 116 of

Sektion Physik der Univ. Rostock).
[19] Schuster P., Chemie in unserer Zeit, 6, 1 (1972); Eigen M., S c h u s t e r P., Naturwiss., 64,

541,1977;Küppers B., Progr. Biophys. Molec. Biol., 30,1 (1975).
[20] T h o m p s o n C. J., M c B r i d e J. L., Math. Biosciences, 21,127 (1974).
[21] V o 1 k e n s t e i n M. V., Found. Phys., 7, 97 (1977); Zh. obshsei biologu, 37, 483 (1976).
[22] Von Neumann J., Theory of Self-Reproducing Automata. Ed. Burks A., University of Illinois

Press, Urbana 1966.

Werner Ebeling, Reinhard Mahnke

KINETYKA MOLEKULARNEJ REPLIKACJI I SELEKCJI

Streszczenie
W artykule przedstawiono ogólne idee Eigena, dotyczqce fizycznych podstaw powstawania na Ziemi

sekwencji kodowych w procesie replikacji i selekcji makroczqsteczek oraz dyskusj? szeregu nowych
koncepcji. Ewolucje pewnego ukiadu sekwencji (heteropolimery) w przestrzeni sekwencyjnej przedstawiono
za pomocq równan typu „master”.

Wprowadzone zostalo pojgcie zlozonosci jako miara wartosci danej sekwencji. Omówiono szcreg przy-
kladów ewolucji sekwencji.
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