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1

1. Introduction

For the understanding of physical and chemical properties of nanometer sized objects,
knowledge about their structure is an important prerequisite, as the specific physical and
chemical properties are often closely connected to structure and shape. An understand-
ing of basic behaviors and their relation to the morphology of particles such as molecules,
proteins, bacteria and viruses is of great interest also in biology and medicine. The con-
nection between function and structure could e. g. successfully be utilized for the structure
determination of the DNA (deoxyribonucleic acid) via x-ray diffraction, that revealed the
double helix structure with paired bases and allowed to understand mechanisms of biologi-
cal information storage and transfer [133]. Not only the biological function is connected to
shape, size and structure of particles, for nanocrystals it is connected to optical, catalytic,
electronic and magnetic properties [17]. Further, structure determination of nanometer
sized objects allows to approach questions in many branches of fundamental research.
For example, the arrangement of magnetic moments in crystals can be investigated by
neutron powder diffraction [106]. With a combination of scanning tunneling microscopy
and dynamical low energy electron diffraction, the shape of atomic clusters deposited on
surfaces can be verified [18]. The course of chemical reactions can be identified by x-ray
diffraction [88].

The above examples already show that a broad range of methods exist for structure
determination of nanotargets. In general, it is possible by utilizing either light, electron
or neutron scattering. The main contribution to the scattered signal from light and
electron scattering emerges from the interaction with electrons, the main contribution in
neutron scattering from the interaction with the nuclei. In this thesis, the focus is put
on nanotargets in free flight, since compared to fixed targets the absence of interaction
with the surrounding does not alter the shape and structure of the targets and simplifies
the interpretation of experimental results. For the investigation of free-flying nanotargets,
light scattering is best suited. The reason is that electron scattering is only applicable to
fixed targets and although neutron scattering enables the resolution of magnetic moments
and oxygen positions, materials relying on this feature are not considered here. Hence,
light scattering will be in the center of this thesis.
For structure determination of free-flight nanotargets utilizing light the target is illumi-
nated and the scattered light is recorded on a detector. A basic setup of such an exper-
iment is depicted in fig. 1.1. The obtained scattering image contains information about
the object’s size, shape and structure. This imaging procedure at first sounds very simple.
However, as illustrated in the following, for resolving nanostructures, high demands on
the light source are made and in addition numerical methods to extract information about
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light beam

particle beam

detector

Figure 1.1.: Sketch of single-shot diffractive imaging experiment with light beam hitting a particle beam.
The scattered field is recorded on a detector.

the target from the scattering image are indispensable.
In the far-field, the scattered field from the object is directly connected to the Fourier
transform of the object’s density, i. e. it represents a reciprocal space image. Experimen-
tally, this reciprocal space image or far-field diffraction pattern can be converted to a real
space image with lenses. The resolution that can be achieved in such an imaging scenario,
i. e. the minimal distance of two separate structures that can be resolved, is limited by
the diffraction of light. The minimal distance d that can be resolved by light of a certain
wavelength λ is given by Ernst Abbe’s formula

d = λ

2n sinα, (1.1)

where n is the refractive index and α the angle of incidence. With nonlinear methods such
as stimulated emission depletion (STED) microscopy resolution below the diffraction limit
can be achieved [56]. However, this method can only be applied to embedded targets that
can be stimulated to fluoresce. For the targets considered in this thesis the resolution on
the nanometer scale can only be achieved by utilizing wavelengths on the same order, i. e.
x-ray or extreme ultraviolet (XUV) light is required. In this wavelength regime, a high
photon flux is needed to collect enough elastically scattered photons. Since the targets are
imaged in free flight, the scattered photons have to be generated in a single shot. Thus,
to reach sufficiently high light intensities to meet this requirement, pulse durations have
to be very short. In addition to that, the short pulse durations are required to image the
nanoparticle before its destruction due to the interaction with the high-intensity beam
[91]. The usage of x-ray and XUV laser pulses inhibits the possibility to convert the
reciprocal space image to real space, since no efficient optical components are available
for this wavelength regime. Thus, the diffraction pattern (in reciprocal space) is directly
recorded behind the scattering region e. g. with a charged-coupled device (CCD) camera
or a micro-channel plate (MCP) detector.
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To sum up, for recording evaluable diffraction patterns of free-flight nanotargets utilizing
light, the laser beam has to fulfill three basic requirements. Its wavelength needs to be
in the XUV or x-ray regime and the laser pulses need to be very intense and ultrashort.
In the imaging process, the diffraction pattern (squared amplitude of complex scattered
electric field) is obtained in a single-shot. The encoded information about size, shape,
structure and orientation of the target needs be reconstructed by numerical methods.
This procedure then is called coherent diffractive imaging (CDI). The aim of this work,
is to present, discuss and advance existing reconstruction methods and apply them to
different scattering scenarios.

As an introduction, this chapter gives an overview about the current state of the research
of coherent diffractive imaging (CDI). Therefore, in the first section, basics of single-
shot diffraction experiments are discussed with giving a short description of the available
light sources and experiments that already have been conducted. In the second part the
two existing approaches for structure recovery are presented; (i) reconstruction by phase
retrieval methods and (ii) reconstruction with forward fits. In the last part, the aim of
this work is described in more detail.

1.1. Available light sources for single-shot diffractive
imaging

Single-shot diffractive imaging experiments became possible in the past few decades due to
the development of high brilliant light sources, such as synchrotrons and free electron lasers
(FELs), depicted in fig. 1.2. Also high harmonic generation light sources start to become
important for imaging and are discussed in more detail in the last part of this section.
Figure 1.2 shows the peak brilliance reached at different light sources in dependence on
photon energy. The peak brilliance is a measure of number of photons produced per
second, per 0.1 % bandwidth, per unit solid angle, and per unit area. Synchrotrons reach
higher photon energies but are orders of magnitude lower in peak brilliance than the
free electron lasers, i. e. the scattered signal at synchrotrons is much smaller. However,
synchrotrons enable the imaging of crystallized particles by long illumination times [94].
Although large non-crystalline samples can be imaged in synchrotrons [82], small non-
crystalline targets do not generate a large enough scattering signal to obtain an adequate
diffraction pattern. Since crystallization, e. g. of bio systems, often is not feasible [126],
higher light intensities are needed to generate enough scattered signal of nanometer sized
particles. FELs with much shorter pulse durations and therefore higher light intensities
(cf. fig. 1.2) [36, 41, 119, 35, 65, 2] offer a solution to this problem. They enable imaging
of non-crystalline targets [22] in a single shot.
Free electron lasers enable a very broad spectrum of experiments. The main benefit
compared to synchrotrons and electron microscopy (which also requires embedding [1])
is the possibility of FELs to image nanoparticles in free flight. In free flight there is no
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Figure 1.2.: Overview of peak brilliance in dependence on photon energy reached at free electron lasers
and synchrotron facilities. Figure taken from [63].

spurious interaction due to a deposition on a substrate. This allows for investigation of
metastable and transient states that only exist in the gas phase. Experiments e. g. have
been conducted on non-crystalline specimen [81], aerosols [76], atomic clusters [13, 108,
48, 10], nanocrystals [136], free particles in the gas-phase [12, 20], biomolecules [42, 34],
viruses [127, 122] and helium nanodroplets [48]. Further, dynamics could be observed;
quantum vortices in helium nanodroplets [48], ultrafast changes of electronic properties
in nanoplasma formation [14, 111], particle shape evolution during growth processes [110]
and the explosion of laser-heated clusters [49].

Up to now, only large-scale facilities have been presented. However, although high har-
monic generation (HHG) sources are orders of magnitude lower in brightness than FELs
[83], in the past few years the achievable intensity and/or average power of these lab-based
sources increased [58, 53, 107, 131, 61, 98] enabling HHG single-shot diffractive imaging
on fixed targets [82, 116, 101, 23, 121, 145]. In such experiments a resolution of 20 nm
could be reached with multiple exposures [121, 145] and even single exposures in some
cases [101].

1.2. Reconstruction methods
The obtained scattered intensity distribution in single-shot diffractive imaging experi-
ments encodes information about shape, structure and orientation of the imaged targets
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in reciprocal space. For particle reconstruction, i. e. to convert the diffraction patterns
to a real space image of the particle, numerical simulations are required. The diffraction
pattern is proportional to the squared amplitude of the scattered electric field, the phase
is lost. To solve the phase problem, basically two approaches exist. First, the phase can
be retrieved by so-called phase retrieval algorithms that are based on oversampling. Sec-
ond, the diffraction pattern can be forward fitted, by computing the scattered intensity
from model shapes and compare them to the experiment. The utilized wavelength of the
radiation has a large impact on the methods that can be applied for reconstruction, since
it influences the resolvable scattering angle on the detector. In a single-shot diffractive
imaging experiment a certain maximal momentum transfer q can be resolved that depends
on the dynamical range the detector can resolve. The momentum transfer is connected
to the scattering angle Θ and wavelength λ via

q = 4π
λ

sin(Θ/2). (1.2)

The relation reveals that for longer wavelength larger scattering angles can be accessed
in the experiment for a fixed q. Figure 1.3 shows the difference in resolvable scattering
angles for different wavelength regimes. In fig. 1.3a the scattered photon with outgoing
wave vector kout is only weakly deflected from the incoming wave vector kin, the diffrac-
tion pattern is restricted to small scattering angles. In this case, the momentum transfer
(q = kout−kin) is parallel to the projection plane (indicated in blue), hence, the diffraction
pattern is only dependent on the particle density projected onto that plane. Figure 1.3b
illustrates the wide angle scattering regime in which the outgoing photons are deflected
further away from the optical axis. In this case, also momentum transfers that are not
parallel to the detector plane (indicated in red) are accessible. Thus, the orientation of the
particle impacts the diffraction pattern, as also has been shown in [100, 136, 10]. When
utilizing hard x-ray radiation with photon energies on the order of keVs, the diffraction
pattern is restricted to small scattering angles (cf. eq. (1.2)) and atomic resolution is
feasible [81, 136]. Additionally, absorption is small and usually negligible. For this wave-
length regime, phase retrieval algorithms are applicable. For larger wavelength radiation,
such as soft x-ray and XUV light, larger scattering angles can be resolved and the diffrac-
tion patterns are not a function of the projected particle density, but depend on its 3D
orientation. In addition, absorption has a large impact on the diffraction pattern and
hence, phase retrieval algorithms are not simply applicable anymore. Therefore, in this
regime, forward fit methods are more suitable for particle reconstruction. In the following
subsections, both approaches are discussed in more detail.

1.2.1. Phase retrieval algorithms
The loss of phase information when obtaining the diffraction pattern has to be overcome by
oversampling [118, 85]. The oversampled diffraction pattern is applicable to phase retrieval
algorithms. The iterative approach is based on alternating projections, first introduced
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Figure 1.3.: a) In the small angle scattering regime the momentum transfer q = kout − kin (difference
between incident and outgoing wave vector) is parallel to the projection plane (indicated in blue) (q = q‖)
and the scattering image on the detector (indicated in red) is dependent only on the projection of the
particle density onto that plane. b) For the same scenario, with larger q projection planes (indicated in
blue) not parallel to the detector (indicated in red) can be accessed. In this wide angle scattering regime
the scattering image is dependent on the 3D orientation of the particle. Figure taken from [10].

by Gerchberg and Saxton [43] and extended by Fienup [38, 37]. Constraints on Fourier
space (diffraction pattern) and real space (density) support are applied sequentially until
convergence is reached. In one dimension, no unique solution for the phase retrieval exists,
as the starting point is a random Fourier phase that can result into a valid solution that
can be far away from the real solution [60]. For higher dimensions, however, the solution
is unique [16, 55, 11]. Phase retrieval algorithms have been shown to work in electron
microscopy on gold nanocrystals [135] and carbon nanotubes [144]. In lensless optical
imaging successful 2D reconstruction on several experimental diffraction patterns has been
done; on a non-crystalline sample consisting of array of gold dots [81], gold nanocrystals
[105], an artificial 2D sample [21], viruses [127], a bone sample [27], intersections of
mimiviruses [122] and aerosol particles [76]. The drawback of existing phase retrieval
algorithms is that additional constraints to the object are necessary, they are unstable
in presence of noise which requires user interaction. Holographic methods can highly
accelerate the algorithm as e. g. shown in [50]. A contemporary overview of phase retrieval
in optical imaging is given in [124] and a review of its experimental robustness can be
found in [141].

Three-dimensional phase retrieval is only applicable when illuminating identical parti-
cles from different sides and assembling the diffraction patterns to a 3D Fourier volume.
However, particles in free flight are randomly oriented in space, to be able to perform a
3D phase retrieval, the unknown orientations need to be extracted from the diffraction
patterns. A number of different algorithms for orientation-retrieval have been reviewed
in [62]. For crystalline targets orientation tagging can be performed by analyzing the
position of the Bragg peaks [140, 8]. Further, several self-orienting algorithms for non-
crystalline targets exist. In manifold embedding methods [120] (diffusion map, isomal
and generative topographic mapping (GTM)) a consistent set of particle orientations is
found by identifying pairs of similar diffraction patterns. GTM has been shown to work
on synthetic data [40]. Intensity cross-correlation methods [67, 115, 28] have been shown
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to work on 2D reconstruction [96]. Another approach accounts for underlying symme-
tries of orientation space that lead to approximate symmetries of diffraction patterns [45],
combined with manifold embedding techniques. A simplified version of [45] can be found
in [68]. The expand-maximize-compress (EMC) algorithm is based on probabilistic mod-
eling of detector photon counts [77], but was shown to be fundamentally equivalent with
GTM [89]. EMC has been verified with synthetic data [75]. Further, proof-of-principle
experiments have been conducted [97, 6, 7, 134]. 3D reconstruction from experimental
data has been shown to work on a mimivirus with a resolution of 150 nm for a 1 nm
wavelength [34]. Hence, the available stochastical methods work on synthetic data, but
up to now the experimental results deliver a quite low resolution.

1.2.2. Forward fit methods
In forward fit methods, the scattered intensity is computed for a given model shape and
compared to experimental diffraction patterns. Different algorithms exist to accomplish
this. Mie theory describes electromagnetic scattering from spherical, ellipsoidal and cylin-
drical targets including absorption from near- to far-fields [84, 64, 5]. It can be applied
to any size and wavelength and often is utilized as benchmark model for other numeri-
cal methods. For non-spherical targets, several numerical methods are employable. The
finite difference time domain (FDTD) technique [139, 137, 129] solves Maxwell’s equa-
tions on a grid in a leap-frog approach, absorption is included. The far-field scattering
image is obtained by a near-far-field transformation. In terms of required memory the
method is computationally very expensive. The approach has been applied to describe
light scattering from small ice crystals [137], cells [33, 32] and dielectric particles [128].
A gridless approach that is less memory exhausting is the discrete dipole approximation
(DDA) [99, 31]. It describes the particle as an ensemble of discrete point dipoles that each
interact with the incident field and the scattered fields from the other dipoles. Near- and
far-field components and absorption are included. The accuracy of DDA is discussed in
[30, 29, 59]. It is widely used in various areas, e. g. for description of optical properties of
nanostructures [29, 132], plasmonic response of nanoparticles [73, 112] and Raman scat-
tering intensities [138]. FDTD and DDA are advanced models that are computationally
expensive and therefore not applicable for fast forward fitting data if not already a good
selection of model shapes exist. For finding such a selection the multislice Fourier trans-
form method (MSFT) is more convenient. It is a simple and efficient model that only
includes far-field components. The scattered field is computed by Fourier transforming
particle slices that are summed up phase-correctly on the detector. Absorption can be
included via Beer-Lambert’s law. MSFT has applications in electron scattering [25, 123,
103] and soft x-ray diffraction of supported particles [54]. It has been utilized as forward
fit method on silver nanoparticles [10] and as a part of this work on helium nanodroplets
[72]. Note, that the best fit found for a certain diffraction pattern can only be as good
as the chosen model shapes and is not necessarily a unique solution. This can only be
ensured by utilizing phase retrieval algorithms, which, however, are not applicable to all
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scattering scenarios (cf. chp. 1.2.1).

1.3. Aim of this work
The aim of this thesis is the reconstruction of free nanoparticles from single-shot diffractive
imaging experiments. Therefore, numerical methods for the description of light scattering
of extreme ultraviolet (XUV) and x-ray radiation by nanotargets are derived, implemented
and applied to experimental data. The applicable numerical methods highly depend on
the wavelength utilized for the imaging process, therefore it is necessary to understand
the influence of this parameter onto the diffraction pattern. Hence, a systematic study
of the effect of different wavelength on the diffraction pattern is provided in this thesis.
Further, the diffraction pattern needs to be obtained before the particle is destructed [91].
To this end, short pulse durations are favorable and also necessary to resolve fast electron
dynamics. The advent of single-shot imaging experiments with HHG radiation [82, 116,
101, 23, 121, 145] and the possible seeding of FELs with HHG pulses [114] moves the
potential of imaging with attosecond pulse durations closer. Therefore, the influence of
different pulse durations is investigated to estimate if attosecond imaging even is feasible.

One major goal of single-shot diffractive imaging is to gain understanding about shape and
structure of nanoparticles. To this end, forward fit methods are applied to different exper-
iments in this work. Single-shot diffractive imaging offers the opportunity to characterize
warm dense matter (WDM), which is important for understanding astrophysical objects
[52] and initiate laser-driven fusion [74]. Typical approaches for determining plasma prop-
erties of WDM such as temperature, density and ionization state is spectrally resolved
x-ray Thomson scattering (XRTS) [104, 51, 102, 47]. In XRTS, usually two detectors
are needed to record a backward scattering signal from structural disorder and forward
scattering from the target shape to deduce the dynamical structure factor from the data.
In this thesis, the possibility to resolve both signals from structural disorder and shape on
a single detector by single-shot diffractive imaging on a jet target is investigated. Further,
the impact of different properties of the finite jet target on the diffraction patterns is an-
alyzed and compared to experimental results from a FLASH experiment by Zastrau et al..

Most single-shot diffractive imaging experiments are conducted at FEL facilities, however,
due to ongoing developments in HHG radiation sources, these light sources start to be
feasible for imaging experiments. So far, HHG single-shot diffractive imaging experiments
only have been conducted on supported particles as described in sec. 1.1. In this work,
the first HHG imaging experiment on helium nanodroplets in free flight performed by
Nils Monserud and Daniela Rupp et al. is presented. The diffraction patterns of spherical
helium droplets are utilized to extract material specific wavelength dependent refractive
indices. Forward fitting non-spherical diffraction patterns by exploiting large scattering
angles allow for the 3D reconstruction of non-spherical helium droplets.
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For hard x-ray scattering experiments diffraction patterns are restricted to small scatter-
ing angles, in which the scattering image is proportional to the Fourier amplitude of the
projected particle density. Further, in this regime absorption is usually negligible, which
enables the reconstruction with phase retrieval algorithms [37]. Successful 2D reconstruc-
tion from 2D scattering patterns has been achieved in several scenarios [81, 105, 21, 127,
27, 122, 76]. For gaining information about the three-dimensional shape and structure
of the target the 3D Fourier amplitude is required. To obtain it, the nanotarget has to
be imaged from different sides and according to the particle orientation, the diffraction
patterns have to be assembled to a 3D Fourier volume. The most challenging part is the
necessary orientation tagging of the small angle diffraction patterns. Complex stochasti-
cal approaches exist to solve this task, as outlined in sec. 1.2.1. In this work, a simple
approach to solve the orientation tagging task is proposed that builds on the possibility
to image the target with two different wavelength in the wide and small angle scattering
regime at the same time. Therefore, a route to find a particle orientation to a small angle
diffraction pattern by utilizing information of a corresponding wide angle diffraction pat-
tern is tested. The orientation tagged small angle diffraction patterns then are applied to
3D phase retrieval.

Structure of this thesis

The second chapter of this thesis is dedicated to the basic principles of light scattering
in linear response. Hence, in the chapter, the relevant theory is derived by starting from
the microscopic Maxwell’s equations. From these equations, approximations for different
scattering regimes are deduced, i. e. the wide and small angle scattering regime.
In the third chapter, the effects of different laser parameters on the diffraction patterns
are investigated. To this end, the influence of wavelength and pulse duration on the scat-
tering images are analyzed.
In the fourth chapter, scattering from hydrogen jets is studied, by analyzing typical prop-
erties of the corresponding diffraction patterns and how the shape and orientation of the
jet impacts the scattering images. Further, characteristic features found in the simula-
tions are connected to features in experimental diffraction patterns.
In chapter 5, diffraction patterns from a high harmonic generation scattering experiment
on free helium nanodroplets are analyzed to extract optical parameters of helium and
information about the 3D shape of helium nanodroplets in the superfluid state.
Chapter 6 presents a two-color single-shot diffractive imaging approach, that enables the
orientation tagging of randomly oriented targets and consequently the 3D particle recon-
struction by 3D phase retrieval on the example of an asymmetric target (tripod) and a
highly symmetric target (icosahedron).

The contents of chapter three and five have been published in [117] and [109], respectively.
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2. Basic principles of scattering theory in linear
response

Single-shot diffractive imaging experiments enable the characterization of shape, size and
structure of free nanotargets. In such an experiment, a high-intensity laser is shot at a
nanotarget and the light scattered by it is recorded on a detector. In this work, methods
for reconstruction of the imaged nanotargets from the diffraction patterns are developed
or improved and applied to different scattering scenarios with noble gas clusters, helium
nanodroplets and hydrogen jets. To derive the reconstruction methods, the numerical de-
scription of the scattering scenario requires to be applicable to different scattering regimes
with different incident laser wavelength and targets with different material properties such
as size, shape and refractive index. For reconstruction of the particle density from diffrac-
tion patterns, the scattering problem has to be solved or inverted. The scattering problem
can be described with Maxwell’s equations and solving it can be extremely complex and
complicated. As shown in this chapter, for certain regimes it can be solved approximately.
Therefore, a mathematical description of the scattering problem in linear response is in-
troduced, where damage due to the interaction with the laser beam is neglected. The
chapter is separated into two parts.
First, a general expression for the scattered electric field in presence of incident laser field
and finite material is deduced. Therefore, the electric field evolution in space is obtained
by solving Maxwell’s equations utilizing a Green’s function approach. Second, approxi-
mations to the general description of the scattered field are introduced in the regimes of
weak and strong scattering. In the regime of weak scattering, additional simplifications
in the far-field region are presented that include a simple description for small and wide
angle scattering.

2.1. Scattered electric field
In this section, the scattered electric field generated due to the interaction of a finite object
with a monochromatic laser is deduced as a function of particle density distribution and
the electric field acting on it. The derivation follows the steps in [92]. Starting from
the microscopic Maxwell’s equations, the electric field wave equation is derived, which
describes the spatial evolution of the electric field for a certain current density. The wave
equation then is solved utilizing a dyadic Green’s function approach. An explicit form
of the dyadic Green’s function is derived with the help of a scalar Green’s function that
solves the inhomogeneous Helmholtz equations. Last, a current density description in
terms of charge density and local electric field is introduced, ending up with a description
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of the scattered electric field depending only on material properties and the electric field
acting on the target.

2.1.1. Electric field wave equation

Starting point for the derivation are the microscopic Maxwell’s equations [80], which
dictate the spatial and temporal evolution of the electric and magnetic fields E(r, t) and
B(r, t) in presence of a material via

∇ · E(r, t) = ρ(r, t)
ε0

, (2.1)

∇ ·B(r, t) = 0, (2.2)

∇× E(r, t) = − ∂

∂t
B(r, t), (2.3)

∇×B(r, t) = µ0j(r, t) + µ0ε0
∂

∂t
E(r, t), (2.4)

where r = (x, y, z) denotes the location, t the time, ε0 the electric permittivity and µ0 the
magnetic permeability. The charge density ρ(r, t) and the current density j(r, t) determine
the material response. Further, ∇ is the nabla operator, ∇· denotes the divergence and
∇× the curl operator. All fields are real-valued and contain the full time dependence
and all spectral components. For description of electric fields from monochromatic lasers,
it is necessary to consider only a single frequency. To obtain Maxwell’s equations for a
single spectral component, the fields can be written as time harmonic fields, here done
exemplarily for E for the angular frequency ω

E(r, t) = 1
2
[
E(r)e−iωt + E∗(r)eiωt

]
, (2.5)

where E(r) denotes the complex electric field and E∗(r) its complex conjugate. It is
sufficient to only consider the first term. Due to the linearity of Maxwell’s equations,
the real-valued fields can easily be constructed if needed. Inserting eq. (2.5) into the
Maxwell’s equations (2.1)-(2.4) gives

∇ · E(r) = ρ(r)
ε0

, (2.6)

∇ ·B(r) = 0, (2.7)
∇× E(r) = iωB(r), (2.8)
∇×B(r) = µ0j(r)− iωµ0ε0E(r), (2.9)

The term e−iωt cancels on the left and right hand sides of the equations. The wave
equation for the electric field that describes its evolution in space can easily be obtained
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by combining eqs. (2.8) and (2.9), which yields

∇×∇× E(r)− k2E(r) = iωµ0j(r). (2.10)

The structure of the wave equation reveals that the x, y and z component of the electric
field and current density depend on each other. For a point source, the equation can
be solved by utilizing a Green’s function approach. Therefore, the current density is
described via (exemplarily for the x component)

jx(r) = δ(r− r′)
iωµ0

ex, (2.11)

with the delta function δ, r′ denoting the point source position and ex the unit vector in
x-direction. Inserting this equation into eq. (2.10) gives

∇×∇×Gx(r, r′)− k2Gx(r, r′) = δ(r− r′)ex, (2.12)

where Gx(r) is the field generated by the point current jx. Moreover, Gx(r) is the vector
corresponding to the first column of the so-called dyadic Green’s function

↔
G(r, r′). The

full solution for all current density components is given by

∇×∇×
↔
G(r, r′)− k2↔G(r, r′) = δ(r− r′)

↔
I , (2.13)

with
↔
I being the unity diad. Assuming the current density in eq. (2.10) can be viewed as

superposition of point currents, the electric field can then be expressed via

E(r) = iωµ0

∫ ↔
G(r, r′)j(r′)dV ′. (2.14)

This is a so-called volume-integral equation. For its solution, an explicit expression of
the dyadic Green’s function and current density is required. The dyadic Green’s function
can easily be deduced by moving to a description of the Maxwell’s equations in terms of
scalar and vector potentials, which allows for presentation of the dyadic Green’s function
in dependence on a scalar Green’s function. Therefore, the vector and scalar potentials
are introduced in the following. Further, the scalar Green’s function is derived by intro-
ducing the inhomogeneous Helmholtz equations. A current density description is obtained
afterwards for a charge density distribution.

2.1.2. Dyadic and scalar Green’s function

For deducing an explicit form of the dyadic Green’s function Maxwell’s equations are first
simplified by introducing the scalar and the vector potential Φ(r) and A(r) via
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E(r) = iωA(r)−∇Φ(r), (2.15)
B(r) = ∇×A(r). (2.16)

Maxwell’s equations (2.7) and (2.8) are fulfilled automatically for these potentials. The
scalar and vector potentials are not uniquely defined yet meaning that Gauge transfor-
mations that do not alter magnetic and electric fields can be applied e. g. by adding a
curl-free component ∇ ·A. For further simplification, the Lorenz gauge is a convenient
choice

∇ ·A(r) = iωµ0ε0Φ(r). (2.17)

By inserting the Lorenz gauge into eq. (2.15), the electric field can be expressed only in
terms of the vector potential

E(r) = iω
[
1 + 1

k2∇∇·
]

A(r). (2.18)

To solve the above equation for the field generated by a point source, i. e. generated by
the dyadic Green’s function, an expression for the vector potential in presence of a point
source is needed. A solution for such a vector potential can easily be found by solving the
inhomogeneous Helmholtz equations, a symmetric form of Maxwell’s equations for a point
source. The inhomogeneous Helmholtz equations can be obtained by inserting eqs. (2.15)
and (2.16) into eqs. (2.6) and (2.9) which gives

iω∇ ·A(r) = ρ(r)
ε0

+ ∆Φ(r) (2.19)

∇×∇×A(r) = µ0j(r)− iωµ0ε0 (iωA(r)−∇Φ(r)) . (2.20)

Inserting again the Lorenz gauge eq. (2.17) into eqs. (2.19) and (2.20) and utilizing the
identity for well-behaved vector fields ∇×∇×A = ∇(∇ ·A)−∆A yields the inhomo-
geneous Helmholtz equations

[
∆ + k2

]
A(r) = −µ0j(r). (2.21)[

∆ + k2
]

Φ(r) = −ρ(r)
ε0

. (2.22)

with the wave number k = ω/c, the speed of light c =
√

1/ε0µ0 and the Laplace operator
∆. For a point source, these scalar equations can be solved by introducing the scalar
Green’s function G0(r, r′) with r being the observation point and r′ the location of the
point source. To this end, the source on the right hand side of eq. (2.21) is expressed via
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δ(r− r′), giving [
∆ + k2

]
G0(r, r′) = −δ(r− r′), (2.23)

A particular solution for the vector potential in eq. (2.21) then can be obtained via

A(r) = µ0

∫
j(r′)G0(r, r′)dV ′ (2.24)

The vector potential from a point current in x can be obtained by inserting the point
current eq. (2.11) into eq. (2.24), which yields

A(r) = (iω)−1G0(r, r′)ex (2.25)

Inserting this expression into eq. (2.18) gives the first column of the dyadic Green’s func-
tion

Gx(r, r′) =
[
1 + 1

k2∇∇·
]
G0(r, r′)ex. (2.26)

The second and third column can be obtained equivalently for the current density in y
and z direction. The full dyadic Green’s function can therefore be obtained via

↔
G(r, r′) =

[
↔
I + ∇∇

T

k2

]
G0(r, r′). (2.27)

To finally obtain an explicit form of the dyadic Green’s function, an expression for the
scalar Green’s function G0 is required. The exact form of G0 can easily be derived by
considering the symmetric form of the inhomogeneous Helmholtz equations. In this case,
the solution G0 of the equations only depends on the relative position R = |r − r′| and
the Laplace operator can be written in spherical coordinates via

1
R

d2

dR2 [RG0(R)] + k2G0(R) = −δ(R). (2.28)

Solving this equation by assuming the Green’s function to be an oscillatory eigenfunction
of d2/dR2 results into the following expression of the free space Green’s function

G0(r, r′) = exp(ik|r− r′|)
4π|r− r′|

. (2.29)

Inserting eq. (2.29) into eq. (2.27) finally gives the dyadic Green’s function for electro-
magnetic scattering, which can be computed straightforward in a Cartesian coordinate
system, yielding

↔
G(R) = exp(ikR)

4πR

[(
1 + ikR− 1

k2R2

)
↔
I + 3− 3ikR− k2R2

k2R2
R ⊗R
R2

]
, (2.30)

and has the form of a Hertzian dipole. Note that the observation points r need to be



16 2. Basic principles of scattering theory in linear response

different from r′ due to the singularity at r = r′ of
↔
G.

For solving eq. (2.14), the remaining quantity to specify, is the current density. The goal
is to obtain an expression only depending on the electric field acting on the material and
the material properties such as density and a material response function. Therefore, the
current density is rewritten in the following as function of charge density and local electric
field.

2.1.3. Current density

A material consists of atoms with electrons, neutrons and protons. Electromagnetic scat-
tering basically emerges from the interaction of light with the electrons. Therefore, to
describe a light scattering scenario, targets can be described by a charge density distri-
bution ρ. When the electrons of the material interact with an electric light field a dipole
moment is induced, resulting in an electric current. Therefore, the current density can be
defined as the product of dipole velocity ṗ and charge density via

j(r, t) = ṗ(r, t)ρ(r), (2.31)

The dipole moment p(r, t) can be expressed in dependence of the local electric field Eloc(r)
at the dipole position via

p(r, t) = α(ω)Eloc(r)e−iωt. (2.32)

The dipole velocity then reads

ṗ(r, t) = −iωα(ω)Eloc(r)e−iωt, (2.33)

where α(ω) denotes the material specific complex polarizability. It is a measure for the
amplitude and phase of the dipole moment induced in an atom by an external field of
frequency ω and is proportional to the refractive index or atomic scattering factor. Note
that the term e−iωt can be omitted in the following as in sec. 2.1.1. Inserting eq. (2.33)
into eq. (2.31) gives the current density via

j(r) = −iωα(ω)Eloc(r)ρ(r). (2.34)

and inserting this current density into eq. (2.14) gives the scattered electric field Escatt(r)
emitted from a density distribution due to interaction with the local electric field

Escatt(r) = α(ω)ω2µ0

∫ ↔
G(r, r′)Eloc(r′)ρ(r′)d3r′. (2.35)

Assuming the density of the target is known, only the local electric field is the remaining
quantity that needs to be defined to compute the scattered electric field. Therefore, ap-
proximations for different scattering regimes are presented and discussed in the following
section.
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2.2. Approximations

To solve eq. (2.35) for a given density distribution of a target, the local electric field needs
to be quantified. Therefore, in this section, expressions for the local electric field are
derived for different scattering regimes that are essential for this thesis. First, an approxi-
mation of the local electric field in the weak scattering regime is presented. The first Born
approximation is introduced that is applicable from near- to far-field scattering. Further,
for weak scattering, the small angle scattering approximation is derived. Analytical solu-
tions for spherical and cylindrical targets are given in this regime. Further, a description
for wide angle scattering is presented for far-field scattering with a simple absorption
model. Last, a full solution is given by introducing the discrete dipole approximation,
containing near- and far-fields for strong scattering, i. e. including absorption.

2.2.1. Near- to far-field weak scattering

In a scattering scenario with refractive indices close to unity (which is the case for hard
x-ray radiation) and/or small particles the scattered electric fields are much smaller com-
pared to the incident electric field. This case is referred to as weak scattering. In this
regime, the solution of the homogeneous wave equation for free space can be applied
for describing the local electric field. The homogeneous wave equation (cf. eq. (2.10))
with the incident plane wave field Einc(r) = Ê0e

ikr, with the wave vector k and the field
amplitude Ê0 reads

∇×∇× Einc(r)− k2Einc(r) = 0. (2.36)

Setting the local electric field equal to this solution Eloc(r) = Einc(r) and inserting it into
eq. (2.35) results into the scattered electric field at any position outside of the scattering
region

Escatt(r) = α(ω)ω2µ0

∫ ↔
G(r, r′)Einc(r′)ρ(r′)d3r′. (2.37)

This weak scattering scenario also is referred to as first Born approximation. The scattered
electric field in first Born approximation for a given incident electric field easily can be
computed for a particle density distribution described as an ensemble of point dipoles
ρ(r) = δ(r− r′) via

Escatt(r) = α(ω)ω2µ0
∑ ↔

G(r, r′)Einc(r′) (2.38)

where the scattered electric field at a certain position is the sum of the scattered fields
from each dipole of the ensemble. Thus, the weak scattering scenario can be pictured as
single scattering, since each dipole only scatters once and the dipoles do not interact with
each other.
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2.2.2. Far-field weak scattering
The first Born approximation can be utilized to derive an analytical solution for the
scattered electric field for weak and far-field scattering. To this end, the observation
points have to be far out the scattering region. This is the case if the virtual detector
is situated in the Fraunhofer distance z � D2

λ
, where D denotes the particle dimension,

λ the wavelength and z the detector distance. In this case, the dyadic Green’s function
reduces to the far-field dyadic Green’s function

↔
GFF(r, r′) = eik|r−r′|

4π|r− r′|

(
↔
I − (r− r′)⊗ (r− r′)

|r− r′|2

)
. (2.39)

Equation (2.39) is inserted into the scattered electric field in first Born approximation
eq. (2.37), which yields

Escatt(r) = α(ω)ω2µ0

∫ eik|r−r′|

4π|r− r′|

(
↔
I − (r− r′)⊗ (r− r′)

|r− r′|2

)
Einc(r′)ρ(r′)d3r′. (2.40)

Assuming a linearly polarized plane wave field Einc(r′) = Ê0e
ikr′ and considering that

z � x, y, x′, y′, z′ the following simplification can be applied

(
↔
I − (r− r′)⊗ (r− r′)

r2

)
Ê0 ≈ Ê0. (2.41)

This reduces eq. (2.40) to

Escatt(r) = α(ω)ω2µ0Ê0

∫ eik|r−r′|

4π|r− r′|
ρ(r′)eikr′d3r′, (2.42)

Further, in the far-field region the following relation holds

|r− r′| =
√

(r− r′)2,

=
√
r2 + r′2 − 2rr′,

= r

√
1− 2rr′

r2 ,

= r(1− rr′

r2 ),

= r − r̂r′.

In the second line r′2 can be omitted, since r � r′ and from the third to the fourth line a
Taylor expansion is performed around the argument 2rr′/r2. The vector pointing in the
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direction of the observation point is denoted by the unity vector r̂ = r/r. The outgoing
wave vector points in the same direction and is kout = kr̂ for elastically scattered photons.
Inserting this relation into eq. (2.42) yields

Escatt(k,kout) = α(ω)ω2µ0
Ê0e

ikr

4πr

∫
e−ikoutr′ρ(r′)eikr′d3r′. (2.43)

Further, introducing the momentum transfer between incoming and outgoing (scattered)
light

q = kout − k (2.44)

reduces the equation to the so-called Born result

Escatt(q) = α(ω)ω2µ0
Ê0e

ikr

4πr

∫
ρ(r′)e−iqr′d3r′. (2.45)

It becomes obvious that the scattered electric field is proportional to the 3D Fourier
transform of the 3D particle density

∫
ρ(r′)e−iqr′d3r′ = FT [ρ(r′)]. Absorption is not

included but all 3D information about the particle is. This equation can be even more
simplified in the limit of small scattering angles, which is shown in the following section.

Small angle x-ray scattering

To derive the scattered electric field for small angle x-ray scattering (SAXS), starting
point is the Born result for weak scattering (eq. (2.45)) with the prefactors condensed to
c0 = α(ω)ω2µ0

Escatt(q) = c0
Ê0e

ikr

4πr

∫
ρ(x′, y′, z′)e−iqxx′e−iqyy′e−iqzz′d3r′. (2.46)

An incoming plane wave that propagates in z-direction with the incoming wave vector
being k = (0, 0, k) is considered. The momentum transfer then yields (cf. eq. (2.44))

q = k

r

xy
z

−
0

0
k

 (2.47)

The z-component of q then is approximately zero for small scattering angles, since r ≈ z.
For this case, the integration can be performed with respect to z′ in eq. (2.46) over the
charge density, resulting in a charge density projected onto the x-y-plane∫

ρ(r′)dz′ = ρp(x′, y′) (2.48)

Inserting this into eq. (2.46) leads to
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Escatt(qx, qy) = c0
Ê0e

ikr

4πr

∫
ρp(x′, y′)e−i(qxx

′+qyy′)dx′dy′ = c0
Ê0e

ikr

4πr FT [ρp(x, y)] , (2.49)

where FT [ρp(x, y)] is the 2D Fourier transform of the projected particle density. Hence,
for SAXS the diffraction pattern is proportional to the squared amplitude of the Fourier
transform of the particle density projected onto the plane perpendicular to the laser prop-
agation direction. Note that this leads to the possibility of multiple particle orientations
resulting into the same diffraction pattern.
In the SAXS regime, iterative phase retrieval algorithms can be applied to obtain the
projected particle density from the diffraction patterns. They are based on alternating
Fourier transforms (FT) and inverse FT of diffraction pattern and particle density. To
reach convergence constraints on particle density and scattered electric field are applied
in each iteration. A phase retrieval algorithm is outlined in more detail in appendix D.
Further, for simple and symmetric shapes analytical solutions for SAXS can be found. For
this thesis, the solutions for a sphere (cf. chapter 5) and jet (cf. chapter 4) are important
and are derived along a one-dimensional detector trace in the following.

SAXS for a sphere

x′

R

z′ = 2
√
R2 − x′2

Figure 2.1.: Sketch of the projection of
a circle onto the z-axis. The projection
in dependence on the position x′ and the
circle radius R is z′ = 2

√
R2 − x′2.

Considering only a one-dimensional detector trace
along the x-axis with y = 0 (i. e. qy = 0), the scat-
tered electric far-field (eq. (2.49)) becomes

Escatt(qx) = c0
Ê0e

ikr

4πr

∫
ρp(x′)e−i(qxx

′)dx′. (2.50)

It can be seen that the expression only depends on
the particle density projected onto z and y with
ρp(x′) =

∫
ρ(x′, y′, z′)dy′dz′. The density of a ho-

mogeneous sphere with number density na and ra-
dius R projected onto z and y can be described via
ρp(x′) = 4na[R2−x′2]. This is clarified in fig. 2.1 for
the projection onto the z-axis. The same geometri-
cal consideration holds for the projection onto the
y-axis. Inserting this expression into eq. (2.50) yields

Escatt(qx) = nac0
Ê0e

ikr

πr

∫
(R2 − x′2)e−iqxx′dx′. (2.51)
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Performing the integration from −R to R gives

Escatt(qx) = 4nac0
Ê0e

ikr

πr

sin(qxR)− qxR cos(qxR)
q3
x

, (2.52)

The measured intensity is defined as I = cε0
2 |E|

2 and inserting eq. (2.52) yields

I(qx) = 2nacε0c0
Ê0e

ikr

πr

[sin(qxR)− qxR cos(qxR)]2
q6
x

, (2.53)

Since a sphere is radially symmetric, the scattered intensity on the detector is as well.
Therefore, to obtain the two-dimensional diffraction pattern for a spherical target qx
can be interchanged with the momentum transfer perpendicular to the laser propagation
direction qx → q⊥ =

√
q2
x + q2

y . In this case, the scattered intensity becomes

I(q⊥) = 2nacε0c0
Ê0e

ikr

πr

[sin(q⊥R)− q⊥R cos(q⊥R)]2
q6
⊥

, (2.54)

Considering this periodic function to be maximal for q = (n + 1)π/R, with n being an
integer number, the envelope of the intensity trace is

Ienv(q⊥) = 2nacε0c0
Ê0e

ikr

4πr
R2

q4
⊥
. (2.55)

Thus, the scattered intensity drops with ∝ q−4
⊥ , which is called Porod’s law [125]. A

typical scattering detector can resolve intensities up to five orders of magnitude, which
means that only scattered light up to a certain momentum transfer can be recorded on the
detector. Considering that the momentum transfer is q = 4π

λ
sin(θ/2), with the wavelength

λ and the scattering angle θ shows that for small wavelength, i. e. large photon energies,
scattering images are confined to small scattering angles. Larger scattering angles, only
can be resolved when utilizing longer wavelength.

SAXS for a jet

The density of a homogeneous jet aligned along x, i. e. a cylinder with number density
na and radius R, projected in z can be described via ρp(x′, y′) =

∫
2na
√
R2 − y′2dx′ (cf.

fig. 2.2). Inserting this expression into eq. (2.49) and considering only a one-dimensional
detector trace with x = 0 yields

E(qy) = 2nac0
Ê0e

ikr

4πr

∫ √
R2 − y′2e−iqyy′dx′dy′, (2.56)
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Figure 2.2.: Cylindric jet projected onto x-y-plane.

Performing the x′ integration over the jet length l gives

E(qy) = 2lnac0
Ê0e

ikr

4πr

∫ √
R2 − y′2e−iqyy′dy′. (2.57)

The Integration over y′ then results into

E(qy) = 2lnac0
Ê0e

ikr

4πr
πRJ1(qyR)

qy
, (2.58)

where J1 denotes the Bessel function of first kind. The measured intensity I = cε0
2 |E|

2

then yields

I(qy) = (lnac0)2cε0
|Ê0|2

8π2r2
[J1(qyR)]2

q2
y

(2.59)

The Bessel function J1(t) for t� 1 can be approximated by

Jν(t) =
√

2
πt

cos(t− π/2− π/4). (2.60)

Inserting the above expression with t = qyR into eq. (2.59), the intensity for non-zero qy
and large R yields

I(qy) = (lnac0)2cε0
|Ê0|2

4π3r2R

cos2(qyR− 3/4π)
q3
y

(2.61)

This periodic function is maximal for cos(qyR − 3/4π) = 1. Thus, the envelope of the
intensity trace is

Ienv(qy) = (lnac0)2cε0
|Ê0|2

4π3r2R

R

q3
y

, (2.62)
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The intensity drops with ∝ q−3
y , thus, is visible up to larger scattering angles for the same

wavelength compared to scattering by a sphere.

Wide angle x-ray scattering

To include wide scattering angles in the computation of the diffraction patterns, the
multislice Fourier transform method (MSFT) is a convenient approach [10]. Starting
point for its derivation is the Born result (cf. eq. (2.45))

Escatt(q) = c0
Ê0e

ikr

4πr

∫
ρ(x′, y′, z′)e−i(qxx′+qyy′+qzz′)dx′dy′dz′. (2.63)

Only a single slice j of the object with small thickness ∆z′ = z′j+1 − z′j is considered.
The particle density in this slice can be assumed to be constant in z′, thus, being only
dependent on x′ and y′. Then, applying the mean value theorem, the integration over z′

for the jth slice simplifies to
∫ z′j+1
z′j

e−iqzz
′
dz′ = ∆z′e−iqzz′j , where z′j = j∆z. Inserting this

into eq. (2.63), the scattered electric field generated by a single particle slice yields

Escatt,j(q) = c0∆z′ Ê0e
ikr

4πr

∫
ρj(x′, y′)e−i(qxx

′+qyy′+qzz′j)dx′dy′, (2.64)

= c0∆z′ Ê0e
ikr

4πr FT [ρj(x′, y′)]e−iqzz
′
j . (2.65)

To obtain the total scattered field from the object, the sum of the scattered fields from
all slices is computed via

Escatt(q) = c0∆z′ Ê0e
ikr

4πr
∑
j

FT [ρj(x′, y′)] e−iqzz
′
j . (2.66)

Hence, the scattered electric field is the phase-correct sum of the Fourier transforms of each
slice of the particle density. Equation (2.66) is only applicable to weak scattering scenarios
where absorption is negligible. However, by utilizing Lambert-Beers-law, absorption can
be introduced into the equation. Therefore, the incident electric field amplitude reaching
each slice is attenuated according to the material dependent absorption length labs via

Ê0(x′, y′, zj) = Ê0(z0)e−zj ρ̄0j(x′,y′)labs , (2.67)

with the unattenuated incident field amplitude Ê0(z0) and ρ̄0j(x′, y′) = ∑j
k=0 ρ(x′, y′, zk).

Inserting this into eq. (2.66) gives

Escatt(q) = c0∆z′ Ê0(z0)eikr
4πr

∑
j=0

(
e−zj ρ̄0j(x′,y′)labsFT [ρj(x, y)] e−iqzzj

)
. (2.68)
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This very simplified absorption model does not include backscattering, which only can
be included when considering multiple scattering scenarios. A method for solving the
scattering equation (2.35) with including these effects is derived in the following section.

2.2.3. Near- to far-field strong scattering

For the scenario of strong scattering, where incident and scattered field are on the same
order, both fields need to be taken into account for the computation of the local electric
field in eq. (2.35). This is done by adding inhomogeneous and homogeneous solution of
the wave equation eqs. (2.35) and (2.36) yielding the Born series for the local electric field
as

Eloc(r) = Einc(r) + Escatt(r) (2.69)

= Einc(r) + α(ω)ω2µ0

∫ ↔
G(r, r′)Eloc(r′)ρ(r′)d3r′. (2.70)

Figure 2.3.: Schematic presentation of discrete
dipole approximation with three representative dis-
crete point dipoles A, B and C interact with an in-
coming plane wave, radiating spherical waves. Fig-
ure taken from [93].

The local electric field is present on left
and right-hand side of the equation, thus,
the Born series needs to be solved self-
consistently. The discrete dipole approx-
imation (DDA) [99, 31] is a very power-
ful tool to accomplish this goal. In this
method, the particle is described as an en-
semble of discrete point dipoles. For such
a target, the scattering scenario can be il-
lustrated in a physical picture by a mul-
tiple scattering scenario. In such a sce-
nario each dipole of the ensemble of dis-
crete point dipoles emits a spherical wave
induced by the incident field. This corre-
sponds to the first scattering event. Such a
scenario is depicted in fig. 2.3. The gener-
ated spherical waves then induce new scat-
tered fields at all dipole positions. This

corresponds to a second scattering event. These new scattered fields induce a third scat-
tering event and so on. This physical picture indicates that it is convenient to solve the
Born series in an iterative approach, where in each step another scattering event is taken
into account. To this end, the DDA approach is described in more detail in the following.
Therefore, first the charge density for an ensemble of point charges is introduced into the
Born series to derive the scattered and local fields in the discrete dipole approximation.
Second, an iterative approach for solving the DDA problem is presented.
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Discrete dipole approximation

The discrete dipole approximation (DDA) approximates the particle density by an ensem-
ble of discrete point dipoles. Thus, the charge density can be described with a δ-function
via

ρ(r′) = δ(r′ − rn), (2.71)

where rn denotes the dipole position. The scattered field (eq. (2.35)) from such a density
distribution is

Escatt(r) = α(ω)ω2µ0

∫ ↔
G(r, r′)Eloc(r′)δ(r′ − rn)d3r′. (2.72)

The scattered electric field outside the scattering region can be obtained by integration
over all discrete particle positions

Escatt(r) = α(ω)ω2µ0
∑
n

↔
G(r, rn)Eloc(rn). (2.73)

For the scattered electric field inside the scattering domain at a certain particle position
rn the scattered field from this dipole has to be excluded. The scattered field then reads

Escatt(rj) = α(ω)ω2µ0
∑
n 6=j

↔
G(rj, rn)Eloc(rn). (2.74)

Then the local electric field at a certain particle position can be found by inserting
eq. (2.74) into eq. (2.70), yielding

Eloc(rj) = Einc(rj) + α(ω)ω2µ0
∑
n 6=j

↔
G(rj, rn)Eloc(rn). (2.75)

Solving this equation is required to finally compute the scattered electric field at the de-
tector. However, first, an expression for the complex polarizability needs to be found. For
discrete point dipoles, it is convenient to describe it in terms of the frequency-dependent
material specific atomic scattering factor f 0(ω) via

α(ω) = −f 0(ω) e2

meω2 , (2.76)

with the electron charge e and mass me. The complex atomic scattering factor can be
taken from tables [57] or can be interchanged with the complex refractive index n(ω) via
the Clausius-Mossotti relation

f 0(ω) = 3meω
2ε0

na e2

(
1− n(ω)2

n(ω)2 + 2

)
, (2.77)
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where na denotes the atomic number density. Now, every quantity in eq. (2.74) is known,
except for the local electric field. In the following an iterative approach is presented that
allows for the self-consistent computation of the local electric field.

Iterative approach for solving the Born series

For solving the DDA problem an expression for the local electric field is required. To this
end, first, the local electric field in eq. (2.75) is rewritten via

Eloc(rj) = Einc(rj) +
∑
k 6=j

Escatt(rj, rk). (2.78)

with the scattered field from the kth dipole acting on the jth dipole

Escatt(rj, rk) = −e
2µ0f

0(ω)
me

↔
G(rj, rk)Eloc(rk). (2.79)

Now, the local electric field can be obtained in an iterative approach. Starting the iteration
with the local electric fields set to zero gives

E0
loc(rj) = Einc(rj). (2.80)

for the 0th iteration for the jth dipole. This result then is inserted into the eq. (2.79)
and ultimately in eq. (2.78) to update the local electric fields. The goal is to repeat this
until the local electric field converges to a certain value. However, this solution methods
already diverges for weak scattering scenarios, as is shown in chp. 3.1. An approach to
stabilize the convergence was already introduced by Purcell and Pennypacker, who first
described the discrete dipole approximation [99]. A mixing parameter g is introduced
that steers fraction of local electric field from current and previous iteration via

Ei+1
loc (rj) = g

Einc(rj) +
∑
k 6=j

Ei
scatt(rj, rk)

+ (1− g) Ei
loc(rj), (2.81)

where i is the number of iteration and

Ei
scatt(rj) = α(ω)ω2µ0

∑
n 6=j

↔
G(rj, rn)Ei

loc(rn). (2.82)

For g = 1 the Born series result is obtained, for g = 0 only the local field from the
last iteration is taken into account. In chp. 3.1, a mixing parameter g is introduced to
efficiently solve this iterative mixing approach. The discrete dipole approximation intro-
duced here represents a numerical model for describing scattering scenarios of arbitrarily
shaped particles including absorption effects.
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method small angles large angles absorption included atomic resolution
SAXS x
MSFT x x (x)
DDA x x x x

Table 2.1.: Regimes to which different forward fit methods can be applied. (x) denotes that the absorp-
tion model in MSFT is simplified.

Synopsis

So far, three numerical methods for computing diffraction patterns from known density
distributions have been derived. For weak scattering in the far-field at small scattering
angles (SAXS), the diffraction pattern can be computed by performing the Fourier trans-
form (FT) of the projected particle density. For weak scattering at large scattering angles,
the multislice Fourier transform method (MSFT) is applicable. A simple description of
absorption is included by Beer-Lamberts-law. For strong scattering, where absorption
is not negligible, the discrete dipole approximation (DDA) has been introduced. It is
applicable to near- and far-field scattering scenarios. The numerical methods presented
can be implemented to forward fit scattering data, i. e. calculate diffraction patterns for
a set of known model shapes and compare them to the experimental diffraction patterns.
Further, especially MSFT and DDA are applicable to investigate the effect of different
laser parameters onto the scattering images, such as wavelength and pulse duration, as
done in chapter 3. Further, MSFT and DDA are utilized for forward fitting diffraction
patterns by helium nanodroplets and hydrogen jets (chps. 4 and 5). Table 2.1 provides
an overview for which regimes the different methods are applicable.
The drawback of these approaches is that for comparison to experimental data, already a
good selection of model shapes has to be utilized to find the correct shape to a diffraction
pattern. Another approach, that shortly was addressed in this chapter, is the iterative
phase retrieval applicable to weak scattering scenarios. Phase retrieval algorithms can be
utilized to gain the particle density from a diffraction pattern without prior knowledge
about the particle shape and structure. Chapter 6 is considered with three-dimensional
reconstruction of particle shapes via phase retrieval.
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3. Influence of pulse duration and wavelength
on single-shot diffraction patterns

In this chapter, the influence of different wavelengths and different pulse durations on
the diffraction pattern is investigated and discussed. For the theoretical investigation
of the effect of different wavelengths onto the diffraction pattern, the utilized numerical
model has to cover a wide range of scenarios. At large wavelength, absorption effects
are important and need to be taken into account. For short wavelength, e. g. in the
hard x-ray regime, sub-nanometer length scales need to be resolved. The discrete dipole
approximation (DDA, cf. chp. 2.2.3) meets these requirements. In this chapter, therefore
first, the discrete dipole approximation with a complex scaling ansatz is implemented
(CSDDA - complex scaling DDA). The CSDDA then is utilized to compute diffraction
patterns for a test shape, an icosahedron, in different scattering scenarios. The second
part of this chapter is dedicated to investigate the influence of wavelength on diffraction
patterns. To this end, diffraction patterns obtained by scattering from extreme ultraviolet
to soft and hard x-ray radiation are compared to each other. Comparing the CSDDA
numerical results to MSFT diffraction patterns (multislice Fourier transform method,
cf. chp. 2.2.2) allows for investigation of absorption effects at the same time. Third, the
influence of different pulse durations is explored by comparing CSDDA diffraction patterns
computed for different pulse durations and laser wavelength. The results presented in this
chapter are published in [117].

3.1. Complex Scaling Discrete Dipole Approximation
In the following, the DDA problem derived in chp. 2.2.3 is solved. Therefore, first, an
iterative mixing approach with complex scaling is presented (complex scaling discrete
dipole approximation, CSDDA). Second, a coarse graining is introduced by merging the
point dipoles to so-called super-particles to solve the CSDDA for larger wavelength. Last,
the numerical model is benchmarked for a spherical target utilizing Mie theory.

3.1.1. Theoretical framework of the CSDDA
Starting point for the derivation is eq. (2.81) that describes the local electric field Eloc
acting on the jth point dipole of an ensemble of N point dipoles that interact with an
incident laser beam Einc via

Ei+1
loc (rj) = (1− g) Ei

loc(rj) + g
[
Einc(rj) + Ei

scatt,sum(rj, rk)
]
. (3.1)
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The iteration number is denoted by i, g is the mixing parameter. The latter term reflects
the incident field and the scattered field from all other dipoles

Escatt,sum(rj) = −
N∑
k 6=j

e2µ0f
0(ω)

me

↔
G(rj, rk)Eloc(rk). (3.2)

In the original DDA description by Purcell and Pennypacker the mixing parameter g has
been chosen to be a real quantity and set to a constant value [99]. The iteration procedure
is started by setting the local electric field equal to the incident electric field for iteration
i = 0.

E0
loc(rj) = Einc(rj). (3.3)

This zeroth-order solution is now used as the initial guess E0
loc for the iterative procedure

defined via eqs. (3.1) and (3.2). The updated local fields are then utilized to update the
scattered fields iteratively. The iteration sequence can be terminated as soon as the error
expressed via R falls below a certain limit R ≤ ε. A reasonable choice for the residuum
is the sum of squared differences between old and new solution of the local electric fields

Ri+1 =
√∑

j |Einc(rj) + Ei+1
scatt,sum(rj)− Ei+1

loc (rj)|2
N

. (3.4)

The convergence of the mixing scheme can be highly accelerated by adapting the mixing
parameter g in each iteration. Considering the residuum after a given mixing step as the
target observable, the optimal mixing parameter g can be obtained from a minimization
problem. For the derivation, eq. (3.1) is inserted into eq. (3.4), which then clearly shows
the dependence of the residuum Ri+1 on the mixing parameter of the previous iteration
gi

Ri+1 =

√√√√∑j

∣∣∣giXi
j + Yi

j

∣∣∣2
N

, (3.5)

where

Xi
j = Ei

loc(rj)− Einc(rj)− 2Ei
scat,sum(rj) +

∑
k 6=j

↔
Gjk

[
Einc(rk) + Ei

scat,sum(rk)
]

︸ ︷︷ ︸
Zi+1
j

,

Yi
j = −Ei

loc(rj) + Einc(rj) + Ei
scat,sum(rj),

(3.6)

with
↔
Gjk = e2µ0f0(ω)

me

↔
G(rj, rk). For the optimal mixing parameter, the first derivative of
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the residuum (eq. (3.5)) with respect to the mixing parameter has to vanish

∂Ri+1

∂gi
= 0. (3.7)

Since X and Y are complex quantities, also the mixing parameter can, in general be
complex. However, historically, only real mixing parameters were considered, for which
optimal reduction of the residuum is achieved for

giopt,real = −
∑
j

[
(Xi

j)∗Yi
j + Xi

j(Yi
j)∗
]

2∑j |X
i
j|2

. (3.8)

If, however, the mixing parameter is allowed to be complex, optimal error reduction is
found for

giopt,complex = −
∑
j

[
(Xi

j)∗Yi
j

]
∑
j |X

i
j|2

. (3.9)

Prior to the comparison of the convergence behavior with optimized real or complex
mixing factors, it is important to check if the determination of the mixing parameter
itself requires additional numerical effort. Interestingly, no additional effort is needed,
since fields computed for calculating gi can be utilized to construct the fields Ei+1

loc (cf.
eq. (3.1)) and Ei+1

scatt,sum via

Ei+1
scat,sum(rj) = giZi+1

j +
(
1− gi

)
Ei

scat,sum(rj). (3.10)

The calculation of the Z field (defined in eq. (3.6)), however, is computationally very
expensive. The effort for the computation is ∝ N2, since the interaction between all
dipoles needs to be taken into account. The effort could be reduced by implementing a
regular equidistant grid and accelerate the calculation by FFT methods. Nevertheless,
for a construction of particles for example with a certain crystal lattice, it is convenient
to be able to distribute dipoles on a grid that is not equidistant. Hence, in the following
the acceleration is not utilized.

To test the efficiency of CSDDA, first the simplest test case one could think of is inves-
tigated. The local electric field of two identical point scatterers with f 0 = 30, separated
by a distance of d = 2 nm along the x-axis, is computed for an incident plane wave with
k = 1 nm−1 propagating along the z-axis and polarized in x direction. The setup is
sketched in fig. 3.1a. It is sufficient to only examine the local field of one of the dipoles,
since the problem is completely symmetric and the fields are equal at the two positions.
For this test case, the analytical solution can easily be calculated and is used as a bench-
mark. The local fields are computed for a real scaling (eq. (3.8), red) and a complex
scaling (eq. (3.9), blue) mixing parameter for different iterations. The results are de-
picted in fig. 3.1b. Additionally, the local field for the Born series result (gi = 1, green) is
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Figure 3.1.: a) Sketch of scenario to benchmark and test efficiency of complex scaling discrete dipole
approximation. Two point dipole scatterers with f = 30 separated by d = 2 nm (along the x-axis) are
illuminated by an incident plane wave laser field (k = 1 nm−1) that is polarized along the x-direction
and propagates along the z-direction. b) Evolution of real and imaginary parts of the x-component of
the local field for several iterations with the optimal real and optimal complex (CSDDA) mixing and the
full Born series. The initial guess (Eloc = Einc) and the analytical solution are indicated by a circle and
a cross, respectively. Figure published in [117].

shown. It can be seen that the Born series already diverges for this simple test case, the
real scaling result converges to the analytical result, however, more than 100 iterations
are necessary. The complex scaling result, on the other hand, only needs a single iteration
to reach the analytical solution. Therefore, it is obvious, that the implementation of the
complex scaling is much more efficient than the original proposition of a real scaling. The
advantage of the complex scaling discrete dipole approximation is that it is very simple
to implement and a very intuitive approach to solve the discrete dipole approximation.
However, there are more complex and sophisticated algorithms such as the Krylov sub-
space methods that can be applied in a wider regime of particle sizes and wavelengths
than CSDDA [142]. A comparison of CSDDA to the well-established Krylov-subspace
methods can be found in the appendix A.

So far, the DDA approach has been discussed for the case of atomic resolution, where
each dipole represents an individual atom. However, for larger wavelength or very large
particles, it is desirable to decrease the number of dipoles to reduce the computational
costs (that scale with N2) by merging them to super-particles that represent multiple
atoms. This is done in the following subsection.
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3.1.2. Super-particles and benchmark

Super-particles have a larger scattering strength than a single atom. To account for this
the atomic scattering factor is adjusted via

f̃ 0 = N

Nat
f 0, (3.11)

with the number of effective particles N and the particle number Nat for atomic resolution.
The applicability of this description is tested in the following.

A suitable benchmark case for a larger object is the scattering by homogeneous spheres.
The solution of the Maxwell’s equations for this scenario is given by the Mie solution [84].
Therefore, the scattering problem is solved using spherical vector harmonics, described in
more detail in app. B. For the benchmark, the scattered fraction, which is the number of
photons dNscat scattered into an element solid angle dΩ relative to the number of photons
scattered into the geometrical cross section of the target Ninc, is computed via

S(Θ) = dNscat

NincdΩ = D2I2
scatt

R2π
, (3.12)

with the scattered Intensity Iscatt, the detector distance D and the radius R. The scattered
fraction is calculated along a one-dimensional detector for a silver sphere of radius R =
30 nm with a laser wavelength of λ = 13.5 nm and the corresponding atomic scattering
factor f 0 = 23.00 − 16.52i [57]. The corresponding refractive index can be computed
via eq. (2.77) and is n = 0.8896 + 0.0779, which is utilized for calculation of the Mie
solution. The number density can be described with na = 3

4πr3
s
with the Wigner-Seitz

radius rs = 1.59 Å for bulk silver, the corresponding particle number for atomic resolution
is Nat =

(
R
rs

)3
. The scattered fraction is computed for different dipole numbers that are

arranged in a face-centered-cubic lattice, see fig. 3.2a. The numbers in brackets of the
legend are the in-medium wavelength in units of inter atomic distances λ̃ = λ/|n|d with
the dipole-dipole distance d and the refractive index n, which basically is the number
of dipoles per wavelength. It can be seen that smaller dipole numbers result into a
deviation from the Mie result especially at larger scattering angles. This is because at
larger scattering angles the smallest distances contribute most to the scattering signal
and these are not resolved sufficiently anymore for the small super-particle numbers. At
zero scattering angle, the result is only proportional to the particle number and therefore
is equal for all cases. For the investigated case, a resolution of λ̃ = 5.92 is required to
achieve a reasonably high accuracy to describe features at high scattering angles. This is
highlighted by the inset of fig. 3.2a. Note, that the number of iterations required to reach
convergence is unaffected by the number of particles computed. Actually, the number of
iterations only depends on the size parameter kR (wave number times radius) for a certain
refractive index. This is illustrated in fig. 3.2b by the number of iterations (convergence
reached at R ≤ 10−5) versus the size parameter for a silver sphere, for the same laser
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Figure 3.2.: a) Scattered fraction S(Θ) = dNscat
NincdΩ of a silver sphere with R = 30 nm and f0 = 23.00 −

16.52i with fcc crystal structure for different particle numbers (see legend) and corresponding Mie solution
for the scattering of λ = 13.5 nm radiation. The scattered fraction indicates the number of photons dNscat
scattered into an element of solid angle dΩ relative to the number of photons impinging on the geometrical
cross section of the target Ninc. Note that the highest particle number corresponds to atomic resolution.
For the CSDDA, a convergence criterion R < 10−5 has been used. The numbers in brackets in the legend
labels indicate the in-medium wavelength in units of the inter atomic distance λ̃ = λ/|n|d. b) Cluster-size
dependent convergence analysis with optimal real and optimal complex (CSDDA) mixing parameter for
the same cluster and laser parameters as in a. The chosen particle numbers did not affect the convergence
speed. Figure published in [117].

wavelength and atomic scattering factor as before. It can be seen, that the number of
iterations increases for larger size parameters, for the CSDDA it ascends moderately,
whereas for the real scaling it exponentially increases.

In summary, the DDA with a complex scaling mixing approach represents a simple and
intuitive description of the discrete dipole approximation. The method could successfully
be benchmarked for a spherical silver target including absorption. In the following sec-
tion, the CSDDA is utilized to investigate the influence of different wavelength onto the
diffraction pattern on the example of a silver icosahedron. The diffraction patterns are
further compared to MSFT diffraction patterns to analyze the applicability of different
numerical models in different scattering regimes.

3.2. Influence of laser wavelength on diffraction patterns
Depending on the utilized wavelength and the target in single-shot diffractive imaging
experiments, absorption can either be negligible or play an important role in the scattering
scenario. Further, the wavelength influences the resolvable scattering angle, as has been
discussed in chapters 1.2 and 2.2.2. In addition to that, the wavelength impacts the
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Figure 3.3.: a) Schematic setup of the scattering scenario. An incident plane wave polarized in x
propagating in z-direction interacts with an icosahedron. b) depicts the icosahedron as seen by the laser.
Parts of the figure published in [117].

wavelength / photon energy f1 f2 absorption length labs

20 nm / 62 eV 8.38 18.16 8.3 nm
13.5 nm / 92 eV 23.00 16.52 13.6 nm
5 nm / 248 eV 14.13 4.69 129.1 nm

1.24 nm / 1 keV 38.9 18.21 134.1 nm
0.5 nm / 2.48 keV 40.54 5.18 1169.0 nm

Table 3.1.: Relevant atomic scattering factors and absorption lengths for silver for different wavelength
and photon energies as tabulated from [57].

applicable numerical model for reconstruction of the particle density from the diffraction
pattern (cf. chp. 2.2). In what way the wavelength influences the points stated above can
be clarified by systematically studying diffraction patterns for different laser wavelengths
and numerical models. In this section, this is done exemplarily for a silver icosahedron
utilizing CSDDA and MSFT to compute single-shot diffraction images.

The influence of the wavelength on the diffraction pattern is tested for the scenario,
depicted in fig. 3.3a, a laser is propagated in z-direction, polarized in x and interacts with
a silver icosahedron with outer radius of R = 120 nm. The 2D detector screen is situated
in the far field at 200R. The particle as seen by the laser is depicted in fig. 3.3b. The
diffraction patterns are computed for five different wavelength from λ = 20 nm to λ =
0.5 nm, listed in tab. 3.1. The diffraction patterns are computed with CSDDA (chp. 3.1)
and MSFT (chp. 2.2.2), for both methods with and without absorption. The following
simulation parameters are utilized for the CSDDA. For λ = 20 nm and λ = 13.5 nm, the
icosahedra are computed with N = 1.2×106 super particles, the three shorter wavelengths
with N = 7.8 × 106 dipoles, the corresponding atomic scattering factors (f 0 = f1 − if2)
can be found in tab. 3.1. There, also the absorption lengths for the multislice Fourier
transform method are displayed. The three dimensional particle density for the MSFT
calculation is described on 60× 60× 60 grid points, the Fourier transforms are computed
with a resolution of 1024× 1024 grid points.
Figure 3.4a-d show the diffraction patterns computed with CSDDA, fig. 3.4e-h show the
MSFT results. The left halves of all diffraction patterns are computed with absorption
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taken into account, the right halves show the respective first Born approximation, hence,
no absorption is included. Basically three observations can be made from the diffraction
patterns.

(i) Absorption has a large impact on diffraction patterns, especially for the larger wave-
length. The effect of absorption onto the diffraction pattern manifests as a blurring of the
fringes and a rising of the scattered intensity at larger scattering angles. The influence
of absorption decreases for smaller wavelength, the differences between full Born solution
and first Born approximation relative to the central region becomes less distinct.

(ii) The simple absorption model in the MSFT calculations delivers different results than
the CSDDA patterns. The blurring of fringes due to absorption is larger for the MSFT
diffraction patterns of the long wavelengths and smaller for the shorter wavelength com-
pared to the respective CSDDA results. This behavior can be attributed to the lack
of backscattering in the MSFT absorption model. For the longest absorption length in
fig. 3.4h almost no difference between absorption and no absorption can be observed,
whereas in the CSDDA result the fringes are a bit blurred compared to the result without
absorption (cf. fig. 3.4d and h).

(iii) For larger wavelength, diffraction patterns are not point symmetric. This is because in
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this regime, larger scattering angles can be resolved (cf. sec. 2.2.2), in which the scattering
image contains information about the 3D orientation of the particle. In the region of small
wavelength, i. e. small scattering angles, the diffraction pattern only is dependent on the
projected density of the target. This becomes evident for fig. 3.4h (λ = 1.24 nm), where
the MSFT result matches the Fourier transform of the projected density, shown in the
lower right quarter of the figure (small angle x-ray scattering - SAXS).

From the observations, two different scattering regimes can be identified. The small angle
scattering regime that can be accessed by short wavelength radiation with photon energies
of keVs. In this regime, diffraction patterns are only dependent on the projected target
density. Due to the small effect of absorption on those scattering images, phase retrieval
algorithms can be applied to retrieve information about the target from the diffraction
patterns. In the wide angle scattering regime with rather long wavelength with photon
energies of tens to hundreds of eV, 3D information about the target can be inferred from
the diffraction pattern, however, the interpretation gets complicated due to the large
impact that absorption has on the diffraction patterns.
Figure 3.5a shows the complete CSDDA diffraction pattern of the silver icosahedron of
fig. 3.4b with absorption for λ = 13.5 nm. This pattern can be compared to a scattering
image for a single-shot diffraction experiment performed at the free electron laser FLASH
for the same laser wavelength for a pulse duration of τ ≈ 100 fs for silver nanotargets
in free flight. The experimental image shows the same blurring of the fringes as the
simulation. Hence, the blurring of the fringes in the experiment also can be explained
with the effects of absorption and does not occur from a deformation of the target due
to the interaction with the laser pulse. However, the CSDDA result has been computed
with only a single frequency. Experimentally, the creation of a monochromatic laser pulse
with finite pulse durations is impossible. Therefore, in the following, the effect of a finite
pulse duration onto scattering images is investigated.
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3.3. Influence of pulse duration on diffraction patterns
For ultrafast imaging of e. g. transient plasma dynamics on the attosecond time scale, pulse
durations on the same order are required. Attosecond imaging might become feasible in
the future when utilizing high harmonic generation sources (cf. chapter 5.1). So far,
the assumption has been made that the laser beam from a high intensity x-ray source is
monochromatic, this is only correct in the continuous wave limit. Finite pulse durations
only can be achieved utilizing light with a certain bandwidth. For a Fourier limited pulse,
the pulse duration τ and bandwidth ∆ω are connected via

∆ω
2π τ = TBP, (3.13)

with the time-bandwidth-product TBP, which is linked to the pulse shape. Hence, short
pulses can only be achieved with large bandwidths resulting into the laser spectrum con-
sisting of multiple frequencies. Therefore, in this section, the influence of a large band-
width onto the diffraction pattern is investigated. First, the evolution of a diffraction
pattern from an icosahedron is analyzed for decreasing pulse durations, i. e. increasing
bandwidth. Second, the decreasing fringe contrast induced by decreasing pulse durations
is determined by introducing a simple measure to estimate the pulse duration where the
fringe contrast is lost.

3.3.1. Diffraction patterns for different pulse durations
The discrete dipole approximation does not include time, it is a static method where only
a single frequency can be considered. To describe the interaction of a nanotarget with a
laser beam with a finite pulse duration, the corresponding bandwidth (cf. eq. (3.13)) can
be spectrally decomposed. In linear response, the scattered intensities from each spectral
component can be computed independently and can be added up weighted according to
the pulse shape to obtain the total scattered intensity. In this analysis, a Gaussian pulse
shape is implemented. Therefore, the amplitudes Ẽ of the spectral components are chosen
corresponding to a Gaussian pulse via

Ẽ = Ẽce
(−τ(ω−ωc)

2 )2

, (3.14)

with the center frequency ωc, the center field amplitude Ẽc and the pulse duration τ . The
influence of the pulse duration is tested for the same scattering scenario as in the previous
section (cf. fig. 3.3a) for a slightly smaller icosahedron with R = 64.5 nm. The central
laser wavelength is set to λ = 13.5 nm and CSDDA diffraction patterns are computed for
three different pulse durations and the cw (continuous wave) solution. The corresponding
atomic scattering factor can be found in tab. 3.1. The diffraction patterns are depicted
in fig. 3.6. It can be seen that for decreasing pulse duration (which corresponds to an
increasing bandwidth), the fringe contrast decreases. At τ = 1 fs, which is a much smaller
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Figure 3.6.: CSDDA diffraction patterns for a silver icosahedron with R = 64.5 nm and a central laser
wavelength λ = 13.5 nm for different pulse durations indicated in the lower right corner of each pattern.
Figure modified from [117].

pulse duration than typically achieved in FEL experiments, the diffraction pattern does
not differ from the cw solution. Only for very short pulses from 100 as the diffraction
pattern starts to alter, visible as blurring of the fringes. The overall shape of the diffraction
pattern persists such that the information about the target orientation remains accessible.
At τ = 50 as, the fringes are no longer visible so the size information about the target is
lost. This means that the future prospect of attosecond imaging is feasible.

In the following section, the blurring of the fringes is investigated more systematically.
To this end, the fringe contrast which represents a simple measure of the blurring effect
is introduced. Further, a simple estimate for the critical pulse duration, where the fringe
contrast and therefore the size information is lost, is derived as function of wavelength
and scattering order.

3.3.2. Fringe contrast in dependence on wavelength
As the starting point, a contrast parameter is introduced to quantify the loss of informa-
tion on the size. In the following, the procedure underlying the definition of the contrast
measure is motivated based on sample results. Figure 3.7a shows slices through the diffrac-
tion pattern obtained for a icosahedron with kR = 20 and λ = 5 nm with a pulse duration
of τ = 100 as (dark red line) and the cw-solution (orange line). The fringes cannot be
separated anymore, when the ratio between maxima and preceding minima is equal or
larger than one. The ratio is called γ parameter in the following and is depicted here
for the fourth scattering order. This γ parameter is computed for different wavelength
and different scattering orders in dependence on the pulse duration, displayed in fig. 3.7b.
Three conclusions can be drawn from the plot. First, the γ parameter is larger for all
scattering orders for the shorter wavelength. The reason is that the smaller influence of
absorption on the diffraction pattern results into sharper maxima compared to the larger
wavelength already for the cw-solution. Second, the fringe contrast gets lost at longer
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pulse durations for higher scattering orders, i. e. at larger scattering angles. Third, the
fringe contrast starts to decrease for both wavelength only at pulse durations of about 1 fs.
Therefore, single-shot diffraction experiments at free electron lasers with typical pulse du-
rations of τ ≈ 100 fs are not influenced by the finite bandwidth (cf. fig. 3.5). However, for
future attosecond imaging experiments, it is necessary to find a trade-off between utilized
wavelength (which influences the resolvable angular range) and pulse duration to achieve
the highest possible information content in the diffraction patterns.

An analytical estimate for this trade-off can be derived by assuming that the fringe con-
trast disappears when the position of the maximum of the highest frequency of the laser
pulse and the preceding maximum of the lowest frequency overlap. Assuming a spherical
non-absorbing target, the position of the sth maximum is approximately (cf. sec. 2.2.2)

qR = π(s+ 1) (3.15)

with the radius R, the transfer momentum q = 2k sin(Θ/2), the scattering angle Θ and
the wave number k for the central frequency of the pulse. For small scattering angles the
transfer momentum can be written as q = kΘ. Inserting this relation into eq. (3.15) gives
the scattering angle for a certain maximum s via

Θs = π(s+ 1)
kR

. (3.16)

The fringe contrast at a certain maximum is vanishing when the maximum s of the highest
frequency component of the spectrum k + ∆k/2 and the maximum s − 1 of the lowest
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frequency component k −∆k/2 overlap. This is the case, if

Θs(k + ∆k/2) = Θs−1(k −∆k/2) (3.17)

which then gives

π(s+ 1)
R(k + ∆k/2) = πs

R(k −∆k/2) (3.18)

(s+ 1)(k −∆k/2) = s(k + ∆k/2) (3.19)
k

∆k = s+ 1
2 . (3.20)

This relation can be connected to the critical pulse duration where the fringe contrast
vanishes via eq. (3.13), which yields (with ∆ω = ∆k/c, the speed of light c and k = 2π/λ)

τcrit =
λTBP(s+ 1

2)
c

. (3.21)

This critical pulse durations for the corresponding cases with TPB = 0.44 for a Gaussian
pulse shape are indicated in fig. 3.7 by triangles. Although the critical pulse durations from
the simple estimate are a bit shorter than the critical pulse durations computed from the
CSDDA results, the overall behavior is equivalent: for smaller wavelength and larger scat-
tering orders the critical pulse durations are shorter. Therefore, the analytical estimate
gives a simple relation for finding the trade-off between wavelength and pulse duration
to estimate the achievable information content in an attosecond single-shot diffraction
experiment.
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4. Characterization of hydrogen jets by
single-shot x-ray diffractive imaging

The characterization of hydrogen from the strongly coupled state to a high energy density
(HED) plasma state is crucial for the understanding of astrophysical objects such as
giant planets [52] and for achieving laser driven fusion [74]. The reason is that hydrogen
at high pressures is a major component of planets interiors and a key ingredient for
inertial confinement fusion. For understanding these systems measurements have to be
taken at similar or the same conditions. Spectrally resolved x-ray Thomson scattering
(XRTS) is a well-established diagnostic tool for warm dense matter and can be utilized for
characterizing basic plasma properties such as temperature, density and ionization state
[104, 51, 102, 47]. The plasma properties are accessed by measuring the inner structure
of the target via the static and dynamic structure factor. XRTS is usually performed
utilizing lab-based laser systems, but also can be performed at free electron lasers [46].
The experiments are highly repetitive and typical targets are foils, where the target can
be assumed to be seen as infinite by the laser. However, there are other available targets
such as droplets or jets. Hydrogen jets for example are a suitable target to investigate
the plasma properties of hydrogen in a infrared (IR) pump - x-ray probe setup, where the
plasma state is created by interaction with an IR laser and probed with an x-ray beam.
These jets are created by injecting liquid H2 from a cryostat (cooled with helium) into
a vacuum chamber. The evaporative cooling results into a liquid or solid cylindrical jet
of pure hydrogen [69]. At a certain point the jet experiences a breakup and scatters into
nanodroplets due to the Rayleigh instability [95].

In this chapter, the influence of a jet target is investigated and how its finite shape effects
the actual goal of achieving information about the inner structure of the target. To this
end, first, characteristic properties of diffraction patterns obtained by jet scattering are
analyzed. Therefore, typical diffraction patterns of cylindrical jet targets are investigated
utilizing different numerical methods. Further, the influence of the shape and density
distribution and the structural disorder on the diffraction pattern is examined. In the
second part, different structural jet properties and how they effect the corresponding
diffraction patterns are analyzed. Different effects of jet shape variation are connected to
experimental diffraction patterns from a FLASH experiment conducted on a hydrogen jet
target.
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Figure 4.1.: Diffraction pattern of a 10µm hydrogen jet obtained at FLASH (by Ulf Zastrau et al.)
with a laser wavelength of λ = 13.5 nm.

4.1. Single-shot x-ray diffractive imaging as diagnostic
tool

In single-shot diffractive imaging experiments, structure, shape and size of finite nanotar-
gets can be resolved. In the following, the possibility to also extract plasma properties
from diffraction patterns is analyzed. To this end, it is important to understand what
contributes to the scattering signal. The scattering signal is a sum of the scattering by the
shape of the target and its inner structural disorder, in the following denoted by coherent
and incoherent scattering. From the coherent signal from forward scattering the static
structure factor can be directly measured [44], i. e. from the elastically scattered intensity
from tightly-bound electrons the spatial structure of the target can be accessed. The
incoherent signal emerging from weakly bound quasi-free electrons encodes the dynamical
structure factor, i. e. excitations to the system. In typical diffractive imaging experiments
on finite nanotargets, the coherent signal is orders of magnitude larger than the incoherent
scattering. However, as mentioned above for deducing information about excitations to
the system, incoherent scattering has to be evaluated.
In this chapter, it is investigated whether a jet is a suitable target to resolve coherent and
incoherent scattering on the same detector. A typical experimental diffraction pattern of
a hydrogen jet obtained at FLASH by Ulf Zastrau et al. with a laser wavelength of λ =
13.5 nm is displayed in fig. 4.2a. The diffraction pattern shows distinct features. Multiple
straight streaks with high-frequency fringes along the Θ-axis can be observed that decrease
in intensity the further away from the center. The following analysis aims to understand
which characteristic features of the diffraction pattern emerge from coherent scattering,
which from diffuse scattering and which from possible jet breakups. In this section,
therefore first, the basic scattering scenario on a hydrogen jet target is presented shortly.
Second, the coherent signal that depends on the spatial structure of the jet is computed
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Figure 4.2.: Schematic setup for a jet scattering experiment. The incident Gaussian laser pulse with
spot size w hits a cylindrical jet with radius R. The diffraction pattern is obtained on a detector in
distance D. The scattering angle is denoted by Θ.

and analyzed utilizing the discrete dipole approximation with a cylindrical jet target with a
regular grid, i. e. without structural disorder. Third, the same target is investigated with
an inner structural disorder by introducing a random particle distribution. Averaging
diffraction patterns from multiple random particle distributions then includes coherent
and incoherent signal.

4.1.1. Jet scattering scenario
A single-shot diffractive imaging experiment on a solid or liquid jet can be performed as
follows: a high intensity short laser pulse, e. g. from a free electron laser (FEL) hits the
jet and the scattered intensity is recorded on a far-field detector. The field amplitude of
the laser pulse can be described as a Gaussian pulse via

Ê0 = Êmaxe
−x

2+y2

w2 , (4.1)

with the maximal field amplitude Êmax and the positions x and y. The spot size is
denoted by w. In the following, the discrete dipole approximation is utilized to describe
such a scattering experiment. The laser wavelength is set to λ = 13.5 nm throughout the
chapter. In this wavelength regime, the refractive index of hydrogen is basically unity
[57] and therefore absorption can be neglected. Thus, the scattered electric fields can be
computed in first Born approximation (see chp. 2.2.3). The hydrogen jet, is implemented
as a cylinder aligned along the x-axis with radius R and length ∆x′, as depicted in fig. 4.2.
The detector is placed in the far-field with a distance to the jet center D = 200R. The
particle density for hydrogen at solid state is ρ = 0.8988× 10−4 g/cm3, which results into
a Wigner-Seitz radius of rs = 1.8 Å. In the following subsection the coherent scattering
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Figure 4.3.: a)-c) Diffraction patterns for different Gaussian spot sizes of a cylindrical jet computed with
DDA in first Born approximation. The laser wavelength is set to 13.5 nm, the jet radius to R = 100 nm.
a) w = 100 nm, b) w = 200 nm and c) w = 500 nm. d) Scattered intensities for x = 0 corresponding to
a-c.

signal from a hydrogen jet is investigated.

4.1.2. Coherent scattering: basic structure and influence of finite
focus size

The coherent signal emerges from elastically scattered photons and can be reproduced
by a regular dipole distribution. Therefore, the dipoles are distributed on an equidistant
grid with sub-wavelength distance λ/3, which reflects the continuum case. The cylinder
radius is set to R = 100 nm and the height to ∆x′ = 10w. To not only examine the basic
structure of a diffraction pattern from a cylindric target, but also the influence of the finite
laser focus size, the scattering scenario is characterized for three different focus sizes of
the incident Gaussian pulse, w1 = 100 nm, w2 = 200 nm and w3 = 500 nm. The resulting
diffraction patterns are depicted in fig. 4.3a, b and c respectively. All three diffraction
patterns show the same basic structure; a streak with interference fringes perpendicular
to the jet resulting from Mie scattering. The fringe distance is dependent on the jet radius
and is equivalent for all three diffraction patterns, as can be seen in fig. 4.3d showing the
intensity traces along x = 0. The maximal signal scales with the number of irradiated
particles squared n2. It is larger for larger w, since the larger the spot size the more
particles are irradiated. The streak signal decreases with larger scattering angle with q−3,
as indicated by the dashed line. For a spherical target the scattering signal decreases with
q−4, hence, the signal from jets is visible up to larger scattering angles (cf. chp. 2.2.2).
These results show that from coherent scattering the size and density of the jet can be
deduced. The difference between the three diffraction patterns in figs. 4.3a-c displays in
the width of the streak. For w1 = 100 nm it is larger than for w2 = 200 nm, but smaller
than for w3 = 500 nm. The exact values of the widths of the streaks can easily be accessed
from the diffraction patterns at Θ = 0 ◦ by extracting the full width at half maximum
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(FWHM). The streak widths then can be computed via wdet = FWHM/
√

4 ln 2 and are
wdet,1 = 441 nm, wdet,2 = 294 nm, and wdet,3 = 507 nm, respectively. This clarifies the
observation that the line focus on the detector does not change linearly with the incident
laser spot size. To understand this behavior, in the following an analytical expression for
the line focus on the detector is derived.

Analytical expression for line focus width on the detector

To derive the width of the line focus on the detector, a jet with radius R aligned along the
x-axis is considered. The detector is placed in z-direction and its distance D is assumed
to be much larger than R. In this case, the scattered electric field only depends on
the particle density projected onto the x-y-plane, as has been shown in chp. 2.2.2. The
scattered electric field for the introduced scenario reads (cf. eq. (2.56))

E(x, y) =
∫

2nac0
Ê0e

ikr

4πr

√
R2 − y′2e−iqyy′dy′dx′, (4.2)

with the number density na and c0 = α(ω)ω2µ0, where α is the frequency ω dependent
polarizability and µ0 the permeability of free space. The distance between jet and detector
is denoted by r. Note that D is the smallest distance between detector and jet, and r is
the distance between any point of the jet and any point on the detector. To derive the
width of the line focus it is sufficient to only consider a single detector trace along x with
y = 0. In this case, qy = 0 and eq. (4.2) becomes

E(x) =
∫

2nac0
Ê0e

ikr

4πr

√
R2 − y′2dy′dx′, (4.3)

Inserting the expression for the Gaussian field amplitude eq. (4.1) into eq. (4.3) yields

E(x) = nac0Êmax

∫ eikr

2πre
−x
′2+y′2

w2
√
R2 − y′2dy′dx′, (4.4)

Performing the integration of y′ gives

c1 =
∫ R

−R

√
R2 − y′2e−

y′2

2w2 dy′ = 1
2πR

2e−
R2

4w2

(
I0

(
R2

4w2

)
+ I1

(
R2

4w2

))
, (4.5)

with In(z) denoting the modified Bessel function of first kind. The integrand is just a
factor and is denoted by c1 in the following. For small Gaussian spot sizes much smaller
than the detector dimensions w � x only parts of the jet with x′ � x will contribute
to the scattering signal and the distance between jet and detector can be assumed to be
constant r = D. However, for larger w, this relation does not hold anymore. Thus, for
the general case r is expressed via r(x′) =

√
D2 + (x− x′)2. Inserting this into eq. (4.4)
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gives

E(x) = nac0c1Êmax

∫ ∫ eik
√
D2+(x−x′)2

2π
√
D2 − (x− x′)2

e−
x′2
w2 dx′, (4.6)

The term
√
D2 + (x− x′)2 = D

√
1 + (x− x′)2/D2 can be replaced by its Taylor expansion

around (x − x′)2/D2, i. e. by D + (x − x′)2/2D, since x, x′ < D. Further, the following
relation holds 1/

√
D2 + (x− x′)2 ≈ 1/D. Inserting both expressions into eq. (4.6) yields

E(x) = nac0c1
Êmaxe

ikD

2πD

∫
exp

(
ik

(x− x′)2

2D

)
exp

(
−x

′2

w2

)
dx′, (4.7)

Further, the remaining prefactors are condensed into c2 = 2nac0c1
Êmax
2πD , which then sim-

plifies eq. (4.7) to

E(x) = c2e
ikD

∫
exp

(
ik

(x− x′)2

2D

)
exp

(
− x′2

2w2

)
dx′. (4.8)

Expanding (x− x′)2 and rearranging gives

E(x) = c2e
ikD

∫
exp

(
−
[

1
2w2 −

ik

2D

]
x′2 −

[
ikx

D

]
x′
)
dx′. (4.9)

The integral over x′ can easily be performed by considering the relation
∫

exp(−(ax2 + bx))dx =
√
π

a
exp

(
b2

4a

)
. (4.10)

In this case, a = 1
2w2 − ik

2D and b = ikx
D
, and the electric field with c3 =

√
π
a
becomes

E(x) = c2c3e
i(kD+x2/2D) exp

(
−k2x2

4D2
2w2D

D − ikw2

)

E(x) = c2c3e
i(kD+x2/2D) exp

(
−k2x2w2D

2D2
D + ikw2

D2 + k2w4

)

E(x) = c2c3e
i(kD+x2/2D) exp

(
−2k2w2x2

2D2 + 2k2w4 − i
k3w4x2

2D(D2 + k2w4)

) (4.11)

The scattered intensity is proportional to the squared scattered electric field amplitude
I ∝ |E|2 and thus yields

I ∝ exp
(
− k2w2x2

D2 + k2w4

)
= exp

(
− x2

w2
det

)
(4.12)
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Comparing the left and right hand side of the equation yields the line focus on the detector

wdet =
√

D2

k2w2 + w2. (4.13)

There are two limits for the line focus of the scattered intensity; (i) for the spot size of
the Gaussian beam going towards zero and (ii) going towards infinity

lim
w→0

wdet = D

kw
, (4.14)

lim
w→∞

wdet = w. (4.15)

The relation is depicted in fig. 4.4 in dependence of the laser spot size for constant de-
tector distance D = 20000 nm and λ = 13.5 nm. The Gaussian spot size is varied from
w = 30 nm to w = 500 nm to cover both limits. Further, the line focus on the detector
can be computed numerically via the DDA and MSFT method (cf. chps. 2.2.3 and 2.2.2).
Therefore, the scattering from a cylindrical jet with R = 100 nm interacting with a Gaus-
sian pulse with different spot sizes w is calculated. The length of the cylinder is set to
∆x′ = 10w. The DDA result is again computed in first Born approximation, and the
super particles are distributed on an equidistant grid with sub-wavelength distance λ/3.
The density resolution of the jet for the MSFT method is set to 300×300 and the Fourier
transform resolution to 1024× 1024. From the diffraction patterns, the line focus can be
extracted via wdet = FWHM/

√
4 ln 2. The resulting line foci are depicted as filled circles

in fig. 4.4, the MSFT as dark gray and the DDA as light gray. It becomes evident that the
MSFT result reproduces the analytical solution only in the limit of w → 0. The reason
is that MSFT only includes far-field components of the scattered electric field. MSFT
therefore only is applicable for small spot sizes, where the detector dimensions are much
larger than the spot size of the incident beam. This regime is diffraction dominated. The
DDA method reproduces the full analytical model since near- and far-field components
are included in the computation of the scattered electric field. It therefore can be uti-
lized for any detector dimension. For a typical jet scattering experiment with an incident
beam with wavelength of λ = 13.5 nm, a spot size of w = 20µm and a detector distance
of ≈ 1 m, the resulting width of the line focus on the detector is only 110µm.

4.1.3. Incoherent scattering: Scattering from structural disorder
In the previous subsection, the numerical diffraction patterns were computed with an
equidistant grid representing the continuum limit of scattering and ignoring the local
structure. To also reproduce the local structure with structural disorder the N = 106

super-particles are randomly distributed inside the jet and compared to the homogeneous
particle distribution. The scattered electric field is computed by DDA, with the same
simulation parameters as in the previous section for a spot size of w = 100 nm. The re-
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Figure 4.4.: Width of line focus on detector for a jet with R = 100 nm for different spot sizes of incident
Gaussian laser pulse. The numerical solutions are denoted by the circles, black for MSFT and gray
for DDA. Details on the simulation parameters can be found in the text. The analytical solutions are
indicated by the solid lines, black for the full model (eq. (4.13)), gray for the limit of w → 0 and the gray
dotted line shows the line focus for w → ∞.

sulting diffraction patterns are depicted in fig. 4.5a and b, schematic particle distributions
are depicted above each plot.
The diffraction pattern of the randomized particle distribution shows the same features as
the pattern from the regular distribution, i. e. a pronounced streak with fringes. However,
an additional feature can be observed. Beside the streak a speckle signal from the struc-
tural disorder is visible. Averaging the scattering signal over 100 diffraction patterns with
different random particle distributions, depicted in fig. 4.5c, gives the contribution from
incoherent scattering, i. e. inelastic scattering. It can be seen that the incoherent signal
is independent on the scattering angle. The sum of the intensity along the scattering
angle shown in the plot above clarifies that the incoherent signal decreases the further
away from the streak. At scattering angles of about 60 ◦ the diffuse signal and the signal
from the shape of the jet are on the same order, hence, they can be resolved on the same
detector in an experiment.
The analysis shows that single-shot diffractive imaging on jet targets opens the possibility
to resolve the scattering from elastic and inelastic scattering on the same detector. In
a pump-probe scenario the evolution of signal strength of incoherent signal compared to
coherent signal could be utilized to measure e. g. the plasma temperature. The coherent
signal can be analyzed for changes in the jet shape and size. The latter possibility is
further analyzed in the following section, where variations in jet shape on the diffraction
pattern is discussed and compared to experimental results.

4.2. Effects of jet shape onto diffraction patterns
The key motivation for the analysis of this section is a FEL single-shot imaging experi-
ment performed by Ulf Zastrau et al. at the free electron laser FLASH in Hamburg. The
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Figure 4.6.: Three example experimental single-shot diffraction patterns from FLASH (by Ulf Zastrau
et al.) obtained with a laser wavelength of λ = 13.5 nm and a 10µm hydrogen jet.
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experiment has been conducted on a 10µm cryogenic hydrogen jet with a laser wavelength
of λ = 13.5 nm. The detector was situated around scattering angle Θ = 21 ◦ with an area
of 25.4 mm × 25.4 mm (1881 × 1882 pixels) and a detector distance of ≈ 280 mm). The
expected width of the Mie streaks on the detector is wdet = 36µm (or a full width at half
maximum of FWHM = 120µm), which corresponds to 3 pixels (or 9 pixels) of the detec-
tor. Three example diffraction patterns from the experiment are depicted in fig. 4.6a-c.
Basically four observations can be made.

(i) Fringes from the Mie scattering with a high frequency can be observed along the Θ-axis.

(ii) The streaks are straight for all diffraction patterns and for fig. 4.6a and c they are
tilted around the laser propagation direction.

(iii) Some streaks are tilted in other directions than others in the same diffraction pattern.
This can be observed in fig. 4.6b.

(iv) Beside bright streaks there are less bright streaks observable on both sides next to it.

Due to the generation process of the FLASH beam in a self-amplified spontaneous emis-
sion (SASE) process, the beam profile can have spikes, since it basically results from an
amplification of noise [86, 35]. Smooth pulse shapes can be obtained in seeded FELs. The
multiple Mie streaks on the detector could therefore emerge from the noisy FEL spec-
trum. Another possibility for the features in the diffraction patterns can be variations in
the jet shape. Therefore, in the following, different jet shape variations are investigated
and connected to features in the experimental diffraction patterns. However, first, the
Mie fringes can be utilized to retrieve information about the size of the jet by a simple
Fourier transform. Afterwards, the effect of the jet shape is analyzed, by investigating the
effect of a rotation of the jet, the effect of a breakup of the jet due to a possible Rayleigh
instability and last, due to a modulation of the jet surface.

4.2.1. Jet size
First, the jet radius can be identified by taking the Fourier transform of the experimental
diffraction patterns. The Fourier transform is performed for ten experimental scattering
images including the ones shown in fig. 4.6. The resulting average of the ten Fourier
transforms is depicted in fig. 4.7, which reveals a peak at the jet diameter 12.5µm which
is similar to the expected 10µm.

The shape of the jet and its orientation with respect to the propagation direction of the
laser can have an effect on the diffraction pattern. A microscope image of the hydrogen
jet of the FLASH experiment is shown in fig. 4.8. It becomes evident that the jet does
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Figure 4.7.: Average 1D Fourier transform of single-shot diffraction patterns from fig. 4.6 (and seven
additional patterns from the experiment described in the text) along Θ. The peak around 12µm lies very
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Figure 4.8.: Microscope image of the 10µm jet imaged in the jet scattering experiment described in
more detail in the text.
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jet length is set to ∆x′ = 10w and the laser spot size to w = 100 nm. The cylinder is sliced into 100 slices
and the dimensions of each Fourier transform are 1024 × 1024. The rotation angles are α = 5 ◦ (b) and
15 ◦ (c).

not have an ideal cylindrical shape, it rather looks like a combination of spheres and
cylinders. Further, it is not straight, which results in the jet in the interaction region
not always being positioned perpendicular to the laser propagation direction, as assumed
for the previous simulations. The role of structure and orientation of a jet is therefore
investigated in the following.

4.2.2. Rotation of the jet
The analysis is carried out for the diffraction dominated regime, where the detector dis-
tance is much larger than the spot size of the incident laser pulse D � w. Therefore, the
MSFT method is sufficient to compute the diffraction patterns as shown in fig. 4.4. The jet
length is set to ∆x′ = 10w with w = 100 nm, the detector distance to D = 280 mm and the
wavelength to λ = 13.5 nm for all calculations. First, the impact of different orientations
of a cylindrical jet is investigated. Therefore, a cylindrical jet with radius R = 100 nm
and different rotation angles α around the propagation direction is investigated, a sketch
of the scenario is depicted in fig. 4.9a.
The resulting diffraction patterns are depicted in fig. 4.9b-c for α = 5 ◦ and α = 15 ◦,
respectively. The rotation around the z-axis or laser propagation axis results into the
equivalent rotation of the diffraction pattern around the same angle. Such a behavior can
also be seen in the experimental diffraction patterns in fig. 4.6a and c, where the straight
Mie streaks show a tilting around the laser propagation axis.
Further, the jet can be tilted inside the scattering plane, this is sketched in fig. 4.10a.
The rotation angle γ describes the rotation around the y-axis. Figure 4.10b-g shows
diffraction patterns for different γ. The upper panel corresponds to a cylinder radius of
R = 50 nm, and the lower panel to R = 100 nm. Two observations can be made from the
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plots. First, the rotation around the y-axis leads to a bending of the Mie streak. The
larger the rotation angle is, the more curved the streak gets. Second, the radius does not
have an impact on the bending. Since in the experiment only scattering angles from 21 ◦
to 24.5 ◦ are visible such a bending cannot be observed.

4.2.3. Jet breakup
After some time after the creation of the hydrogen jet, it breaks up, ultimately into
droplets, which is called Rayleigh breakup. This behavior is imitated by two cylinders
separated by a distance d, such a jet is displayed in fig. 4.11a. The diffraction patterns
for a R = 100 nm jet in dependence on different d are shown in figs. 4.11b-d. The space in
between the cylinders leads to a signal with fringes next to the streaks. The fringe distance
gets smaller, the larger the space between the two cylinders gets. For d = 100 nm the
signal appears as multiple streaks left and right to the main streak, where the fringes are
aligned. Such patterns can also be seen, when comparing to the experimental diffraction
patterns, especially fig. 4.6c shows very bright streaks with less bright streaks to the left
and right with the same fringe structure.
Another possibility that can be investigated is that part of the broken up jet rotates and
then is differently oriented than the other part of the jet. Such a system is sketched
in fig. 4.11e, where the angle α describes the rotation around the z-axis. Diffraction
patterns for d = 100 nm are computed for different rotation angles. The results are shown
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Figure 4.11.: a) Sketch of a cylindrical jet with radius R that is broken up with a distance d. e) Sketch of
the same scenario with the right cylinder rotated around the x-axis around rotation angle α. Diffraction
patterns b)-d),f)-h) are computed with MSFT with and a wavelength of λ = 13.5 nm. The jet length
is set to ∆x′ = 10w and w = 100 nm. The radius is set to 100 nm. The first row diffraction patterns
correspond to the sketch in a, the second row to e. The radii and/or rotation angles are indicated in the
upper left corners of each plot.

in figs. 4.11f-h. The diffraction patterns show the same signature of less bright signal
beside the main streak as seen in fig. 4.11d. In fig. 4.11f it seems like the main streak is
rotated by an angle of 5 ◦. However, figs. 4.11g and h clarify that the scattering pattern
is an overlay of a straight and rotated streak, emerging from not rotated and rotated
part of the jet. Thus, if parts of the jet are rotated differently, the diffraction pattern
can have streaks with different directions. This effect can be seen in the experimental
scattering image fig. 4.6b, e. g. by comparing the streaks around (Θ, x) = (22 ◦,−0.4 cm)
and (Θ, x) = (22 ◦,−0.2 cm).

4.2.4. Modulation of jet surface
Last, the surface modulation of the jet (cf. fig. 4.8) is implemented as an oscillating jet
radius as sketched in fig. 4.12a, i. e. a cylindrical shape with the surface described as sine
function with a certain depth Rout − Rin (outer minus inner radius) and the period ∆.
Scattering images for Rin = 100 nm and different Rout and ∆ are depicted in figs. 4.12b-g.
Figure 4.12b shows that the modulation of the jet surface leads to the appearance of less
bright streaks left and right to the main streak, with decreasing brightness the further
away from the main streak. Additionally, the fringe positions are alternating for streaks
directly next to each other. Comparing fig.4.12b and e shows that a larger outer radius
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Figure 4.12.: a) Sketch of a cylindrical jet with radius Rin with periodic surface modulation of height
Rout and period ∆. Diffraction patterns b)-g) are computed with MSFT with and a wavelength of
λ = 13.5 nm. The jet length is set to ∆x′ = 10w and w = 100 nm. The inner radius is set to Rin = 100 nm.
The modulation parameters are indicated in each upper left corner of the plots.

does not influence the distance between the streaks, but leads to streaks being visible
further away from the main streak. Figures 4.12b-d and e-g, respectively, show that for
increasing ∆, the distance between the streaks decreases. Due to the overlay of the streaks
the fringes are blurring for ∆ = 500 nm. Comparing figs. 4.12b and e, c and f, and d and
g, shows that a larger outer radius leads to the streaks further away from the main streak
being visible up to larger scattering angles and the main streak being visible up to smaller
scattering angles. This leads to a ’V’-shaped streak structure for Rout = 140 nm. Such a
streak structure cannot be observed in the experimental diffraction patterns.

In summary, the jet shape has a large impact on the diffraction pattern. First, a rota-
tion of the jet can lead to a rotation of the diffraction pattern or a bending of the Mie
streaks. Second, a Rayleigh breakup can lead to additional streaks appearing next to the
main streak due to the scattering by the slit occurring because of the breakup. Third,
the modulation of the jet surface can lead to additional streaks beside the main streak
with a ’V’-like structure of the streaks. Although a few of the investigated effects could
be recognized in the experimental images it cannot be verified if the effects in the ex-
perimental diffraction pattern actually result from these jet structures, or if they result
from the noisy FEL spectrum. However, it could be verified that the jet shape has a
large impact on the diffraction pattern and single-shot diffractive imaging is a valuable
tool to characterize the jet shape and structure. The experiment could be improved by
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performing it at a seeded FEL with a well behaved spectrum that allows for a simpler
analysis and interpretation of diffraction patterns.
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5. Coherent diffractive imaging of single helium
nanodroplets with a high harmonic
generation source

Free electron lasers are large size facilities and only a few exist all over the world. The
access to the few facilities is limited and the execution time of experiments always is
confined to just a few days. Lab-based single-shot diffractive imaging experiments would
therefore be a huge improvement for scientists. Although, the brightness of high harmonic
generation (HHG) sources is magnitudes lower than of free electron lasers [83], they are a
promising light source to fulfill this dream. HHG sources offer the possibility to perform
experiments with zero jitter and they generate phase-stable multicolor pulses that can
possibly be utilized for time-resolved measurements with attosecond pulse trains and
isolated attosecond pulses. Further, lab-based experiments can be conducted over a longer
time span allowing for large parameter scans. Diffractive imaging experiments with HHG
pulses on supported particles have already been demonstrated for 2D artificial objects with
multiple exposure [116, 101, 145] and in single-shot mode [101, 23], and on 3D objects
with a very high resolution of 22 nm [121]. Lab HHG experiments on free nanoparticles
were lacking, though this target class is of particular interest for investigation of structure
formation, particle growth and light-induced dynamics.

This chapter describes the framework and my contribution to the first successful lab-based
single-shot diffractive imaging experiment on free-flight helium nanodroplets utilizing a
HHG source. The experiment has been conducted by Nils Monserud and Daniela Rupp
et al.. In the following, the basics of high harmonic generation are recalled to point out
that a multicolor-analysis is required for experiments with HHG radiation. Second, the
single-shot diffractive imaging experiment is outlined and third, the multicolor analysis
is presented in detail. The analysis is basically divided into two parts. First, optical
properties of helium nanodroplets are extracted by multicolor simplex Mie fits of spherical
droplets and second, 3D information about the shape of non-spherical helium droplets is
identified by evaluating the wide angle scattering data from the XUV (extreme ultraviolet)
diffraction patterns via forward fits utilizing the multislice Fourier transform method
(MSFT) and the complex scaling discrete dipole approximation (CSDDA). In this regime,
phase retrieval algorithms are not applicable, because on the one hand, absorption is
not negligible and second the diffraction pattern contains scattering signal from multiple
frequencies. The multicolor analysis is published in [109].
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Figure 5.1.: Setup of the high harmonic generation (HHG) single-shot diffractive imaging experiment.
A Ti:sapphire laser pulse is focused into a HHG-cell filled with xenon gas. The generated HHG radiation
is focused into the interaction region with a toroidal mirror system. The IR is blocked by Mo/Si mirrors.
Helium nanodroplets are generated by supersonic expansion through a cryogenic 5 K valve with a pressure
of 80 mbar. After the HHG pulse hit the helium droplets the ions are detected with a time-of-flight
spectrometer and the scattered photons are recorded with a micro-channel plate (MCP) detector combined
with a phosphor screen. Figure from [109].

5.1. High harmonic generation
The high harmonic generation (HHG) process due to the interaction of an atomic gas with
a high-intensity infrared laser can be described via the three-step model [24]. First, due
to the interaction with the laser field (with an electric field amplitude comparable to the
electric field in atoms) an electron can tunnel through its atomic core potential. Second,
the freed electron gets accelerated in the laser field away from the core. Third, as the laser
field changes its direction the electron gets accelerated back to the core and recombines
with it, emitting a photon whose energy depends on ionization potential and photon
energy of the driving laser. For this process laser intensities on the order of 1014 W/cm2-
1015 W/cm2 are required. In every laser half-cycle an attosecond pulse is generated that
consists of multiple odd harmonics of the incident laser frequency. Therefore, attosecond
imaging experiments enabled by attosecond HHG pulses will rely on a multicolor analysis
for extracting useful information from the diffraction patterns.

5.2. Single-shot x-ray diffractive imaging with a high
harmonic generation source

A schematic overview of the experimental setup of the HHG single-shot diffractive imaging
experiment is depicted in fig. 5.1. A Ti-Sapphire laser with a central wavelength of 792 nm
with a pulse duration of 35 fs and a pulse energy of 33 mJ at a repetition rate of 1 kHz, is
focused into a xenon gas-cell. The interaction of the near-infrared (NIR) laser pulse with
the xenon atoms results into the generation of high harmonics. In the experiment the
HHG pulse achieves output energies of about 2µJ, corresponding to a very high conversion
efficiency of 1.6 × 10−4 and average power of 2 mW. The HHG pulse consists of four
harmonics, the 11th (72 nm, 17.2 eV), the 13th (61 nm, 20.4 eV), the 15th (53 nm, 23.5 eV)
and the 17th (47 nm, 26.6 eV). The numbers in brackets denote corresponding wavelengths
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and photon energies. The pulse duration is τ ≈ 20 fs. The HHG pulse is focused into the
interaction chamber via a micro-focusing setup [39]. The IR intensity is decreased in the
reflection from a Si mirror and subsequently blocked by an aluminum filter. The helium
droplets are generated by expansion of high-purity 4He at a pressure of 80 bars and are
expected to be superfluid. The helium nanodroplets to be imaged are guided into the
interaction chamber through a conical skimmer. In the interaction region the HHG pulse
hits preferably a single helium nanodroplet and the scattered light is amplified using a
large micro-channel plate (MCP) (∅: 75 mm) with a center hole (∅: 3 mm) combined with
a phosphorus screen that converts the signal to optical light, which then is recorded on a
shot-to-shot basis with an out-of-vacuum camera. From 3×105 measurements, 2300 single-
shot diffraction patterns showed distinct structures and 12700 weak, unstructured signal.
These statistics indicate that the experiment was conducted in the single-particle limit.
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Figure 5.2.: a) Measured average high harmonic
generation (HHG) radiation spectrum with four har-
monics in extreme ultraviolet, the harmonic order
is indicated above each peak. b) Sketch of real
and imaginary part of refractive index n = 1 −
δ + iβ of bulk liquid helium. Solid lines from
measurements [130, 78], scatters from tabulated
values (NIST database, http://physics.nist.
gov/PhysRefData/FFast/html/form.html). Fig-
ure from [109].

As already mentioned, the diffraction pat-
terns are obtained with a multi-frequency
pulse. The average spectrum measured of
the HHG light beam is depicted in fig. 5.2a
and shows that the 13th and 15th harmonic
have the largest signal and therefore are
expected to contribute most to the scat-
tered field. Figure 5.2b sketches the corre-
sponding refractive indices of the frequen-
cies with n = δ − iβ (light grey: δ, dark
grey: β) assembled from bulk liquid helium
measurements (solid lines) [130, 78] and
tabulated values from the NIST database
(scatter) [19]. The refractive indices of the
13th and 15th harmonic lie very close to
the helium 1s2p resonance at 20.4 eV. For
helium nanodroplets they are expected to
largely depend on the droplet size in this
regime [66]. The existence of multiple har-
monics in the spectrum complicates the
analysis, but is unavoidable if attosecond
pulse trains or isolated attosecond pulses
are generated [70]. The analysis gets complicated further by the unknown refractive
indices of two harmonics being very close to a resonance. In the following section, a mul-
ticolor fit to extract optical properties of helium from the experimental data is presented
by utilizing a simplex optimization for spherical diffraction patterns, where the intensity
of each harmonic can be computed utilizing Mie theory.

http://physics.nist.gov/PhysRefData/FFast/html/form.html
http://physics.nist.gov/PhysRefData/FFast/html/form.html
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5.3. Multicolor simplex Mie fits
The diffraction patterns of the helium nanodroplets are obtained with four frequencies
at once, where the refractive indices of two harmonics are close to the 1s2p resonance of
helium. The refractive indices of these harmonics are expected to depend on the droplet
radius [66], the remaining refractive indices are expected to be close to the values for
bulk helium. Therefore, in this section, a fit routine is presented to extract the uncertain
optical properties of the 13th and 15th harmonic from the diffraction patterns. To this
end, diffraction patterns that can be directly assigned to a spherical shape are selected
from the data. This is the case for scattering images with spherical fringes stemming
from Mie scattering (which are ≈ 76 % of the scattering images). In total 18 suitable
diffraction patterns are singled out.

Since the diffraction patterns are radially symmetric it is sufficient to only consider their
radial integrals. The radial integral can be described as sum of scattered Mie intensities
from the four harmonics via

Ifit =c11Imie,11(R, δ11, β11) + c13Imie,13(R, δ13, β13)
+ c15Imie,15(R, δ15, β15) + c17Imie,17(R, δ17, β17),

(5.1)

where cj is a scalar that adjusts the ratio by which the jth harmonic contributes to the
total signal. The Mie intensities Imie,j of each harmonic are a function of droplet radius
R and refractive index n = 1 − δj + iβj. Hence, the total scattered signal is dependent
on the intensity ratios, the cluster radius and the refractive indices corresponding to the
four harmonics. By fitting eq. (5.1) to the radial profiles it is possible to extract these
parameters. Such a multidimensional fit can be performed by the simplex algorithm (or
Nelder-Mead method) [90], which is an iterative search algorithm seeking the minimum
of a n-dimensional function. In this analysis, the error which is defined via

ε =
∑(log(Iexp)− log(Ifit))2∑(log(Iexp))2 , (5.2)

is minimized where Iexp denotes the radial integral from the experimental diffraction pat-
tern. To compute the Mie intensities in each simplex iteration the Mie theory is utilized.
It is an efficient and fast method to compute scattered electric fields from spherical tar-
gets applicable to all wavelengths, sizes and refractive indices. The method is described
in more detail in app. B.

For performing the simplex Mie fits on the 18 diffraction patterns, first, the experimental
diffraction patterns have to be converted to be comparable to Mie theory. Therefore, the
correct center of each diffraction pattern needs to be found and the nonlinear detector
efficiency of the MCP detectors needs to be taken into account. These steps are described
in the following subsection. Afterwards, the converted diffraction patterns are fitted with
the simplex routine. First, it is shown that no reliable fit result can be found when fixing
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the refractive indices to the values for bulk helium. Then, in the third part of this section,
the optical properties of 13th and 15th harmonic are fitted. To this end, a Monte Carlo
sampling is incorporated into the simplex Mie fit to sufficiently cover the large parameter
space.

5.3.1. Preparing the multicolor scattering images
For fitting the multicolor scattering images with a simplex Mie fit, the radial profiles have
to be computed by angular averaging. However, the center of the diffraction patterns
varies from shot-to-shot due to wavefront tilts at the droplet positions. To this end,
the correct center of the diffraction patterns needs to be obtained before computing the
radial integral. Further, the MCP detector exhibits a nonlinear detection efficiency due
to saturation effects. Therefore, a nonlinearity function is introduced to compensate for
this.

Radial profiles for fluctuating centers

The position of the center of the diffraction pattern varies from shot to shot and influences
the shape of the radial profile. The correct center can be found by fitting the analytical
solution for the scattered intensity of a sphere to each experimental diffraction pattern.
Neglecting absorption, the scattered intensity of a sphere Isph with radius R in dependence
on the distance to the center r reads (cf. eq. (2.54))

Isph(r) ∝ (sin(q(r)R)− qR cos (q(r)R))2

q(r)6 , (5.3)

where the momentum transfer can be expressed via q(r) = k r
z

= k

√
(x−xm)2+(y−ym)2

z
The

wave number is denoted by k, the center point by (xm, ym) and the detector distance by
z. In the following the ratio of size parameter kR and z are set to the constant c = kR/z,
which is a scalar that affects the fringe distance of the diffraction pattern. Inserting this
into eq. (5.3) and assuming the experimental data having a constant noise level Inoise
yields

Isph(r) = Inoise + ImaxR
6 sin (cr) + cr cos (cr)

(cr)6 , (5.4)

where r = r(x, y, xm, ym) depends on pixel position (x, y) and center point (xm, ym).
This equation is applied to fit each experimental diffraction pattern by minimizing ε =∑(log(Iexp) − log(Isph))2. The fit parameters are the droplet radius R, the noise level
Inoise, the maximum intensity Imax and the center point (xm, ym). The fit is performed
with a simple least square approach. Useful information about the droplet size, however,
cannot be obtained from this fit, since absorption is not included and the light frequency
is only included as effective fringe distance. Figure 5.3a shows one spherical diffraction
pattern from the set of 18 experimental patterns and fig. 5.3b shows the corresponding
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Figure 5.3.: a) Example diffraction pattern of spherical helium droplet from experiment of fig. 5.1 b)
diffraction pattern with fitted center (red cross) and mask applied to compute the radial profile obtained
by radial integration (c). Details on fit procedure to find the center are described in the text. Parts of
the figure are published in supplementary material of [109].

fitted center as red cross. For computing the radial profile and fitting the center only the
upper part of the diffraction pattern shown in fig. 5.3b is taken into account. As can be
seen in fig. 5.3a, the lower part of the diffraction pattern shows a dent in the scattered
intensity, which is present in each diffraction pattern due to the detector geometry. The
MCP detector consists of electron multiplying channels that are tilted by 8 ◦, resulting in
scattered photons arriving at this angle hitting the electron multiplier not as efficiently
as under other scattering angles. Hence, in this area, the scattered intensity seems to be
lower than it actually is and is not useful for the analysis. The resulting radial profile
obtained from fig. 5.3b is depicted in fig. 5.3c. Around the detector hole, through which
the unscattered high intensity laser beam is led, the radial profile is not evaluable due to
saturation effects of the detector. Therefore, for the simplex Mie fits the radial profile is
evaluated from 10 ◦ to 40 ◦ for the following analysis, illustrated by the dashed grey lines.

Nonlinear detection efficiency

The obtained radial profiles need to be corrected for the nonlinear detection efficiency of
the MCP [10, 14]. It has been shown that the saturation effect can be characterized by
an exponential efficiency function [10] via

Idet = Iαexp, (5.5)

where Idet is the intensity obtained on the detector, Iexp the true experimental intensity,
and α denotes the nonlinearity factor. To estimate the nonlinearity factor the radial
integral from fig. 5.3c is compared to Porod’s power law (cf. eq. (2.55)) with different
nonlinearity factors, depicted in fig. 5.4. The calculation of the momentum transfer cor-
responds to the 15th harmonic with the supposedly highest contribution to the scattering
signal. The best agreement with Porod’s law (dashed black line) can be found for α = 0.5.
This value is used in the following to compute the true experimental intensity from the
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Figure 5.4.: Radial profile of fig. 5.3c with different nonlinearity factors α. The solid black line shows
the intensity decay according to Porod’s law (I ∝ q−4, cf. eq. (2.55)).

radial profiles.

Note that a diffraction pattern taken with a single frequency far from a resonance would
be more convenient to predict the nonlinearity factor, since Porod’s law only is applicable
to weak scattering where absorption is negligible.

5.3.2. Fits of literature values

The 18 radial profiles with corrected intensity now can be fitted with the simplex Mie
fit routine. The goal is to fit the optical parameters close to the 1s2p resonance of
helium, since they are expected to be size dependent. However, first, the case that the
literature values for bulk helium can reproduce the experimental results needs to be
considered. Therefore, the intensity ratios c11, c13, c15 and c17 are fixed according to the
average spectrum (cf. fig. 5.2a)

c11 = 0.21
c13 = 0.82
c15 = 1.0
c17 = 0.29,
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Figure 5.5.: Exemplary simplex Mie fit results for three measured radial profiles. Fit parameter is the
droplet radius, refractive indices are fixed to n11 = 0.97 + i0, n13 = 1.14 + i0.032, n15 = 1.03 + i0.029 and
n17 = 1.0036 + i0.041 according to the literature values for bulk liquid helium (fig. 5.2b). Intensity ratios
are fixed to c11 = 0.21, c13 = 0.82, c15 = 1.0 and c17 = 0.29 according to the HHG spectrum (fig. 5.2a).

and the refractive indices are interpolated from the literature values depicted in fig. 5.2b
and are

n11 = 0.97 + i0
n13 = 1.14 + i0.032
n15 = 1.03 + i0.029
n17 = 1.0036 + i0.041.

The only fit parameter then is the droplet radius R. The starting parameters for each
simplex fit are randomly chosen between 300 nm and 600 nm. The fit results for three
radial profiles are depicted in fig. 5.5. It can be seen that no fit matching the experi-
mental data can be found with the refractive indices fixed to the literature values and
the intensity scalings fixed according to the average HHG spectrum. Therefore, in the
following, the intensity ratios are taken as additional fit parameters. The corresponding
starting parameters are chosen between 0 and 1. The refractive indices of the four har-
monics are again fixed to the literature values (cf. fig. 5.2b). Resulting fits for three
selected radial profiles are shown in fig. 5.6. All 18 fits are depicted in the appendix
fig. C.1. The fitted radial profiles describe the characteristics of the experimental data
quite well, however, looking at the fitted intensity ratios for the 18 diffraction patterns,
depicted in fig. 5.7, the intensities of the four harmonics are fluctuating a lot. The 17th
harmonic gives the highest contribution to the signal for 14 of the diffraction patterns,
which is not expected when comparing to the spectrum obtained in the experiment (cf.
fig. 5.2), where the 17th harmonic has the lowest contribution. This indicates that the
fit results do not correspond to a physically meaningful set of parameters. Hence, the
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Figure 5.6.: Exemplary simplex Mie fit results for three radial profiles. Fit parameters are the droplet
radius and the intensity ratios. Refractive indices are fixed to n11 = 0.97 + i0, n13 = 1.14 + i0.032,
n15 = 1.03 + i0.029 and n17 = 1.0036 + i0.041 according to the literature values for bulk liquid helium
(fig. 5.2b). Parts of Figure published in supplementary material of [109].

refractive indices fixed to the literature values of bulk helium do not reflect the optical
constants for liquid helium droplets. Therefore, the intensity ratios are fixed according to
fig. 5.2a to the average HHG spectrum in the following. Note that although here the fitted
intensity ratios fluctuate unrealistically strong, it becomes evident that they have a large
influence on the diffraction pattern and therefore need to be measured from shot-to-shot
in future experiments. The refractive indices of the 11th and 17th harmonic lie far away
from the 1s2p resonance of helium and therefore are well known and are fixed to their
literature values (cf. fig. 5.2b) in the following. The refractive indices of the 13th and
15th harmonic, however, are very close to the resonance and therefore are expected to
vary with droplet radius. They are fitted along with the droplet radius in the following,
resulting into five fit parameters.

5.3.3. Fits of optical properties
For fitting the optical properties of the 13th and 15th harmonic along with the droplet
radius, the simplex Mie fit needs to be performed with five fit parameters. Usually such a
large parameter space results into an error map with many local minima. Unfortunately,
with the simplex optimization it cannot be circumvented to end up in a local and not the
real global minimum when performing the minimization. The located minimum depends
on the starting parameters, i. e. different starting parameters can result in different fitted
parameters corresponding to a certain local minimum. In the following a Monte Carlo
sampling is implemented to scan the large parameter space and find the actual global
minimum. To this end, first a typical error map is examined to verify the necessity of
such a sampling. Second, the number of necessary Monte Carlo steps is estimated by a
bootstrap method. Last, the optical properties of helium droplets for the 13th and 15th
harmonic of the HHG pulse are fitted utilizing the Monte Carlo sampling simplex Mie fit.
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Figure 5.7.: Intensity ratios corresponding to simplex Mie fits of the 18 selected diffraction patterns.
Published in supplementary material of [109].

Monte Carlo sampling

In the following, a typical structure of the error landscape of the large parameter space
is analyzed to check how densely the parameter space needs to be scanned to find the
global minimum. To additionally investigate the interrelations of the refractive indices
of the 13th and 15th harmonic, the error (eq. (5.2)) is characterized on the example of
one selected radial profile (fig. 5.3c) for different δ13 and δ15. The radius and imaginary
parts of the refractive indices are fixed to R = 344 nm, β13 = 0.032 and β15 = 0.029.
The refractive indices of the 11th and 17th harmonic are now and in the following fixed
to n11 = 0.97 + i0 and n17 = 1.0036 + i0.041 according to the literature values for bulk
liquid helium (cf. fig. 5.2b). The resulting error map is depicted in fig. 5.8. Two main
observations can be made from the plot. (i) As expected, multiple local minima exist, a
large global minimum can be found around δ13 = δ15 = 0.1. (ii) A mirror axis at δ13 = δ15
can be seen. This structure of the error map indicates that the 13th and 15th harmonic
can interchange their roles in the contribution to the diffraction pattern. To find the real
global minimum in the ensemble of local minima, the simplex fit procedure is started with
multiple sets of starting parameters. This is done by starting with random parameters in
certain limits, which is referred to as Monte Carlo sampling in the following. The limits
are set to these values for the fit parameters:

Rmin = 300 nm to Rmax = 600 nm
δmin = −0.3 to δmax = 0.2

βmin = 0 to βmax = 0.07

The fit parameters corresponding to the global minimum then are the ones for the Monte
Carlo step with the lowest error. To test how many Monte Carlo steps are required to find
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Figure 5.8.: Error map for different δ13 versus δ15 for radial profile fig. 5.3c with fixed radius R =
343.6 nm and β13 = 0.032 and β15 = 0.029. The refractive indices of the 11th and 17th harmonic are
set to the literature values n11 = 0.97 + i0 and n17 = 1.0036 + i0.041, the intensity ratios are set to
c11 = 0.21, c13 = 0.82, c15 = 1.0 and c17 = 0.29 according to the HHG spectrum (fig. 5.2a).
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Figure 5.9.: Standard error (eq. (5.6)) versus number of Monte Carlo steps for the five fit parameters
radius, and real and imaginary part of the 13th and 15th harmonic of the HHG pulse, respectively.
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the real global minimum, a bootstrap method is applied to the experimental diffraction
pattern from fig. 5.3. This is done as follows. The simplex fit with random starting
parameters is computed for a certain number of Monte Carlo steps. Such a run results
into one set of fitting parameters corresponding to the lowest error. This is repeated
B times, resulting into B sets of fitting parameters, for which a standard error can be
computed via

εse =
√

1
B

∑
(x− x̄)2, (5.6)

where x denotes the fit parameter and x̄ its average. If a certain number of Monte Carlo
steps gives the same set of fit parameters in each run, the standard error will be zero. The
standard error for different number of Monte Carlo steps is shown in fig. 5.9 for the five
fit parameters, respectively. It can be seen that the error drops at 130 Monte Carlo steps
to 10−5 for δ13, β15 and the radius and to 10−15 for δ15 and β13. Hence, in the following,
the number of Monte Carlo steps is set to 150 to ensure finding the real global minimum.

Fit results

The simplex fit procedure is performed for the 18 radial profiles with 150 Monte Carlo
steps with random starting parameters in the same limits as before. Resulting Mie fits
for three example radial profiles are depicted in fig. 5.10. All fit results are shown in the
appendix, figs. C.2 and C.3. To each experimental radial profile Mie fits can be found
where either the 13th or 15th harmonic has the main contribution to the total scattered
signal. Figure. 5.10a-c shows the fits with the 13th harmonic dominating the signal and
fig. 5.10d-f the corresponding fits with the 15th harmonic dominating. The corresponding
fitted radii are indicated in the upper right corner of each plot. Radii for the 15th harmonic
being dominant are larger compared to the fits with the 13th harmonic having the main
contribution to the total signal. This indicates that the harmonics exchange their roles
in the contribution to the total signal by slightly adapting the droplet radius. This is
the case for all of the 18 fits, when looking at the radial distribution for the two cases,
depicted in fig. 5.11. The fitted droplet radii for the 13th harmonic being dominant are
slightly smaller than for the 15th harmonic having the main contribution to the scattering
signal.
The fitted refractive indices are depicted in fig. 5.12a and b for the 13th harmonic and
the 15th harmonic being dominant, respectively, as δ versus β plots. The values underline
the behavior of the harmonics exchanging their role, as in fig. 5.12a and b the clouds of
red (13th harmonic) and blue (15th harmonic) dots exchange their positions.
Figure 5.13a-d shows δ and β of 13th and 15th harmonic as a function of radius R for
the 13th harmonic being dominant and fig. 5.13e-f the corresponding plots for the 15th
harmonic being dominant. The solid black line in each plot shows a linear regression
revealing a dependence of δ and β on the droplet radius. The imaginary parts of the
refractive indices decrease with larger radii for all cases. The δ parameter for the dom-
inating harmonic (see figs. 5.13a and f) decreases with larger radius, the δ parameter
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Figure 5.10.: Simplex Mie fit results for three selected radial profiles; a and d, b and e and c and f
correspond to the same experimental radial profile, respectively. Fit parameters are the droplet radius
and refractive indices of the 13th and 15th harmonic of the HHG pulse. The refractive indices of the
11th and 17th harmonic are fixed to n11 = 0.97 + i0 and n17 = 1.0036 + i0.041 according to the literature
values for bulk liquid helium (fig. 5.2b). The intensity ratios are fixed to c11 = 0.21, c13 = 0.82, c15 = 1.0
and c17 = 0.29 according to the HHG spectrum (fig. 5.2a). a-c) Simplex Mie fits with 13th harmonic
having the main contribution to the radial profile. d-f corresponding fits, where the 15th harmonic has
the main contribution to the signal. Published in supplementary material of [109].
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Figure 5.11.: Radial distribution of 18 simplex Mie fits. Fit parameters are droplet radius and refractive
indices of the 13th and 15th harmonic of the HHG pulse, respectively. The refractive indices of the 11th
and 17th harmonic are fixed to n11 = 0.97 + i0 and n17 = 1.0036 + i0.041 according to the literature
values for bulk liquid helium (fig. 5.2b). The intensity ratios are fixed to c11 = 0.21, c13 = 0.82, c15 = 1.0
and c17 = 0.29 according to the HHG spectrum (fig. 5.2a). Dark gray indicated radii for fits where 13th
harmonic has main contribution to the fit, light gray the radii for fits where 15th harmonic has main
contribution to the fit. Published in supplementary material of [109].
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Figure 5.12.: Resulting refractive indices of 18 simplex Mie fits with fit parameters of droplet radius and
refractive indices of the 13th and 15th harmonic of the HHG pulse, respectively. The refractive indices
of the 11th and 17th harmonic are fixed to n11 = 0.97 + i0 and n17 = 1.0036 + i0.041 according to the
literature values for bulk liquid helium (fig. 5.2b). The intensity ratios are fixed to c11 = 0.21, c13 = 0.82,
c15 = 1.0 and c17 = 0.29 according to the HHG spectrum (fig. 5.2a). a) Resulting δ and β values for
fit where 13th harmonic has main contribution to the radial profile. b) Resulting δ and β values for fit
where 15th harmonic has main contribution to the radial profile. Published in supplementary material
of [109].
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Figure 5.13.: Resulting refractive indices versus radius of 18 simplex Mie fits. Fit parameters are droplet
radius and refractive indices of the 13th and 15th harmonic of the HHG pulse, respectively. The refractive
indices of the 11th and 17th harmonic are fixed to n11 = 0.97 + i0 and n17 = 1.0036 + i0.041 according
to the literature values for bulk liquid helium (fig. 5.2b). The intensity ratios are fixed to c11 = 0.21,
c13 = 0.82, c15 = 1.0 and c17 = 0.29 according to the HHG spectrum (fig. 5.2a). Left column shows
values for fit where 13th harmonic has main contribution to the radial profile, the right column the values
for fit where 15th harmonic has main contribution to the radial profile.
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Figure 5.14.: Errors for each fit. Black: refractive indices fixed to literature values and intensity scalings
c open. Intensity scalings fixed and refractive indices open, main contribution to Mie signal from 13th
harmonic (blue) or 15th harmonic (red). Published in supplementary material of [109].

for the other harmonic (see figs. 5.13b and e) increase with larger radius. This behavior
supports the tendency of the harmonics exchanging their roles in the Mie fit by simulta-
neously adapting the droplet radius and indicate a systematic size dependence. However,
the remaining ambiguity of the two solutions needs to be resolved for a final conclusion.

To estimate whether one of the two possible solutions can be stated as more trustworthy,
the error of the best fits for the two cases is analyzed, depicted in fig. 5.14 (blue denotes
the 13th harmonic, red the 15th harmonic giving the main contribution to the signal). It
can be seen that on the one hand the average error for the 13th harmonic being dominant
is slightly smaller than for the 15th harmonic being dominant. Note that both solutions
always deliver errors smaller than the error for the fit with the literature values of the
refractive indices (black). On the other hand, the values for the 15th harmonic being
dominant lie closer to the literature values (cf. fig. 5.12b). These observations are not
sufficient to single out one of the two possible solutions.

Although, the determination of refractive indices of harmonics with similar photon en-
ergies is difficult, the multicolor imaging can be a promising tool to indirectly measure
these unknown optical constants. The experiment could be improved by measuring the
HHG spectrum on a shot-to-shot basis, since it became clear that the exact contribution
of each harmonic to the signal is of importance. Further, is important to characterize the
detection efficiency of the detector well, preferably with light far away from resonances.
In addition to that, repeating such an experiment with a single unknown optical constant
or the harmonics with unknown optical constants lying further apart would simplify the
analysis drastically. This could be accomplished by slightly changing the fundamental
wavelength or by using a higher photon energy for the high harmonic generation, which
would result in the photon energies of the harmonics being further apart.
The multicolor analysis presented here, is a key requirement for inferring useful informa-
tion from diffraction patterns obtained with HHG sources. Therefore, such an analysis is
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Figure 5.15.: Diffraction patterns from HHG single-shot diffractive imaging experiment (depicted in
fig. 5.1). Scattering image from a sphere (a), from ellipsoids (b,c) and from prolate shapes (d-f). Figure
from [109].

also necessary for future ultrafast imaging experiments, e. g. for resolving ultrafast plasma
dynamics.

So far, the diffraction patterns with spherical fringes have been utilized for extracting
optical properties from the data. However, not only spherical droplets were present in the
experiment. About 23 % of the diffraction patterns showed elliptical or streaked patterns.
In the following section, non-spherical diffraction patterns are evaluated with the forward
fit methods MSFT and CSDDA for assigning three-dimensional shapes. This is possible
since the XUV radiation of the HHG pulse enables resolution of large scattering angles.

5.4. 3D shape reconstruction via a forward fit
Most diffraction patterns obtained in the experiment exhibit spherical ring structures and
therefore result from the scattering of spherical helium droplets, exemplified in fig. 5.15a.
However, about 20 % of the patterns show elliptical patterns resulting from the scat-
tering by ellipsoidal helium droplets, depicted in fig. 5.15b-c. Approximately 3 % of
the patterns show distinct streak structures, examples shown in fig. 5.15d-f. A previ-
ous single-shot diffractive imaging experiment on helium nanodroplets by Gomez et al.,
performed at LCLS with hard x-ray radiation [48] showed similar scattering images illus-
trated in fig. 5.16 with spherical (a), elliptical (b) and streaked patterns (c). Comparing
the streaked pattern to the HHG streaked patterns fig. 5.15d-f reveals that in the x-ray ex-
periment only straight streaks could be observed, whereas in the HHG experiment mostly
bent streaks are present. The reason for this is that at LCLS, hard x-ray radiation with
a photon energy of 1.5 keV was used, with this radiation one is restricted to the small an-
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Figure 5.16.: Hard x-ray diffraction patterns of helium nanodroplets from LCLS experiment, spherical
(A), elliptical (B) and streaked pattern (C). D shows the 2D projection reconstructed by a phase retrieval
algorithm from C. Figure taken from [48].

gle scattering regime in which the diffraction pattern is only dependent on the projected
particle density (cf. chps. 3.2 and 2.2.2). Figure 5.16d shows the 2D projected parti-
cle density obtained by phase retrieval from fig. 5.16c that was assigned to oblate wheel
shaped particles [48]. In helium nanodroplets the transition from spherical or ellipsoidal
droplets to prolate particles is suggested to be hindered by vortex arrays that stabilize
the oblate shapes [4], which have been observed by Gomez et al.. Classically rotating
liquid droplets are expected to form prolate particles for high angular momenta [15, 9].
A recent theoretical study predicts prolate shapes even for the superfluid state [3] that
also have been observed in [72]. Thus, whether superfluid helium nanodroplets can form
prolate and/or oblate shapes is controversial. Therefore, in the following subsection, a
prolate particle shape represented by a pill and a oblate particle shape represented by a
wheel are compared to each other by computing MSFT diffraction patterns for different
orientations. It is investigated whether orientations exist for these particle shapes where
bent streaks can be observed. In the second subsection, an experimental diffraction pat-
tern with bent streaks is compared directly to a CSDDA diffraction pattern that includes
absorption effects and scattering from all four harmonics.

5.4.1. Scattering from prolate and oblate particles
Certain diffraction patterns characteristic for helium nanodroplets show streaks, straight
or bent. However, as previously discussed, whether oblate or prolate shapes are leading
to such patterns is controversial. Therefore, in the following, the diffraction patterns
from an oblate wheel shaped particle and a prolate pill shaped particle are analyzed for
different rotation angles to analyze in which orientation bent streaks can be observed.
All diffraction patterns are computed in the wide-angle scattering regime. For small an-
gle scattering bent streaks could not be observed, since the diffraction pattern is only
dependent on the projected particle density and always exhibits a point-symmetric struc-
ture (cf. chp. 2.2.2). The diffraction patterns are computed with MSFT (cf. chp. 2.2.2).
The long axis of both shapes is set to a = 950 nm, the short axis to b = 300 nm and
the wavelength to λ = 60.8 nm, absorption is neglected. The density resolution is set
to 150 × 150 × 150 and the resolution for the Fourier transforms to 1024 × 1024. The
results are depicted in fig. 5.17. The upper panel shows the diffraction patterns for the
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Figure 5.17.: MSFT diffraction patterns for different rotation angles and shapes (upper rows: pill, lower
rows: wheel). The long axis is set to 950 nm, the short axis to 300 nm. The density resolution is set to
150×150×150 and the Fourier transform resolution to 1024×1024, absorption is neglected. The pills are
rotated around the y-axis, the wheels around the x-axis, the rotation angles are indicated in the upper
left corners of each diffraction pattern and the shape as seen by the laser above each scattering image.
Parts of the figure published in [109].
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pill, the lower panel for the wheel particle. Above the diffraction patterns the 3D particle
is depicted as it is seen by the laser. In the upper left corners the rotation angles are
indicated. For 0 ◦ the projection of both particles is equivalent. Thus, for hard x-ray
radiation the diffraction pattern would also be equivalent. Here, both diffraction patterns
show straight streaks, however, the pill shaped particle yields longer streaks. Rotating the
particles along the laser propagation axis shows that only for a pill shaped particle bent
streaks can be observed. The wheel shaped particle does not induce bent streaks for any
orientation, even two-sided straight streaks are only observable when hitting the particle
directly on the edge. These results indicate, that in the HHG experiment no extremely
oblate wheel shaped particles where present. The bent streak patterns can be assigned
to prolate pill shaped particles. However, so far, the diffraction patterns were computed
utilizing only a single frequency and neglecting absorption. Therefore, the results are
verified in the following subsection, by comparing an example diffraction pattern with
bent streaks to a CSDDA diffraction pattern from the four harmonics.

5.4.2. Comparison to a high-level simulation
In the previous subsection, the bent-streak structures could be assigned to pill-shaped
nanodroplets. However, the MSFT simulations did not include absorption and only a
single frequency component of the actual HHG beam was taken into account. In this
subsection, therefore, the multiple orders of the HHG beam and absorption are included
in the computation to compare to a selected diffraction pattern from the experiment with
a bent-streak structure. The high-level simulation is performed utilizing CSDDA (cf.
chp. 3.1). To obtain the diffraction pattern of a pill-shaped particle from the HHG laser
beam, the patterns from the four different wavelength of the HHG spectrum have to be
summed up (cf. eq. (5.1)). For the 11th and 17th harmonic the literature values of the
refractive indices are applied (n11 = 0.97 + i0.0, n17 = 0.9964 + i0.041), for the 13th and
15th harmonic the average of the refractive indices obtained from the 18 fits is utilized
(cf. fig. 5.12a) n13 = 0.9252 + i0.0178 and n15 = 1.2688 + i0.0417. CSDDA is performed
until the residuum falls below ∆ = 10−2. Each diffraction pattern is computed by the
scattering of a prolate pill shaped droplet with n = 6.2× 105 dipoles and semi-minor axes
a = b = 370 nm and the semi-major axis c = 950 nm, that is rotated about 35 ◦ between
optical axis and the symmetry axis of the particle. Further, the droplet is rotated around
the laser propagation direction axis by 80 ◦. The resulting diffraction patterns from each
harmonic are depicted in fig. 5.18a-d, respectively. The particle shape as seen by the laser
is depicted in between fig. 5.18a,b,d and e. The diffraction patterns for the 11th and
13th harmonic show a blurring of the fringe structure, whereas the diffraction from the
15th and 17th harmonic show much sharper fringes. The diffraction patterns are summed
up, weighted by the intensity ratios c11 = 0.21, c13 = 0.82, c15 = 1.0 and c17 = 0.29
(cf. fig. 5.2a), displayed in fig. 5.18e. The diffraction pattern shows blurry fringes with a
beating structure. Comparing the CSDDA diffraction pattern to the experimental image
in fig. 5.18f shows good agreement. The rotated pill shaped particle clearly can reproduce
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Figure 5.18.: CSDDA diffraction patterns of pill-shaped helium droplet (shape indicated between a,b,d
and e) with semi-minor axes a = b = 370 nm and semi-major axis c = 950 nm, that is rotated about 35 ◦
between optical axis and the symmetry axis of the particle. Further, the droplet is rotated around the
laser propagation direction axis by 80 ◦. The pill is computed with n = 6.2×105 dipoles and the residuum
is set to ∆ = 10−2. a) Diffraction pattern corresponding to 11th harmonic with n11 = 0.97 + i0.0. b)
13th harmonic with average of the refractive indices obtained from the 18 fits is utilized (cf. fig. 5.12a)
n13 = 0.9252 + i0.0178 c) 15th harmonic with n15 = 1.2688 + i0.0417 and d) 17th harmonic with
n17 = 0.9964 + i0.041. e) shows the sum of a-d with intensity ratios set to c11 = 0.21, c13 = 0.82,
c15 = 1.0 and c17 = 0.29 according to the HHG spectrum (fig. 5.2a). f) shows an experimental HHG
single-shot diffraction pattern. Parts of the figure published in [109].
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the experimental diffraction pattern and verifies that the helium droplets can exhibit
prolate shapes. Two possible explanations for this behavior exist. (i) The occurrence of
prolate shapes is expected for classically rotating droplets, meaning the helium droplets
in the experiment are not superfluid. (ii) The prolate shapes are stable in the superfluid
state. This explanation would be confirmed by a recent theoretical study, suggesting the
existence of prolate shapes even in the superfluid state [3]. This study and the observation
of classically stable liquid rotating helium droplets in this experiment gives rise to future
experiments investigating the existence of prolate droplets showing macroscopic shape
rotation in the superfluid state. First experimental results showing the shape evolution
of rotating superfluid helium nanodroplets can be found in [72].
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6. Three-dimensional chracterization of free
nanostructures via two-color single-shot
diffractive imaging

Reconstruction of the two-dimensional projected electron density of a target from small an-
gle x-ray diffraction patterns via phase retrieval schemes is well established (see chp. 1.2.1)
and one of the commonly employed algorithms can be found in the app. D. Two-dimensional
phase retrieval algorithms rely on the central assumption that the diffraction pattern of a
particle is proportional to the modulus squared Fourier amplitude of the projected particle
density. The generalization of the phase retrieval to higher dimensions is straightforward.
Therefore, to gain a three-dimensional particle density, the Fourier amplitude of the object
needs to be three-dimensional as well. The Fourier slice theorem states that a slice with a
certain orientation in the 3D Fourier space representation of a 3D particle shape is equiv-
alent to the 2D Fourier transform of the particle density projected onto the same plane.
Thus, to recover the 3D Fourier amplitude distribution of a single nanoobject, multiple
diffraction patterns of reproducible randomly oriented targets can be assembled according
to the respective particle orientations. However, two restrictions for the applicability of
phase retrieval algorithms exist. They are only applicable to the direct reconstruction of
density projections (or 3D densities) in the limit of the first Born approximation and for
small angle scattering. The first restriction is equivalent to the requirement that refrac-
tion and absorption are negligible. The second restriction results from the requirement
that the momentum transfer must be perpendicular to the incoming beam. The laser
wavelength in the single-shot diffraction experiment is therefore usually small (see also
chps. 2.2.2 and 3.2). In this case, information about the target orientation cannot be
inferred from the diffraction pattern unambiguously. Nevertheless, different procedures
for orientation retrieval exist, but typically include expensive statistical analysis. They
have been outlined in chp. 1.2.1.

In this chapter, a two-color imaging experiment that aims to simplify orientation retrieval
is introduced. The key idea is that two simultaneously recorded diffraction patterns in the
small angle and wide angle scattering regime can highly increase the information content
of the single-shot diffractive imaging data. The small angle diffraction pattern obtained
with hard x-ray radiation yields the data for 3D reconstruction via phase retrieval, the
wide angle diffraction pattern with soft x-ray or extreme ultraviolet (XUV) radiation can
be used to mitigate the orientation problem. Such a scenario could be realized at seeded
free electron lasers such as FERMI in a high gain harmonic generation (HGHG) cascade
[2]. A possible setup is depicted in fig. 6.1. A two-color laser beam is utilized to image a
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Figure 6.1.: Draft of setup for a two-color single-shot diffractive imaging experiment. A high-intensity
two-color laser pulse hits a particle beam and two diffraction patterns are obtained simultaneously on a
wide angle and a small angle scattering detector.

nanotarget, i. e. in each shot two diffraction patterns are recorded.

The proposed two-color 3D phase retrieval reconstruction scheme contains three basic
steps. (i) First, the particle orientation problem is solved by employing the characteristics
of the wide angle diffraction pattern. Therefore, a database of wide angle diffraction
patterns with known particle orientations is pre-calculated. By comparison of wide angle
scattering images with unknown orientation to the database, the particle orientation can
be assigned to the wide angle image and, as both images are recorded simultaneously, also
for the corresponding small angle image. This step is referred to as orientation tagging.
(ii) Second, the orientation tagged small angle diffraction patterns are assembled according
to their corresponding particle orientations to access the Fourier volume. (iii) In the third
step, this 3D Fourier amplitude is utilized for the 3D reconstruction of the particle via
phase retrieval. In the following, the first two steps are discussed in more detail. Therefore,
first, a procedure to find the orientation of a diffraction pattern with unknown particle
orientation is introduced. To this end, the diffraction pattern is compared to a database
containing diffraction patterns with known particle orientations. Second, an estimation
of the the number of randomly oriented diffraction patterns required for covering the
complete 3D Fourier space is given. Last, the orientation tagging approach is tested for
two model shapes, an asymmetric tripod and a highly symmetric icosahedron, by verifying
its success by performing a 3D phase retrieval. The applied phase retrieval algorithm is
outlined in app. D.

6.1. Orientation tagging
A necessary precondition for utilizing the two-color imaging approach is knowledge about
the outer shape of the target. This allows for the computation of a database of wide
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angle scattering images with known particle orientations for the soft x-ray or XUV laser
wavelength. In the ideal case, also this rough outer shape should be extracted from the
data, but for clarity it is assumed that the outer shape may already be known. The
particle orientation is described by three Euler angles, in which the object is rotated
around the z-axis by the angle α, around the x-axis by β and finally rotated around the
rotated z′-axis by γ, depicted in fig. 6.2. Only for β = ±π the Euler angles are not
unique. As shown in [26] the angles α and γ need to be sampled from 0 to 2π and cos(β)
from −1 to 1 to cover all possible orientations. Note that for particles with symmetry
axes a certain orientation can be achieved by multiple sets of Euler angles. The scattered
electric field intensity is computed with the multislice Fourier transform method (MSFT,
see sec. 2.2.2). To retrieve the particle orientation, the wide angle diffraction patterns Iexp
with unknown particle orientation are compared to the database Idb(α, β, γ). For each
diffraction pattern the following error ε is computed via

ε(α, β, γ) =
∑

(log10 Idb(α, β, γ)− log10 Iexp)2 . (6.1)

Figure 6.2.: Particle rotation in 3D de-
scribed by Euler angles α, β and γ, where
the object first is rotated around the z-
axis around α, then around the y-axis by
β and last around the rotated z-axis z′ by
γ. Figure taken from [87].

Note that Iexp refers to the numerical experiment
here. The orientation yielding the minimal error is
assigned to the soft x-ray diffraction pattern and its
respective hard x-ray diffraction pattern. The major
goal of the comparison to the database is to get close
enough to the correct solution for the orientation.
Afterwards, the Euler angles are refined further by
applying a simplex algorithm [90] (cf. sec. 5.3). To
this end, the starting point for the simplex fit are
the three retrieved Euler angles from the compari-
son. An updated set of Euler angles is computed by
minimizing the error (similar to eq. (6.1))

ε(α, β, γ) =
∑

(log10 Icomp(α, β, γ)− log10 Iexp)2 .
(6.2)

via the simplex scheme, the diffraction patterns
(Icomp) for the current sets of Euler angles are com-
puted via MSFT in each simplex iteration.

After the orientation tagging is performed, the small angle diffraction patterns can be
assembled according to the corresponding particle orientations to obtain the 3D Fourier
volume. However, to recover the complete 3D Fourier data, each voxel needs to be covered
at least by one pixel of the small angle diffraction patterns. Therefore, in the following
section, an estimation of how many diffraction patterns are needed to cover the complete
3D Fourier space is given.
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6.2. 3D diffraction pattern
By assembling diffraction patterns according to their corresponding particle orientations
the squared modulus of the 3D Fourier transform can be obtained. In that process, it
is important that each voxel of that 3D Fourier volume is covered by at least one pixel
of the diffraction patterns. The probability p that all pixels are covered by at least one
diffraction pattern can be calculated via [34]

p =
(
1− (1− k/K)N

)K
, (6.3)
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Figure 6.3.: Number of diffraction patterns N of
randomly oriented particles to reach a probability of
p = 0.99 (eq. (6.3)) that all pixels of the 3D Fourier
volume are covered for different resolutions and par-
ticle diameters.

with the number of diffraction patterns N ,
K = 2π(D/d−1/2)2 and k = π(D/d−1/2)
with the particle diameter D and the reso-
lution d. Figure 6.3 illustrates this relation.
It shows the number of randomly oriented
diffraction patternsN required for covering
the complete Fourier volume with a prob-
ability of 99% in dependence on particle
resolution and particle diameters. It be-
comes evident that for larger particles and
for a better resolution the number of re-
quired diffraction patterns increases. Thus,
for a given particle size the achievable reso-
lution for the particle reconstruction highly
depends on the number of diffraction pat-
terns that can be recorded and orienta-
tion tagged for a randomly oriented repro-
ducible target. Note that the achievable

half-period resolution additionally is limited by the largest scattering angle that can be
resolved and the utilized wavelength.

In the following section, the orientation tagging and the resulting two-color phase retrieval
scheme is tested for two sample shapes, an asymmetric tripod and a symmetric icosahe-
dron. To this end, for both shapes, first, the required database resolution is evaluated,
then the orientation tagging is performed and last is tested by performing the 3D phase
retrieval.

6.3. Test cases
First, the ideal case of an asymmetric shape is investigated, where a certain diffraction
pattern only can be achieved with a single orientation, i. e. one set of Euler angles. Sec-
ond, a symmetric target is analyzed, an icosahedron, chosen to represent a realistic target
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motivated by the pseudo-icosahedral shape of a mimivirus. For both test cases, the same
simulation parameters are utilized. The values for the laser wavelength are chosen such
that they could be achieved at the FEL FERMI. For the wide angle scattering it is set
to λwaxs = 21 nm (=̂ 59 eV) and the wavelength for small angle scattering to λsaxs = 4 nm
(=̂ 310 eV). In a realistic scenario, absorption is expected to have a large impact for small
photon energies. Therefore, the absorption length is set equal to labs = 10 nm for λwaxs,
for λsaxs absorption is neglected. All diffraction patterns are computed with MSFT with
the Fourier transforms having the dimension 64× 64.

Before the orientation tagging step can be performed, for both test shapes a sufficient
database resolution needs to be found. Therefore, the error (eq. (6.1) for a single diffrac-
tion pattern is characterized. Afterwards, the orientation tagging is performed and the
diffraction patterns are assembled to the 3D Fourier volume, the phase retrieval scheme is
applied for reconstruction of the 3D particle density. The utilized phase retrieval output-
output algorithm is outlined in app. D. Convergence was reached fastest for the β param-
eter set to 0.9. The starting Fourier phase is chosen randomly. Further, for the phase
retrieval algorithm to converge efficiently a suitable mask has to be chosen. A conve-
nient choice is a shrinkwrap mask that is adapted in each iteration [79]. This can be
done by convolution of the density map with a Gaussian with a certain width, resulting
into a smoothed density. The mask is then set to unity at all pixels where the convo-
luted normalized density is above a certain threshold and set to zero where it is below
that threshold. The threshold is set to τ = 0.2 and the Gaussian width is varied every
100 iterations between b = 5, 7, 9, 11 pixels. These values were found to lead to a fast
convergence for the considered scenario.

6.3.1. Asymmetric shape: tripod
The two-color 3D phase retrieval scheme is first tested for an asymmetric shape without
any symmetry axes. A convenient choice for this is a tripod sketched in fig. 6.4a. The legs
of the tripod are set to a = 600 nm along x, b = 450 nm along y and c = 510 nm along z.
The width of each leg is equal and is set to d = 300 nm. Inside the leg along the x-axis a
spherical void represents the inner structure with radius R = 100 nm, the isosurface of the
object is shown in fig. 6.4b. The resolution of the homogeneous density for the wide angle
diffraction patterns is set to 30 nm, for the small angle diffraction patterns to 14.1 nm.

Database resolution

To correctly estimate the particle orientation from comparison to the diffraction patterns
in the database, the database needs to cover the possible Euler angles with a sufficient
resolution. To estimate this resolution, first the error (eq. (6.1)) for a single diffrac-
tion pattern is characterized for different database resolutions. Therefore, one diffraction
pattern of the tripod with spherical void in the orientation configuration αtest = 44 ◦,
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Figure 6.4.: a) Sketch of asymmetric model shape, a tripod. b) Isosurface of the object. The legs of
the tripod are set to a = 600 nm, b = 510 nm and c = 450 nm. The width of each leg is equal and is set
to d = 300 nm. Inside the leg along the a-leg a spherical void with R = 100 nm is inserted by setting the
density there equal to zero.
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Figure 6.5.: Error ε in dependence of Euler angles β and γ for a single diffraction pattern with void
R = 100 nm with rotation angles αtest = 44 ◦, βtest = 148 ◦ and γtest = 122 ◦. Each diffraction pattern is
computed with MSFT with λwaxs = 21 nm and labs = 10 nm, the tripod legs dimensions are a = 600 nm
along x, b = 450 nm along y and c = 510 nm along z and a width of each leg of d = 300 nm. Comparison
diffraction patterns are computed without spherical void. Further details on the MSFT simulation can
be found in the text. a) shows error map for α = αtest b) shows error map for α corresponding to
minimal error and c) Cuts through a, b at γ = γtest, indicated by solid lines in a and b, respectively.
Blue solid line shows error for α = αtest (corresponding to a), the black solid line shows minimal error
corresponding for optimal α (corresponding to b). The green dashed line shows the error for the same
case, where the asymmetric shape does not have a spherical void, but has the exact same structure as
for the computation of the database diffraction patterns.
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βtest = 148 ◦ and γtest = 122 ◦ is computed. The error ε via eq. (6.1) of this diffraction
pattern is computed by comparison to a database with α set to αtest and β sampled
from 0 to 180 ◦ and γ sampled from 0 to 360 ◦ in 2 ◦ steps. Diffraction patterns for the
database are computed without inner structure. The resulting error map is depicted in
fig. 6.5a, which reveals eight valleys including one containing the single global minimum
at β = 148 ◦ and γ = 122 ◦. The error map for the same parameters, but with optimal α
for each β-γ combination (fig. 6.5b) shows the same structure, with a distinct deep global
minimum. Still, local quite shallow minima exist. Nonetheless, the error map verifies that
diffraction patterns are unique for a single orientation. Figure. 6.5c shows cuts through
the global minimum of fig. 6.5a and b, indicated by the solid lines. For both cases (fixed
α and optimal α), the minimum has the same width. Further, the error for the sample
configuration is computed for a diffraction pattern obtained without inner structure and
plotted as dashed green line. It can be seen that the error is equivalent to the error for the
tripod including the inner structure. Hence, the inner structure does not have a severe
effect on the orientation tagging for the considered example. The inner structure of the
target is hidden for the soft x-ray or XUV wavelength because of two reasons, first, the
longer wavelength leads to lower resolution, since only length scales on the order of the
wavelength can be resolved and second the higher absorption in this wavelength regime
prevents the light to completely penetrate the target. To find the global minimum, the
database has to be sampled with a resolution smaller than the width of the global min-
imum. The plot reveals a width of the minimum of 3 ◦ at an error of 1000. Therefore,
a 2 ◦ resolution of the database is sufficient to find the correct orientation of a randomly
oriented target. To verify this, the orientation tagging is performed for 500 diffraction
patterns with random orientations for a database resolution of 8 ◦ and 2 ◦. The retrieved
Euler angles are refined by performing 100 simplex steps. The respective retrieved angles
versus the correct orientation angles are depicted in fig. 6.6a and b. For correct orienta-
tion retrieval all angles should lie on the diagonals. For the 8 ◦ sampling this is not the
case, e. g. for α lines parallel to the diagonals appear, representing points where a local
minimum has been found. The mean deviation between correct and retrieved Euler angles
can be computed via

∆ =
√

(αcorr − αret)2 + (βcorr − βret)2 + (γcorr − γret)2. (6.4)

For the 8 ◦ sampling, it is ∆ = 22.9 ◦. For the 2 ◦ sampling all angles lie very close the
diagonals, the mean deviation to the correct Euler angles is ∆ = 3 ◦. In conclusion, the 8 ◦
sampling is not sufficient for correct orientation tagging. Thus, the 2 ◦ sampling is utilized
in the following, resulting in a database containing 2.9 million diffraction patterns.

3D phase retrieval

Since all small angle scattering images are computed with a resolution of 64× 64, the 3D
Fourier volume dimensions are 64 × 64 × 64. This corresponds to a spatial resolution of
14.1 nm for the retrieved particle density. To cover all pixels of the 3D Fourier space with
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a

b

Figure 6.6.: Euler angles retrieved by comparison to a database for 500 diffraction patterns of tripod
(fig. 6.4) with random orientations. Each database diffraction pattern is computed with MSFT with
λwaxs = 21 nm and labs = 10 nm, the tripod with a = 600 nm along x, b = 450 nm along y and c = 510 nm
along z and a width of each leg of d = 300 nm. Additional details on the MSFT simulation can be found
in the text. The three Euler angles are sampled evenly, α and γ from 0 to 360 ◦ and β from 0 to 180 ◦.
a) shows the retrieved versus actual Euler angles for a database with 8 ◦ sampling, and b) for a database
with 2 ◦ sampling.

a probability of 100% 3000 sets of wide angle and small angle diffraction patterns with
random orientations are computed. The orientation tagging is performed by comparing
the wide angle diffraction patterns to the 2 ◦ sampled database. Again, 100 simplex
iterations are performed to refine the retrieved orientation angles.
After the orientation tagging step, the small angle diffraction patterns are assembled to
the Fourier volume in accordance to their respective orientation angles. The output-
output algorithm with a shrinkwrap mask is applied to retrieve the target shape. The
resulting isosurface of the retrieved 3D density is depicted in fig. 6.7a. It can be seen that
compared to the input object (cf. 6.4b) the edges are less sharp and the surface is not as
even. However, the overall shape including the spherical void could be retrieved correctly.
A slice through the density at z = 0 is shown in fig. 6.7b and confirms this. The white
dashed lines show the edges of the slice through the input 3D density. Not only the shape
but also the size of void and object could be recovered correctly. The particle density
should be homogeneous, however, shows some inhomogeneities in the reconstruction.

6.3.2. Symmetric shape: icosahedron
As shown above, for an asymmetric object with no symmetry axes, one set of orientation
angles delivers a unique diffraction pattern. Therefore, by comparison to a database it is
quite simple to retrieve the correct orientation angle. For a symmetric shape it gets a bit
more complicated. This is tested in this section exemplified by an icosahedral shape, which
is a regular faceted shape, motivated by the structure of a mimivirus. The icosahedron is
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Figure 6.7.: Resulting particle density of 3D phase retrieval (output-output scheme) from 3000 orienta-
tion tagged, assembled small angle diffraction patterns. Further information on the phase retrieval scheme
is outlined in the text. The MSFT diffraction patterns from a tripod with legs a = 600 nm, b = 450 nm
and c = 510 nm, a width of each leg of d = 300 nm and s spherical void with radius R = 100 nm are
computed with λsaxs = 4 nm and labs = 10 nm. Additional details on the MSFT simulation can be found
in the text. a) shows the isosurface of retrieved object and b) slice through the retrieved density at
x-y-plane at z = 0. White dashed line shows the edges of the input tripod.
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s

R

Figure 6.8.: Model shape. Icosahedron with outer radius R = 300 nm and inner spherical shell with
zero density with radius of rs = 80 nm and a shell thickness of s = 30 nm.
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a symmetric structure with 31 symmetry axes, meaning that a certain diffraction pattern
can be imaged with different sets of orientation angles. There exist ten three-fold axes
through the centers of opposite faces, six five-fold axes through opposite vertices and
fifteen two-fold axes through the midpoints of two opposite edges.

To test the two-color 3D phase retrieval scheme, the icosahedron is constructed with a
simple inner structure, a spherical shell inside, depicted in fig. 6.8. As a model system,
the outer radius of the icosahedron is set to R = 300 nm, the shell inside to rs = 80 nm
with a thickness of s = 30 nm, where the density is set to zero. The resolution of the den-
sity for the wide angle diffraction patterns is set to 24.2 nm, for the small angle diffraction
patterns to 11.5 nm.

Database resolution

For computation of the orientation tagging database, diffraction patterns are computed
with the XUV wavelength of the icosahedron without inner structure with a particle reso-
lution of 20 nm. As in the previous section, to estimate the necessary size of the database
the error map for a single diffraction pattern in a certain orientation is characterized.
Therefore the icosahedron with shell is rotated by αtest = 24◦, βtest = 64◦ and γtest = 50◦.
The resulting MSFT diffraction pattern is compared to a database with a 4 ◦ sampling for
different β and γ, and α set to αtest where the error again is computed via eq. (6.1). The
resulting error map is depicted in fig. 6.9. The error map reveals the fivefold symmetry
of the icosahedron, since the pattern repeats itself every 72◦ in γ. Hence, it is sufficient
to sample the angle γ only from 0 to 72◦.
This area is further characterized by computing the error for the test pattern for all
orientation angles in 1◦ steps. Figures 6.10a and b show the error map in dependence
on β and γ and β and α, respectively, where the third angle for each pair is set to the
optimal value. It becomes clear that for both error maps a large number of local minima
emerges, which all belong to equivalent orientation angles of the icosahedron due to the
existence of the symmetry axes. Further, two observations can be made. First, fig. 6.10b
shows a symmetric pattern, hence, as for the rotation of the angle γ it is sufficient to only
compute α in the range from 0 to 180 ◦. Second, the majority of the local minima show a
circular structure, however, in fig. 6.10a along the γ-axis around β = 10 ◦ and β = 170 ◦
the minima are stretched over a range of about 40 ◦. The same structure can be seen
along the β axis in fig. 6.10b. This complicates the orientation tagging, since for a too
coarse sampling it is possible to end up with a local minimum that does not belong to
the correct or equivalent orientation of the icosahedron. The cuts (indicated as lines solid
and dashed gray and black lines in fig. 6.10a and b, depicted in fig. 6.10c, reveal a width
of about 0.6 ◦ of the minima at an error of 200. The error that has to be resolved needs
to be that small so the global minima can be distinguished from the deep local minima.
Therefore, the orientation angles of the database are sampled in 0.5◦ steps. This sampling
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Figure 6.9.: Error ε for different β and γ for a single MSFT diffraction pattern of an R = 300 nm
icosahedron with a spherical shell void with rs = 80 nm, rotated by αtest = 24◦, βtest = 64◦ and γtest = 50◦
with rotation angle α fixed to the αtest. MSFT diffraction patterns computed with λwaxs = 21 nm and
labs = 10 nm. Diffraction patterns for comparison (database) to test pattern are computed without void
inside. Additional information on the MSFT simulations can be found in the text.
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Figure 6.10.: Error ε in dependence of Euler angels β and γ for a single diffraction pattern of an
icosahedron with R = 300 nm and rs = 80 nm oriented with αtest = 24 ◦, βtest = 64 ◦ and γtest = 50 ◦.
The MSFT diffraction patterns are computed with λwaxs = 21 nm and labs = 10 nm, the comparison
(database) diffraction patterns are computed without void. Further details on the MSFT simulation can
be found in the text. a) shows the error map for β versus γ (with α corresponding to minimal error for
each β-γ combination). b) shows the error map for β versus α (with optimal γ). c) depicts cuts indicated
by the solid and dashed lines in a and b. The minima at β = 64 ◦ has a width of 0.6 ◦ for ε = 200.
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Figure 6.11.: Retrieved Euler angles versus actual Euler angles for 1600 MSFT diffraction patterns of
a R = 300 nm icosahedron with spherical shell void with rs = 80 nm, computed with λwaxs = 21 nm
and labs = 10 nm. The Euler angles are retrieved by comparison to a database computed without
spherical void. Additional details on the MSFT simulation can be found in the text. The Euler angles for
computation of the database are sampled in α and β from 0 to 180 ◦ and γ from 0 to 72 ◦ in 0.5 ◦ steps.
The dashed grey lines indicate the diagonals where retrieved Euler angle equals actual Euler angle.

results in a database containing 18.7 million diffraction patterns, which corresponds to
300 GB of disk space for single precision.

3D phase retrieval

All scattering images are computed with a resolution of 64 × 64, hence, the 3D Fourier
volume has the dimensions 64 × 64 × 64, resulting in a spatial resolution of 11.5 nm for
the retrieved target shape. To cover all voxels of the 3D Fourier space with a possibility
greater than 99% 1600 diffraction patterns of hard and soft x-ray radiation with random
orientations with the respective dimensions are computed. These sets of scattering im-
ages then are orientation tagged by comparing each wide angle diffraction pattern to the
database.
The resulting retrieved orientation angles in dependence on real orientation angles are
depicted in fig. 6.11. Again, it shows that no unique diffraction pattern exists for one set
of Euler angles, since not all real and retrieved angles lie on the diagonal indicated by the
solid black line in each of the three plots. For the α and β angle symmetric structures are
visible emerging from the symmetry axes of the icosahedron.
The orientation tagged small angle diffraction patterns are interpolated onto the 3D
Fourier volume and the phase retrieval scheme is performed as described at the beginning
of the section. The results are depicted in fig. 6.12. Figure 6.12a shows the isosurface of
the retrieved icosahedron. The outer shape of the icosahedron could be retrieved correctly.
Also a spherical shape inside the icosahedron is visible, however, a structure beside it can
be observed. Figures 6.12b-c shows cuts through the retrieved density for x = 0, y = 0
and z = 0, respectively. The images reveal that the outer shape and spherical shell show
the expected size and shape. However, the density is not equal everywhere, but shows an
inhomogeneity as in the reconstruction of the tripod, however, more severe. The phase
retrieval result can be improved by performing the phase retrieval multiple times with
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Figure 6.12.: Retrieved particle shape and density, obtained with output-output phase retrieval al-
gorithm. Details on the algorithm are outlined in the text. The 3D Fourier volume is obtained by
assembling 1600 orientation tagged small angle diffraction patterns. Orientation tagging is performed
by comparison of corresponding wide angle diffraction patterns to a database with 0.5 ◦ sampling. The
diffraction patterns are computed with MSFT, simulation parameters can be found in the text. a) shows
the isosurface of retrieved object and b)-c) slices through the particle density, the planes are indicated in
the title of each plot. The white dashed lines show the edges of the density for the input icosahedron.

different random Fourier phases as starting parameter. The averaged particle density of
100 retrieved densities is shown in fig. 6.13. It can bee seen that the isosurface of the
density in fig. 6.13a clearly reflects the shape of the icosahedron and the shell inside. No
unexpected structures are present. The cuts through the density, depicted in figs. 6.13c-d
shows no unevenness anymore. The size and shape of the icosahedron is reproduced well.
However, the density is not zero inside the shell, but a bit larger.

In summary, the two-color phase retrieval scheme could successfully be shown on artificial
data. Hence, the imaging of nanotargets simultaneously with two different wavelength is a
promising route to perform the orientation tagging step by comparison to a database and
then be able to retrieve the three-dimensional target shape. A drawback of the approach
is the necessity of knowledge about the outer shape of the target.
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Figure 6.13.: Particle shape and density averaged over 100 retrieved densities, each obtained with
output-output phase retrieval algorithm with different random phase as starting parameter. Details on
the algorithm are outlined in the text. The 3D Fourier volume is obtained by assembling 1600 orientation
tagged small angle diffraction patterns. The orientation tagging is performed by comparison of the
corresponding wide angle diffraction patterns to a database with 0.5 ◦ sampling. The diffraction patterns
are computed with MSFT, simulation parameters can be found in the text. a) shows the isosurface of
retrieved object and b)-c) slices through the particle density, the planes are indicated in the title of each
plot. The white dashed lines show the edges of the density of the input icosahedron.
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7. Summary and Outlook

The goal of this work was the development, characterization and application of recon-
struction methods for the structure determination of free nanoparticles with single-shot
diffractive imaging. Conceptually different reconstruction methods were implemented and
utilized in the theoretical analysis and on experimental data to infer information about
the target and for the investigation of different laser parameters on the diffraction pattern.

The second chapter was dedicated to deriving the basic principles of scattering theory
in linear response relevant for the work presented in this thesis. It became clear, that
the utilized wavelength not only influences the obtainable resolution in a scattering ex-
periment, but impacts the applicable reconstruction model. Short wavelength radiation
in the hard x-ray regime leads to a restriction to small scattering angles. It was shown
that in this case, the far-field scattering image is proportional to the squared Fourier
amplitude of the projected target density onto the scattering plane. In this regime phase
retrieval algorithms can be utilized. Scattering with larger wavelength radiation enables
the resolution of larger scattering angles, in which the diffraction pattern is dependent
on the orientation of the target. It has been shown that wide angle diffraction patterns
can be computed by the multislice Fourier transform method (MSFT), that can include a
simple absorption model. Atomic resolution of the target cannot be accessed in the simple
continuum approach. To this end, the well-established discrete dipole approximation has
been derived, that builds on the description of the target as an ensemble of discrete point
dipoles.

The third chapter introduced an intuitive approach to solve the discrete dipole approxi-
mation by a complex scaling mixing (CSDDA). The numerical models MSFT and CSDDA
have been applied to systematically analyze the influence of wavelength on the diffraction
patterns. It could be clarified, that the wide-angle scattering regime only is applicable
with soft x-ray and extreme ultraviolet (XUV) radiation. However, it also became evident
that in this regime the influence of absorption largely impacts the diffraction pattern by
blurring the fringe structure and raising the scattering signal at larger scattering angles.
By decreasing the wavelength, the non-symmetric diffraction patterns go towards a point-
symmetric diffraction pattern in the small angle scattering regime, which is an indication
of the diffraction pattern only being dependent on the projected particle density. A second
laser parameter that has been studied was the pulse duration. It could be shown, that
for pulse durations reached in free electron lasers the large bandwidth does not affect the
diffraction patterns. Only for very short pulses on the order of a few tens of attoseconds,
the diffraction pattern alters by a decreasing fringe contrast. For a certain pulse duration
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the fringe contrast gets lost. Due to the larger absorption at large wavelength the already
smaller contrast of the fringes, leads to the critical pulse durations being larger than for
smaller wavelength. Further, the fringe contrast gets lost at larger scattering angles al-
ready at longer pulse durations. When the fringe contrast is lost, information about the
size of the target is hidden, however, the orientation of the target can still be inferred from
the diffraction pattern. Hence, even in this case, still useful insights about the target can
be gained, meaning that attosecond imaging is feasible. The simple estimate presented
in the study can be used to find the trade-off between pulse duration and resolution that
can be achieved with a certain wavelength.

In chapter four and five, MSFT and DDA have been applied for reconstruction of particle
properties such as shape and optical properties from experimental diffraction patterns.
Two different samples were investigated, hydrogen jets and helium nanodroplets.
Chapter four showed that the diffraction patterns from cylindrical jets highly depend on
the utilized laser parameters. The typical diffraction pattern of a jet appears as a streak
perpendicular to the jet axis. The width of that streak depends on the spot size of the
incoming laser pulse. Further, the streak signal depends on the strength of the scattering
from the shape (coherent scattering), whereas the signal strength beside the streak de-
pends on the strength of the scattering from structural disorder (incoherent scattering).
For a jet both contributions can be on the same order and therefore are resolvable on a
single detector. In the single-shot diffractive imaging experiment on solid-state hydrogen
jets not a single streak could be observed, but multiple streaks with differing intensities
and rotation angles. A few properties of the diffraction patterns could be connected to
possible jet shape variations. However, it could not be verified that the structure of the
diffraction patterns uniquely emerge from the different jet shapes, since the incident laser
pulse from FLASH had a noisy spectrum. The analysis could be highly simplified by
performing such an experiment at a FEL generating smooth pulse shapes, e. g. generated
at seeded FELs such as FERMI.
In chapter five, it was shown that although multicolor diffraction patterns from high har-
monic generation sources complicate the reconstruction of the target shape, the existence
of different wavelength in the spectrum can allow for reconstruction of the refractive in-
dices. A simplex Mie fit routine for extracting optical properties from multicolor diffrac-
tion patterns of spherical droplets has been implemented. It could be shown that the
refractive indices close to the helium 1s2p resonance can be inferred from the diffrac-
tion patterns of the spherical droplets. However, due to the photon energies of the two
harmonics with unknown refractive indices lying very close to each other, they can inter-
change their roles by adaption of the cluster radius. The simplex fit procedure could be
improved if the number of harmonics with unknown refractive indices could be decreased
or their photon energies lie further away from each other. For future experiments with
attosecond resolution, it became clear that a multicolor analysis of the diffraction patterns
is key for retrieving useful information from the experiment. A second result, presented
in the chapter was the 3D reconstruction of a pill-shaped droplet by MSFT and CSDDA
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by comparison to the experimental wide angle diffraction patterns that are dependent
on the orientation of the target. That demonstrated that superfluid helium droplets can
exist in such shapes that had been excluded by previous studies [48]. This study shows
that the behavior of superfluid helium droplets and the shapes they can form when ro-
tating are not yet well understood and hence, are an interesting object for future research.

The last chapter was dedicated to a different reconstruction approach, the iterative phase
retrieval algorithm. It could be shown that a two-color imaging setup that simultaneously
records small and wide angle diffraction patterns, can simplify the task of finding the
correct orientation of a randomly oriented reproducible target. This task is key to access
the 3D Fourier amplitude of the imaged object, and finally perform a 3D phase retrieval
algorithm to reconstruct the 3D particle density. By comparison to a database that covers
all Euler angles it could be shown that orientation retrieval is feasible for asymmetric and
symmetric targets. Although the orientation tagging task can be solved by comparison
to a database of diffraction patterns, for this approach the target outer shape needs to be
known. A large improvement would be to directly reconstruct the 3D orientation from
the diffraction pattern. This should be possible, since the information is encoded in the
diffraction pattern. However, so far, no methods are available to solve this task without
some knowledge about the target.
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A. CSDDA compared to Krylov-subspace
methods

The aim of the discrete dipole approximation (DDA) is to find a self-consistent solution
for the local electric field Eloc(rj) at each dipole position rj (cf. eq. 2.75)

Eloc(rj) = Einc(rj) + α(ω)ω2µ0
∑
n 6=j

↔
G(rj, rn)Eloc(rn). (A.1)

with Einc(rj) denoting the incident electric field, ω the light frequency, α the frequency-
dependent polarizability and µ0 permeability of free space. The dyadic Green’s function
for electromagnetic scattering is

↔
G(R) = exp(ikR)

4πR

[(
1 + ikR− 1

k2R2

)
↔
I + 3− 3ikR− k2R2

k2R2
R ⊗R
R2

]
, (A.2)

with the distance between dipole and observation point R = |rj−r| and the wave number
k. In the following, the dyadic Green’s function and the prefactors in eq. (A.1) are
combined to

↔
A = α(ω)ω2µ0

∑
n 6=j

↔
G(R). Inserting this into eq. (A.1) and rearranging the

equation gives
Einc(rj) =

(
1−

↔
A
)

Eloc(rj), (A.3)

where 1 −
↔
A is a symmetric matrix. The above equation represents a linear system of

equations of the form b = Ax and can be solved using Krylov-subspace methods [71].
These methods are based on the assumption that the unknown x lies in the affine space

x = x0 +Kr(A, b), (A.4)

with
Kr(A, b) = span{b, Ab,A2b, . . . , Ar−1b}, (A.5)

where r is the degree of the subspace K. An overview of different Krylov subspace methods
can be found in [113].

Numerical implementations for solving the discrete dipole approximation utilizing Krylov
subspace methods are available as the DDSCAT code by Bruce T. Draine [29] and ADDA
by Maxim Yurkin [143]. Here, ADDA is used to compare the state-of-the-art Krylov
subspace methods to the complex scaling discrete dipole approximation (CSDDA). The
different implementations of the discrete dipole approximation not only use different meth-
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Figure A.1.: Number of iterations needed to converge for a spherical target for different refractive
indices for CSDDA (left) and quasi-minimal residual method (QMR). The polarizability is connected to
the refractive index with the Clausius-Mossotti relation. The size parameter is set to kR = 0.1. Left plot
in courtesy of Maxim Yurkin.

ods for solving the linear system of equations but also different descriptions of the complex
polarizability. Here, the polarizability is described by the Clausius-Mossotti relation via

εr − 1
εr + 2 = naα

3ε0
, (A.6)

with the material specific dielectric constant εr = ε/ε0 with the permittivity ε0 of free
space and na denoting the number density. The permittivity ε is connected to the complex
refractive index m via

m = √εr. (A.7)

The CSDDA is compared to the Krylov subspace method quasi-minimal residual (QMR)
for a spherical target with a size parameter kR = 0.1. The number of iterations necessary
for convergence is computed for different refractive indices. Convergence is reached when
the error falls below the limit ∆ < 1e − 5. The results are depicted in Fig. A.1. The
left plot shows the results for CSDDA and the right plot the results for QMR. For the
black areas in the left plots, no convergence can be reached. Hence, it becomes obvious
that CSDDA is only reasonable to use for refractive indices very close to unity, where
the performance is similar to the Krylov subspace method. Still, the implementation of
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CSDDA has some advantages compared to the more efficient Krylov subspace methods. It
is simple to implement and it is an intuitive solution of the discrete dipole approximation.
Further, the dipoles can be distributed randomly and do not have to be distributed on
a regular grid. In ADDA this is not implemented, since the computation is accelerated
by a FFT-convolution method, which only is applicable for regular spacing. Hence, the
CSDDA offers the possibility to compute the discrete dipole approximation e. g. for crystal
lattices in face-centered cubic structure with atomic resolution.
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B. Mie Theory

The Mie theory [84] gives a solution to the scattered electric field by a plane wave for
absorbing, homogeneous spherical, cylindrical or elliptical targets by solving the Maxwell’s
equations. It is applicable to all sizes of targets, wavelengths and refractive indices.
The Maxwell’s equations are solved in spherical coordinates. The incident plane wave
is expanded in Legendre Polynomials allowing the matching of the solutions inside and
outside of the spherical object. The Mie theory gives the solution of scattering functions
in the far-field via

S1(θ) =
∞∑
n=1

2n+ 1
n(n+ 1)[anπn(cos(θ)) + bnτn(cos(θ))], (B.1)

S2(θ) =
∞∑
n=1

2n+ 1
n(n+ 1)[bnπn(cos(θ)) + anτn(cos(θ))], (B.2)

with the scattering angle θ. The coefficients πn and τn are functions of Legendre Polyno-
mials of first kind P 1

n and are given by

πn(cos(θ)) = 1
sin(θ)P

1
n(cos(θ)) (B.3)

τn(cos(θ)) = d

dθ
P 1
n(cos(θ)) (B.4)

The coefficients an and bn are given by

an = Ψ′n(mα)Ψn(α)−mΨn(mα)Ψ′n(α)
Ψ′n(mα)ξn(α)−mΨn(mα)ξ′(α) , (B.5)

bn = mΨ′n(mα)Ψn(α)−Ψn(mα)Ψ′n(α)
mΨ′n(mα)ξn(α)−Ψn(mα)ξ′(α) , (B.6)

where m denotes the refractive index, α is the size parameter α = kR, with the sphere
radius R and the wave number k. Further, Ψn and ξn are the Riccatty-Bessel functions,
Ψ′n and ξ′n its derivatives with respect to radial distance r. They are functions of spherical
Bessel functions jn and nn of first and second kind given by

Ψn(t) = tjn(t) (B.7)
ξn(t) = tnn(t). (B.8)

The scattered electric field Escatt then is connected to the incident electric field Einc via
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Escatt = e−ikr+ikz

ikr

[(
S2(θ) 0

0 S1(θ)

)]
Einc, (B.9)

Hence, the scattered electric field in Mie theory basically is an infinite sum of spherical
multipole partial waves. In the simulation, the sum is computed up to a certain order
where the solution converged.
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C. Simplex Mie fits

The simplex Mie fits utilized in chp. 5 are plotted in the following. The scattered intensity
is composed of four Mie intensities from four harmonics with different intensity scalings
c via (cf. eq. (5.1))

Ifit = c11Imie,11 + c13Imie,13 + c15Imie,15 + c17Imie,17, (C.1)

Each Mie intensity is dependent on sphere radius R and refractive index n. The fits for
refractive indices fixed to the literature values

n11 = 0.97 + i0
n13 = 1.14 + i0.032
n15 = 1.03 + i0.029

n17 = 1.0036 + i0.041

and the intensity scalings and radius treated as fit parameters are depicted in Fig. C.1.
The fits with the intensity scalings (according to Fig. 5.2b) being fixed

c11 = 0.21
c13 = 0.82
c15 = 1.0
c17 = 0.29

and the radius and refractive index of 13th and 15th harmonic being the fit parameters is
shown in Figs. C.2 and C.3 for the solution of the 15th harmonic and the 13th harmonic
being dominant, respectively.



108 C. Simplex Mie fits

shot number: 171, run number: 2015121115829 shot number: 120, run number: 20151211154928

shot number: 392, run number: 20151211154827

shot number: 516, run number: 20151211154727

shot number: 452, run number: 20151211152854 shot number: 585, run number: 20151211152244

shot number: 86, run number: 20151211151534 shot number: 367, run number: 20151211151534 shot number: 553, run number: 20151210234541

shot number: 500, run number: 20151210232632 shot number: 325, run number: 2015121115427

shot number: 539, run number: 20151211152450

shot number: 47, run number: 20151211152450 shot number: 186, run number: 2015121023820shot number: 25, run number: 2015121115829

shot number: 9, run number: 20151211152450shot number: 306, run number: 2015121116831

shot number: 302, run number: 20151211152553

20 3010
[°]

20 3010

In
te

ns
ity

 [a
rb

. u
ni

ts
]

106

104

102

106

104

102

106

104

102

20 3010 20 301020 3010 20 3010

R=265nm R=271nm R=275nm R=284nm

R=326nm R=330nm R=335nm R=342nm

R=359nmR=344nm R=418nm R=639nm R=702nm R=707nm

R=344nmR=343nm

R=307nm R=318nm

exp.
Fit
17.2eV
20.4eV
23.5eV
26.6eV

Figure C.1.: Simplex Mie fits for 18 selected diffraction patterns with open intensity scalings and
refractive indices fixed to literature values. From supplementary material from [109].
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Figure C.2.: Simplex Mie fits for 18 selected diffraction patterns with 13th harmonic dominant. From
supplementary material from [109].
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Figure C.3.: Simplex Mie fits for 18 selected diffraction patterns with 15th harmonic dominant. From
supplementary material from [109].
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D. Phase retrieval algorithm

In a single-shot diffractive imaging experiment the scattered intensity is measured as

Iscatt = cε0
2 |Ê|

2, (D.1)

which is proportional to the field amplitude of the scattered electric field, however, the
phase of the field is lost. Phase retrieval algorithms are well-established methods for
solving this phase problem and offer the possibility of reconstructing the target from the
diffraction patterns without information about the exact target shape. Starting point of
the phase retrieval algorithms is the Born result (eq. (2.45)), i. e. it is important to know
that the scattered electric field is proportional to the Fourier transform of the particle
density. And then vice versa, the particle density is proportional to the inverse Fourier
transform of the scattered electric field. Note that the Born result does not include
absorption and therefore phase retrieval is only applicable to weak scattering scenarios.
In all phase retrieval algorithms four basic steps are performed. First, the scattered
electric field at the detector is constructed by taking the field amplitude from the scattered
intensity of the diffraction pattern and guessing a phase Φ0: E0 =

√
I exp (iΦ0). In the

first step, the object density ρ̃ for iteration j is obtained via

ρ̃j = FT −1(Ej). (D.2)

Second, the object density is updated by satisfying a function constraint e. g. with the
output-output scheme [37] with

ρj+1(x ∈ Σ) = ρ̃j(x ∈ Σ), (D.3)
ρj+1(/∈ Σ) = ρ̃j(x /∈ Σ)− βρ̃j(x /∈ Σ), (D.4)

where Σ is the mask. The mask can be adapted in each step via a shrinkwrap algorithm
[79]. Then, in the third step, a new estimate for the electric field Ẽ is obtained via

Ẽj+1 = FT (ρj+1) = Êj+1 exp(iΦj+1). (D.5)

In the fourth step, the Fourier constraints need to be satisfied by exchanging the electric
field amplitude with the electric field amplitude obtained by the experiment or simulation,
the electric field phase is kept

Ej+1 =
√
I exp(iΦj+1). (D.6)
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This step is the same for all phase retrieval schemes. The four steps are repeated until
convergence is reached, which can be measured by computing the error ε in each iteration
j via

εj =

√√√√∑(Êj −
√
I)2∑

I
. (D.7)

This phase retrieval scheme can be applied to 2D diffraction patterns to obtain the pro-
jected particle density (cf. eq. (2.49)) and if the amplitude of the 3D Fourier transform
of the particle can be recovered, also to obtain the 3D particle density.
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