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Zusammenfassung

Diese Arbeit befasst sich mit der Berechnung elektromagnetischer Felder in komple-
xen, supraleitenden Resonatoren. Fiir den Betrieb und das Design solcher Resonato-
ren ist eine effektive und genaue Berechnung derartiger Felder notwendig. Dies ist mit
Hilfe konventioneller Hardware in vielen Féllen kaum moglich. Durch diese Limitati-
on werden in der Praxis daher meist zwei verschiedene Auswege gewéhlt: zum einen
die Parallelisierung des Problems auf kostenintensiver Hardware mit hoher Leistungs-
aufnahme und zum anderen die Vereinfachung der Struktur. In dieser Arbeit wird ein
Verfahren untersucht und automatisiert, welches diese Liicke schlieflen soll und die ge-
nannten Probleme ohne grobe Vereinfachung der Struktur auf Arbeitsplatzrechnern
l6sen kann. Bei dem verwendeten Verfahren State-Space Concatenation (SSC) wird
mit Hilfe einer Kombination aus Modellordnungsreduktion und Gebietszerlegung der
Berechnungsaufwand stark reduziert. Fiir eine effektive Verwendung wurde in dieser
Arbeit eine Automatisierung von SSC fiir nahezu beliebige Hochfrequenzresonatoren
implementiert und getestet. Ein weiteres Problem ist die effektive Berechnung der
Verluste derartiger Resonanzen durch die Koppler und Strahlrohre. Daher wird in
dieser Arbeit ein Storungsansatz verwandt, welcher auf SSC beruht. Das daraus
entstehende nichtlineare Eigenwertproblem wird mit Hilfe des Newton-Verfahrens
gelost und erlaubt eine vergleichsweise schnelle Berechnung derartiger Verluste. Die
verwandte Methode wird auf ihre physikalische Konsistenz getestet und teilweise
mit Messergebnissen verglichen. Zusammenfassend werden alle in dieser Arbeit er-
dachten und implementierten Methoden an drei state-of-the-art Problemen aus der
aktuellen Beschleunigerphysik getestet. Dabei werden aktuelle Fragestellungen der
Forschung fiir das Third Harmonic Module des FLASH-Beschleunigers, des bER Lin-
Pro Haupt-Linacs sowie des Designs der BESSY VSR Resonatoren beantwortet.
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Abstract

This thesis deals with the computation of electromagnetic fields in complex, super-
conducting resonators. For the operation and design of such resonators, an efficient
and accurate computation of these fields is necessary, which is hardly possible on
conventional hardware in many cases. Due to this limitation, there are generally
two different approaches in practice: on the one hand, the parallelization of the
problem on costly hardware with high power consumption and, on the other hand,
the simplification of the structure. In this thesis a method is investigated and auto-
mated to close this gap, which can solve the considered problems without extensively
simplifying the structure on workstation computers. The used method, State-Space
Concatenation (SSC) employs a combination of model order reduction and domain
decomposition to significantly reduce the computational effort needed. For an ef-
ficient use of SSC, in this thesis an automation, ready to handle almost arbitrary
high-frequency resonators is implemented and tested. Another problem is the ef-
ficient calculation of the losses of such resonances by the couplers and beampipes.
Hence, this work is using a perturbation approach based on SSC. The resulting
nonlinear eigenvalue problem is solved by using the Newton method, which allows
for the comparatively fast computation of such losses. The exploited method is tested
for physical consistency and partly compared to measurement results. In summary,
all the methods discussed and implemented in this work are tested for three state of
the art problems from accelerator physics. In the process current research questions
for the Third Harmonic Module of the FLASH accelerator, the bERLinPro main
linear accelerator (linac) and the BESSY VSR cavity-design will be answered.
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Thesis Statements

of the dissertation

Numerical simulation of electromagnetic fields in complex multi-cavity
superconducting radio frequency resonators

by Johann Heller

1.

For the design and operation of strings of superconducting cavities, the nu-
merical computation of their electromagnetic resonances is a standard task in
accelerator physics. Unfortunately, due to the high computational demand,
this task is often performed using either major simplifications of the structure
or by parallelizing the computations on expensive hardware.

. The State-Space Concatenation (SSC) algorithm is an excellent solution to

solving Maxwell’s equations in large superconducting radio-frequency structu-
res. By employing a combination of domain decomposition and model-order
reduction, the computational demand can be lowered such that the required
investigations can be performed, without simplifications of the structure, on
standard workstation computers.

The simplifications of the structures commonly introduced for such multi-cavity
resonators are only valid for certain modes which are confined to substructures
such as the cavities. Therefore, the computation of the fields in the full
structure is inevitable, even below the first cutoff frequency of the beampipe.

The combination of SSC with modern discretization techniques is required for
the efficient usage. Both techniques, the Finite Integration Technique (FIT)
as well as the Finite Element Method (FEM), allow for the discretization of
Maxwell’s equations in the substructures. Furthermore, for both discretization
techniques, there are strong hints that for simple topologies, the combination
with SSC does not disturb the underlying convergence order regarding the
number of degrees of freedom (DOF).

For high reliability and performance an automation of SSC is needed. For the
underlying discretization FIT is an appropriate candidate due to the availability
of powerful commercial software such as CST Microwave Studio ® which allows
the export of the matrices arising from the discretization.

The presented implementation of SSC is validated with an analytical example
which shows that the accuracy of solutions in both field and frequencies in-
creases with the number of degrees of freedom with the expected convergence
order. The implementation has some minor limitations that mostly originate



10.

11.

12.

from the underlying commercial software, especially regarding the placing of
the waveguide ports.

Compared to other domain decompositions that are applied in accelerator
physics, SSC has several advantages, especially the fact that fields are readily
available in a cheap post processing step.

. The computation of external losses leads to a Nonlinear Eigenvalue Problem

(NLEVP). The commonly applied solution approaches of the NLEVP are
inefficient for large structures. While several approaches were proposed in the
past, none of them can compute large numbers of solutions without major
simplifications of the structure or the requirement of expensive hardware.

. The non-simplified solution of the NLEVP is inevitable due to the shortcoming

of the simplified solutions. A perturbation approach based on discretized Max-
well’s equations in the closed structure can achieve an efficient discretization
of the NLEVP.

The Newton method offers an effective solution to the NLEVP. While the
convergence is guaranteed if certain parameters are met, there is no guarantee
that all solutions in a certain frequency domain are found.

The algorithms proposed in this thesis are able to investigate lossless as well as
lossy (restricted to external losses) electromagnetic fields in real-life structures
with several millions of degrees of freedom. Furthermore, the method is logically
consistent and the results agree well with available measurements.

The introduced algorithms for the solution of the Helmholtz-equation and the
NLEVP are very well suited to investigate real-life examples of SRF structures.
Possible applications are the identification of potentially disruptive modes and
the comparison of different design-candidates. Both are shown on three real-
life applications, namely the FLASH Third Harmonic Module, the bERLinPro
main linac, as well as the BESSYVSR cavities.
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We0,m 1/s Angular cutoff wavenumber of mth waveguide mo-
de

Q Computational Domain

V- 1/m Divergence operator

V- 1/m Transverse divergence operator

\Y 1/m Gradient operator

K A/(Vm) Electrical conductivity

A m Wavelength

An 1 n-th eigenvalue of the NLEVP

i j 1 j-th approximation of the i-th eigenvalue of the
NLEVP

i 1 Initial guess for the i-th eigenvalue of the NLEVP

An m n-th wavelength

I'p.t 1 Surface of Waveguide Port

O py 1 Boundary of waveguide port surface

A arb Square matrix with the diagonal containing the
eigenvalues of an arbitrary matrix

by arb Matrix containing the singular values of the SVD

of an arbitrary matrix on the diagonal

xxi
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1 Introduction and Objectives

Superconducting radio-frequency (SRF) resonators are a key component to many
scientific and industrial applications in accelerator physics [1]. The design and
operation of such structures requires an in-depth knowledge of the electromagnetic
fields inside these structures. Furthermore, in order to find an optimum of operational
costs and performance, the electromagnetic losses during the operation have to be
precisely evaluated and improved accordingly. Said losses are drastically influencing
the costs of the entire operation and limit (for SRF structures) certain developments,
especially for high beam currents [2] or high repetition rates. Among many influential
parameters like chemical treatment, operational temperature, choice of Niobium
alloys [3], [4] an important parameter is the shape of the accelerating structure.
The shape is optimized using cutting edge computational applications which solve
Maxwell’s equations numerically inside said domain. However, these commonly used
tools have several shortcomings, especially when dealing with large and complex
structures which need many degrees of freedom (DOF) to be accurately represented.
This thesis addresses some of these shortcomings and outlines improved solutions
which allow for a more accurate design of said accelerating shapes in an effort to make
a contribution to modern accelerator physics and improve future particle accelerators.

In order to accomplish the latter mentioned goals, the biggest problem regards
the computationally disadvantageous scaling behavior of the investigated problems.
To further explain this: The sought solutions are harder and harder to obtain with
a sufficient accuracy, the larger and more complex the structure is. While the
described approaches are no problem for comparably small structures, the scaling
behavior limits further research of complex structures. One commonly used solution
approach is, to simply scale the computational infrastructure and parallelize the
numerical evaluation of the problem as in [5], [6] (to name only a few). In most
cases the hardware consists of a cluster of high performance computers. While this
approach works in practice and pushes the boundaries of feasible investigations, such
computational infrastructure is rarely available!, comparably expensive and takes
specific knowledge and manpower to operate. The second commonly applied method
to tackle the scaling behavior of electromagnetic simulations is a simplification of the
structure. In this case only a fracture of the structure is taken into account which
might be justified in some cases since the structure is highly repetitive. However,
when taking the entire structure into account there might be additional effects, like

! As an example, the methods proposed in [5] are solely available to researchers employed by the
US Department of Energy and their project-partners.
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modes propagating through the entire structure, that can not be accounted for.

Therefore, in this thesis it is proposed to close this gap by using methods which re-
duce the computational demand of the problem by several orders of magnitude, thus
allowing its evaluation of standard workstation computers. Firstly, it is important to
find a compact mathematical description of electromagnetic fields in arbitrary resona-
tors. Such a description was recently proposed with the State-Space Concatenation
(SSC) scheme by T. Flisgen in [7],[8] which gives an excellent foundation to tackle
the problems in this thesis.

To address these issues, on the theoretical basis of SSC, methods and/or software
for the accurate, numerical investigation of electromagnetic fields in comparably
complex collocations of several SRF cavities are developed. Of special interest in
this thesis is the efficient evaluation of external losses of said fields on commonly
available hardware which, to the authors best knowledge is a currently unsolved
problem in accelerator physics. Furthermore, certain effects that occur when dealing
with complex, multi-cavity structures are investigated and compared to approaches
where the structure is simplified, using the developed tools. As final result, some
real-life structures are investigated using the proposed algorithms, trying to show
their performance and partly compare them to measurements.

1.1 Particle Accelerators for High-Energy Physics
and Superconducting Radio-Frequency
Resonators

This thesis deals mainly with topics related to accelerator physics?. Therefore a
short introduction into the uses and applications of accelerator physics is given in
this section.

The usage of high-energy photon or charged particle beams is advantageous due to
their superior resolution compared to that of e.g. visible light [9]. Hence, beginning
roughly 100 years ago, particle beams have been used directly or indirectly, by
generation of synchrotron radiation, to investigate matter [10],[9]. Currently there
are roughly 24,000 particle accelerators in industrial use and roughly 11,000 in
medical use worldwide [11]. The publicly most known accelerators which are being
used for high energy physics like the Large Hadron Collider (LHC) only make a
fraction of the total numbers, especially due to their high costs.

A particle accelerator interacts with charged particles using electromagnetic fields
in order to accelerate the particles to relativistic velocities and high energies. General-
ly, there are two main applications: The generation of particle beams e.g. for collision

2Though nearly all outcomes of it could be useful to other branches of science that deal with
electromagnetic waves in highly resonant systems.
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with another beam or a target on the one hand, and the generation of synchrotron
radiation on the other hand [9]. For both approaches, the accelerated particles have
to have a comparably high kinetic energy (depending on the specific application)
which is achieved by an acceleration towards velocities close to the speed of light in
vacuum c¢g. In modern particle accelerators, the acceleration employs time-varying
electric fields in the radio-frequency range?® in order to transfer energy to the particles
due to the superior resistivity to any kind of breakdown, thus increasing the possible
energy gain compared to accelerators that use static-electric fields [9]. The basic
idea is to have a time-varying electric field that resonates in phase with the moving
charged particles. This is highlighted in Fig. 1.1, showing the accelerating electric
field on the beam-axis and the direction of the Lorentz-force Fy, for a positively
charged particle with the velocity v close to the speed of light*. In the upper part of
Fig. 1.1 the particle traverses the first cell, experiencing a Lorentz-force in its direc-
tion of motion. While the particle moves to the next cell, the phase of the electric
field changes. By design the phase has changed by 180° when the particle reaches
the center of the next cell, resulting again in a Lorentz-force in its initial direction
of motion as highlighted by the lower part of Fig. 1.1. This way, the particle (if
injected at the correct phase) encounters roughly the same force in all cells, leading
to a accumulating effect of the acceleration. Due to the phase change of 180° from
cell to cell, this specific electric field is generally denoted as the w-mode. All modes
with resonance frequencies higher than that of the m-mode are denoted as higher
order modes (HOM). These HOM’s are generally unwanted and can be excited by
traversing charged particles and might reduce the quality of the beam and increase
the cryogenic losses.

For a cost-effective accelerating structure, one design goal is to achieve a compa-
rably high energy-gain per unit length. The applied electric field is commonly in the
range of several MV /m®°. A driving factor for increasing the possible energy gain
per unit length while reducing the electromagnetic losses is the decision to use su-
perconducting materials instead of copper [3]. Therefore, the cavities are fabricated
from Niobium (or Niobium alloys like Niobium-Tin [4]) and cooled down by a cryo-
genic infrastructure using liquid helium to 2 K, or 4 K, depending on the application.
At such low temperatures Niobium is superconducting and has (depending on the
purity of the Niobium and certain fabrication steps) a surface resistivity of several
n{), which is several orders of magnitude lower than copper. These low losses lead to
large intrinsic quality factors of the fabricated cavities above 10'°, which are some of
the highest observable quality factors in physics [3]. Said cavities are further denoted
as SRF cavities, with a typical example shown in Fig. 1.2.

3Several MHz up to 300 GHz.

4In this thesis all vectors and matrices are highlighted with a bold font.

SThere are certain ways to overcome these limits up to several GV /m using either plasma-wakefield
acceleration or miniature dielectric structures. These techniques are not discussed in this thesis.
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Abbildung 1.1: This picture shows a qualitative plot of the acceleration principle in
SRF cavities. It is shown how a single, positively charged particle (highlighted in black)
traverses through the cavity with an initial velocity v. Furthermore, the longitudinal
electric field of the m-mode on the beam axis and the resulting force F, acting on the
particle are shown. The force Fp, is the later introduced Lorentz-force. If the particle
is injected with the correct phase regarding the m-mode, a Lorentz-force in its initial
direction of motion is generated in each cell, leading to an increased kinetic energy of
the particle. It should be noted that the electric field on axis and the resonator do not
share the same axis.

Abbildung 1.2: This picture shows a typical SRF cavity, fabricated from Niobium. The
resonator is generally evacuated and operated at 2K [12]. It consists of nine cells and two
couplers to the left and right. These so-called HOM couplers are used to damp parasitic
electromagnetic resonances. Furthermore, every resonator has a power or input coupler,
through which the m-mode is excited.




1.2 Problem Statement

Generally many parameters of the cavity like the geometry are chosen according to
the relative initial speed of the particles regarding cy®. For medium to high-3 cavities
the most common geometries are constructed by mean of ellipses and their tangents,
leading to so-called elliptical cavities as e.g.in [13]. The cavity then consists of
several similar cells, the so-called mid-cells, which are welded together”. The cells at
both ends, the so-called end-cells, generally have a different geometry to guarantee
an optimized damping of unwanted electromagnetic fields. In this thesis the focus is
laid on elliptical, high-/ cavities, though the introduced formalisms are applicable
to all kind of resonators used in SRF technology.

In order to excite the accelerating electromagnetic field, an RF-coupler, connected
to a klystron is placed in the vicinity the cavity. This coupler is denoted as the input
coupler. Furthermore, more couplers are introduced through which the unwanted
HOM'’s are able to propagate out of the system. This coupler is denoted as HOM
coupler.

1.2 Problem Statement

This section outlines the specific problems this thesis addresses. These problems
are later explained in more detail. The numerical simulation of SRF resonators
is a computationally challenging task. By design, several similar SRF resonators
are concatenated to one accelerating chain whose electromagnetic fields can couple
to each other. Since gaining experimental data can be very expensive (due to
complexity and operational costs of the structures), the experiments regarding the
electromagnetic fields are in many cases conducted using numerical techniques. In
most literature investigating SRF cavities, the structure is confined to one single
cavity with its couplers attached. Unfortunately, while some fields are confined in
one cavity, the majority of HOM energy is stored in electromagnetic fields which are
not necessarily confined in one cavity [3] and whose fields can fill the entire structure
as shown e.g.in Fig. 1.3. Due to the immense computational demand on computing
such fields, an efficient implementation and automation of an appropriate method
to enable such computations is desirable. Furthermore, it has to be evaluated in
which cases the computation of the fields inside the entire domain is necessary and
in which cases it is sufficient to confine the computational domain to just one cavity.

From the resonances of the structure, it is generally tried to make some assessments
about their losses. The mathematical formulation leads to a comparably large
nonlinear eigenvalue problem (NLEVP). While this problem is solved for small

6 A possible differentiation regarding the cavities is done using the velocity of the particles compared
to the vacuum speed of light 8 = v, /co. It is differentiated between low-3 as 8 < 0.4, medium-43
as 0.4 < 8 < 0.8 and high-$ as 0.8 < § cavities [3].

"The maximum number of cells is determined by many parameters like cleaning or trapped
electromagnetic fields. Generally there exist hardly any cavities with more then nine cells.
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Abbildung 1.3: In this picture the absolute value of the electric fields of two types
of eigenmodes are shown for the bERLinPro accelerator. The upper picture shows a
mode resonating at 3.6807 GHz which is well confined in the cavities. Such a mode
hardly changes its field pattern when several cavities are connected. The lower picture
shows a mode resonating at 1.8564 GHz which is able to resonate in the entire structure.
Computing these kinds of modes as well as making assessments about their losses is a
central element of this thesis which is further discussed in Chapter 5.

structures with few DOFs needed for a sufficiently accurate determination, the
efficient computation of lossy resonances in complex SRF structures is an unsolved
problem for fairly large structures. Therefore, in this thesis a theoretical solution
that enables the computation of the most relevant losses for large-scale resonators
was aimed for.

1.3 Structure and Novel Scientific Contributions
of the Thesis

This thesis is structured as follows: In the consecutive chapters, first in Chapter 2, an
introduction to the foundations of electromagnetic field theory is given by Maxwell’s
equations as well as some special considerations when dealing with electromagne-
tic fields in the vicinity of conducting structures. A special focus is laid upon the
computation of electromagnetic fields in SRF cavities as well as relevant, secondary
quantities derived from the computed fields which are of special interest for appli-
cations based in accelerator physics. Furthermore, the numerical discretization of
Maxwell’s equations using the Finite Integration Technique and the approximation
of second order partial differential equations using systems of ordinary differential
equations is briefly introduced. Chapter 3 deals with the state-space concatenation
scheme, a domain-decomposition scheme that was used throughout this thesis to re-
duce the numerical effort for solving Maxwell’s equations. The theoretical derivation,
as well as the conducted implementation and automation of SSC are explained in
detail. Furthermore, an analytical example is shown and compared to SSC, and the
method is theoretically compared to other, existing domain decomposition schemes.
Chapter 4 deals with the accurate computation of external losses with the help of
SSC. The resulting NLEVP is discussed with its properties and solution approaches.
The solutions are evaluated with a small numerical example of a simplified resona-
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tor as well as a real-life cavity. The proposed solution approach is further checked
for physical validity and partly compared to available measurements. In Chapter
5 the previously developed and described techniques are used to describe effects
that occur when computing multi-cavity accelerating structures, on the example of
two relatively simple SRF cavities. Furthermore, some real-life examples that show
the application of the developed methods to accelerating structures are discussed,
namely the FLASH Third Harmonic Module, the bERLinPro main linac and the
BESSYVSR SRF cavities. The results from one application are further compared
to measurements conducted by other researchers. The final chapter comprises the
shown scientific contributions in this thesis and discusses some ideas about further
applications and developments regarding the topics discussed in this thesis.

Some minor explanations that did not fit naturally into the thesis are explained
in the appendix which is referenced at the appropriate chapters.

To the author’s best knowledge this thesis contains several new scientific contribu-
tions to the fields of RF-engineering, applied mathematics and accelerator physics.
Some of these contributions were published in [14] and [15] in preparation of this
thesis. The novelty of this thesis consists of three main different contributions

1. The automation of the state-space concatenation scheme. SSC was mentioned
in earlier research [7], however, in order to avoid errors and heavily improve
the performance and usability, the algorithm had to be effectively implemented
and automated for arbitrary topologies of waveguides.

2. The formal derivation of the nonlinear eigenvalue problem resulting from the
computation of external losses as well as its combination with model-order
reduction and the effective solution for large numbers of solutions.

3. The investigation of electromagnetic fields in complex, multi-cavity structures
using the latter mentioned implemented tools and their application to three real-
life projects from accelerator physics to answer important scientific questions
like certain design choices or the identification of possibly dangerous modes.

These new contributions are discussed in the Chapters 3 and 4 and are applied in
Chapter 5.







2 Electromagnetic Field Theory

For the investigation of RF structures the computation of the arising electromagnetic
fields is inevitable. These fields are solutions of the well known Maxwell’s equations,
which are reprised in this chapter. Furthermore, some basic derivations about the
behavior of guided electromagnetic waves are discussed. Finally it is shown how these
equations are discretized using state of the art schemes i.e.the Finite Integration
Technique (FIT). It should be noted that not a complete survey is given, but rather an
incomplete introduction to the basic concepts used throughout this thesis. Readers
with a deep knowledge in electromagnetic field theory are free to skip this chapter.

2.1 Maxwell’s Equations

In the middle of the 19th century, the Scottish mathematician James Clerk Maxwell
published a set of equations trying to mathematically outline preceded physical
experiments about electromagnetic phenomena [16]. While in the original notation,
hyper complex numbers! were used, the formulation was later simplified by Oliver
Heaviside using vector calculus [17]. The produced set of four partial differential
equations comprises a classical electromagnetic field theory describing the interaction
of electric fields E (r, t) and magnetic fields H(r, ) with matter and vacuum through
field equations [18]. The spatial dependency of the introduced quantities is depicted
with r and the time dependency with ¢. These equations are today known as
Maxwell’s equations and are most commonly used in the notation

D H(r,t)-ds = //r (J(r,t) + %D(r, t)> -dA, (2.1)

éFE(r,t) -ds = _//r %B(r,t) dA, (2.2)

) Dir.t)-dA - ///Q p(r,1)dV, (2.3)

# B(r,t) - dA =0, (2.4)
o

with the electric charge density p(r,t), the electric current density J(r,t), the
electric flur density D(r,t) and the magnetic flux density B(r,t). The equation (2.1)

In Maxwell’s case quaternions were used.
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is known as generalized Ampere’s circuital law. It describes how the integral over an
arbitrary closed curve OI" equals the integral of the current density and the derivative
with respect to time of the electric flux density over the surface I' enclosed by said
line. The equation (2.2) denotes the induction law and describes that the integral of
a closed curve OI' equals the integral over the derivative with respect to time of the
magnetic flux density over the surface I' enclosed by the curve. Furthermore, Gauss’s
law (2.3) describes that the integral over a closed surface of an arbitrary volume 02
of the electric flux density equals the integral of the electric charge density over the
same volume . The last Maxwell equation (2.4), Gauss’s law of magnetism states
that the integral over any arbitrary closed surface 9€2 of the magnetic flux density
is zero.

For a full description of the fields, interaction with matter has to be described. The-
refore, in Maxwell’s equations auxiliary vector-quantities, namely the flux densities
of the electric and magnetic field were introduced

B(r,t) = wH(r,t), (2.5)
D(r,t) = @E (r,t), (2.6)

[

with the material-specific, magnetic permeability p and electric permittivity €. The
magnetic permeability is the product of the vacuum permeability po and the relative
permeability u, which is a specific material property. For the electric permittivity it
holds, that it is the product of the vacuum permittivity €y and the relative permittivity
g, which is a specific material property?.

The electric current density J(r, t) is generally modeled by a superposition of three
effects as

J(r,t) = Jimp(r, 1) + v(r, t)p(r,t) + KE (r, 1), (2.7)
JBeam Je

with the externally imprinted excitation current Ji,,, the current density of a
charged particle beam Jpea, traversing with the velocity v(r,t) and the ohmic
current density due to the interaction of the electric field with electrically conducting
matter. The so-called ohmic current density J, is proportional to the conductivity
k of the matter for a given electric field strength.

2The equations (2.5) and (2.6) assume that the media are homogeneous, isotropic, linear and
respond to electric/magnetics fields without temporal delay. These assumptions are made
throughout this entire thesis and hold for all shown applications with sufficient accuracy.
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2.1 Maxwell’s Equations

The set of the four equations (2.1)-(2.4) together with the material equations
(2.5)-(2.6) and the equation (2.7) for the electric current form the basics of electrody-
namics and give a macroscopic, mathematical description of electromagnetic effects
in vacuum and matter®. In some cases, one is not interested in an integral statement,
but rather in differential ones. In this case the Stokes theorem [20] can be used to
transform (2.1) and (2.2) into their differential form

V x H(r,t) = J(r,t) + %D(r,t), (2.8)
0
V x E(r,t) = —aB(r,t), (2.9)

with V being the Nabla operator. The vector-product of the Nabla operator and
a field-quantity is further denoted as the curl of said field-quantity, describing the
rotation inside an infinitesimal small domain. The Gauss’s theorem [20] can be used
to transform (2.3) and (2.4) into their differential form

V- D(r,t) = p(r, 1), (2.10)

V-B(r,t) =0, (2.11)

with the dot product of the Nabla operator and a field-quantity being further
denoted as the divergence of said field-quantity, describing the field-sources inside
an infinitesimal small domain.

Furthermore, the force acting on a charged particle with the charge ¢ moving with
the velocity v due to electric and magnetic fields are described by the Lorentz Force
Fr,

FL(r) = ¢ (E(r,t) + v(r) x B(r, ). (2.12)

The equations (2.1) - (2.12) give a macroscopic, mathematical description of all
electromagnetic effects investigated in this thesis.

2.1.1 Conservation of Energy

An important property of Maxwell’s equations is the conservation of energy. Since
the propagation of power in and out of SRF structures is a core topic of this thesis,
it will be briefly summarized in this subsection. Therefore, the differential form of
the induction law (2.9) is multiplied with the magnetic field strength H(r, ), the

3Macroscopic in the sense that no quantum effects are considered. In this case the quantum
electrodynamics, proposed by Richard Feynman is more appropriate [19].

11
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differential form of Ampere’s law (2.8) is multiplied with the electric field strength
E (r,t) and the two equations are subtracted from each other leading to

H(r,t) - (VxE(r,t)) —E(r,t) - (V x H(r, 1)) =

9 0
_H(r7 ) at/J/H(rat) E(ra ) ESE( ) E(rat) . J(r7t)4’ (213)
gt’wm(r ) aatwe(r t) p]OSS(r7t)

with the temporal change of the energy density of the magnetlc field + wm( t) and
the temporal change of the energy density of the electric field we( t). Furthermore,
the loss-density is defined as pioss(r,t). The left hand-side of (2. 13) can be further
simplified using common vector calculus identities* leading to

ploss( ) + V- ( ( ) X H(I‘,t)) — —gwm(r,t) o %

x ) pr we(r, 1), (2.14)

with the introduction of the Poynting vector S(r,t). Said vector comprises the
flow of energy-density for each point in space. For now, equation (2.14) describes
energy-densities while in practice, energies, instead of energy-densities are of interest.
Hence, (2.14) is integrated over the computational domain and yields under the
usage of Gauss’s theorem and Schwarz’s theorem® [20]

/// Ploss (T, 1) AV + #gﬂ S(r,t)-dA =

Pt (2.15)
/ﬂwir,t w2 /ﬂwm

We(t) t

In other words, (2.15) states that a change in either the magnetic or electric field
energy (right hand-side) i.e. Wy, (¢) and W, () has to be accompanied by either a loss
inside the domain or a flow of energy over the domain surface (left hand-side) such
that the energy in the domain €2 is conserved. The losses inside the domain P ()
are denoted as internal losses, caused by dielectric, ohmic or magnetic losses. The
flow of energy Pe..(t) over the domain surface, specifically the normal component

41t holds that Fy(r,t)(V x Fa(r,t)) — Fa(r,t)(V x Fi(r,t)) = V- (Fy(r,t) x Fa(r,t))[20].
5In some literature Schwarz’s Theorem is also denoted as Young’s Theorem or symmetry of second
derivatives.
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of the Poynting vector at the boundary, is further denoted as external losses®. The
computation of such external losses is of special interest in this thesis.

2.1.2 Wave Equation

In RF engineering it is generally more interesting to find a more convenient notation
than equations (2.8) - (2.11). When dealing with homogeneous media’, it is therefore
a standard approach to separate those equations, such that they contain only one
field quantity. This can be done by taking the curl of equation (2.9). Further,
replacing the magnetic flux density on the right-hand-side by equation (2.8) under
the usage of Schwarz’s theorem and the material relation (2.5), this leads to the well
known curl-curl-equation

0 0
VxVxE(r,t)= ~ % <J(r,t) + EsE (r,t)) . (2.16)
The left-hand-side of (2.16) can be simplified using basic vector identities®, which
leads to the inhomogeneous wave equation of the electric field
582E(r t) — AE (r,t) = aJ(r t) 1V (r,t) (2.17)
ILL atQ ’ 9 - Mat 9 € p ) . .

The vector-operator A is further denoted as the Laplace-operator?. For the ma-
gnetic field, choosing the same approach (i.e. taking the curl of (2.8) and plugging
in (2.9)), one can derive the inhomogeneous wave equation of the magnetic field

2
ua%H(r, t) — AH(r,t) = V x J(r, 1), (2.18)

with the major difference that there are no magnetic charges, hence there is only
one excitation term, compared to (2.17). With (2.17) and (2.18), two inhomogeneous,
hyperbolic, partial differential vector equations are at hand to describe electroma-
gnetic waves in homogeneous media and vacuum.

2.2 Guided Electromagnetic Waves

Opposing to their behavior in free space, the behavior of electromagnetic waves
changes drastically in the vicinity of conducting structures which is discussed in

6Tt should be taken into account that the word loss is only correctly used if said term is negative,
otherwise, energy flows into the domain, not out of it, assuming the standard usage of dA as
pointing in outward direction relative to the surface.

"i.e.p, # f(r,t) and €, # f(r,t). For inhomogeneous media, the wave-equation becomes a
so-called Sturm-Liouville-Problem [18].

81t holds that V x V x F(r,t) = V (V- F(r,t)) — AF(r,t)[20].

9Tt generally holds that V - (V¢) = Ag
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this section. An electromagnetic wave propagating through the enclosure of such
conducting structures is generally referred to as a guided wave. For the sake of
simplicity a common simplification is the assumption that the electrical conductivity
of said structure is infinitely high, hence the surface losses are zero. Such a conductor
is denoted as perfect electric conducting (PEC). For the electric and magnetic field
it holds the boundary condition

nx E(r,t)=0and n-H(r,t) =0 on 012, (2.19)

with an arbitrary vector n normal to the surface 9€2. In some cases a perfect
magnetic conducting material (PMC) is chosen as boundary condition, for which
holds

n-E(r,t)=0and n x H(r,t) = 0 on 0f2. (2.20)

Both boundary conditions (PEC and PMC) do not enable an energy exchange
with the vicinity through the boundary surfaces!®.

A further simplification that is assumed in this thesis is that the investigated
structures are fully evacuated, meaning that the losses caused by a dielectric or

conducting material are neglected for now!!.

2.2.1 The Helmholtz Equation

To compute the occurring resonances, the inhomogeneous wave-equation (2.17) is
reformulated by assuming that all currents J(r,t) are zero, and that the region is
free of electric charges (i.e. the structure is non-excited). Furthermore, due to the
losslessness of the resonator, one can assume that all fields are harmonically oscillating
or can be decomposed into a finite sum of harmonic oscillations. Under these given
assumptions, (2.17) can be transformed into the so-called Helmholtz-equation for the
electric field

AE,(r) + k2E,(r) = 0, (2.21)

Generally speaking, for none of the two boundary conditions a negative external energy flow is
possible (see 2.15) since for either PEC or PMC one field component is normal, while the other
one is tangential to the surface. Therefore, their vector-product (the Poynting-vector) can not
in any case show outward of the structure, such that S(r,t) - dA = 0 holds for both cases.

1Such materials can remain in the accelerator by accident, e.g. as a residual gas when the structure
is evacuated. Since this is not a planned functionality of the structure it is neglected throughout
the thesis. Another case would be the purposely introduction of some lossy material into the
accelerator which is discussed later. There are actually few applications where the cavities are
filled with hydrogen on purpose like [21] to accelerate muons, but this is a rare special case and
is not interesting for this thesis.
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with the electric field E,(r) and wavenumber k, = /2\—: of the n-th solution. Analo-
gously from (2.18) one can derive the Helmholtz-equation for the magnetic field

AH,(r) + k2H,(r) = 0. (2.22)

The Helmholtz-equations (2.21) and (2.22) generally have infinitely many solution-
pairs of angular wavenumber k,, and field-strength E,(r). In any following example
where a solution of any type of Helmholtz-equation is referenced, it is assumed that
the solutions are sorted according to ascending angular wavenumber. For certain
geometries it is possible that two or more field-patterns share the same angular
wavenumber. These modes are further referred to as degenerated modes. 1t is
important to notice that the computed field-strengths are only spatially dependent,
but are static in time. The solutions of the Helmholtz-equations are denoted as
eigenmodes, which are mutually orthogonal

/// W(r)dV =4, We (2.23)

as well as for the magnetic field

// H, (r) - H, (r)dV = 5,,112% (2.24)

with the Kronecker-delta 4, ,'2. The orthogonal solutions form a complete set
of basis-functions. In lossless, closed cases, the angular wavenumber k, is real-
valued. These solutions of the Helmholtz-equation, can further be used to decompose
electric and magnetic fields into weighted, mutually orthogonal fields, when solving
the inhomogeneous wave equations (2.17) and (2.18), which is used in many cases
throughout this thesis.

Furthermore, if the investigated waveguide does not change its cross section in
longitudinal direction, it is possible to decompose the spatially dependent electric
field E (r) (it was earlier assumed that the field is harmonically oscillating in time)
into a product of two functions, i.e. E (r) = E¢(r) + E,(z). The spatial homogeneity
in longitudinal direction of the waveguide allows for the decomposition of the Nabla
operator to V = V4V, with the transverse Nabla operator V and the longitudinal
Nabla operator V,, and thus the decomposition of the Helmholtz-equations (2.17)
and (2.18) into a transversal and a longitudinal part'? as

A¢Ein(re) + k¢, Een(re) = 0, (2.25)

i
12The Kronecker-delta is a function for which holds: §;; = (1) lfl 7 J_’
ifi =j.

3The decomposition is only explicitly shown for the electric field, but holds for the magnetic field
in full analogy.
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2 Electromagnetic Field Theory

AE, . (2) + k:fﬂnEZ’n(z) =0. (2.26)

The equations (2.25) and (2.26) are coupled by the angular wavenumber, as it
holds that k2 = k7 + k7,. The separation is interesting because the solution for
the transverse Helmholtz-equation (2.25) is the same for both a waveguide that is
closed at both longitudinal ends or infinitely long in longitudinal direction, since the
transverse domain remains the same for both boundary conditions.

In the investigated waveguide (without change of cross section in longitudinal di-
rection), for every field E (r, t) and H(r, t) can be assumed that it can be decomposed
as a sum of infinitely many mutually orthogonal functions Ey,(r,¢) and Hy,(r,t) as

E(r,t) = Z Lt,m(rt)vm(z,t)/—l—Ezm(r,t) : (2.27)
m=1 En;?r,t)
H(r,t) = Y [ n, x Lim(r)im(z,t) +Hom(r,t) | | (2.28)
m=1 v
thm(l‘,t)

where the field strength of each m-th function is decomposed again into the sum of
a purely transversal part and a longitudinal part. The 2D field distributions Ly (1)
are the solutions of the transverse 2D Helmholtz equation of the electric field (2.25)
with a PEC boundary condition and normed with respect to the electric field energy.
It holds that

Et,m (I’t)

vV We,m ’

with the electric energy We,, of the m-th solution of (2.25). The weighting coef-
ficient of Ly (1), vm(2,t) is further denoted as modal voltage, while the weighting
coefficient i,,(z,t) in (2.28) is further denoted as modal current of their respective
2D modes.

Lim(re) = (2.29)

The transverse Helmholtz-equation (2.25) has three different sets of solutions.
Firstly, there are solutions for which the longitudinal electric field vanishes. They
are further referred to as transverse electric (TE) modes, it holds that E, ,(r,t) = 0.
Secondly, there are solutions for which the longitudinal magnetic field vanishes. They
are further referred to as transverse magnetic (TM) modes, it holds that H, ,(r,¢) = 0.
For both cases, TE and TM modes, the angular wavenumber is nonzero and there
are generally infinitely many solutions of both types. In the third case, the field has
neither an electric, nor a magnetic field strength in longitudinal direction. These
solutions are referred to as transverse electric and magnetic (TEM) modes, it holds
that E,(r,t) = 0 and H, ,(r,f) = 0. In the TEM case, the angular-wavenumber
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2.2 Guided Electromagnetic Waves

is zero and there is a fixed number of solutions equal to the number of electrically
disconnected conductors.

2.2.2 Electromagnetic Fields in Closed, Lossless Structures

A standard task in SRF theory, is the determination of the electromagnetic reso-
nances, i.e. the eigenmodes in a closed, non-excited and lossless structure. Though
such a case has no direct practical relevance, the concept is useful in that sense, that
many applicational cases can be derived from this closed structure. For example the
excitation from an antenna, a particle beam or the propagation of energy out of the
structure can all be determined by a sum of weighted, lossless resonances.

Therefore, the electric field is decomposed into a set of N3p mutually orthogonal
field-patterns E,(r) and their time-dependent weighting function z,,(t)

N3p
E(r.t)~ Y Eu(r)a(t), (2.30)
n=1
with N3p — oo. Historically, the eigendecomposition originates from Fourier-
analysis [22]. The solutions E,(r) are the solution of the Helmholtz-equation (2.21).
The same decomposition can be performed for the magnetic field.

In practice, the Helmholtz-equation (2.21) is often solved numerically by employing
a suiting discretization technique. The magnetic field (if needed) is then computed
from the Maxwell’s equations.

2.2.3 Propagation of Guided, Electromagnetic Waves

Of special interest in RF engineering is the question under which circumstances
electromagnetic waves propagate through a waveguide, which is discussed further
in this subsection. The equation (2.26) can be solved generally by the sum of two
waves that propagate in +z and —z direction as

E,(2) = Ef (2)e’** + B (2)e 772 (2.31)

From (2.31) one can replace the angular wavenumber in z direction with k, =
Vk? — k2 Tt can be seen that one has to differentiate two cases: Firstly, if the
exponent jk,z is complex-valued (with the imaginary unit j), i.e.if k > k;, the wave
is propagating in z-direction. Secondly, if the exponent jk,z is real-valued (and
negative), i.e.if k < ky, the wave decays exponentially in z-direction. In this case the
wave is also referred to as evanescent. The wavenumber above which the wave starts

The dedicated reader will notice that there are two possible solutions for the relation k, =
k2 — k2 (since it is an equation of second degree).
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2 Electromagnetic Field Theory

propagating is referred to as the cutoff wavenumber. For the n-th cutoff angular
frequency weo ,, it holds

kt,m
VIE

It should be noted that the cutoff frequency fco,, depends solely on the transversal
shape of the waveguide, i.e.on the solution of the transversal Helmholtz-equation
(2.25).

(2.32)

Weon = 27chO,n =

2.2.4 Waveguide Ports

The Sections 2.2.2 and 2.2.3 describe a closed (or infinitely long), lossless wave-
guide. For application examples one needs to be able to mathematically describe
the exchange of energy of that system with its surroundings as in (2.15). This
might be an external excitation or the dissipation or propagation of energy out of
the system. The problem of an electromagnetically excited waveguide is solved in
accelerator physics using a so-called field equivalence principle. The basic idea is to
replace the problem at hand by an equivalent problem (in that sense that the solution
should remain the same in the region of interest), for which the solution is easier to
compute. This technique is commonly used for problems where the computational
domain can be decomposed into two domains where one domain €2; contains the
sources, and the other {25 contains the device under test and is sufficiently far
away from the sources. The solution of the field-problem is only of relevance in
2y. Therefore, the sources in €2y are replaced by wirtual sources on the boundary
of €25 in a way that the resulting field will be the same. In accelerator physics,
the cavity is excited by an antenna, relatively far away from the cavity. Therefore,
the so-called Schelkunoff’s Field Equivalence Theorem [23], which originates from
Green’s Integral [18], is applicable!®. Here the structure is excited by incident (or
scattered) electromagnetic waves, originating from space, infinitely far away €2;.
These sources are replaced by either magnetic currents (for PEC boundary at the
waveguide) or electric currents (for PMC boundary at the waveguide) on the surface
of 5. The common surfaces of £2; and €2, are denoted as waveguide ports and
allow the exchange of energy of the structure with the surroundings. Throughout
this thesis, the formulation using electric currents and therefore PMC boundary
conditions at the waveguide ports is chosen!®.

In the following an arbitrary waveguide port is described with the surface I'p,
a vector np,; normal to said surface, the boundary of the port surface OI'p,; and a
vector normal to the port boundary nar,,, as highlighted in Fig. 2.1.

15 This field equivalence principle is a generalization of Love’s Field Equivalence Theorem.

16T he choice of electric, virtual currents over magnetic, virtual currents is theoretically exchangeable,
however for the tasks at hand in this thesis it is more convenient to use an impedance formulation
instead of an admittance formulation.
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2.2 Guided Electromagnetic Waves

Npr¢

Abbildung 2.1: For arbitrary waveguide ports with the surface I'p,¢, a vector normal to
its surface npy, as well as a vector normal to its boundary ngr,_, is defined.

The power P(t) through each waveguide-port can be computed by the transver-
se (regarding the port surface) electric and magnetic fields inside the port-surface
Ei pii(ri, ) and Hy py(ry, t) as

P(t) = / Et,Prt(rt; t) X Ht,Prt(rt; t) : nPrtdA7 (233)
FPrt

In a further step, an orthogonal decomposition of all fields inside the port surface
is conducted. Therefore, the electric and magnetic fields in (2.33) can be expressed as
a weighted superposition of a complete set of orthonormal functions Ly ,(r;) which
exist solely inside the port-surface and are weighted with time-dependent weighting
factors v, (t) and 4,,(t), respectively, as introduced previously in (2.27) and (2.28)

Et,Prt(I't> t) = Z Lt,m(rt) Um(t)a (2-34)
m=1
Ht,Prt(rt7t) = Z Np;y X Lt,m(rt) Zm(t) (2-35)
m=1

Plugging the decomposition of the transverse field strengths in (2.34) and (2.35)
into (2.33) leads to

P(t) =Y vm(t)in(t). (2.36)

Any incident electromagnetic wave from €21, can now be modeled by imprinting a
modal current at the port surface I'p,;, which leads to a transverse magnetic field.
These transverse magnetic fields Hy ,,(r;,t) are chosen according to Schelkunoft’s
Field Equivalence Theorem as

Jprtm(r,t) =0, X Hy (14, 1) 0(2) = —Ligm(re)im(t). (2.37)
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2 Electromagnetic Field Theory

The 2D field patterns L ,(r¢) are solutions of the Helmholtz-equation (2.25) in
the port surface and are zero everywhere else.

2.2.5 Wave Impedances

The complex-valued electromagnetic wave impedance is defined as the ratio of the
transverse components!” of electric and magnetic fields of an electromagnetic wave
(in frequency domain)

Et,m(r> _ Um(jw)
H; (r) im(JW)

The wave impedance is especially interesting when dealing with modal voltages and
currents, as introduced in (2.27) and (2.28). The ratio of the m-th modal voltage
and current can be described as the wave impedance of the m-th 2D eigenmode.

Following [24], the wave impedance depends on the mode type, the frequency (of
the wave) and the cutoff frequency. For TM modes it holds that

y 2 2
Dot = 2y YIS 5 (2.39)

. 9

Jw

Zon(jw) = (2.38)

with the impedance in free space Z; defined as

Zo = |22 (2.40)
€0

Jw
(jw)? + w2,

For TE modes it holds that

Zren = Zo (2.41)

For both cases, TE and TM, the wave impedance is real-valued above the cutoff
frequency, and complex-valued below the cutoff frequency. In case of TEM modes
(where the cutoff frequency is zero), the wave impedance is equal to the free space
impedance

ZreMn = Zo. (2.42)

The wave impedance can not be given analytically in all cases, for example when
losses occur in the 2D port plane. These cases are not considered in this thesis
although they are of practical relevance in rare cases [25]. Also for this case, the
expansion of the systems energy-coupling in 2D modes might not make sense anymore,
since they might not be mutually orthogonal.

In this case transverse refers to the direction which is orthogonal to the waves direction of
propagation.
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2.2 Guided Electromagnetic Waves

2.2.6 Secondary Quantities for Lossless SRF Cavities

As mentioned earlier, the main topic of this thesis is the computation of electromagne-
tic fields in RF resonators for particle accelerators. In this context, it is common to
compute several secondary field quantities from the computed electromagnetic fields.
The quantities are commonly used for further computations like estimations of beam
instabilities. In the following some standard, secondary quantities are introduced
and further explained as shown in [1]. Both quantities try to estimate the behavior
of a charged particle bunch in interaction with the earlier computed electromagnetic
fields.

The interaction of the particle beam with the electric field of the n-th eigenmode
E,.(z0, Y0, 2) is described by the effective voltage acting on a particle Vearticien

L
VParticle,n = /En<x07 Yo, Z)ejwn%dz ) (243)
0

with the length L of the investigated resonator, and the angular frequency of the n-th
eigenmode w,,. This gives a measure of the mean voltage seen by a particle. From
this mean voltage, it is advantageous to define a longitudinal, geometric impedance
which is material-independent!®. This measure is further denoted as r/Q and defined
by

2

(T/Q) — VPartiCle,n ) (244)
" wnWstored,n

One usually wants to damp modes for which the product of /@ and the later
introduced external quality factor exceeds a certain value. By design, the mode with
the highest /@ should be the m—mode.

Another quantity of interest is the estimation of losses in SRF cavities. This is
discussed later in this thesis in Chapter 4.

8 There are many different definitions of 7/Q in the literature. In some literature, the oscillation
of the electric field is not taken into account as in [3]. Furthermore, it is quite common to define
different formulas depending on the indices of a modes multipole expansion (i.e.the formula
for r/Q is different for a dipole and a monopole mode). In this thesis the distinction between
multipoles is not made for /@ since the multipole expansion is not possible when dealing with
modes that can traverse out of the cavity or through multiple cavities. In theses cases it can
happen that several different multipole modes couple and are not distinguishable anymore.
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2 Electromagnetic Field Theory

2.3 Discrete Formulation Using the Finite
Integration Technique

Maxwell’s equations, as described in Chapter 2.1, form a boundary value problem
for which it is uniquely determined how the system evolves with respect to time if
the boundary conditions and the current state of the system is known. A closed,
analytical solution is solely available if one can find a coordinate system that is
aligned with the boundary [26], which is rarely possible for arbitrarily shaped real-
life applications. Therefore, it is a common practice to employ numerical techniques
for the solution of Maxwell’s equations. The most commonly applied techniques
for electromagnetic fields are the Finite-Element-Method (FEM) [27], Boundary
Element Method (BEM), Finite Differences (FD) [27] and the Finite Integration
Technique (FIT) [28], [29]. Throughout this thesis FIT, (if not stated explicitly
different) was used for the numerical discretization of all shown electromagnetic field
problems. Therefore, in this section, a short summary of the technique is presented.
Since FIT is not an essential part of this thesis and there are many excellent pieces
of literature on this topic like [30] or [31] it is described very briefly.

The Finite Integration Technique is a volume-based discretization scheme that
was developed by T. Weiland in 1977 [28], [29]. Based on preliminary studies about
of staggered grid Finite Difference Time Domain (FDTD) by Yee et.al. [32], it
was a generalization of the dual grid principle for the frequency domain. Later it
was generalized for many applications like wakefields [33], eddy-currents [34] and
elastodynamics [35] to name only a few.

The basic principle is to decompose the computational domain in several simplistic
subdomains, e.g. hexahedrons or tetrahedrons (in 3D) or rectangles and triangles
(in 2D). For these subdomains, the solution of Maxwell’s equations is known ap-
proximately, given that the boundary conditions and the initial fields are known.
Furthermore, the correlation between the field strengths from adjacent cells is known
analytically (by continuity constraints) and thus, a system of equations of the entire
computational domain can be formulated which will be further explained in the
following. It should be noted that the theory behind FIT is very complex and only
the basic concepts that are needed to explain the notation used in this thesis are
reprised. The notations used in this chapter rely heavily on previous literature like
[29] and [36] to avoid confusion.

The first step of the discretization is a non-overlapping decomposition of the
computational domain by means of a mesh G with similar, simplistic elements'® and I,
J and K nodes in u, v and w direction respectively and a number of nodes N, = I-J-K.
In order to avoid confusion, the matrices associated with the FIT discretization are

9The topological and geometrical dimension of said mesh is obviously determined by the investi-
gated structure.
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Abbildung 2.2: This picture shows an extract of a hexahedral grid G with the n-th grid-
node Ng and its associated cell volume Vy, cell-surfaces A, Any and Ap; and three edges
lengths Ly y, Lnv and Ly (only the visible instances are plotted).

presented in a different font, e.g. G. In this thesis, solely hexahedral meshes are used
for FIT?°. For the i-th node in u direction, the j-th node in v direction and k-th
node in w direction is numbered as

n(i, g, k) =i+ (j —1)I+ (k—1)I7J, (2.45)

which is referred to as lexicographical indexing. In the following it is referred to an

example mesh as shown in Fig. 2.2. Here, the n-th grid-node Ng is associated with a

cell-volume V,, three cell-surfaces A, ,, A,y and A, , and three edges lengths Ly, Ly v
and L, ,. The numbering of the vertices is further highlighted in Fig. 2.2.

Furthermore, a second grid G (the so-called secondary grid or dual grid) is intro-
duced, whose nodes are located at the midpoints of the cells of the primary grid.
The dual grid can be topologically interpreted as a dual graph of the primary graph
(certain properties follow from that, such as the uniqueness of the dual grid [37]).
The relationship between the primary grid G and dual grid G is highlighted in Fig. 2.3.
All quantities being assembled from the dual grid are denoted with a tilde above
them as in G.

In order to show the efficiency of the latter described approach in reformulating
complex PDEs in linear operators, in the following it is explained how the integral
form of Maxwell’s equations (2.1)-(2.4) can be discretized using FIT. Starting with
the integral law of induction (2.2), the electric voltage over an edge €,(i,7, k) is
defined as

Suli,j k) = / E (r,1) - ds, (2.46)
Ly (3,5,k)

20Tn some cases, the usage of tetrahedrons can lead to superior convergence, but unfortunately there
is no software, commercial or open-source, which employs FIT with tetrahedrons. Therefore,
the implementation in this thesis relies on hexahedrons which is discussed further in Chapter
3.2.
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v

P N
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Abbildung 2.3: This picture highlights the correlation between the primary grid G and
the dual grid G for two adjacent cells. The nodes of the dual grid are located at the
midpoints of the cells of the primary grid. Thus, the midpoints of the edges of the dual
grid are located in the middle of the primary grids surfaces and vice versa. The idea is
adapted from [32].

with the bow indicating that it results from a one-dimensional integral. This
is referred to as a so-called integral-state quantity. Furthermore the magnetic flux
through a surface A,(i, j, k) is defined as

Au(ivjvk)

with the two bows indicating that it results from a two-dimensional integration.
Using (2.46) and (2.47) the integral induction law (2.2) can be expressed inside a
closed surface A,(4, j, k) without simplifications?! as

€,(i, 5, k) +e,(i +1,5,k) —e,(i,j +1,k) —e,(i, 5, k) = —%Ew(i,j, k), (2.48)

which is further highlighted in Fig. 2.4.

The equation (2.48) has to be assembled not only for one surface but on the entire
mesh G. From (2.48) one can see that this can be done separately for all three spatial
directions by a matrix that contains 1 and —1 twice in each row, with the rest being
zero. One can define the auxiliary matrices P as

21Up until this point no simplifications to Maxwell’s integral equations were introduced, such that
the solution is still free of approximations.
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e,.(i,j+1,k)

v
P e,(i+1,7,k
€,(1,7, k)4 ® ( )
. (i, k)
" &u(i, ), k)

Abbildung 2.4: This picture emphasizes the discretization of the induction law (2.2)
using FIT as in (2.48). The induction law states that the magnetic flux density through
the surface A,y is equal to the sum over all integrated electric field strengths along the
enclosing grid-edges.

—1forp =q
[Puoe] g = 4 1 forop - +r (2.49)
else,

with the notation indicating tha’g it is either P, with r = 1, P, with » = [ or P,
with 7 = I.J. If the vectors € and b are sorted first in u, then in v and then in w
direction, the resulting matrix C is banded and sparse with the block structure

0 —P, Py,
c=| P, 0 —P,|. (2.50)
-P, P, 0

The topological operator C is further denoted as the discretized curl operator. At
this point, the first approximation is introduced by expressing the integral-state
quantities as a sampled variable in the middle of their geometric facet (e.g. the
middle of an edge, a surface or volume) multiplied by the size of their geometric facet
they are defined on (e.g. the length of an edge, the size of a surface or a volume),
which leads to the so-called sample state quantities. As an example the electric
voltage over an edge €,(1, J, k) is approximated by

€ ~ Dge, (251)

with e being the sample state electric field. This approximation is made accordingly
for all other integral-state variables where the field strengths €, h are approximated
at edges, the flux densities b d and j are approximated at the middle of the surfaces
and the charge density p is approximated at the middle of a cell volume. This
way, using the definition of the discretized curl operator (2.50) and the sample-state
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variables as well as the induction law for a single cell-surface (2.48), the discretized
iduction law using sample state variables can be formulated as

d
CDge ~ —EDAb. (252)

The same derivations as for (2.52) can be done for the integral form of Ampere’s
law (2.1) which leads to the discretized Ampeére’s law using sample state variables

< ~ d
CDsh ~ Dy (—d +j) ) (2.53)
dt
The second set of equations deals with surface integrals of the flux densities (2.3)
and (2.4), explanatory, the Gauss’s law of electric fields is explained in the following.
It holds that

du(i j, k) + doli+1,,k) = du(i, j + 1, k) — du(i, j, k) = D3, j, k), (2.54)

through any arbitrary cell of the dual grid G, normal to w. Again, the integral state
variables are replaced by sample state variables by introducing the simplification,
that the electric flux through the surfaces of the dual-grid are replaced by the electric
flux density at the midpoint of the surface, multiplied by the surface area and the
electric charges inside the cell are replaced by the electric charge density at the
midpoint of the cell-volume multiplied by the cell-volume. Comprising this equation
for all dual-grid cells leads to

SD4d = Dy p, (2.55)

with S, being the discretized divergence operator of the dual grid. Analogously,
the same derivation can be done for the integral Gauss’s law of magnetic fields (2.4),
which leads to

SDsb = 0. (2.56)

The equations (2.52), (2.53), (2.55) and (2.56) comprise the discrete formulation
of the integral Maxwell’s equations using FIT.

An interesting property of the discrete FIT operators is that many properties that
their continuous equivalent operators possess, remain throughout the discretization,
which is generally not the case when using a FEM discretization. In the continuous
case, it holds that the divergence of a curl of any arbitrary vector-field equals zero,
while in the discretized FIT case it holds that

SC = SC = 0 equivalentto V-Vx = 0. (2.57)
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Furthermore, it holds that the curl of the gradient of any arbitrary scalar-field is
Zero

c§T=¢sT =0 equivalentto V x V = 0. (2.58)

The discussed Maxwell’s Grid Equations (MGE) (2.52), (2.53), (2.55) and (2.56)
are used in this thesis to discretize all investigated physical phenomena. The specific
theory and implementation is reprised in Chapter 3.2. As stated in Chapter 2.1,
for a full description of the investigated effects, one additionally needs the material
equations to describe the relation between the field strengths and the flux density of
the respected fields. In FIT the material properties are averaged over each cell and
comprised into matrix-form??. The permeability, the permittivity and the conducti-
vity form diagonal matrices D, D, and D, respectively, which leads to the discretized
material equations

~

d ~ M@ with M, ~D,DDg", (2.59)
b ~M,h with M, ~ DsD,D5", (2.60)
j ~ M@ with M, ~ D,D,D3". (2.61)

In combination with the MGE, the discretized material equations are sufficient for
the numerical discretization in this thesis. The choice of FIT over the theoretically
more flexible FEM?? was met due to the availability of FIT in a powerful commercial
software CST Microwave Studio ® (CST MWS) [38]?4. Furthermore, FIT has several
advantages regarding the simplicity of an implementation e.g. due to the physical
consistency (see (2.57) and (2.58)) of the matrix operators.

2.4 System Description of SRF Structures

An important aspect of this thesis is the description of second-order, partial diffe-
rential equations by using a simplified model, which describes the electromagnetic
behavior using a system of ordinary differential equations (further denoted as ODE)
[39]. This chapter aims for the introduction of some basic concepts of this metho-
dology, while the specific application of it for the state-space concatenation method
and FIT is explained in Chapters 3.1.2 and 3.2.2, respectively.

22Qbviously, the averaging of the material properties leads to an approximation. However, for this
thesis it is rather irrelevant, since only homogeneous media are investigated.

23FEM is more flexible due to the variability of mesh-type as well as order of ansatz functions,
which can be chosen according to the problem at hand.

24For convenience, the ® symbol indicating a registered trademark symbol is omitted from hereon
for CST MWS.
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2.4.1 State-Space Models

The goal of this description is to obtain a general vector of outputs of a system (in
this case a set of modal voltages v,(t)) as reaction to a general vector of inputs (in
this case a set of modal currents iz(¢)) by two systems of ODEs and a vector of
inner states x,(t). Such a description is denoted as State-Space Model (SSM) in the
literature. The first system of ODEs, the so-called state-equation, links the inputs
to the inner states of the system and describes its dynamic behavior by

d
ae®
with the general state-matrix A, and the input-matrix B,. The inner-states can
influence the outputs by the output-equation as

(t) = Agxg(t) + Bgig(), (2.62)

Vg (t) = CyXg(t) + Dyig(1), (2.63)

with the output-matriz C4 and the feedthrough-matriz D,. For further convenience,
the state-space model is chosen to be symmetric which means that the output matrix
is the transpose of the input matrix, i.e. C, = Bg. For lossless, charge-free and time
invariant RF systems, it is generally possible to find a state-space model such that
the matrices A, B,, Cy and D, are constant, hence not time dependent [40]. For
frequency-domain investigations it is more convenient to transform the equations
(2.62) and (2.63) into the frequency domain which leads to

s%g(5) = Agxg(s) + Bglg(s), (2.64)

Vg(5) = CgXg(s) + Dgig(s), (2.65)

with the complex frequency parameter s which originates from the Laplace trans-
form. Of special interest is the transmission function of this system. In the case
of an impedance formulation as (2.62) and (2.63), the transmission function would
comprise the impedance parameters as

Z.(s) = C, (s — A,) "' B, + D,. (2.66)

Furthermore, in case of a scattering formulation, the transmission functions would
comprise the scattering parameters.

2.4.2 Model-Order Reduction by Projection
The initial system (2.64) and (2.65) can be comprised as

A, |B
M, 1 = Wi DZ ] € Rvtp)x(ntm) (2.67)
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with n being the number of internal states, p being the number of inputs and
m being the number of outputs. However, as stated earlier, such a description
generally requires a comparably large number of DOF's for a sufficiently accurate
description (i.e. a large n). For problems investigated in this thesis several Mio. DOFs
are necessary for a sufficiently accurate representation of the underlying PDEs. In
order to heavily reduce the computational demand, a model-order reduction by
symmetric projection is a commonly applied technique. In this case a general
projection matrix W, with W, € R**™ can be constructed such that

Xg(s) = W, 'Xg rea(s). (2.68)

In this case, the resulting reduced state-space system can be comprised as

SXg red(S) = WgAgWg_1 X red (S) + W B, ig(s), (2.69)
Ag,red Bg,red
Vgred(S) = BgVVg_1 Xgred($) + Dy ig(s), (2.70)
D
Cg,red g,red

with the comprised system representation

WA W, \ W,B,
B,W,' | D,

Mg rea = € RUEFP)x(ktm), (2.71)

For the construction of the projection matrix it should hold that the new system
Mg 1eq is orders of magnitude smaller than the initial system Mg ¢, ie. kb < n.
According to [41], for the construction of the projection matrix it should hold that

e the approximation error is small,
e the systems properties are preserved like stability, passivity etc.,

e the procedure is computationally stable and efficient.

There are generally many ways to construct said projection matrix W,. All of
the latter demanded properties are given for so-called Corrected Modal Expansion
(further denoted as CME) [40] which is used throughout this thesis and is further
discussed in Chapter 3.1.3.
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3 The State-Space Concatenation Scheme

As introduced in Chapter 1.2, the main topic of this thesis is the numerical simulation
of electromagnetic fields in long and complex SRF structures. Therefore, generally
comparably large numbers of Degrees of Freedom (DOFs), i.e. several millions, are
required for a sufficiently accurate computation of the electromagnetic fields. In order
to overcome this problem, the so called State-Space Concatenation scheme (SSC)
was proposed in [7] and further improved in [8]. SSC is a combination of domain
decomposition and model-order reduction techniques in order to solve Maxwell’s
equations for large, complex, lossless SRF structures and is used for this purpose
throughout the thesis. In SSC, firstly, the structure is subdivided into Ngg non-
overlapping subdomains. For each of these Ny, subdomains the RF properties are
comprised using a state-space model Mg, (as introduced in (2.67)) which can
originate either from analytical considerations or from a numerical discretization
of Maxwell’s equations on the subdomain. Furthermore, due to the size of Mgy,
it is advantageous to reduce the order. This is done for each model separately by
employing a corrected modal expansion (CME) which drastically reduces the order
and obtains the n-th reduced model M,q . As final step, all Ny, reduced models
M, cq,n are concatenated such that the reduced model of the full structure Moy is
obtained. For this model M, one can reduce the order even further by employing
a MOR by CME once again, resulting in the final model Mcopcreq Which comprises
the relevant RF properties of the full structure in the given frequency domain. These
latter described steps are highlighted in Fig. 3.1.

A task of this thesis was to efficiently implement the theoretically described method,
as well as automate it for arbitrary structures. Furthermore, in Chapter 4, the method
is generalized such that it allows for the computation of certain losses. This chapter
is organized as follows. Firstly, the theoretical basis of SSC is discussed, with the
domain-decomposition, the derivation of the non-reduced SSM, the MOR by CME
and the concatenation. Secondly, the implementation and automation are discussed
in detail. Finally, an analytically solvable example is shown and the method is
theoretically compared to other methods that reduce the model order and are used
in accelerator physics.

3.1 Theoretical Basis of SSC

In this section, the theoretical basics of SSC are outlined. For a detailed explanation
it is referred to the appropriate literature [8] and [40]. The steps are discussed in
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3 The State-Space Concatenation Scheme

I Decomposition [II MOR by CME] IIT Concatenation

Abbildung 3.1: This picture shows the three different steps of SSC on the example of
a 3-cell cavity with couplers. In the first step (highlighted in blue) the structure is
decomposed into several substructures. Then for each substructure, a MOR is employed
(highlighted in green) and as a last step, the models of the substructures are concatenated
to SSM of the initial structure (highlighted in red). The picture is taken from [14].

the order in which they are required to be performed, i.e. firstly the domain decom-
position, then the assembly of the non-reduced SSMs and finally the concatenation
of all SSMs.

3.1.1 Domain Decomposition

In the first step of SSC, the domain in which the electromagnetic fields are to be
computed, is decomposed into Ny, non-overlapping subdomains. In a subsequent
MOR, every structure is treated separately, with the cutting planes turned into
waveguide ports. The decomposition is theoretically arbitrary in the number of
subdomains. The location of the cutting planes, separating the subdomains, has to
be in a domain with constant cross section along the cutting plane. In practice, both
parameters, the location as well as the number of cutting planes, have to be chosen
such that the computational time for the entire computation is minimal. Their effect
on the computational time is briefly discussed in this subsection. As one extreme
one could not decompose the structure at all (i.e. Ny = 1), in which the subsequent
MOR would require a comparably high computational time. The other extreme
would be the decomposition into a large number of subdomains (i.e. Ny — 00), in
which case the required number of 2D port-modes would get impractically high. In
the following, this is explained more in-depth.

Firstly, the MOR by CME scales roughly linearly with the number of 2D modes
at the waveguide ports (this becomes clear in Chapter 3.1.3), thus it would be
advantageous to keep this number sufficiently small, by positioning the cutting
planes accordingly. If the cutting planes (thus the waveguide ports in the MOR)
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3.1 Theoretical Basis of SSC

were infinitely far away from each other, only 2D modes which are able to propagate
in the chosen frequency domain have to be taken into account for an accurate
representation. If now the cutting planes were closer together (e.g. by a different
choice of decomposition), there is a finite number of additional, evanescent 2D modes
that (even though they are damped) could traverse through the structure and still
have non-negligible energy after covering the distance between the two ports. Thus
the number of 2D modes that have to be taken into account at both ports increases
if the distance between two cutting planes decreases. Therefore, taking the scaling
of the MOR into account, one tries to position the cutting planes such that their
distance to each other is maximal.

Unfortunately, maximizing the distance between two cutting planes also increases
the domain between them. Generally, for more complex domains that means that
a discretization of Maxwell’s equations in said domain requires more DOFs, thus
increasing the computational time of the MOR. Furthermore, since repeating sub-
structures should be treated only once, the computational time can be drastically
reduced by decomposing the domain into several repeating subdomains. Also a
decomposition into subdomains that can be treated analytically is advantageous. All
of these points have to be taken into account to find a decomposition that allows for
fast computations. In practice this is (currently) done by experience.

3.1.2 Non-reduced State-Space Impedance Model of
Segments

For each of the Ny, subdomains originating from the domain decomposition, one
has to assemble the non-reduced SSM derived from the discretization of Maxwell’s
equation in the subdomain. In this subsection, the non-reduced system is formula-
ted, closely following [8] and [40]. For further convenience an alternative, compact
notation of Maxwell’s equations (2.8) and (2.9) in lossless, charge-free waveguides
with homogeneous materials is introduced as

d (E(r,t)\ 0 e 1V x E(r,t) et
a ( Hir, 1) > = (—,u_IVX 0 Hir,t) )\ o )0 B
The vector of unknowns (E (r,¢),H(r,¢))" is transformed in such a way that all
comprised quantities have the same unit. Therefore, the normed electric field strength

E (r,t) = e2E (r,t) and the normed magnetic field strength H (r, ) = p2H(r, t) are
introduced leading to

SRED) - (ot ) (R (3o

NI
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3 The State-Space Concatenation Scheme

v/ %8. It is further advantageous to

with the unit of the unknown quantities as

reformulate the system under the usage of (2.9), in such a way that the normalised
magnetic field strength is eliminated, which leads to

2

de?

Recalling the initial assumptions for the waveguide that it is free of charge and
evacuated (i.e.the conductivity is 0), the current density J(r,¢) in (3.2) can be
simplified as J(r,t) = Jimp(r, ) according to (2.7). The imprinted current density
Jimp (T, t) can be expressed as a sum of all imprinted current densities at all waveguide

ports and their respective 2D modes, weighted with the mode’s modal current iy, (%)
(see Chapter 2.2.4)

—Ert)=—-—<'u'Vx VX E(r,t)—c 2J(r,t). (3.3)

Map

1mp Z Jlmp m 11’1’1 ) (34)

with the total number of 2D modes Msyp. Furthermore the imprinted current
density at the waveguides can be rephrased according to (2.37), which leads to

2 B ) Map
@E(r )=—-'p 'VxVxE([,t)+e2 ;me(rtﬁm(t), (3.5)

with the scalar i, (¢) being the m-th modal current. The modal voltage as intro-
duced in (2.27) can be comprised as

Msp

)=¢ zz//r Liw(r) - E(r, 1) OTpy. (3.6)

As mentioned in subsection 2.2.4, one has to apply PMC boundary conditions at
all waveguide ports. The system (3.5) and (3.6) resembles a state-space system (as
in e.g. (2.64) and (2.65)), with the state-space matrices being operators instead of
matrices. This system serves as a theoretical basis for further considerations. In
practice, it is discretized using an appropriate technique, such as FIT or FEM.

3.1.3 Model-Order Reduction by Projection

To increase the efficiency of the concatenation it is advantageous to reduce the models
of all segments in order. For the MOR used in SSC, a CME is used, as introduced
in [8] and [40], with the basic idea being outlined in the following.

The corrected modal expansion can be divided into three steps. Firstly, an in-
complete eigendecomposition of the system matrix of the non-reduced SSM Ay,
is computed, by computing all eigenmodes in the frequency domain of interest. The

34



3.1 Theoretical Basis of SSC

subindex n to indicate the n-th segment is neglected in the following for the sake of
simplicity of the notation. In a second step this eigendecomposition is improved in
accuracy by expanding the orthogonal basis with some few additional vectors that
arise from an orthogonal decomposition of the systems’ response to a frequency-
excitation at the waveguide ports. Thirdly, the system matrix arising from the first
two steps is diagonalized by a direct and complete eigendecomposition.

Firstly an eigendecomposition of the system matrix is employed. One can decompo-
se any square matrix A with Npor linearly independent eigenvectors as A = QAQT,
with Q being a square matrix whose n-th column contains the n-th eigenvector of A
and A which contains the eigenvalues on the diagonal. For the systems investigated
in this thesis, a complete orthogonal decomposition is impractical due to the size of
the matrix!. Therefore, an incomplete eigendecomposition of the system matrix is
employed where only a small number N3p of relevant eigenvectors and eigenvalues
are determined. With the matrix Qj,., containing only a few relevant eigenvectors,
the state-vector can be projected to a suitable subspace as X;c.q = QL. X Which
leads to

Ared,e = QElCAquQinCa (37)

where Qinc has the size Qi € RVNPOFXNsD - with Ny < Npop, thus drastically
decreasing the order of Agy € RNporxNoor o A ;. € RM0XNsp and the input-
matrix as

Bred,e = Q;II;CBqua (38)

with Biege € RYpor*Mop A SSM employing this reduction is rather impracti-
cal since N3p has to be comparably high to reach a sufficient accuracy in the RF
parameters due to the poor convergence order of such partial eigendecomposition.
In practice, N3p is chosen to be roughly equal to the number of 3D modes in the
frequency domain of interest. To account for the modes above said spectrum, one
could simply increase N3p, which (in most cases) is computationally not feasible.
Instead, an additional set of eigenfunctions is introduced by the computation of
so-called snapshots, which is outlined in the following.

The eigenvectors of the initial, incomplete eigendecomposition are comprised in
the matrix Xj,. as

Xinc = [Xinc,h Xine,2y -+ s Xinc,NgD] (39)

In the next step, the system response (i.e.the inner state X, ;) of the Fourier-
transformed, non-reduced SSM is computed for various frequency excitations as

'In case of a system that is obtained in an analytical manner it is impractical since there are
infinitely many eigenmodes to the V x Vx operator in (3.5).
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3 The State-Space Concatenation Scheme

Xeni = (—wiT — Apn) ™ Bran jwi, (3.10)

and said inner states Xg,; are comprised in the matrix X, as

XSH = [Xsn,lv Xsn,2y - Xsn,n] (311)

In the following a singular value decomposition (SVD)? of a block matrix holding
Xine and X, is performed

USR" = [Xine , Xan] (3.12)

This is repeated iteratively while placing new snapshots. The snapshots are placed
with equal spacing® over the frequency domain. If the minimal singular value of the
SVD in (3.12), drops below a certain accuracy the procedure is stopped.

It should be noted that there are more advanced schemes available for the MOR.
Especially the computation of the eigenmodes of the system matrix in (3.9) seems
unnecessary since in principle it would be sufficient to solely use snapshots and derive
the orthogonal basis solely from the systems response to excitations. It is however
possible that there are modes in the structure that do not couple to the boundary
(i.e. to the waveguide ports) but can couple to the beam. Such modes could not be
found by snapshots but only by computing the eigendecomposition of the system
matrix directly. Even though such modes were not observed in any practical example,
the eigendecomposition of the system matrix is computed directly as a precaution.
The latter described procedure is used to project the inner states to the space from

the CME with Xeme(t) = UXyed e, which leads to the SSM

d2 T T d .
@Xcme(t) =U Ared,echme(t) + U Bred,e El<t)a (313)
V(1) = Bieg.e UXeme (1) (3.14)

As final step, the state-matrix is diagonalized by employing a complete eigende-
composition by Acne = QemeAemeQL,. Which leads to the final SSM as

d2

d,
@Xcme,diag(t) = Acmexcme,diag(t> + Qcheche _1<t)7 (315)

dt

2SVD is a generalization of eigendecomposition of rectangular matrices. Geometrically, this can
be understood as a decomposition of an arbitrary transformation into a rotation, a scaling and
another rotation. For this specific application, an economic size SVD is faster since the number
of DOFs is orders of magnitude larger than the number of snapshots.

3In the future it might be advantageous to find schemes that have an optimal spacing of the
snapshots in the frequency range. For example a so-called greedy placing, which places a
new snapshot at the frequency with the biggest deviation between reduced and full model, is
possible. The problem is that the identification of the frequency with the biggest deviation
is computationally very expensive. This could be overcome with an error estimator which is
currently not present.
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3.1 Theoretical Basis of SSC

V(t> - Bg\mchmeXcme,diag (t) (316)

The MOR can now be comprised in one projection operation, that projects the
state-vector of the full space to the reduced subspace as Xcme, diag = WEIHXqu with
the projection operator as

qull = UQcme~ (317)

Due to the symmetry of all projection operators that are used for the MOR, the
resulting reduced system is both stable and passive [40]. The MOR is comprised in
Algorithm 1.

Algorithm 1 Model Order Reduction by Corrected Modal Expansion

Require: Non-reduced state-space system My, ,, desired accuracy 6
1: Compute incomplete eigendecomposition of system matrix as in (3.8)
2: whiler > 6 do
3 Determine snapshots as (—w?I — Agq) ™' Branjw;

4: Determine new reduced basis after (3.12), (3.13) and (3.14)

5

6

7

Determine accuracy r as minimal singular value in (3.12)
: end while
: Diagonalize System Matrix with state transformation X¢me diag = QL Xeme

3.1.4 Concatenation of Impedance Models

Once the reduced order SSMs for all substructures are obtained, they are conca-
tenated to obtain the second order SSM of the full investigated structure. In the
following it is shown how the concatenation works in detail, for second order state-
space systems, closely following [8] and [42]. However, the derivations are nearly the
same for first-order systems. In a first step, the reduced state matrices of all Ngeq
segments are comprised in the block-diagonal matrix Ay,

Ay, = diag(Aved,1; Ared,2, - - - > Aved, Nuog ) (3.18)

and the reduced input matrices of all Ny, segments are comprised in the block-
diagonal matrix By,

Bb = diag(Bred,b Bred,27 cee 7Bred,Nseg)' (319)

In order to get a description of the full, concatenated structure, some states from
(3.18) and (3.19) have to be eliminated. Therefore, following [42], the canonically?

4The word ”canonicalis used here rather for historical reasons, since it was initially mentioned in
[42] in the same context. The ordering of the currents and voltages is arbitrary.
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3 The State-Space Concatenation Scheme

ordered modal voltages vea,(t) and currents i..,(t), have to be brought in a sorted
state Vgort () and igeri(t), which results in the same ordering of the state vector.
This is done by separating the internal modal voltages viy(t) and currents iy, ()
(i.e. modal voltages and corresponding to ports on cutting planes) from the external
modal voltages Ve (t) and currents i (f) (i.e. modal voltages and corresponding to
waveguide ports of the full structure) with the help of a permutation matrix® P,

) () ) T :
() = 1) ) = PT il (3.20)

vanlt) = (3240 ) = PTveu(0), (321)

The described permutation matrix P has one coefficient equal to one in each row
and column, while the rest of the matrix is zero. It is important to mention that, for
later convenience the permutation matrix also sorts the internal currents and voltages
in a way that for each internal terminal, the connected internal terminal from the
next segments is directly below it, in the sorted order. Applying this permutation
to the state-space system of the concatenated structure gives

d? d.
@Xb(t) = AbXb<t) + Bb PS alsort (t), (322)
By,
Veort (1) = PT Bl x3,(1), (3.23)
——

RT
Bb

with the bar on By, indicating the sorted input matrix which can be split up further
using (3.20) and (3.21) to

By, = (By,1 Byo) . (3.24)

This separation of the input matrix to a part that acts on the internal states ]_3b71
and a part that acts on the external states By, 2 is used to reformulate (3.22) and
(3.23) as

d? _d, _d,

@Xb(ﬂ = AbXb (t) + Bb71 Elim (t) —+ Bb’g Elext(t% (325)
Vine(t) = By 1x1,(1), (3.26)
Vext(t) = Bl % (). (3.27)

5The original literature [8] refers to the permutation matrix simply as P instead of Ps.

38



3.1 Theoretical Basis of SSC

The internal currents in (3.25) are linearly dependent for concatenated segments®
by Kirchhoff’s current law. It states that at each node, the sum of all currents is zero.
Hence if a current flows out of an internal port, it has to flow into the connected
internal port of the attached segment, making these two states linearly dependent. In
order to remove those states the matrix F is defined as a block-diagonal of (1, —1)"

e (1) (). -

If not for the earlier mentioned sorting of the internal state such that linearly
dependent currents are located in adjacent columns, this matrix would not be block
diagonal. The matrix F is further used to remove those linearly dependent states of
the internal current vector with

iint(t) =F iint(t>‘ (3-29)

In this case the hat from iint(t) indicates the redundancy-free current vector. For
the internal voltages, Kirchhoft’s voltage law applies, which states that the sum of
voltages over a closed loop is zero. Hence the modal voltage on connected, internal
terminals has to be equal. Using the matrix F this results in

F'vin(t) = F'B} 1 x,(t) = 0. (3.30)

Now (3.25) is multiplied by FTB[, from the left-hand side under consideration of
(3.29)

d? _ _
@ FTBEJXb(t) =0= FTBglAbXb(t)
0 (3.31)

I oo,
+FTBE71Bb71 F&Iint(t) —+ FTBale,Q Fglext (t)

In order to replace the internal currents in (3.25), (3.31) is resolved for %iint(t)
which gives

d, _ s
am(t) =— [F'By;By1 F|  F'Bj Apx(t)
q (3.32)
— [FTBY,B,,, F] 'FTB] B, F o (f).

6This assumes that the structure’s cutplane is located at a constant cross section such that the
2D port modes are the same on both segments. In case of a numerical discretization the 2D
port-modes are not exactly the same on both sides of the cutplane. It is thus assumed that the
discretization is sufficiently accurate.
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3 The State-Space Concatenation Scheme

For further convenience, the idempotent” and symmetric matrix K is introduced
as

K=1-B,,F[F'B],B,,F] " F'B,. (3.33)
This matrix K is used to replace the internal currents in (3.25)

& (t) =K [ Apxp(t) + B d (t) (3.34)

—xp(t) = X — ey : :

ETohe bXb b2 gylext

To remove the linearly dependent states, the null-space of FT]?Sa1 has to be
computed

M = Null(F'B;,), (3.35)

and is applied to the state-vector

Xeone (t) = KMxy,(t). (3.36)

Now the state-vector xy,(¢) in (3.34) is replaced by the redundancy-free state-vector
of the concatenated structure Xconc(t)
d’ T en 4.
5 Xeone(t) = MTKA KM Xoone(t) + MTKBup i (). (3.37)

dt2 conc
Aconc Bconc

The same replacement is done for the output equation (3.27)

Vext(t) = BMKM Xeone(t)- (3.38)

BT

conc

The state-space system (3.37) and (3.38) can be further reduced by employing
the CME once again for the final system, with the projection operator W g,.. This
leads to the final SSM of reduced order, for the concatenated structure

d2 4.
_2XC0nCvred (t) = WE)HCACOHCWCOHC Xcone,red (t) + W::[(‘)nchonc _lext(t) (339)
dt ~— . ——— dt
Aconc,rcd Bconc,rcd
Vext (t) = BCTOHCWCOHC Xconc,red (t) (340)
N———

T
conc,red

the indices for this final system e.g.in A¢onerea indicate that this matrix originates
from the concatenated, reduced system. The system can be comprised as

7K2:K
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conc conc

Mconc,red: (WT Bconc)T ‘ 0

conc

WT A‘COHCWCOHC ‘ WT BCOHC
(3.41)
This system is used throughout this thesis whenever the RF-properties of a struc-
ture have to be comprised in an efficient manner.

3.1.5 Projection to Initial, Non-Reduced Space

SSC generally allows the computation of fields in a comparably simple post-processing
step. For a given excitation (e.g. by a modal current), the state-vector of the reduced
model Xconereda 15 computed. With the stored projection matrix, the state-vector is
projected back to the original space, thus computing the field-distribution in the
initial, non-reduced space. Due to the fact that several projections are employed and
the original space is decomposed into several geometrical subspaces this is far from
trivial. The reconstruction of the field distribution is discussed in the following.

Firstly, for a given excitation the state-vector of the space of the concatenated
reduced order SSM M one red (System (3.39) and (3.40)) has to be projected to the
space of the concatenated SSM Moy (system (3.37) and (3.37)) using the projection
operator W,,.. This state vector consists of the state vectors of the reduced order
models of the segments (system (3.15) and (3.16)) as

T - o T
Wconcxconc,red = Xconc — [Xred,la ey Xred,Nscg] . (342)

The state-vectors of all Ny, segments all have to be projected back to the non-
reduced space of their regarding segment. The state-vector X,eq, 0f the n-th segment
can be projected to initial, non-reduced space of the n-th subdomain by the projection
operator Wy, originating from the MOR of the non-reduced SSM of the n-th
subdomain as

T
Wi nXredn = Xfulln- (3.43)

The state-vectors of the non-reduced state-space models of the segments are the
electric fields in said segments, according to system (3.5) and (3.6). This projection
has to be carried out for all segments. The resulting state-vectors of the segments
can be summed up to the full state-vector (i.e.the fields) in the full non-reduced,
non-decomposed space. The latter described process is further highlighted in Fig. 3.2.

3.1.6 Scattering Formulation

In some cases it is more advantageous to use a so-called scattering formulation
instead of an impedance formulation (which was used up until this point of the
thesis). While an impedance formulation uses modal currents and voltages as input
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reduced
Space of

Segment 1

Reduced
Space of
Segment 1

Non- ——
Rgduced reduced Reduced relc\lIZzle_ q Initial non-
f%ace Space Space of Space of reduced
oL one. of Conc. Segment n P Space
Model Model Segment n
. . )
Reduced Non-
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Abbildung 3.2: This picture shows the different spaces between which the computed
state vector of the reduced and concatenated space has to be projected to get the state
vector of the initial non-reduced space. One starts with the state vector Xconc rea of the
concatenated and reduced SSM Mconc red- Using the projection operator Wy this state
vector is projected into the concatenated space with W;FOHC Xcone,red = Xconc- Lhis state
vector consists of the state vectors of the reduced order models of the segments. The
state-vectors of all N segments all have to be projected back to the non-reduced space
of their regarding segment. The state-vector X;eq,n of the n-th segment can be projected
to initial, non-reduced space of the n-th subdomain by WfTuu nXred,n = Xfulln- Lhe state-
vector of the initial, non-reduced space is simply the addition of all state-vectors of the
initial, non-reduced space of the decomposed subdomains (which are only non-zero in
their regarding subdomain).
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3.2 Implementation

and output quantities for the SSM, a scattering formulation uses normalised, incident
wave-amplitudes agy ()

1 _1 1
e (t) = 5 (Dz Vet (t) + Dziext(t)) : (3.44)

as input quantities and normed scattered wave amplitudes by ()

boa(t) = 5 (D *eult) ~ DHica (1)) (3.45)

as output quantities with the diagonal matrix D, containing the wave impedances
of the corresponding 2D modes (see (2.39) and (2.41)). After some rearrangement
of (3.39) and (3.40) this leads to the system

d? 1T -1 d
—5%,(1) = A = BD'B"x,(1) + 2BD. ? —au(t). (3.46)
Aq Bs
_1 d
bext(t) = Dz 2BT Xs(t) — 1 &aext(t). (347)
BT —Dy

The matrices of the impedance formulation have no subindices in (3.46) and (3.47)
since the conversion holds true for any impedance formulation used in this thesis,
reduced or not. The indices e.g.in Ay indicate that this matrix originates from
a scattering formulation. Scattering formulations have the advantage that certain
properties like the incident and scattered, normalised wave amplitudes are measurable
at high frequencies®. A well established, measurable quantity for RF-Structures are
the so-called scattering-parameters. They can be computed via the transmission
function of the system (3.46) and (3.47) transformed into frequency domain as

S(s) = sBT (s’ — A,) ™' B, + sD,. (3.48)

These scattering parameters are used later to compare measurements with the
results acquired by SSC in Chapter 5.2.

3.2 Implementation

For arbitrary structures the described algorithms for SSC can not be employed wi-
thout approximations. Therefore, in this thesis a collection of software was implemen-
ted, that allows for the effective and automated solution of the Helmholtz-equation
of large, complex SRF structures using FIT and SSC, based on the theory presented
in Chapter 3.1. Furthermore, an implementation using FEM has been conducted in

8In contrast to modal voltages and currents, which are rather a mathematical concept and are
not measurable at high frequencies.
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3 The State-Space Concatenation Scheme

this thesis. The FEM implementation is not used in this thesis due to performance
issues and rather serves as a proof of concept. The decision for FIT was, that some
major parts that would have to be implemented for SSC, were already present in the
commercial software CST MWS. Unfortunately the export of such results, is solely
possible for FIT and hexahedral grids in CST MWS, but not for tetrahedral grids.
In this section, some implementation details are further explained and justified. The
steps that had to be implemented were: the construction of the unreduced SSM, the
MOR, concatenation and post processing as highlighted in Alg. 2.

Algorithm 2 Computation of electromagnetic fields and secondary quantities in an
arbitrary domain with SSC

Require: CAD Model of the investigated structure

1: Decompose structure into Ny, substructures

2: for i =1 — Ny, do
3 Determine unreduced FIT system of i-th substructure with Algorithm 3
4: MOR for i-th substructure with Algorithm 4
5
6
7

: end for

: Determine matrices Py according to (3.20) and F according to (3.28)

: Concatenation of reduced order models (ROMs) of segments after (3.37) and
(3.38)

Further MOR of concatenated system with Algorithm 4

9: Post processing

*

The steps of this algorithm and their implementation are explained in this section.

3.2.1 Domain Decomposition

While the theoretical aspects of the decomposition were discussed in Chapter 3.1.1,
this subsection focuses on the practical implementation. The full geometry is gene-
rally available in form of a CAD model. This CAD model has to be decomposed
into CAD models of all substructures as shown in Fig. 3.1. The decomposition is
the only part of the entire algorithm that is not fully automated. This has several
reasons. On one hand, the decomposition takes some practice/expert-knowledge in
order to find a suitable decomposition. Furthermore, some ROMs of substructures
might be readily available. The third point is, that the mathematical formulation
and automation of the decomposition is rather complicated and hardly contributes
to the usability of the code. A limiting condition is, as mentioned earlier in 3.1.4,
that the 2D modes on both side of the decomposition plane have to be the same.
Therefore, a cut is only possible at locations with constant cross section. A techno-
logical limitation of the current CST MWS implementation is that cutting planes
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3.2 Implementation

have to be aligned with a euclidean coordinate system®. Furthermore, the cutting
planes (and all waveguide-ports) have to have a constant cross section for a certain
distance orthogonal to the cutting-surface!®.

The goal of the decomposition is to have a good performance regarding the compu-
tational time. There are generally two influential factors, the number of 2D modes
Msp needed at the cutting plane to ensure a sufficient accuracy and the number of
3D modes N3p inside the domain needed to ensure a sufficient accuracy. Another way
to increase the performance is to find decompositions such that symmetry-boundary
conditions can be applied or substructures can be treated entirely analytical. Espe-
cially in the context of accelerator physics where the structures are often repetitive,
it is of special interest to find a decomposition such that a model can be reused
several times e.g. for a cavity. In the context of accelerator physics often decomposi-
tions are reliable that use the logical components of the accelerating structure, e.g. a
decomposition of a cryomodule into couplers, cavities and beampipes.

3.2.2 Construction of the Unreduced SSM Using FIT

For each substructure that was determined during the decomposition in Chapter 3.2.1,
the unreduced SSM (3.5) and (3.6) has to be determined, which can be later reduced
and concatenated. As mentioned earlier, in most cases an analytical description of
the electromagnetic fields inside an arbitrary structure is rarely feasible. Therefore,
FIT is used to discretize said structure which is explained in the following.

Firstly, a CAD model of each segment has to be provided by the decomposition.
This CAD model marks the computational domain in which Maxwell’s equations
have to be discretized by FIT. This is done using CST MWS in a combination
with several scripts written in Matlab, Python and Visual Basic for Applications
(VBA). Everything is controlled from Matlab ®  which calls the other scripts'!.
Unfortunately, a bilateral exchange of data between CST MWS and Matlab is not
possible, making it a common practice to simply write data to .tzt files and let
CST MWS read said files via a VBA script [43]. So in a first step, a .tzt file is
generated by Matlab containing parameters that are needed for the CST MWS
solver (e.g.the mesh density, solver accuracy, boundary conditions, port-information
and/or structural parameters). The location of the waveguide-ports is determined
either by the application itself or by the decomposition. Matlab then opens CST
MWS and executes a VBA macro in CST MWS. This macro reads the stated
information from the .txt file, creates the structure, creates waveguide-ports with the

9A limitation that is not given in the FEM implementation.

10The specific distance depends on the mesh density. This drawback is also not present in the
FEM implementation.

1 Eor the convenience of the reader, the ® symbol is omitted for Matlab from hereon.
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3 The State-Space Concatenation Scheme

desired number of 2D modes for each port, sets the correct boundary conditions'?

and then computes the Msp 2D-eigenmodes in the port surfaces and assembles the
desired 3D FIT matrices.

After that, Matlab executes a compiled C++4 function which can import matrices
from CST MWS via a Dynamic-link library (dll) [44]'3. This framework is used
to read the desired 3D FIT matrices as well as the solution to the 2D Helmholtz-
equation (2.25) in the port surfaces: Ly, (r) and k. The solutions of said equation
which are obtained by a discretization in FIT are further denoted as Ly, (ry) and
K m.

The exported FIT-matrices as well as the solution of the 2D Helmholtz-equation
allows for the discretization of the system (3.5) and (3.6) as discussed in detail in
[40]. Using the employed nomenclature in Chapter 2.3 the desired system can be
outlined in the following manner

d? P | d _1
— €&, =M’°CM, CM *e— — MR i 4
dt2? N - ¢ L e dt ~~~ B i(t), (3:49)
Xfull,n,FIT Agull o FIT Beull,n,FIT
_1
v(t) = R™M.? @. (3.50)
——
BElll,n,FIT

with the FIT input matrix R holding the discrete solutions of the 2D Helmholtz-
equations inside the port surface projected onto the discrete 3D space. This formu-
lation assumes that there is no grid dispersion [40], i.e. that the grid is sufficiently
fine. For a meshed structure with Np nodes, the resulting size of the unreduced state-
space matrices are Agyn rrr With Apun rrr € R3¥PX3NF and the input matrix of the
second order state-space system Beynprr With Beyin pir € RMzpx3Np gand Chull,n,FIT
with Crunprr € R3VPM20 | The system is further denoted as Mg prr

1

_1 _1 _1
M, QCTM;1CME 2 | —M, 2R
Mtull,n, F1IT = 1 \T
(Me 23) 0

(3.51)

When assembling the system (3.51), one first has to assemble the desired FIT ma-
trices, i.e. M, M, and C as well as compute the solutions to the discretized Helmholtz-
equation in the port surfaces, Ly (r¢) and ke,. In the next step, the curl matrix
needs to be changed to incorporate the correct boundary conditions (PMC at every
port surface). Secondly, the matrix R has to be assembled from the discrete solutions

12 As discussed in Chapter 3.1.2 a PMC boundary has to be set in each port-surface.

3Unfortunately, this script is only able to export FIT-matrices for hexahedral meshes. This
becomes one of the main limiting factors for SSC (though it is purely technological and is fixed
by the FEM implementation).
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3.2 Implementation

of the 2D Helmholtz-equation. Therefore, the 2D solutions are projected on the 3D
discretized space. The practical construction of the non-reduced, discretized models
is comprised in Algorithm 3.

Algorithm 3 Construction of n-th non-reduced SSM Mg,y » Fr7

Require: CAD Model of the investigated structure

: Discretize structure with mesh and assemble FIT matrices Mc,M,, and C

: Obtain solution of 2D Helmholtz equation in port surfaces, Li m(ry) and kq,,
: Set boundary condition to C

: Assemble R and Mgy » pr7

=~ W N

3.2.3 MOR of Unreduced State-Space System

The MOR was implemented by T. Flisgen in [8]. It employs the formalism described
in Algorithm 1 to an efficient code. As input it receives the unreduced SSM, i.e. the
FIT system Mg, it (3.51), as well as the desired frequency domain and the num-
ber of desired 3D modes N3p'4. The MOR returns the reduced state-space model
Miedn,piT and the according projection matrix. The entire MOR is implemented in
Matlab. The key requirements, the eigenmode solver and the solution of the frequen-
cy excitation, could also be executed by CST MWS but Matlab was chosen due the
improved performance [45]. This subsection discusses some important properties of
the implementation.

Firstly, one has to compute the incomplete eigendecomposition of the system-
matrix Apy o, prr. This is done for a small system (e.g. when the concatenated system
is reduced again in order as in (3.39) and (3.40)) using a direct solver'® with LAPACK.
For large systems as in (3.49) and (3.50) an iterative algorithm is used. In this case
Matlab uses a precompiled version of ARPACK, a FORTRANTY7 library which is
especially used for large, sparse eigenvalue problems if few, small eigenvalues are
needed [46] and employs the implicit restarted Arnoldi method.

For the computation of the snapshots, one has to solve the linear system of
equations (3.10) of the size of the number of DOF's in the state-vector. This is solved
using the symmetric LQ method for sparse matrices [47]. As initial guess one can
use the solution obtained by the reduced order model and project it’s solution back
to the non-reduced space which reduces the number of iterations needed.

14 As mentioned earlier, there is no straightforward way to approximate the required number of 3D
modes. In this thesis the number is chosen by experience.

15 A direct eigensolver obtains all solutions, while an iterative solver is generally only effective when
a few solutions are required.
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3 The State-Space Concatenation Scheme

3.2.4 Concatenation of Reduced Order Models

The concatenation is (as most other parts) fully automated. Therefore, one needs a
script that automatically generates the permutation-matrix P according to (3.20)
and F according to (3.28). After generating theses matrices, the reduced state-space
system of the full structure is generated according to (3.37) - (3.38). The resulting
system is then again reduced in its order by the MOR script which gives the system
(3.39)-(3.40). The additional reduction is not mandatory but can further improve
the performance.

3.2.5 Post Processing

The post processing consists of the computation of several secondary quantities like
7/Q , Qexs and the visual representation of the fields and secondary quantities. Due to
the size of the computed fields the post processing is far from trivial. As an example,
in the first application of Chapter 5 in this thesis, the BESSYVSR cryomodule is
investigated and discretized using SSC with roughly 30 Mio. DOFs. By default
MATLAB uses double precision floats in each element of a matrix, which allocates 64
bits (i.e. 8 bytes) per element. For this example, SSC finds 1576 eigenmodes. Hence,
loading all eigenmodes into the memory would need roughly 400 GB of RAM and is
beyond the scope of a standard workstation computer. Therefore, the treatment of
the fields is done separately (meaning subsegment per subsegment). The correctly
weighted eigenmodes are stored using the .vtk format for all eigenmodes of the full
structure. A Python script later generates the field-plots using Paraview [48] for all
eigenmodes.

3.3 Analytical Example and Comparison to other
Methods

3.3.1 Analytical Example

After discussing the implementation of SSC with FIT, this chapter compares the
numerically obtained solution for a test-problem with its analytical solution, as well
as the straight-forward solution with FIT (without employing SSC). Of special
interest is the accuracy as well as the convergence order. As analytical example, the
solution of the Helmholtz-equation for the electric field (see (2.21)) in a box of PEC is
chosen. The box is closed with a PMC boundary in positive and negative z-direction,
is 80 mm wide, 40 mm high and 420 mm long (in z-direction, which is further referred
to as longitudinal direction). All other boundaries are PEC. This structure is
depicted in Fig. 3.3. Firstly, the Helmholtz-equation is solved analytically for the
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Abbildung 3.3: This picture shows the structure for which the Helmholtz-equation of the
electric field is solved analytically. The box is 80 mm wide, 40 mm high and 420 mm long
(in z-direction, which is further referred to as longitudinal direction). In both longitudinal
boundaries a PMC boundary condition is chosen. All other boundaries are PEC.

.

Abbildung 3.4: This picture shows the decomposition that is used for the SSC for the
test-structure depicted in Fig. 3.3. The box is decomposed into three equal parts, a
box with a length of 140 mm. For plot purposes the separation is exaggerated and the
computation is done, such that the substructures touch at the waveguide ports.

box!6. Furthermore, the Helmholtz-equation is solved in the same domain, using FIT
(incorporated in CST MWS 2017'7) and SSC using FIT (with the processing of the
models as described in Chapter 3.2) where the structure is decomposed into three
boxes with the same length in z-direction, as shown in Fig. 3.4. In the following,
both the resonant frequencies (derived from the solutions of the Helmholtz-equation)
and field-distributions are to be computed using the different methods in order to
show the functionality of the implemented code and the order of convergence of the
numerical solutions regarding the mesh-density. It should be noted that for both
approaches the adaptive mesh refinement was disabled to allow for a better control
of the number of DOFs.

Firstly, in Fig. 3.5 the relative error of the mode with the lowest resonance fre-
quency'® is depicted, in dependency on the DOFs of the discretization. It compares
the error of a plain FIT discretization (as employed in CST MWS) with the error
of the discretization of SSC in combination with FIT (computed by the framework

16For the sake of simplicity, the analytical solution is not derived in this thesis since there is a lot
of literature outlining the solution, e.g. [24].

1"The current implementation was tested with the CST MWS versions from 2014 - 2017.

18The described investigation was conducted for the first few modes but for simplicity only the
first mode is shown.

49



3 The State-Space Concatenation Scheme

described in Section 3.2). It can be seen that for both discretizations, the error
decreases, as the number of DOFs increases. Also the order of convergence as well
as the error for a specific number of DOF's is roughly the same.

Secondly, in Fig. 3.6 the field of an arbitrary mode is compared to the analytical
solution on an axis through the middle of the structure. For comparison, the TM; g3
mode is computed using FIT and the combination of FIT and SSC. The results
indicate the same conclusion as for the frequency. Generally, SSC does not perturb
the underlying order of convergence of FIT and the error for a certain number of
DOFs is similar for both approaches.

Furthermore, Fig. 3.7 investigates the scaling of the computational times of the
prior computations with the DOFs!®. The scaling of the computational time is
important since it allows the comparison of algorithms for their usefulness to perform
computations with a large number of DOFs. From a standard FIT discretization it is
expected that the scaling is roughly quadratic (i.e. a doubling in the DOF's, requires
four times the computational time on the same hardware), which is confirmed by the
results. For SSC, the scaling is comparable to the plain discretization, even though
SSC is more than ten times faster.

1 -3
0 i -6~ SSC with FIT discretization
| -6~ Direct FIT discretization
: I |
nE
=
1074

! ! ! ! ! ! !
104.4 104.6 104.8 105 105.2 105.4 105.6
DOFs

Abbildung 3.5: This picture shows the relative error in the resonance frequency of the
first 3D mode of the test-example in Fig. 3.3, in dependence of the number of DOFs of
the underlying FIT discretization. The error is compared for the plain FIT discretization
and the combination of SSC and FIT.

The same investigation is conducted using SSC with FEM as discretization (as
described in [49]). In FEM one has (despite the number of DOFs) another parameter
that influences the accuracy, which is the order p of the ansatzfunction. For p = 1

19 A similar investigation was done in Fig. 3.5, but a comparable scaling in the accuracy does not
guarantee that the scaling is also the same for the computational time.
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1
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Abbildung 3.6: This picture shows the euclidean norm of the relative error in the field
on the beam-axis of the TM; o3 mode of the test-example in Fig. 3.3, in dependence of
the number of DOFs of the underlying FIT discretization. The error is compared for the
plain FIT discretization and the combination of SSC and FIT.
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Abbildung 3.7: This picture shows the computational time required to compute all 221
modes in a frequency range from 0-8 GHz inside the box shown in Fig. 3.3 using either
SSC with the earlier discussed separation and a plain FIT discretization with CST MWS
with a certain number of DOFs. It can be seen that the computational time of the
straight forward discretization with FIT, scales a little better than quadratically with the
number of DOFs, as expected from the literature [30]. Furthermore, the plot indicates
that the implementation of SSC does not change the underlying scaling behavior of the
discretization technique for this simple example.

FEM has (theoretically) the same convergence order as FIT. Fig. 3.8 shows the
comparison between the FIT and FEM implementation. It can be seen that for SSC
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Abbildung 3.8: This picture shows the relative error in the resonance frequency of the
first 3D mode of the test-example in Fig. 3.3, in dependence of the number of DOF's
of the underlying FIT and FEM discretization. The error is compared for the plain
FIT discretization and the combination of SSC and FIT as well as the combination of
FEM (with varying order of ansatzfunctions) and SSC and plain FEM. The remarkable
alignment of the FIT-based curves is caused by both approaches using the same software
for mesh generation (i.e. CST MWS).

with FEM, roughly the same observations can be made as for SSC with FIT. The
convergence order remains the same and the combination of SSC and FEM needs
fewer DOF's than plain FEM to reach the same accuracy. FEM has the benefit over
FIT that the order of ansatzfunctions p can control the convergence order®. It is
concluded, that there are strong hints that SSC, when combined with a numerical
discretization technique, does not perturb the underlying order of convergence of
said discretization technique for simple domains.

3.3.2 Discussion of Usability of SSC

After explaining the basics of SSC, one can derive its advantages and disadvantages
for the usage in accelerator physics which will be comprised in this section. Of special
interest are not only the theoretical aspects but also the practical aspects that result
from the implementation. All of these aspects were discussed earlier in this chapter
and are comprised in bullet points.

Firstly, SSC has many advantages compared to the straightforward solution of
Maxwell’s equations:

20This statement only holds true for simple domains. The convergence can not always be improved
by increasing the order of the ansatzfunctions [27]. Furthermore, it should be noted that
theoretically one can also user higher order functions as basis for FIT.
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Employing SSC for the solution of the Helmholtz equation can drastically
decrease the required computational time to acquire its solution. Especially, if
many modes are desired.

Structural elements with multiplicity (like e.g. cavities) have to be treated only
once, thus decreasing the computational time.

For simple examples, SSC preserves the convergence order of the underlying
discretization scheme.

SSC is a continuous formulation. This is of advantage from a numerical point-
of-view, e.g. regarding the detection of poles in frequency-domain [50].

Due to the inherent eigendecomposition as well as the practical implementation
there are also some disadvantages:

It is assumed that the solution of the Helmholtz equation is readily available
or computable in reasonable time and sufficient accuracy. This might not be
possible e.g. when a comparably large frequency range is required.

The location of the cutting planes for the decomposition are theoretically
arbitrary, while in practice there are some limitations, e.g. the distance between
two decomposition planes or their positioning at constant cross sections.

The post processing is rather complex and might not be executable on a
workstation-computer.

The required number of 2D modes at the cutting-plane might become imprac-
tically high for certain topologies.

In some cases, the underlying FIT discretization in combination with hexahe-
dral meshes has a worse convergence than FEM combined with tetrahedral
meshes, regarding the DOF's

Generally, SSC is very useful for the tasks at hand and thus is used throughout
this thesis for the solution of Maxwell’s equations in SRF structures.

3.3.3 Comparison with other Domain Decomposition

Methods

The idea of domain decomposition methods in order to save computational time
is rather old and has been used in Maxwell-related Computational Engineering for
more than 40 years e.g. [36], [51], [52] to name just a few. The approaches can be
subdivided in three groups as described in [53]. Firstly, there are some modifications
of mode-matching techniques, in which the continuity of the fields on arbitrary
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3 The State-Space Concatenation Scheme

interfaces is secured by continuity constraints. Secondly, there are S-parameter
based methods and thirdly equivalent-circuit methods in which an equivalent circuit
that incorporates the same RF-properties as the investigated structures is computed.

In this chapter SSC is compared to common domain decomposition methods that
find application in accelerator physics for the solution of Maxwell’s equations. An
in-depth explanation of all mentioned techniques would go far beyond the scope of
this thesis. For further information it is simply referred to the cited literature. A
more in-depth comparison of some of the mentioned techniques is given in [54]. The
comparison to the most commonly used methods is given in table 3.1.

An important ”milestonein using domain-decomposition methods in accelerator
physics and general RF-design is the usage of mode-matching by e.g. [55] or [56], or
sophisticated variations of it [57]. It generally decomposes the investigated domain
into subdomains where an orthogonal decomposition of discrete modes is used to
describe the electromagnetic fields. The subdomains are then combined by continuity
constraints for the fields on the decomposition planes?'. Mode Matching works
theoretically for arbitrary structures but suffers from the same drawback as SSC,
that an explicit eigendecomposition is inevitable which makes computations for
comparably large frequency ranges not feasible. Furthermore, mode-matching is
restricted to simple geometries.

The Coupled S-parameter Calculations (CSC) [42] is the predecessor of SSC and
used sampled S-parameters which are concatenated using the same formalism as
SSC as described in Chapter 3.1.4. Unfortunately, S-parameters describe only the
transmission and reflection behavior of the structures, not their internal states (such
as fields), meaning that certain information gets lost. Hence, CSC has been applied
with great success for the computation of scattering parameters of large structures
as shown in [58], [59] but the computation of all fields is comparably complicated
and computationally demanding [60].

The recently proposed Generalized Scattering Matriz (GSM) approach [61] is com-
parable to CSC and uses sampled scattering parameters which are then concatenated
for arbitrary topologies. Being S-parameter based, GSM suffers from the same draw-
backs regarding field computations as CSC. GSM was recently successfully applied
to compute the S-parameters of the Third Harmonic Module of the European XFEL
in [62].

A comparably new development is the usage of circuit-theory to describe the
electromagnetic behavior of the RF-structures using equivalent-circuits as in [63]
and [40] (to name only a few). This has the advantage that for the solution of
the resulting PDEs in such circuits, there exist powerful numerical tools in form

2IThe idea is very similar to SSC with the major difference that the continuity constraints in
mode-matching are applied on 2D fields, while for SSC they are applied to 1D properties that
are derived from fields (i.e. modal voltages and currents).
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3.3 Analytical Example and Comparison to other Methods

of so-called Simulation Programs with Integrated Circuit Emphasis (SPICE). A
major drawback is, that due to the reduction of the RF-structures to a circuit,
the field-information is lost, hence only transmission functions and time-domain
excitations (e.g.at waveguide-ports) can be evaluated without computing actual
field-information.

’ \ SSC \ CSC \ GSM \ Circuit-Theory \ Mode-Matching ‘

Time-Domain AR AV Sl v \X v
Frequency-Domain | v v v \X v
MOR v X X v X

3D Fields o x| x \X v

Tabelle 3.1: This table comprises a list of techniques that are used in accelerator physics
to reduce the computational effort for the computation of electromagnetic fields in large
and complex SRF structures. Furthermore, the techniques are compared in their desirable
quantities such as the computation of 3D fields or time domain investigations. In the
table the mark v indicates that this property is available for the according technique,
while the X mark indicates that it is not available. Furthermore, the v'\X indicates that
said property is not fully available, or only with some major computational effort.
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4 External Losses in SRF Cavities

Generally, SRF cavities are not lossless as assumed in the introductory chapters of this
thesis. In practice, the external losses govern the overall losses. In modern accelerator
physics, the computation of said external losses is comparably complicated due to
the immense computational demand. This chapter introduces a formalism aiming
to close this gap and allow for the computation of external losses of large numbers
of modes in complex SRF structures that require many DOF's to be discretized
accurately.

This is achieved by a perturbation approach that approximates the fields of lossy
resonators as weighted sum of lossless fields, thus shifting the computational burden
to a comparably cheap post processing step. The following chapter is structured as
follows: Firstly, a rough estimation of the magnitude of the different loss-mechanisms
in SRF cavities is given, thus motivating the restriction to external losses. Secondly,
the nonlinear eigenvalue problem, whose solution is required for the computation
of external losses, as well as previous solution approaches are introduced. Thirdly,
the newly proposed approach is derived in detail and several numerical examples are
shown to validate said approach.

4.1 Loss Mechanisms in SRF Cavities

There are three different groups of loss mechanisms in charge-free SRF cavities:

dielectric and magnetic losses, external losses and surface losses [3]. A convenient

mathematical description of such losses of each mode is the so-called quality factor

given by

_ 27Tanstored,n
Ploss,n ’

where n is the mode-number, f,, denotes the resonance-frequency, Wsioredn the
energy that is stored in the mode and P, the losses of this specific mode. When
investigating all three loss mechanisms, the combined losses are governed by the
smallest quality factor as they can be roughly approximated by

@n (4.1)

1
Qn ~ 1 1 1 ) (42)

Qmat,n + cht,n + qurf,n

with the quality factor for dielectric and magnetic losses Qmatn, for surface losses
Qs n and for external losses Qextn. The approximation in (4.2) is only valid if the
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4 External Losses in SRF Cavities

frequency of the investigated mode is hardly shifted by the losses, i.e. the losses can
be linearly superpositioned.

The cavities are operated at 2 K, at which Niobium has a surface resistance of 10-
100n£2 [1], depending on the material quality. These small surface resistances result
in intrinsic quality factors of 101° - 10! [1], so surface losses play hardly any role
(assuming the external quality factors are lower). Since the structure is assumed to be
evacuated, dielectric and magnetic losses only contribute to the losses significantly
if HOM absorbers are considered. Assuming that quality factors resulting from
external losses are all below 10°, this is the main loss mechanism. Therefore, in the
problems investigated in this thesis, external losses are considered to be the only loss
mechanism and the other two loss mechanisms are neglected. External losses occur
when energy is propagating out of the structure through the waveguide ports, as
introduced in Chapter 2.1.1. This is especially important for HOMs. These HOMs
can lower the beam-quality, deviate the beam from its optimal trajectory or lead to
avalanche-like field emission. In order to avoid these effects, the structure is designed
in a way that the external losses for the HOMs are very high. Physically speaking,
this means that these modes couple well through the HOM couplers outside of the
system and their energy is converted to heat. Generally, this is not always possible
since not all modes couple strongly to the HOM coupler or beam pipes. Modes with
small losses are denoted as trapped modes and can be identified by their high quality
factors. The identification and quantification of the losses of such trapped modes is
an important task in the design of accelerating resonators [36], [55].

Two cases have to be distinguished when dealing with external losses, a loaded
and a matched resonator. For the loaded resonator a lossy material is attached to
the waveguide port in a way that some energy gets converted to heat inside the
load. Examples for this are HOM absorbers [3], or simply termination impedances
attached to HOM couplers. For most applications, RF-engineers are not interested in
the fields inside the load, but rather the influence of the load in the fields inside the
resonator. Hence this can be modeled as an impedance attached to the waveguide,
instead of a geometrical object!. This impedance might be frequency dependent.
The second case for external losses are so called matched resonators. In this case
RF-engineers assume, in lack of a better assumption, that either the beam pipe at the
waveguide port continues infinitely long without a change of crosssection, or that the
beam pipe is perfectly matched with a non-reflective load (which leads to the exact
same problem). The matched cavity is so to say, a special case of the loaded cavity.
The examples in this thesis are limited to matched cavities. All described algorithms
are however able to handle loaded cavities as well, without loss of generality.

IThis means that neither shape nor exact properties of the load need to be known but only its
electromagnetic transmission and reflection properties.
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4.2 The Nonlinear Eigenvalue Problem

In this chapter the discretization of the Maxwell equations inside a resonator with
matched waveguide ports is considered. While there exist some, rather restricted,
approaches to (semi)-analytically solve the latter described physical problem (e.g. [64]
and [65]), in the general case it is not possible to find an analytical solution. The-
refore, the numerical discretization of Maxwell’s equations in lossy SRF structures
is generally carried out using an appropriate discretization technique such as FEM,
FIT or BEM. Therein, the boundary conditions at the waveguide ports are chosen
in such a way that no energy is reflected back into the domain. This is given if the
termination impedance is chosen to be the wave impedance of the 2D port mode.
These wave impedances depend on the frequency and on the mode type for TE and
TM modes, as introduced in Chapter 2.2.5 in (2.39) and (2.41). For TEM modes,
the wave impedance is not dependent on the frequency. For these modes, generally
the line impedance is chosen as reference, which, in most cases is roughly 50 2. The
line impedance of a circular coaxial cable can be computed by

In (r,/1)
ZTEM — Z a 1 ’
Line 0 o
where r, denotes the outer radius and r; the inner radius of the cable. The
line impedance in practical applications is chosen e.g.to allow maximum power
transmissions.

(4.3)

This arising problem can generally be formulated in the following manner

T(\)x =0, (4.4)

which is a nonlinear eigenvalue problem [66]. Generally, one is interested in all
nontrivial solution-pairs (eigenvalues A and their regarding eigenvector x) of the
arising problem in a certain spectrum. From the eigenvalues of (4.4) one can derive
the external quality factors, the loaded frequency as well and from the eigenvector of
(4.4) one can derive the electromagnetic fields. For the full solution of the problem,
it is inevitable to determine the eigenpairs, not only the eigenvalues. Using either
FIT or FEM the problem (4.4) can be rearranged to the following equation

(Ki — K()) — \Ky) x(A) =0, (4.5)
T

with K, Ky and K3 being problem specific matrices. Particularly interesting is
the complex matrix K5(\), which makes the problem nonlinear due to its dependency
on the eigenvalue itself. Many proposed solutions try to find some approximation
for this matrix in order to reduce the computational effort as discussed in the next
section.
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4 External Losses in SRF Cavities

4.2.1 Simplifications of the NLEVP

The computation of the eigenvalues of the system in (4.5) is generally very hard,
sometimes even impossible [67]?. Therefore in accelerator physics it is a common
technique to introduce simplifications for (4.5) in order to produce results with ac-
ceptable accuracy. Most of these approaches try to find an approximation of the
frequency dependency of the complex-valued matrix Ko(A) in order to transform the
posed problem from a general, nonlinear eigenvalue problem to a simpler one. Some
techniques for such simplifications are explained and evaluated in this section. The
goal of all simplification approaches is to find a problem that poses a good approxi-
mation of (4.5) while employing standard techniques and efficient implementations
for linear eigenvalue problems to solve it.

Linearisation

The easiest way to simplify the NLEVP is to linearise it [68]. Generally, this approach
assumes that the wave impedance is evaluated at a certain evaluation frequency feval
and further regarded as constant, hence not frequency-dependent, thereby transfor-
ming (4.5) to the generalised, linear eigenvalue problem (LEVP)

(K1 — Ko fova)) x = AK5x. (4.6)

As stated in the introduction of this chapter, the LEVP is generally easier to solve.
This solution might give reasonable results in the vicinity of the chosen evaluation
frequency, however, it is not a very accurate solution for the entire frequency interval
of interest. It might lead to incorrect results for modes resonating far from the
evaluation-frequency, especially if the cutoff frequency of any 2D-mode is inside the
investigated spectrum.

For this simplification, there are generally two commonly used possibilities. The
first is to use the absolute value of the wave impedance as termination-impedance
for the waveguide ports. In this case, the termination-impedance is a real-valued
number in any case. Hence, any 2D-mode is simplified to be able to propagate. It
is assumed that this method is applied in CST MWS 2014 [38] as hinted in [69].
Unfortunately, this approach is only valid above the cutoff frequency and might lead
to an underestimation of the quality factor of some modes, as shown later. A further
problem with this approach is, that the external quality factors can be decreased, if
the considered number of 2D modes at the waveguide port is increased, even if the
newly added modes are far below their cutfoff frequency.

The second choice for the linearisation is to evaluate the wave impedance at
the maximum or the mean frequency of the considered spectrum. However, also

2Impossible in the sense that the computational time exceeds a certain limit, thus making the
computation impractical.
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4.2 The Nonlinear Eigenvalue Problem

this might lead to errors when computing modes that are not in the vicinity of the
linearisation. For comparison, both linearisation approaches will be used in this thesis.
Theoretically, both linearisation approaches can compute also the eigenvectors of
the system. In CST MWS however, it seems that there is some surrogate problem
solved, which only gives the Qex®.

Simplification to polynomial EVP

Another, common way for the simplification of the NLEVP is the restriction to only
one 2D-eigenmode in each waveguide port as in e.g.[5], [70]. In these cases, the
matrix T(A) can be stated as a polynomial

T\ = NA, + N TA, |+ + Ay, (4.7)

for which a generalized linear eigenvalue problem of the size r x n needs to be
solved [66]. For these quadratic eigenvalue problems, there exist several efficient
solution methods, such as second-order Arnoldi-methods [71], Jacobi Methods [67]
or Nonlinear Rayleigh-Ritz Approaches [70]. However, in real-life applications the
number of 2D-eigenmodes needed for a full description of a certain frequency range
of interest is higher than one, mostly 5 - 15 for each waveguide in practical SRF
applications. It is concluded that by this simplification some eigenvalues can be
computed correctly, but only in cases where an eigenmode couples to only the
regarded 2D eigenmode. In practice, this is neither the case, nor is the number of
modes known beforehand.

Surrogate Problem

A viable strategy is the solution of a surrogate problem for which the solution is
simpler to obtain. This is a standard strategy in engineering. This can be done,
among other approaches, using so called pole fitting (PF) [72], [73]. Pole fitting
(originally referred to as vector fitting) is a common approach used in accelerator
physics [50] and [74] . For a full description it is referred to [72] and for the application
in accelerator physics it is referred to [50].

The general approach is to obtain the S-parameters, which is feasible even for
comparably complex structures. These S-parameters are then approximated by some
low-order, linear, time-invariant SSM whose poles approximate the poles of the S-
parameters. From these poles one can easily compute the quality factors and loaded
frequencies. The drawback of this scheme is that, even though it is comparably
fast, the eigenvectors are not obtainable*. Another drawback is that it is not always

3Since CST MWS is a proprietary software, the actual problem that is solved remains unknown.
4This means that the field, as well as any secondary quantity derived from it, is not computable.
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4 External Losses in SRF Cavities

straightforward to say which modes are physical and which ones are artificial due to
an over-fitting of the approximation.

Another surrogate problem solution that should be mentioned is the usage of
so-called perfectly matched layers (PML)[75]. The basic idea is to attach some lossy
material to the waveguide ports, thus making them free of reflection. However, in
practice there occur unwanted, nonphysical resonances in the spectrum. Furthermore,
using this approach the entire domain has to be discretized using complex algebra
which might be very time consuming. This technique is still used in accelerator
physics [76].

4.2.2 Straight-forward Solution of the NLEVP

In the literature, there are several solution approaches that do not use major sim-
plifications and solve the full problem (4.5). In all publications that deal with the
solution of the NLEVP for large scale accelerators, the system is assembled in a
way that all matrices are large and sparse (in contrast to this thesis). A general
complication is, that a balance has to be found between speed, accuracy and the
completeness of the found solutions.

A common approach is the usage of so-called contour integrals as in [77], [7§]
and [79]. This technique, though very complex to implement, is currently the only
technique that guarantees that all modes are found in a certain spectrum. Generally,
a complex contour integral over the inverse of T()A) has to be evaluated. In this
thesis this technique is not used since it explicitly prohibits meromorphic functions®
for T(\) [79] (which is the case in the presented approach). Nevertheless, there are
other formulations of the NLEVP for which this might be a viable solution strategy

(e.g. [6]).

In [5] and [6], a straightforward implementation of the NLEVP is presented. Similar
to the algorithm presented in this work, the solutions are computed separately in an
iterative scheme. However, there are two major differences. The scheme presented
in this thesis is based on matching wave impedances while the examples from the
literature are based on wave numbers and additionally, no MOR is introduced. While
[6] uses a Jacobi-Davidson Type Solver, [5] uses the Implicit Restarted Arnoldi
Method for solving the discretized NLEVP.

5Meromorphic functions are complex differentiable everywhere but on some singularities.
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4.3 Perturbation Approach by Lossless
Impedance Model

All methods mentioned in 4.2 struggle with very large systems with several millions
of DOFs. Unfortunately, such large systems can easily occur when dealing with acce-
lerating structures. Therefore, the recently proposed methods have to be enhanced.
While a common approach, would be application of HPC, in this thesis a combination
of well known techniques to solve NLEVPs with the model-order reduction technique
SSC is proposed, in order to overcome the problems with very large systems. In a
first step, the reduced order model of the investigated, closed structure is computed.
Then, the behavior of the same structure is emulated with the attached termination
impedance, using a perturbation approach®. For a matched waveguide, this can
be emulated if one finds a termination condition for each 2D-waveguide port, such
that no energy is reflected back into the domain. This is the case if the termination
condition Gy, is set to be the inverse of the frequency-dependent wave impedance
of the 2D port mode:

1 in(s)
Gien = = — . 4.8
to ZWave,n(S) UH(S) ( )
Plugging (4.8) into any SSM of the closed structure (e.g. (3.39) and (3.40))7 one
can (with some further modifications) define the problem as:

(A+BG(s)B" —sI)x(s) =0, (4.9)

[

(s)

with the matrix G(s) comprising all 2D wave impedances on the diagonal. The
problem (4.9) is described in the literature as a nonlinear eigenvalue problem. It
should be noted, that for the formulation of the problem one needs only the SSM of
the closed structure and the wave impedance of all 2D waveguide modes which are
known analytically for all cases investigated in this thesis. From the solution-pairs
An, Xp, of the system (4.9) one can derive the external quality factors and the loaded
frequencies of the lossy resonances with

S{An}

()
2RI '

Qext,n - o

fu= (4.10)

6The word perturbation approach generally refers to finding an approximate solution to a complex
problem, by starting from a known solution of a related, simpler problem. In the presented case,
the solution of the complex problem (nonlinear eigenvalue problem) is developed as a weighted
sum of solutions of the simple problem (linearized eigenvalue problem), hence it is referred to
as perturbation approach.

"The indices of the SSM matrices are neglected in the following since the following approach works
for any arbitrary impedance formulation in this thesis.
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4 External Losses in SRF Cavities

Here, f,, denotes the loaded frequency of the n-th mode and R and & denote
the real- and imaginary part of a quantity. The fields can be extracted from the
eigenvectors x,,.

4.3.1 Mathematical Properties of the NLEVP

In this short section, the mathematical properties of the derived system (4.9) are
investigated. This will lead to the carefully considered choice of solution algorithms
in the next section. These properties differ significantly from standard approaches
like [6] and [78], hence the applied techniques for the solution are different.

The derived matrix operator T(s) is in any case complex-valued. Furthermore, due
to the meromorphic functions of the wave impedances (2.39) and (2.41) the matrix
operator T(s) is also meromorphic with countably many isolated poles. These poles
are not removable singularities since either the limit

lim T(s) or lim T '(s), (4.11)

S—JWco,n S—JWco,n
does not exist, hence the function can not be reformulated in a continuous way.
The isolated poles® are located at zero and eigenvalues with zero real part and an

imaginary part with the absolute value of the cutoff-angular frequency of any 2D
TM mode

A=0 or A= jw™M vn. 4.12
J

co,n

Both singularities are not of practical relevance since one is not interested in static
modes nor in modes that have no real part. Such a mode would have an infinite
quality factor and is unphysical for the systems that are investigated in this thesis.
However, these singularities hinder the employment of more sophisticated techniques
like contour integrals which are only applicable for holomorphic functions [79].

If the matrices of the closed SSM in (4.11) originate from a concatenated, reduced
system (which is the case for any shown application in this thesis), the matrix T()\;)
is (comparably) small and dense. In all applications shown in this thesis the size of
the systems remained below 5,000 DOFs. Due to the density, techniques that are
suited for large, sparse matrices like e.g. Krylov-Subspace methods are not practical.

4.4 Newton Iteration for Matrix Operators

The method chosen in thesis has to be suited to compute the desired eigenpairs fast
and accurately. Additionally, in all shown applications, several eigenmodes with

8An isolated pole zy means, that the function is holomorphic in the vicinity D of the pole,
i.e. holomorphic on D \ {z}.
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eigenvalues of multiplicity of at least two have to be computed. Hence, a technique is
picked, that is suited for meromorphic matrix operators with dense matrices. Further,
the chosen method has to be able to deflate” the search space by using the eigenvector
or eigenpairs!®. According to [81], there are surprisingly few methods to handle this
problem. An easy way to compute some small eigenvalues is the Newton method
(sometimes also referred to as Newton-Raphson method), further denoted as NM.
With some minor changes to (4.5) one can use the NM to solve for the zeros as
proposed in [82] and extended in [66]. The summary on how to apply NM to the
studied problem is given in this section, partly following [66].

To obtain the i-th solution pair {x;, \;} of (4.9) a linear, matrix operator P is
defined as

P { ’; ] - {VTH(Q)_Xl } —0, (4.13)
where the vector v acts as a normalisation for the eigenvector. The superscript H
denotes the conjugate transpose of said vector. The goal is to find all solutions in
a certain frequency range. This is achieved by finding the roots of P, for which the
eigenvalue \; has an imaginary part smaller than the maximal angular frequency.
Further, the matrix operator P is differentiated with [ Bixi C% } to obtain the
so-called Fréchet derivativel! P’

o x| | T(N) 339_”&-
P[] [0 . 1

From the problem specification in (4.9) one can determine the derivative

OT(\;) B)
o -B O\

without approximation!?. Further, from (4.15) one needs to determine the deri-
vative %G(A) for all possible 2D port modes. For a matched waveguide one can
determine the derivative without approximation as

G\ BT -1, (4.15)

0 m 1 1 (p—
8>\1G ()\)—Z—()(\/ﬁ—ﬁ )\+wco s (416)

9The method has to exclude all found eigenvectors from the search space. This is called deflation
[80].

10Since, as stated earlier, the eigenvalues can have a multiplicity of at least two, while two eigen-
vectors can not be the same.

1Please note that this is not a common derivative in Euclidean-space but a generalization of the
derivative for matrix-functions. Therefore, said derivatives follow slightly different mathematical
rules shown in [83].

2The derivative itself is without approximation, even though, some of the matrices contained are
not.
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0 ru 1 1 A2
_ _ 4.1
a)\iG ) Zo (x//\Q—I—wgo ()\2—|—w20)3> ’ (4.17)
%GTEM(A) = 0. (4.18)

The equations (4.16) and (4.17) only hold for matched waveguides. In the case of a
loaded waveguide, the derivative is not known analytically. It could be approximated
numerically (but this is not investigated in this thesis). In the next step (for any
arbitrary termination impedance), one can use a Taylor-Series expansion of first
order of P and (after some rearrangements) derive the NM for the j-th iterative
solution of the i-th mode of (4.13) as

P | || YT o p | 4.19
{ Aij } { Aij+1 = Aij Aij (4.19)
The formulation (4.19) is written with P’ on the left-hand-side in order to avoid

explicitly computing its inverse. Plugging the definition of P (4.13) and its Fréchet
derivative P’ (4.14) into (4.19) gives

OT (N 5
T(\y) Tt ] [ Xijr1 = X } _ { T(Aij)xig ] . (4.20)

H
vi 0 Ai g1 — A vix;— 1

The system (4.20) has to be solved multiple times for each desired solution. It can
be further simplified by separating the two equations into two linearly dependent
equations. The upper equation from (4.20) gives

_ OT (i
Xijt1 = — T I(Ai,j)a(T'j)Xi,j : ()\i,j+1 - )\i,j) ) (4.21)
1,

. i
g

Ui,j+1

where the direction of the new iteration of the searched eigenvector x; ;4 is intro-
duced as auxiliary variable u;;1;. The formula of the search direction u;;1; can be
explicitly written from (4.21)

OT (N ;)

Since x;; is forced to be normalised by (4.13), the second equation gives

Ujj+1 = T_l(/\iﬂ') Xij- (422)

VHXi’jJ’,l = VHXi’j. (423)

Multiplying (4.22) with the normalisation vector vl under consideration of (4.23)
gives
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Hy .
Vi Xij

)\i,j+1 = )\@j — (424)

Vi W1

Having determined the new direction u;j;; from (4.22) and the new eigenvalue
Aij+1, their product can be used to compute the new eigenvector x; ;;1 according to
(4.21). Instead, the new eigenvector x; ;41 is computed as X; 11 = ¢ - W;j41, with the
arbitrary scaling constant ¢ as 0 < ¢ < 1 to guarantee convergence as described in
[83]'3. Note that this scaling does not influence the direction of the search-vector,
just the step size.

This procedure is summed up in Algorithm 4.

Algorithm 4 Newton iteration i-th solution pair

Require: Initial guess {\;,X; 0}, desired residual 6, normalisation vector V?
1: Normalize initial guess VZHxip =1
2: while r; > 0, j < max. iterations do

. . _ OT (N 4
3: Compute new direction w11 = T71(\; ;) aE\. fj) i
2V}

Hy. .
Vi Xij

4 Compute new eigenvalue \; j11 = \;j — o
5 Compute new eigenvector Xij+1 = C- Ujj41

6: Compute residual r; = ||T(\; j+1) X1/ Xi 1]
7 Increment j

8: end while

The -th solution pair is considered as converged if the residual r; is below the
desired accuracy 6 before the maximum number of iterations is reached. For further
convenience, the converged eigenvectors x;; are later normalised such that their
energy inside the considered domain € is 1J. From (4.4) one can see that the energy
is in fact not determined and can be chosen freely.

4.4.1 Deflation of the Search Space

For real life examples, one is generally interested in several eigenpairs, not just
one. This leads to the deflation of the NLEVP. It needs to be ensured, that all
eigenpairs of interest are found and that the scheme does not converge towards
an already found eigenpair'®. Since in problems originating from the Helmholtz
equation multiple, equal eigenvalues (with multiplicities larger than two) can occur,
a deflation strategy that is based either on eigenpairs or eigenvectors is needed, since
neither has multiplicities. This is achieved by an elaborate determination of the

13The scheme converges as well if the new eigenvectors X j+1 are computed according to (4.21) but
the convergence is not guaranteed in that case.
4The second condition is not mandatory, but only to ensure an optimal performance.
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(theoretically arbitrary) normalisation vector v;y; for finding the (i + 1)-th eigenpair.
In this case one can choose the normalisation vector such that it is orthogonal to
all 7 eigenvectors that have already converged as described in [66]'5. It should be
noted that the deflation strategy has not be very performant, due to the small size
of the deflated system. A simple, yet very efficient way to compute a new orthogonal
search direction is to comprise all 7 found eigenvectors in a matrix X; and find an
arbitrary, non-trivial vector vi,; such that

(Xl X9 ... Xi)H Vi1 = 0. (425)

XH

i

Therefore, each vector of the null-space of X; can be used as new search direction!®.
Including the deflation, the Algorithm 4 can be extended in Algorithm 5.

Algorithm 5 Newton iteration for several solution pairs

Require: Initial guess {\;,X; 0}, desired residual 0
: Determine vector norm viix;o = 1
:fori=1— N do
Compute solution pair according to Algorithm 4
Determine null-space of all found eigenvectors X
Determine new normalisation vector VEH as arbitrary vector from null-space
end for

S Wy

4.4.2 Scaling of the NLEVP

The NLEVP as described in the previous section converges comparably slow. This
is due to the bad condition number of the system of equations when computing
the new search direction in (4.22). A closer look at the derivatives of the wave
admittances (4.16) and (4.17) shows that this is caused by the inverse of the square
of the eigenvalues. If the imaginary part of the eigenvalues is somewhere in the GHz
range, this might cause the bad condition. This however, can be easily fixed by
scaling the entire system such that the eigenvalues are not in the GHz range but in
Hz range. According to [84] the problem at hand allows this kind of scaling without
changing the eigenvalues nonlinearly'”. This simple trick restores the convergence to
a few iterations (generally <5) as expected from literature from comparable problems
[83].

15t should be noted that this property does not require the eigenvectors to be mutually orthogonal.

161f there have not been found any eigenvectors yet, e.g. for the solution of the very first eigenmode,
one can simply pick a random vector or a solution to the linearised eigenvalue problem.

17T At first sight it is counter-intuitive that a problem that is nonlinear regarding the frequency can
be scaled in the frequency range but if the entire system (including e.g. the cutoff frequencies)
is scaled, the eigenvalues can be scaled back linearly to the original frequency domain.
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4.5 Relative Power through Port Mode

An important investigation that is possible by solving the NLEVP is the computation
of the power through each port mode. This enables a more sophisticated investigation
of the power than external quality factors since the relative power loss could be
accounted to a specific port and port mode. This would be especially important
e.g. for the design of HOM couplers and to deepen the understanding of lossy effects.
There are generally two ways to compute the power through the port surfaces. The
first is to compute the full electric and magnetic fields from the eigenvectors of
the NLEVP. Then one has to integrate the Poynting vector by integrating the
cross-product of electric and magnetic field in the waveguide-port surface. Another,
drastically simpler way was proposed by S. Zadeh [85], by computing the product
of modal voltage and current for each 2D port mode, as highlighted earlier in (2.33),
for a given eigenvector x; with the eigenvalue );. Firstly, the relationship between
modal voltages and currents can be written as

i(s)= (B"(\—A)'B) " v(s). (4.26)
This is the inverse transmission function of the system at the specific resonant
frequency of the investigated mode. The modal voltage can be described as

v(s) = B'x;. (4.27)

Plugging (4.27) into (4.26) one can multiply the vectors of modal voltages and
currents element by element, leading to the power of the i-th mode through the port
modes as

Py = i(s) ov(s) = (BT (A — A) ' B) ' B"x; 0 B'x;. (4.28)

with the vector Pp,; containing the power through each 2D port mode for the
solution pair \;, x;. The elementwise multiplication of modal voltages and currents
is denoted with the Hadamard product o. Unfortunately, only the relative power
can be computed due to the fact that the energy of the eigenvector is not uniquely
determined by the NLEVP. Therefore, only a relative statement about how much
of the losses is going through which port-mode is possible. It should be further
noted that this approach is not equivalent to computing the quality factors for each
port while closing all others which does not lead to reasonable results due to the
nonlinearity of the problem.

4.6 Numerical Examples

In this chapter some results are shown that have been obtained by solving the
NLEVP and they are partly compared to the two linearisation approaches and PF.
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Abbildung 4.1: This picture shows a structure which is used as model example to solve
the NLEVP, consisting of a resonator and a simplified HOM coupler. This structure has
two waveguide ports, one at the coupler and the other one at the beam pipe. To avoid
confusion, the port surfaces are colored in white. The frequencies of the considered 2D
port modes is shown in Table 4.1.

Unfortunately, to the author’s best knowledge, there is no analytical example which
contains only external losses to test the proposed algorithm. Therefore, two numerical
examples are investigated: A simplified resonator and a cavity with two couplers
(with a structure described in [86] and [87]). All computations were performed on
a Intel(R) Xeon(R) CPU E5-2687TW @3.4 GHz with 256 GB of RAM, running on
Windows Server 2012 as operating system. All shown cases used SSC as described
in this thesis. In all shown cases all eigenmodes of the NLEVP (that were found
by the algorithm) in the given frequency interval were computed with a relative
residual smaller than 1075, The residual of the j-th mode at the i-th iteration is
defined as [|T;(\i ;) Xi;ll2/l|Xill2- The solution of the NLEVP was implemented
straightforward from Algorithms 4 and 5 and was done in Matlab R2015b [88].
All field visualizations have been generated in Paraview [48], the structures were
visualized in Blender [89].

4.6.1 Minimalistic Resonator

As a minimalistic model to show the performance of some of the latter described
algorithms a minimalistic resonator with a simplified HOM coupler as denoted in
Fig. 4.2 is computed. This structure does not have any practical relevance, it just
serves as example. A frequency domain of 0 - 6 GHz is chosen, which results in
eight waveguide portmodes that are being used in this example. Three waveguide-
portmodes are located at the antenna (one TEM mode and two TE modes) and five
are located at the beam pipe which is further described in Table 4.1. The solutions
were computed using the Newton Method as given in Algorithms 4 and 5.
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Tabelle 4.1: The list of 2D waveguide port modes for the minimalistic resonator shown
in Fig. 4.1 and its cutoff frequencies in a frequency domain of 0 - 6 GHz.

Port Mode feo [GHZ]
1 TEM 0
1 | TEy; pol. 2 5.902
2 | TEy; pol. 1 4.389
2 | TEy; pol. 2 4.389
2 TMo 5.732
2 TEs; pol. 2 7.275
1011 | ® ONLEVP
CST MWS direct 2014
CST MWS direct 2016
107 X PF S-Parameter CST MWS direct
><
<3
® R & X
&
C
—1 | | | | | | | | | | | |
1075 3 3.5 4 4.5 5 5.5

Loaded frequency [GHz]

Abbildung 4.2: This picture shows a comparison of computed Qext using different me-
thods for the simple test resonator from Fig. 4.1 in a frequency interval from 0 - 6 GHz.
All modes with a Qext below 0.1 were neglected for this plot. It can be seen that while
the NLEVP and PF deliver comparable solutions, there are several modes for which CST
MWS delivers different results.

In Fig. 4.2, the Q. as function of the loaded frequency as derived from the
solution of the NLEVP inside the domain described in Fig. 4.1 is shown for different
methods. The legend entry NLEVP refers to the solution of the non-simplified,
NLEVP as outlined in Algorithms 4 and 5. All methods use the exact same underlying
discretization with FIT in CST MWS using a hexahedral grid resulting in roughly
233,000 DOFs. For the discretization, no domain decomposition was used (i.e. only
a MOR). Computing all 15 modes in the frequency range took 22s for a ROM with
194 DOFs. The ROM was obtained in 7m and 41s. Computing the Qe with CST
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Abbildung 4.3: This picture shows the convergence of Qext regarding the DOFs of the
initial non-reduced FIT discretization, obtained from the first three solutions (regarding
their frequency) of the NLEVP. These solutions are denoted by Qext num. Since there is no
analytical solution available, the solution of the same problem with roughly 1 Mio. DOF's
was chosen as reference and is denoted with Qext ref- It can be seen that for the modes
one and two, the solution gets more accurate, as the DOF's are increased. Unfortunately,
for the third mode, this is not the case. It is assumed that this is due to the fact that
the modes Qext should be infinite, which leads to problems in the algorithm.

MWS 2014 took 18 m and 8s.1® It can be seen that the proposed NM and PF give
results within roughly the same order of magnitude. Above cutoff of the first two
TE modes in the beam pipe (at approximately 4.38 GHz) the results of CST MWS
2014 also fit well to the other two methods. A large difference is clearly visible for
a mode at approximately 3.82 GHz. While NM and PF find this mode to have a
high Qex of approximately 10, CST MWS 2014 finds this mode to have a Qey of
approximately 102. It is assumed that the different orders of magnitude originate
from the linearisation employed in CST MWS. The discussed mode couples poorly
to the TEM mode at the antenna. However, it couples well to the TE mode in
the beam pipe. At the frequency at which this mode resonates, this TE mode is
approximately 0.5 GHz below its cutoff frequency. Hence, for an infinitely long beam
pipe, no energy couples out of the beam pipe, resulting in a very high Q.. The
energy can couple solely through the TEM mode, which can be evaluated by (4.28).
This is computed correctly by NM and PF. In contrast, CST MWS linearises the
problem in a way that the TE mode is above its cutoff. Due to the artificial coupling

181t should be noted however, that this comparison is not really one-to-one since CST MWS solves
a slightly simpler problem (by linearisation) and has no need to export the obtained matrices
into Matlab.
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between 3D and 2D-mode, the energy can couple out of the system well, resulting
in rather low Q. Taking the results into consideration, it is concluded that the
presented approach to the solutions of the NLEVP delivers reasonable results that
coincide well with known techniques like PF. For CST MWS 2014 the approximation,
that every mode is above its cutoff frequency might lead to inaccurate results in
some cases. For the shown example, CST MWS 2016 finds only five of the eleven
modes in the investigated frequency-range. Hence, in this thesis CST MWS 2014
was used for comparison.

Furthermore, it is investigated how the solution of the NLEVP differs when the
DOFs of the discretization are increased. The results are shown in Fig. 4.3 for the
first three modes. It can be seen that for the modes one and two, the solution gets
more accurate, as the DOFs are increased. Unfortunately, for the third mode, this
is not the case. It is assumed that this is due to the fact that the Qe of this mode
should be infinite, which leads to problems in the algorithm?!®.

4.6.2 Cavity with Coupler

As a further numerical example, the NLEVP is solved for a structure that has
practical relevance to accelerator physics, one nine-cell cavity with a HOM and an
input coupler attached as shown in Fig. 4.4. This example was taken from [90] and
is a subpart of the Third Harmonic Module which consists of four nine-cell 3.9 GHz
cavities. For the sake of simplicity, the example is focused on only one cavity. The
structure is investigated in a frequency range from 3 - 8 GHz. The FIT discretization
results in 2.2 -10° DOFs. In this case there are 25 waveguide modes that need to
be considered. Applying SSC with a decomposition in three parts (HOM coupler,
cavity and HOM coupler wih input coupler) took roughly 5h and 2m. Computing
all 160 lossy modes for the previously assembled NLEVP in the frequency domain
of interest took 7m and 50s.

As a first step, the external quality factors were computed for the investigated
structure with the previously proposed algorithm, a linearisation at 8 GHz, CST
MWS and PF with scattering-parameters directly obtained by CST MWS. The
results can be seen in Fig. 4.5. As mentioned earlier, when referring to specific
modes, it is common practice to apply a multipole expansion (e.g.a mode could be
the first TE quadrupole mode). The multipole expansion for this specific cavity was
taken from [91].

Comparing the first monopole band from 3.75-3.9 GHz, one can see that the results
from the PF and NLEVP coincide very well, while the (). obtained by linearisation
and CST MWS are lower for all modes in this band. This is due to the fact, that
for both linearisation approaches, the first TM mode at the beam pipe is assumed

9This is not a problem solely of the proposed algorithm, but any algorithm that is used to compute
quality factors.
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Abbildung 4.4: This picture shows the second example which is used to validate the
proposed algorithm. The structure consists of a nine-cell 3.9 GHz cavity, a HOM coupler
on the right and combined a HOM coupler and input coupler on the left. This structure
is a part of the Third Harmonic Module from [90]. The waveguide ports are located at

the two HOM couplers (with one TEM mode), the input coupler (with one TEM mode
and two TE modes) and both sides of the beam pipe (with ten 2D modes each).

to be above its cutoff frequency. This means, that some energy can propagate out of
the beam pipes through this mode. For PF and NLEVP, this TM mode is correctly
assumed to be below its cutoff frequency at 5.74 GHz. Therefore, the energy can
only couple out of the coupler through the TEM modes. The mode with the highest
frequency from this band is the m-mode, whose field pattern is shown in Fig. 4.6.

The biggest difference between various linearisation approaches and the NLEVP
can be seen in the mode resonating at 4.137 GHz?’. The field pattern originating
from the NLEVP can be seen in Fig. 4.7. This mode has a Q. of roughly 3.82 - 10°.
Here both linearisation approaches compute a rather low Qe This is again due to
the linearisation above cutoff, in this case of the first two TE modes in the beam
pipe. The mode shows a good coupling to these two 2D modes, but not to the
coupler. Since the two TE modes are below their cutoff frequency, the energy can
not couple out through the beam pipe which is correctly represented by the NLEVP
and PF. The same effect can be seen for the quadrupole modes at 7.25 GHz whose
quality factors are slightly underestimated by both linearisation approaches. The
field pattern of the mode with the highest oy is shown in Fig. 4.8. PF could not
accurately compute these modes and underestimates the Q.. It is assumed that
PF has problems when dealing with high Q). in densely populated spectra. Even
though some values fit well to the solution of the NLEVP, it is difficult to make a
good assessment from this data.

It should be emphasized that even though CST MWS performs well above the
first cutoff it does not provide the eigenvectors, hence the electromagnetic field
distributions which are needed to compute the interaction with charged particles
passing the structure or how much power propagates through which port mode.

20This mode has been computed e.g.in [87] with a comparably high Q. of roughly 5.5 - 105.
However, these computations were conducted using the rather costly method of computing the
frequency change when solving the problem with PMC and PEC boundaries at the port as
suggested in [68].
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Abbildung 4.5: This plot shows the results computed for the cavity shown in Fig. 4.4
computed with different approaches. The solutions of the NLEVP are marked with red
circles, the solutions obtained by CST MWS are marked with green crosses, the results
obtained by the linearisation approach are marked by a blue dot and the PF results
are highlighted by a yellow dot, respectively. For a better overview, eigenmodes with a
loaded frequency below 3.5 GHz and eigenmodes with very low computed Qext have been
omitted in this plot.

4.6.3 Physical Consistency of the Solution

An important property of the modeling of physical problems is that the model is still
physically consistent?!. In the context of the NLEVP, that means that, since the
NLEVP-model is defined in a way that we have an infinitely long beam pipe attached,
changing the actual length of the beam pipe attached at the end in the discretized
domain should not change the results whatsoever [92]. In the following example the
physical consistency of the solution obtained from the NLEVP is examined. For this,
the example from Fig. 4.4 is computed with successively extended beam pipes.

It was found that for the previously used methods, i.e. CST MWS and linearisation,
this statement does not hold true, hence the eigenvalues are a function of the beam
pipe length (which should not be the case). In the following, the NLEVP is solved for
three variations of the structure and the results are compared for all tested methods:
First, the initial design as shown in Fig. 4.4, secondly, the same structure with every
beam pipe extended by 42mm and thirdly, the same structure with every beam
pipe extended by 42-7 mm. In Fig. 4.9 the results are shown as computed with CST

2IThe word ”consistentis used in the logical sense as in: Free of logical contradictions instead of
the numerical consistency.
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Abbildung 4.6: This picture shows the absolute value of the electric field strength from
a lossy eigenmode computed with NM from the NLEVP. This mode occurs at 3.9 GHz
and depicts the m-mode.
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Abbildung 4.7: This picture shows the absolute value of the electric field strength from
a lossy eigenmode computed with NM from the NLEVP. This mode occurs at 4.137 GHz
and is shown to be trapped with a Qex higher than 106.
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Abbildung 4.8: This picture shows the absolute value of the electric field strength from
a lossy eigenmode computed with NM from the NLEVP. This mode occurs at 7.270 GHz.
It has the highest Qey; in the frequency domain of interest of approximately 10°.

MWS. It can be seen that for different length of the beam pipes, the results change
in some case by several orders of magnitude. This is problematic for the modes with
high Q. since these modes need to be determined very accurately. Especially, the
mode located at 4.15 GHz changes several orders of magnitude when increasing the
length of the beam pipe.

In Fig. 4.10 the results of the NLEVP are shown for different length of the attached
beam pipe. The results agree well for all three setups. As an example the mode at
4.137 GHz with a Qe of roughly 3.82-10, differs by 0.4 % between the minimum and
maximum value between the three different structures. Therefore, one can conclude
that the presented algorithm is physically consistent and shows the expected behavior.
Only for some modes with Q.. < 10? there are visible changes. Yet, one is generally
not interested in these modes, since they can not endanger the beam quality.
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Abbildung 4.9: This plot shows a comparison of the computed external quality factors
with CST MWS for the FLASH cavity with successively prolonged beam pipes for the
cavity depicted in Fig. 4.4. It can be seen that for different beam pipe length, the Qext
differ significantly, i.e. the simulation is not physically consistent.
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Abbildung 4.10: This plot shows a comparison of the computed external quality factors
from the NLEVP for the FLASH cavity with successively prolonged beam pipes for the
cavity depicted in Fig. 4.4. It can be seen that for different beam pipe length, the Qext
for modes with Qeyx¢ > 102 hardly differs for most modes, i.e. the simulation appears to
be physically consistent.
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4.6.4 Comparison to Measurements

The Qext can also be validated by measurements®? as seen in Fig. 4.11. Here, the
solution obtained by CST MWS and NLEVP are compared to measurements con-
ducted in [95]. These measurements originate from pole-fitted scattering-parameters
measured at the FLASH Third Harmonic Module at DESY. The comparison is
restricted to the first monopole band. Therefore, there should be 36 modes measured
(nine for each cavity). However, in all but one case the S-parameter peak of the
m-mode was below the noise floor of the network analyzer and a good estimate of
Qext could not be obtained. It should be noted however, that in [95] in fact the
loaded quality factor is measured. But for the first monopole band, the external and
loaded quality factors should be nearly equal due to the small losses.

The measurements and the numerical computations are generally in good agree-
ment. For the m-mode the difference between NLEVP and measured Q. is smaller
than 10 % while for CST MWS, the difference is bigger than 50 %. The differences
between measurements and simulation might originate from the slightly different
structure. Obviously the design can not be built without minor geometrical imperfec-
tions. Also, the built structure is cooled and tuned when commissioned, which might
further perturb the structure. Another unknown influence are additional reflections
from TEM modes used in the measurements due to an unmatched impedance which
might lead to higher Qe from the measurements. In the presented simulations the
line-impedance of the TEM mode is used as termination impedance of 50€). Un-
fortunately, there is too few data so that it is hard to draw a significant conclusion
from this example.

4.7 Conclusion

In this chapter the combination of a perturbation approach, based on SSC with
Newton iteration was presented in order to solve the NLEVP that arises from the
computation of external losses for SRF cavities. In investigations restricted to exter-
nal losses only, it was shown that the proposed method is able to compute multiple
eigenpairs even for large systems with several millions of DOFs on a workstation
computer. Furthermore, it was shown that the proposed method is applicable to
real-life structures that are in use in accelerator physics. Furthermore, the results
match solutions computed with other methods (i.e. PF) relatively well. The eigenva-

22Unfortunately, one can only verify the eigenvalues using Qey;, not the eigenvectors. Measuring
electromagnetic fields inside a closed and cooled down SRF system would require a bead-pull
measurements inside a cryogenic module, which is generally not feasible. Furthermore, the
measurement of external quality factors as well as their loaded frequencies is theoretically
possible yet, it is practically very demanding and not very accurate for high quality factors [93],
[94]. Therefore, a common techniques for measuring external quality factors is their extraction
from scattering parameter measurements as done in [95].
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Abbildung 4.11: Comparison between measurements from [95] and computed external
quality factors from the NLEVP and from CST MWS for the FLASH cavity. The
measurements are restricted to the first monopole band from 3.75 - 3.9 GHz.

lues were validated by prolonging the beam pipes and computing the external quality
factors, which remain constant in this case, as to be expected, which is a strong hint
for physically consistent of the method. The eigenvalues of the first monopole band
were further validated using measurements. The solution of the NLEVP was com-
pared to simplified approaches like linearisation, CST MWS 2014 and PF. For the
computation of the eigenvalues (and Qex) the simplified approaches give reasonable
results in most cases, especially the PF worked reliably if given sufficiently many
frequency-samples of the S-parameters.

Unfortunately, the comparison of the results to other, straightforward methods is
not possible due to the lack of complete documentations regarding computational
times, DOFs and computational resources in the literature. Investigations that deal
with the computation of external losses in complex SRF structure are (among many
others) [6], [70] and [96]. All of them heavily rely on high performance computational
infrastructure. To the authors best knowledge, there is not a single article with
methods that are able to solve the described problems with several millions of DOF's
for large numbers of modes on a workstation computer. Furthermore, all of the
cited literature has impractical computational times when a large number of modes
has to be computed over a certain spectrum (due to the fact that the modes are
not computed at once, but separately or in clusters). Therefore it is concluded that
the proposed algorithm contributes to the solution of the NLEVP and thus the
computation of external losses on workstation computers.
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In this chapter, the techniques described in this thesis are used to analyse several real-
life, large scale SRF structures. The goal is to show the performance and usability
of the described algorithms to solve problems that occur in cutting edge projects
from accelerator physics. The software implemented in this thesis was used by the
author and several other scientists for various different projects such as:

e FLASH Third Harmonic Module [14],

European XFEL [15],

BESSY VSR [97],

bERLinPro [98],

MESA (ongoing, unpublished),

e Future Circular Collider (FCC) (ongoing, unpublished).

In the following, three of these examples (conducted in this thesis) have been
selected to further outline the application of the previously derived theory, namely:
the FLASH Third Harmonic Module, the bERLinPro main linac and the BESSY VSR
chain of cavities. The following sections are ordered as follows. Firstly, an academic
example serves as introduction and shows the necessity to take the entire structure
into account. In each following section, one of the practical examples is discussed.
Therefore, the structure is briefly described and its requirement for the bigger phy-
sical experiment is assessed. Furthermore, a specific problem is stated that can be
addressed by the methods described in this thesis. Secondly, some general remarks
about the discretization with SSC are discussed and thirdly, the actual results of the
solution of the Helmholtz-equation and the NLEVP are discussed. For one example,
the results are partly validated using measurements conducted by other scientists.

All computations where done on the same computer as mentioned in Chapter
4.6 (Intel(R) Xeon(R) CPU E5-2687W @3.4 GHz with 256 GB of RAM, running
on Windows Server 2012). The SSC models of the substructures are adaptively
improved until the relative residual the ROM is below 107'% (with the residual as
described in Chapter 3.1.3). For each example, the specific parameters of SSC like
the number of mesh-cells, the number of 3D modes, as well as computational times
etc. are summarized in the Appendix A. For the solution of the NLEVP, all modes
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in the investigated frequency domain were computed with the NM as outlined in
Chapter 4.4 with a residual below 107°. In some cases Qey; is computed to be well
above 10'°. In real life structures such high quality factors do not exist since the
overall quality factors is limited by the intrinsic quality factor of the cavity (probably
below 10'!). Furthermore, in the following examples the properties of certain modes
are discussed. Generally it is not possible to assign r/Q and Q. to one specific
mode since they originate from different computations. In some cases however, an
eigenvector of the NLEVP consists predominately of just one mode of the closed
structure!. Therefore, in some of the examples both r/Q and Q. are assigned to
one mode, which is an approximation that only holds for modes with high Q.. and
modes which are dominated by one mode of the closed structure.

For the plots there is no legend or reference amplitude given, since it is not uniquely
determined by the Helmholtz equation nor the NLEVP (i.e. the energy and amplitude
of the modes in the plots can be freely normalised without violating the underlying
equations). Thus, the modes can be scaled arbitrarily. Furthermore, for a more
convenient visualization, the color-gradient of the plots is nonlinear.

5.1 Academic Example

The first example is merely investigated to establish the hypothesis that for multi-
cavity structures, the investigation of the full structure is in fact needed and that there
is no straightforward way to extrapolate the results from computing the resonances
for only a subset of the structure. The test structure consists of a cylindric pillbox-
resonator, connected by a beam pipe as shown in figure 5.1. Such a structure has
no practical relevance in modern particle accelerators and serves solely as example.
The resonances of this resonator are compared to a similar structures which contains
two pillbox-resonators as depicted in figure 5.2. While the simplified structure looks
very similar to the two-resonator structure, its electromagnetic behavior is not the
same.

Firstly, the r/Q of both closed configurations is computed in a frequency domain
of interest of 0 - 8 GHz. The r/Q for both structures are shown in Fig. 5.3. The
results for the single resonator in Fig. 5.1 are highlighted in blue and the results
for the full resonator in Fig. 5.2 are highlighted in red. Please note that in order
to better visualize the results, all modes with an r/Q below 1 have been omitted in
this plot. For a better overview, the 2D cutoff frequencies are displayed in Table 5.1.
The first interesting effect can be observed for the modes below 5 GHz. For all of

I To clarify this further, the eigenvectors of the NLEVP originating from the open structure, consist
of complex-valued weighting coeflicients of the eigenvectors originating from the Helmholtz-
equation of the closed structure. Thus, if an eigenvector of the NLEVP has one entry which
comprises a significant portion of the vectors’ absolute value, it can be said that the mode of
the NLEVP is very similar to the mode of the closed structure.
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Abbildung 5.1: This picture shows the pillbox resonator with a beam pipe attached on
both sides that is investigated in order to show the effects of the concatenation of several
resonators.

Abbildung 5.2: This picture shows two pillbox resonators with a beam pipe attached on
both sides from Fig. 3.4 which are connected with a beam pipe.

83



5 Application Examples

Tabelle 5.1: The list of 2D waveguide port modes for the pillbox resonator and its cutoff
frequencies. It should be noted that the diameter of the beam pipe is the same on both
sides, so only the 2D modes of one port mode are sufficient. The abbreviation pol. refers
to the polarization of the mode.

Mode feo [GHZ]

TE; pol. 1| 4.389
TE; pol. 2| 4.389

TMo, 5.732
TEy pol. 1| 7.275
TEy pol. 2 | 7.275

2| OSingle Resonator | |
10 E ® X Two Resonators | |
= | ® o |
o X X5 2

= 10'} X .
— [ x B
§ X d( ]
I X ]

100 ! ! ! ! ! ! ! ! ! !

25 3 35 4 45 5 55 6 65 7 75 8 85 9
Resonant frequency [GHz]

Abbildung 5.3: This picture shows a comparison of the r/Q between the two example
resonators from figures 5.1 and 5.2. All modes with r/Q < 1 were omitted for this plot.

these modes (with non-vanishing r/Q), there seems to be hardly any influence on
either the frequency or the r/Q, depending whether there are two resonators or only
one. As the modes are confined in the pillbox, they are only minorly influenced by
the rest of the structure. An example for such a mode is shown Fig. 5.4. Above the
first cutoff frequency the modes are not confined to the single pillbox but can couple
through the beam pipe, thus through the entire structure as indicated e.g.in Fig. 5.5.
It can be seen from the results that above the first cutoff frequency the investigation
of the entire structure is inevitable. These modes which are able to couple through
the entire structure are further denoted as multi-cavity modes. Furthermore, certain
modes have hardly any field inside the cavities and are rather located in the beam
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Abbildung 5.4: This picture shows the absolute value of a TM monopole mode computed
in the structure shown in Fig. 5.2, resonating at 3.035 GHz with an r/Q of 94.92Q. This
mode is an example for a mode that does not change substantially in field-pattern, r/Q
or resonance frequency if two of the same resonators are concatenated. Therefore, these
kind of modes do not require the solution of the Helmholtz-equation in both resonators
since the results could be extrapolated from the (computationally less complex) solution
of one resonator.

Abbildung 5.5: This picture shows the absolute value of a TM-like mode computed in
the structure shown in Fig. 5.2, resonating at 6.383 GHz with an r/Q of 9.23Q. This
mode is an example for a mode that does not exist if only one resonator is taken into
account for the computation (i.e.the structure shown in Fig. 5.1). Therefore, these kind
of modes do require the solution of the Helmholtz-equation in the complete structure
with both resonators.

pipes between the cavities, these modes are further denoted as inter-cavity modes.?

5.2 FLASH Third Harmonic Module

The Free-electron laser in Hamburg (FLASH) is a user facility providing soft X-rays
and extreme ultraviolet light. A subpart of the layout of the accelerator is highlighted
in Fig. 5.6.

There, especially interesting is the so-called Third Harmonic Module which is a
subpart of the accelerating structure. Its goal is to improve the quality of the bunch
compression by linearising the phase space of the beam in longitudinal direction
[100]. Therefore, the resonance frequency of the m-mode of the Third Harmonic

2A similar investigation of this simplified structure using Qex¢ does not make much sense, since a
lot of values would be theoretically infinite.
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Abbildung 5.6: In this picture a sketch of the experimental setup for the FLASH injector
is shown. It consists mainly the accelerating module ACC1, the Third Harmonic Module
ACC39 and a bunch compressor [99].

Module is chosen to be a higher-harmonic of the resonance frequency of the m-mode
of the basic 1.3 GHz cavity. Hence, 3.9 GHz were chosen. The module consists of
four SRF cavities (mounted in one cryomodule), which are installed downstream of
the main linac, but before the bunch compressor, as depicted in Fig. 5.6.

The Third Harmonic Module has been extensively investigated using numerical
tools in the literature prior to this thesis. Firstly, there have been studies that
investigate only one cavity and neglect the coupler in order to analyse the band
structure of the modes inside the cavity [91]. The single cavity with couplers has
been investigated in depth in [87], [99] (to name only a few), and with all four
cavities but without couplers in [101]. Furthermore, the module was investigated in
full (with all four cavities and couplers) with Omega3P in [54] but unfortunately no
external losses were computed and the bellows were neglected. Lastly, the structure
was investigated for its external losses and r/Q with all four cavities and couplers
using SSC in [8] but some minor simplifications regarding the rotation of the power
coupler. The investigation in this thesis tries to close the gap and comprise all prior
investigations by computing Qe and r/Q similar to [8] but with the solution of the
NLEVP instead of a linearised problem and with the correct rotation of the power
coupler.

5.2.1 Application of SSC to the FLASH Third Harmonic
Module

The structure consists of several repetitive substructures. Firstly, there are four SRF
cavities with a m-mode frequency of 3.9 GHz. Each of the cavities is accompanied by
two couplers, one HOM coupler and one input coupler with a HOM coupler attached.
This coupler-cavity combination is depicted in Fig. 5.7. The combination of cavity
with coupler is not the same for all four cavities. While the coupler structure is
always the same, the coupler is in some cases mirrored and/or rotated. For a specific
description of the structure it is referred to [102].

The structure in Fig. 5.7 is slightly simplified compared to the real-life structure
operated at DESY. Firstly, the power coupler and HOM coupler pair is modified
due to the issue with the practical implementation that waveguide ports have to
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Abbildung 5.7: This picture depicts an example structure with a nine-cell 3.9 GHz cavity,
a HOM coupler and a combined HOM coupler and input coupler. This structure is a part
of the Third Harmonic Module from [90],[103]. For compatibility, the naming convention
of the ports is taken from [95]. The Third Harmonic Module consists of four of such
modules with different rotation of the attached couplers. All four modules are connected
by bellows.

cavity 1 k=2 C2PC cavity 2 k=4 cavity 3 k=6 C4PC cavity 4 k=28

Abbildung 5.8: This picture shows a CAD model of the entire FLASH Third Harmonic
Module. The structure consists of four cavities, with cavity 2 and 4 being similar to
the cavity in Fig. 5.7. The cavities 1 and 3 are minorly varied from this design with a
mirrored design. The graphical depiction is taken from [104].

be aligned with a Cartesian coordinate system to avoid large geometrical errors in
the numerical simulation. Therefore, the coaxial part of the HOM coupler is bent
in such a way that it is aligned like this while the cross section of the coaxial pipe
remains the same along the bend.® The four cavities with attached couplers are
connected by three bellows in total. In a real-life application, the bellows are normal
conducting. However, for the simplicity of the solution, they are (throughout all
following investigations) assumed to be superconducting and without surface losses.
The full structure is depicted in Figure 5.8.

5.2.2 Results FLASH Third Harmonic Module

In this subsection the results for FLASH are discussed. In this thesis all eigenmodes
for the FLASH Third Harmonic Module (as shown in Fig. 5.8) where computed in

3This variation of the structure should only change its RF properties minorly.
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a frequency range from 0 - 8 GHz for the closed structure. The entire computation
took roughly 11h and 33 m. Furthermore, the NLEVP was solved in 18 h and 7m
in the same frequency domain. The solutions are shown in Fig. 5.9.4

As mentioned earlier, the full set of results is quite complex so only a small subset
of them are discussed here. Of special interest are the modes with relatively high

Qext and/or r/Q.

Of major interest for accelerating particles are the four m-modes®. These four
modes have the highest r/Q of all modes with a mean of roughly 742.29 2 which fits
comparably well to the value computed in [99] of 747.8 Q% and deviates by roughly
1% from the design value of 750 [105]. The Qe of the m-modes is computed as
1.26 - 10° which is a 3% deviation from the design value of 1.3 - 10° [105].

Furthermore, the two modes resonating at 4.137 GHz are interesting due to their
high quality factors. They both have roughly the same quality factor of 5.1-10° and
5.2 - 105, respectively. However, their r/Q of < 0.1 is comparably small.

A further interesting group of modes are resonating between 5 - 5.25 GHz. These
modes are not located inside the cavities but resonate inside the bellows. Some of
them have quality factors > 10* and might be potentially dangerous. The mode
with the highest quality factor of 5.9 - 10° has a resonance frequency of 5.1524 GHz.

The mode with the highest r/Q (despite the m-modes) of 226.5€ is resonating
at 7.6530 Ghz. This mode is particularly interesting since it supports some of the
hypotheses given in this thesis. Since this mode seems comparably dangerous to
the beam quality it needs to be computed very accurately. At the same time, it
can couple through the entire chain of cavities which indicates that for an accurate
computation the investigation of the full chain is inevitable.

5.2.3 Comparison of SSC Simulations to Measurements

In this subsection the obtained results for the FLASH Third Harmonic Module are
compared to measurements conducted in [95]. Therefore the scattering parameters
from measurement and numerical computation via SSC are compared. Unfortunately,
the CSC-results from [95] are not available for comparison.

4The dedicated reader will notice a big discrepancy between the computed r/Q in [54] and Fig. 5.9
even though the structures on which both computations are based are nearly the same. The
difference might originate in a different definition of the r/Q for multipole-modes. In this thesis
however, a definition that is more common in literature such as [99], [101] and [8] is used.

5As mentioned earlier, the decomposition in four, mutually orthogonal m-modes is not unique.

5The investigation in [99] does not take the couplers into account which might explain the devia-
tions. Furthermore, the r/Q is computed using an additional factor of 1/2, hence the actual
number given is 373.9 Q).
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Abbildung 5.9: This plot shows the results computed for the FLASH Third Harmonic
Module shown in Fig. 5.8. The computed values are shown for Qe (upper plot) and
r/Q (lower plot). When computing the r/Q, the modes are computed for the closed
structure (since r/Q is not defined for open structures), while Qecx is computed for
frequency-matched port-boundary conditions. Therefore, a comparison of both values
is only reasonable for high Qe (since in that case the mode hardly couples to the port
boundary and is not changed by it). Furthermore, it should be noted that both plots
share the same z-axis. For a better overview, modes with a frequency below 3.0 GHz and
eigenmodes with a very low computed quantity (Qexy < 1071 and r/Q < 1073) have
been omitted in this plot.

The measurements of the S-parameters were conducted by connecting cables (in
some cases several meters long) to all the HOM couplers, which affects the measure-
ments in a non negligible way. Therefore, to conduct a valid comparison, the effects
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of the cables have to be added to the simulation”. For the sake of simplicity, the

comparison is restricted to the absolute value and the phase is neglected from hereon.
Since the exact measurement of the cables is not readily available, the effect of the
cables is very roughly fitted in [95] with an exponential function

20 - 1Og10|5172’(jab]e| = —0.3f + 0.61. (51)

For simplicity, it is assumed that all cables are the same. In order to account
for this difference, the SSC scattering-parameters are multiplied twice® with the
transmission-function of the cable in order to make it comparable to the measured
scattering parameters. This leads to the computed transmission functions of the
scattering parameters, transformed into the measurement setup as

|Stm| = |S1,2,cable - Sssc - S1,2,Cable] - (5.2)

It is emphasized again that (5.2) only holds for transmission functions. Further-
more, (5.2) is heavily simplified since it assumes that the cables are only attached to
the ports that were measured and all other ports were left open. A more accurate
way, would be to attach a SSM of the cable to each port they were connected to
during the measurement.

The results are presented by the comparison of two example spectra as shown
in Fig. 5.10 and 5.11. For both comparisons the S-parameters were computed on
5,000 equidistant frequency-samples from 3.5 - 8 GHz, while the measurements were
conducted on 45,001 frequency-samples in the same frequency domain. For both
plotted measurements, due to the accuracy of the network analyser for the given
measurement time, the measurement of S-parameters below -100 dB was not feasible.
For a thorough description of the measurement setup it is referred to [95]. A discussion
of possible explanations for the discrepancies between measurements and results
is given in the Appendix B. For both shown comparisons, there is a qualitative
agreement between measurements and computations. Generally, the measurements
seem to have a higher complexity, meaning there are more peaks and more noise
than in the simulation. It should be noted that the dispersion characteristics (e.g. the
width of a dipole band) is not extractable from the measurements because there is
no way of actually measuring the field such that a multipole expansion is possible.
It is rather assumed that the measured structure does not vary too much from the
simulated one such that the multipole expansion can be carried out in a preprocessing
step as in [91].

In Fig. 5.10 the transmission through cavity 2, more precisely the S-parameter
from the TEM mode of the HOM coupler C2H2 to the TEM mode of the HOM

7 Another possibility is to artificially remove the effect of the cables from the measurements which
should lead to the same comparison.
8The signal goes back and forth through the cable.
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coupler C2H1, is plotted once computed with SSC marked in red and once measured
in [95], marked in blue.

0
—— S-Parameter measured

—— S-Parameter computed
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Abbildung 5.10: This picture shows the comparison between measurements and compu-
tations for |Scomi,comz|, i-e. the absolute value of the transmission from the left HOM
coupler of cavity 2 to the right HOM coupler of cavity 2 (see Fig. 5.8). The measurements
are further described in [95].

Firstly, the measurements and the computations in Fig. 5.10 show a qualitative
agreement, most features of the curves are present in both measurements and com-
putations. For both, the first monopole band of the cavity is located from 3.75 -
3.9 GHz, with the m-mode at 3.9000 GHz in the measurement and 3.9019 GHz in the
simulation, which makes a difference of 1.9 MHz.”

From roughly 4.27 - 4.9 GHz one can see the first TE dipole band of the cavities.
These modes are able to propagate through the entire chain of cavities. It appears
that while the transmission is roughly the same in both measurements and simula-
tions, the entire band is slightly shifted up in frequency by roughly 40 MHz. The
origin of this shift is unclear. A possible explanation could be the sensitivity of
dipole modes to differences in the structure. During the measurement the ACC39
is attached to the FLASH chain of 1.3 GHz cavities and it is very likely that the
dipole modes can couple out of ACC39 to the rest of the accelerating cavities which
might change their frequencies. Unfortunately, this coupling could not be taken into
account in the simulation and could not be negated in the measurement since the
Third Harmonic Module would have to be physically detached from the rest of the
of the accelerator which is not feasible.

Modes from the second TE dipole band resonate from roughly 5.35 - 5.49 GHz
in the simulations which coincides very well with the simulations of the dispersion

9This difference might very well be caused by the tuning of the cavity, which deliberately changes
the m-mode frequency.
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characteristics in [91]. In the measurements, this band is more narrow from 5.367 -
5.487 GHz and its transmission is worse by 10 - 20 dB than in the simulations.

From 5.5 - 6.5 GHz there are no modes in the natural band structure of the
cavities which is reflected by the measured S-parameter being at the noise floor at
these frequencies. The simulation shares this characteristic.

The first TE quadrupole band is located at roughly 6.56 - 6.70 GHz in both simu-
lations and measurements. For this specific band the measurements and simulations
agree very well regarding the resonant frequencies.

For frequencies above 6.5 GHz a detailed comparison is hardly feasible due to the
complexity of both spectra. Generally, it can be said that the simulation appears to
have a slightly better transmission than the measurement.

0
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Abbildung 5.11: This picture shows the comparison between measurements and com-
putations for |Scimz,canz|, i.e.the absolute value of the transmission from the HOM
coupler attached to cavity 1 to the HOM coupler attached to cavity 4 (see Fig. 5.8). The
measurements are further described in [95].

In Fig. 5.11 a second example is shown, specifically the transmission from the se-
cond HOM coupler of cavity 1 to the second HOM coupler of cavity 4, i.e. Scinz,came.
This comparison is particularly interesting since it measures the transmission through
all four cavities (while the comparison in Fig 5.10 is only through one cavity). Ge-
nerally, it can be said that the results show a qualitative agreement but seemingly
the results align a little worse than the comparison through one cavity. Especial-
ly the width of the multipole bands differs drastically between measurements and
simulations. Interestingly, the same is observed in [95].
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5.3 Main Linac of bERLinPro

The Berlin Energy Recovery Linac Prototype bERLinPro is a planned Energy
Recovery Linac (ERL) at the Helmholtz-Center in Berlin (HZB). The basic idea of
an ERL is to have relatively high beam currents in an electron beam and a high
brilliance'® (just as in a linac) in order to produce X-rays by synchrotron radiation.
The major difference to a linac is the recirculation of the beam by a magnetic lattice
through the accelerating structure (with a phase change of 180° relative to its initial
passing) in order to reuse its kinetic energy!'. ERLs generally have comparably high
repetition rates and spectral radiance. bERLinPro is planned to demonstrate the
feasibility of the ERL technology as well as develop expertise for the next-generation
light sources and would be (as of the publication of this thesis) the second fully
functional ERL in the world. Due to the high beam current the demands on HOM
damping are very high for bERLinPro which makes it an interesting application for
the methods developed in this thesis.

In this example the main linac of the current design of bERLinPro is investigated.
The structure is shown in Fig. 5.12. The investigated domain consists of three
1.3 GHz cavities, each equipped with two couplers. The three cavities are connected
by bellows and both upstream and downstream the structure is terminated with
a HOM absorber and a taper. For this investigation however, both tapers and
HOM absorbers were neglected. Each of the three cavity-coupler pairs (as depicted
in Fig. 5.13) consists of one cavity (all three cavities are the same), a waveguide
HOM coupler and a combination of input coupler and waveguide HOM coupler. The
spatial rotation as well as the ordering of the couplers varies between the three
cavity-coupler pairs. In investigations prior to this one, the possible designs were
reduced to two candidates that are shown in Fig. 5.14 (further denoted as design 1)
and Fig. 5.15 (further denoted as design 2). The task of this investigation was, to
solve the Helmholtz-equation and the NLEVP for both structures and assess their
electromagnetic properties like r/Q and Qe to show that there are no dangerous
modes and to compare the two design candidates.

It was an open question how the designed cavities would interact inside the cryo-
module if three cavities were present as shown in Fig. 5.14 and 5.15. Firstly, this
was investigated using wakefield calculations [106], [107]. Since these kind of investi-
gations do not allow for the computation of external losses or field distributions, the
following investigation were highly needed. Furthermore, modes with high external

10The brilliance is a measure to compare the quality of X-ray sources. It is proportional to the
density of photons of a certain wavelength and direction per unit time [9].

1 The recirculation of the beam through the accelerating structure is also applied in a storage ring.
In contrast to a storage ring, the ERL does not use the recirculated beam for the generation of
synchrotron radiation, which would lead to an emittance growth, hence a reduction of beam-
quality over time. Basically, for an ERL, the beam is used only once, but its energy is used
multiple times.
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/

Abbildung 5.12: This picture shows a sketch of the main linac of bERLinPro [106]. The
three cavities are connected by bellows and both upstream and downstream the structure
is terminated with a HOM absorber and a taper.

Abbildung 5.13: This picture shows a single cavity-coupler pair of the bERLinPro linac.
It consists of one 1.3 GHz cavity, equipped with two couplers.

quality factors are harder to detect if the simulated wakelength is not sufficiently
high.

While the cavity design itself was fixed, the ordering and rotation of the couplers
was of special interest. Therefore, two possible permutations were given by the
HZB which were to be investigated in a frequency range of interest from 1 - 4 GHz.
Here it should be investigated if any dangerous modes result in the concatenation of
the three cavities. Of special interest are potentially dangerous modes at the beam

repetition rate, e.g. at frequencies that are close to integer multiples of the frequency
of the m-mode (e.g. 2.6 GHz and 3.9 GHz).
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Abbildung 5.14: This picture shows the first design candidate that is investigated. It
consists of three cavities with a HOM coupler and a combination of HOM and input

coupler. All three cavity-coupler pairs are mirrorings and/or rotations of the structure
shown in Fig. 5.13.

Abbildung 5.15: This picture shows the second design candidate that is investigated.
It consists of three cavities with a HOM coupler and a combination of HOM and input
coupler. All three cavity-coupler pairs are mirrorings and/or rotations of the structure
shown in Fig. 5.13. The second design differs from the first design by the rotation of one
cavity-coupler pair (the very left in this picture) by 180° around the beam-axis.
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5.3.1 Application of SSC to bERLinPro

In a first step, a sufficiently good decomposition of the structure is determined. As
mentioned earlier, the decomposition should be done in a way, that many, sufficiently
small structures can be used several times. The standard approach is to decompose
the structure into its cavities and couplers separately. Obviously, the cavity domain
is chosen in a way that the SSM has to be computed only once. Then the remaining
coupler are decomposed in a way that their models can be used as often as possible.
The structure was decomposed into nine distinct segments; a cavity, four HOM
couplers (the coupler is always the same but it is rotated in four different ways)
and four input-HOM coupler combinations (again the coupler is the same but has
four different rotations). The parameters of the decomposition such as mesh cells or
number of 3D eigenmodes are summarized in Appendix A.2.

5.3.2 Results bERLinPro

In this subsection, the results of the investigation of bERLinPro are described and
the two designs proposed by HZB are compared. Fig. 5.16 shows the Qey and r/Q of
both designs in comparison in a frequency domain from 1 - 4 GHz. The complete
solution of the Helmholtz-equation and the NLEVP for design 1 took roughly 2d
5h and 18 m. The computational time for design 2 was roughly the same.

Evaluating Fig. 5.16 one can see that the two designs hardly differ, regarding their
Qext and r/Q . The modes with the highest r/Q are the three m-modes with a mean
r/Qof the three modes of 769.30 2 for Design 1 and 769.50 €2 for Design 2. One of
these modes is depicted in Fig. 5.17 for Design 1. An important property for ERL
cavities (due to the high HOM damping requirements), to avoid modes that can
couple well to the beam in the vicinity of multiples of the 7-mode frequency (i.e. 2.6
and 3.9 GHz in this case). This is fulfilled for both designs. Below 2.3 GHz, both
designs appear to be nearly equal. In contrast to e.g.the results for the FLASH
Third Harmonic Module (depicted in Fig. 5.9) there appear to be no dangerous
inter-cavity modes in between the cavity bands that emerge from the concatenation
of several cavities. There are however, modes that can couple through the entire
chain of cavities, especially from the first TE dipole band. An example for one of
these modes is depicted in Fig. 5.18, resonating at 1.8564 GHz.

As mentioned earlier, it is especially important to avoid modes with high interaction
with the particle beam (i.e.r/Q). For both designs the mode with the highest
r/Qis located in the second TM monopole band and resonating at roughly 2.42 GHz.
Interestingly, this mode differs in r/Q with 203 Q for Design 1 and 279 ) for Design 2,
being roughly 30 % higher for Design 2. Furthermore interesting is a mode located at
roughly 2.42 GHz which has an r/Q of 45 () for Design 1 and 30 Q2 for Design 2, which
is roughly 33 % higher for Design 1. Regarding the Q. there are major differences
in both designs for the first TE monopole band located roughly from 2.48 - 2.49 GHz.

96



5.3 Main Linac of bERLinPro

14
10 ‘ oDesign 1
L . e Design 2
101 | g g -
108 i b g e S :
& B |
(US4 T R A LRI U T3 :
102 oot P g g G 0 TR SO
107! e a o @
03| 8
102% ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ‘ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
= w0l B /AN N [ S
> g &: § 2 e cfo
~ 0 [ [ e g ® ®:°
R Ut 1 o gl e e
- s 8 8w goTR-Rye Y
U R B, H.o e o2 5 58m, o5 e el
L é ° o o“ﬁ a' % ..' e
10—2 Lot o 2 o ... 5. ‘ ““““ 2T ‘%‘. [ o VO RE0
B g oo’ﬁ ! w& ° ° R-' A
E i i@ i 7 gorﬁdo L i ] e ] &_A_._Q o fhing @99 ¢
1 12 14 16 18 2 22 24 26 28 3 3.4 3.6

Abbildung 5.16: This plot shows
bERLinPro shown in Fig. 5.14 for

Resonant Frequency [GHz]

the results computed for the chain of cavities for
design 1 and Fig. 5.15 for design 2. The computed

values are shown for Qext (upper plot) and r/Q (lower plot). When computing the r/Q,
the modes are computed for the closed structure (since r/Q is not defined for open
structures), while Qext is computed for frequency-matched port-boundary conditions.
Therefore, a comparison of both values is only reasonable for high Qe (since in that
case the mode hardly couples to the boundary and is not changed by it). Furthermore, it
should be noted that both plots share the same z-axis and legend. For a better overview,
modes with a frequency below 1.0 GHz and eigenmodes with a very low computed quantity
(Qext < 107! and r/Q < 1073) have been omitted in this plot.

Generally, one can conclude that both designs show no signs of dangerous modes
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S

Abbildung 5.17: This picture shows the absolute value of the electric field of one of the
three m-modes of the Design 2 of the bERLinPro main linac. The mode resonates at
1.3017 GHz with an r/Qof 1398.932 2. The solution of the NLEVP delivers a mode that
consists solely of the lossless m-mode, with a Qey; of 5.301 - 107 .

Abbildung 5.18: This picture shows the absolute value of the electric field of a multi-
cavity mode of the first dipole-band of the Design 2 of the bERLinPro main linac. The
mode resonates at 1.8564 GHz with a negligible r/Qof < 1-107°€Q. This mode is
particularly interesting since it can traverse through the entire structure.

o i

Abbildung 5.19: This picture shows the absolute value of the electric field of the mode
with the highest Qext of the first TE decapole-band of the Design 2 of the bERLinPro
main linac. The mode resonates at 3.6807 GHz with a Qex of 5.301 - 107 .

in the vicinity of the higher harmonics of the m-mode frequency. Furthermore,
even though the designs are comparably similar, the rotation of one of the cavities
(including the input coupler), changes the r/Q of some modes. This effect should be
part of future investigations.
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5.4 BESSYVSR

The variable pulse length synchrotron radiation source BESS is an upgrade of
the BESSY II storage ring in Berlin at the HZB. BESSY 1II is a 1.7 GeV storage
ring, operational since 1998 [108]. In order to satisfy the user demands for shorter
pulse lengths in combination with relatively high beam currents of 300 mA, the
facility needs to be upgraded. To achieve this, the storage ring is planned to be
filled with short bunches of 1.5 ps rms-length and long bunches of 15 ps rms-length
simultaneously [108], [109].'* Therefore, two SRF cavity systems'® are to be installed
in the normal conducting BESSY II ring. The resonance frequencies of the m-modes
of these cavity systems are designed to be 1.5 GHz and 1.75GHz as denoted in
Fig. 5.20, which is supposed to generate a so-called ”beating-patternin the voltage,
seen by a charged particle bunch as denoted in Fig. 5.21.

YVSR

Abbildung 5.20: This picture shows the potential addition of a cryomodule to the BESSY
IT ring. The additional cryomodule will be filled with several SRF cavities of higher-
harmonic m-mode frequencies to the 500 MHz BESSY II w-mode frequency, enabling the
simultaneous storage of bunches of different lengths. The picture is taken from [110].

In the recent development of the project, four four-cell cavities have been designed
by the HZB prior to this investigation [2], [111] (to name only a few). While two
cavities are designed to have a resonance frequency of the m-mode of f, =1.5 GHz,
the other two have a resonance frequency of the m-mode of f, =1.75 GHz.

5.4.1 Application of SSC to BESSY VSR

The structure is subdivided into thirteen substructures. The two tapers, the valves
with dipole-coupler and several variations of the cavity-coupler pairs and bellows.
In this example the cavities and couplers are discretized in a single substructure
(opposed to the procedure in the first two examples) since there is no constant cross
section between the cavity and the HOM couplers. Therefore, the computation of

121t is a common practice in accelerator physics to refer to the length of a charged particle beam
in seconds. With the velocity of the bunch, this can be converted to an actual length in meters.
3 Cavity systems in that sense, that there might be one or more, cavities installed in each.
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Abbildung 5.21: This picture shows the desired voltage in black, as seen by an ultra-
relativistic bunch passing through the cavities with different m-mode frequencies. It
consists of the voltage of the 0.5 GHz cavity in green, of the 1.5 GHz cavity in red and
the 1.75 GHz cavity in blue [108]. The resulting voltage is able to provide a stable
acceleration for particle bunches of varying bunch lengths.

- Cavity 2 with fr =1.75 GHz

Cavity 4 with f; =1.5GHz
Ed

Cavity 1 with f, =1.5GHz

Cavity 3 with f, =1.75 GHz

Abbildung 5.22: This picture shows a CAD model of the BESSY VSR structure which
consists of two 1.5 GHz cavities (cavity 1 and 4) and two 1.75 GHz cavities (cavity 2
and 3). The cavity-coupler pairs are connected via bellows (all of which have a slightly
different geometry). The structure is enclosed up- and downstream with a taper and a
valve.

the MOR of the cavity-coupler pairs is comparably slow. The full separation is
documented in the Appendix A.3.

In the tapers there is some lossy, dielectric material. Unfortunately, the current
implementation of SSC does not allow for the simulation of lossy materials. The
material losses can be modeled using a complex permittivity as

K(w)

e=¢(w) —je"(w) =€ (w) — jT. (5.3)
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In this simulation, both the frequency dependence of the real part of € as well
as the imaginary part of ¢ are omitted, simplifying (5.3) to ¢ = £'(# f(w)). In
the future, it might be advantageous to re-simulate the structures’ electromagnetic
behavior using the non-simplified material properties. Especially for modes being
located inside the taper, the computed properties like losses or resonance-frequencies
might be very inaccurate due to the chosen simplification!?.

5.4.2 Results BESSY VSR

The results consist of the modes’ interaction with an ultra-relativistic particle beam
(r/Q) as well as their external losses (Qext). These results are shown in Fig. 5.23. In
the following, firstly some general remarks are given about the results and secondly,
some interesting modes (or groups of modes) are discussed. There were 1,576 modes
found from 0.5 - 3.6 GHz. The computations as shown here took roughly 6d and 2 h.

Regarding the interaction with a particle beam, the overall results do not hint to
any mode that could drastically endanger the beam quality. For all modes but the
m-modes of the 1.5 GHz and 1.75 GHz the r/Q is below 11€2. Especially close to
multiples of the bunch repetition rate (i.e. 1.3 GHz and 2.6 GHz) all modes have a
low r/Q. The external losses Qe show some interesting modes with comparably
high quality factor which should be further investigated. They are discussed below.
Generally the QQcxt seems to be dominated by effects due to the taper.

The results are subdivided into several groups in order to allow their proper discus-
sion. The discussion is limited to some interesting modes since a complete discussion
is not feasible due to the large amount of data. Furthermore, for several interesting
modes, the absolute value of the electric field is plotted in the two orthogonal planes
whose common intersection is the beamline.

The first interesting group is the first monopole band of the 1.75 GHz cavities.
It can be seen that their Qe is relatively high (= 5 - 107). The last mode in this
band is located at 1.75 GHz and denoted as the cavities” m-mode with r/Q of 183 ).
These two modes have the second highest r/Q of all modes located in the 1.75 GHz
cavities, as expected. A plot of one of the two m-modes can be seen in Fig. 5.24.

14Unfortunately, there is no straightforward way to estimate the accuracy of the approximation.
An alternative would be to make an estimation by trying to compute the losses using e.g. CST
MWS. Unfortunately, to the authors best knowledge the exact electromagnetic properties of the
taper over a sufficient frequency range are not known yet to a satisfying degree and are part of
ongoing investigations. So it is unclear if such an additional investigation would bring any more
insight into the problem (at the current state of uncertainty). If, in the future, the parameters
of the taper are known one could instead measure (or simulate) it’s scattering parameters from
which it should be possible to compute a non-linear termination impedance that emulates it’s
behavior. The resulting problem could then be solved by the methodology described in this
thesis.
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5 Application Examples
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Abbildung 5.23: This plot shows the results for the BESSY VSR investigation, computed
for the chain of cavities shown in Fig. 5.22. The computed values are shown for Qext
(upper plot) and r/Q (lower plot). When computing the r/Q, the modes are computed
for the closed structure (since r/Q is not defined for open structures), while Qexs is
computed for frequency-matched port-boundary conditions. Therefore, a comparison of
both values is only reasonable for high Qecxt (since in that case the mode hardly couples
to the boundary and is not changed by it). Furthermore, both plots share the same
z-axis. For a better overview, modes with a frequency below 0.5 GHz and eigenmodes
with a very low computed quantity (Qex; < 107! and r/Q < 1073) have been omitted
in this plot.
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5.4 BESSYVSE

The second interesting group is the first monopole band of the 1.5 GHz cavities.
It can be seen that their Q. is relatively high (= 1-10°). The last mode in this
band is located at 1.50 GHz and denoted as the cavities m-mode. This mode has the
highest r/Q of all modes: 192€). Unfortunately, there are comparably many modes
at frequencies close to the m-mode frequency. These modes are all located in the
taper and discussed later. A plot of one of the two m-modes can be seen in Fig. 5.25.

The third interesting frequency interval consists of several modes with comparably
high Q. and low frequencies from 1.25 - 1.6 GHz. All modes contained in this
frequency range (with the exception of the 1.5 GHz m-modes) are located in either
of the two tapers. As an example for those modes, one field plot was selected and
visualized in Fig. 5.26. The modes of this group are potentially very dangerous due
to their high quality factors. It is however very questionable if the modes will exist
as computed if the tapers have material losses (the lossy material in the taper was
neglected).

The fourth group consists of the first quadrupole-band of the 1.5 GHz cavity located
at 3.11 - 3.12 GHz. These modes are especially interesting since they have the highest
quality factors of the modes located solely in one cavity. Fortunately, their r/Q is
very low. The plot of one mode of this band is shown in Fig. 5.27.

Further interesting are the four modes between 2.3 - 2.4 GHz with Q. above 10°.
All of them are located in the bellows, two of them in bellow 3 and two in bellow 4.
Though their high Q.. makes them potentially dangerous, their r/Q is negligible.
One of the four modes is plotted in Fig. 5.28.

The lastly discussed mode is located at 1.797 GHz with Q. above 108. The mode
is located in the HOM coupler of the second cavity. Though the high ).yt makes this
mode potentially dangerous, its r/Q is negligible. A field plot is shown in Fig. 5.28.
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Abbildung 5.24: This picture shows the absolute value of the electric field of one of the two m-modes of the 1.75 GHz cavities
resonating at 1.75 GHz with r/Q of 183 (.
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Abbildung 5.25: This picture shows the absolute value of the electric field of one of the two m-modes of the 1.5 GHz cavities
resonating at 1.5 GHz with r/Q of 192 Q.
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Abbildung 5.26: This picture shows the absolute value of the electric field of one mode that is resonating at a comparably
low frequency of 1.5011 GHz inside the taper, dangerously close to the m-modes of the 1.5 GHz cavities.
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Abbildung 5.27: This picture shows the absolute value of the electric field of one of the modes from the first quadrupole-band
of the 1.5 GHz cavities with a resonance frequency of 3.1 GHz. This mode has the highest Qext of all modes located in the
cavities of 2 - 108,
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Abbildung 5.28: This picture shows the absolute value of the electric field of one of the modes which are located solely inside
a bellow between 2.3 - 2.4 GHz. They are especially interesting due to their high Qext but do not endanger the beam quality
due to their negligible r/Q .
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Abbildung 5.29: This plot shows the absolute value of the electric field of a mode with a comparably high Q.. above 108.

The mode is located in the HOM coupler of the second cavity. Though the high Qcxt makes this mode potentially dangerous,
its r/Q 1is negligible.
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6 Discussion and Outlook

In this thesis the behavior of electromagnetic fields in complex SRF cavities was
investigated using numerical tools for applications in accelerator physics. In this
chapter the thesis is shortly reprised and an outlook on possible future applications
and developments is given.

To accomplish this task, firstly, the previously by T. Flisgen suggested state-space
concatenation scheme was implemented and automated for (almost) arbitrary SRF
structures in combination with the finite-integration technique using the commercial
software CST MWS. The implementation of SSC allowed to investigate an analytical
example and showed that, for simple structures SSC is able to solve the Helmholtz-
equation for both the fields and frequencies with the same convergence order as the
underlying discretization scheme.

Of special interest in applications from accelerator physics are the losses of certain
modes. Therefore, in this thesis a perturbation approach based on SSC was developed,
to compute said losses efficiently on workstation computers. In a first step, it was
shown that the losses are governed mainly by external losses, such that the other
loss mechanism can be neglected. Then, the perturbation approach was layed out
where the state-space models of the closed structure are subjected to a termination
condition that emulates the losses. The resulting equations formed a nonlinear
eigenvalue problem. Said NLEVP was solved using the Newton method with a
deflation technique. Furthermore, the implemented algorithm was compared to other
available methods like pole-fitting and various linearization approaches, showing that
pole-fitting and the suggested algorithm deliver similar results. It was also shown
that the proposed algorithm is physically consistent regarding a length variation of
the beam pipe, while the commonly applied linearization techniques are not. The
results for one example structure were partly compared to measurements.

Both methods, the automation of SSC and the solver for the NLEVP, were used
to solve three scientific questions of current accelerator physics projects: the Third
Harmonic Module of the FLASH accelerator, the bERLinPro main linac and the
BESSYVSR cavities. Firstly, a purely academic example, which has no practical
application, was discussed. The example investigated the change of r/Q and the
resonance frequencies when one or two similar resonators are concatenated in a chain,
thus indicating that it is in fact necessary to take the full structure into account if
there are multiple resonators and that the results for the full structure cannot be
fully captured by simulation of only a single resonator.
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6 Discussion and QOutlook

For the Third Harmonic Module, SSC was applied in order to enhance the availa-
ble literature since there is currently no investigation that takes the full structure
(with correct coupler angular position) and the non-simplified NLEVP into account.
Therefore, the r/Q, the Qext, the S-parameters and several field plots were computed
using the methods outlined in Chapter 3 and 4. It was shown that, due to the con-
catenation of several resonators, there are several inter-cavity modes that resonate
between the cavities. These results further motivate the investigation of the full
structure, since said modes were not found by previous investigations where a single
resonator was taken into account. Furthermore, the S-parameters were compared to
measurements and showed a qualitative agreement.

The second real-life structure that was investigated, was the bERLinPro main
linac cavities. In this example, two possible design candidates were compared and
investigated for dangerous modes. Therefore, the r/Q, the Qe and several field
plots were computed using the earlier outlined methods. It was shown that both
designs are very similar regarding their RF-properties but that in one of the design
the r/Qof a potentially dangerous mode can be reduced by roughly 30 %.

As last example, the cavities for the BESSYVSR upgrade were discussed. This
example was particularly interesting since there are two sets of cavities with different
m-mode frequencies (four cavities in full). The designs for both cavity types were
made separately. Therefore, the task of this investigation was to show that there are
no unwanted modes introduced by the concatenation of all cavities. It was shown
using the suggested methods, that there are some modes located in the taper that
might be dangerous regarding their Qcy. Since material losses in the taper were not
taken into account, this should be studied further in the future. For the r/Q there
were no modes found that can interact well with the beam in a potentially dangerous
manner.

In the future, the goal for SSC is to improve the performance further to allow a
scaling beyond 108 DOFs. Currently, there are two possible improvements related to
the MOR. Firstly, the number of samples for the corrected modal expansion in the
MOR can be drastically decreased by employing a greedy positioning of the frequency
samples instead of an equidistant sampling. The second possible improvement could
be the usage of a proper orthogonal decomposition instead of a corrected modal
expansion, which would make the necessity of an eigensolver obsolete. For the
discretization technique it might be advantageous to have a deeper look into the
efficient discretization with FEM. While the current implementation gives promising
first results, the performance is simply not sufficient (yet). Also very interesting
could be a discretization with isogeometric analysis which was discussed in depth in
[112] and [113].

For the NLEVP, in future investigations, the performance can be drastically
improved by using methods that allow for a guaranteed complete solution, which
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the applied Newton methods with deflation does not. A possible method would be
the use of contour integrals, which was investigated using the proposed perturbation
approach in [114] and shows promising results. In the future it would be also
interesting to use the proposed solver to investigate the effect of HOM absorbers on
large SRF cavities.

For the applications there are various, more advanced investigations possible. An
appropriate next step would be to compute the fields in the entire accelerating
structure of FLASH which includes not only the shown 3.9 GHz Third Harmonic
Module but also the 1.3 GHz cavities. For BESSY VSR it is necessary in the future
to include the effects of the tapers for a more accurate computation of multi-cavity
modes as well as the losses in the taper. This will be possible by neglecting the
lossy tapers in the physical model and emulating them by a frequency dependent
termination impedance.

Generally, in this thesis it was shown that the automation of SSC, as well as
the efficient assembly of the NLEVP and its solution with the Newton method are
applicable with ease to arbitrary SRF structures and thus for real-life problems in
accelerator physics. The discussed algorithms were applied to solve the Helmholtz-
equation and the NLEVP for up to 3 - 10" DOFs on a workstation computer. In
the future, several improvements can be made to potentially scale beyond 108 DOFs
to allow for new, previously impossible investigations in the context of modern
accelerator projects.
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A SSC Parameters Practical Applications

To give more in-depth context for all performed computations in Chapter 5, all
relevant parameters for the SSC computations are summarized in this appendix.
That includes (among others) e.g. the number of DOF's for all segments as well as
the computational times. As mentioned earlier in Chapter 4.6, all computations were
performed on a Intel(R) Xeon(R) CPU E5-2687W @3.4 GHz with 256 GB of RAM,

running on Windows Server 2012 as operating system.

A.1 FLASH Third Harmonic Module

In table A.1, the key parameters of the SSC computation for the FLASH Third
Harmonic Module are comprised.

Tabelle A.1: This table comprises the properties of the computations conducted in
Chapter 5.2. The computations were performed using SSC as outlined in this thesis. It
should be noted that the sum of the DOFs of the discretization is rather in the range of
15 Mio. since some models (like e.g. the cavity) were used multiple times.

Structure DOFs 3D 2D > Time

name Modes Port modes

Bellow 427.119 45 [15,15] 38 min 2s

9-cell cavity 1.146.471 300 [15,15] 4h 16 min

Input coupler 996.930 200 [15,3,1,15] 1h 25 min

Input coupler inv. 996.930 200 [15,3,1,15] 1h 25min

HOM coupler 435.600 200 [15,1,15] 55 min 46s

HOM coupler inv.  435.600 200 [15,1,15] 55 min 46s

> 10.077.225 > 11h 33 min
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A SSC Parameters Practical Applications

A.2 bERLinPro

In table A.2, the key parameters of the SSC computation for the bERLinPro Main
Linac are comprised.

Tabelle A.2: This table comprises the properties of the computations conducted in
Chapter 5.3. The computations were performed using SSC as outlined in this thesis. It
should be noted that the sum of the DOF's of the discretization is rather in the range of
9 Mio. since some models (like e.g. the cavity) were used multiple times.

Structure DOF's 3D 2D > Time

name Modes Port modes
Cavity 322500 600 [10,10] 5h 15 min
Left HOM coupler 472140 200 [10,5,5,5,10] 5h 39 min
Left Input coupler 436128 200 [10,5,5,1,10] 5h 9 min
Right HOM coupler 472140 200 [10,5,5,5,10] 5h 27 min
Right Input coupler Fig. 436128 200 [10,1,5,5,10] 5h 9 min

> 2,139.036 S 2d 5h 18 min

A.3 BESSYVSR

In table A.3, the key parameters of the SSC computation for the Bessy VSR Cavities
are comprised.
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Tabelle A.3: This table shows several parameters which have to be chosen for the discretization and the following MOR.

Stfllé%lelre DOFs M%]:d)es Port%%odes Tlglfeggg%‘g?m Time MOR 2 Time
Warm taper up 2,982.996 650 [8,25,16] 6h 15 min 1d4h 16min 1d 10h 31 min
Valve up 54.777 70 [16,16] 1 min 5min 6 min
Bellow 1 287.595 70 [16,20] 4 min 52 min 56 min
Cavity 1 5,096.520 500 [20,7,7,1,7,7,7,20] 8h 47 min 14h 15min 23h 2min
Bellow 2 1,096.095 70 [20,20] 21 min 4h 15 min 4h 36 min
Cavity 2 4,438.476 500 [20,7,7,1,7,7,7,20] 7h 4min 10h 16 min 17h 20 min
Bellow 3 1,010.685 70 [20,20] 25 min 4h 21 min 4h 41 min
Cavity 3 4,438.476 500 [20,7,7,1,7,7,7,20] 7h 4min 10h 16 min 17h 20 min
Bellow 4 1,096.095 70 [20,20] 21 min 4h 15min 4h 36 min
Cavity 4 5,230.764 500 [20,7,7,1,7,7,7,20] 9h 14 min 14h 56 min 1d 10min
Bellow 5 287.595 70 [20,20] 4 min 52 min 56 min
Valve down 54.777 70 [20,16] 1 min 5 min 6 min
Warm taper down  2,982.996 650 [16,25,8] 6h 15 min 1d4h 16min 1d 10h 31 min
> 30.697.769 6d 1h 51 min
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B Discrepancies between Measurements
and Results

In Chapter 4.6 and 5.2 numerically computed results are being compared to measure-
ments. Both results fit relatively well even though there are some distinct differences
to be observed. The reason behind these differences is unclear, yet there are several
possibilities, which are comprised in this appendix. It is very likely that the distur-
bances between measurements and simulated results originate from a mixture of
multiple of these reasons. However, it is very hard to estimate the single effect of
each seperate error source.

The main reasons for differences are (in arbitrary order):

e There are geometric deviations between the computed design-structure and
the fabrication of the measured structure due to finite production accuracies.

e The termination impedances are assumed to be perfectly matched in the simu-
lations, while in real-life the reflections on each port are uncertain and very
likely not zero.

e The cooled-down structure is geometrically perturbed compared to the warm
structure.

e SSC and the underlying discretization scheme have a finite numerical accuracy.

e Generally the CAD model used for the simulations is a simplification of the
real-life structure.

e There are certain simplifications assumed when transforming the simulations
into the measurement framework in Chapter 5.2.

e In all simulations, the bellows are assumed to be superconducting, which is a
major simplification.
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