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Zusammenfassung

Maschinelles Sehen zielt auf die Informationsverarbeitung von Daten ab, die von bildgeben-
den Systemen aufgezeichnet werden. Im Vergleich zum konventionellen Maschinellen
Sehen in Luft befindet sich das Maschinelle Sehen im Unterwasser-Bereich noch in einem
frühen Entwicklungsstadium. Das Wasser stellt eine herausfordernde Umgebung dar, die
sich neben der Dämpfung des Lichts durch Absorption und Streuung insbesondere durch
die Lichtbrechung an Medienübergängen auszeichnet. Brechungseffekte stellen für die
Gewinnung bemaßter 3D-Strukturen aus Unterwasser-Bilddaten ein Problem dar. Der
Fokus dieser Dissertation liegt auf der Rückgewinnung von präzisen 3D-Informationen
aus Unterwasser-Aufnahmen.
In dieser Dissertation werden die verschiedenen Grundkonzepte der Stereo-3D-Rekon-
struktion für Luft durch eine explizite Berücksichtigung von Brechungseffekten für den
Unterwasser-Bereich erweitert. Insbesondere sind dies Projektionen für die Koordinaten-
Transformation zwischen 3D- und 2D-Räumen, die Kalibrierung des bildgebenden Systems
und die Rückgewinnung von 3D-Koordinaten. Es wurde ein neuartiges Modell, hier
„Virtual Object Point“-Modell genannt, entwickelt, um die notwendigen Erweiterungen
zu realisieren. Es bildet das Fundament dieser Dissertation, zeichnet sich durch seine
Integrierbarkeit in den geometrischen Teilprozess der Unterwasser-Bildentstehung aus
und ermöglicht neuartige Entwicklungen auf dieser Basis.
Im Rahmen der Unterwasser-Stereo-3D-Rekonstruktion liegt der Fokus dieser Disser-
tation auf der Kalibrierung einer speziellen Klasse von bildgebenden Systemen unter
Berücksichtigung von Lichtbrechung. Diese Systeme, hier „Shared Flat Refractive Sys-
tem“(SFRS) genannt, bestehen aus einer Stereo-Kamera und einem Sichtfenster, welches
einer einzelnen flachen, transparenten, lichtbrechenden Scheibe entspricht. Die Parameter
des SFRS modellieren den geometrischen Teilprozess der Unterwasser-Bildentstehung
unter expliziter Berücksichtigung von Brechungseffekten. Die Untersuchungen haben
gezeigt, dass die Eigenschaften des SFRS -Modells für die Kalibrierung vorteilhaft sind und
es sich rentiert, das grundsätzliche Design eines bildgebenden Systems dementsprechend
anzupassen. Ein weiteres Ergebnis dieser Dissertation ist die Entwicklung von ver-
schiedenen Verfahren für die Kalibrierung der Parameter eines SFRS. Diese zeichnen sich
dadurch aus, dass ein Teil der Parameter durch lineare Optimierung bestimmt werden
können. Darüber hinaus konnte ein weiteres wesentliches Ziel, Einschränkungen durch
die umständliche und zeitaufwendige Prozedur der Handhabung spezieller Kalibrier-
Objekt unter Wasser zu minimieren oder aufzuheben, erreicht werden. Die entwickelten
Verfahren für die Kalibrierung eines SFRS weisen entsprechend unterschiedliche Grade
der Abhängigkeit von Kalibrierungsobjekten auf und reichen bis hin zur vollständigen
Unabhängigkeit von diesen.
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Abstract

Computer vision aims at processing information that is recorded with the aid of imaging
devices. Compared to conventional computer vision in air, underwater computer vision
is at an early stage of development. Water is a challenging environment, which, apart
from the attenuation of light by absorption and scattering, is characterized in particular
by the refraction of light at media transitions. Refractive effects are a problem for the
recovery of metric 3D structure from underwater image data. The focus of this thesis is
on recovering accurate 3D information from underwater images.
In this thesis, the concepts of stereo 3D reconstruction in air will be extended for
underwater environments by an explicit consideration of refractive effects. These concepts
comprise projections for coordinate transformations between 3D and 2D spaces, calibration
of the imaging device and the actual recovery of 3D coordinates. A novel model, named
Virtual Object Point model, was developed to realize the necessary extensions. It is
the cornerstone of this thesis, is characterized by its integrability into the geometric
sub-process of underwater image formation and enables novel developments based on
this.
Within underwater stereo 3D reconstruction, the focus of this thesis is on the refractive
calibration of a special class of underwater imaging systems. These systems, named
Shared Flat Refractive System (SFRS), consist of a stereo camera and a viewing window,
which is a single flat, transparent, refractive interface. The geometric sub-process of
underwater image formation is modeled by the parameters of the SFRS with an explicit
consideration of refractive effects. The performed investigations have shown that the
particularities of the SFRS are beneficial for refractive calibrations and worth to adjust
the basic design of the imaging system accordingly. A major contribution of this thesis is
the development of various approaches for the calibration of the parameters of a SFRS .
These approaches are characterized by the fact that part of the refractive parameters are
determined by linear optimization. Furthermore, another crucial goal of this thesis, to
relax or even eliminate restrictions due to the cumbersome and time-consuming procedure
of handling special calibration objects under water, was achieved. Thus, the developed
approaches for the refractive calibration of a SFRS show different degrees of dependence
on calibration objects culminating in a full independence from those.
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1 Introduction

Three quarters of the surface of the planet Earth is covered by water and most of it is
covered by oceans. Oceans play a role in everything, from driving weather to regulating
temperature to the air we breathe and ultimately support all living organisms. Despite
their importance, we know very little about our oceans and only a small part of the
ocean floor is known in detail. There is mostly knowledge on shallower waters and about
95 percent of the oceans remain unexplored, unseen by human eyes. Therefore, ocean
exploration is still pioneer work. Exploring and understanding underwater environments is
a demanding task, which requires equipping ocean explorations with the latest exploration
tools. One of these tools is underwater computer vision, which aims at processing
information that is recorded with the aid of imaging devices, such as cameras. However,
water is a challenging environment that requires huge efforts from both the technological
and data-processing points of view. Compared to traditional computer vision, underwater
computer vision is at an early stage of development.
This chapter will comprise a brief motivation of underwater computer vision and especially
of underwater stereo 3D reconstruction. The challenges that arise in an underwater
environment will be described, the research goals of this thesis will be defined and the
contributions to underwater computer vision will be listed. The chapter will conclude
with the structure and overview of this thesis.
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1 Introduction

1.1 Motivation

The application of imaging devices in underwater environments has become a common
practice. Today, visual sensors are almost standardly installed on autonomous underwater
vehicles or remotely operated vehicles and it is also possible to equip divers with them.
The biggest advantages of underwater imaging are its non-destructive behavior toward
marine life and its repeatable application. These and the detectable image features make
underwater imaging to an efficient sampling tool.
Underwater imaging is utilized in many fields of application. To name a few: fish
monitoring and the determination of the 3D structure of fish schools in the field of
aquaculture, abundance and habitat surveys of the benthos and of the seabed, seafloor
mapping and biomass estimation in the field of marine biology, archaeological site and
shipwreck surveys in the field of underwater archeology, the quantitative analysis of the
3D human motion in the fields of sport science and biomechanics, inspections of ship
hulls or the visual support for repairs on marine equipment. There is various information
encoded in the images, such as photometric data, the geometric 3D structure of the imaged
scene and the pose of the camera relative to the scene. From a computer vision point of
view, the possible applications for the extraction of information from underwater images
comprise, for example, change detection, motion estimation, vision-based navigation and
location of underwater vehicles, the creation of 2D mosaics and 3D maps of the seafloor
or 3D reconstruction and 3D measurements of submerged objects.
The focus of this thesis is on recovering accurate 3D information from underwater images.
Recovered 3D information is useful for distance-dependent underwater image processing
approaches, such as image enhancement and image restoration. In contrast to imaging in
air, underwater images show a characteristic color cast, which is not only dependent on
the constituents of the water body, but also on the distances to the imaging system and
the available light sources. Therefore, the recovery of 3D information is necessary for a
distance-dependent color correction of underwater images that is following physical laws.
However, besides distance determination, the major purpose of recovered 3D information
is to create metric digital models.
There are various computer vision techniques for 3D reconstruction. These differ primarily
by the deployed hardware of the imaging system. In this thesis, the imaging system of
choice is a stereo camera. In contrast to techniques like structured light or Structure
from Motion (SFM ), stereo 3D reconstruction is popular because of its capabilities to
work without additional light sources and without the necessity of a moving camera
or a rigid scene. However, it is also possible to do stereo 3D reconstruction during
movements of the stereo camera. With a calibrated stereo camera, metric 3D models
can be created, length measurements in 3D space can be performed and distances can
be determined. Underwater stereo 3D reconstruction faces severely different challenges
than stereo 3D reconstruction in air. As will be seen in the following chapter, this makes
a straightforward application of well-established computer vision algorithms impossible
and requires elaborate extensions for the underwater environment. Therefore, this thesis
will become part of the very recent and active research field of underwater computer
vision.

2



1.2 Challenges

1.2 Challenges

From an equipment point of view, the first challenge of underwater computer vision stems
from the preparation of the imaging system for an application under water. Its electrical
parts need to be protected from water penetration. Common setups are cameras looking
into an aquarium, cameras looking through a viewing window or cameras being placed
inside a special waterproof housing. This leads to setups with transparent bounding
interfaces, which are characterized in general by a water-glass-air transition of the
entering light. While the walls of an aquarium are usually flat, the protecting interfaces
in the case of underwater housings can be flat or dome ports. Flat ports are plane-parallel
and cheaper to produce, but introduce severe distortions due to the refraction of light.
Dome ports are hemispheres and require an exact coincidence of its center and the
center of projection of the camera. If this can be assured, there is theoretically no
refraction, since all of the entering light rays would have an angle of incidence of 90
degrees. This requirement is hard to fulfill in practice and deviations introduce refractive
distortions that are severely more complex than those of flat ports. Since the production
of dome ports is more complicated, they are more expensive. Furthermore, they introduce
problems on determining the correct focus distance [MNR17]. The focus of this thesis
will be on stereo cameras with flat refractive interfaces. The interested reader may find
further information on dome ports in [Men+16].
Besides the refractive interfaces that stem from the preparation of the imaging system,
natural refractive interfaces, such as the wavy water surface, and the water body itself
result in further challenges. The major differences to imaging in air, which characterize
underwater imaging, are:

• light attenuation due to absorption and scattering of light,

• view disturbances, such as moving animals, floating particles or air bubbles,

• photometric artifacts, such as flickering caustics due to the wavy water surface and

• the refraction of light due to the water-glass-air transition of the light.

In this thesis, from a computer vision point of view, refraction of light is of particular
importance. While the first three aspects can mostly be handled by image pre-processing,
such as restoration, enhancement, lighting correction and elimination of view disturbances,
the occurring magnifications due to refraction pose problems to image acquisition and
image analysis. Submerged objects seem to be closer to the observer and hence bigger than
they actually are. As a consequence, the focus distance of the camera needs to be adjusted.
Furthermore, the field of view of a camera decreases severely. From an image analysis
point of view, magnification is also problematic. This refraction-induced deviation in
dimension is dependent on the distance of the imaged objects to the refractive interface
and on the incidence angle of light rays entering the camera through this interface. This
dependency acts in a non-linear way and poses a problem to every discipline aiming at
the recovery of metric 3D structure from image data.
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1.3 Research Goals
With a stereo camera as the imaging system of choice, the aim of this thesis is to extend
the concepts of stereo 3D reconstruction in air for underwater environments by an
explicit consideration of refractive effects. This comprises the determination of a suitable
model for image formation, which forms the basis for calibration, stereo matching and
the recovery of 3D coordinates. The imaging system will be characterized by the model
for a Shared Flat Refractive System (SFRS). Due to the aforementioned challenges of
underwater imaging, an extension of the concepts of stereo 3D reconstruction in air for
underwater environments is indispensable. Therefore, the research goals read as follows:

R1) Develop a model for handling refractive effects in all concepts of stereo
3D reconstruction. This basic model is supposed to benefit all concepts men-
tioned above, particularly with regard to handling refractive effects.

R2) Develop approaches for the refractive calibration of a SFRS. Within the
concepts of stereo 3D reconstruction the focus will be on calibration of the imaging
system, which is usually the first step of the recovery of metric 3D structure from
image data. Calibration approaches are highly dependent on a suitable model for
image formation. The underlying image formation model will be the model for a
SFRS .

R3) Relax or even eliminate the need to handle special calibration objects in
underwater environments during the refractive calibration of a SFRS.
This relaxation or elimination primarily concerns restrictions that are imposed by
calibration objects with necessary properties, such as a certain shape (3D frame
or 2D pattern), known dimensions, known 3D coordinates of their features and
combinations of those. It can only benefit the entirety of a measurement campaign
if the cumbersome and time-consuming handling of a calibration object under water
can be avoided.

1.4 Contributions
Derived from an in-depth review of the related literature, a taxonomy and a parametriza-
tion of the image formation models of imaging systems exposed to refraction will be
proposed and complemented. The analyzed imaging systems are characterized by plane-
parallel interfaces, which separate the camera or cameras from water. Since the focus of
this thesis is on calibration of such an imaging system, the approaches from the literature
will be categorized with respect to their capabilities of fulfilling the research goals. From
the developments in this thesis, the following contributions will arise. These primarily
comprise the fulfillment of the defined research goals from the previous section. The
major contributions of this thesis read as follows:

C1) A Virtual Object Point (VOP) model will be introduced, which enables
the extension of the concepts of stereo 3D reconstruction in air for
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1.4 Contributions

underwater environments. The model will be the cornerstone of this thesis. It
will be based on a proposed concept for VOPs and will be readily integrable within
the image formation models of monocular and binocular vision. In the context
of image formation, the projections for coordinate transformations between 3D
and 2D spaces are of major importance. The combined models will enable the
implementation of multiple approaches for those projections and the derivation of
invariant properties, which both will be used for the definition of cost functions in
the context of refractive calibration. Besides refractive calibration, the VOP model
will be applicable for stereo matching with the aid of correspondence curves and for
the actual recovery of 3D coordinates. Hence, all the necessary concepts of stereo
3D reconstruction will be covered and contribution C1 will therefore directly solve
research goal R1.

C2) Various approaches for the refractive calibration of a SFRS, which differ
due to their capabilities to work with or without the necessity of a
special calibration object, will be proposed, analyzed and compared. In
this thesis, the imaging system of choice will be characterized by the model for a
SFRS and the main contribution will be approaches for its refractive calibration. It
will be shown how the aforementioned projections and cost functions can be utilized
for the optimization of the necessary parameters. Various approaches for the
refractive calibration of a SFRS will be proposed, analyzed and compared. Hence,
with these approaches, contribution C2 will be able to solve research goal R2. The
approaches will be characterized by their capabilities to work with or without the
necessity of a special calibration object and by their capabilities to determine the
necessary parameters consecutively or simultaneously. Therefore, with the different
dependencies on calibration objects of the respective approaches, contribution
C2 will furthermore address and solve research goal R3. The characterization
of the approaches will result in two strategies, which will be implemented with
interchangeable cost functions. Besides being analyzed and compared amongst
themselves, the proposed calibration strategies will be compared to alternative
strategies from the literature. Therefore, extensive evaluations on simulated and
real test data will be performed.

C3) The determination of the refractive parameters will be partly realizable
by linear optimization. This major contribution of this thesis will concern
both of the previously mentioned calibration strategies. Within both of them,
the determination of the refractive parameters will be partly realized by linear
optimization. Thus, solving research goal R2 will be realized efficiently.

C4) An approach for benchmark data generation for real test data will be
proposed. A further contribution will be an approach for benchmark data genera-
tion for real test data. This addresses the research goals only indirectly. However, it
represents a simple means for the evaluation of underwater stereo 3D reconstruction.
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1.5 Structure and Overview
Chapter 2 will cover the basic principles from the fields of mathematics, computer
vision and physics that are necessary for the developments in this thesis. Since it is a
conventional foundation of computer vision approaches, such as the concepts of stereo 3D
reconstruction, image formation based on the pinhole camera model will be introduced.
From the field of physics, refraction and its implications on computer vision approaches
will be described. The most severe implication is the invalidity of pinhole camera model.
Furthermore, necessary definitions will be listed, a taxonomy of refractive systems will
be proposed and the refractive parameters of the image formation model utilized in this
thesis, namely the SFRS , will be defined.
Chapter 3 will cover the related work on calibration strategies for FRSs. These are the
disregard, the absorption and the explicit modeling of refractive effects. The shortcomings
of them will be described and it will be shown that the explicit modeling of refractive
effects is indispensable in general. The chapter will provide a categorization of the
various approaches and of those that will be developed in this thesis. All of them will be
categorized with respect to defined exclusion criteria.
In the context of underwater 3D reconstruction, the focus will be set particularly on
the refractive calibration of a SFRS . Therefore, a VOP model that enables meeting the
arising challenges will be motivated in Chapter 4. Driven by the findings from Chapters
2 and 3, this chapter will contain a specification of the contributions of the VOP model.
Furthermore, the proposed concept of VOPs will be introduced. Since there are multiple
valid possibilities for the location of a VOP, the chapter will comprise the derivation of
the most suitable one, which will be used to define the VOP model.
Chapter 5 will cover the refractive calibration of a SFRS and therefore the main contri-
bution of this thesis. It will be shown how the VOP model can be readily integrated
into the underwater image formation models of monocular and binocular vision for the
development of two strategies for the computation of the refractive parameters, with the
particularity that both strategies comprise a determination of the parameters that can
be partly realized by linear optimization. Moreover, the requirements, prerequisites and
restrictions of the approaches to be developed will be described.
Chapter 6 will cover how the VOP model can be utilized for the necessary extensions of
the remaining concepts of stereo 3D reconstruction in air for underwater environments.
An approach for the computation of correspondence curves will be proposed, which
enables the reduction of the search space during stereo matching. Furthermore, two
approaches for the recovery of 3D coordinates will be proposed, which can be used to
compute the 3D structure of an imaged scene.
Chapter 7 will cover the experiments and results of the proposed approaches on simulated
and real test data. It will primarily cover the evaluation of the two proposed strategies
for the refractive calibration of a SFRS . Therefore, these strategies will be evaluated
by comparisons amongst themselves, with a state-of-the-art approach and with further
strategies from the literature. Furthermore, the most promising one will be applied
during first experiments on underwater stereo 3D reconstruction of a real scene.
Finally, Chapter 8 will cover the conclusion and future works.
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2 Basics

The purpose of this chapter is to introduce the basic principles from the fields of mathe-
matics, computer vision and physics that are necessary to understand the given problem
this thesis is confronted with and the proposed solutions. Of particular importance
are the consequences of physical phenomena, such as refraction of light, for the appli-
cability of conventional computer vision approaches that are made for aerial usage in
underwater environments. Before the description of the conventional foundations of
computer vision, the recurring mathematical expressions will be provided. One of the
most important foundations of many computer vision approaches is the image formation
based on the pinhole camera model. To be able to recover 3D structure from image data,
it is necessary to know how image formation works. Hence, the perspective projection
based on the pinhole camera model will be explained. In this thesis, a stereo camera
is the imaging system of choice for the recovery of 3D structure. Therefore, the basic
concepts of stereo 3D reconstruction will be described to introduce the challenges that
arise from an extension for underwater environments. As mentioned before, the physical
phenomenon of the refraction of light poses some major challenges. From the field of
physics, the law of refraction, its application in the equations for ray tracing and a model
for the apparent depth will be presented. While the latter two will be utilized for the
developments in this thesis, the basics on refraction emphasize some major implications,
such as the invalidity of the pinhole camera model for underwater image formation. Some
important consequences will be shown. The chapter concludes with the definition of a
model for image formation that considers refraction explicitly. The contents regarding
the implications of refraction and the definitions in this chapter have been partially
proposed in Dolereit et al. [DL16; Sch+15; Luk+15].
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2 Basics

2.1 Mathematics
This section provides a brief overview on recurring mathematical expression in this thesis.
These are based on a standard reference [BS79] while being expressed in the style that is
proposed in the glossary.

Angle between two Planes. The angle between two planes in 3D space can be
computed from the normal vectors of both planes. With the aid of the definition of the
scalar product, this is expressed as the angle between two vectors by:

α(n̄1, n̄2) = arccos(n̄1 · n̄2), (2.1)

with n̄1 and n̄2 being the normalized normal vectors of the respective planes.

Distance between two Points. The Euclidean distance between two points A and
B, represented by their position vectors a and b, is expressed by:

d(A,B) = d(a, b) =

√√√√ n∑
i=1

(ai − bi)
2, (2.2)

with n ∈ (2, 3).

Distance between Point and Line. The Euclidean distance between a line l : a =
b + λl, with b being the position vector to a point on the line, λ being a scalar and l
being the direction vector of the line, and a point C, represented by position vector c, is
expressed by:

d(C, l) = ‖(c− b)× l‖
‖l‖

. (2.3)

Distance between two Lines. For a line l1 : a = b1+λ1l1 and a line l2 : a = b2+λ2l2,
with b1 and b2 being the position vectors to a point on the line, λ1 and λ2 being scalars
and l1 and l2 being the direction vectors of both lines, their Euclidean distance can be
computed by:

d(l1, l2) = |(b1 − b2) · n|
‖n‖

, (2.4)

with n = l1 × l2.

Distance between Point and Plane. The Euclidean distance between a point A,
represented by the position vector a, and a plane Π can be computed easily if the Hesse
normal form of the equation of the plane is available. Rearranging the Hesse normal
form Π : n̄ · b = d, with n̄ being the normalized normal vector of the plane, b being the
position vector to a point on the plane and d being the distance in normal direction to
the coordinate system origin, yields:

d(A,Π) = n̄ · a− d, (2.5)

whit substitution of b by a.
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Figure 2.1: Orthogonal projection of a vector onto another vector.

Projection of a Vector onto a Vector. The orthogonal projection of a vector b
onto a vector a (See Figure 2.1) is expressed by:

bā = (b · ā) ā. (2.6)

Therefore, the length of the vector bā is:

‖bā‖ = b · ā. (2.7)

Spherical Coordinates. The spherical coordinates can be used to express the direction
of a vector in 3D space by three numbers (See Figure 2.2). Therefore, a point A on
the surface of a unit sphere is utilized. The first number is the radial distance on the
unit sphere. The second number is the angle ϕ, with a range of −π < ϕ ≤ π, and the
third number is the angle ϑ, with a range of 0 ≤ ϑ ≤ π. The conversion to Cartesian
coordinates can be realized by:

x = r · sinϑ · cosϕ (2.8)
y = r · sinϑ · sinϕ
z = r · cosϑ.

Figure 2.2: Spherical coordinates.
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2.2 Computer Vision

From the point of view of computer vision, this thesis comes into contact with the fields
image formation and 3D structure recovery. The system of choice is a stereo camera.
To be able to perform tasks like underwater stereo 3D reconstruction, it is essential
to understand its conventional foundations. One of them is the pinhole camera model,
which is crucial to most conventional 3D reconstruction approaches. If the reconstructed
data is supposed to be metric, the camera systems needs to be calibrated to determine
the parameters of the image formation process and a scale. Most calibration approaches
for a common camera system are founded on the pinhole camera model. After modeling
and parametrization of the image formation process, it is possible to recover the metric
3D structure of the scene if additional cues, such as corresponding pixels in the two views
of a stereo camera, are available.

2.2.1 Image Formation

The pinhole camera model describes the forward projection of 3D points to the image
plane and can therefore be used to approximate the image formation of a camera. This
mapping of 3D points to 2D points needs to be inverted for 3D structure recovery. Since
forward projection results in a loss of information, the 3D point can not be recovered
directly. However, a mapping of 2D points to 3D rays is possible. This mapping process
is called back-projection. As will be seen in the following, the basic building blocks of
image formation in air are rays and thus the collinearity of points.

Pinhole Camera Model

According to Hartley and Zisserman [HZ04], the pinhole camera model describes the
central projection mapping of points in 3D space onto a plane as shown on the left side
of Figure 2.3. The center of projection C forms the origin of a Euclidean 3D coordinate
system. The principal axis p of the camera coincides with the z-axis of this camera
coordinate system. The plane is called image plane and is located perpendicularly at
z = f , with f being the focal length of the camera. The point where the principal axis p
intersects this plane is called principal point P1. On the left side of Figure 2.3, the image
plane is located in positive direction of the principal axis, since this is mathematically
more convenient. The physical image plane is the image sensor of the camera at z = −f .
It is represented by the base of the right pyramid with an apex at C and with a principal
point that is now P2. Both representations can be used equivalently under correct
consideration of algebraic signs. The point in space to be projected is O. It can be
expressed by a position vector o = (x, y, z)T . By intersection with the image plane, this
projection finally results in an image point I, which is represented by a position vector
i = (u, v)T in the 2D image coordinate system in pixel units (See right side of Figure 2.3).
The object point O, the center of projection C and the associated Euclidean points I1
and I2 are collinear. As the points I1 and I2 result in the same image coordinates, point
I2 will be used in this document for beneficial illustration purposes and the subscript will
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2.2 Computer Vision

Figure 2.3: The pinhole camera model. Left: 3D view of the mapping process. Right: 2D view
of the image plane.

be omitted. The same applies to the points P1 and P2. The central projection can be
expressed as a linear mapping between the homogenous vectors of the points O and I:

ĩ = P õ. (2.9)

In this expression, a homogenous vector õ = (x, y, z, 1)T in the 3D space of the camera
coordinate system is mapped to a homogenous vector ĩ = (u, v, 1)T in the 2D space of
the image coordinate system in terms of a matrix multiplication with the 3× 4 camera
projection matrix:

P = K [I|0] . (2.10)

This matrix is composed of the 3× 3 identity matrix I, the zero vector 0 and the 3× 3
camera calibration matrix K. The camera calibration matrix realizes the mapping from
camera to image coordinates and has the form

K =

fu 0 u0
0 fv v0
0 0 1

 . (2.11)

The entries fu = muf and fv = mvf are the focal length of the camera scaled to pixel
units. The scaling factors mu and mv differ if the image pixels are not square. The
entries u0 and v0 are the coordinates of the principal point P in the image coordinate
system. As the principal point is usually not the origin of this coordinate system, its
coordinates determine the offset that needs to be added during the mapping as is shown
on the right side of Figure 2.3. Equation 2.9 can now be written as:

ĩ = K [I|0] õ, (2.12)
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which is the basic mapping of the pinhole camera model of a 3D point in the camera
coordinate system. It expands to:

uv
1

 =

fu 0 u0
0 fv v0
0 0 1


 1 0 0 0

0 1 0 0
0 0 1 0



x
y
z
1

 . (2.13)

The result are the homogenous coordinates in the image coordinate system:uv
1

 =


fux
z + u0
fvy
z + v0

1

 . (2.14)

Forward Projection

In the general case, the 3D point to be projected onto the image plane is not expressed
in the camera coordinate system, but in a world coordinate system. Both coordinate
systems are related by a 3× 3 rotation matrix R and a translation vector t as is shown
in Figure 2.4. The origin of the world coordinate system is W . Let o′ be the position
vector to the point to be projected and let c′ be the position vector to the center of
projection C in the world coordinate system. The respective position vector o in camera
coordinates can then be written as o = R(o′ − c′). This can be expressed in homogenous
coordinates and with that, Equation 2.12 can be written as:

ĩ = KR
[
I| − c′

]
õ′. (2.15)

Together with t = −Rc′, the general camera projection matrix in Equation 2.10 becomes:

P = K [R|t] . (2.16)

Back-Projection

The inversion of forward projection is called back-projection. Since the z-coordinate of a
mapped 3D point is dropped in Equation 2.14, it is only possible to map a 2D image
point to a ray in 3D space. The distance along this ray can not be recovered from image
coordinates. A ray in the camera coordinate system can be represented by a normalized
vector. This normalized vector ō can be computed from an homogenous vector ĩ by
multiplication with the inverted camera calibration matrix K:

ō = K−1ĩ

‖K−1ĩ‖
. (2.17)

The normalization is done by division by the resulting vector’s length.
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2.2 Computer Vision

Figure 2.4: Transformation from world to camera coordinate system.

2.2.2 3D Structure Recovery

With the definition of the underlying camera model and the basic projection equations
for transformations between 3D and 2D spaces, it is possible to recover the 3D structure
of the imaged scene. Therefore, cues like motion, binocular disparity, shading, texture or
focus are exploited [Sze11]. According approaches are SFM , stereo 3D reconstruction, or
approaches called shape from X. In contrast to these passive methods, there are active
methods like structured light. Since the research goal of this thesis is to extend the
concepts of stereo 3D reconstruction in air for underwater environments, the according
concepts will be described briefly in the following.

Stereo 3D Reconstruction

The purpose of 3D reconstruction is to generate a digital 3D model of the imaged scene.
In the simplest case, this model can be a 3D point cloud, which contains a number
of 3D points that are characterized by their 3D coordinates only. More sophisticated
models represent surfaces by triangulated meshes and also with additional textures. In
this thesis, the reconstruction process will end with the 3D point cloud, since surface
generation can be considered as a post-process.

Cost Functions. An important part is the definition of cost functions. The values
of cost functions are used for feedback on the accuracy of parameter estimation during
calibration of the imaging system and can therefore be utilized as the target of an
optimization problem. The most common cost function is the reprojection error, which
is computed by forward projection of 3D scene points. It is based on 3D-2D point
correspondences. The distance between a 2D point of interest in the image and the
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projection of the corresponding 3D point onto this image is measured in some defined
metric. This is usually in pixel units. The reprojection error is therefore defined by:

E =
k∑
i=1

d
(
Ii, Îi

)2
+ d

(
I ′i, Î

′
i

)2
, (2.18)

with k being the number of 3D-2D point correspondences, Ii and I
′
i being the measured

left and right image points and Îi and Î
′
i being the projected left and right image points

[HZ04].

Calibration. The calibration of the stereo camera is usually the first step. Based on
the underlying pinhole camera model, the intrinsic and extrinsic camera parameters can
be estimated. The intrinsic camera parameters are described by the camera calibration
matrix K in Equation 2.11. As no real lens is expected to fulfill the linear mapping
of the pinhole camera model perfectly, some non-linear terms accounting for radial
and tangential distortion are usually incorporated into the calibration process. These
distortions can be modeled in the image space and thus are independent of the scene. The
distortion parameters are commonly included by the term intrinsic camera parameters.
The extrinsic camera parameters represent the pose (rotation and translation) of a
camera in a reference coordinate system. If a world coordinate system is known, they
can be described by the rotation matrix R and the translation vector t in Equation 2.15.
However, it is more important to estimate the relative extrinsic camera parameters of both
cameras in a stereo system. In this case, one of the cameras is defined to be the master
camera, which provides the reference coordinate system. The pose of the slave camera
needs to be known relative to the master camera. If these relative extrinsic parameters
can be determined in Cartesian coordinates, the scale for the 3D reconstruction result is
known as well.
As will be shown in the following, the calibration of the stereo camera itself is unaffected by
the underwater environment, since it can be realized in a pre-process. The parameters in
question are usually estimated by solving an optimization problem through minimization
of a cost function like the reprojection error (See Equation 2.18). A detailed discussion
on calibration approaches, such as the Direct Linear Transformation (DLT ) or the
approach of [Zha00] can be found in [HZ04]. Readily usable algorithms can be found in
the Camera Calibration Toolbox for Matlab [Bou08] and OpenCV [Bra00].

Stereo Matching. Stereo matching aims at finding corresponding pixels in the left
and the right view of the stereo camera. It can be distinguished into sparse and dense
stereo matching. An important step is the reduction of the search space, since it is
unintended and inefficient to compare a pixel in the first view with all the others in the
second view. This applies especially for dense stereo matching, which is characterized by
matching every single pixel. Such a reduction can be realized with the aid of epipolar
geometry and image rectification. In the case of sparse stereo matching, only distinctive
pixels are matched in both views. Consequently, feature detection approaches, such as
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corner detection (For example [HS88]) or the Scale-Invariant Feature Transform (SIFT )
[Low99], are applied on both views and only the related pixels are matched.

Epipolar Geometry. The epipolar geometry describes the geometry in a stereo camera
and is used to reduce the search space during dense stereo matching. With its aid, the
search space for a corresponding pixel in the second view can be reduced to a single line
[Sch05]. A further simplification can be achieved by rectification of both views. This
comprises a transformation of both image planes into a common plane. Afterward, this
single line coincides with a single row of pixels that is the same for both views. This
makes it possible to characterize a pair of corresponding pixels by the so-called disparity.
As will be seen in the following, epipolar geometry is invalid under water. Therefore, a
detailed description is omitted. At this point, the interested reader may be referred to
[HZ04] or [Sch05].

Recovery of 3D Coordinates. The approach for the recovery of 3D coordinates
depends on the stereo matching technique. After dense stereo matching, it is possible to
acquire the 3D coordinates from pixel positions and disparity. Since this approach is
invalid under water, the interested reader may be referred to [Sch05] again. The usual
approach to recover 3D points after sparse matching is known as triangulation [HZ04].
Therefore, two rays, which are the result of back-projection of a pair of corresponding
pixels, are intersected in 3D space. Because of inaccuracies during calibration and stereo
matching, these rays are not guaranteed to intersect in general. Hence, the approach has
to be extended to account for these inaccuracies. One simple possibility is to compute
the points on both rays with the shortest distance to each other and take the mean of
both points as the recovered 3D coordinate. As will be seen in the following, the basic
triangulation assumption can be reused in underwater stereo 3D reconstruction.

2.3 Physics

The previous section on computer vision has shown that the underlying pinhole camera
model assumes collinearity between an object point, the center of projection and the
image point. Hence, lines or rays are utilized frequently. The modeled rays correspond
essentially to the light rays that are emitted from real object points. A phenomenon
known from physics is the refraction of light at the transition between different media.
A waterproof stereo camera, which is looking into water, is usually exposed to a water-
glass-air transition of the light rays. As will be seen in the following sections, refraction
has some major consequences on the applicability of the conventional computer vision
approaches made for aerial environments. This section will provide the basic physical
laws that need to be considered during underwater 3D reconstruction, such as the law of
refraction. Furthermore, concepts like the apparent depth and formulas for physically
correct tracing of rays, which will be part of the solutions to be developed in this thesis,
will be introduced.
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Figure 2.5: Refraction of an incident ray i at a flat interface Φ between two transparent media
with different refractive indices n1 and n2.

2.3.1 Law of Refraction

According to Tipler et al. [TMB12], refraction is known as the effect that occurs when
light hits an interface Φ between two different transparent media non-perpendicularly, as
illustrated in Figure 2.5. A transparent medium is characterized by its refractive index.
This is the relation of the speed of light in vacuum c to the speed of light in a medium
cn with the refractive index n:

n = c

cn
. (2.19)

The angle α between the incident ray i and the interface normal s is called angle of
incidence. The plane formed by both these lines is called plane of refraction Π. Figure 2.5
represents a perpendicular view onto the plane Π. The light ray that enters the second
medium is called the refracted ray r. This ray is situated in the plane of refraction as
well. Its angle β to the interface normal s is called angle of refraction. The light ray r in
the second medium has a different direction than the incident ray i. If the propagation
speed of light is decreased at the transition of the interface Φ, the angle of refraction β is
smaller than the angle of incidence α and the refracted ray r is refracted towards the
interface normal s and vice versa. The angle of incidence α and the angle of refraction β
are related by the law of refraction, also known as Snell’s law:

n1 · sinα = n2 · sin β (2.20)

It can be derived from Fermat’s principle or from the Huygens-Fresnel principle [TMB12].
With Snell’s law, a physical model of the path of light is formulated.
In the remainder of this thesis, the first indexed medium will be air and the second one
will be water. Their refractive indices are na = n1 = 1.0 and nw = n2 = 1.33, respectively.
A useful property of the physical model of the path of light is that it is invertible. Hence,
the designations incident ray and refracted ray, as well as angle of incidence and angle of
refraction can switch positions. Therefore, a ray in water will from now on be designated
by w and a ray in air by a. The point on the interface Φ where the refraction happens
will be designated as refraction point R.
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Figure 2.6: Ray tracing starting from point C.

2.3.2 Ray Tracing Formulas

Let us assume that the position vector c to the starting point C of a ray a in air and its
normalized direction vector ā are known (See Figure 2.6). A common approach to trace
the ray physically correct is to determine its intersection point R with the refractive
interface Φ and the normalized direction vector w̄ of the refracted ray w in water. The
refraction point R can be represented by its position vector, which can be computed
according to [CY14] by:

r = c + ta
cosα ā, (2.21)

with ta= d(C,S). According to Glassner [Gla95], the refracted ray can be computed by:

w̄ = na
nw

ā + s̄

 na
nw

cosα−

√
1−

(
na
nw

)2 (
1− cos2 α

) , (2.22)

with s̄ being the normalized direction vector of the interface normal s. Since the direction
vectors are normalized, the following substitution can be performed:

cosα = ā · s̄
|ā| |s̄|︸ ︷︷ ︸

=1

= ā · s̄. (2.23)

If the refractive system is more complex, meaning that there is more than one refraction,
the Equations 2.21 and 2.22 have to be used iteratively to determine each refraction
point and each refracted ray’s direction.

2.3.3 Apparent Depth

When an observer is looking at an object submerged in water, it seems to be closer to
him as it actually is and hence seems to be bigger. This effect occurs due to refraction
and implies, that a virtual image of the real object is seen. The question that arises is
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Figure 2.7: Apparent depth in the case of a perpendicular incident ray.

where this virtual image is located. This location is called apparent depth [TMB12]. The
following considerations are concerning point objects, single flat refractive interfaces and
monocular viewing.

Perpendicularity of Incident Rays

The case that is most commonly explained in physics textbooks is an observer at a
viewpoint V with a viewing direction perpendicular to a flat refractive interface Φ
between two media like air and water, as illustrated in Figure 2.7. The light ray is
emitted from a point object O. The incident ray in this case is the ray w in water and
the refracted ray is the ray a in air.
According to Tipler et al. [TMB12], an equation for the refraction at a single interface
can be set up by utilizing Snell’s law and the small-angle approximation (sinα = α) by:

nw
x

+ na
x̌

= na − nw
r

, (2.24)

with x = d(A,O) being the object distance, x̌ = d(A, Ǒ) being the image distance and
r being the curvature radius of the interface. Since the interface is flat, the curvature
radius amounts to r =∞. As the incident ray coincides with the interface normal, the
incidence angle is zero degrees and there is no refraction. After reorganization we end up
with:

x̌ = − na
nw
· x. (2.25)

Since x̌ is negative, the image is virtual and on the same side of the refractive interface
Π as the object. This is what most physics textbooks teach for the case of an incidence
angle of zero degrees. As can be seen, Equation 2.25 is independent of the distance to
the viewpoint V of the observer. Hence, V could be situated anywhere on the ray a in
air. In the remainder of this thesis, the point object O will be called real object point
and Ǒ will be called VOP.
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Non-Perpendicularity of Incident Rays

Equation 2.25 can also be used as an approximation for small deviations of the angle of
incidence from zero degrees. Larger angles of incidence are most commonly not considered
explicitly in physics textbooks. Since these perpendicular incident rays do not represent
the more general case that this thesis is confronted with, some further research results
for non-perpendicular rays need to be considered in the following. According to Tipler et
al. [TMB12], Equation 2.24 will not result in the correct location for non-perpendicular
rays, since approximate perpendicularity is a prerequisite for its application. In the case
of non-perpendicular rays, the apparent depth of an object is a controversial topic in
physics.
Bartlett et al. [BLJ84] propose that the image of a point object, submerged in a medium
with refractive index n2 (here: water with nw), from a viewpoint in a medium with
refractive index n1 (here: air with na), is in general astigmatic. This means that two
virtual images can be formed, which do not coincide except for an angle of incidence
of zero degrees. The schematic derivation of both locations of the virtual image can be
seen in Figure 2.8. In the observations of Bartlett et al. [BLJ84], the ray w in water is
the central ray of a cone representing a bundle of rays, which are emitted from a real
object point O. The derivation of the locations is done by a limit value observation
in two planes. According to the definition of astigmatism [TMB12], these planes are
perpendicular to each other and are called the meridional plane Ψm and the sagittal
plane Ψs, respectively. For the application of the limit value observation, a second ray
in each of these planes (green ray in Ψs and red ray in Ψm) is chosen from the cone in
Figure 2.8 a (the cone’s size is exaggerated for visualization). The limit value observation
is done for an infinitesimal radius of the cone, as is illustrated in Figure 2.8 b − d. The
final results are the two possible locations of the virtual image at the VOPs Ǒm and Ǒs
in Figure 2.8 d. These VOPs are the points of intersection of the virtual extensions of
the rays into water (dashed). Due to occlusions, the two rays in the sagittal plane can
only be seen in the top views of Figure 2.8 b − d and the two rays in the meridional
plane in the side views. In the sagittal case, the planes of refraction of both ray paths
obviously differ. However, both of them have to intersect in the interface normal s, which
is passing through the real object point O. Hence, the virtual extensions of the rays have
to intersect in the interface normal s and the virtual image is located at the sagittal
VOP Ǒs. The limit value observation is just performed formally. The meridional plane
Ψm and the plane of refraction Π, which belongs to the ray w, are identical. Therefore,
the location of the meridional VOP Ǒm has to be situated in this plane as well. It is
located higher than the real object point O and closer to the observer. The viewpoint of
the observer can be located arbitrarily on the ray a in air. As can be seen, both locations
are situated on the backwards extended ray a.
The apparent depth of an object is still a controversial topic in physics. This is shown,
for example, by the recent work of Quick et al. [QGP15]. The authors revise the findings
of Bartlett et al. [BLJ84] and conclude in favor of the sagittal VOP Ǒs.
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Figure 2.8: Derivation process of the VOP locations in the case of a non-perpendicular incident
ray.

Model for a Single Flat Refractive Interface

As will be seen in Chapter 4, the physical foundation of the VOPs is not of primary
importance for the developments in this thesis. Therefore both locations represent valid
possibilities. Since the location of the VOP Ǒm will not be utilized for the approaches
to be developed in this thesis, as will be justified in Section 4, only the geometrical
derivation from the previous section is presented. The interested reader may be referred
to [BLJ84] or [QGP15] for a more detailed derivation. In contrast, the location of the
VOP Ǒs will be used in the following model for a single flat refractive interface.
The relation between the location of the VOP Ǒ = Ǒs and the real object point O in
Figure 2.9 can be derived from Snell’s law and trigonometry in right-angled triangles
[BLJ84]. The path of the light is inverted once again and with that, the relation can be
expressed by:

x̌

x
= cosα√(

nw
na

)2
− sin2 α

, (2.26)

with x̌ = d(A, Ǒ) being the distance to the VOP, x = d(A,O) being the distance to the
real object point and α being the angle of incidence. Note that this is also valid for
media that are different from water and air. Therefore, the refractive indices na and
nw have to be replaced accordingly. The substitution of an angle of incidence that is
equal to zero degrees into this equation and some rearranging leads to Equation 2.25,
which represents the apparent depth in the case of a ray that hits the refractive interface
perpendicularly. Note that the negative algebraic sign, which is used from the physics
perspective to make clear that a virtual image is produced, is omitted. Equation 2.26 is
independent of the distance to the viewpoint of the observer. Hence, this viewpoint can
be situated anywhere on the ray a.
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Figure 2.9: Relation between the location of the VOP Ǒ and the real object point O in the case
of a single refractive interface.

Note that some conversions of Equation 2.26 are possible. Therefore, the Pythagorean
trigonometric identity [BS79]:

sin2 α+ cos2 α = 1 (2.27)

can be used. If the normalized direction vectors ā and s̄ of the ray a in air and the
interface normal s are known, the angle of incidence α can be expressed by Equation
2.23. With these substitutions, Equation 2.26 can be converted to the form:

x̌

x
= ā · s̄√(

nw
na

)2
− 1 + (ā · s̄)2

. (2.28)

Thereby, the need to compute trigonometric functions can be eliminated completely.

2.4 Implications of Refraction

As already indicated in the previous section, the physical phenomenon of refraction of
light has some major consequences on the applicability of the conventional computer
vision approaches made for aerial environments. The approaches that rely on the pinhole
camera model are based on collinearity. Due to refraction, an object point in water,
the center of projection of a camera and an image point are in general not collinear
any more. Hence, the pinhole camera model can not be applied as it has been in aerial
environments. In the following, it will be shown why the approximation of underwater
image formation by the pinhole camera model is invalid and that the distortion due to
refraction is distance-dependent. This distance-dependence makes clear that refractive
distortions are not image space distortions, such as lens distortion. A direct consequence
of the invalidity of the pinhole camera model is the invalidity of the epipolar geometry.
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Figure 2.10: Left: Image formation based on the pinhole camera model in air. Right: Invalidity
of the pinhole camera model for underwater image formation.

Invalidity of the Pinhole Camera Model. The left side of Figure 2.10 shows the
image formation based on the pinhole camera model in air. Let us consider a number of
real object point Oi, with i ∈ {1, .., n}, which are projected to image space. The imaged
object points Oi on an arbitrary surface are the starting point of the rays ai. All these
rays intersect at a single point, namely the center of projection C, and end up on the
image plane at the respective image points Ii. A real object point Oi, the center of
projection C and an image point Ii lie on a single ray and are therefore collinear.
The right side of Figure 2.10 shows the image formation in the case of a flat refractive
interface Φ, which separates air and water. This time, the object points Oi on the imaged
surface are located in water. They are the starting points of the rays wi. These rays
change their direction at the interface Φ due to refraction, intersect at the center of
projection C and end up on the image plane at the respective image points Ii. The
difference to image formation in air is that a real object point Oi, the center of projection
C and an image point Ii are not collinear any more. As can be seen the on right side of
Figure 2.10, the extension of the rays wi into air (dashed blue lines) and the pairwise
intersection of rays with equal incidence angles leads to several intersection points. These
represent multiple virtual centers of projection (Č1, Č2, Č3), which are in this case located
on the principal axis p of the real camera. Hence, the pinhole camera model is not valid
for the approximation of the image formation in underwater imaging setups [Tre+12] .
This occurrence of multiple virtual centers of projection makes it impossible to infer a
single focal length adjustment of a camera that can represent the image formation in
terms of the pinhole camera model correctly.
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Figure 2.11: Distance-dependence of refraction.

Distance-Dependent Distortion due to Refraction. The distortions in an image
that stem from refraction are dependent on the distance of the imaged object point
to the refractive interface. Let us assume that refraction can be modeled as an image
space distortion, such as in the case of radial and tangential distortion of a real imaging
system. This would mean that the pinhole camera model with some additional non-linear
terms for image distortion can be used for the approximation of the underwater image
formation. Figure 2.11 shows that this is theoretically impossible. The image point I0 is
the result of the mapping of all possible object points Oi, with i ∈ {1, .., n}, on a ray w in
water. This ray gets refracted at the interface Φ, which results in the ray a. Two of the
infinitely many possible locations of the object points Oi on the ray w are illustrated by
O1 and O2. In reality, both end up in image point I0. As can be seen, the linear mapping
of the point O1 and O2 by the pinhole camera model would result in the two different
image points I1 and I2. Hence, refractive distortion is clearly dependent on the 3D
coordinates of the mapped object points and thus not an image space distortion, which
would be independent of the scene. Therefore, refractive distortion can theoretically not
be compensated by additional non-linear terms for image distortion. This is also shown
by Treibitz et al. [TSS08; Tre+12].

Invalidity of the Epipolar Geometry. The epipolar geometry makes it possible
to transform both views of a stereo camera into a common plane to reduce the search
space of corresponding pixels in both views. Let us assume that this transformation is
unnecessary due to the already perfect orientation of the stereo camera. Figure 2.12 shows
such a perfectly oriented stereo camera from three orthographic views. Both cameras
are have identical intrinsic parameters and their principal axes p and p′ are parallel.
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Figure 2.12: Epipolar lines an their invalidity in underwater stereo vision, illustrated by three
orthographic views.

The back view, the side view and the top view of this setup can then be stitched in the
presented way. The back view is essentially constructed by the pairwise intersections of
parallel lines from the side and the top view. Note that the representation of the cameras
with a flipped and therefore virtual image plane is necessary for this kind of visualization
(See Section 2.2.1).
Let us consider the mapping of a real object point O by this stereo camera. This is
illustrated once based on the pinhole camera model (dashed black) and once with explicit
modeling of refraction at an interface Φ (solid blue turning solid black). The dashed
black rays and the image points I1 and I ′1 represent the mapping if water would not exist.
The horizontal line through the points I1 and I ′1 in the back view represents the epipolar
line, which can be used as the search space for stereo matching of these two points. In
an aerial environment, the assumption of epipolar geometry is that the rays connecting
an object point O with the two centers of projection C and C ′ form a plane [HZ04]. This
assumption does not hold if refraction occurs [Tre+12]. If the epipolar geometry would
be valid in the case of the mapping with explicit modeling of refraction, the dashed
horizontal lines in red and green would coincide. The illustration clearly shows that the
two image points I0 and I ′0 do not share an epipolar line in general. The only exception
are object points that are located in the plane that is formed by the interface normal and
the two centers of projection C and C ′. In the illustrated case, this would mean that the
object point O needs to lie in the plane that is formed by the two centers of projection
C and C ′ and the principal axes p and p′ to get a valid epipolar line. However, in the
general case, the epipolar geometry is invalid for underwater image formation [Tre+12].

24



2.5 Definitions

2.5 Definitions

The previous sections have shown that the pinhole camera model is not suitable for
modeling underwater image formation. In this section, a more appropriate model will
be defined for the target system. It consists of a stereo camera, which is protected
from water penetration by a single transparent medium, and it explicitly considers the
refraction of light. Therefore, the defined model belongs to the category of refractive
systems. In this section, to put it into context, a taxonomy and a parametrization will
be presented for the addressed refractive systems in this thesis. It will be characterized
by the introduced model for a SFRS , which is a specialization of the more general model
for a FRS .

Flat Refractive System. A camera needs to be protected by a transparent medium
for underwater usage. The transparent medium that will be considered in this thesis is a
plane-parallel plate. A single camera in combination with such a plate is termed FRS
[TSS08; Tre+12] and is usually characterized by a water-glass-air transition of the light
rays. It can be described by a system axis, layers and interfaces [Agr+12], which will be
defined in the following. These components are usually fixed to the camera. Some special
cases of FRSs arise in the less frequent setup where a camera is moved with respect
to a fixed plane-parallel plate. The left side of Figure 2.13 shows an exemplary FRS .
The plane-parallel plate needs to be parametrized with respect to the camera, which is
described by its center of projection C, its camera coordinate system (x-axis, z-axis and
perpendicular y-axis, which is omitted in the illustration), its principal axis p and its
principal point P . This entities of this parametrization will be summarized under the
term refractive parameters, which will be defined in the following as well.

System Axis. The system axis is a special form of the surface normal of the plane-
parallel plate. Therefore, it has the same direction vector as the surface normal, which up
to now was labeled by s. The system axis’ main characteristic is that it passes through
the center of projection C of the camera. This is illustrated on the left side of Figure 2.13.
In what follows, the system axis will be labeled by s0.

Object Axis. Similarly to the system axis, the so-called object axis is a special form of
the surface normal of the plane-parallel plate as well. The object axis’ main characteristic
is that it passes through a real object point O in water. This is illustrated on the right
side of Figure 2.13. In what follows, the system axis will be labeled by s1.

Interface. Interfaces are the planes bounding a layer. The term interface will be
utilized in this thesis synonymously with the term flat refractive interface. An interface
has no thickness. On the left side of Figure 2.13, Φ0, Φ1 and Φ2 represent flat refractive
interfaces. Note that Φ0 is a virtual interface that passes through the center of projection
C of the camera. In this thesis, virtual interfaces, such as Φ0, will be generally omitted
in the following illustrations.
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Figure 2.13: Left: Schematic illustration and parametrization of a FRS . Right: Object axis s1.

Layer. Layers are fixed with respect to a camera. They are plane-parallel, have a
thickness and a refractive index. Hence, the water area on the left side of Figure 2.13
is not regarded as a layer. The first layer is starting at the center of projection C of
the camera and it is characterized by the refractive index na. The planes bounding this
first layer are the virtual interface Φ0 and the real interface Φ1. The second layer is the
plane-parallel, transparent plate, which is characterized by the refractive index ng. The
planes bounding the second layer are the two interfaces Φ1 and Φ2. Note that the model
of layers and interfaces can be easily extended if additional plane-parallel media would
exist. In this thesis, there will be two layers of interest, namely the air layer and the
glass layer. A layer will be characterized by its thickness, which can be described by
distances along the system axis s0, and by its refractive index.

Refractive Parameters. The refractive parameters are basically adopted from the
parametrization of Agrawal et al. [Agr+12]. First of all, the orientation of the system
axis s0 has to be determined with respect to the camera. In the 2D illustration on the
left side of Figure 2.13, this is described by the angle δ. In 3D, the parametrization
has to be realized by a 3D vector or an equivalent representation, such as spherical
coordinates (See Figure 2.2). Besides the determination of the orientation of the system
axis s0, the layer thicknesses need to be determined. In this thesis, these will be the air
layer thickness ta and the glass layer thickness tg. As can be seen on the left side of
Figure 2.13, the air layer thickness ta amounts to the Euclidean distance between the
center of projection C of the camera and point S1 on interface Φ1 and the glass layer
thickness amounts to the Euclidean distance between point S1 and point S2 on interface
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Figure 2.14: Left: Schematic illustration and parametrization of a FRSS . Right: Schematic
illustration and parametrization of a SFRS .

Φs. Therefore, ta = d(C,S1) and tg = d(S1, S2). Further refractive parameters are the
refractive indices of all participating media (na, ng, nw).

Flat Refractive Stereo System. FRSS is the proposed term for the concatenation of
two individual FRSs, as can be seen on the left side of Figure 2.14. In this case, a stereo
camera forms the basis. As will be described in Chapter 3, this case is distinguished
from further concatenations of several individual FRSs. The main characteristic of
the model for a FRSS is that two cameras are mandatory for the specially developed
calibration approaches from the literature. The layers and interfaces are fixed with
respect to the single cameras and may differ. Therefore, the refractive parameters have
to be determined for each individual FRS . Additionally, the pose (rotation matrix R
and translation vector t) of the slave camera needs to be determined with respect to the
master camera.

Shared Flat Refractive System. SFRS is the proposed term for another special-
ization of the previously defined FRS . The schematic illustration on the right side of
Figure 2.14 shows a representative of this category. It contains a master camera and one
or multiple slave cameras. A slave camera can be described by its center of projection
C ′, its camera coordinate system (x′-axis, z′-axis and perpendicular y′-axis, which is
omitted in the illustration), its principal axis p′ and its principal point P ′. The main
characteristic of the model for a SFRS is that the layers and interfaces are shared by the
cameras. Therefore, the refractive parameters need to be determined only with respect
to the master camera. The refractive parameters with respect to the slave camera, or
cameras, can be implicitly established by their relative poses (rotation matrix R and
translation vector t) with respect to the master camera. Hence, the amount of parameters
gets reduced significantly. The target of this thesis is a SFRS with exactly two cameras.
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2.6 Summary
This chapter has shown that the physical phenomenon known as refraction of light
implicates some major consequences on the applicability of conventional computer vision
approaches that are made for aerial usage in underwater environments. The brief
descriptions of the basic concepts of stereo 3D reconstruction and the basics on refraction
have shown that an extension for the recovery of 3D structure from underwater images
is challenging and not straightforward. Implications, such as that refractive distortion is
due to its dependence on the imaged scene not an image space distortion, lead to the
fact that an approximation of underwater image formation by the pinhole camera model
with non-linear distortion terms is theoretically not feasible. Nevertheless, researchers
actively apply such approximation strategies, as will be seen in the following chapter.
The pinhole camera model is the very foundation of many conventional computer vision
approaches. Its invalidity under water has the direct consequence that, for example, the
naive combination of underwater imaging systems and stereo 3D reconstruction made for
aerial applications has to fail. Another important consequence is that epipolar geometry
is invalid as well. This makes a very efficient tool for increasing the performance of stereo
matching unavailable.
Consequently, starting with the calibration of an underwater imaging system, the
refraction of light needs to be considered explicitly. The law of refraction, its application
in the equations for ray tracing and a model for the apparent depth form the foundation
of the developments in this thesis. The proposed image formation model for this thesis
is the SFRS , with a water-glass-air transition of the light rays. It is characterized by
distinct layers and its parametrization contains an air layer thickness, a glass layer
thickness, an orientation of the system axis and the refractive indices of the participating
media. These parameters will be called refractive parameters in the remainder of this
thesis. Within this image formation model, refraction is considered explicitly. It has been
defined within the proposed taxonomy, which will be utilized in the following analysis of
related works. In the following chapter it will be shown that such an explicit modeling
of refractive effects is indispensable in general.
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Several methods for 3D reconstruction have been adapted to underwater environments
in recent years. A detailed survey can be found in the work of Massot-Campos and
Oliver-Codina [MO15]. An important first step is the calibration of the imaging system,
without which it would not be possible to regain metric information from image data.
In this chapter, the focus will be on calibration approaches from the related literature,
which are used to estimate the parameters of recording systems that are exposed to
refractive effects. It will become apparent that the main calibration strategies are to
either neglect these effects, to absorb them or to model them explicitly by additional
parameters. In the following, these three strategies will be analyzed with regard to
their major shortcomings. The amount of the visible refractive effects in an image is,
amongst other things, dependent on the shape of the refractive interface. In this thesis,
the shape of interest is a flat refractive interface and the recording system is a stereo
camera. Therefore, this chapter will primarily comprise publications that can be related
to this target system.
Calibration approaches made for aerial environments are usually based on image formation
following the pinhole camera model. An overview of image formation models used in
underwater imaging can be found in the work of Sedlazeck and Koch [SK12]. The major
part of this chapter will deal with the explicit modeling of refractive effects. As will
be seen in the following, this is indispensable if refraction is supposed to be handled
properly. Ultimately, the goal of this thesis is the estimation of the refractive parameters
originating from the model for a SFRS . At the end of this chapter, the approaches to be
developed in this thesis will be located in a categorization scheme together with relevant
related approaches.
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3.1 Disregard of Refractive Effects

The first strategy to handle refractive effects is to simply ignore them. This can be
realized in two ways, which are both founded on the pinhole camera model. The first is
to calibrate the recording system with a conventional approach in air before underwater
usage. The second is the application of a conventional in air calibration approach on
underwater images. Admittedly, the second way and the calibration strategy with
an absorption of refractive effects, which will be described in Section 3.2, are most of
the times difficult to distinguish. The weak criteria that are used for the following
categorization are that it is either not clear if the authors intentionally try to solve the
problems originating from refractive effects or that the authors do not mention refraction
at all.

Single Camera

Throughout their works on large area 3D reconstruction [PES04; PES09] and relative
pose estimation [PES03], the only information provided by Pizarro et al. concerning
camera calibration is that high quality calibration is assumed. Carreras et al. [Car+03]
present an approach for vision-based localization of an underwater robot in a structured
environment. The calibration of the intrinsic parameters of the camera is said to be done
off-line. The authors do not give any details. Rzhanov et al. [RHB14] propose a method
for close-range Euclidean 3D reconstruction of underwater scenes with a single free moving
camera. The camera is calibrated with the aid of the Camera Calibration Toolbox for
Matlab [Bou08], while refractive effects are apparently ignored. The reconstructed results
are not evaluated. Pessel et al. [POA03a; POA03b] describe a method to determine the
intrinsic parameters of a single camera by self-calibration in an underwater environment.
Apparently, the authors ignore the refraction of light. Although they evaluate their
results with simulated data, it has to be assumed that refraction has not been considered
during simulation as well, since there is no detailed explanation given. This would result
in a systematical error.

Stereo Camera

Addressing Calibration Indirectly. There is a number of works that deal with
stereo camera calibration indirectly, since it obviously is integrated into their workflows,
but apparently it is not the primary concern of the author’s developments. In [Joh+10]
the authors deal with large-scale 3D reconstruction from underwater robotic surveys.
Stereo calibration is done in a pool prior to the deployment. However, the authors do
not provide their intentions on why they are doing this. The results are said to be of
reasonable quality, although the resulting errors are in centimeter range. Beall et al.
[Bea+11] deal with the same application. The only provided information concerning
stereo camera calibration is that high quality calibration is assumed. In [Jas+08] the
authors deal with underwater 3D mapping and pose estimation for ROV Operations.
They just mention the use of a calibrated stereo camera and make the statement that the
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resulting 3D model shows a slight bend. Brandou et al. [Bra+07] do 3D reconstruction
of small-scale scenes with a stereo camera. The camera parameters are calculated off-line
from underwater images using the Camera Calibration Toolbox for Matlab [Bou08]. Since
there is no evaluation of the results, it can not be analyzed if there are any discrepancies
due to ignoring refractive effects.

Addressing Calibration Directly. The following works deal with camera calibration
more or less directly. Kunz & Singh [KS10] aim at self-calibration of the extrinsic
parameters of an underwater stereo camera and a scale in the context of producing
metric maps of the seafloor. Visual information and navigation data acquired by an
AUV are used for calibration. The question whether or not it is possible to do a full
self-calibration (intrinsic and extrinsic parameters) the authors have not yet answered.
The authors remark that even with high quality lenses, distortion is an issue underwater,
since refraction renders the pinhole camera model incorrect (Referencing [TSS08; Tre+12])
and that it probably should not be ignored. In [SR12] the authors present preliminary
results of the measurement of the 3D topography of the seafloor with a consumer stereo
camera. Its calibration is done with the Camera Calibration Toolbox for Matlab [Bou08].
The authors claim that calibration is performed under water for compensation of lens
distortion. The refractive distortion is not mentioned. After calibration, a surface is
generated by stereo 3D reconstruction. However, only a qualitative analysis of the
results is performed by the authors. Wehkamp & Fischer [WF14] present a workflow
for stereoscopic measurements for marine biologists. The work is a step-by-step guide
for non-experts. The described procedure is said to be sufficiently precise to meet the
authors goals, which are that it should be practical. As in the previous approach, the
calibration is done with the Camera Calibration Toolbox for Matlab [Bou08]. Refractive
effects are ignored throughout the paper. Silvatti et al. [Sil+12; Sil+13] compare three
different underwater camera calibration approaches and analyze their accuracy in the
context of swimming kinematics. The authors experiment with static control points and
nonlinear DLT ([Hat88]), with a moving wand, a nonlinear camera model and bundle
adjustment ([Tri+00]) and with a moving 2D calibration object and Zhang’s method
([Zha00]). The refraction of light is not mentioned in the paper. Hence, it can not be
determined if the authors intentionally aim at absorption of the refractive effects by
their approach. Only an acquisition volume of a fixed size is calibrated and evaluated. A
common problem with these approaches is the increase of errors outside of this volume.

Findings

The various underwater applications that are relying on camera calibration demand
different requirements in terms of accuracy. Sometimes the authors prioritize practicality
of the approaches over accuracy. On large-scale 3D reconstruction, the common goal
is to generate a visualization of large structures. The focus does not lie on details and
hence, accuracy is not the priority. In these cases, refractive effects are mostly ignored.
Since many approaches are often tested immediately in the field, there is no ground truth
data to evaluate the results. A more careful strategy would be a previous evaluation in a
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controlled environment to identify sources and amounts of error. Besides often missing
evaluations, the approaches mentioned above contain only qualitative evaluations or
evaluations that might be corrupted and the details on camera calibration are mostly
very unspecific. Sometimes it is not even clear, if the cameras are calibrated in air or in
water. As demonstrated in the previous chapter (Section 2.4), refractive effects can be
severe and should not be ignored, which has been indicated in this section by Kunz &
Singh [KS10] as well.

3.2 Absorption of Refractive Effects

The second strategy to handle refractive effects is to let the conventional intrinsic camera
parameters absorb them. Hence, it is also based on the pinhole camera model. The
absorption is realized in form of an application of a conventional calibration approach
for in air usage on underwater images. The refractive effects are expected to be absorbed
by the focal length and radial distortion terms. In contrast to the strategy before, the
authors perform this absorption strategy intentionally and analyze its capabilities to
compensate the refractive effects.

Relation between the Focal Length in Air and Water

In an early analysis of the calibration of underwater cameras, Fryer and Fraser [FF86]
regard refractive effects in FRSs as radial distortion. They claim that the total effect of
radial distortion due to refractive effects can be obtained by subtracting the calibrated
radial distortion in water from those in air. Additionally, they claim that refractive
effects cause the focal length in water to increase by a factor equal to the common
value of the refractive index of water. Lavest et al. [LRL00; LRL03] propose that
the intrinsic parameters of a submerged camera can be computed from a calibration
in air. Therefore, the refractive surface between water and air has to be flat and the
refractive index of both media has to be known. Like Fryer and Fraser [FF86], they
propose that the focal length of the camera is equivalent to the value measured in air
multiplied with the refractive index of water. Concerning distortion, they have not been
able to determine the relationship between air and water and claim that it is doubtful if
such a relationship exists. According to their results, the image principal point remains
unchanged. The authors conclude that the fit between their theory and measured data
is almost completely fulfilled. In a recent publication, Agrafiotis & Georgopoulos [AG15]
disagree with the proposal of Lavest et al. [LRL00; LRL03]. Their experiments show
that the effective ratio between the focal length in air and water is proportional to
the percentages of air and water in the total camera-to-object distance. Rahman et al.
[Rah+13] also report that the factor between the focal length of a camera calibrated in
air and in water, respectively, is not exactly the refractive index of water and that the
image principal point is significantly different, which is in contradiction with [LRL00;
LRL03].
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Indication for Sufficient Absorption Capabilities

Kang et al. [KWY12a] argue that the pinhole camera model with radial distortion
correction and a focal length adjustment can compensate for refraction in underwater 3D
reconstruction. Despite knowing that the conventional pinhole camera model is invalid
and that refractive distortion cannot be modeled by an image space distortion model
in theory, the authors claim that refractive distortion can be well approximated if a
proper similarity transformation is applied to the scene structure. The authors perform
experiments with simulated and real data to quantitatively evaluate the influence of
refraction on the accuracy of their proposed model in underwater 3D reconstruction. In
later publications [KWY12b; Kan+15] (See Sections 3.3.5 and 3.3.6) the authors depart
from this strategy and tend to model refraction explicitly.
Sedlazeck et al. [SKK09] present a structure from motion system for 3D reconstruction
from underwater images and videos. The authors are aware of the refractive effects and
conclude that the camera needs to be calibrated in-situ or that the camera calibration
above water needs to be converted with an approach like the one of Lavest et al. [LRL00].
The pinhole camera model with radial distortion terms is used and a calibration in a
water tank is said to be sufficiently accurate for the authors purposes. Since there is no
ground truth data available, the 3D reconstructed results are not evaluated for accuracy.
In a later publication [JK12] (See Section 3.3.5) the authors rely on a strategy that
models refraction explicitly.

Indication of the Incompleteness of Absorption Capabilities

Harvey and Shortis [HS95] deal with the calibration of an underwater stereo camera in the
context of length measurement of marine biological specimens. In later publications of the
same authors, they provide insight into their concepts [SH98] and into stability issues of
the calibration approach [HS98]. They explicitly mention the complications of underwater
length estimation due to refractive effects and that calibration must incorporate these
effects at the various air-glass and glass-water interfaces. Their underlying model does
not contain explicit terms for refractive effects, since the authors conclude from related
works [LTZ96; FF86] that the principal component of the refractive effect is radial. The
assumption is that refractive surfaces are in general perpendicular to the image plane.
As a consequence, their approach is to allow the refractive effects to be absorbed by the
conventional camera parameters. Their reasoning is that the calibration of the complete
system under prevailing conditions is likely to be more accurate and reliable. Therefore,
they use a purpose built 3D control frame under water for a so-called self-calibrating
multi-station bundle solution [Gra80]. Their results imply a consistent under-estimation
of length measurements [SH98]. The authors conclude in [HS98] that the disadvantage
of the algorithm is the incompleteness of the model concerning refractive effects, since it
is unlikely that these can be completely modeled by the conventional camera parameters.
In a later publication of the same authors [Sho+00], they conclude that a significant scale
bias remains and a potential source amongst others is the incomplete refraction model.
In a recent publication based on the same concepts [SHA09], the authors conclude that
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there is the need for an additional modeling of light paths and that any imaging system
in water is unlikely to match the precision and accuracy of the equivalent configuration
in air. In a more recent publication, Shortis [Sho15] mentions systematic errors in the
absorption approach. Nevertheless, these errors are said to be generally less than the
precision that can be achieved by the measurements when the ranges for calibration and
measurement are commensurate.
The authors of [FM11] present results of a study on camera calibration for swimming
kinematics. They make use of the DLT method [Abd71]. Target for the calibration are
large calibration volumes made from aluminum, which were filmed by cameras under and
above water. The authors report higher errors during underwater analysis and speculate
that this is possibly due to refraction.
Kwon et al. [KC06] pursue various strategies to minimize errors of camera calibration
approaches due to refractive effects. Their field of research is underwater motion analysis.
They argue that it is impossible to remove/absorb the refraction error completely with
conventional camera calibration methods [KC06]. They review the shortcomings of the
DLT method [Abd71] for camera calibration. An example is that it can not correct
nonlinear errors caused by refraction because it simply provides the best fit for a given
experimental setup. They claim that although image deformation caused by refraction
appears to be similar to pin-cushion distortion, there is a fundamental difference [KL00].
Therefore, the extended DLT method with additional DLT parameters to account for
lens distortion [MK75] is said to be also not able to correct the error due to refraction.
The authors conclude that a decreased overall reconstruction accuracy in the control
space occupied by the calibration object, a large error at the boundary of the control
space and an even larger error outside the control space is to be expected for DLT
methods [KL00]. The need for a large control frame is said to be a disadvantage. For
error reduction, the authors propose the localized DLT method [KL00] and the double
plane strategy [KAP02], which both lead to an improvement, but can not correct the
errors completely. In their most recent work [KC06], the authors conclude that to correct
image deformation caused by refraction, calibration must include a refraction correction
model like the one in their theoretical work [Kwo99], which has been tested only by
simulation.

Assessment of Absorption Capabilities

The required setup for the absorption strategy to work is a flat refractive interface with
its normal being perpendicular to the image plane. In such a setup, the refractive effects
are said to behave like a radial distortion. Concerning this, Treibitz et al. [Tre+12]
show that the refractive distortion is not merely radial and that it depends on the object
distance in addition to the radial coordinate. Telem and Filin [TF10] also propose that
the assumption to have aerial-like radial properties is inaccurate. It is confirmed by the
results from synthetically rendered images of Kang et al. [KWY12b] that an image-space
distortion model for radial distortion is incapable of compensating for the refractive
effects. Jordt-Sedlazeck and Koch [JK12] tested the absorption strategy by calibration
of a stereo camera. They found in their experiments that part of the refractive effects
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is absorbed by erroneous camera poses, especially by translation. Their results of a
computed 3D point cloud differ strongly from the ground truth data. The authors propose
that the resulting errors grow with increasing interface distance and with stronger tilt of
the interface normal with respect to the image plane. Similarly, a remark of the analyzes
of Kang et al. [KWY12a] reads: "Under general configuration, the refractive distortion
in an image is neither symmetric with respect to the image center nor monotonic along
the radial direction". Hence, in a more general setup with non-perpendicularity between
the interface normal and the image plane, the absorption strategy becomes even more
unreliable.
Nevertheless, some researchers propose requirements where absorption leads to an
acceptable approximation. By referring to [SGN03], Kang et al. [KWY12a] propose that
if the locus of the caustic surface (See Section 3.3.1) is small, it can be approximated by
the pinhole camera model. Similarly, Treibitz et al. [Tre+12] propose that one should
place the camera such that the distance to the refractive interface is as small as possible
in order to make the pinhole camera model more valid. They further propose, that
the pinhole camera model can be used for approximation when working at a constant
range, which should be the range in which the calibration was performed. Concerning
the field of view, they say that the approximation should probably not be used if it is
wide. Similarly, Kang et al. [KWY12a] propose that if the field of view is small, it can
be approximated using the pinhole camera model.
The absorption strategy is also dependent on the used calibration object. Boutros et al.
[BSH15] compare approaches utilizing 3D and 2D calibration objects with the outcome
that calibration with a 3D object improves the measurement accuracy. Kunz and Singh
[KS08] comment on the attempt to build a large 3D model from several overlapping
sets of images, without modeling refractive effects, that the accumulated error would
quickly lead to inconsistencies in the reconstruction and conclude: "For a typical setup,
2D distortion can be largely compensated for with nonlinear lens distortion terms in the
perspective projection model, and 3D error is small compared to that induced by errors
in camera motion estimation and pixel correspondence estimation. But these attempts
to minimize refraction-induced distortion will ultimately fail when several images are
used together for large-scale photomosaicking and structure from motion modeling.".
Maas concludes in his work [Maa15b]: "neglecting the effects caused by refraction in
the imaging process or trying to absorb it by standard lens distortion compensation
parameters contributes to a degradation of the quality of results".

Findings

The absorption of the refractive effects by the parameters of the pinhole camera model
with radial distortion is a quite common strategy, since it involves the simple application
of algorithms made for usage in air and no adjustments need to be performed for the
underwater environment. However, this strategy shows an incomplete elimination of
refractive effects. In general setups with non-perpendicularity between interface normal
and image plane the resulting errors get severe. This shows that refractive effects need
to be modeled explicitly.
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3.3 Explicit Modeling of Refractive Effects

The third and most important strategy to handle refractive effects is to model them
explicitly. Huang et al. [HL14] propose and evaluate that even the presence of a flat
refractive interface in front of a camera, without being submerged in water, induces
distortions that can not be modeled by radial distortion. Together with the findings from
the previous section, this shows that modeling of refractive effects is indispensable. As
described in Section 2.5, this introduces additional parameters to the image formation
model, which need to be incorporated into the calibration procedure. After calibration of
the refractive system, it is possible to trace rays from the image sensor physically correct
back into the scene. Besides 3D reconstruction with the aid of ray tracing, it is also
possible, for example, to do a distance dependent correction for refractive effects in the
image space when the system is calibrated like in [KFO03]. Somewhere in between the
strategy to model refractive effects explicitly and the absorption strategy, the work of
Ferreira at al. [FCS05] can be located. They propose an approximation approach to
handle the refractive effects, which is restricted to small incidence angles and hence is
not universally valid.
The first part of this section will be a review of the basics that are needed for the
calibration, such as image formation models and their corresponding projection properties
with regard to refraction. This will be followed by an analysis of the additional refractive
properties of the whole system. These are the refractive indices of the participating media
and the layer thicknesses as well as the approaches for their determination. The major
part of this section will comprise the actual calibration of FRSs and their specializations.
Another aspect will be the review of necessary calibration objects, since it is a goal
of this thesis to reduce or even eliminate dependencies on calibration objects. Finally,
the relevant reviewed approaches will be categorized according to their restrictions to
generate a meaningful tabular representation.
In this section, the focus will be on FRSs. Besides the approaches that will be analyzed
in the following, there are approaches that are restricted to a different kind of interface
or that are able to handle further interfaces besides flat refractive ones. Therefore, some
interesting representatives of these approaches will be mentioned here in passing for the
interested reader. In [Yam+03] the authors propose an approach for calibration of a
system for 3D measurement, composed of a cylindrical interface placed on a turntable,
a camera and a laser range finder. Another system developed by the same authors is
presented in [Yam+11]. Two omni-directional cameras placed in an acrylic waterproof
tube are calibrated. In [YSK10] the authors calibrate a monocular stereo vision system.
The system is composed of a single camera and a tank that essentially works as a beam
splitter. Yano et al. [YNM13] use a double calibration target with two separated checker
patterns. Only one of those patterns is submerged. This setups is used for the calibration
of cameras that are imaging into a fish bowl. In [Bos+15a; Bos+15b] the authors calibrate
a system composed of six cameras in an underwater housing made out of a cylinder and
a hemisphere on top of it. Another scenario is the reconstruction of the 3D position and
the surface normal of arbitrarily shaped refractive interfaces like the wavy surface of a
liquid [MK11].
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Figure 3.1: Left: Refractive back-projection of image point I to ray w in water. Right: Refractive
forward projection of object point O to image point I.

3.3.1 Refractive Image Formation

The calibration of a refractive system is supposed to determine the parameters that are
relevant to the process of the image formation. Its foundation is a camera model with
a corresponding projection scheme that is suitable with regard to refraction. Closely
associated with this is the work of Chari and Strum [CS09]. The authors present multi-
view relationships between cameras in the case of a single flat refractive interface. In
their theoretical work, they show the existence of structures like the fundamental matrix
and the homography.

Refractive Back-Projection

If refraction occurs, the inverse process to image formation is refractive back-projection.
The purpose of refractive back-projection is a transformation from a 2D image point I
to its corresponding 3D ray w in the scene (See left side of Figure 3.1). This can be
partly realized by the principle for back-projection described in Section 2.2 to calculate
the starting direction of ray a in the camera coordinate system. If a refractive interfaces
exists, the difference is that each ray has to be refracted at each interface it has to pass
(Φ1 and Φ2). Hence, the intersection points (R1 and R2) have to be computed and the
ray’s direction has to be changed at these points according to Snell’s law (See Section
2.3.2). The whole process is essentially a ray tracing approach and is straightforward in
a calibrated system. However, its computational expense is severely higher than the one
of back-projection based on the pinhole camera model.
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Refractive Forward Projection

In this case, a 3D point O in the scene has to be transformed to an image point I on
the image plane (See right side of Figure 3.1). Because of the refractive interfaces, this
amounts to a ray tracing approach as well and hence, the principles from Section 2.2
can not be applied. In contrast to the refractive back-projection, no starting direction of
the ray w in water is given and just the 3D coordinate of O is known. Hence, the direct
computation of image point I by using Snell’s law is not possible.
In [GS00] the authors define an equation for the forward projection in the case of a
single flat refractive interface. To solve the equation, the roots of a polynomial of degree
four need to be determined. Chang and Chen [CC11] build upon the so-called refrax
[GS00], which is the point on the refractive interface where the refraction happens (e.g.
R1 and R2 in Figure 3.1). They define the so-called refrax ratio and incorporate it into a
forward projection equation. A simplification is expected by separating the process in a
refractive projection to get the refrax, followed by a conventional perspective projection.
For computation of the refrax, solving an equation of degree four is necessary. Agrawal
et al. [Agr+12] derive analytical forward projection equations for refractions at flat
interfaces. They derive an equation of degree four for the case of an air-water and an
air-glass-air transition and an equation of degree twelve for the case of an air-glass-water
transition.
Alternatives to solving equations of degree four or twelve are approaches that prefer
approximations or iterative solutions. Duda and Gaudig [DG16] propose and approxi-
mation of the refractive forward projection by first-order Taylor expansion. Yau et al.
[YGY13] perform a 1D bisection search for the angle of a camera ray in the plane of
refraction for a given 3D point. This approach is said to be accurate and reasonably fast.
While the authors of [Han+15] propose a forward projection similar to [YGY13], Mulsow
[Mul10] proposes the so-called alternating forward ray tracing (noteworthy: forward
means in this case back-projection, since the definitions between computer vision and
photogrammetry are contrary). Another iterative solution is developed by Maas [Maa92;
Maa95; Maa15a; Maa15b]. It is suited for FRSs and is said to be easily extendable to an
arbitrary number of interfaces [Maa15b]. Instead of real object points, VOPs are used.
This approach will be briefly reviewed in Section 4.2.

Refractive Forward Projection by Virtual Cameras

As has been already shown in Section 2.4, the pinhole camera model is invalid if a flat
refractive interface between media with different refractive indices exists. In contrast
to the conventional perspective projection in air, there is no single center of projection,
which would allow an approximation of the image formation by the pinhole camera model.
Nevertheless, the pinhole camera model can be useful to derive virtual camera models
that represent an alternative to refractive forward projection. These virtual camera
models usually have in common that the locus of the virtual centers of projection of a
FRS has a 3D extent.
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Figure 3.2: Left: Caustic surface. Right: Axial camera.

Caustic Surface. A way to characterize a FRS is by the term non-single viewpoint
model. Treibitz et al. [TSS08; Tre+12] show that the system has indeed no single center
of projection and instead propose that the locus of viewpoints is a caustic surface. A
2D visualization of such a 3D caustic surface, to which all rays wi,..,n are tangent, is
illustrated by ∆ on the left side of Figure 3.2. Similarly, [SK11] propose that all the rays
meet in a singularity of the bundle of rays wi,..,n with its locus ∆ being a caustic surface.
Such a caustic surface describes a number of virtual centers of projection.

Axial Camera. A recent and important finding regarding the center of projection
in FRSs is proposed in the work of Agrawal et al. [Agr+12]. The FRS is proposed to
be an axial camera. A visualization of such an axial camera is illustrated by ∆ on the
right side of Figure 3.2. The axial camera is characterized by a system axis s0, which is
the interface normal that passes through the center of projection C of the camera. All
planes of refraction and hence all refracted (solid black) and non-refracted (solid blue
turning dashed blue) rays intersect in this system axis s0, which therefore contains the
locus ∆ of the virtual centers of projection. In terms of computational complexity, the
determination of this axis is considerably more efficient than the determination of the
caustic surface.

Virtual Camera Models. Telem and Filin [TF10] propose a virtual camera model.
It is derived for a FRS with perpendicularity between image sensor and interface normal
and gets extended for the case of non-perpendicularity later on. The thickness of the
interface is neglected. Their concept is based on the assumption that the principal axis of
the camera, an incident ray and the related refracted ray lie in the same plane. In [SK11;
SK12] the authors comment on this publication that they found that the ray coming
from water not necessarily intersects the principal axis if the interface is not parallel to
the image sensor. Hence, Sedlazeck and Koch [SK11] propose their own virtual camera
model based on the assumption that the locus of virtual centers of projection in a FRS

39



3 Related Works

is a caustic surface. For every 3D point that needs to be projected, a virtual camera
with the caustic point as the center of projection needs to be computed. The caustic
points are computed numerically. Jordt-Sedlazeck and Koch [JK13] build upon their
ideas in [SK11], but do not rely on the caustic surface any more. Following [Agr+12],
the virtual centers of projection are defined with the aid of an axial camera. With the
proposed virtual camera models in [SK11; JK13] the refractive forward projection can
be replaced by perspective projection of a 3D point onto the image plane of its virtual
camera. However, the necessary computation of a virtual camera per 2D image point
results in a computational overhead. Furthermore, the known 2D point on the real
image needs to be transformed onto the virtual image in an additional processing step.
The coordinates of both 2D points can then be used in the context of calibration by
minimization of the reprojection error.

Cost Functions

A vital step for calibration approaches is the definition of cost functions that can be
minimized during an optimization problem to determine the necessary parameters. The
cost functions that can be found in the literature are mainly 2D image errors or 3D scene
errors. The 2D cost functions that is most commonly used is the reprojection error (See
Section 2.2.2). As will be seen later on, this is also the case for underwater calibration
approaches. If refraction occurs, the necessary refractive forward projection of 3D points
is realized as described in previous sections.
The ability of stereo cameras to compute 3D scene geometry from both images by
refractive back-projection and subsequent intersection of the resulting rays makes it
possible to utilize 3D scene cost function. An example is the measurement of known
3D objects, as proposed in [Brä+15a; BKN15; Brä+15b] or [TSS08; Tre+12]. Another
example is proposed by Gedge et al. [GGY11]. There, the distance between the refracted
rays belonging to a pair of corresponding pixels is used. Similarly, Li et al. [Li+97]
and Servos et al. [SSW13] use the triangulation error of corresponding refracted rays
by determination of their shortest distance. Henrion et al. [Hen+15] use the so-called
residual, which is defined to be the shortest distance between a known 3D calibration
point and its corresponding ray.

Correspondence Curves

Since the pinhole camera model is invalid in a FRS , the conventional epipolar geometry
can not be used to determine epipolar lines (See Section 2.4). Nevertheless, Chari and
Sturm [CS09] show the theoretical existence of structures like the fundamental matrix.
They also show that a 3D line is mapped to a quartic curve in a FRS with a single
interface. The computation of these curves is closely connected to refractive forward
projection. These curves allow a reduction of the search space for corresponding pixels
in the two views of a stereo camera from the whole image to a single curve, the so-
called correspondence curve. Gedge et al. [GGY11] propose a sampling strategy for the
computation of correspondence curves in a FRS with a single interface (glass thickness
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is neglected). Therefore, they sample a 3D ray in space. For every sample point, an
equation for refractive forward projection of degree four is solved. The resulting 2D image
points are connected to a curve by piecewise linear approximation. This approach is also
adapted by [SSW13]. A similar approach, which is based on ray tracing, is proposed by
[Maa92; Maa15b]. Another ray tracing approach for the calculation of correspondence
curves is mentioned by Yamashita et al. [YKK06; YSK10; Yam+11; Nar+12], but not
explained in detail.

Findings

The refractive back-projection requires the computation of the ray direction and the
point of refraction at every interface and is hence severely more complex than in air.
The refractive forward projection is even more computationally expensive, as no direct
computation is possible. Instead, equations of degree four (single interface), twelve (two
interfaces), or iterative solutions are necessary. Common cost functions that are used in
air can essentially be adapted with the aid of the refractive projections. The computation
of correspondence curves as counterpart to the epipolar lines in air is also severely more
complex, since it directly depends on refractive forward projection. Virtual camera
models are an alternative to refractive forward projection, but require the computation
of a virtual camera and two projections per 3D-2D point correspondence.

3.3.2 Refractive Indices

In this section, a brief overview on the determination of refractive indices of the partici-
pating media will be presented. In the most common case, these are air, water and some
kind of glass or perspex. The values for air and water are generally close to 1.0 and 1.33,
respectively.

Determination in a Non-submerged System

The first case to be considered is a camera with its protective medium in front of it,
but without being submerged in water. There are only few approaches to determine the
refractive index of a transparent and flat medium from image data. Shimizu and Okutomi
[SO08] use the concept of reflection stereo to calibrate a double-sided half-mirror plate in
a complex setup. Chen et al. [Che+11; Che+12] determine the refractive index of the
medium from three different images of the scene. The first image is taken without and
the other two with the medium in front of the camera. It is necessary that the medium
is positioned in two different poses. Agrawal et al. [Agr+12] derive equations that can
be used to incorporate unknown refractive indices into their calibration approach. For
the case of air-water and air-water-air, this results in solving an equation of degree six
and good initial guesses are required. For the case of air-glass-water, the authors could
not obtain an analytical equation.
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Determination in a Submerged System

In the case of a submerged FRS , there are only few approaches that incorporate unknown
refractive indices into their optimization problems for calibration. Telem and Filin [TF10]
calibrate the refractive index of water, while neglecting the interface thickness. Servos
et al. [SSW13] also neglect the interface thickness and determine the refractive index
of air and water, but do not evaluate their results in detail. Maas [Maa92] mentions
that the incorporation of the refractive indices into his bundle adjustment solution raises
some problems that result in questionable estimates. In a later publication however,
Maas [Maa95] presents practical tests. According to the author, the refractive index of
water could be determined with an accuracy that is better as the one of most commercial
refractometers. Similarly, Mulsow [Mul10; MM14] determines the refractive index of
water. In his approach, the solution would become singular if all refractive indices would
be incorporated. Maas and Mulsow both use a calibration setup with restrictions, as will
be briefly presented later on. A completely different strategy is proposed by Yamashita
et al. in [YIK05]. The estimation is done in form of an exploratory search by changing
the refractive index gradually while the consistency of a 3D measurements is checked. A
different approach of the same authors is proposed in [YFK08]. For this approach to
work, images of objects that are partly submerged and partly in air are necessary and
the system needs to be calibrated. There are also approaches, where the authors report
that it is theoretically possible to calibrate the refractive indices, such as in [Ke+08],
[Hen+15] or [Li+97], but instead decide to use known values or direct measurements.

Findings

In summary, most of the described approaches require either a special configuration
of the imaging system or a special calibration setup. Most of the approaches are too
restricted or even too complex to compute. The best reason to omit the determination
of the refractive indices during calibration is that they are generally known in the case
of air and water. A common referencing of authors (For example [SK11], [Tre+12]) is
that according to Mobley [Mob94], the index of refraction of water changes only about
2% in the whole relevant range of water bodies. The changes depend on the optical
wavelength as well as water temperature, salinity and depth. A possibility to obtain this
value, which is also used by Maas [Maa15b], is an empirical formula proposed in [Höh71].
The refractive index of the protective medium is generally known from the manufacturer.
Besides this, the refractive indices can also often be measured directly.

3.3.3 Layer Thicknesses

Besides the refractive indices of the participating media in a refractive system, there
are further properties that are important. Following the parametrization described in
Section 2.5, these are the thicknesses of the parallel layers that are fixed to the refractive
system. Subject to this section are the thicknesses of the fixed layers after the air layer.
The number of layers can be arbitrary, but the most common case is the water-glass-air
transition with a fixed air and glass layer. In this case, this is only the glass layer.
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Disregard

A common strategy, especially for systems comprising a water-glass-air transition, is to
simply neglect the thickness of the glass layer. Representatives of this strategy are, for
example, [Yam+04], [KYK09] and [CC11]. Telem and Filin [TF10] analyze the effects
up to a layer thickness of 4mm and conclude that this quantity can still be considered
negligible. Treibitz et al. [Tre+12] propose that the shift caused by the glass layer is
smaller in magnitude than the shift caused by angular refraction. Hence, they neglect its
thickness, but also mention that as the glass thickness increases, the effect of the shift
may become significant. Relying on [Tre+12], Gedge et al. [GGY11] and Servos et al.
[SSW13] also neglect the glass layer thickness.

Explicit Determination

Each layer thickness can be part of refractive calibration. Agrawal et al. [Agr+12]
present an approach where the thickness of multiple layers in a FRS can be obtained
linearly when the system axis and the refractive indices are known. Within simulations,
the authors show that the thicknesses of multiple layers can be approximated by simpler
cases, such as a single layer or two layers. Yau et al. [YGY13] propose an approach
that is based on [Agr+12] and hence similar. Chen and Yang [CY14] also incorporate
the estimation of layer thicknesses into their calibration approach. After extensive
testing with a setup comprising two refractions, the authors strongly recommend that the
thickness of the layers should be excluded from the calibration. Yamashita et al. [YIK05]
propose a system that can determine the full shape of a refractive surface. For their
experiments they use a flat refractive surface, a camera and a point laser on a manipulator.
The refractive surface is reconstructed by observation of the laser reflections on the
surface, followed by triangulation. The relations between camera, laser and manipulator
are assumed to be calibrated beforehand.

Direct Measurement

The most comfortable case is when the layer thicknesses are known. They can most
of the times be measured directly or are known from manufacturer data [Tre+12].
Li et al. [Li+97] mention that the thickness could be solved for, but decide to use
direct measurements. Belden [Bel13] simulates the thickness estimation. His results
are inaccurate estimates and hence, he proposes that the thickness should be fixed and
measured. It is very common to assume known layer thicknesses, as can be seen by the
vast amount of representatives: [Yam+03], [KS08], [Ke+08],[Mul10], [YSK10], [SK11],
[JK12], [Nar+12], [Maa15b], [Han+15] and [Hen+15].

Findings

In summary, the glass layer thickness has to be modeled explicitly, since the amount of
its effects can be significant as the thickness increases. Especially in deep sea exploration,
cameras need to be protected by housings with a thickness in the range of centimeters.
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An aquarium can also reach this range quickly. The glass layer thickness should not be
calibrated because of reported inaccuracies and the computational overhead. The best
reason to omit the determination of the thickness during calibration is that it often can
be measured easily or is even already known from manufacturer data.

3.3.4 Specialized Calibration Approaches

This section is supposed to represent a brief overview on calibration approaches that
are characterized by some specializations, which usually require certain setups. The
described examples are systems, where the camera needs to be in motion relative to
the refractive interface, non-submerged systems or approaches that depend on special
calibration devices.

Camera Motion Relative to the Refractive Interface. The focus of this thesis
is on optical imaging systems that are characterized by flat refractive interfaces and
cameras, which form a fixed unit. On the contrary, there are also systems that do not
form fixed units and which are characterized by cameras in motion relative to a refractive
interface. An exemplary calibration approach for such a system is proposed by Chang
and Chen [CC11]. The authors use a single camera moving around a scene with the
water surface in an aquarium being the refractive interface. The camera is equipped
with an inertial measurement unit (IMU) to provide necessary information, which is
incorporated within a structure from motion framework.
Another exemplary approach is proposed by Mulsow et al. [Mul10; MM14]. The authors
make use of calibration objects, which are fixed to the refractive interfaces. They
experiment with a flat refractive interface [Mul10] and a more complex one [MM14]. The
known calibration objects are fixed to the interface between water and glass as well as to
the interface between air and glass. Multiple images of the system need to be taken by
moving the camera in front of it.

Calibration of Non-Submerged Systems. Chen et al. [Che+11; Che+12] propose
an approach to recover the orientation of a flat refractive interface between a camera and
an object in air. Therefore, the scene is captured twice, once with and once without the
flat refractive interface. Since the setup contains only an air-glass-air transition, there is
just a depth-independent shift due to the refraction in glass. Therefore, the distance to
the interface can not be estimated.
Closely related is the calibration approach for so-called reflection stereo systems of
Shimizu and Okutomi [SO08]. In such a system, a single camera is imaging through a
transparent flat refractive medium (air-medium-air transition). The authors perform
experiments with a double-sided half-mirror plate with a 75% reflection ratio to generate
the needed, so-called complex images, which contain stereo information from multiple
reflections.
Huang et al. [HL14] develop an approach for the calibration of the intrinsic camera
parameters in the case of an existing perpendicular flat refractive interface, but not for
the refractive parameters.
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Special Calibration Devices. Narasimhan and Nayar [Nar+05; NN05] propose a
calibration approach in the context of light stripe range scanning. Therefore, they need
a camera and a DLP projector outside a water filled aquarium and two known planes
with a number of a priori measured 3D points on them placed vertically and at known
distances in the aquarium. Their approach is based on the raxel model of [GN05], which
means that a pixel on the image is connected to its corresponding ray in water. Therefore,
no explicit calibration of refractive parameters is performed. The projector is used to
sweep a light stripe over the planes to connect the image points with the 3D points. The
remaining points have to be interpolated.
Yau et al. [YGY13] extend the work of Agrawal et al. [Agr+12] by considering the
dispersion of light. Therefore, they use a special calibration device for the calibration of a
FRS with an arbitrary number of layers. The device is described as a watertight acrylic
enclosure that contains a number of LEDs. The LEDs are arranged in a grid pattern
with known coordinates. Point light sources with a measurable amount of dispersion are
generated by one half of a LED emitting light of blue color and one half emitting red color
simultaneously. The so-called dispersion constraint is used for estimation of the system
axis. For the estimation of the layer thicknesses, the so-called wavelength triangulation
constraint is defined. The estimated parameters are refined by non-linear optimization
by minimizing the reprojection error. For the approach to work, the refractive indices
of the participating media have to be known, the intrinsic parameters of the camera
have to be calibrated, the images have to be corrected for chromatic aberrations and the
image noise must be reduced in a pre-processing step.
Motivated by the approach of Yau et al. [YGY13], Chen and Yang [CY17] propose an
approach for the calibration of a FRS , which makes use of triple wavelength dispersion.
They determine the system axis in the same way as Yau et al. [YGY13]. Their major
contribution is the derivation and proof of a solution for the determination of the air
layer thickness that can be applied after the system axis is determined. They do not need
any calibration objects. However, to generate the required triple wavelength dispersion,
they need a device to illuminate the scene consecutively with red, green and blue light.

Findings

All of the described approaches require special setups. Cameras that are not fixed to the
refractive interface can be seen as a special form of SFRS . Equipping the camera with
an IMU, however, depends on an actual movement to gather the required information.
Approaches that require to fix calibration objects to the refractive interface are a common
alternative for the calibration of refractive systems, as will be seen in the following
sections. However, this is not always realizable. Non-submerged systems could be used to
calibrate a refractive system before underwater deployment, but the presented approaches
are too restricted by their necessary setups. The utilization of special calibration devices
represents a similarly severe restriction.
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Figure 3.3: Schematic representation: Calibration object (CO) fixed to the refractive interface
Φ1. A transformation (R, t) links the CO and the FRS .

3.3.5 Flat Refractive Systems

Due to their different parametrization and naming conventions, it is difficult to produce
a uniform representation of the various calibration approaches of FRS from the literature.
Therefore, it is the intention to map the essential properties of the different approaches to
schematic representations of the current setup, which will be shown at the beginning of
each category. In these schematic representations, the relevant entities and their linkage
will be illustrated.

As proposed in the previous section, fixing calibration objects to the refractive interface
is a common alternative for the calibration of refractive systems. In the case of FRSs,
the most convenient way is to use the air-sided interface to fix a calibration object (See
Figure 3.3). The relevant entities are the calibration object and the FRS , which have
their own coordinate system. Hence, only the transformation (rotation R, translation t)
between the two coordinate systems need to be determined. This approach is independent
of the layer structure and the refractive indices of the participating media. Note that
this and the following schematic representations in this chapter could be extended to an
arbitrary number of participating media (ni, with i ∈ {1, .., n}) and interfaces (Φi, with
i ∈ {1, .., (n− 1)}).
Yamashita et al. [Yam+04] propose a system for 3D measurement composed of a FRS and
a slit light laser. The camera and the laser are calibrated in air. A checker pattern is fixed
to the refractive interface. Since there is no detailed description, it has to be assumed that
some kind of pose from 3D-2D point correspondences algorithm is used together with the
calibrated intrinsic camera parameters K to determine the transformation. In [KYK09],
the authors replace the slit light laser of the previous approach by a monochromatic light
source that is able to project binary patterns. The rest of the setup and the calibration
strategy stays the same. Such a pose estimation from 3D-2D point correspondences
algorithm is only possible if the camera is able to focus on the interface to acquire a sharp
image of the calibration object. Since cameras often are placed very close the refractive
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Figure 3.4: Schematic representation: Calibration object (CO) in water. A transformation
(R, t) links the CO and the FRS .

interface, this is generally not the case. The following approaches do not depend on
calibration objects fixed to the interface.

Model Deficiencies

Some calibration approaches are based on an underlying model for refractive image
formation that is in some way restricted. This can be a necessary perpendicularity
between the interface normal and the image plane, dependencies on a necessary amount
of layers or incomplete models. Figure 3.4 shows a schematic representation of a FRS
based on a general model for refractive image formation with three participating media.
As a consequence of perpendicularity between the interface normal and the image plane,
the system axis s0 and the principal axis p would coincide (δ = 0). Incomplete models
are mostly characterized by neglecting the glass layer thickness. Hence the physical glass
layer gets reduced to a single interface (Φ1 = Φ2) and its refractive index gets ignored.
Such model deficiencies can reduce the computational complexity if the image formation
of the FRS can still be approximated sufficiently. However, they pose a problem if the
values of the neglected parameters become significant.

Restriction. Treibitz et al. [TSS08; Tre+12] present a calibration method for a FRS
with an interface normal that has to be perpendicular to the image plane and a neglected
glass layer thickness. The authors characterize the system through a ray map of the
pixels. Hence, every pixel is connected to a ray in water (raxel model). A caustic surface
(See Section 3.3.1) is utilized as the locus of the starting points of the rays. For its
calculation, the air layer thickness is needed. Therefore, the authors develop a calibration
scheme to determine the intrinsic camera parameters and the air layer thickness. It is
required that more than one object of a known length at a known range is imaged and
that the objects need to be positioned parallel to the interface. Therefore, the authors use
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a checker pattern as calibration object with its lines being the objects of known length.
Compared to the schematic illustration in Figure 3.4, this means that the transformation
(R, t), which links the coordinate system of the FRS and the calibration object, is known.
Good initial estimates of the parameters are said to be advantageous.
Kang et al. [Kan+15] propose a method for the calibration of a FRS with more than two
layers. Their theory is derived for the case of perpendicularity between image plane and
interface normal, but is extended to arbitrary orientations by a rectification procedure.
The estimated parameters are the distances from the center of projection of the camera
to every single interface (not each layer thickness) and the orientation of the system axis.
A special calibration object is not needed but the refractive indices of all layers need
to be known. A restriction of the approach is that at least three refractive interfaces
are needed and that the layer thicknesses, except the air layer, need to be measured in
advance to generate necessary, additional constraints. It is proposed that using more
layers is increasing the accuracy.

Incompleteness. Telem and Filin [TF10] implement a calibration approach for a
FRS , which is based on a model that neglects the glass layer thickness. The intrinsic
camera parameters are estimated in air. The parameters that are determined are the
orientation of the system axis, the air layer thickness and the relationship between the
refractive indices of the two participating media. These parameters are incorporated into
collinearity equations with the aid of the virtual camera model described earlier (See
Section 3.3.1). By simulation, the authors evaluate that the calibration can be done using
a single image of a planar calibration object. Nevertheless, the preferred strategy is to
acquire and use a set of images. In real experiments, the authors use planar calibration
objects and additional objects with known dimensions.

The Most General Approach

Models for underwater image formation that are not restricted in the above described
ways are more flexible. The following approaches will be further distinguished by their
capability to calibrate a single FRS or even relate the poses of several, fixed FRSs to
each other. Figure 3.5 shows a schematic representation of the possible setups. The
approaches in this section are in general characterized by a single (FRS1) or several
FRSs (FRS i, with i ∈ {1, .., n}) and a calibration object. Transformations (Ri, ti, with
i ∈ {1, ..,m}) link the coordinate system of the respective FRS and the coordinate
system of the calibration object. With these transformations, all the FRSs that see the
calibration object simultaneously can be linked by relative transformations to each other.

Single Flat Refractive System. Similarly to Treibitz et al. [TSS08; Tre+12], Kunz
and Singh [KS08] address the calibration of a raxel model that accounts for refractive
effects. The camera is calibrated in air and can be used in a flat or hemispherical
refractive system. The glass layer thickness, the refractive indices and optionally the
radius of the hemisphere need to be known or measured directly. The parameters for the
interface pose are estimated with the aid of a calibration object of known dimensions.
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Figure 3.5: Schematic representation: Single (FRS1) or several, fixed FRSs (FRS i, with i ∈
{1, .., n}), a calibration object (CO) and the transformations (Ri, ti, with i ∈
{1, ..,m}) that link them.

The authors claim that one image of the calibration object in water is necessary and that
multiple images are likely to produce more accurate results. The proposed strategy is an
optimization of the reprojection error that needs good starting guesses for the parameters.
This strategy is only formulated theoretically by the authors.
Agrawal et al. [Agr+12] present an approach for the calibration of a FRS with an
arbitrary number of layers. The intrinsic camera parameters need to be calibrated in
advance. The calibration consists of the estimation of the orientation of the system
axis, all layer thicknesses and the refractive indices. Therefore, the authors derive two
constraints. Firstly, the flat refractive constraint, which incorporates all unknowns.
Solving it directly is said to be quite difficult because of its complexity. Secondly, the
coplanarity constraint, which is independent of the number of layers, their thicknesses
and refractive indices. This constraint is used for the estimation of the orientation of the
system axis. The authors show how it can be mapped to the 5-point algorithm [Nis03].
The correct solution can be determined after estimation of the layer thicknesses. The layer
thicknesses can be obtained linearly with the aid of the flat refractive constraint when
the refractive indices are known and analytically when they are unknown. A non-linear
refinement of the initial solution is performed using an analytical forward projection
(See Section 3.3.1) to minimize the reprojection error. In the presented experiment,
three calibration objects with a checker pattern are placed in air behind an aquarium.
The approach would also work with a single image of a checker pattern with known
coordinates, but it is proposed to use multiple calibration objects or multiple images to
increase the accuracy.
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Single and Multiple Flat Refractive Systems. Henrion et al. [Hen+15] develop
a so-called refraction corrected ray tracing calibration algorithm for a FRS (optionally
FRSS). A single image of a 3D calibration object with 50 known marker locationsis utilized.
An optimization to minimize the so-called residual (See Section 3.3.1) is performed by
tracing light rays from the camera to the calibration object. The intrinsic and extrinsic
camera parameters as well as the interface pose relative to the calibration object are
optimized. The glass layer thickness needs to be known. The algorithm needs the 3D
coordinates of the marker points and the refractive indices of all participating media as
input. Initial values as well as a lower and an upper bound for all of the parameters need
to be provided by the user.
Jordt-Sedlazeck and Koch [JK12] propose an approach for the calibration of a single or
of multiple FRSs. Therefore, besides calibrating each FRS separately, the absolute and
relative pose between the single systems is estimated. The cameras need to be calibrated
for their intrinsic parameters in advance. The thicknesses of the glass layers and the
refractive indices of the participating media are known. Multiple images of a calibration
object with a checker pattern with known corner coordinates are taken in water. These
are used within the approach of [Agr+12] for individual initialization of all parameters
per FRS . As the authors want to avoid the optimization of the reprojection error due to
the complexity of refractive forward projection, an evolutionary optimization-algorithm
(Covariance Matrix Adaptation Evolution-Strategy) is coupled with an analysis-by-
synthesis (AS) approach. The AS approach consist of rendering the images of the checker
pattern, comparing these to the real ones and minimizing the differences. This is intended
to eliminate errors introduced by inaccuracies in corner detection and has the advantage
that only refractive back-projection is necessary. The whole approach is said to be
time-consuming.
Haner et al. [Han+15] propose a calibration approach for a special multi-camera setup
containing a pool and cameras in air and in water. Every camera is calibrated for its
intrinsic parameters in air before installation. The underwater cameras are FRSs. All
refractive indices and the thickness of the glass are known. A special calibration object
is used that is composed of a straight rod with eight markers at known locations. Half
of this calibration object is submerged. The camera poses are initialized by measured
information relative to the pool and the interface poses are initialized by assuming them
to be at the pool walls. Each pose of the calibration object is determined for the camera
with the best view of it. Bundle adjustment is used to refine the initial values for the
interface poses, camera poses and calibration object poses by minimizing the reprojection
error.

Findings

The calibration of a FRS , if it is not based on an underlying model for underwater image
formation that has one of the described deficiencies, is the most general approach. This is
because all the other refractive systems that will be covered in the following sections are
specializations of the FRS . Therefore, besides calibration of the FRS itself, extensions
to calibrate the relative poses between two or more FRSs are advantageous. All of the
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presented approaches have in common that a calibration object with known feature point
coordinates is necessary.

3.3.6 Flat Refractive Stereo Systems

FRSSs are one example of refractive systems that are a specialization of the FRS . In
contrast to the approaches from the previous section that are able to calibrate the relative
pose between several FRSs additionally to the single FRS itself, it is now mandatory
that two FRSs exist. A single FRS can not be calibrated with these approaches.

Similarly to Section 3.3.5, calibration approaches that are based on an underlying model
for underwater image formation that is restricted occur in this category as well. Kang
et al. [KWY12b] propose a calibration approach for a FRSS with both image planes
being perpendicular to the respective interface normal. Additionally, the layer thickness
of the housing is neglected. The intrinsic camera parameters and the refractive indices
of the participating media need to be known in advance. The authors use the concept
of the refrax (See Section 3.3.1) and develop two new concepts, namely the ellipse of
refrax and the refractive depth. These are used in an algorithm for the estimation of the
relative translation of the stereo camera, air layer thicknesses and 3D structure. This
algorithm is incorporated into a differential evolution approach to search for the best
rotation between the two cameras. Afterward, the parameters and the 3D structure are
refined by bundle adjustment to minimize the reprojection error. In a secondary version
of their work, Kang et al. [Kan+17] extend their bundle adjustment approach by a local
sliding procedure for an improvement of the convergence behavior of their optimization
framework.
The authors in [Brä+15a; BKN15; Brä+15b] develop an underwater 3D-scanner, which
is composed of a projection unit and a FRSS . The authors propose an approach for
the calibration of the air layer thickness for each camera. A requirement is that the
interfaces are perpendicular to the image planes and that the refractive indices of the
participating media are known. The layer thicknesses of the housing need to be known
as well and the stereo camera system needs to be calibrated for its intrinsic and extrinsic
parameters in advance. The calibration of the air layer thicknesses is realized with the
aid of measurements of a plane and an object of known length. Therefore, a systematic
search is performed in the range of minimally and maximally possible air layer thicknesses
with a certain step width in order to calculate 3D points for the objects to be measured.
The measurement error is minimized.

Dependencies on Calibration Objects

Underlying models for underwater image formation that are not restricted by the above
described perpendicularity are the more flexible ones. Figure 3.6 shows schematic
representations of possible setups for FRSSs. These are characterized by two single
FRSs (FRS1 and FRS2) that are based on general models for refractive image formation,
respectively. A calibrated stereo camera allows the reconstruction of 3D coordinates of
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Figure 3.6: Schematic representation: FRSS composed of two single FRSs (FRS1 and FRS2).
Left: Linking by 3D reconstruction of object points Oi (with i ∈ {0, .., n}) in the
scene. Right: Calibration object (CO) and the linking transformations (Ri, ti, with
i ∈ {0, ..,m}).

object points in the scene with respect to the coordinate system of the master camera.
This is also the case for FRSSs (See left side of Figure 3.6). The advantage is that
this relaxes the dependency on calibration objects with known feature coordinates (See
right side of Figure 3.6). This in turn avoids the need to know or to determine the
transformation between the coordinate systems of the calibration object and of the FRSS .
As will be seen in the following, not many approaches make use of this possibility.

Known Coordinates of Features on Calibration Objects. Li et al. [Li+97]
propose an underwater photogrammetric model based on a 3D ray tracing technique.
The authors formulate a set of equations for the intersection of corresponding left and
right rays in water. The stereo camera is calibrated for its intrinsic and relative extrinsic
parameters in advance. Each glass layer thickness and the refractive indices of the
participating media are known. The unknown parameters are estimated by linearization
of the formulated equations, which then are solved using the least squares principle [Li95].
For calibration, a 3D frame with known 3D coordinates is necessary and a set of stereo
images of it needs to be acquired under water.

No Calibration Object. In the approach of Sedlazeck and Koch [SK11] the intrinsic
parameters of both cameras are calibrated in advance and the glass layer thicknesses
need to be known. The estimated parameters are the interface poses and the absolute
as well as the relative extrinsic parameters of the stereo camera. There is no need for
a calibration object, since stereo correspondences, which are matched by using SIFT
features, are sufficient for the estimation. Initial values for the camera poses and 3D
scene points are necessary. An approximate intrinsic camera calibration by the method
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of [FF86], [LRL00; LRL03] (approximation of refractive effects by focal length and radial
distortion) is used to refine the initial camera poses and the 3D scene points by bundle
adjustment. This results in an approximation of the scene, which is used to find the
interface poses by a further bundle adjustment step. Together with the true intrinsic
parameters of the cameras, this optimization is done in nested loops. An inner loop
minimizes the reprojection error to estimate the air layer thickness and an outer loop
minimizes a virtual error function for estimation/refinement of all remaining parameters.
This virtual error function is derived from the authors virtual camera model described in
Section 3.3.1, which is based on a caustic surface.
Chen and Yang [CY14] propose an approach for the calibration of a FRSS with an
arbitrary number of layers. The stereo camera is calibrated for its intrinsic and relative
extrinsic parameters in a pre-processing step and the number of layers as well as their
refractive indices need to be known. Estimated are the interface orientations and the layer
thicknesses. No calibration object is needed, since stereo correspondences generated by a
projector, which projects gray code structured light patterns onto the scene, are utilized.
The important finding of the authors is that the layer thicknesses can be estimated if
the orientations of the system axes are known. Therefore, they formulate a constraint,
which makes the determination of the layer thicknesses possible by solving a linear set
of equations. To determine the axes, a binary search over a defined search space is
performed for both cameras. For every combination of axes during this search, the layer
thicknesses need to be determined, which is followed by a refractive back-projection to
compute 3D points for every stereo correspondence. These 3D points are used to compute
the reprojection error as a measure of parameter accuracy. Therefore, by referring to
[Agr+12], an equation of degree four for a single refraction and of degree twelve for
two refractions needs to be solved. Although the approach is said to be able to handle
an arbitrary number of layers, it is not mentioned what needs to be done if there are
more than two interfaces. All the determined parameters are refined by sparse bundle
adjustment. After experiments with this approach, the authors remark that one should
try to avoid the cases when both the axes and the glass layer thicknesses are unknown.
They recommend that the glass layer thicknesses should be measured instead.

Findings

As within the calibration approaches for FRSs, a provided perpendicularity between the
interface normals and the image plane simplifies the calibration problem, but restricts
the setup severely. If the underlying image formation model is not restricted in this
way and if a stereo system is available, which allows a refractive calibration from
stereo correspondences, suitable calibration approaches amount to a powerful tool. The
disadvantage is that the calibration of a single FRS is missing. On the contrary, they
have the advantage that no calibration object with known feature coordinates is necessary.
This advantage outweighs in particular if otherwise a 3D calibration object has to be
handled underwater, which can be quite cumbersome.
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Figure 3.7: Schematic representation: SFRS composed of single cameras (Ci with i ∈ {1, .., n})
and calibration objects (CO) on the refractive interface Φ1 or in water and the
linking transformations (Ri, ti with i ∈ {1, ..,m}).

3.3.7 Shared Flat Refractive Systems

SFRSs are another specialization of FRSs. Figure 3.7 shows a schematic representation
of possible setups for SFRSs. The number of cameras amounts to at least two and all of
them (Ci with i ∈ {1, .., n}) have in common that they are imaging through the same
flat refractive interfaces (here: Φ1 and Φ2). Since the refractive parameters have to be
determined only with respect to the master camera, this has the advantage that fewer
parameters need to be determined. In this case, the refractive parameters of the slave
cameras are encoded implicitly within the relative extrinsic camera parameters. As in
both categories before, approaches with an underlying, incomplete image formation model
exist as well as approaches that depend on known coordinates of features on calibration
objects, which are either fixed to the refractive interface, have to be handled underwater
or both (See Figure 3.7).
Gedge et al. [GGY11] present a method for the calibration of a SFRS , whereby the glass
layer thickness is neglected. A stereo camera, which is calibrated for its intrinsic and
extrinsic parameters in advance, is utilized. The refractive index of water is needs to be
known. All the parameters have to be initialized. A calibration object with a checker
pattern is imaged multiple times underwater. The feature correspondences are used in a
non-linear optimization procedure. Therefore, the authors derive a cost function that
represents the distance between the refracted rays of a feature correspondence.
Ke et al. [Ke+08] present an approach a method for the calibration of a SFRS . The
intrinsic and extrinsic parameters of the stereo camera are calibrated in advance. The
refractive indices of the participating media and the glass layer thickness need to be known.
The interface is parametrized as an equation of a plane in the master camera coordinate
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systems. The proposed optimization is based on a bundle adjustment procedure that
minimizes the reprojection error for the feature points on a submerged, planar calibration
object. To ensure that the optimization converges, it is said that it is essential to determine
reasonable initial values for the interface parameters. This is done by reconstruction
of another planar calibration object, which is placed parallel and close to the air-sided
interface, and which is therefore essentially fixed to this interface. The approach is
evaluated by numerical simulations.
Maas incorporates his multimedia module (See Section 3.3.1) into a self-calibrating bundle
adjustment for two [Maa15b] or three [Maa92] cameras forming a SFRS . Therefore, a
complex linearization of observation equations needs to be performed. The refractive
index of water and the glass layer thickness are known during the executed experiments.
The author uses a custom made calibration object with 85 known point coordinates on
two levels [Maa92], which can be fixed in water at different distances from the interface
with the aid of spacers of known length. Hence, the pose of the refractive interface
is already known with respect to the calibration object and the extrinsic and intrinsic
camera parameters are estimated.

Findings

A SFRS leads to the advantage that the number of parameters can be reduced significantly.
However, this is accompanied by a restriction of the flexibility in system design. Besides
reducing the number of parameters, the approaches above do not provide any major
findings that have not already been described in the two previous sections.

3.3.8 Categorization and Aptitude Analysis

In this section, the previously listed calibration approaches for FRSs and for their
specializations will be analyzed to generate a tabular representation for their comparison.
This representation will be used to identify suitable approaches for the target system of
this thesis. The calibration approaches to be developed in this thesis will be located in
this representation as well.

Categorization and Representation

The results can be seen in Table 3.1. It is organized in three major columns, which
include the authors of the respective approach, the underlying image formation model
of the system the approach is designed for and its restrictions. All these systems and
restrictions have been described in detail in the previous three sections and will be
summarized briefly in the following.
The order of the subdivisions of the ’Models’ and ’Restrictions’ columns was created
as follows. The order of the ’Models’ columns from left to right represents an increase
in specialization. As described earlier, the FRS is the most general one. Theoretically,
it is possible to calibrate multiple FRSs if there is a mechanism to relate the pose of
the single systems to each other. Since it is most of the times not the case that such a
mechanism is presented, the markings in the tabular representation are placed according
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to the systems the approach is explicitly designed for by the authors. Possible extensions
to more specialized systems are not considered. If a marking is accompanied by the
character ’+’ in brackets, this stands for multiple instances of a FRS . The FRSS is the
first specialization. In this case, a combination of two FRSs is mandatory. The second
specialization is the SFRS . It is characterized by multiple cameras in front of a single,
shared refractive interface. Markings in the column of the SFRSs are accompanied by
the number of cameras, which can either be specified (For example 2) or arbitrary (n).
The order of the ’Restrictions’ columns from left to right is at most a proposal. There is
no measure for the significance of the single restrictions. The order could be exchanged.
The ’Restricted Model’ and the ’Incomplete Model’ have been described earlier as model
deficiencies. The ’Restricted Model’ is primarily characterized by perpendicularity
between the image plane and the interface normal and the ’Incomplete Model’ by
neglecting the thickness of an existing layer between air and water. Both of them
pose particular problems if values of the neglected parameters become significant. The
’Features on Interface’ stands for calibration objects that need to be fixed to an interface.
This can be on the air-sided or on the water-sided interface, which is not realizable in
general. These calibration objects contain feature points, which are easily detectable and
which are usually, but not necessarily, characterized by known 3D coordinates in the
coordinate system of the respective calibration object. Therefore, ’Features on Interface’
is closely connected to ’Known Feature Coordinates’. If the known feature coordinates
are necessary, this is usually accompanied by a cumbersome handling of calibration
objects under water. The final category is the ’Initialization of Parameters’. This means
that all the parameters that get optimized within the calibration approach need to have
initial values, which can range from default values to educated guesses close to the real
values.

Aptitude Analysis

The target system in this thesis is a stereo camera that is imaging through a single flat
refractive interface of known thickness. The most suitable parametrization originates from
the earlier proposed model for a SFRS . With the research goals to realize a calibration
approach for the determination of the refractive parameters and to reduce the dependence
on calibration objects, Table 3.1 can be analyzed as follows:
1) It is sufficient to be located in the ’Models’ column ’Shared Flat Refractive System’.

2) The markings in the ’Restrictions’ columns are zero.
Concerning point 2, an exception could be made for the ’Initialization of Parameters’
column. The other four columns represent exclusion criteria. Such an initialization does
not contradict the research goals of this thesis. However, regarding this relaxation, the
only approach becoming eligible is the one of Sedlazeck and Koch [SK11] and the only
approach that is fulfilling both criteria completely is the one of Chen and Yang [CY14].
All the other approaches in the table meet at least one of the exclusion criteria.
Concerning the underlying image formation model, the approaches of Sedlazeck and Koch
[SK11] and Chen and Yang [CY14] are a little more general than the approaches for the
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Yamashita et al. [Yam+04] x x x x
Treibitz et al. [TSS08; Tre+12] x x x x x
Telem and Filin [TF10] x x x
Kang et al. [Kan+15] x x
Kunz and Singh [KS08] x x
Agrawal et al. [Agr+12] x x x
Henrion et al. [Hen+15] x (+) x x
Jordt-Sedlazeck and Koch [JK12] x (+) x x
Haner et al. [Han+15] x (+) x x
Kang et al. [KWY12b; Kan+17] x x x
Bräuer-Burchard et al. [Brä+15a; BKN15; Brä+15b] x x x
Li et al. [Li+97] x x
Sedlazeck and Koch [SK11] x x
Chen and Yang [CY14] x
Gedge et al. [GGY11] x (2) x x
Ke et al. [Ke+08] x (2) x x x
Maas [Maa15b; Maa92] x (n) x x
Own Approaches x (2)

Table 3.1: Categorization of calibration approaches for FRSs.

calibration of a SFRS to be developed in this thesis. The approach of Sedlazeck and Koch
[SK11] is characterized by nested optimization loops to minimize multiple cost functions
and by the utilization of the caustic surface for the locus of the viewpoints. Compared to
this, the approaches to be developed will be more straightforward, simpler to apply, more
efficient and will not need an initialization. The more recent approach of Chen and Yang
[CY14] will be used as the reference approach for the refractive calibration of a SFRS . The
approaches to be developed in this thesis will be compared to an adapted reimplementation
of this reference approach in Chapter 7. While Chen and Yang [CY14] concentrate on
the development of an optimization problem for calibration, this thesis will comprise
the development of a model whose integration into the underlying image formation
models benefits the computation of refractive projections, the computation of adapted
and novel cost functions, the definition of optimization problems and therefore all aspects
of refractive calibrations. Furthermore, this model will enable the necessary extensions
of all the concepts of stereo 3D reconstruction in air for underwater environments.
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3.4 Summary
Refractive effects, such as those in a FRS , must not be ignored in the field of underwater
computer vision. Nevertheless, there are approaches in underwater 3D reconstruction
where this is done. These are mostly approaches where accuracy is not of major concern
and ground truth data does not exist. However, ignoring refractive effects at all must be
avoided.
A different strategy is the absorption of refractive effects by the conventional camera
parameters. The advantage of this strategy is the simple application of algorithms made
for in air usage. The biggest disadvantage is the requirement of an image plane that
is perpendicular to the interface normal. Besides an absorption of refractive effects by
the parameters for focal length and radial distortion, there is an absorption by camera
pose parameters in multi-camera setups. The resulting absorption leads to erroneous
parameters and is incomplete, since refractive distortion is not an image space distortion,
but depends on the object distance in 3D space.
This chapter has shown that refractive effects need to be modeled explicitly. As a
consequence, refractive back-projection and forward projection become complex and
computationally expensive operations. There is no approach to compute the refractive
forward projection of 3D points onto the image plane directly. The computational
intensity is especially inconvenient since both projections are basic operations on which
the concepts of stereo 3D reconstruction depend on. One example are cost functions, which
are used during calibration for feedback on the accuracy of the estimated parameters and
their optimization. The literature has shown that not all of the refractive parameters need
to be part of the calibration process. The most common physical setup is a water-glass-air
transition, where the glass layer thickness can be measured physically. The refractive
indices of the participating media are usually measurable or even commonly known. This
leaves the air layer thickness and the orientation of the system axis as the requested
refractive parameters. Some of the presented models for underwater image formation
with consideration of refraction suffer from deficiencies. These can be restrictions, such as
perpendicularity between image plane and interface normal, or these can be incomplete
models, which, for example, neglect the glass layer thickness. The analysis has shown
that all of the considered approaches for the calibration of FRSs, without any of these
model deficiencies, depend on known coordinates of features points on the calibration
object. This usually requires the estimation of additional transformation parameters.
Although the approaches for the calibration of a FRS are the most general ones, the
more specialized stereo and multi-camera systems provide the possibility of a calibration
utilizing only stereo correspondences. Thereby, the cumbersome handling of calibration
objects under water and the determination of additional transformation parameters can
be avoided.
The approach to be developed in this thesis has been located in a categorization scheme
together with the related approaches. It has been shown that almost all of the considered
approaches meet one or more of the defined exclusion criteria. With the approach of
Chen and Yang [CY14], a reference approach for the refractive calibration of a SFRS
has been identified.
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In this chapter, the challenges that have to be met in this thesis will be specified more
precisely and the solutions to be developed will be motivated. Since it is obvious from
the previous chapters that refractive effects must not be ignored, the research goal to
extend the concepts of stereo 3D reconstruction in air for underwater environments by
an explicit consideration of refractive effects can be confirmed to be appropriate. As
mentioned before, the underwater imaging system will be characterized by the model
for a SFRS . In the following, it will be motivated that the extension of this model with
a VOP model amounts to an efficient tool for the achievement of the research goals
from Section 1.3. In this chapter, it will be the goal to acquire a basic model for VOPs,
which can be readily integrated into the presented underwater image formation models.
Therefore, the previously presented findings on VOPs will be analyzed. In the following,
the VOP location that will be utilized in the remainder of this thesis will be determined.
This will be done based on the physically founded apparent depth in the case of a single
flat refractive interface, which has been presented in Section 2.3.3, and on the findings
from Section 3.3.1. Since there are multiple valid possibilities for the location of VOPs,
it is necessary to make a selection amongst them. Therefore, the impacts of two flat
refractive interfaces on the validity of all the considered possibilities will be analyzed.
Before making a decision, it is most important to assign the VOPs to the real object
points and vice versa. As will be seen, an obvious selection can be made. The final
step in this chapter will be the formulation of a model on how to relate VOPs to real
object points and vice versa in the case of two flat refractive interfaces. This VOP model
represents one of the major contributions of this thesis. This chapter is partially based
on Dolereit et al. [DK14; DL16].
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4.1 Motivation and Challenges

The basic building block of any 3D reconstruction approach is the underlying image
formation model. In this case, this is the SFRS , as defined in Section 2.5. The major
challenge is the development of particularities of this model that can be utilized for the
extension of the concepts of stereo 3D reconstruction in air for underwater environments,
especially refractive calibration. Up to now, a detailed analysis of the SFRS is missing
in the literature. The primary argument in favor of it is that there are properties that
are beneficial and worth to adjust the basic design of the imaging system accordingly. It
will be shown that the extension of this model with the developed VOP model amounts
to an efficient tool for the achievement of the research goals from Section 1.3.
As mentioned before, the most important concepts of stereo 3D reconstruction are the
projections for coordinate transformations between 3D and 2D spaces. Considering an
underwater environment, these are refractive forward projection and refractive back-
projection, which are both based on the underlying image formation model and its
parametrization. These two projection directions are essential for all the remaining
concepts, such as refractive calibration and recovery of 3D coordinates. However, a
big challenge is that both transformations are computationally expensive, especially the
refractive forward projection (See Section 3.3.1). Since the focus of this thesis is on
calibration of the refractive parameters of a SFRS , the implementation of some kind
of refractive projection is unavoidable. An example are cost functions, which are a
vital part of calibration approaches, since they reflect the quality of the determined
parameters. The most common cost function is the reprojection error, which is based
on refractive forward projection. An alternative is some kind of 3D scene error. This
can for example be the result of the triangulation of two rays, which would therefore be
based on refractive back-projection.

Contributions for Refractive Projections. The VOP model to be developed will
be the foundation of most of the developments and can be utilized within monocular and
binocular vision. It will be shown that together with this model, the challenge to reduce
computational expenses can be met. For example, simplifications in both projection
directions will be proposed. These will be realized by the integration of the VOP model
into the more general model for a FRS . Hence, these simplifications are readily usable
in stereo and non-stereo systems. Additionally, it will be shown that the integration
of the VOP model enables alternative coordinate transformations between 3D and 2D
spaces. One example is to avoid refractive forward projection at all by definition of a
virtual camera model that enables conventional forward projection. The virtual camera
model that will be defined in this thesis will also be usable in stereo and non-stereo
systems. Besides the above mentioned simplification, an efficient alternative to refractive
back-projection will be proposed. It is based on the integration of the VOP model into
the model for a SFRS and it is especially useful for the determination of the refractive
parameters.
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Contributions for Refractive Calibration. The developments of the coordinate
transformations between 3D and 2D spaces will be accompanied by the development of
novel cost functions for refractive calibration. Another vital part of calibration approaches
is the definition of an optimization problem. It will be shown that the proposed VOP
model enables the determination of the refractive parameters partly by linear optimization.
An important finding that will be presented is that the refractive parameters can be
determined independently of each other. A question that will be answered in this context
is if this is advisable.
Altogether, the development of various approaches for refractive calibration and hence the
development and the efficient computation of cost functions and of suitable optimization
problems will be presented. The most preferable result is an approach for refractive
calibration that is independent of calibration objects. Therefore, the developments will
be accompanied by an analysis of a refractive calibration with or without calibration
object, with simultaneous or consecutive estimation of the refractive parameters and by
a comparison of the utilized projection methods and cost functions. Since known feature
coordinates on a calibration object were defined to be an exclusion criteria in Section
3.3.8, the analysis with calibration object comprises testing if the refractive parameters
can be determined from arrangements of feature points only.

Contributions for the Recovery of 3D Coordinates. It will be shown that the
VOP model can furthermore be utilized to realize valuable contributions on the remaining
concepts of stereo 3D reconstruction. These will cover the actual recovery of 3D coordi-
nates of the imaged scene with the aid of stereo matching. Due to the 3D-dependence of
refractive effects, epipolarlines are not straight lines any more. Therefore, an alternative
in form of the computation of correspondence curves, will be proposed.

Overview. For the extension of the concepts of stereo 3D reconstruction in air for
underwater environments, a VOP model will be developed, which enables:

• the utilization within monocular and binocular vision,

• the simplification of refractive forward projection,

• the simplification of refractive back-projection,

• the definition and implementation of a virtual camera model to avoid refractive
forward projection and hence to enable conventional forward projection,

• the implementation of an efficient alternative to refractive back-projection,

• the definition of novel cost functions,

• the consecutive and the simultaneous estimation of refractive parameters, with and
without calibration object, which can be party realized by linear optimization,

• the computation of correspondence curves and

• the recovery of 3D coordinates.
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4.2 Position Determination

Let us consider the case of a real object point O in water, as illustrated in Figure 4.1.
The ray w in water, which is emitted from O, is refracted at the interface Φ. The result
is the ray a in air. Up to now, three possibilities for the VOP location were introduced.
These are the two physically founded ones from Section 2.3.3 and the one proposed by
Maas [Maa95] in Section 3.3.1. All three are situated on the virtual extension of the ray
a. Summarized, these are

• the point Ǒm (m - meridional, see Section 2.3.3) being the result of the intersection
of two rays with an infinitesimal different angle of incidence in the same plane of
refraction,

• the point Ǒs (s - sagittal, see Section 2.3.3) being the result of the intersection of
two rays with the same angle of incidence in different planes of refraction and

• the point ǑM (M - Maas [Maa95]) being the intersection of the ray a with a plane
Γ passing through the real object point O, parallel to the interface Φ.

In this thesis, a VOP model will be utilized to reproduce the underwater image formation
process with the aid of the pinhole camera model, which has been shown to be invalid.
To make the pinhole camera model valid for underwater image formation, every real
object point needs to be related to a VOP on ray a. An important circumstance is
that 3D point objects are projected to 2D point image features. A direct consequence is
that it theoretically does not matter which one of the VOP locations is used for image
formation. As long as it is situated on the same ray, it will result in the same image
point. Therefore, the choice of the location becomes a question of convenience in terms
of relating it to the real object point. The final choice has been proposed in Dolereit and
Kuijper [DK14]. In the following, the properties of this relation, which were leading to
this choice, will be analyzed in detail.

Figure 4.1: The possible VOP locations Ǒm, Ǒs and ǑM .
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Figure 4.2: Front view of a right circular cone that bounds the possible starting directions of
an unknown optical path between a real object point O and a viewpoint V .

4.2.1 Single Flat Refractive Interface

Let us assume that only a real object point O in water and the viewpoint V of an observer
in air are known, as illustrated in Figure 4.2. According to the law of refraction, there is
only one correct optical path that connects both points. Due to the unknown starting
direction of the ray in water, the optical path can not be determined directly, making
its recovery computationally expensive. This is equivalent to the problem of refractive
forward projection. In contrast to the real object point O, the related VOP lies on the
up to now unknown ray in air, which is passing through the viewpoint V . To make the
best possible use of this later on, the relation between the virtual and the real object
point should be as convenient as possible. To analyze the properties of this relation and
due to the unknown starting direction of the ray in water, the VOPs will be determined
and traced for a significant amount of all the possible directions of the rays that are
emitted from the real object point O.

Traces of Virtual Object Points

The entirety of the possible directions of the emitted rays are limited by a right circular
cone ∆w, with the object axis s1 as its axis and a radius that is limited by the occurring
total reflection of the rays in water, as illustrated in Figure 4.2. For the transition from
water to air, the maximal angle of incidence α is about 49 degrees. Rays outside this
cone, such as w, exceed this maximal angle and get reflected at the interface Φ. The
ray in water, which forms the beginning of the optical path in question, is part of ∆w.
Note that the cone ∆w from Figure 4.2 is reduced to its circular outline on the left side
of Figure 4.3. Both images in Figure 4.3 are visualizations of the traces of the three
possible VOP locations. These traces are the result of a representative movement of
the point of refraction R of the ray w on the refractive interface Φ. This movement
consists of the circular outline of the base area of the cone ∆w and a straight line passing
through the object axis s1 on the base area. It represents a significant amount of all the
possible directions of the ray w. The traces are regulated by the previously presented
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Figure 4.3: Traces of the VOP locations in the case of one refractive interface. Left: 2D front
view. Right: Perspective 3D view.

determination processes of the three proposed locations Ǒm, Ǒs or ǑM , respectively. In
each case, the result is a 3D structure.
The left side of Figure 4.3 illustrates the resulting traces of the VOP locations up to an
optical path close to total reflection and the right side shows the resulting traces up to
total reflection. This differentiation is done for visualization purposes of the trace ∆M .
Both sides show the one optical path in question that truly connects O and V .

• In the case of ǑM , the result is the circular area ∆M on the plane Γ. If the angle
of incidence of the ray w in water tends to total reflection, the radius of ∆M tends
towards infinity.

• The result in the case of Ǒm is the 3D surface ∆m. Its extent along the object axis
s1 is limited at the bottom by a ray w with an angle of incidence that amounts to
zero degrees and can therefore be computed by Equation 2.25. The upper end is
limited by the rays whose angles of incidence tend to total reflection and therefore,
by the flat refractive interface Φ. On Φ, the base area of ∆m coincides with the
base area of the cone ∆w. At the bottom, the apex of the structure intersects the
object axis s1.

• In the case of Ǒs, the result is the straight line segment ∆s along the object axis
s1. The limits are the same as for ∆m. Therefore, the line segment reaches the
refractive interface Φ at the upper end and coincides with the apex of ∆m at the
bottom.

These traces make clear that the assignment of VOPs to a single real object point is
ambiguous if no further information on the optical path in question is known. The 3D
structures ∆M , ∆m and ∆s must contain the VOPs that lie on the virtual part of the
ray a in question. The most convenient case is indisputably ∆s. It has the least spacial
extent and the simplest 3D structure. Furthermore, its range can be determined easily.
An argument against ∆M is its infinite extent and an argument against ∆m is a resulting
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4.2 Position Determination

Figure 4.4: VOP locations in the case of one refractive interface. Left: 2D front view. Right:
Perspective 3D view.

ambiguity. As can be seen on the right side of Figure 4.3, the trace ∆m intersects the
ray a in question twice due to its symmetry. The respective traces can be considered as
a search space for the determination of the true optical path between a given real object
point O and a viewpoint V . Hence, the reduction of ∆s to being a single straight line is
quite advantageous. Now let us take a look at the assignment of real object points to
VOPs. With a known viewpoint one can assign a real object point non-ambiguously to a
VOP. This is possible since the ray passing through a viewpoint and a VOP allows the
direct computation of its angle of incidence. In the case of Ǒs, this in turn allows solving
Equation 2.26 directly, which has been previously used to express the relation between
the location of the virtual and the real object point.

4.2.2 Two Flat Refractive Interfaces

All of the previous considerations have been performed for the case of a single flat
refractive interface. Since the housing of an underwater camera or a side of an aquarium
has a thickness, there are two parallel refractive interfaces and the rays are refracted
twice. This is illustrated in Figure 4.4. The two flat refractive interfaces Φ1 and Φ2
bound the additional layer, which is usually some kind of protective glass with a refractive
index ng. The proposed possibilities for the VOP locations Ǒm, Ǒs and ǑM essentially
remain, but it has to be analyzed if these locations stay valid in this setup, especially in
the case of the physically founded locations based on the concept of the apparent depth.
As illustrated in the case of Ǒm, it is possible that the VOPs are situated inside the glass
layer as well.

Adapted Derivation of the Apparent Depth

The parallelism between the two flat refractive interfaces Φ1 and Φ2 implies that both
interfaces share the same interface normal (See Figure 4.4). As is known from physics,
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Figure 4.5: Derivation process of the VOPs locations in the case of two flat refractive interfaces.

refraction happens in a plane. Hence, the ray a in air, the ray g in glass and the ray
w in water share the same plane of refraction Π. The existence of two flat refractive
interfaces requires to check the impacts on the VOP locations Ǒm and Ǒs, which are
formed following Bartlett et al. [BLJ84]. Therefore, the derivation of the apparent depth
in Section 2.3.3 needs to be adapted.
Similarly to Section 2.3.3, the ray w in water is the central ray of a cone representing
a bundle of rays, which are emitted from a real object point O, as can be seen in
Figure 4.5. A limit value observation is performed with the aid of a second ray in the
cone’s meridional Ψm and sagittal plane Ψs, respectively (the cone’s size is exaggerated
for visualization). The limit value observation is illustrated in Figure 4.5 b − d. Due to
the parallelism of the two refractive interfaces, similar prerequisites as before exist and
the two possible locations of the virtual images at the VOPs Ǒm and Ǒs in Figure 4.5 d
differ only slightly from the ones in Figure 2.8. Due to occlusions, the two rays in the
sagittal plane can only be seen in the top views of Figure 4.5 b − d and the two rays in
the meridional plane in the side views. As before, the limit value observation is done
for an infinitesimal radius of the cone. In the sagittal case, the planes of refraction of
both ray paths obviously differ. Due to the parallelism of the interfaces and their shared
interface normal, both still have to intersect in the object axis s1. Therefore, the sagittal
VOP is located on the object axis s1 at point Ǒs and the limit value observation is just
performed formally, as in the case with a single flat refractive interface. In the meridional
case, the whole derivation takes place in the plane of refraction Π of the ray w in water,
which is identical to the meridional plane Ψm. This is not altered by additional parallel
interfaces and the virtual extensions of both rays still intersect in the meridional VOP
Ǒm, which is located higher than the real object point O and closer to the observer. As
before, both locations are situated on the backwards extended ray a.
The direct finding is that the essential derivation processes of both VOP locations are
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Figure 4.6: Linear shift to the new VOP locations due to an additional refractive interface.

still valid, since the planes of refraction are not influenced by an additional refractive
layer. However, the final locations are only similar and their mathematical computation
differs. The same applies for several additional, parallel interfaces.

Linear Shift of Locations

Although the basic results of the adapted derivation of the two physically founded
locations are similar, there is still a change compared to their final locations in the case
of a single refractive interface. The derivation process of ǑM is not altered and still
contains the intersection of the ray a with a plane Γ passing through the real object
point O, parallel to the interface Φ. However, its final location is changed as well. These
changes will be analyzed briefly in the following. In contrast to the previous case of a
water-air transition of the rays, the additional glass layer results in a water-glass-air
transition. As is known from physics, an additional layer between two media does not
alter the final direction of the refracted ray. Since the current viewing direction starts
at the real object point O, this is the ray a in air. It can be constructed geometrically
by a shift from the ray ǎ in the case of a single interface to the ray a in the case of two
interfaces. Therefore, the direction of the ray g in glass does not even need to be known.
Note that the ray ǎ is illustrated in a virtual version. As can be seen in Figure 4.6, the
change of all the locations of the VOPs simply amounts to a linear shift, respectively.
All the segments of the optical path (w, g and a) and all the VOPs (Ǒs, Ǒm and ǑM ) lie
in a single plane of refraction Π, which is formed by the ray w in water and the object
axis s1.

Traces of Virtual Object Points

Figure 4.7 illustrates the traces of the VOP locations in the case of two flat refractive
interfaces. It was generated in the same way as Figure 4.3. As can be seen, the shapes of
the basic 3D structures, which are resulting from tracing the respective locations of the
VOPs, essentially stay the same. However, there are also some differences.
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Figure 4.7: Traces of the VOP locations in the case of two refractive interfaces. Left: 2D front
view. Right: Perspective 3D view.

• The circular area ∆M on the plane Γ is not concerned, since its radius already
tends towards infinity in the case of a single refractive interface.

• The extent of ∆m is altered along the object axis s1. The upper end is extended
up to the interface Φ1 and the apex at the bottom is shifted upwards. Due to the
additional medium, the bottom end can not be computed by Equation 2.25 any
more.

• The extent of ∆s is altered along the object axis s1 by the same amount as ∆m is.

4.2.3 Selection

As in the case of a single flat refractive interface, the determined traces of the VOP
locations in the case of two flat refractive interfaces make clear that VOPs can be assigned
ambiguously but regulated to a single real object point. The analysis of the resulting
3D structures shows that the earlier proposed arguments against ∆M and ∆m remain.
Summarized, these are the infinite extent of ∆M and the ambiguous intersections of the
ray a in question with ∆m. The most convenient case is still indisputably ∆s. By being
a single straight line, it has the least spacial extent, the simplest 3D structure and is
the most suitable search space for the determination of the true optical path between a
given real object point O and a viewpoint V . In the case of two interfaces, the extent of
this line along the object axis s1 is influenced by the shift of the VOP Ǒs. The direct
consequence is that the relation between the virtual and the real object point can not
be expressed by Equation 2.26 any more. It gets invalid and needs to be adapted. The
derivation of the new relation will be performed in the following section. The chosen
VOP location Ǒs will be referred to as VOP Ǒ in the remainder of this thesis.
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4.3 Model for Two Flat Refractive Interfaces

The proposed VOP model represents the relation between the virtual and the real object
points in the case of two parallel flat refractive interfaces and is based on Equation 2.26,
which represents this relation in the case of a single flat refractive interface. However, as
mentioned in the previous section, this equation is insufficient and needs to be adapted.
Compared to the previous setup, which can be seen on the left side of Figure 4.8, the
current setup on the right side shows some similarities. The prerequisites resemble each
other to a certain degree and hence, there is the potential for the adaption of Equation
2.26. Let us consider the optical path on the right side of Figure 4.8 that contains the
ray a in air, the ray g in glass and the ray w in water. From a formal point of view,
the viewing direction is from air to water and the angle α is the angle of incidence.
Therefore, the ray a gets refracted at the interfaces Φ1 and Φ2. This results in the ray w
in water that is passing through the real object point O. Let us assume that the glass
layer and hence the refractive interface Φ1 does not exist. This would result in the ray w̌.
Since it is already known from physics that the final direction of the refracted ray is not
influenced by an additional layer, this ray can also be constructed by shifting the ray w
in parallel to pass through the auxiliary point A3. The points A1, A2, A3 and Ǒ on the
right side of Figure 4.8 represent the exact same setup as is illustrated on the left side.
This shows that the relation between the virtual and the real object point in the case of
two parallel flat refractive interfaces can be reduced to this relation in case of a single
flat refractive interface. Therefore, the formulation by Equation 2.26 is able to serve as a
starting point. The necessary adaptions for the new relation will be formulated in the
following. With the aid of the selected VOP location, the derivation of the new relation
can be realized by trigonometry in right-angled triangles, similarly as in Section 2.3.3.
The proposed VOP model is partially based on Dolereit and von Lukas [DL16].

Figure 4.8: Relation between the virtual and the real object points. Left: In the case of a single
flat refractive interface. Right: In the case of two parallel flat refractive interfaces.
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Derivations. The two right-angled triangles formed by the auxiliary points A1, A2,
A3 and the VOP Ǒ form the starting point. By utilization of Equation 2.26, the distance
d(A1, A2) can be related to the distance to the VOP d(A1, Ǒ) by

d(A1, A2) = λ1(α, na, nw) · d(A1, Ǒ), (4.1)

with λ1 being a scalar, which is dependent on the angle of incidence α and the refractive
indices na and nw:

λ1(α, na, nw) =

√(
nw
na

)2
− sin2 α

cosα . (4.2)

As can be seen, the auxiliary point A2 does not coincide with the real object point O.
This results in an offset, which amounts to the distance d(A2, O). Since the points A2, O,
R2 and A6 form a parallelogram, the distance d(A2, O) is equal to the distance d(R2, A6).
Note that the two right-angled triangles formed by the points A3, A4, A6 and R2 and
the previously utilized triangles, which are formed by the points A1, A2, A3 and Ǒ, are
geometrically similar. Therefore, Equation 2.26 can be utilized again to relate the offset
d(A2, O) to the distance d(R2, A4):

d(A2, O) = d(R2, A6) = λ1(α, na, nw) · d(R2, A4). (4.3)

The necessary distance d(R2, A4) is dependent on the properties of the glass layer. It is
computed by:

d(R2, A4) = tg − d(A4, A5), (4.4)

with tg = d(A5, R2) being the known glass layer thickness. Let us take a look at the two
right-angled triangles formed by the points A4, A5, R1 and R2. Due to the refractive
index of glass, these are not geometrically similar to the previously used triangles any
more. However, it is still valid to compute the distance d(A4, A5) by utilization of
Equation 2.26:

d(A4, A5) = λ2(α, na, ng) · tg, (4.5)

with λ2 being a scalar, which is dependent on the angle of incidence α and the refractive
indices na and ng:

λ2(α, na, ng) = cosα√(
ng

na

)2
− sin2 α

. (4.6)

Note that in contrast to Equations 4.1 and 4.3 the rearrangement differs. However, all
the necessary relations can be derived straightforward from the same basic principle.
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Real-from-Virtual. The application of Equations 4.1 to 4.6 results in the final for-
mulation of the model for the relation between the virtual and the real object point. The
distance to the real object point is represented by x = d(A1, O) and the distance to the
VOP by x̌ = d(A1, Ǒ). The distance to the real object point can be computed by

x = d(A1, A2) + d(A2, O)
= λ1(α, na, nw) · x̌+ λ1(α, na, nw) ·

(
tg − λ2(α, na, ng) · tg

)
= λ1(α, na, nw) · (x̌+ tg ·

(
1− λ2(α, na, ng)

)
)

= λ1(α, na, nw) · (x̌+ tg ·
(
1− λ2(α, na, ng)

)
)

=

√(
nw
na

)2
− sin2 α

cosα ·

x̌+ tg ·

1− cosα√(
ng

na

)2
− sin2 α


 , (4.7)

if the distance to the VOP x̌, the glass layer thickness tg, the angle of incidence α and
the refractive indices na, ng and nw are known.

Virtual-from-Real. Vice versa, the distance to the VOP can be computed by

x̌ = x

λ1(α, na, nw) − tg ·
(
1− λ2(α, na, ng)

)

x̌ = x · cosα√(
nw
na

)2
− sin2 α

− tg ·

1− cosα√(
ng

na

)2
− sin2 α

 , (4.8)

if distance to the real point x, the glass layer thickness tg, the angle of incidence α and
the refractive indices na, ng and nw are known.

Particularities. Note that in both cases similar conversions as in Section 2.3.3 are
possible. For example, with the substitution of Equations 2.27 and 2.23, it is possible
to eliminate the need to compute the trigonometric functions in these two equations
explicitly. The represented relations can be readily introduced into the underwater image
formation models with explicit consideration of refractive effects. However, the proposed
model has some limitations. The point R2 represents the closest location the real object
point O can be at. It corresponds to a distance equal to zero. Since the real object can
not penetrate the glass layer, it coincides with the physical limitation. However, a VOP
Ǒ can be situated inside the glass layer. Therefore, a point symmetry in A3 is exploited
for Equations 4.7 and 4.8 to be valid in this case. This means that the distances to
VOPs inside the glass layer, which are measured with respect to the auxiliary point A1
on the interface Φ2, need to get a negative algebraic sign before being inserted into these
equations.
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4.4 Summary
Since the focus of this thesis is on calibration of the refractive parameters of a SFRS ,
basic operations like the computationally expensive refractive projections for coordinate
transformations between 3D and 2D spaces are unavoidable. In this chapter, a VOP
model, which has the capabilities to affect these refractive projections in a beneficial way,
has been motivated and the previously presented findings on VOPs have been analyzed.
The result of the analysis of the impacts of two flat refractive interfaces on the three
previously proposed VOP locations is that they are still generally valid. This is especially
relevant for the two locations that are physically founded by the concept of the apparent
depth. In each case, the only difference is a linear shift due to the additional glass
layer. Since all three possibilities are valid locations, a selection based on convenience
needed to be made. With an unknown optical path between a real object point and a
viewpoint, one can assign VOPs ambiguously but regulated to this single object point.
This regulation is based on the derivation processes of the respective locations. Therefore,
the 3D structures that are formed by the computed traces of the VOP locations for a
significant amount of all possible directions of the rays emitted from a real object point
have been analyzed. These 3D structures represent a search space for the determination
of the true optical path. The criteria for the selection of the most suitable location are
the properties of these 3D structures, which finally enabled an obvious selection of Ǒs.
Its trace has the least spacial extent and, by being a straight line, it has the simplest 3D
structure. The VOP Ǒs lies exactly on the object axis. This is the VOP location that
will be utilized in the remainder of this thesis and it will be referred to by Ǒ from now.
The model that has been formulated is based on simple trigonometric rules and describes
how to non-ambiguously relate VOPs to real object points and vice versa in the case of
two flat refractive interfaces. As will be seen in the following chapters, this model can
be readily integrated into the underwater image formation models and thereby provides
an ideal basis to meet the challenges that arise during the extensions of the concepts of
stereo 3D reconstruction in air for underwater environments. The previously utilized
viewpoint will be replaced in the following by the center of projection of the camera.
Thereby, collinearity between the VOP, the center of projection and an image point
occurs and the requirements that make an approximation by the pinhole camera model
valid are met.
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Systems

In this chapter, the proposed approaches for the determination of the refractive parameters
of a SFRS will be presented. These represent one of the major contributions of this
thesis. The requested refractive parameters are the orientation of the system axis and
the air layer thickness. The obvious advantage of a shared flat refractive interface is that
the refractive parameters have to be estimated just with respect to the master camera.
Although being more specialized than single camera systems, the model for a SFRS can
be designated as a representative of a common viewing condition. There are multiple
practical configurations of imaging setups that can be represented by this model. A first
exemplary configuration consists of two cameras in front of one side of an aquarium. A
second configuration consists of two cameras in a single underwater housing.
The refractive calibration of the imaging system is an important first step of underwater
stereo 3D reconstruction. A justification of the requirements for the approaches to be
developed, of the prerequisites for the approaches to work and its resulting restrictions
will be done in this chapter. Unavoidable for calibration are basic operations like the
computationally expensive refractive projections between 3D and 2D spaces. It will be
shown how these basic operations can be affected by the VOP model from Section 4.3 in
a beneficial way. Therefore, this model needs to be integrated into the utilized models for
underwater image formation. The integration within monocular and binocular vision will
enable four alternative approaches for the coordinate transformation between 3D and
2D spaces. All of them will be used for the definition and computation of cost functions.
These cost functions reflect the quality of the determined parameters and are a vital
part of calibration approaches. Another vital part of calibration approaches are the
definitions of optimization problems, which regulate the interaction between parameter
determination and cost functions. Within the proposed optimization approaches, it will be
shown how the refractive parameters can be determined consecutively and simultaneously.
Common cost functions, such as the reprojection error or 3D scene errors, and one that
is a novel development will be utilized for the simultaneous optimization of the refractive
parameters. In contrast, pattern-based invariants will be derived from the VOP model
for the novel development of pattern-based cost functions. Their application will allow
the determination of the system axis, independently of the air layer thickness. Thereby,
the consecutive optimization of the refractive parameters will be possible. As will be
seen, the proposed calibration approaches will show a progressive independence from
calibration objects and will allow the determination of the air layer thickness by linear
optimization, which are major contributions of this thesis. This chapter is partially based
on Dolereit et al. [DK14; Dol15; DLK15a; DLK15b; DL16].
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5.1 Requirements, Prerequisites and Restrictions
Since the focus of this thesis is on the calibration of the refractive parameters of a
SFRS , the requirement for the approaches to be developed is to be able to handle such
a system. The approaches should serve the calibration of the refractive parameters
defined in Section 2.5 and the developments should contain a progressive independence
from calibration objects. The following prerequisites have to be satisfied for the current
implementation:
• The imaging setup can be characterized by the SFRS .

• There are two interfaces and the thickness of the glass layer is known.

• The refractive indices of the participating media (air, glass and water) are known.

• The stereo camera with constant intrinsic and extrinsic parameters is calibrated.
These prerequisites simultaneously impose restrictions on the approach, which will be
justified in the following. The major restriction is the SFRS itself. As mentioned before,
having a shared interface is not an unusual setup. Its biggest advantage are some major
computational simplifications that will be presented in the following chapter. A second
restriction is that only the air layer thickness will be estimated and the glass layer
thickness has to be known. This is not that severe, since most of the time it is possible to
measure the thickness of, for example, a glass or acrylic plate of an underwater housing or
of an aquarium directly. It is even possible that it is known from the manufacturer. To
assume a known glass layer thickness is a common practice and it is also recommended
to prefer measurement over estimation (See Section 3.3.3). The same common practice
is the assumption of known refractive indices of all participating media (See Section 3.3).
In the case of a water-glass-air transition, there is the refractive index of air which can
be approximated reliably by 1. The refractive index of water can be approximated by
1.33, since it is said to change only about 2% in the whole relevant range of water bodies
[Mob94]. The refractive index of glass is known from the material properties, which
are usually available from the manufacturer. The last restriction is the calibration of
the stereo camera in advance. A major assumption is that camera lens distortion and
refractive distortion do not influence each other. Lens distortion is independent of the
3D scene, whereas refractive distortion is highly dependent on it. Since the literature on
this subject does not state otherwise, it is assumed that both are separable. This enables
the calibration of the stereo parameters individually. Camera lens distortion can then be
eliminated from underwater images as a pre-process.
Compared to approaches from the literature, the developed ones will not be restricted as
follows:
• The image plane does not need to be perpendicular to the interface normal.

• There is no need for known coordinates of feature points on a calibration object.

• The number of interfaces and layers is extendable as long as the additional layer
thicknesses and the refractive indices are known.
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5.2 Virtual Object Point Model and Monocular Vision

An advantageous property of image formation in air is the approximability by the pinhole
camera model. Unfortunately, due to the refraction of light rays, the pinhole camera
model is invalid under water. A valid starting point is the model for a FRS . Since it
contains only one camera, this is a generalization of the model for the SFRS . Note that
the previously used viewpoint of the observer is replaced by the center of projection
C of the camera. Assuming that all the refractive parameters are already known, the
underwater image formation process is still computationally expensive. The integration
of the VOP model from Section 4.3 is illustrated in Figure 5.1. The advantage of the
combined model is that the VOP Ǒ is situated collinear to the center of projection C of
the camera and the image point I. In the following, it will be shown how this can be
utilized for transformations between 3D and 2D spaces.

Figure 5.1: Combination of a FRS and the VOP model.

Labeling. A detailed description of the labeling in Figure 5.1 is presented in Table
5.1. This labeling can be adapted for all following figures in this chapter. Note that
the illustration is a top view of the plane of refraction Π that contains the full ray path
between an image point I and a real object point O. In contrast to the depicted case,
in which the x-axis and the z-axis of the camera coordinate system coincide with the
plane of refraction Π and the omitted y-axis is orthogonal, the principal axis p does not
necessarily lie this plane. Note that the ray path would not change if the camera rotates
around its center of projection C, or even if it additionally translates along the ray a.
Only its endpoint, which is captured on the image plane at image point I, would be
affected. The ray path contains the ray a in air, the ray g in glass and the ray w in water.
As before, the ray a in air is not distinguished by the labeling from its virtual part in
water (dashed). The two interface normals passing through the points of refraction R1
and R2 are only necessary for the illustration of the angle of incidence α and the angle of
refraction β. Their labeling is omitted. Since the computation of the angle of refraction
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of the ray g in glass is not necessary for the approaches to be developed, its illustration
is omitted as well.

label description
Π plane of refraction
Φ1 flat refractive interface between air and glass
Φ2 flat refractive interface between glass and water
na refractive index of air
ng refractive index of glass
nw refractive index of water
s0 system axis
s1 object axis
S1 intersection point of s0 and Φ1
S2 intersection point of s0 and Φ2
O real object point
Ǒ virtual object point
A1 auxiliary point on Φ2

R1, R2 points of refraction
C center of projection of the camera and origin of the camera coordinate system
x x-axis of the camera coordinate system
z z-axis of the camera coordinate system
y y-axis is not illustrated as is perpendicular to the plane of refraction Π
p principal axis of the camera
P principal point of the camera
I image point
a ray in air
g ray in glass
w ray in water
α angle of incidence
β angle of refraction

Table 5.1: Labeling of elements in illustrations.

In the figures, the labeling of vectors and distances is usually omitted for the sake of
clarity. However, the labeling of vectors in the text follows the scheme of matching
characters, which is presented exemplary at the top section of Table 5.2. Note that there
is no difference between the labeling of a position vector and a direction vector. As can
be seen at the bottom section of Table 5.2, some recurring distances have special labels.
In the texts, the labeling of distances will usually be accompanied by the notation for
the Euclidean distance d(.., ..), which was introduced in Section 2.1.

label description
a direction vector of the ray a
ā normalized direction vector of the ray a
o position vector of the point O
ta air layer thickness, which is the distance d(C, S1)
tg glass layer thickness, which is the distance d(S1, S2)
x̌ distance between a virtual point and the closest interface along the interface normal, e.g. d(A1, Ǒ)
x distance between a real point and the closest interface along the interface normal, e.g. d(A1, O)
f focal length, which is the distance d(C,P )

Table 5.2: Labeling of vectors and distances, which is generally omitted in illustrations.
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Figure 5.2: Refractive forward projection: Intermediate step of the iterative processing.

5.2.1 Refractive Forward Projection

Let us assume that a real object point O is known in the camera coordinate system
illustrated in Figure 5.2. As shown in Section 3.3.1, the refractive forward projection of
this point onto the image plane is computationally expensive. In contrast to perspective
projection, the starting direction of the ray that is emitted from the point O is unknown.
For the depicted case with two flat refractive interfaces, a solution from the literature is
to solve higher-order polynomials up to degree twelve. The proposed approach in this
thesis is an iterative computation of the distance d(A1, Ǒ) by a simple bisection strategy.
The advantage is that the associated VOP Ǒ can be mapped to the image plane by
perspective projection.

Requirements. The required quantities are the refractive indices na, nw and ng, the
glass layer thickness tg = d(S1, S2) = d(A1, A2), the air layer thickness ta = d(C,S1) =
d(A2, A3), the position vector o of the real object point O and the normalized direction
vector s̄, which is identical for the system axis s0 and the object axis s1.

Constraints and Definitions. In Figure 5.2, the VOP candidate Ǒ and its related
real object point candidate Ô of an intermediate step of the iterative computation are
shown. As can be seen, the real object point candidate Ô and the true real object point
O do not coincide. Ultimately, the constraint d(O, Ô) = 0 needs to be fulfilled. Since
every real object point has to be located in water, the distance x = d(A1, O) needs to
be equal to or greater than zero. With x̂ = d(A1, Ô), the cost function that has to be
minimized during the iterative processing is defined to be:

E = x− x̂. (5.1)

The distance x̂ can be computed with the aid of the VOP model from Section 4.3.
From this model, it is known that the true VOP Ǒ0 has to be located between the
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points A2 and O on the object axis s1. Let us define that the auxiliary point A1 is the
origin, the direction to O is positive and the direction to A2 is negative, as shown in the
depicted coordinate system on the left side of Figure 5.3. These definitions ensure that
the algebraic sign of the value of E is negative in section I and positive in sections II
and III, with a point of inflection at Ǒ0. This point of inflection is the VOP in question.
The proposed bisection strategy is used to optimize the distance x̌ = d(A1, Ǒ) to get the
VOP Ǒ closest to Ǒ0. It is composed of an initialization phase and an iteration phase.

Initialization. The initialization phase comprises the following definitions and initial
computations:

• Compute the distance d(A3, O) by orthogonal projection of vector o onto the
normalized vector s̄, with the aid of Equation 2.7.

• Compute the distance x by: x = d(A1, O) = d(A3, O)− tg − ta.

• Compute the angle β between the vectors s̄ and o and with that, compute the
distance d(A3, C) by: d(A3, C) = tan β · d(A3, O).

• Define a maximal deviation value ε for the termination of the iteration.

• Initialize the minimum value by min = −d(A1, A2), the maximum value by
max = d(A1, O) and the middle value for the bisection by mid = min+max

2 .

Iteration. The iteration phase comprises the following steps for the optimization of x̌:

1) Set the current distance x̌ to: x̌ = d(A1, Ǒ) = mid.

2) Compute the angle of incidence α by:

α = arctan
(
d(A3, C)
ta + tg + x̌

)
.

3) Compute the distance x̂ = d(A1, Ô) by application of Equation 4.7 from x̌, α, tg,
na, nw, ng.

4) Compute the function value E of Equation 5.1: E = x− x̂.

5) If E < 0 then max = mid, if E > 0 then min = mid.

6) Compute the new middle value by bisection: mid = min+max
2 .

7) Terminate the optimization of x̌ if |E| ≤ ε.

8) Repeat from 1).
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Figure 5.3: Refractive forward projection. Left: Final step of the iterative processing. Right:
Schematic illustration of the bisection strategy.

This iterative processing is illustrated exemplary in Figure 5.3. The row 1) marks the
initialization phase. The row n) marks the termination of the optimization of distance
x̌, since the point of inflection at Ǒ0 and hence the VOP in question is found. The
result is the VOP Ǒ that is closest to Ǒ0 in terms of ε (See right side of Figure 5.3).
Since the normalized direction vector s̄ of the object axis s1 is known, the position
vector o0 of the VOP Ǒ can be determined straightforward from the final distance x̌ by:
o0 = o − (x − x̌) · s̄. Afterward, the image point I can be determined by perspective
projection of the VOP Ǒ with the aid of the known intrinsic camera parameters as
described in Section 2.2.1.

5.2.2 Refractive Back-Projection

The goal of refractive back-projection is the computation of the ray w in water from a
given image point I, as illustrated on the left side of Figure 5.4. The proposed approach
is an alternative to the explicit 3D ray tracing commonly used in the literature (See
Section 3.3.1). In the depicted situation, ray tracing would comprise the computation of
the direction vectors of the rays a, g and w, as well as the computation of the points
of refraction R1 and R2. On the contrary, the proposed approach comprises only the
computation of two ray directions and one point, as will be described in the following.

Requirements. The required quantities are the refractive indices na, nw, ng, the glass
layer thickness tg = d(S1, S2), the air layer thickness ta = d(C,S1) and the system axis
s0 with a normalized direction vector s̄.

Definitions. The ray w in question can be expressed by:

w : o = c + λ ·w. (5.2)
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Figure 5.4: Refractive back-projection. Left: Ray path (a, g and w) from full ray tracing. Right:
Avoid full ray tracing by application of the VOP model to compute the ray w
expressed by Equation 5.2.

This comprises a position vector c and a direction vector w. With an according scalar
λ, every real object point O on this ray can be expressed by its position vector o. The
position vector c belongs to the point of intersection of the system axis s0 and the virtual
part of ray w. This point of intersection is a VOP. On the right side of Figure 5.4 it
is labeled by Č. Note that the illustration of the camera and its coordinate system is
omitted for the sake of clarity.

Computation of the Position Vector. As can be seen on the right side of Figure 5.4,
the setup resembles the one of Section 4.3, which has been used to formulate the VOP
model for two flat refractive interfaces. The only difference is that the direction of
consideration of the ray path is inverted. Here, the ray w in water is considered as the
incident ray and its virtual part (dashed) intersects the system axis s0 at the VOP Č.
This VOP Č belongs to the real object point C and both can be related by the previously
proposed VOP model.
The first preparatory step is the computation of the normalized direction vector ā of the
ray a in air, with respect to the camera coordinate system. With the aid of Equation
2.17, it can be computed from image point I and the known intrinsic camera parameters.
Subsequently, the angle of incidence α, which is the angle between the two normalized
direction vectors ā and s̄, can be computed straightforward. Under these conditions, the
position vector c can be computed as follows:

• Compute the distance x̌ = d(S1, Č) from distance x = ta, with tg, α, na, ng and
nw by application of Equation 4.8 under consideration that the direction of the ray
path is inverted: replace angle α by angle β and switch na and nw.

• Compute the angle of refraction β according to Snell’s law from the angle of
incidence α by Equation 2.20.
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5.2 Virtual Object Point Model and Monocular Vision

Figure 5.5: Refractive back-projection: Computation of the direction vector w of ray w.

• Since the normalized direction vector s̄ of the system axis s0 is known, the position
vector c can be determined straightforward by: c = x̌ · s̄.

Computation of the Direction Vector. The computation of the direction vector w
of the ray w in water can be realized by the basic VOP model for a single flat refractive
interface from Section 2.3.3. The actual presence of two flat refractive interfaces does
not influence this computation.
The ray a, with the normalized direction vector ā, and the ray w, with direction vector
w, share the same plane of refraction Π. Only the known, normalized direction vector
ā is necessary for the computation of w. Based on the basic VOP model for a single
flat refractive interface from Section 2.3.3, the exploited relations can be constructed
from the setup on the left side of Figure 5.5. This construction can be seen on the
right side of Figure 5.5. Note that the glass layer can be ignored and that the ray w is
represented by its direction vector w. Let vector w point to an arbitrary real object
point A3, which is chosen in a way that the normalized direction vector ā points exactly
to a VOP Ǎ3. With this, all the prerequisites for the application of the VOP model are
fulfilled. Therefore, the computation of w consists of the following steps:

• Compute the distance x̌ = d(A1, Ǎ3) = d(R,A2) by orthogonal projection of the
normalized vector ā onto the normalized vector s̄, with the aid of Equation 2.7.

• Compute the distance x = d(A1, A3) from the known angle of incidence α, distance
x̌ and the refractive indices na and nw with the aid of an appropriately rearranged
Equation 2.26.

• Since the normalized direction vector s̄ of the system axis s0 is known, the direction
vector w can be determined straightforward by: w = ā + (x− x̌)s̄
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5.2.3 Virtual Camera Model

In the context of the computation of the reprojection error, the utilization of a virtual
camera represents an alternative to refractive forward projection. This means that a
known 3D point needs to be projected to 2D image space, while its measured 2D image
coordinates are known. By comparison of the projected and the measured image point,
the accuracy of the recovered 3D point can be evaluated. The proposed virtual camera
model is based on Dolereit and Kuijper [DK14].
The starting point of the computation of the virtual camera is a real image point I,
which belongs to an arbitrary real object point O on the ray w. As can be seen on the
left side of Figure 5.6, the real object point O, the center of projection Č of the virtual
camera and the virtual image point Ǐ are collinear. Hence, refraction is avoided and
conventional forward projection based on the pinhole camera model becomes an option.
The virtual image point Ǐ can be determined by perspective projection of the real object
point O with the aid of a set of virtual camera parameters. These have to be computed
per image point I, since they differ as the angle of incidence α changes. Note that a set
of parameters of a virtual camera, such as the one on the left side of Figure 5.6, is valid
for all the possible real object points on the ray w in water.
The proposed approach differs from the approaches proposed in the literature. The first
difference is that every resulting virtual camera has an image sensor that has the same
size the as real camera. Furthermore, for every image point I, the virtual image point Ǐ
is located at the exact same image coordinates. Hence, every pair of these two images is
identical for this one image point.

Requirements. The required quantities are the refractive indices na, nw, ng, the glass
layer thickness tg = d(S1, S2), the air layer thickness ta = d(C,S1) and the axis s0 with
a normalized direction vector s̄.

Preparatory Computations. This part of the computation comprises the steps of
the previously proposed refractive back-projection. The normalized direction vector ā of
the ray in air a, the angle of incidence α and the ray in water w, with direction vector w
and position vector c, are computed as described in Section 5.2.2. The position vector
c belongs to the VOP Č, which will be the center of projection of the virtual camera.
Additionally, the computation of the angle γ between the direction vector ā and the
direction vector p1 of the principal axis p and the known focal length f = d(C,P ) of the
real camera are necessary for the following derivations.

Computation of the Intrinsic Parameters of the Virtual Camera. This part
of the computations comprises the determination of the virtual focal length f̌ = d(Č, P̌ )
and the angle γ̌ between the direction vector p2 of the virtual principal axis p̌ and the
direction vector w of the ray w. The necessary steps are:
• Since the real object point O can be located arbitrarily on the ray w, choose the

related VOP Ǒ to be the point of intersection between the refractive interface Φ2
and the ray a (the coordinates do not need to be calculated explicitly).
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5.2 Virtual Object Point Model and Monocular Vision

Figure 5.6: Virtual camera model: Left: Exemplary illustration of the virtual camera that is
associated to the image point I. Right: Superimposition of the principal axis of the
real and the virtual camera.

• Compute the distances d(C, Ǒ) and d(Ǒ, S2) in the right-angled triangle formed by
the points CǑS2 by simple trigonometric rules utilizing the known angle α and
distance d(C,S2) = ta + tg.

• Compute the angle of refraction β according to Snell’s law from the angle of
incidence α by Equation 2.20.

• Compute the distance d(Č, O) in the right-angled triangle formed by the points
ČA3O by simple trigonometric rules utilizing angle β and distance d(O,A3) =
d(Ǒ, S2).

Let us extract some of the quantities from the left side of Figure 5.6 and illustrate them
as shown on the right side. One can easily derive that if d(P , I) = d(P̌ , Ǐ), then

d(A2, Ǒ) = d(A1, O). (5.3)

With the previously computed distances d(Č, O) and d(C, Ǒ) the virtual parameters γ̌
and f̌ can be computed as follows:

• Compute the distance d(A2, Ǒ) in the right-angled triangle formed by the points
A2CǑ by: d(A2, Ǒ) = sin γ · d(Ǒ, C).

• Compute the angle γ̌ in the right-angled triangle formed by the points A1ČO with
the aid of Equation 5.3 by:

γ̌ = arcsin
(
d(A1, O)
d(O, Č)

)
= arcsin

(
sin γ · d(Ǒ, C)

d(O, Č)

)
.
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• Compute the distance d(I, P ) in the right-angled triangle formed by the points
CIP by simple trigonometric rules utilizing the known angle γ and focal length f .

• Compute the virtual focal length f̌ = d(Č, P̌ ) in the right-angled triangle formed
by the points ČǏP̌ by simple trigonometric rules utilizing angle γ̌ and distance
d(I, P ).

With the virtual focal length f̌ , it is possible to compose a virtual camera calibration
matrix. As already described in Section 2.2.1, it has the form:

K =

fu 0 u0
0 fv v0
0 0 1

 .
The entries fu = muf̌ and fv = mvf̌ are the virtual focal length of the virtual camera
scaled to pixel units. The scaling factors mu and mv, as well as the coordinates of the
principal point P = (u0, v0) in the image coordinate system are adopted from the real
camera.

Computation of the Orientation of the Virtual Camera. To complete the pa-
rameters of the virtual camera, this part of the computation comprises the determination
of the orientation of the virtual camera, which can be represented by the axes of its
coordinate system. The virtual principal axis p̌ is to a certain degree arbitrary as it is up
to now only parametrized by the angle γ̌. In 3D space, as can be seen on the left side of
Figure 5.7, this leads to a number of possible locations arranged in a circle Ω around w.
The obviously choice is one of the two possibilities p̌1 and p̌2 in the plane of refraction Π.
Both form an angle equal to γ̌ with the ray w. The following steps are necessary:

• Compute the direction vector p21 of the virtual principal axis p̌1 or the direction
vector p22 of the virtual principal axis p̌2 with the aid of angle γ̌.

• Choose p21 or p22 to simultaneously be the direction vector of the virtual principal
axis p̌ and of the ž-axis of the coordinate system in question.

• Compute the x̌-axis utilizing the superimposition of the image plane of the virtual
camera and the image plane of the real camera illustrated in the middle of Figure 5.7:
– The direction vector of a line connecting image point I and principal point P

forms an angle ε to the x-axis of the real camera. Consequently, the direction
vector of a line connecting virtual image point Ǐ and virtual principal point P̌
has to form the same angle to the x̌-axis in question.

– Compute the x̌-axis in question from this angle ε and the fact that the x̌-axis
needs to be orthogonal to the ž-axis.

• Compute the y̌-axis with the cross product of direction vectors of the ž- and the
x̌-axis, since it needs to be orthogonal to both of them.
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5.2 Virtual Object Point Model and Monocular Vision

Figure 5.7: Left: Ambiguity of the virtual principal axis. Middle: Superimposition of the real
and virtual image plane. Right: Resulting coordinate system of the virtual camera.

The vectors x̄, ȳ and z̄ are the normalized direction vectors of the axes of the coordinate
system of the virtual camera in the coordinate system of their computation (e.g. coordinate
system of real camera), as illustrated on the right side of Figure 5.7. The transformation
from the coordinate system of the real camera into the coordinate system of the virtual
camera can be expressed by the rotation matrix:

R = (x̄, ȳ, z̄)−1

and by the translation vector:
t = R · (−c),

with c being the position vector of the virtual center of projection Č.

Projection Matrix of the Virtual Camera. The final projection matrix of the
virtual camera for one image point I and hence for one ray w is composed of:

P = K [R|t] .

With this projection matrix, any given real object point O on the ray w in the 3D
coordinate space of the real camera can be projected to the point Ǐ in the 2D image
space of the virtual camera. Since the coordinates of the virtual image point Ǐ and its
corresponding real image point I are equal by definition of the proposed virtual camera
model, this direct projection is equivalent to refractive forward projection, which usually
needs to be computed iteratively. However, although a direct projection is possible,
a disadvantageous overhead arises out of the need for the computation of the virtual
camera parameters per image point. The proposed virtual camera model shows how
underwater imaging can be converted to imaging in air. In other words, an underwater
image can be equivalently expressed by image formation based on the pinhole camera
model. Its usefulness will be shown in context of the computation of the reprojection
error in Section 5.4.4.
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5.3 Virtual Object Point Model and Binocular Vision

The integration of the VOP model from Section 4.3 into the model for a SFRS is
illustrated in Figure 5.8. Note that the illustration is not a top view of the plane of
refraction any more. The ray paths between I and O and between I ′ and O are in general
located in different planes of refraction. Concerning the labeling, most of the one that
was proposed in Table 5.1 for the VOP model and monocular vision can be adopted.
Due to the second camera, the major difference is that an additional right version of each
quantity exists, which is labeled with an additional quotation mark. As should be clear,
the object axis s1, the auxiliary point A1 and the real object point O are excluded, since
they are the same for both cameras. Additional quantities are the rotation matrix R and
the translation vector t, which represent the transformation between the two cameras.
In a SFRS , two VOPs Ǒ and Ǒ′ are associated to one real object point O. Each of
them is collinear to the center of refraction and the image point of the respective camera.
Both VOPs do not coincide in general. The only exception is the case of equal angles
of incidence. In this section, it will be shown how to easily compute these VOPs from
pairs of corresponding image points in a SFRS . This in turn enables the straightforward
computation of the related real object point, which has already been proposed in Section
4.3. Therefore, the computation of the VOPs in combination with the computation of the
real object point amounts to an alternative for refractive back-projection and even for the
recovery of 3D coordinates. With this approach, ray tracing can be avoided completely.

Figure 5.8: Combination of a SFRS and the VOP model.
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Figure 5.9: Left: Plane of refraction Π belonging to the image point I. Right: Plane of refraction
Π′ belonging to the image point I ′.

5.3.1 Computation of Virtual Object Points

The computation of the VOPs in a SFRS is closely related to the process of intersecting
the planes of refraction Π and Π′ belonging to a pair of corresponding image points I and
I ′, as illustrated in Figure 5.9. To maintain clarity, the illustration is done separately for
both planes.

Requirements. The required quantity is the direction vector s̄ of the system axis s0.

Preparatory Computations. The first step is the computation of the normalized
direction vectors ā and ā′ of the rays a and a′ in their respective camera coordinate
systems. This can be realized with the aid of Equation 2.17 from a pair of corresponding
image points I and I ′ and the known intrinsic camera parameters. Since both direction
vectors are computed in the camera coordinate system of their respective camera, one
of them needs to be transformed. In this case, the direction vector ā′ is transformed
into the camera coordinate system of the left camera, since the direction vector s̄ of the
system axis s0 is also know with respect to it.
The ray a and the system axis s0 form the plane of refraction Π, as shown on the left
side of Figure 5.9. The plane of refraction Π′ on the right side of Figure 5.9 is formed by
the ray a′ and the ray s′0, which passes through C ′. The ray s′0 has the same normalized
direction vector s̄ as the system axis s0. Since both planes of refraction originate from the
same real object point O, they can either be entirely coincident or they can intersect in a
line, but they can not be non-intersecting. If both planes Π and Π′ intersect in a line, this
line always has the same direction vector s̄ as the system axis s0. It is straightforward
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Figure 5.10: Intersection of the planes of refraction Π and Π′.

that this is always true. Mathematically, this can be derived from the definition of the
double cross product [BS79]:

a× (b× c) = b · (a · c)− c · (a · b). (5.4)

By utilization of the cross product, the normal vector of plane Π is n = s̄× ā and that
of Π′ is n′ = s̄ × ā′. Since the line of intersection in question has to be orthogonal to
both these normal vectors, it can be computed by the cross product n× n′. Then, the
application of Equation 5.4 leads to:

(s̄× ā)× (s̄× ā′) = s̄ · (

λ︷ ︸︸ ︷
(s̄× ā) · ā′)− ā′ · (

0︷ ︸︸ ︷
(s̄× ā) · s̄) (5.5)

= λs̄. (5.6)

The result of the scalar triple product (a× b) · c is always a scalar value. Therefore, the
first term of Equation 5.5 amounts to some scalar value λ and the second term amounts
to zero. This shows that the final direction vector of the line of intersection of the planes
Π and Π′ becomes s̄ scaled by λ. This line of intersection is the object axis s1, as can be
seen in Figure 5.10.

Virtual Object Points. The VOPs Ǒ and Ǒ′ need to be situated on the object axis
s1. Since the real object point O is unknown, both VOPs are computed by intersecting
ray a with plane of refraction Π′ and ray a′ with plane Π. This is done exemplary for the
first case. The plane is expressed in the Hesse normal form of the equation of a plane:

Π′ : n̄′ · o = d′, (5.7)
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with n̄′ being the normalized normal vector of the plane Π′, o being the position vector of
a point on the plane and d′ being the distance of the plane to the origin of the coordinate
system in normal direction. This distance d′ is computed by d′ = n̄′ · c′, with c′ being
the position vector of C ′. The ray is expressed as a line in vector form by:

a : o = c + λ · ā, (5.8)

with o being the position vector of a point on the line, c being the position vector of C
(note: c = 0), λ being a scalar and ā being the direction vector of the line. Substitution
of Equation 5.8 into Equation 5.7 leads to:

n̄′ · c + λ · n̄′ · ā = d′. (5.9)

Rearranging Equation 5.7 for λ and substitution into Equation 5.8 results in the position
vector o of the point of intersection:

o = c + d′ − n̄′ · c
n̄′ · ā

· ā, (5.10)

which is exactly the VOP Ǒ. By substitution of plane Π and ray a′, the position vector
o′ of the VOP Ǒ′ is computed equivalently by Equations 5.7 to 5.10 (note: c′ 6= 0 and
d = 0).
As can be seen, the computation of the VOPs in a SFRS is completely independent of
the refractive indices and the layer thicknesses. Hence, these refractive parameters do
not need to be considered. A limitation of this approach is that the VOPs can only be
computed in the presented way if the planes of refraction Π and Π′ intersect in a line. If
the planes coincide, the rays a and a′ obviously coincide with these planes and no point
of intersection can be computed.

5.3.2 Computation of Real Object Points

Figure 5.11 shows that the rays a and a′ are refracted at each of the two parallel interfaces
Φ1 and Φ2 and that the resulting rays w and w′ intersect at the real object point O. This
real object point can be computed from each of the VOPs Ǒ and Ǒ′, independently of the
other. In contrast to the computation of the VOPs, the remaining refractive parameters
need to be considered now.

Requirements. In addition to the already known normalized direction vector s̄ of the
system axis s0, the required quantities are the refractive indices na, nw, ng, the glass
layer thickness tg = d(S1, S2) and the air layer thickness ta = d(C,S1).

Real Object Points. The necessary computation steps are as follows:

• Compute the angle of incidence α between the two direction vectors s̄ and ā and/or
compute the angle of incidence α′ between the two direction vectors s̄ and ā′.
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Figure 5.11: Computation of real object points from VOPs.

• Compute the distance d(C,A2) by orthogonal projection of the position vector o
of VOP Ǒ onto vector s̄ and/or
compute the distance d(C,A3) by orthogonal projection of the position vector o′ of
VOP Ǒ′ onto vector s̄ with the aid of Equation 2.7.

• Compute x̌ = d(A1, Ǒ) = d(C,A2)− ta − tg and/or
compute x̌′ = d(A1, Ǒ

′) = d(C,A3)− ta − tg.

• Compute the distance x = d(A1, O) from distance x̌ and angle of incidence α and/or
from distance x̌′ and angle of incidence α′ by application of Equation 4.7 from the
known quantities na, nw, ng, ta and tg.

• Since the normalized direction vector s̄ of object axis s1 is known, compute the
position vector o1 of the real object point O by: o1 =o+(x− x̌)s̄ and/or
by: o1 =o′+(x− x̌′)s̄.

As can be seen, the computation of the VOPs in combination with the computation of
the real object point amounts to an efficient alternative for refractive back-projection.
It additionally allows the direct recovery of the 3D coordinates of a real object point.
Due to the previously mentioned limitation, it is not universally applicable. However, it
is ideally suited for the purposes of this thesis, which will be described in the following
sections.
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5.4 Definition and Computation of Cost Functions

Let us assume that an approach for the determination of the refractive parameters
already exists and that the results of this approach are hypothetical refractive parameters
with no information about their quality. The function value of a cost functions has the
purpose to reflect the accuracy of the determined parameters. The minimization of such
a cost function leads to the optimization of the parameters. This section comprises the
definition and computation of novel cost function, as well as the adapted computation of
common ones. In every case, the basic operation from Sections 5.2 and 5.3 are utilized
for the computations. The single cost functions show a progressive independence from
calibration objects.
The distinction of two stages serves to proof that the refractive parameters can be
determined to a certain degree independently of each other. The first stage includes the
derivation of pattern-based invariants by utilization of the VOP model. These invariants
are used for the definition of two pattern-based cost functions. Both of them are only
dependent on the system axis of the SFRS . Therefore, they enable the optimization of the
orientation of the system axis without considering the remaining refractive parameters.
The restrictions on the necessary pattern on the calibration object decrease from invariant
one to invariant two.
At the second stage, the cost functions are independent of calibration objects with special
patterns. Instead, they make use of the recovery of 3D scene points or of the projection
of these 3D scene points onto the image plane. In contrast to the first stage, these cost
functions depend on all the refractive parameters and therefore serve their simultaneous
optimization. The associated common cost functions are the reprojection error and the
triangulation error, which will be adapted to refractive projections. Furthermore, a new
development of a cost function will be presented, which is based on the VOP model itself.
This section is partially based on Dolereit et al. [DLK15a; DLK15b].

5.4.1 Pattern-Based Invariants

In this section, it will be shown how invariants can be derived that only depend on the
system axis and some properties of the pattern on the calibration object. The calibration
object does not need to be measured completely. The only requirement is that the
features of the pattern are arranged in straight lines. A checker pattern provides the
necessary properties for both proposed invariants, while the single invariants do not
depend on all of them. This makes it interchangeable. The restrictions on the used
calibration object decrease between the first and the second invariant. The first invariant
depends on a known arrangement between multiple straight lines on the pattern and the
second depends only on feature points arranged in straight lines.

Elementary Components. Figure 5.12 shows the elements that will be needed for
the derivation of the invariants. Note that only one of the flat refractive interfaces is
illustrated to improve clarity. This is sufficient, since the second interface does not
influence the basics of the invariants. Let us consider a set of real object points Oij
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Figure 5.12: Left: Ray paths from the calibration object to the cameras. Right: Exemplary
construction of a feature plane Ψi.

at the inner corners of the squares on a checker pattern arranged in i ∈ {1, ..,m} rows
and j ∈ {1, .., n} columns. On the left side of Figure 5.12, the ray paths for a subset
of these points are shown. The emitted rays wij and w

′
ij are refracted at the interface

Φ. After passing through the respective centers of projection C or C ′, they end up at
the left and right image points Iij and I

′
ij . The depicted points Oij on the right side of

Figure 5.12 form a line li. According to the utilized VOP model, the VOPs are situated
on the object axes sij . All these object axes have the same normalized direction vector s̄,
which is known from the system axis s0. Hence, a line on the calibration object and the
respective subset of the object axes sij form a plane. Such a plane will be called feature
plane in the following. This is shown exemplary for the feature plane Ψi with i = 1,
which is formed by any point Oij on the line li, the normalized direction vector l̄i of this
line and the normalized direction vector s̄ of the system axis s0. The normalization of
both direction vectors is not mandatory.
As proposed in Sections 4.2 and 5.3.1, the VOPs Ǒij and Ǒ

′
ij , seen by the left and the

right camera, are located on the object axes sij , at the intersection points with the
respective left and right rays aij and a

′
ij . The basic constraint is that a feature plane,

such as Ψi, contains all the VOPs Ǒij and Ǒ′ij that are related to the respective real
object points Oij on the line li. This is true for every feature plane in horizontal and
vertical direction. In the following, it will be presented that this basic constraint implies
invariants that can be utilized later on to define novel cost functions. All that is necessary
is the assignment of VOPs to straight lines on the pattern of the calibration object.

1. Invariant Property

The first invariant is constrained the most, since it additionally makes use of an ar-
rangement of the straight lines on the pattern. On a checker pattern, these lines run
horizontally and vertically, distinguished in their direction by a right angle. On the left
side of Figure 5.13, all the object axes sij are shown, while the cameras and the rays
are neglected for better visibility. All the feature planes Ψi and Ψj are formed by these

92



5.4 Definition and Computation of Cost Functions

Figure 5.13: Left: Intersection of the object axes sij and of the feature planes Ψi and Ψj with
the refractive interface Φ. Right: Orthogonal view of the refractive interface Φ.

object axes and the horizontal lines li or the vertical lines lj on the checker pattern. This
is shown exemplary for the feature plane Ψi with i = 1.
Let us consider the intersections of the feature planes with the refractive interface Φ.
If the refractive interface is considered as a virtual image plane, the mapping of the
real object points Oij to the points Aij has the same properties as an orthographic
projection. The orthographic projection is an affine transformation that preserves parallel
lines [HZ04]. This makes it evident that the feature planes originating from a checker
pattern have to be parallel in horizontal as well as in vertical direction. The right side of
Figure 5.13 shows an orthogonal view of the refractive interface Φ. Since the viewing
direction is exactly the same as the direction of the object axes sij , these are seen as the
points Aij and the feature planes Ψi and Ψj are seen as parallel lines in two different
directions. The shear of the rectangles is a direct consequence of a checker pattern that is
not parallel to the refractive interface. As should be clear by now, an additional parallel
interface does not change these properties.
The first pattern-based invariant property is based on the constraint that the feature
planes are parallel in horizontal as well as in vertical direction. The orientation of a
feature plane can be represented by its normalized normal vector.

• The first part of the invariant property can be defined as that the angles between
the normal vectors of parallel feature planes have to be zero.

Besides the parallel feature planes, the ones that intersect can be considered as well.

• The second part of the invariant can be defined as that the angles between the
normal vectors of all the intersecting feature planes have to be equal.

Note that the second part of the invariant is in this form only valid for feature planes
that run parallel in only two different directions, as in the case of a checker pattern.
If feature planes in more than two directions are considered, it needs to be modified
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accordingly. The angle between two feature planes α(n̄1, n̄2), with n̄1 and n̄2 being
the normalized normal vectors of the feature planes, can be computed with the aid of
Equation 2.1. The arithmetic mean of the all the angles between the parallel feature
planes and likewise between the intersecting feature planes can be computed by:

µp = 1(m
2
) (m−1∑

i=1

m−i∑
k=1

α(n̄i, n̄i+k)
)

+ 1(n
2
)
n−1∑
j=1

n−j∑
k=1

α(n̄j , n̄j+k)

 = 0, (5.11)

µc = 1
m · n

 m∑
i=1

n∑
j=1

α(n̄i, n̄j)

 . (5.12)

In the case of parallel feature planes, the mean µp is computed in horizontal and vertical
direction. Since it is supposed to be equal to zero, it is used directly in the expression for
the invariant. In the case of intersecting feature planes, the mean µc has to be subtracted
from each angle. Overall, the invariant has to result in zero and can be expressed by:

µp +

 m∑
i=1

n∑
j=1

α(n̄i, n̄j)− µc

 = 0. (5.13)

It is worth mentioning that this invariant could be extended to all possible straight
lines on the pattern. This includes the diagonals in both directions. Furthermore,
any calibration object with features arranged in straight lines could be used instead, if
comparable relations between the feature planes can be defined.

2. Invariant Property

The second invariant property does not depend on a known arrangement of the straight
lines on the calibration object. The only prerequisite is the arrangement of the points
Oij on the calibration object in straight lines. Let us take the feature plane Ψi on the
right side of Figure 5.12 as an example. The invariant is based on the fact that all the
object axes sij that originate from line li lie in the same feature plane Ψi. The direct
consequence is that the VOPs Ǒij and Ǒ

′
ij that are related to the real object points Oij

on the line li also have to lie in this plane.
The second pattern-based invariant property is based on the constraint that the feature
planes contain VOPs.

• The invariant property can be defined as that the distance between a feature plane
and all of its associated VOPs has to be zero.

If the Hesse normal form of the equation of the feature plane is available:

Ψi : n̄i · x = di,

then Equation 2.5 can be utilized. It directly yields the Euclidean distance d(A,Ψi)
between an arbitrary point A and the feature plane Ψi. Note that the point A needs
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to be substituted by the VOPs Ǒij or Ǒ
′
ij . Since this distance is supposed to be zero

between all the VOPs and their associated feature plane, the invariant can be expressed
exemplary for the line li with i ∈ {1, ..,m} on the calibration object by:

n∑
j=1

d(Ǒij ,Ψi) +
n∑
j=1

d(Ǒ′ij ,Ψi) = 0. (5.14)

Every single line on the pattern of the calibration object is independent of the remaining
straight lines. Therefore, the utilized checker pattern can be replaced accordingly.

5.4.2 Pattern-Based Cost Functions

In this section, the previously derived pattern-based invariants are used to define cost
functions. Since the restrictions on the used calibration object decrease between the
invariants, this is same for the defined cost functions. Due to the independence of the
refractive indices and the layer thicknesses, these cost functions can be used to optimize
the orientation of the system axis individually (See Section 5.5.1). Both pattern-based
cost functions are able to reflect the accuracy of the determined axis.

Plane Angles Error

For the definition of the Plane Angles Error (PAE), the first invariant from Section
5.4.1 is utilized, which is based on the arrangement of feature points in straight lines
on the pattern of a calibration object. Summarized, the underlying constraint is that
the formed feature planes run parallel in their respective directions. The first part of
the invariant property is that the angles between the normal vectors of parallel feature
planes have to be zero and the second part is that the angles between the normal vectors
of intersecting feature planes have to be equal.
Figure 5.14 illustrates the approach for the computations. Note that it is generally valid
for both pattern-based cost functions. Since the coordinates of the real object points
are usually unknown, their corresponding image points Iij and I ′ij form the starting
point of any calculation. The indices i ∈ {1, ..,m} and j ∈ {1, .., n} represent the lines
in horizontal and in vertical direction on the utilized calibration object. Let us assume
that a hypothetical system axis h0 is known and the true system axis s0 is searched for.
The necessary steps for the computation of a function value of the cost function are as
follows:

• Compute the VOPs Ǒij and Ǒ
′
ij from pairs of corresponding image points Iij and

I ′ij for a hypothetical system axis h0, as described in Section 5.3.1.

• Arrange these VOPs according to the lines in horizontal (li) and vertical (lj)
direction on the checker pattern.

• Fit a plane to the set of VOPs per line to get the feature planes in horizontal
direction Θi : n̄i ·x = di and the feature planes in vertical direction Θj : n̄j ·x = dj ,
with n̄i and n̄j being the normalized normal vectors, x being the position vector
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Figure 5.14: Left: Computation of the VOPs Ǒij and Ǒ′ij for a hypothetical system axis h0.
Right: Erroneous resulting plane Θ from plane fitting into the VOPs Ǒij and Ǒ′ij .

to a point on the plane and di as well as dj being the distances of the respective
plane to the origin of the coordinate system.

The fitting of a plane Θ into the VOPs Ǒij and Ǒ
′
ij , which are known to belong to a

single straight line on the calibration object, is illustrated exemplary on the right side of
Figure 5.14.
By means of Equations 5.11 to 5.13 and with α(n̄1, n̄2) being the angle between the
normalized normal vectors of two fitted feature planes (Equation 2.1), the PAE is defined
by:

E = Ep + Ec, (5.15)

Ep = 1(m
2
) (m−1∑

i=1

m−i∑
k=1

α(n̄i, n̄i+k)
2
)

+ 1(n
2
)
n−1∑
j=1

n−j∑
k=1

α(n̄j , n̄j+k)
2

 ,
Ec = 1

m · n

 m∑
i=1

n∑
j=1

(
α(n̄i, n̄j)− µc

)2 ,
µc = 1

m · n

 m∑
i=1

n∑
j=1

α(n̄i, n̄j)

 .
In this set of equations Ep denotes the error resulting from the parallel feature planes
in horizontal as well as in vertical direction, while Ec denotes the error resulting from
the intersecting feature planes. The mean of the angles between the intersecting feature
planes is denoted by µc. Note that a square function is used to penalize larger deviations
more severely.

Plane Fitting Error

For the definition of the Plane Fitting Error (PFE), the second invariant from Section
5.4.1 is utilized, which is based on the arrangement of feature points in straight lines on
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a calibration object. Summarized, the underlying constraint is that the feature planes
contain VOPs and the invariant property derived from this is that all the distances
between a feature plane and its associated VOPs has to be zero.
The necessary steps for the computation of the error measure are basically the same as
for the PAE (See Section 5.4.2):

• Compute the VOPs Ǒij and Ǒ
′
ij from pairs of corresponding image points Iij and

I ′ij for a hypothetical system axis h0, as described in Section 5.3.1.

• Arrange these VOPs according to the lines in horizontal (li) and vertical (lj)
direction on the checker pattern.

• Fit a plane to the set of VOPs per line to get the feature planes in horizontal
direction Θi : n̄i ·x = di and the feature planes in vertical direction Θj : n̄j ·x = dj ,
with n̄i and n̄j being the normalized normal vectors, x being the position vector
to a point on the plane and di as well as dj being the distances of the respective
plane to the origin of the coordinate system.

Let us once again consider the exemplary plane fitting on the right side of Figure 5.14.
For an erroneous hypothetical system axis h0, this fitted plane Θi is most likely to deviate
from the VOPs Ǒij and Ǒ′ij . This is illustrated by the points Ôij and Ô′ij , which are
the new intersection points of the rays aij and a

′
ij with plane Θi. The cost function is

a measure of the distances between the VOPs Ǒij and Ǒ
′
ij and their associated fitted

feature planes Θi and Θj . By means of Equation 5.14, the PFE is defined by:

E = Eh + Ev, (5.16)

Eh = 1
m · n

 m∑
i=1

n∑
j=1

d(Ǒij ,Θi)
2

+ 1
m · n

 m∑
i=1

n∑
j=1

d(Ǒ′ij ,Θi)
2

 ,
Ev = 1

m · n

 n∑
j=1

m∑
i=1

d(Ǒij ,Θj)
2

+ 1
m · n

 n∑
j=1

m∑
i=1

d(Ǒ′ij ,Θj)
2

 .
In this set of equations Eh denotes the error resulting from the lines on the checker
pattern in horizontal direction and Ev denotes the error resulting from the lines in vertical
direction. Note that a square function is used to penalize larger deviations more severely.

5.4.3 3D Scene Cost Functions

In contrast to the two pattern-based cost functions from the previous section, the following
two do not depend on a special pattern on a calibration object, nor do they depend on
a calibration object at all. All that is necessary are stereo correspondences. A set of
left and right image points Ii and I

′
i, with i ∈ (1, .., k), forms the starting point of the

calculations. They correspond pairwise and every pair is related to a single real object
point. Assuming that hypothetical refractive parameters are known, this fact can be
exploited. The calibrated stereo camera together with these refractive parameters enables
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the recovery of the 3D coordinates of a real object point by intersection of the associated
left and the right ray path. This can be realized, for example, by triangulation of the
rays. For erroneous hypothetical refractive parameters, these rays are most likely to
intersect not at all. In that case, the cost function indicates how far they are apart. An
alternative to the triangulation-based cost function is the proposed second cost function.
Its definition and its computation is a result of the application of the computation of
virtual and real object points from Sections 5.3.1 and 5.3.2.
Both these cost functions make use of the recovery of the 3D scene and are able to reflect
the quality of all the determined refractive parameters. These cost functions can be used
to optimize all the refractive parameters in question simultaneously (See Section 5.5.3).

Refractive Triangulation Error

The Refractive Triangulation Error (RTE) makes use of the constraint that the left ray w
in water and the right ray w′ in water, which are computed from a pair of corresponding
image points I and I ′, need to intersect in a single real object point O. This leads to the
invariant property that the shortest distance between two corresponding rays needs to
be equal to zero. For the computation of the rays, refractive back-projection is necessary.
The RTE reflects if both rays intersect and if not, how far they are apart. The necessary
steps for the computation of the RTE are:

• Compute the left rays wi and the right rays w′i from pairs of corresponding image
points Ii and I

′
i for a hypothetical axis h0 and a hypothetical air layer thickness

ha = d(C,H1) by refractive back-projection, as described in Section 5.2.2.

• Transform either wi or w
′
i to the coordinate system of the opposite camera with

the known transformation R, t between both camera coordinate systems.

On the left side of Figure 5.15, the computation of the RTE is illustrated exemplary for
one stereo correspondence. For an erroneous hypothetical axis and/or air layer thickness,
the left ray w and the right ray w′ are most likely to be non-intersecting and with that
their shortest distance will not be zero. How far they are apart can be computed by the
shortest distance between two lines, which is the distance between the points O and O′.
The magnified section on the right side of Figure 5.15 shows this shortest distance, which
is characterized by the length of a line segment that is orthogonal to both rays w and
w′. The endpoints of this line segment are exactly the points O and O′. With d(x1, x2)
being the shortest distance between two lines (See Equation 2.4), the RTE is defined by:

E = 1
k

(
k∑
i=1

d
(
wi, w

′
i

)2
)
. (5.17)

Note that the explicit computation of the real object points Oi and O
′
i is not necessary

for the computation of the RTE . Once again, a square function is used to penalize larger
deviations more severely.
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Figure 5.15: Left: Schematic computation of the RTE . Right: The shortest distance between
the two rays wi and w

′
i.

Virtual Intersection Error

Like the RTE , the Virtual Intersection Error (VIE) makes use of the constraint that
the left ray w in water and the right ray w′ in water, which are computed from a pair
of corresponding image points I and I ′, need to intersect in a single real object point
O. From the VOP model from Section 4.3, a novel invariant property can be derived.
As is known by now, a left VOP and a right VOP can be computed from a pair of
corresponding left and right image points. Both these VOPs differ in general and they
can coincide if both angles of incidence are equal. However, both related real object
points need to coincide always. Therefore, the distance between the real object point O
that is computed from a left VOP Ǒ and the real object point O′ that is computed from
the right VOP Ǒ′ needs to be equal to zero. The VIE reflects if both real object points
coincide and if not, how far they are apart. The necessary steps for the computation of
the VIE are essentially the same as for the computation of the virtual and real object
points:

• Compute the VOPs Ǒi and Ǒ
′
i from pairs of corresponding image points Ii and I

′
i

for a hypothetical axis h0, as described in Section 5.3.1.

• Compute the distances to the real object points xi = d(A1i, Oi) and x′i = d(A1i, O
′
i)

for a hypothetical air layer thickness ha = d(C,H1), as described in Section 5.3.2.

Note that the explicit computation of the coordinates of the real object points Oi and O
′
i

is not necessary. On the left side of Figure 5.16, the computation of the VIE is illustrated
exemplary for one stereo correspondence. For an erroneous hypothetical axis and/or air
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Figure 5.16: Schematic computation of the VIE .

layer thickness, the distances xi and x
′
i are most likely to differ. How far they are apart

can be computed straightforward. Therefore, the VIE is defined by:

E = 1
k

(
k∑
i=1

(
xi − x

′
i

)2
)
. (5.18)

Once again, a square function is used to penalize larger deviations more severely. As has
been shown earlier, the necessary computations are an efficient alternative to refractive-
back projection, which avoid ray tracing completely. Therefore, the VIE is expected to
be computationally more efficient than the RTE .

5.4.4 2D Image Cost Functions

In contrast to the two cost functions from the previous section, the following two cost
functions go one step further. While the RTE and the VIE stopped in 3D space, the
cost functions in this section additionally require a forward projection onto the 2D image
plane. Similarly to the previous section, no special pattern on a calibration object, nor a
calibration object at all is necessary. All that is necessary are stereo correspondences.
One again, the image points Ii and I

′
i with i ∈ (1, .., k) form the starting point of the

calculations. Assuming that hypothetical refractive parameters are known, the stereo
setup enables the recovery of 3D coordinates, as already described in the previous section.
For erroneous hypothetical refractive parameters, the recovered 3D scene points are most
likely to be erroneous as well. The accuracy of these points can be indicated by the
common reprojection error. However, its computation needs to be adapted for explicit
consideration of refractive effects. This can be supported by the approach for refractive
forward projection from Section 5.2.1. An alternative implementation is the computation
of the reprojection error by utilization of the virtual camera model from Section 5.2.3.
Both approaches are presented in the following.
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Refractive Reprojection Error

The Refractive Reprojection Error (RRE) makes use of the constraint that the image
points are projections of the real object points. Forward projection of a recovered 3D
scene point Ô results in a projected image point Î. This leads to the invariant property
that the distance between a projected image point Î and a measured image point I needs
to be equal to zero. The RRE is supposed to reflect if the left and the right projected
image points coincide with the according measured image points and if not, how far they
are apart. The first two steps for the computation of a function value of the cost function
are essentially the same as the ones for the VIE (See Section 5.4.3):

• Compute the VOPs Ǒi and Ǒ
′
i from pairs of corresponding image points Ii and I

′
i

for a hypothetical axis h0, as described in Section 5.3.1.

• Compute the distances to the real object points xi = d(A1i, Oi) and x′i = d(A1i, O
′
i)

for a hypothetical air layer thickness ha = d(C,H1), as described in Section 5.3.2.

On the left side of Figure 5.17, the computation of the RRE is illustrated exemplary for
one stereo correspondence. For an erroneous hypothetical axis and/or air layer thickness,
the distances xi and x

′
i are most likely to differ. Before application of refractive forward

projection, the necessary input needs to be computed first. Note that the explicit recovery
of the coordinates of the real object points Oi is not necessary for the proposed approach
for refractive forward projection in Section 5.2.1. Therefore, the computation of the
necessary input reads as follows:

• Compute the mean values x0i of the distances xi and x
′
i to get the distances to the

recovered 3D scene points Ôi:

x0i = d(A1i, Ôi) = xi + x′i
2 .

The distances x0i are sufficient to perform refractive forward projection (Illustrated by
red elements in Figure 5.17) for both cameras, as described in Section 5.2.1, comprising:

• the iterative computation of the distances x̌i = d(A1i, Ǒ0i) and x̌′i = d(A1i, Ǒ
′
0i),

• the computation of the VOPs Ǒ0i from the distances x̌i,

• the computation of the VOPs Ǒ′0i from the distances x̌′i and

• the perspective projection of the VOPs Ǒ0i and Ǒ
′
0i to the image points Îi and Î

′
i.

The projected image points Îi and Î ′i and the measured image points Ii and I ′i are
illustrated exemplary on the right side of Figure 5.17. By means of the reprojection error
in Equation 2.18 and with d(X1, X2) being the distance between two 2D points, the RRE
is defined by:

E = 1
k

(
k∑
i=1

d
(
Ii, Îi

)2
+ d

(
I ′i, Î

′
i

)2
)
. (5.19)

Once again, a square function is used to penalize larger deviations more severely.
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Figure 5.17: Left: Schematic computation of the RRE . Right: Top view of the image planes.

Virtual Reprojection Error

Like the RRE , the Virtual Reprojection Error (VRE) makes use of the constraint that
the image points are projections of the real object points. Therefore, the invariant
property is the same as for the RRE (Compare with Section 5.4.4), which is that the
distance between a projected image point Î and a measured image point I needs to be
equal to zero. The VRE is also supposed to reflect if the left and the right projected
image points coincide with the according measured image points and if not, how far they
are apart. Although the basics and the purpose of the RRE and the VRE are identical,
the computation of a function value of the cost function is considerably different. The
first two steps are to a certain degree equal to the ones of the RTE in Section 5.4.3:

• Compute the left rays wi in water and the right rays w′i in water from pairs of
corresponding image points Ii and I

′
i for a hypothetical axis h0 and a hypothetical

air layer thickness ha = d(C,H1) by refractive back-projection, as described in
Section 5.2.2.

• Transform either wi or w
′
i to the coordinate system of the opposite camera with

the known transformation R, t between both camera coordinate systems.

On the left side of Figure 5.18, the computation of the VRE is illustrated exemplary for
one stereo correspondence. For an erroneous hypothetical axis and/or air layer thickness,
the corresponding left ray wi in water and the right ray w′i in water are most likely
to be non-intersecting. Therefore, the best fitting real object points Ôi are computed
by triangulation of non-intersecting lines. The magnified section on the bottom right
side of Figure 5.18 shows the shortest distance between the rays wi and w

′
i, which is

characterized by the length of a line segment that is orthogonal to both rays. The
endpoints of this line segment are exactly the points Oi and O

′
i and their midpoints are
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Figure 5.18: Left: Schematic computation of the VRE . Top Right: Superimposition of the
virtual and the real image planes. Bottom Right: Best fitting real object point Ôi

from triangulation of the rays wi and w
′
i.

considered as being the best fitting real object points Ôi. To avoid an iterative approach
for refractive forward projection, these points Ôi can alternatively be projected into a
virtual camera. As described earlier, a virtual camera needs to be determined per image
point. Therefore, the following steps need to be performed:

• Compute the virtual camera parameters and hence the virtual projection matrix
for each image point Ii and I

′
i, as described in Section 5.2.3.

• Compute the image points Îi and Î
′
i by perspective projection of the triangulated

real object points Ôi with the according projection matrices.

The resulting projected image points Îi and Î ′i, the measured image points Ii and I ′i
and the virtual image points Ǐi and Ǐ

′
i are illustrated exemplary on the top right side of

Figure 5.18. The advantage of the proposed virtual camera model is that the measured
image points have the same coordinates in the coordinate systems of the virtual and
of the real camera by definition. Therefore, by avoiding refractive forward projection,
the function values of the cost function can be computed directly. By means of the
reprojection error in Equation 2.18, with d(X1, X2) being the distance between two 2D
points and with Ii = Ǐi and I

′
i = Ǐ ′i, the VRE is defined by:

E = 1
k

(
k∑
i=1

d
(
Ii, Îi

)2
+ d

(
I ′i, Î

′
i

)2
)

(5.20)

Once again, a square function is used to penalize larger deviations more severely.
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5.5 Computation of Refractive Parameters

In the previous sections, it has been assumed that the refractive parameters are either
already known or that hypothetical ones exist. In this section, it will be shown how
the approaches from the previous sections can be combined for the computation of the
unknown refractive parameters of a SFRS . The refractive parameters in question are the
orientation of the system axis and air layer thickness. The proposed calibration strategies
were developed with regard to the conditions described in Section 5.1. Summarized,
these comprise calibrated intrinsic and extrinsic camera parameters of the stereo system,
known refractive indices of all participating media and a known glass layer thickness. A
calibrated stereo system enables the computation of VOPs by the approach described
in Section 5.3.1. These VOPs are the essential quantities for the proposed calibration
strategies. In the following sections, optimization problems will be presented that will be
used to regulate the interaction of parameter determination and cost functions.
With the variety of different cost functions, the calibration can be achieved by two different
strategies. The first one is the consecutive determination of refractive parameters and
the second one is the simultaneous one. Both contain a system axis determination by
iterative optimization, which is performed either explicitly of implicitly. The defined
pattern-based cost functions can be utilized to determine the system axis explicitly and
also independently of the air layer thickness. The air layer thickness itself can not be
computed individually. However, it can be computed directly by solving a set of linear
equations for a determined system axis. A major difference between the two calibration
strategies is that the consecutive one depends on a calibration object and the simultaneous
one does not. This section is based on Dolereit and von Lukas [Dol15; DL16].

5.5.1 Pattern-Based System Axis Determination

The pattern-based system axis determination makes use of the pattern-based invariants
and cost functions from Sections 5.4.1 and 5.4.2. Since these are independent of the
remaining refractive parameters, the orientation of the system axis can be optimized
individually. The optimization problem that needs to be solved can be defined as a
search for the best system axis by testing hypothetical system axes. This is realized by
a self-directed testing strategy. One of the two proposed pattern-based cost functions
needs to be used to indicate the accuracy of the tested hypothetical axes. Therefore,
a calibration object is needed with a pattern that contains feature points arranged in
straight lines. This can be a checker pattern with its squares arranged in i ∈ {1, ..,m}
rows and j ∈ {1, .., n} columns. The optimization is about finding the hypothetical axis
with the minimal function value of the chosen cost function. A vital part is the iterative
generation of new hypothetical axes. This generation is self-directed. As will be shown
in the following, it is driven by the accuracy of the currently tested candidate axis.

Generation of Hypothetical System Axes. The first steps for the generation of
hypothetical system axes are basically the same as for the computation of the PAE and
the PFE in Section 5.4.2. Once again, the image points Iij and I ′ij form the starting
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Figure 5.19: Pattern-based system axis determination. Left: Initialization of the iterative
processing and generation of hypothetical system axes hij . Middle: Intermediate
result. Right: Result close to the ideal solution.

point of the computations. The generation of hypothetical system axes is illustrated
exemplary on the left side of Figure 5.19 and comprises the following steps:

• Compute the VOPs Ǒij and Ǒ
′
ij from pairs of corresponding image points Iij and

I ′ij for a hypothetical system axis h0, as described in Section 5.3.1.

• Arrange these VOPs according to the lines in horizontal (li) and vertical (lj)
direction on the checker pattern.

• Fit a plane to the set of VOPs per line to get the feature planes in horizontal
direction Θi : n̄i ·x = di and the feature planes in vertical direction Θj : n̄j ·x = dj ,
with n̄i and n̄j being the normalized normal vectors, x being the position vector
to a point on the plane and di as well as dj being the distances of the respective
plane to the origin of the coordinate system.

For an erroneous hypothetical system axis h0, these fitted planes are most likely to
deviate from their associated VOPs. This can be utilized for the computation of new
hypothetical axes as follows:

• The intersection of the fitted planes Θi and Θj with the corresponding rays aij
and a′ij (the same intersection process as described in Section 5.3.1) results in the
position vectors of the points of intersection Ôij and Ô

′
ij .

• Paired by matching indices, the points Ôij and Ô
′
ij form the hypothetical object

axes ĥij with the normalized direction vectors h̄ij .

The hypothetical object axes ĥij with the normalized direction vectors h̄ij represent the
generated hypothetical system axes. The direction vectors computed in this way differ
as long as the VOPs Ǒij and Ǒ

′
ij do not coincide with the points Ôij and Ô

′
ij ideally.

Initialization. The initialization phase is illustrated exemplary on the left side of
Figure 5.19 and comprises the following definitions and initial computations:

• Choose the initial hypothetical system axis h0 to be the one with a direction vector
h̄ = (0, 0, 1)T .
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• Compute the value E of the PAE or PFE for system axis h0 as described in Section
5.4.2 and initialize the current global minimal error value Egmin with: Egmin = E.

• Generate the new hypothetical system axes ĥij for system axis h0 as described
previously.

• Define the termination conditions:

– Provide a stability counter that terminates the iterative processing if there is
no improvement for n iterations.

– Provide a significance counter that terminates the iterative processing if there
is no significant amount of improvement ω, compared to a threshold ε, for n
iterations.

Iteration. The iteration phase is illustrated exemplary in the middle and on the right
side of Figure 5.19 and comprises the following steps:

1) Compute the error values Eij for all new hypothetical system axes ĥij as described
in Section 5.4.2.

2) Find the local minimum Elmin = Eij of this iteration and set h0 = ĥij accordingly.

3) If a new global minimum is found (Elmin < Egmin),

3.1) update the current global minimum (Egmin = Elmin),

3.2) reset the stability counter and

3.3) compute the improvement (ω = Egmin − Elmin).

3.4) If the improvement is smaller than the significance threshold (ω < ε), increase
the significance counter.

3.5) If the improvement is equal or bigger than the significance threshold (ω ≥ ε),
reset the significance counter.

4) If no new global minimum is found (Elmin ≥ Emin), increase the stability counter.

5) If the stability or the significance counter is exceeded, terminate.

6) Generate the new hypothetical system axes for h0 and repeat from 1).

On the right side of Figure 5.19, a result of one iteration is illustrated. It comes close to
the ideal result. The hypothetical system axis h0 almost coincides with the true system
axis s0 and the VOPs Ǒij and Ǒ′ij almost coincide with the points Ôij and Ô′ij . The
final result of this self-directed testing strategy is the best fitting system axis.
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5.5.2 Computation of the Air Layer Thickness

The proposed approach for the computation of the air layer thickness makes use of the
VOP model from Section 4.3. In contrast to the pattern-based system axis determination,
no iterative processing is necessary, since the optimization problem that needs to be
solved can expressed by a overdetermined set of linear equations. With the aid of the
VOP model, these linear equations can be derived for each pair of corresponding image
points and their solution can be realized by standard methods of linear optimization.

Requirements. The required quantities are the refractive indices na, nw, ng, the glass
layer thickness tg = d(H1, H2) and the direction vector h̄ of a hypothetical system axis
h0.

Derivation of the Set of Linear Equations. The computation of the air layer
thickness ta = d(C,H1) is illustrated exemplary in Figure 5.20. It can not be determined
independently of the system axis. The starting point of the computations are pairs
of corresponding image points Ii and I ′i, with i ∈ (1, .., k)). The first necessary step
comprises the computation of the VOPs. Summarized, these are:

• Compute the VOPs Ǒi and Ǒ
′
i from pairs of corresponding image points Ii and

I ′i for a hypothetical system axis h0 as described in Section 5.3.1. Note that this
includes the computation of the angles of incidence αi and α

′
i.

• Compute the distances x̌i = d(A1i, Ǒi) = d(C,A2i) by orthogonal projection of the
position vector o of VOP Ǒi onto vector h̄ (See Equation 2.7).

• Compute the distances x̌′i = d(A1i, Ǒ
′
i) = d(C,A3i) by orthogonal projection of the

position vector o′ of VOP Ǒ′i onto vector h̄ (See Equation 2.7).

The set of linear equations can be derived by means of Equation 4.7, which reads:

x = λ1 (α, na, nw) ·
(
x̌+ tg ·

(
1− λ2

(
α, na, ng

)))
,

with:

λ1(α, na, nw) =

√(
nw
na

)2
− sin2 α

cosα , λ2(α, na, ng) = cosα√(
ng

na

)2
− sin2 α

.

Together with t = ta+ tg, the respective distances to the real object points xi = d(A4i, Oi)
and x′i = d(A4i, O

′
i) can be computed by (See Figure 5.20):

xi = λ1(αi, na, nw) · (x̌i − t+ tg · (1− λ2(αi, na, ng))) (5.21)
x′i = λ1(α′i, na, nw) · (x̌′i − t+ tg · (1− λ2(α′i, na, ng))). (5.22)

The distances xi = d(A4i, Oi) and x′i = d(A4i, O
′
i) have to be equal, since the points Oi

and O′i are expected to coincide. Therefore, Equation 5.21 and Equation 5.22, with some
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Figure 5.20: Schematic illustration of the derivation of the linear equations for the computation
of the air layer thickness.

additional rearranging (note that the expressions for λ1 and λ2 are shortened due to a
lack of space), produce:

ui − λ1(αi, na, nw) · t = vi − λ1(α′i, na, nw) · t, (5.23)

with:

ui = λ1 (αi, na, nw) ·
(
x̌i + tg ·

(
1− λ2

(
αi, na, ng

)))
,

vi = λ1
(
α′i, na, nw

)
·
(
x̌′i + tg ·

(
1− λ2

(
α′i, na, ng

)))
.

Some further rearranging of Equation 5.23 results in the following equation for every
stereo correspondence:

(λ1(αi, na, nw)− λ1(α′i, na, nw))︸ ︷︷ ︸
A

· t︸︷︷︸
x

= vi − ui︸ ︷︷ ︸
b

. (5.24)

The application of Equation 5.24 on every stereo correspondence results in a system
of linear equations with the shape A · x = b, with A being a i × 1 matrix containing
the elements (λ1(αi, ..)− λ1(α′i, ..)) and b being a i× 1 vector containing the elements
vi − ui. A possibility to solve this overdetermined linear system for x, which is a 1× 1
vector with t as its only element, is singular value decomposition [BS79]. The result is
the best fitting value for t. By subtraction of the known glass layer thickness tg, the final
value of the air layer thickness ta for a hypothetical system axis h0 can be determined
straightforward: ta = t− tg. Note that the computation of the air layer thickness does
only depend on stereo correspondences. Hence, no pattern on a calibration object, nor
the calibration object itself are necessary.

5.5.3 Execution Sequence

The proposed pattern-based system axis determination and the computation of the
air layer thickness enable the determination of the refractive parameters in question.
Together with the proposed approaches from Sections 5.2, 5.3 and 5.4, all the necessary
tools are available to realize the refractive calibration of a SFRS by two different strategies.
The first one is the consecutive determination and the second one is the simultaneous
determination of the refractive parameters.
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Consecutive Determination of Refractive Parameters

The consecutive calibration strategy makes use of a pattern on a calibration object and
the necessary computation steps are the following:

1) Perform the pattern-based system axis determination from Section 5.5.1 to get a
single system axis.

2) Compute the air layer thickness for this system axis as described in Section 5.5.2.

Note that with these steps, the refractive parameters in question can already be de-
termined. However, a calibration object that matches the requirements is needed for
step one of this strategy. Furthermore, the resulting system axis is fixed during the
computation of the air layer thickness. This has the disadvantage that inaccuracies of
the system axis determination can be incorporated into the computation of the air layer
thickness. An alternative is the simultaneous determination of the refractive parameters.

Simultaneous Determination of Refractive Parameters

The simultaneous calibration strategy is independent of calibration objects. Therefore,
the explicit pattern-based determination of the system axis needs to be bypassed. The
essential solution of the optimization problem, which is a search for the best system
axis by testing hypothetical system axes, can be retained. However, an approach for
the generation of these hypothetical system axes is necessary. Since the approach for
the generation of hypothetical system axes from the self-directed testing strategy of the
pattern-based system axis determination is not applicable, an alternative is necessary.

Generation of Hypothetical System Axes. The alternative approach is illustrated
in Figure 5.21. It is a simple sampling of the possible direction vectors. Therefore, a
normalized direction vector h̄ is represented with the aid of a unit sphere and the two
angles θ and φ. This representation is shown on the left side of the figure. It is similar to
spherical coordinates and well suited for the intended sampling. The depicted coordinate
system is the one of the master camera. The sampling space is located only on the
positive z-axis and is bounded by a defined range of the two angles θ and φ. In this
thesis, the range was defined to be between −45◦ and +45◦ for both angles. This will
be justified in Section 7.1.1. The generation of hypothetical system axes is an iterative
sampling, which starts on a sparse grid in full 1◦ steps. After determination of the most
appropriate direction of the system axis on this grid level, the search space gets reduced
and the grid gets refined. The new search space surrounds the determined spherical
coordinates at a range between −1◦ and +1◦ for both angles and the grid is refined into
0.1◦ steps to determine the next decimal. This iterative process is continued up to the
desired decimal.

Initialization. The simultaneous determination of the refractive parameters makes use
of the cost functions proposed in Sections 5.4.3 and 5.4.4. All four of them indicate the
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Figure 5.21: Search space for the system axis, which is bounded by a defined range of the
spherical coordinates (purple section), with respect to the camera coordinate
system. Left: Utilized spherical coordinates. Middle: Side view. Right: Top view.

accuracy of the determined air layer thickness and system axis. Therefore, the necessary
initialization steps are:

• Choose one of the four cost functions RTE , VIE , RRE or VRE .

• Initialize the global minimal function value E with infinity.

• Generate a set of n hypothetical system axes on the initial grid level by the proposed
sampling strategy.

Iteration. The iteration phase comprises the following steps:

1) Compute the air layer thickness for each of the n hypothetical system axes by the
linear optimization approach described in Section 5.5.2.

2) Compute the function value E of the chosen cost function for each of the n pairs
of air layer thickness and system axis.

3) Find the minimal function value E. If a new global minimum is found (E < Emin),
set the new minimum (Emin = E).

4) Refine the search space for the generation of new hypothetical axes around the
coordinates that correspond to the current global minimum Emin and repeat the
process on the next grid level up to the desired decimal.

Since the system axis is chosen according to the best air layer thickness in each iteration,
both of them get optimized simultaneously. In contrast to the consecutive strategy,
possible inaccuracies during of the parameter determination are distributed to the system
axis and the air layer thickness. Both strategies will be compared in detail in Chapter 7.
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5.6 Summary

In this chapter, the proposed approaches for the calibration of a SFRS have been
presented. The refractive parameters comprise the orientation of the system axis and air
layer thickness. The approaches work, if the following conditions are met: The setup can
be modeled by a SFRS and the intrinsic and extrinsic camera parameters, the refractive
indices of all participating media and the glass layer thickness are known. The proposed
approaches have been distinguished by two underlying strategies. On the one hand, this
is the consecutive determination of the refractive parameters and on the other hand,
the simultaneous one. A vital part of both of them are cost functions that reflect the
accuracy of the determined parameters and the definition of optimization problems that
regulate the interaction between parameter determination and cost functions.
The basic operations that are necessary for the computation of the function values of
cost functions are transformations between 3D and 2D spaces, which are usually the
computationally expensive refractive forward projection and refractive back-projection.
It has been demonstrated that the VOP model from Section 4.3 can be readily integrated
into the model for a SFRS , as well as into the more general model for a FRS . With this,
four possibilities for the transformation between 3D and 2D spaces have been proposed.
By using the VOP model within monocular vision, a refractive forward projection avoiding
higher-order polynomials and a refractive back-projection avoiding full 3D ray tracing
have been realized, thereby reducing the computational expenses. The third one is the
definition of a virtual camera model to avoid refractive forward projection at all and
hence to enable conventional forward projection. As has been demonstrated, this is
especially useful in the context of the computation of the reprojection error. The fourth
one has been arising from using the VOP model within binocular vision. It represents an
efficient alternative to refractive back-projection. This is the computation of the VOPs
from stereo correspondences, which in turn enables the computation of the related real
object points.
The transformations between 3D and 2D spaces have been utilized for the computation
of four different cost functions. The first category makes use of the transformation
direction from 2D to 3D. Its first representative is an underwater adaptation of the
triangulation error, named RTE , which is based on refractive back-projection. The
second representative is a newly defined cost function, named VIE , which is based on
the computation of the VOPs. It is expected to be the most computationally efficient
one of all four cost functions. While the processing in the first category stops at the
recovery of 3D coordinates, the second category goes one step further and makes use
of the transformation direction from 3D to 2D. The two proposed representatives are
underwater adaptations of the common reprojection error, named RRE and VRE . They
are based on refractive forward projection and the virtual camera model, respectively.
All four cost functions of both categories do neither depend on a known pattern on
a calibration object, nor on a calibration object at all. In contrast to these pattern-
independent cost functions, the third category comprises newly developed pattern-based
cost functions that are independent of refractive indices and layer thicknesses. For their
definition, pattern-based invariants have been derived by exploiting feature points that
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are arranged in straight lines on a calibration object. The two representatives, named
PAE and PFE , are based on the computation of the VOPs.
All these cost functions have been either utilized during the consecutive strategy for
the determination of the refractive parameters, or during the simultaneous one. Both
strategies have in common that the air layer thickness is optimized by solving a set
of linear equations, which is one of the main developments of this thesis. However,
with the proposed developments, an optimization problem that can be solved linearly
could not be defined for system axis determination. Therefore, during both strategies,
the system axis needs to be optimized iteratively by utilization of the proposed cost
functions. Since the cost functions show a progressive independence from calibration
objects, both strategies do so as well. The consecutive determination of the refractive
parameters needs a known calibration object and utilizes the pattern-based cost functions.
Therefore, the pattern-based system axis determination is performed explicitly. The
simultaneous strategy needs no calibration object at all. It comprises an implicit system
axis determination and therefore utilizes the cost functions from the first two categories.
The differentiations that are reflected by these various approaches for the refractive
calibration of a SFRS , enable the following comparisons:

• Implicit (simultaneous strategy) versus explicit system axis determination (consec-
utive strategy) and simultaneously,

• pattern-based cost functions (with calibration object) versus pattern-independent
cost functions (without calibration object).

• 3D scene cost functions versus 2D image cost functions in the case of pattern-
independent cost functions.

Subject of the following chapters will be a detailed analysis of the proposed calibration
approaches. Furthermore, further applications of the proposed transformations between
3D and 2D spaces will be presented briefly. These are beneficial approaches, such as
the computation of correspondence curves and the recovery of 3D coordinates of scene
points.
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6 Underwater Stereo 3D Reconstruction

The purpose of stereo 3D reconstruction is to generate a 3D model of the imaged scene.
In the simplest case, this model is a 3D point cloud. Besides calibration of the imaging
system, the necessary steps of stereo 3D reconstructions comprise some kind of stereo
matching and the recovery of 3D coordinates. A pursuing step for the generation of a more
sophisticated model would be to represent surfaces by triangulated meshes. However,
the actual recovery of 3D coordinates from pairs of corresponding image points in the
left an right view of the stereo camera is most important.
Similarly to the approaches for the calibration of a SFRS in the previous chapter, stereo
matching and the recovery of 3D coordinates need to be adapted to the prevailing
conditions of underwater imaging. Stereo matching can be distinguished into sparse and
dense stereo matching. Sparse stereo matching is usually feature-based and therefore
does not get affected by refractive effects. On the contrary, dense stereo matching is
usually geometry-based and therefore does get affected severely by refractive effects. In
this chapter, it will be shown how to compute correspondence curves for the reduction of
the search space for pairs of corresponding image points during dense stereo matching.
Their computation is based on the proposed transformations between 3D and 2D spaces
from the previous chapter. Furthermore, it will be shown how 3D coordinates of points
in the scene can be recovered with explicit consideration of refractive effects. Some of the
various approaches of the previous chapter already came into contact with recovering 3D
coordinates, but this has been done mostly implicitly. In this chapter, it will be shown
how to perform it explicitly, based on the earlier proposed transformations between 3D
and 2D spaces. This chapter is partially based on the concepts of Dolereit [Dol15].
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6.1 Correspondence Curves

Up to now it has been assumed that a set of pairwise corresponding feature points in the
two views of the SFRS is already established. Therefore, easily detectable and matchable
checker patterns can be used. Conventional algorithms are capable to detect the checker
corners at sub-pixel level. However, when it comes to full stereo 3D reconstruction of an
imaged scene, usually a matching at pixel level is performed between the left and the
right view. This one-to-one matching process is called dense stereo matching. In air,
epipolar geometry and rectification are a means for dense stereo matching to find the
pairs of corresponding pixels. The main purpose is the reduction of the search space to a
straight line. However, both of them are invalid under water. It is known that, due to
the 3D-dependence of refractive effects, these lines are not straight any more, with one
exception (Compare with Section 2.4 and Figure 6.1). Note that the line connecting the
left and right centers of projection C and C ′ and the system axis (Here: Coinciding with
the left and right principal axes p and p′) form a plane. Therefore, the only exception is
the case where the left ray path lies in this plane. In this case, the left and the right
plane of refraction would coincide with this plane. Hence, the right ray path needs to
lie in this shared plane as well. The resulting search space in the second view is a line
that can only be straight. Regarding Figure 6.1, this would mean that all the dot-dashed
lines running horizontally coincide.
For the remaining cases, the search spaces are not straight, but curved lines. The
computation of these correspondence curves, based on the concepts of Dolereit [Dol15],
can be realized by utilizing the transformations between 3D and 2D spaces, which have
been presented in the previous chapter. Therefore, the imaging system needs to be
calibrated for its intrinsic, extrinsic and refractive parameters. These parameters can
either be known in advance, or a calibration needs to be performed explicitly. For
example, by the approach proposed in this thesis:

• Compute the refractive parameters by application of the calibration of a SFRS , as
proposed in Section 5.5.

After calibration of the imaging system, a sampling strategy is performed. This is
illustrated exemplary in Figure 6.2. The following steps are necessary:

• Compute the ray w for the master camera by application of the refractive back-
projection from Section 5.2.2.

• Specify a working range and step width to sample the ray w at the points Oi.

• Map the points Oi onto the image plane of the slave camera by application of the
refractive forward projection from Section 5.2.1.

Since the working distance is usually known, the necessary range in which the ray w will
be sampled can be determined by the user. It starts at the water-sided interface Φ2 and
its maximal value is arbitrary. Since the underwater visibility is mostly limited to a few
meters, this user-defined value is appropriate. The step width can be user-defined as
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Figure 6.1: Invalidity of epipolar geometry and rectification (Compare with Section 2.4).

well. While a fine step width most likely already results in a connected curve, a coarse
step width may need some interpolation between the image points I ′i.
Dense stereo matching is associated with a high computational effort. The proposed
approach is computationally expensive, since one correspondence curve needs to be
computed per image point I. Note that the approach is not limited to SFRSs. It can
be applied for a stereo system composed of two FRSs in arbitrary orientation, which is
calibrated for its intrinsic, extrinsic and refractive parameters in advance, as well.

Figure 6.2: Sampling of the ray w to compute a correspondence curve.
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6.2 Recovery of 3D Coordinates
Since epipolar geometry and disparity are not valid concepts in underwater environments,
as has been shown in Section 2.4, they can not be utilized for underwater stereo 3D
reconstruction. Hence, the recovery of the 3D coordinates associated to a pair of
corresponding image points has to be realized in an alternative way.
As a prerequisite, some kind of stereo matching has to be performed to establish the pairs
of corresponding image points. This can be realized at pixel or sub-pixel level. Pixel
level usually means geometry-based dense stereo matching, as described in the previous
section. For every pixel in one stereo view, a correspondence curve in the second view
needs to be computed. The matching itself can be realized, for example, by any kind of
algorithm for the comparison of image intensity values. Sub-pixel level usually means
feature-based sparse stereo matching. Therefore, image features need to be detected,
described and matched by a defined metric. Sparse stereo matching is only dependent on
the performance of these three steps. The computation of correspondence curves is not
essential to it and it therefore is not affected by refractive effects. After stereo matching,
the 3D coordinates are ready to be recovered.
The proposed two approaches have already been used implicitly in Chapter 5 as part of
refractive calibration. Nevertheless, both of them can also be utilized for explicit recovery
of 3D coordinates. Due to possible inaccuracies of the determined intrinsic, extrinsic
and/or refractive parameters of the imaging system, it is most likely that there is no
ideal recovery. Therefore, a mechanism to deal with these small deviations is necessary
for both of the following approaches.

Virtual Intersection. The first one is named Virtual Intersection and comprises the
following steps (See Figure 6.3):

• Compute the VOPs Ǒ and Ǒ′ as described in Section 5.3.1 followed by the compu-
tation of the related real object points O and O′ from Section 5.3.2.

• Since O and O′ may not coincide ideally, compute their mean Ô on object axis s1.

Since this approach depends on the line of intersection of a pair of corresponding planes of
refraction, the shortcoming of this approach is the inability of the necessary computations
in the case of coinciding planes of refraction. This can occur when the left and right
centers of projection, the system axis and the left and right ray paths coincide in a single
plane. Besides this case of an ideal coincidence, cases close to coincidence should be
avoided as well, as they can result in inaccuracies.

Refractive Triangulation. The second approach for the recovery of 3D coordinates is
named Refractive Triangulation and does not suffer from the aforementioned shortcomings.
It comprises the following steps (See Figure 6.4):

• Compute the rays w and w′ by application of refractive back-projection from Section
5.2.2 and transform one of them to the coordinate system of the opposite camera
with the known transformation R, t between both camera coordinate systems.
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Figure 6.3: Recovery of 3D coordinates by Virtual Intersection.

• Compute the point of intersection O by conventional triangulation of the rays
w and w′ (Section 2.2.2). Since the rays w and w′ may not coincide at all, the
midpoint Ô of the shortest distance d(O,O′) between both rays is considered to be
the final point of the recovery.

Both approaches have their right to exist. As has been shown in the previous chapter,
Virtual Intersection is the foundation of the determination of the air layer thickness
by linear optimization and is hence utilized in each of the proposed approaches for
the refractive calibration of a SFRS . Its computational effort is low and the condition
of coinciding planes of refraction is less likely to occur for a set of sparse pairs of
corresponding image points. If it nevertheless occurs, the processing can be skipped
without any problems, since not all pairs are required for refractive calibration. Note
that Virtual Intersection is only applicable for SFRSs. If it is necessary to recover the
3D coordinates of all pairs of corresponding feature points, Refractive Triangulation is
better suited. Furthermore, Refractive Triangulation is not limited to SFRSs.

Figure 6.4: Recovery of 3D coordinates by Refractive Triangulation
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6.3 Summary
In this chapter, beneficial applications of the proposed transformations between 3D
and 2D spaces from Chapter 5 have been presented in the context of underwater
stereo 3D reconstruction. These are the computation of correspondence curves and the
recovery of 3D coordinates. Together with the earlier proposed approaches for refractive
calibration, all the necessary extensions of the concepts of stereo 3D reconstruction for the
prevailing conditions of underwater imaging have been covered. All of them are essentially
based on the VOP model from Section 4.3. Therefore, the underlying principles of the
necessary computation steps can be reused frequently between refractive calibration,
correspondence curve computation and recovery of 3D coordinates. The final result are
3D point clouds of the imaged scene with a metric scale, which are created by explicitly
considering refractive effects in every computation step. Therefore, refractive calibration
is a prerequisite for correspondence curve computation and recovery of 3D coordinates.
In the context of dense stereo matching, the computation of correspondence curves
represents an alternative to the invalid epipolar geometry and rectification. However,
it is computationally expensive. The two proposed approaches for the recovery of
3D coordinates from pairs of corresponding image points in the left and right view of
the stereo camera have been connected to their most suitable application area. Due
to its low computational effort, Virtual Intersection is suitable within the refractive
calibration approaches proposed previously. Since the Virtual Intersection shows some
shortcomings, Refractive Triangulation is better suited for recovering 3D coordinates of
a full scene. In the following chapter, all the proposed approaches for underwater stereo
3D reconstruction will be analyzed in a series of experiments.
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In this chapter, the results of the performed experiments will be presented. These
experiments will be performed on simulated and real test data. Their purpose will be the
evaluation of the proposed two strategies, namely the consecutive and the simultaneous
determination of refractive parameters, and of all six cost functions (PAE , PFE , RTE ,
VIE , RRE and VRE). Besides a comparison amongst themselves, a comparison to a
current state-of-the-art approach for refractive calibration and to further calibration
strategies from the literature will be preformed.
The evaluation will be realized in multiple stages. Simulated Test Data Stage 1 will
comprise a full simulation of 3D-2D point correspondences. Thereby, ground truth data
is available for the refractive parameters and for the 3D point cloud to be recovered.
Since ideal pinhole cameras with known parameters will be used, an augmentation of
the 2D feature points with Gaussian noise will be performed to evaluate the stability of
the proposed approaches. Therefore, evaluation criteria will be defined that are suitable
for the available ground truth data. Within the evaluation, a variation of the requested
refractive parameters will be performed. This stage will show if an approach works and
how well it works in the presence of noise. Simulated Test Data Stage 2 will comprise
rendered images of a 3D scene. The processed ground truth data will be reduced to set
up a workflow that can be adapted to real world setups. Therefore, additional evaluation
criteria will be defined that are suitable for the available ground truth data. In contrast
to the previous stage, the calibration of the stereo camera and the feature detection
will be performed algorithmically by common approaches as a pre-processing step of
refractive calibration. Besides establishing a workflow, this stage will be used to evaluate
if refractive calibration in combination with the pre-processing step works.
Real Test Data Stage 1 will comprise a workflow and a setup for evaluation, which
are essentially the same as within Simulated Test Data Stage 2. Within this stage, an
approach for benchmark data generation in real world setups, based on Dolereit [Dol15],
will be presented. This stage will be used to evaluate the accumulation of errors of the
pre-process comprising stereo calibration and feature detection and of the process of
refractive calibration. Real Test Data Stage 2 will differ from the previous stages by
avoiding known calibration objects.
The last part of this chapter will present the results from first experiments on underwater
stereo 3D reconstruction by application of the proposed approaches for refractive calibra-
tion. It will comprise a visual examination of the proposed approach for the computation
of correspondence curves and a qualitative evaluation of the proposed approaches for
dense stereo matching and the recovery of 3D coordinates of a real submerged object.

119



7 Experiments & Results

7.1 Refractive Calibration - Simulated Test Data

Simulated test data is especially advantageous, since it makes ground truth data available.
It offers the highest level of controlled conditions and arbitrary setups can be realized. A
preparatory step of the proposed refractive calibration approaches is the calibration of
the stereo camera to determine its intrinsic and extrinsic camera parameters. Since this
was not the object of this thesis and as these parameters need to be known in advance,
the camera parameters were considered to be constant and ideal. By simulation of the
cameras, stereo calibration can be skipped and further potential sources of error, such as
radial lens distortion, can be eliminated. This provides a reliable means to evaluate if an
approach for refractive calibration is correct in general.
Both of the previously presented strategies for the calibration of a SFRS , namely the
consecutive and the simultaneous determination of refractive parameters, were evaluated.
To ensure the comparability of the evaluations, the utilized feature points had to be the
same for both strategies. Consequently, since the consecutive strategy is dependent on
feature points on a calibration object that are arranged in straight lines, the corners of a
simulated checker pattern were chosen. The checker pattern was generated to result in a
format-filling arrangement of the feature points in the stereo image pairs. In this way,
the image regions that are affected most obviously by refractive effects were included.
It was assumed that erroneous feature coordinates in these regions have the greatest
negative influence and should not be ignored in an evaluation.

7.1.1 Stage 1 - Full Simulation of 3D-2D Point Correspondences

Simulated Test Data Stage 1 comprises the addition of Gaussian noise to the simulated
data to get closer to reality. Hence, Gaussian noise was added during the first processing
step relevant to this thesis. This is the detection of pairs of corresponding feature points
in a stereo image pair. A checker pattern can be represented by the 3D point cloud of
its inner corners. Within simulation, the ideal 2D coordinates of the feature points were
generated from such a 3D point cloud. The noise was added to these ideal coordinates.
It was increased gradually to simulate erroneous image coordinates for the feature points.

Preliminaries

Noise. To check the stability of the proposed calibration approaches, Gaussian noise
was generated. Gaussian noise has a probability density function equal to that of the
normal distribution. In both images of a stereo image pair, the noise was added to the
ideal values of the image coordinates of every feature point in x- and y-direction. The
parameters were an overall mean of µ = µx = µy = 0 and an overall standard deviation
of:

σ =
√
σ2
x + σ2

y , σx = σy = σ√
2
. (7.1)

Both were scaled in pixel units.
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7.1 Refractive Calibration - Simulated Test Data

Number of Features. In most optimization approaches, a higher number of utilized
feature points leads to more accurate results. In this thesis, a certain number of distinct
setups were analyzed with regard to a joint number of feature points, which offers a
reasonable compromise between run-time and accuracy improvement of the approaches
for the refractive calibration of a SFRS . The execution of both calibration strategies in
combination with the six cost functions for the determination of the number of feature
points itself amounted to a time-consuming process. This number is important under
several aspects. The following evaluation with simulated data was realized by a variety
of repetitions, which were in their entirety very time-consuming. Therefore, a lower
number would save time. However, representative results with regard to accuracy were
supposed to be achieved during these repetitions. Therefore, a too low number should be
avoided. The goal was to find a compromise that keeps the necessary time for evaluation
within days and not weeks. Another aspect was that the determined number of feature
points should match a feasible number of feature points to be utilized in the following
experiments with real data.
Three distinct setups for a SFRS were examined. The refractive parameters were
determined repeatedly. One stereo image pair with format-filling feature points was
generated in every repetition. 100 repetitions were performed for every tested number of
feature points. Each repetition included randomly generated Gaussian noise that was
added to the feature points. The noise level that was assumed to be appropriate here
is the mean value of the applied noise range during the evaluation in the next section.
Hence, the value that was applied had a standard deviation of σ = 0.5. The 3D point
cloud, which was used to generate the image feature points, was slightly rotated randomly
in every repetition. By doubling the number of tested points, a range from 50 to 1600
feature points was covered.
Based on the results of the full evaluation in Appendix A the chosen number of features
was 400. This number has been utilized in the following experiments. These experiments
represent a major part of the evaluation and comprise a variation of the refractive
parameters in question.

Scene. After the determination of the number of feature points on the checker pattern,
a scene containing the 3D point cloud of this checker pattern needed to be simulated.
Additionally, this scene had to contain a water-glass-air transition of the light rays. The
simulated setup was chosen to resemble the test tank setup of Real Test Data Stage 1
and 2 (Compare with Section 7.2.2 and 7.2.3). The simulated tank was made of glass,
with a wall thickness of 1cm and with a refractive index of 1.6. As before, the resulting
flat refractive interfaces were plane parallel. The refractive indices of water and air were
1.33 and 1, respectively. The real test tank was limited in its depth. Therefore, the 3D
point cloud of the checker pattern was placed to be in general at a distance of about
25cm to the water-sided interface. The two cameras were placed outside of this tank.
Both of them had a resolution of 1920 × 1080 pixels. The focal length was chosen to
result in a wide field of view. The according angles of view were about 75◦ in diagonal
direction, about 67◦ in horizontal direction and about 41◦ in vertical direction.
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7 Experiments & Results

Evaluation Criteria. Since ground truth data was available, the following three
criteria were utilized for the evaluation with simulated test data:

• Angle Error: The difference between the true system axis and the calibrated system
axis in degrees. The angle was measured between the normalized direction vectors
of both axes.

• Air Layer Thickness Error: The difference between the true air layer thickness and
the calibrated air layer thickness.

• 3D Error: The mean Euclidean distance between the coordinates of the ground
truth 3D point cloud and the 3D coordinates that had been recovered after refractive
calibration.

The Refractive Triangulation from Section 6.2 was utilized to recover the 3D coordinates
of the corresponding feature points and therefore needed to be evaluated as well. Provided
that the refractive parameters were determined accurately, the evaluation of the Refractive
Triangulation itself can be realized by utilization of noise level zero. If it works correctly,
the recovered 3D coordinates need to be error-free at this noise level. Thereby, this
evaluation was performed simultaneously.

Variation of Refractive Parameters

In Simulated Test Data Stage 1, the two strategies for the calibration of a SFRS in
combination with the six presented cost functions were analyzed. Therefore, each cost
function was considered for itself.

Angle Error, Air Layer Thickness Error and 3D Error. The experiments re-
garding the three evaluation criteria were conducted with underlying, simulated 3D point
clouds of a checker pattern, which were generated to result in format-filling feature points
in a stereo image pair. To form a maximally overlapping field of view at the location
of the 3D point cloud, cameras with converging principal axes p and p′ were necessary.
In Figure 7.1, the area of this location is marked with a blue rectangle. The generated
converging stereo camera setup was realized by defining its relative extrinsic parameters
accordingly. The system axis s0 is represented with respect to the coordinate system of
the master camera. As can be seen in Figure 7.2 a, its normalized direction vector s̄ can
be represented with the aid of a unit sphere and the two angles φ and θ. By definition
of φ′ = −φ and θ′ = θ, with {φ, θ} representing the orientation of the system axis s0
with respect to the master camera and {φ′, θ′} representing the orientation of the system
axis s′0 with respect to the slave camera, the basic setup for the conducted experiments
was generated. In the 2D illustration in Figure 7.1, the angle θ amounts to θ = 0◦. To
evaluate the proposed approaches for refractive calibration, the refractive parameters
were varied. During the conducted experiments, the air layer thickness was always equal
for both cameras. The variation of the refractive parameters was realized as follows:
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7.1 Refractive Calibration - Simulated Test Data

Figure 7.1: Maximally overlapping field of view at the location of a 3D point cloud.

V1) Increase the air layer thickness ta = d(C,S1), while the orientation of the system
axis s0 stays the same. The fields of view (dotted black lines) of the two cameras
limit a certain range of angles of incidence on the refractive interface Φ1. To ensure
a comparability between the calibration results of the varied setups, this range was
attempted to be kept constant, while the air layer thickness was varied between
ta = 5cm, ta = 15cm and ta = 25cm. As can be seen exemplary in Figure 7.1, the
consequence was that the angles φ and φ′ needed to be kept fixed, while the stereo
baseline b had to be increased to provide a maximally overlapping field of view at
the same distance from the interface Φ2 and therefore, a similar range of angles of
incidence.

V2) Vary the orientation of the system axis s0, while the air layer thickness ta stays
the same. Two cases were part of the evaluation. To get the necessary converging
setup in both cases, φ = −10◦ and φ′ = 10◦ were chosen. However, while the angels
θ and θ′ were equal and amounted to θ = θ′ = 0◦ in the first case, they amounted
to θ = θ′ = −20◦ in the second case.

These variations resulted in six distinct setups. Note that the symmetric setups are
only a matter of the design of the chosen evaluation scenario. Such a symmetry is not
a requirement for the approaches. A brief analysis of further setups that do not show
symmetric properties can be found in Appendix B.
The noise levels ranged from a standard deviation of σ = 0 to σ = 1, with a 0.2 step
width. The evaluation was realized in 100 iterations per noise level, each with randomly
generated Gaussian noise and a slight, random rotation of the underlying 3D point cloud.
The resulting values of the three chosen evaluation criteria for the described variation
of the refractive parameters are illustrated in a collection of diagrams. Without going
into details, this can be seen exemplary in Figure 7.3. Besides an error analysis, these
diagrams will show that the single approaches for refractive calibration work in general.

Error Plotting. As described in Chapter 5, the orientation of the system axis needs
to be optimized iteratively within the proposed approaches. These approaches are the
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7 Experiments & Results

Figure 7.2: a : Representation of the normalized direction vector s̄ of a system axis s0. b :
Valid system axes (top view). c : Valid system axis (side view). d : Invalid system
axis.

explicit, pattern-based system axis determination with PAE or PFE from the consecutive
strategy and the implicit system axis determination with RTE , VIE , RRE or VRE from
the simultaneous strategy (See Section 5.5.1). Besides their implicit evaluation within
the parameter variation of the previous section, an additional error plotting for a certain
search space was chosen as a means for their explicit evaluation. The search space of the
iterative optimization was defined by the angles φ and θ, which ranged from −45◦ to
+45◦, respectively. This chosen range can be justified by a brief analysis of invalid system
axes. Therefore, let us consider the angle δ between a system axis s0 and the principal
axis p of the camera in Figure 7.2. The field of view of the camera amounted to 75◦ in
diagonal, 67◦ in horizontal and 41◦ in vertical direction. Not every possible combination
of the field of view and a specific system axis makes sense. In Figure 7.2 b and c only
one of the angles φ and θ is not equal to zero. Hence, the angle δ is identical. If one of
those angles reaches the maximum or, equally, the minimum of the range of values, the
full field of view still intersects the flat refractive interface Φ1. However, if both angles
reach a maximum or minimum, the angle δ amounts to +/− 60◦. This means that some
rays in the field of view can not intersect Φ1 any more. This is illustrated by the plane
Φ0, which is parallel to Φ1. While Φ0 does not intersect the field of view in Figure 7.2 b
and c, it clearly does so in Figure 7.2 d. Therefore, the section of the field of view that
will never reach Φ1 is marked red. To keep the number of these non-intersecting rays
small, the chosen range is reasonable.
Any remaining non-intersecting rays can be beneficial during system axis optimization.
Therefore, a criterion to mark a system axis to be invalid was defined to be that not all
of the rays in both camera’s fields of view intersect the flat refractive interface. The
reasoning behind this is that rays that are parallel to, or that are pointing away from
the refractive interface are usually unintended, since they can not contribute underwater
information. One could argue if such a setup could make sense in some special cases.
However, in this thesis, these cases were marked as invalid.
The generated error plots (See exemplary Figure 7.4) are surface diagrams with a 1◦ step
width. These diagrams are colored according to the size of the error. Invalid system axes
are colored in red. Without going into details, the diagrams can be seen exemplary in
Figure 7.4. The error plots are presented for two distinct configurations.
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Figure 7.3: Inaccuracies of refractive calibration with PAE . Top row: φ = −10◦, θ = 0◦.
Bottom row: φ = −10◦, θ = −20◦.

Plane Angles Error (PAE). The first two columns in Figure 7.3 represent the mean
differences between the determined refractive parameters and the ground truth. The
determined parameters were used for the recovery of the 3D point cloud that was used for
refractive calibration. In the last column, the respective inaccuracies of the 3D recovery,
which therefore accumulate the inaccuracies of parameter determination, are displayed.
The error values almost equal to zero in all three categories at noise level σ = 0 show that
the PAE is valid and that the approach was working correctly. With a few exceptions,
the diagrams show very clearly, that an increase of the noise level σ, an increase of the
air layer thickness ta and an increase of the absolute value of the angle θ resulted in
increased error values, respectively. Figure 7.4 shows that despite of the coarse sampling
grid, the area where the overall minimal error value can be found was unambiguously
detectable in both setups and that this area contained the ground truth system axis.
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Figure 7.5: Inaccuracies of refractive calibration with PFE . Top row: φ = −10◦, θ = 0◦. Bottom
row: φ = −10◦, θ = −20◦.

Plane Fitting Error (PFE). The error values almost equal to zero in all three
categories at noise level σ = 0 show that the PFE is valid and that the approach was
working correctly (See Figure 7.5). An increase of the noise level σ led to increased
inaccuracies in almost every case. Regarding the error values for the variation of the air
layer thicknesses ta, it became apparent that from noise level σ = 0.6 on, an increase
of the thickness did not necessarily increase them. The approach was the most error
prone at the setup with φ = −10◦, θ = 0◦ and ta = 25cm. However, the accuracy of
the recovered 3D point clouds showed no significant anomalies. An increase of the air
layer thickness ta led to an increase of the error values in almost every case. In contrast,
an increase of the absolute value of the angle θ did not lead to a consistent increase.
Figure 7.6 shows that the area with the overall minimal error value could be detected
unambiguously in both setups and that it contained the ground truth system axis.
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Figure 7.7: Inaccuracies of refractive calibration with RTE . Top row: φ = −10◦, θ = 0◦.
Bottom row: φ = −10◦, θ = −20◦.

Refractive Triangulation Error (RTE). The error values almost equal to zero in
all three categories at noise level σ = 0 show that the RTE is valid and that the approach
was working correctly (See Figure 7.7). An increase of the noise level σ led to increased
inaccuracies in each case. With few exceptions, an increase of the air layer thickness ta
led to increases at the single noise levels in almost every case. Significant differences
between the varied orientations of the system axis by angle θ did not become apparent
consistently. The inaccuracies of the 3D recovery were similar in particular. Since only
two different orientations were tested, the indication at this point is that the effects
may not be severe in general. Hence, the obvious growth of the error values was only
consistent concerning an increased noise level σ and an increased air layer thickness ta.
Figure 7.8 shows that the area with the overall minimal error value could be detected
unambiguously in both setups and that it contained the ground truth system axis.
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Figure 7.8: Plotting of the RTE . Left: ta = 25cm, φ = −10◦, θ = 0◦, σ = 1. Right: ta = 25cm,
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Figure 7.9: Inaccuracies of refractive calibration with VIE . Top row: φ = −10◦, θ = 0◦. Bottom
row: φ = −10◦, θ = −20◦.

Virtual Intersection Error (VIE). The error values almost equal to zero in all three
categories at noise level σ = 0 show that the VIE is valid and that the approach was
working correctly (See Figure 7.9). An increase of the noise level σ led to increased
inaccuracies in every case. With few exceptions, an increase of the air layer thickness ta
led to increases at the single noise levels in almost every case. In contrast to the RTE ,
significant differences between the varied orientations of the system axis by the angle θ
did become apparent. Since only two different orientations were tested, the indication at
this point is that the effects may be severe in general. Summarized, the growth of the
error values was consistent concerning an increased noise level σ and an increased air
layer thickness ta and it was severe concerning an increased absolute value of the angle θ.
Figure 7.10 shows that the area with the overall minimal error value could be detected
unambiguously in both setups and that it contained the ground truth system axis.
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Figure 7.10: Plotting of the VIE . Left: ta = 25cm, φ = −10◦, θ = 0◦, σ = 1. Right: ta = 25cm,
φ = −10◦, θ = −20◦, σ = 1.

128



7.1 Refractive Calibration - Simulated Test Data

0.00

0.05

0.10

0.15

0.20

0.25

0 0.2 0.4 0.6 0.8 1

e
rr

o
r 

in
 d

e
gr

e
e

s

σ in pixel

ANGLE ERROR

5 cm

15 cm

25 cm

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0 0.2 0.4 0.6 0.8 1

e
rr

o
r 

in
 c

m

σ in pixel

AIR LAYER THICKNESS ERROR

5 cm

15 cm

25 cm

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0 0.2 0.4 0.6 0.8 1

e
rr

o
r 

in
 c

m

σ in pixel

3D ERROR

5 cm

15 cm

25 cm

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 0.2 0.4 0.6 0.8 1

e
rr

o
r 

in
 d

e
gr

e
e

s

σ in pixel

ANGLE ERROR

5 cm

15 cm

25 cm

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0 0.2 0.4 0.6 0.8 1

e
rr

o
r 

in
 c

m

σ in pixel

AIR LAYER THICKNESS ERROR

5 cm

15 cm

25 cm

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0 0.2 0.4 0.6 0.8 1

e
rr

o
r 

in
 c

m

σ in pixel

3D ERROR

5 cm

15 cm

25 cm

Figure 7.11: Inaccuracies of refractive calibration with RRE . Top row: φ = −10◦, θ = 0◦.
Bottom row: φ = −10◦, θ = −20◦.

Refractive Reprojection Error (RRE). The error values almost equal to zero in
all three categories at noise level σ = 0 show that the RRE is valid and that the approach
was working correctly (See Figure 7.11). The further observations matched the ones of
the VIE . These are that an increase of the noise level led to increased inaccuracies in
every case and that, with few exceptions, an increase of the air layer thickness ta led to
increases at the single noise levels in almost every case. Significant differences between
the varied orientations of the system axis by the angle θ did become apparent. Similarly,
the obvious growth of the values was consistent concerning an increased noise level θ and
an increased air layer thickness ta and the growth was severe concerning an increased
absolute value of the angle θ. Figure 7.12 shows that the area with the overall minimal
error value could be detected unambiguously in both setups and that it contained the
ground truth system axis.
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Figure 7.13: Inaccuracies of refractive calibration with VRE . Top row: φ = −10◦, θ = 0◦.
Bottom row: φ = −10◦, θ = −20◦.

Virtual Reprojection Error (VRE). The error values almost equal to zero in all
three categories at noise level σ = 0 show that the VRE is valid and that the approach
was working correctly (See Figure 7.13). The further observations nearly matched the
ones of the VIE and the RRE . In every case, an increase of the noise level σ led to
increased inaccuracies. The only difference was that, with no exceptions, an increase of
the air layer thickness ta led to increases at the single noise levels. As before, significant
differences between the varied orientations of the system axis did become apparent.
Hence, the obvious growth of the error values was consistent concerning an increased
noise level σ and an increased air layer thickness ta and the growth was severe concerning
an increased absolute value of the angle θ. Figure 7.14 shows that the area with the
overall minimal error value could be detected unambiguously in both setups and that it
contained the ground truth system axis.
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Figure 7.14: Plotting of the VRE . Left: ta = 25cm, φ = −10◦, θ = 0◦, σ = 1. Right: ta = 25cm,
φ = −10◦, θ = −20◦, σ = 1.
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Comparison of Cost Functions and Calibration Strategies

After consideration of each cost function for itself, this section will comprise a comparison
amongst themselves and hence of the two proposed calibration strategies for the calibration
of a SFRS , namely the consecutive and the simultaneous determination of refractive
parameters. A very obvious difference can be seen in the shapes of the areas in the
previously shown error plots that contain the invalid system axes. The ones of the
pattern-based cost functions PAE (Figure 7.4) and PFE (Figure 7.6) can be clearly
distinguished from the rest (Figure 7.8, 7.10, 7.12 and 7.14). The reason is the difference
between the approaches for the optimization of the system axis. Both cost functions
PAE and PFE are independent of the air layer thickness and can therefore only be used
for pattern-based system axis determination within the consecutive strategy. The best
system axis is determined explicitly and the air layer thickness is only computed for this
single axis. Hence, invalid axes can only be identified according to the criterion that not
all of the rays in both camera’s fields of view intersect the flat refractive interface, which
has been defined earlier. In contrast, the simultaneous strategy comprises an implicit
system axis determination with RTE , VIE , RRE or VRE . Therefore, further criteria for
invalid axes can be applied within the determination of the air layer thickness. Since the
air layer thickness is determined for every single hypothetical system axis, further axes
can be invalidated. An example of these further criteria are resulting air layer thicknesses
that fall below the minimally possible distance or that exceed the maximally possible
distance. Falling below the minimally possible distance means that the resulting air
layer thickness would lead to a flat refractive interface above Φ0 in Figure 7.15, which is
impossible due to the physical presence of the closest camera. Exceeding the maximally
possible distance means that the resulting flat refractive interface would lead to VOPs
being situated in air. As has been shown earlier, the VOPs Ǒ and Ǒ′ are usually situated
in water, can be at most inside glass, but not in air. Therefore, in theory, the valid range
of values of the air layer thickness ta is between ta = d(C,C) = 0 and ta = d(C,A3).
Note that for multiple pairs of corresponding image points I and I ′, the maximal distance
gets determined by the VOP that is the farthest away. In practice, the minimal distance
is not realizable, since the center of projection is usually situated somewhere inside the
optics of a camera.
The comparison of the results of the approaches for refractive calibration will contain
the six distinct setups from the previous section, which were chosen according to the
subsequent experiments with real data. The diagrams in Figure 7.16 and 7.18 are another
representation of the results from Figure 7.3, 7.5, 7.7, 7.9, 7.11 and 7.13, which is better
suited for comparison of the various cost functions amongst themselves. Furthermore,
Figure 7.17 and 7.19 illustrate a comparison of the run-times of the applied approaches.
Within these diagrams, the six distinct setups will be grouped according to their differences
in the amount of the angle θ, which will result in two sets. Besides the six proposed
refractive calibration approaches, the current state-of-the-art approach of Chen and
Yang (CY ) [CY14] will be included into the comparison. To be comparable, it was
reimplemented and slightly adapted for the calibration of a SFRS .
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Figure 7.15: Range of the valid values of the air layer thickness.

Comparisons in the First Set. The first set of diagrams in Figure 7.16 and 7.17
is characterized by constant angles φ = −10◦ and θ = 0◦, and by a varying air layer
thickness of ta = 5cm, ta = 15cm and ta = 25cm. Of the two proposed calibration
strategies, the simultaneous determination of the refractive parameters outperformed the
consecutive one. Hence, the two pattern-based cost functions PAE and PFE performed
worse than the four pattern-independent cost functions RTE , VIE , RRE and VRE . As
can be seen, PAE and PFE clearly produced higher inaccuracies in each case. Since
both of them can only be used to determine the orientation of the system axis, the
resulting inaccuracies get incorporated into the subsequent computation of the air layer
thickness. This becomes obvious in the second column. The direct consequence is that
the inaccuracies of the recovered 3D coordinates in column three are similarly high.
The first column of Figure 7.16 shows that the simultaneous strategy with the pattern-
independent cost functions RTE , VIE , RRE and VRE , and the reference approach
CY produced similar results, with a maximal inaccuracy of the determined system axis
of about 0.3◦. Regarding the air layer thickness, the second column shows that CY
produced slightly lower inaccuracies. Since the approach for the computation of the
air layer thickness was the same for the consecutive and the simultaneous strategy, the
second column shows that it produced better results in almost every case within the
simultaneous strategy. The consequence for the simultaneous strategy is that the overall
inaccuracies are distributed between the inaccuracies of the systems axis and the air layer
thickness. Therefore, since the air layer thickness could be computed more accurately,
the implicit determination of the system axis within the simultaneous strategy resulted
in more accurate results as well. The maximal inaccuracy of the pattern-independent
cost functions at the maximally tested noise level σ = 1 amounted to about 0.15cm.
Regarding the inaccuracies of the recovery of the 3D point cloud in column three, RTE ,
VIE , RRE , VRE and CY produced similar results, once again. The maximal inaccuracy
amounted to about 0.11cm. The depicted run-times in Figure 7.17 show a clear order.
The two pattern based approaches utilizing PAE and PFE and the one utilizing VIE were
the fastest. These were closely followed by the approach utilizing RRE . The approaches
utilizing RTE , VRE and also the reference approach CY were severely slower.
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Figure 7.16: Comparison of the inaccuracies for the setups with φ = −10◦ and θ = 0◦. Top
row: ta = 5cm. Middle row: ta = 15cm. Bottom row: ta = 25cm
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Comparisons in the Second Set. The second set of diagrams in Figure 7.18 and 7.19
is characterized by constant angles φ = −10◦ and θ = −20◦, and by a varying air layer
thickness of ta = 5cm, ta = 15cm and ta = 25cm. Due to an angle θ that was differing
from zero, the system axis in question was additionally tilted. Compared to Figure 7.16,
Figure 7.18 shows that an increase of the angle θ led to results that were more scattered.
A difference was that the results of the pattern-based cost function PFE approached
the results of the four pattern-independent cost functions RTE , VIE , RRE and VRE
in some cases, while the PAE still performed worst. Of these four pattern-independent
cost functions, the VIE performed worst in almost every case. This time, the reference
approach CY had no advantages, while the RTE seemed to handle the increased tilt
the best. Compared to the previous setups with no tilt, the maximal inaccuracy of the
determined system axis increased from about 0.3◦ to about 0.4◦, that of the determined
air layer thickness from about 0.15cm to about 0.25cm and that of the recovered 3D
point cloud from about 0.11cm to about 0.19cm. Each of the depicted run-times in
Figure 7.19 shows a slight increase, but the general order remained.

Findings

The observations were that all six cost functions are valid and that their implementations
were working correctly. The observations at noise level σ = 0 have been further used
as a means to evaluate the approach for the recovery of 3D coordinates by Refractive
Triangulation from Section 6.2. The conformity of the recovered and the ground truth
3D point clouds shows that it was working correctly as well.
An obvious growth of the inaccuracies was consistent concerning an increased noise
level σ and an increased air layer thickness ta. Regarding the differing orientations
of the system axes by the angles φ and θ, an increase of the absolute value of θ was
performed to increase the range of angles of incidence in the field’s of view of the stereo
system. Therefore, in almost all cases, such a tilted setup led to a severe increase of the
inaccuracies. The worst results were produced by the consecutive determination of the
refractive parameters by utilizing the pattern-based PAE . Utilizing the PFE performed
better. Therefore, from a simulation point of view, it was easy to decide in favor of
the calibration strategy with simultaneous determination of the refractive parameters.
In contrast, it was hard to decide in favor of one of the four pattern-independent cost
functions RTE , VIE , RRE and VRE , since they performed similarly well within the
setups with no tilt of the system axis and only differed slightly within the setups with
tilt. The reimplementation of the reference approach of Chen and Yang [CY14] (CY )
ranked among them, without performing significantly better or worse. Regarding the
run-times of the single approaches, a clear order became apparent. However, this order
could not be mapped to the produced inaccuracies of the respective approaches.
The refractive indices of the participating media are not determined within the proposed
approaches, since they are usually measurable or known. The refractive index of water is
commonly known and therefore usually assumed to be 1.33, however, it can vary slightly.
An outcome of a simulation of the effects of inaccurate values (See Appendix C) is that
refractive calibration is preferably performed with image features of close objects.
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Figure 7.18: Comparison of the inaccuracies for the setups with φ = −10◦ and θ = −20◦. Top
row: ta = 5cm. Middle row: ta = 15cm. Bottom row: ta = 25cm
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Figure 7.19: Comparison of the mean run-times for the setups with φ = −10◦ and θ = −20◦.
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7.1.2 Stage 2 - Rendered Images

Simulated Test Data Stage 2 made use of rendered image data, which was generated with
Blender1. In this case, the calibration of the stereo camera and the feature detection
needed to be performed algorithmically as a pre-processing step of refractive calibration.
As before, a checker pattern was used to generate the feature points in the stereo images
for refractive calibration. Therefore, a conventional feature detector for finding the
corners of this pattern was introduced into the processing. Additionally to evaluating
the proposed refractive calibration approaches, this was a good opportunity to collect
quantitative data to point out the extent of the errors that arise from further calibration
strategies from the literature. Two representative setup configurations for a SFRS were
generated and analyzed. In accordance with Simulated Test Data Stage 1, a brief analysis
of further setups can be found in Appendix D.

Preliminaries

Further Calibration Strategies from the Literature. As described in Section 3.2,
the absorption strategy (ABS) is supposed to be an alternative to handle refractive effects
in special viewing configurations. For a general viewing configuration, the fundamental
finding is that refractive effects should be modeled explicitly. This was analyzed briefly.
A common alternative to estimate explicitly modeled refractive parameters, which can
be found in the literature (See Section 3.3.5), is to fix a calibration object with a known
pattern onto the refractive interface. Afterward, some kind of pose from 3D-2D point
correspondences algorithm can be used to estimate (EST ) the pose of the master camera
with respect to the calibration object. This strategy was analyzed briefly as well. For the
sake of completeness, the strategy to disregard (DIS) refractive effects was also analyzed
briefly. On the contrary to the weak definition in Section 3.1, this rather stands for a
calibration of the imaging system in air and ignoring refractive effects completely.

Reference Approaches for Calibration in Air. Since both the disregard and the
absorption of refractive effects rest upon the application of in air calibration approaches
without any adjustments to the underwater environment, a matching method had to be
determined. The selected methods were the ones of Zhang [Zha00] and Bouguet [Bou08].
All that they need is a set of simultaneously taken views of a planar calibration object,
such as a checker pattern of known dimensions. The advantage is that both approaches
are readily usable in form of available algorithms in the Camera Calibration Toolbox for
Matlab [Bou08] and OpenCV [Bra00]. In this thesis, the OpenCV implementation was
chosen, which is based on both Zhang [Zha00] and Bouguet [Bou08].
Since the intrinsic and extrinsic camera parameters need to be known in advance in all
the following experiments, this was also the method of choice for the calibration of the
stereo camera itself (in air). The necessary sets of stereo views of the checker pattern on
the calibration object were acquired in air and under water. A subset of the underwater
images was simultaneously used for refractive calibration.

1Blender: https://www.blender.org/
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Figure 7.20: Directions of the length measurements on a checker pattern.

Evaluation Criteria. In most real world setups there is no ground truth data available
for the refractive parameters. However, it is possible to evaluate the computed refractive
parameters implicitly, by explicitly evaluating the 3D coordinates of points in the scene,
which were recovered with the aid of these refractive parameters. Therefore, some
additional criteria are necessary, which represent valid means for evaluations in real
world setups. The following criteria were utilized from here on:

• Reprojection Error (DIS, ABS) or Refractive Reprojection Error (Others).

• 3D Error (Equal to Simulated Test Data Stage 1 ).

• The error resulting from plane fitting into the recovered 3D points.

• Length measurements on the known checker pattern.

From the earlier proposed criteria, only the 3D Error could be reused. The necessary
benchmark data was made available in the following way. Starting point was a plane
in the scene, which was textured with a checker pattern. A rendered stereo image pair
of this plane was acquired once with and once without the flat refractive interface and
water. A 3D point cloud of the checker pattern corners was recovered from the rendered
stereo image pair in air by means of conventional triangulation. This 3D point cloud
was used as benchmark data. The rendered underwater stereo image pair was used to
recover the 3D point cloud of the checker pattern corners, by utilizing the refractive
parameters from the respectively tested calibration strategy. The comparison of both 3D
point clouds resulted in the overall 3D Error. Additionally, the mean Euclidean distances
in each of the three coordinate directions were computed separately to determine the one
with the largest extent.
Since the recovered 3D point cloud had to be planar, plane fitting was used for evaluation
as well. The best fitting plane was computed and the mean Euclidean distance of the 3D
points to this plane characterized the accuracy of the fitting.
For the length measurements, some of the inner corners of the checker pattern were
used. As can be seen exemplary in Figure 7.20, target of the measurements were all the
horizontal lines, all the vertical lines and the two diagonals. All the lines in one of the
three directions had the same length. The 3D coordinates of the respective starting and
ending points were used to calculate the Euclidean distances between them. Afterward,
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the mean Euclidean distances in all three directions were computed and their absolute
differences to the known lengths were used for evaluation.
Note that this planar shape with a checker pattern was chosen for the sake of producing
simple, additional means for evaluation. It is not a requirement for the proposed refractive
calibration approaches and any other object could have been used, but without it, the
straightforward computation of the benchmark data, comprising a 3D point cloud, known
lengths and a target for plane fitting, would not be applicable.

Comparison of Cost Functions and Calibration Strategies

For each of the two simulated setups, all of the described calibration strategies were
evaluated. These comprised the disregard (DIS) and the absorption (ABS) of refractive
effects as well as the estimation (EST ) of the master camera’s pose by a pose from
3D-2D point correspondences algorithm. Furthermore, the proposed consecutive strategy
utilizing PAE or PFE and the simultaneous strategy utilizing RTE , VIE , RRE or VRE
to determine the refractive parameters were evaluated and compared to the reference
approach CY . Both setups were characterized by cameras with a focal length of 8.5mm
and an image sensor with a width of 11.34mm and a height of 7.13mm, resulting in
a wide field of view. These parameters matched the parameters of the cameras of the
subsequent evaluations with real data. The air layer thickness amounted to 11cm per
camera and the stereo baseline amounted to 10cm. The glass layer thickness amounted
to 1cm and the checker pattern was located at a distance of 40cm to the water-sided
interface. The images that were needed for all calibration procedures comprised:

• one image of a checker pattern on the refractive interface for EST,

• a set of stereo images of a checker pattern in air for stereo calibration itself, which
is equal to DIS,

• a set of underwater stereo images of a checker pattern for ABS and

• a subset of the underwater stereo images for refractive calibration (PAE , PFE ,
RTE , VIE , RRE , VRE , CY ).

The subset of the underwater stereo images was chosen to contain about 400 feature
points in total, to match the earlier determined number.

First Setup. In the first simulated setup, the image sensors of the two cameras were
perpendicular to the interface normal. Hence, both principal axes were parallel and the
system axis was characterized by φ = 0◦ and θ = 0◦. This setup matches the conditions
that are expected to make the absorption strategy (ABS) applicable. The results for this
setup can be seen in Table 7.1. In contrast to the previous evaluation without explicit
stereo calibration and feature detection, the values represent the accumulation of the
inaccuracies from stereo calibration, feature detection and refractive calibration. The first
eight columns show that all the proposed approaches of this thesis (PAE , PFE , RTE ,
VIE , RRE and VRE) performed very well, as was expected with simulated data. As
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before, PAE performed worst, but still very well. The reference approach CY performed
equally well and the pose estimation (EST ) similarly well. DIS produced unacceptable
results in all categories, while ABS produced results that were at least more tolerable,
except for the inaccuracies of the 3D coordinates in z-direction. Although the setup is
supposed to match ABS, it was clearly outperformed by the explicit modeling of refractive
effects together with refractive calibration.

Second Setup. The second simulated setup differed from the first by the orientation
of the two cameras. Both principal axes were not parallel any more, but converged, and
the perpendicularity between the image sensors and interface normal did no longer exist.
Furthermore, the cameras were rolled by 1◦ and 2◦ around their principal axes. The
system axis was characterized by φ = −6◦ and θ = −10◦. Compared to the first setup,
this increased the range of angles of incidence in the field’s of view of the stereo system.
The rest of the setup stayed the same. The resulting error values are shown in Table 7.2.
Again, the first eight columns show that all of the proposed approaches of this thesis
performed very well. However, compared to the first setup, a slight degradation was
evident in every case. This was most likely happening due to the increased range of angles
of incidence, which matches the findings from Simulated Test Data Stage 1 in Section
7.1.1. The overall tendencies remain similar to the first setup. The two approaches DIS
and ABS were clearly outperformed. DIS even suffers from additional inaccuracies of
the 3D coordinates in x- and y-direction and ABS shows increased inaccuracies at all
length measurements. Consequently, it can be confirmed that ABS is better suited for
setups with perpendicularity between the image sensors and the interface normal.

Findings

In contrast to Simulated Test Data Stage 1 in Section 7.1.1, Simulated Test Data Stage
2 did not contain an augmentation with Gaussian noise. Therefore, its major task was to
show that the accumulation of errors of the pre-process containing common approaches
for stereo calibration and feature detection from OpenCV and of the process of refractive
calibration is low, as would be expected from simulated data. Nevertheless, the texture
mapping during the rendering of the utilized checker patterns is not guaranteed to be ideal.
Therefore, a source of error exists. However, all of the proposed refractive calibration
approaches from this thesis performed well on rendered images. The introduced evaluation
criteria allowed comparisons of the proposed approaches amongst themselves and to
alternative approaches from the literature. The estimation (EST ) of the master camera’s
pose by a pose from 3D-2D point correspondences algorithm performed equally well on
simulated data. The analysis of the absorption strategy (ABS) showed that, in special
viewing conditions, it can lead to length measurements that are reasonable to a certain
degree, but the inaccuracies of the recovered 3D coordinates were always significant. It
could be confirmed that the absorption capabilities decreased with non-perpendicularity
between image sensor and interface normal, as was already stated in the literature
(Section 3.2). Due to its severe inaccuracies, the strategy to disregard (DIS) refractive
effects should definitely be avoided.
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7.2 Refractive Calibration - Real Test Data

A major difference between the evaluation with simulated data and real data is that
the deployment of real cameras implicates lens distortion. While simulated cameras are
modeled according to the pinhole camera model, real cameras can only be approximated
by it. In contrast to the utilization of ideal pinhole cameras during simulation, the
utilization of real cameras most likely introduces additional inaccuracies, such as lens
distortions, which consequently influence the calibration of the stereo camera. However,
regarding lens distortion, the assumption is that it neither is influenced by, nor does it
influence refractive effects. Therefore, all the processed images were undistorted after
stereo camera calibration in a pre-processing step. Image quality in terms of sharpness and
blurring are further factors that can introduce additional inaccuracies. Stereo calibration,
as well as refractive calibration depend on corresponding features in the two views of
the imaging system. In this thesis, stereo calibration is always performed with the aid
of planar calibration objects with checker patterns, while refractive calibration is only
sometimes. The necessary corner detection algorithms are most likely to be affected by
the image quality.
The evaluation with real test data was realized in two stages. Since the evaluation
with simulated test data already pointed out some tendencies regarding the performance
differences between the consecutive and the simultaneous determination of the refractive
parameters of a SFRS , it was analyzed, if these tendencies apply in real world setups
as well. In Real Test Data Stage 1, all six of the proposed approaches were compared
by utilizing images of planar calibration objects with a checker pattern, while in Real
Test Data Stage 2 only the four pattern-independent approaches were tested without
using calibration objects at all. In general, ground truth data for the system axis and the
air layer thickness are not available in real world setups. If these are not available, the
previously introduced reprojection error, or rather refractive reprojection error, the 3D
Error, the measurements of known lengths and plane fitting can be applied as criteria for
the implicit evaluation of the refractive parameters by explicit evaluation of a recovered
3D point cloud. However, usually there is no ground truth data for the pose of a 3D
point cloud in real world setups as well, which makes the 3D Error unavailable. In the
following section, an alternative way to produce benchmark data for a 3D point cloud
will be described, which enables the utilization of the 3D Error.

7.2.1 Benchmark Data Generation

The approach for benchmark data generation is based on Dolereit [Dol15] and consists of
the determination of a 3D point cloud and its pose with respect to the master camera
of a stereo camera. An aquarium setup was used and the target of the recovery of 3D
coordinates were the inner corners of a checker pattern on a submerged planar object
(benchmark object). The proposed approach is to fix this benchmark object rigidly to the
stereo camera with the aid of profile rails, as can be seen on the left side of Figure 7.21.
Therefore, a mount that surrounds the aquarium was constructed. It allowed the fixation
of the rigidly coupled camera-object system on two levels. On level one (Left side of
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Figure 7.21: Installation for the evaluations with generation of benchmark data.

Figure 7.21), the stereo camera and the object were situated above water. On level two
(Right side of Figure 7.21), the benchmark object got submerged, while the stereo camera
was situated in front of one long side of the aquarium. The profile rails allowed a flexible
adjustment of the camera-to-object distances and simultaneously an adjustment of the air
layer thickness. The adjustment of the stereo baseline was possible as well. The used ball
tripod heads allowed a flexible adjustment of the camera orientations and simultaneously
an adjustment of the orientation of the system axis. With this setup, it was easily
possible to calibrate the stereo camera in advance. A calibrated stereo camera makes the
recovery of 3D coordinates in air possible. Therefore, the fixation of the camera-object
system on the upper level was used to generate the benchmark 3D point cloud data of
the checker corners by means of a conventional triangulation approach. This 3D point
cloud was generated with respect to the master camera and its accuracy depended on
the quality of the stereo calibration and feature detection algorithms. Since the same
camera parameters were used for the subsequent refractive calibration approaches and
since the same feature detection algorithm was used to specify the target points for 3D
recovery, the way to generate the benchmark data was an obvious choice.

7.2.2 Stage 1 - With Calibration Object

Comparative Evaluation

Evaluated Setups. The parameters of the utilized stereo camera resembled the ones
from simulation. Both cameras consisted of a lens with a focal length of 8.5mm and an
image sensor of dimensions 11.34mm× 7.13mm, resulting in a wide field of view. Both
had a resolution of 1936× 1216 pixels. The principal axes of both cameras converged to
generate a maximally overlapping field of view at the target object. Since the intrinsic
and extrinsic parameters of the stereo camera were not varied at the distinct setups and
therefore stayed constant, they were determined with the aid of OpenCV in advance once.
The calibrated stereo baseline amounted to 10, 143cm. The reprojection error can be
regarded as a quality measure of the stereo calibration. The resulting reprojection error
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amounted to an average of 0.117 pixels. This error is mostly due to the underlying pinhole
camera model, which can only approximate the image formation of real cameras. To
remove lens distortion, all the processed images were undistorted based on the results of
the conducted stereo camera calibration. Despite the relatively low value of the resulting
reprojection error, it induced inaccuracies into the subsequent refractive calibration.
As mentioned before, the implicit evaluation of the refractive parameters by explicit
evaluation of a recovered 3D point cloud was the method of choice. Target of the recovery
of 3D coordinates was the benchmark object with a checker pattern of dimension 6× 5,
which was placed at about 30cm to the water-sided interface, as can be seen on the
right side of Figure 7.21). This interface was plane-parallel, with a measured glass layer
thickness that amounted to tg = 0.6cm and a refractive index of ng = 1.6. The refractive
indices of air and water were assumed to be na = 1 and nw = 1.33.
Three distinct setups, which were realized with the aid of the construction on the right
side of Figure 7.21, were part of the evaluation. The parameters of the stereo camera
stayed fixed, while the air layer thickness and the system axis were varied slightly at each
of the three setups. These slight variations were realized by translating the stereo camera
along the horizontal profile rail and by rotating it with the aid of the mounting of the
vertical profile rail. This was conducted arbitrarily in the range of some millimeters and
degrees, respectively, and therefore, no ground truth data was available. By the point of
view of an visual assessment, the air layer thickness amounted to approximately 15cm
and the system axis was not perpendicular to the image sensor of the master camera in
each of the three setups. Hence, φ and θ differed significantly from zero.

Benchmark Data. In Real Test Data Stage 1, the previously introduced approach
for benchmark data generation (BD) form Section 7.2.1 was used to generate a 3D point
cloud of the fixed checker pattern, with respect to the master camera. This benchmark 3D
point cloud was evaluated first. Therefore, the same evaluation criteria as in Simulated
Test Data Stage 2 (See Section 7.1.2) were used, namely the reprojection error, the 3D
Error, the measurements of known lengths and plane fitting. The results of the evaluation
of the benchmark 3D point cloud are displayed next to the results of the evaluation of
the refractive calibration in Table 7.3. However, the focus is only on the columns within
the heading BD for now. Obviously, the 3D Errors (marked with X) can not be collected,
since this would require the generation of another benchmark 3D point cloud.
The benchmark 3D point cloud was generated once for each of the three setups. It only
depends on stereo camera calibration, which did not change between setups. In Table
7.3, the inaccuracies from the three setups are pooled together and the mean values
and standard deviations are displayed. The reprojection error amounted to an average
of about 0.17 pixels for the left and the right image. The length measurements were
accurate and the plane fitting error indicated that the resulting 3D point cloud was very
close to an ideal plane. Therefore, the generated benchmark data were considered to
be valid. They represent the capability of the calibrated stereo camera for 3D recovery
in air and therefore represent a valid means for the evaluation of the capability of the
calibrated SFRS for 3D recovery under water.
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Figure 7.22: Acquisition of calibration data for: Left: ABS, PAE , PFE , RTE , VIE , RRE ,
VRE and CY , with a calibration object in water. Right: EST, with a calibration
object fixed to the air-sided interface.

Further Calibration Approaches. Further evaluated approaches were the disregard
(DIS) and the absorption (ABS) of refractive effects, as well as the estimation (EST ) of
the master camera’s pose by a pose from 3D-2D point correspondences algorithm. The
results can be seen in the respective columns of Table 7.3. Since DIS is equal to stereo
camera calibration in air, it was only performed once overall. However, the subsequent
recovery of the 3D point cloud of the benchmark object and its evaluation needed to be
performed once for each of the three setups. As with BD, the results of these three setups
are pooled together and the mean values and standard deviations are displayed. The
results confirm that this strategy performs worst overall, as has been already indicated
during simulation.
The calibration with ABS was performed once for every setup. Therefore, several
underwater images of a plane-parallel calibration object with a checker pattern were
used, as can be seen on the left side of Figure 7.22 (Small calibration object in front
of benchmark object). As with BD and DIS, the subsequent recovery of the 3D point
cloud of the benchmark object and its evaluation were performed once for each of the
three setups and the results are displayed in the same way. Again, the findings from the
simulations were confirmed.
The process for the estimation (EST ) of the master camera’s pose by a pose from 3D-2D
point correspondences algorithm is shown exemplary on the right side of Figure 7.22.
This can be realized by a single view of a suitable calibration object. Therefore, a checker
pattern printed on paper was fixed to the air-sided interface. EST was executed one
time for each of the three setups, as was the subsequent recovery of the 3D point cloud
of the benchmark object and its evaluation. The displayed results are the mean values
and standard deviations of the pooled configurations. As can be seen, the results were
close to those of BD and partly even better. However, its greatest disadvantage is that
it can only be performed in situations where the master camera can focus the checker
pattern, but not in general. If the camera is in close proximity to the refractive interface,
this becomes impossible.
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Proposed Refractive Calibration Approaches. Similarly to the evaluation with
simulated data, the proposed consecutive strategy utilizing PAE or PFE and the simulta-
neous strategy utilizing RTE , VIE , RRE or VRE to determine the refractive parameters
were evaluated and compared to the reference approach CY and to the approaches DIS,
ABS and EST. To evaluate both strategies, underwater images of a calibration object
were used. To satisfy the earlier defined number of feature points of about 400, a subset
of the underwater calibration images, which were already used for ABS (See left side
of Figure 7.22), were chosen. Since more images than necessary were available, all of
the proposed approaches were executed three times for each of the three setups, each
time with a different subset of calibration images. Thus, the inaccuracies from nine
distinct configurations were pooled and their mean values and standard deviations are
displayed in Table 7.3. As can be seen, the overall tendencies do not differ significantly
from the simulation results for a similar setup, which can be seen in Table 7.2. The
consecutive strategy utilizing PAE or PFE performed worse than all the simultaneous
ones. In contrast to the simulations, PAE outperformed PFE . The results of PAE came
closer to the ones of BD and EST. PFE seemed to be more error-prone to the additional
sources of error, such as inaccuracies of the stereo camera calibration. RTE , VIE , RRE
and VRE performed equally well. There were hardly any differences. All four showed
the lowest reprojection errors of all tested approaches, even lower than with BD. The
reference approach CY performed slightly worse, just as EST did. However, compared
to the simulation results the resulting inaccuracies of the proposed approaches in Table
7.3 increased, which indicates the accumulation of the inaccuracies of stereo calibration,
checker corner detection and refractive calibration.

Findings

The approach for the generation of benchmark data (BD) worked reliably and marked
the capabilities of the calibrated stereo camera for 3D recovery in air. The quality of the
determined camera parameters is crucial, since inaccuracies are incorporated into the 3D
recovery. Since these inaccuracies are also incorporated into the refractive calibration
approaches, it is an valid means to generate benchmark data.
The simulation results matched the real world results quite well. The insufficient capa-
bilities of ABS and DIS to handle refractive effects were substantiated. The evaluation
also substantiated that the simultaneous strategy utilizing the pattern-independent RTE ,
VIE , RRE or VRE is preferable over the consecutive strategy utilizing the pattern-based
PAE or PFE and even over the reference approach CY . Of these four pattern-independent
cost functions none is standing out, since all performed equally well. Differences that
had been evident during the evaluation with simulated data were not evident any more.
The additional influencing factors like lens distortion and blurring had visible effects.
As expected, inaccuracies of stereo calibration, checker corner detection and refractive
calibration obviously accumulated.
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7.2 Refractive Calibration - Real Test Data

7.2.3 Stage 2 - Without Calibration Object

Comparative Evaluation

Evaluated Setups. In Real Test Data Stage 2, the evaluated setups were exactly the
same three setups as in Real Test Data Stage 1 (See Section 7.2.2). The evaluation
criteria were also the same, namely the reprojection error, the 3D Error, the measurements
of known lengths and plane fitting. The major difference was that no calibration object
was used and that refractive calibration was performed solely with the aid of stereo
correspondences in some additionally acquired calibration images. Therefore, it was
possible to treat both stages in the same workflow.
Since the utilized aquarium setup did not provide many detectable features, a scene
needed to be generated. The method of choice was to use waterproof images of a real
underwater scene, which supposedly contained many detectable features. An example of
the image and of its utilization can be seen in Figure 7.23. The image was printed on
three sheets of paper in A4 format and laminated. The three parts were loosely coupled.
Thus, due to its non-rigidity and its floating behavior, it was deviating from being a
plane and gained significant 3D structure. It was placed arbitrarily in the aquarium and
only one stereo image pair of it was used for refractive calibration.

Benchmark Data. Equally to Real Test Data Stage 1, the approach for benchmark
data generation (BD) form Section 7.2.1 was used.

Further Calibration Approaches. In Real Test Data Stage 1, the further evaluated
approaches were the disregard (DIS) and the absorption (ABS) of refractive effects, as
well as the estimation (EST ) of the master camera’s pose by a pose from 3D-2D point
correspondences algorithm. As should be clear, all of them can not be performed without
calibration objects.

Proposed Refractive Calibration Approaches. Of the proposed consecutive and
simultaneous strategies to determine the refractive parameters, the evaluation without
calibration objects is only possible for the simultaneous strategy utilizing the pattern-
independent cost functions RTE , VIE , RRE or VRE . As should be clear, the consecutive
strategy utilizing the pattern-based cost functions PAE or PFE does not have the
necessary capabilities.
In contrast to this stage, the previous evaluation stages utilized the corners of checker
patterns as image features. These are easily detectable by common corner detection
algorithms and easily matchable in two views of a stereo system, due to the known
pattern structure. Without such a pattern, images features need to be handled differently.
Therefore, sparse stereo matching was applied. The method of choice for feature detection
and feature description was the SIFT [Low99]. It was used to calculate feature points
in the stereo image pair. Afterward, a quick and efficient matching between left and
right feature points was performed by using the Fast Library for Approximate Nearest
Neighbors (FLANN ) [ML09]. Their popularity and their performance were decisive
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7 Experiments & Results

Figure 7.23: Refractive calibration without a known calibration object. Left: Arbitrary under-
water scene. Right: Acquisition of calibration images.

for their choice. Note that any other combination of algorithms for feature detection,
description and matching could have been used.
The applied testing scheme of the refractive calibration approaches was rather simple. To
avoid erroneously matched feature pairs, a defined number of random feature pairs was
chosen from the full set of available feature pairs. With these, refractive calibration was
performed. It returned the refractive parameters and an error value for the utilized cost
function. The refractive calibration was applied for a defined number of 100 repetitions,
each time with a new set of random feature pairs. Finally, the refractive parameters with
the lowest error value were taken as the result. The resulting inaccuracies for the three
setups were pooled together and their mean values and standard deviations are displayed
in Tables 7.4 and 7.5. The tested numbers of the random feature pairs amounted to 100,
200, 300 and 400.
The four proposed approaches utilizing RTE , VIE , RRE and VRE were tested and
compared to the reference approach CY . As in the previous evaluation, all four proposed
approaches performed equally well. The utilized number of feature points influenced
the results only marginally. The reference approach CY was outperformed by the four
proposed approaches in almost every case. Compared amongst itself, the reference
approach CY performed best with the lowest number of feature points.

Findings

Although the testing scheme for feature pair selection was rather simple, all four proposed
approaches performed equally well as during the evaluation with a calibration object
(Compare with Table 7.3). This shows that it is possible to perform an accurate refractive
calibration by the proposed approaches without the need of a known calibration object.
At this point, since the quality of all four was nearly equivalent, the run-times of the
single approaches become a factor. Since the analysis of the run-times during simulation
has shown a clear order (Compare with Figure 7.17 and Figure 7.19), the following order
can be accepted as the suggested order of application: VIE , RRE , RTE and VRE .
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7.3 Application: Underwater Stereo 3D Reconstruction

7.3 Application: Underwater Stereo 3D Reconstruction

In this section, the results from first experiments on underwater stereo 3D reconstruction
will be presented. Prerequisite was a SFRS that was calibrated for its intrinsic, extrinsic
and refractive parameters. Its refractive calibration was performed without calibration
object, as described in Section 7.2.3. The following experiments were performed on real
data, which were acquired with the aid of an aquarium setup that was similar to the
one used before. The experiments were accompanied by qualitative evaluations and
comprised the computation of correspondence curves, dense stereo matching and the
recovery of 3D coordinates.

7.3.1 Correspondence Curves

In the presence of the prevailing conditions of underwater imaging, the computation of
correspondence curves serves the reduction of the search space for pairs of corresponding
image points during dense stereo matching. A qualitative evaluation of the proposed
approach for the computation of correspondence curves was realized by visual examination.
Therefore, the inner corners of a planar checker pattern were used as easily detectable
image feature points. For each image feature point in the master camera, a correspondence
curve in the image of the slave camera was computed by following the steps described
in Section 6.1. The visual examination comprised to check if these correspondence
curves hit the according inner corners of the checker pattern. Figure 7.24 shows two
exemplary images of a checker pattern from the view of the slave camera and the
computed correspondence curves. Since the computation of correspondence curves is a
sampling of rays in water, a working range of depth values and a step width need to be
defined. With its starting point at the water-sided interface, the user-defined working
range between 0cm and 100cm covered the existing body of water in the aquarium very
generously. The sampling of each ray was realized with a user-defined step width of
0.1cm. As can be seen in Figure 7.24, all the corner points were hit by a correspondence
curve. As was expected, the correspondence curves were no straight lines.

Figure 7.24: Computed correspondence curves for the inner corners of a checker pattern in two
exemplary views.
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7 Experiments & Results

Figure 7.25: Aquarium setup for underwater stereo 3D reconstruction.

7.3.2 Dense Stereo Matching & Recovery of 3D Coordinates

Setup. The aquarium setup that was used to generate the image data for underwater
stereo 3D reconstruction is shown in Figure 7.25. The aquarium was equipped with
an image of an underwater scene as background. Besides this background, the scene
contained a submerged LEGO R© model of a shipwreck. The advantage of a LEGO R©

model is that it is easily possible to create an equivalent digital model. Figure 7.26
shows an image of the scene from the view of the master camera and a rendered view of
the associated digital LEGO R© model. This digital model is based on LDraw

TM 2, which
is an open standard for LEGO R© CAD programs, such as MLCad3. These LEGO R©

CAD programs enable the user to create digital LEGO R© models and scenes. Therefore,
LDraw

TM
provides a part library, which is utilized for the creation of the digital model

with MLCad. This digital model can be imported into the program LDView4 for being
rendered, or being exported to common CAD file formats like STL.

3D Point Cloud Computation. After the calibration of the SFRS , it is possible
to realize a physically correct underwater stereo 3D reconstruction of an imaged scene.
Within the conducted experiments, refractive calibration utilizing VIE was utilized. After
refractive calibration, the approach for the computation of correspondence curves, which
has been proposed in Section 6.1, was performed per pixel of the image of the master
camera. In contrast to Section 7.3.1, the working range of depth values was adjusted to
the known dimensions of the aquarium and thus was between 0cm and 40cm, starting at
the water-sided interface. The step width amounted to 0.1cm.
With the aid of the computed correspondence curves, dense stereo matching was per-
formed. The method of choice was an implementation of block matching with the Sum of
Absolute Differences (SAD). Block matching with SAD is a common practice for dense
stereo matching. Summarized, a square-shaped neighborhood around a pixel in the image
of the master camera forms a block that gets compared to all the blocks that are formed

2LDraw: http://www.ldraw.org/
3MLCad: http://mlcad.lm-software.com/
4LDView: http://ldview.sourceforge.net/
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7.3 Application: Underwater Stereo 3D Reconstruction

Figure 7.26: Real and virtual LEGO R© model of a shipwreck.

around the pixels on the respective correspondence curve in the image of the slave camera.
The absolute differences of the intensity values are computed pixel-wise and their sum is
used as a metric of block similarity. Therefore, gray-scale images of the scene are used
for the computations. The implemented dense stereo matching was realized with a block
size of 21× 21. Within the implemented approach, common problems of stereo matching,
such as outlier removal or occlusions, were ignored for now. For each pixel in the image
of the master camera, the center pixel of the block in the image of the slave camera
with the lowest SAD value was chosen to create a pair of corresponding pixels. Only a
user-defined threshold for the maximal SAD value was used, which decided if a matching
was valid. If the lowest SAD value exceeded the used-defined maximal SAD value, the
pair of corresponding pixels was simply ignored during further processing. This led to a
few holes in the 3D point cloud, but it represents a first step to exclude obviously invalid
matches. The pairs of corresponding pixels were used to recover the 3D coordinates of the
scene with respect to the master camera’s coordinate system. Therefore, the Refractive
Triangulation form Section 6.2 was used.
The result of the performed underwater stereo 3D reconstruction was a colored 3D point
cloud of the imaged scene. The program CloudCompare5 was used for its visualization.
Figure 7.27 shows two views of the recovered 3D point cloud. Compared to the back-
ground, the LEGO R© model posed the problem that it did not provide a lot of texture. As
was expected, many outliers from faulty matches occurred. Nevertheless, the top view on
the left side of Figure 7.27 shows that the background was recovered very well and that
it was planar as expected. In both views, it can be seen that the general structure of the
scene could be recovered. The shipwreck is recognizable and can be clearly distinguished
from the background. Overall, the results of these first experiments were satisfying.

3D Point Cloud Evaluation. The recovered 3D point cloud of the shipwreck model
was compared to a ground truth 3D point cloud that was generated from the digital
LEGO R© model. Therefore, with the use of CloudCompare, the STL file of the digital

5CloudCompare: http://www.danielgm.net/cc/
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7 Experiments & Results

Figure 7.27: Two exemplary views of the recovered point cloud of the imaged scene.

model was imported and sampled to generate the ground truth 3D point cloud. For
comparison with the ground truth 3D point cloud, the recovered 3D point cloud of the
full scene was adjusted manually. Therefore, the background and the most obvious
outliers were cropped by manual selection. Figures 7.28, 7.29 and 7.30 show the ground
truth 3D point cloud, the recovered 3D point cloud after manual adjustment and an
alignment of both of them from an arbitrary 3D view and an orthographic side and top
view. The process of aligning 3D point clouds is known as registration. This registration
was realized with the aid of CloudCompare. It enables the optimization of the registration
of two 3D point clouds after manual selection of three corresponding pairs of 3D points.
In terms of a qualitative evaluation by visual examination, the alignment of the 3D point
clouds was satisfying. A quantitative evaluation was omitted due to the prematurity of
the implemented approach.

Findings. The results of the implemented approaches for the computation of corre-
spondence curves, for dense stereo matching and for the recovery of the 3D coordinates
show that the reconstruction approach works in general. The results were plausible and

Figure 7.28: 3D view. Left: Ground truth 3D point cloud. Middle: Recovered 3D point cloud
after manual adjustment. Right: Registration of both 3D point clouds.
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Figure 7.29: Side view. Left: Ground truth 3D point cloud. Middle: Recovered 3D point cloud
after manual adjustment. Right: Registration of both 3D point clouds.

Figure 7.30: Top view. Left: Ground truth 3D point cloud. Middle: Recovered 3D point cloud
after manual adjustment. Right: Registration of both 3D point clouds.

also satisfying in terms of the performed qualitative evaluation. The run-times of the
computations are dependent on the user-defined working range, on the step width and
most of all on the image resolution. Overall, the computations of these first experiments
were time-consuming.

7.4 Summary
In this chapter, the evaluation of the consecutive and the simultaneous determination of
refractive parameters and of all six cost functions (PAE , PFE , RTE , VIE , RRE and
VRE) has been performed in multiple stages. Simulated Test Data Stage 1 has shown
that all six cost functions are valid and that their application in the proposed calibration
strategies is working correctly. Simultaneously, it has been shown that the recovery
of 3D coordinates by Refractive Triangulation from Section 6.2 is working correctly as
well. The experiments with augmentation of the simulated test data with Gaussian noise
and with variation of the refractive parameters pointed out the stability of the proposed
approaches and that none of them failed completely. Based on the results, it has been
easy to decide in favor of the calibration strategy with simultaneous determination of the
refractive parameters. In contrast, it has been hard to decide in favor of one of the four
pattern-independent cost functions RTE , VIE , RRE and VRE , since they performed
similarly well. The reimplementation of the reference approach of Chen and Yang [CY14]
(CY ) ranked among them, without performing significantly better or worse. Regarding
the run-times of the single approaches, a clear order became apparent.
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Besides establishing a workflow and evaluation criteria that can be adapted to real world
setups, Simulated Test Data Stage 2 has shown that refractive calibration in combination
with the pre-process comprising stereo calibration and feature detection works. All
of the proposed refractive calibration approaches performed well on rendered images.
This stage has been used for comparisons to alternative calibration strategies from the
literature. The estimation (EST ) of the pose of the master camera by a pose from 3D-2D
point correspondences algorithm performed equally well as the proposed approaches.
The analysis of the absorption strategy (ABS) has shown that the inaccuracies of
the recovered 3D coordinates are always significant. It could be confirmed that the
absorption capabilities decrease with non-perpendicularity between image sensor and
interface normal, as has been already stated in the literature (Section 3.2). Due to its
severe inaccuracies, the strategy to disregard (DIS) refractive effects performed worst
overall and should therefore be avoided.
It has been shown that the approach for the generation of benchmark data (BD), which
has been presented within Real Test Data Stage 1, is valid. The results form Real
Test Data Stage 1 matched the tendencies of the simulation results quite well. The
insufficient capabilities of ABS and DIS to handle refractive effects were substantiated.
The evaluation also substantiated that the simultaneous strategy utilizing the pattern-
independent RTE , VIE , RRE or VRE is preferable over the consecutive strategy utilizing
the pattern-based PAE or PFE and even over the reference approach CY . Of these four
pattern-independent cost functions, none is standing out, since all performed equally well.
Differences that had been evident during the evaluation with simulated data were not
evident any more. However, compared to the simulation results for a similar setup, the
resulting inaccuracies of the proposed approaches increased. Therefore, the evaluation
has shown that there is an accumulation of errors. The overall error consists of errors
from the pre-process containing common approaches for stereo calibration and feature
detection and from the process of refractive calibration.
The evaluation in Real Test Data Stage 2 has shown that it is possible to perform
an accurate refractive calibration by the proposed approaches without the need of a
known calibration object. Only the simultaneous determination of refractive parameters
with the four pattern-independent cost functions RTE , VIE , RRE and VRE and the
reference approach CY have the necessary capabilities. All four performed equally well
as during the evaluation with a calibration object and the reference approach CY was
outperformed by them in almost every case. Due to their nearly equivalent performance,
the run-times of the single approaches become a factor. Based on the run-times that
were measured during simulation, the following order has been accepted as the suggested
order of application: VIE , RRE , RTE and VRE .
In the last part of this chapter, the results from first experiments on underwater stereo 3D
reconstruction have been presented. These consisted of the application of the proposed
approaches for refractive calibration. It has been shown that the reconstruction approach
comprising the proposed computation of correspondence curves, of dense stereo matching
and of the recovery of 3D coordinates works in general. The results were plausible and
also satisfying in terms of the performed qualitative evaluation.
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8.1 Summary

The aim of this thesis was to recover accurate 3D information from underwater images,
with a stereo camera being the imaging system of choice. In air, the pinhole camera
model is the very foundation of stereo 3D reconstruction. However, the refraction of light
invalidates the pinhole camera model for underwater image formation. This leads to
the requirement of suitable extensions for the recovery of 3D structure from underwater
images. The underlying model for image formation, which has been used in this thesis,
is the SFRS . Derived from an in-depth review of the related literature, a taxonomy
and a parametrization of this and further image formation models for imaging systems
exposed to refraction have been proposed. Although being more specialized than single
camera systems, the SFRS it can be designated as a representative of a common viewing
condition. A characteristic of the SFRS , which has been taken advantage of in this
thesis, is that the refractive parameters have to be estimated just with respect to the
master camera. It has been shown that the particularities of this model are beneficial
and worth to adjust the basic design of the imaging system accordingly. To achieve the
aim of this thesis, three research goals had been identified. These read as follows:

R1) Develop a model for handling refractive effects in all concepts of stereo 3D recon-
struction.

R2) Develop approaches for the refractive calibration of a SFRSs.
R3) Relax or even eliminate the need to handle special calibration objects in underwater

environments during the refractive calibration of a SFRS .

These research goals have been addressed by four contributions:

C1) A Virtual Object Point (VOP) model was introduced, which enables the extension
of the concepts of stereo 3D reconstruction in air for underwater environments.

C2) Various approaches for the refractive calibration of a SFRS , which differ due to
their capabilities to work with or without the necessity of a special calibration
object, were proposed, analyzed and compared.

C3) The proposed approaches for the refractive calibration of a SFRS were designed so
that the determination of the refractive parameters is partly realizable by linear
optimization, which increases their efficiency.

C4) An approach for benchmark data generation for real test data was proposed, which
can be used to evaluate approaches for the refractive calibration of a SFRS .
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With these contributions, the research goals have been solved. In the following, with the
research goals as the starting point, the results of this thesis will summarized briefly.

R1. To solve the first research goal, a VOP model (C1) was developed, which enables
handling refractive effects properly. The introduced VOP model is based on simple
trigonometric rules and describes how to non-ambiguously relate VOPs to real object
points and vice versa in the case of two flat refractive interfaces. The various scopes of
application of the VOP model make it the cornerstone for the fulfillment of the research
goals.
The most important concepts of stereo 3D reconstruction are refractive projections for
coordinate transformations between 3D and 2D spaces. Within a refractive system, these
are refractive forward projection and refractive back-projection. Compared to projections
in air, both of them become more complex and computationally expensive operations,
especially the refractive forward projection. There is no approach to compute the refractive
forward projection of 3D points onto the image plane directly. The computational
intensity is especially inconvenient since both projections are basic operations on which
the concepts of stereo 3D reconstruction, such as refractive calibration and recovery of
3D coordinates, depend on. Since it is readily integrable within the image formation
models of monocular and binocular vision, the VOP model could be used to implement
four possibilities for coordinate transformations between 3D and 2D spaces, namely:

• a simplification of refractive forward projection by means of an iterative solution,
• a simplification of refractive back-projection by means of avoiding a full ray tracing,
• an alternative to refractive forward projection by definition and implementation of
a virtual camera model that enables conventional forward projection, and
• an alternative to refractive back-projection, which is based on the integration of
the VOP model into the model for a SFRS .

The integration of the VOP model into the underlying image formation models not only
benefits the computation of refractive projections, but also the computation of adapted
and novel cost functions, the definition of optimization problems and therefore, all aspects
of refractive calibrations. Besides refractive calibration, the VOP model enables the
necessary extensions of all the concepts of stereo 3D reconstruction in air for underwater
environments. Similarly to the pinhole camera model, epipolar geometry becomes invalid
under water and due to the 3D-dependence of refractive effects, epipolarlines are not
straight lines any more. In the context of dense stereo matching, the proposed approach for
the computation of correspondence curves represents a reduction of the search space and
is an alternative to epipolar geometry and rectification. However, it is computationally
expensive. Furthermore, two approaches have been proposed for the actual recovery
of 3D coordinates from pairs of corresponding image points in the left an right view of
the stereo camera. Due to its low computational effort, Virtual Intersection is suitable
during the proposed refractive calibration approaches. Since the Virtual Intersection
shows some shortcomings, Refractive Triangulation is better suited for recovering 3D
coordinates of a full scene.
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8.1 Summary

R2. To solve the second research goal, various approaches for the refractive calibration
of a SFRS (C2) were developed and analyzed in depth. Furthermore, to make the solution
to R2 efficient, the determination of the refractive parameters was partly realized by
linear optimization (C3). The following prerequisites have to be satisfied for the current
implementation:
• The imaging setup can be characterized by the model for a SFRS .
• There have to be two interfaces and the thickness of the glass layer is known.
• The refractive indices of the participating media (air, glass and water) are known.
• The stereo camera with constant intrinsic and extrinsic parameters is calibrated.

The requested refractive parameters are the air layer thickness and the orientation of the
system axis. An initialization of these parameters by approximate values is not necessary.
Compared to the related approaches from the literature, the developed ones are not
restricted as follows:
• The image plane does not need to be perpendicular to the interface normal.
• There is no need for known coordinates of feature points on a calibration object.
• The number of interfaces and layers is extendable as long as the additional layer
thicknesses and the refractive indices are known.

Two strategies for the determination of the refractive parameters of a SFRS have
been proposed in this thesis. They are characterized primarily by their capabilities to
determine the refractive parameters consecutively or simultaneously. Both strategies
have in common that the air layer thickness is optimized by solving a set of linear
equations. An optimization problem that can be solved linearly could not be found
for the determination of the orientation of the system axis. Nevertheless, within both
strategies, the system axis can be optimized iteratively by utilization of the proposed
cost functions.

R3. To solve the third research goal, the various approaches for the refractive calibration
of a SFRS (C2) were developed with different demands on the necessary calibration
objects. These different demands are reflected in the two aforementioned strategies.
Since the developed cost functions show a progressive independence from calibration
objects, both calibration strategies do so as well. The consecutive determination of the
refractive parameters needs a calibration object with its features arranged in straight
lines and utilizes pattern-based cost functions. Within this strategy, the system axis
determination is performed explicitly. The simultaneous strategy needs no calibration
object at all. It comprises an implicit system axis determination and utilizes the proposed
pattern-independent cost functions. Thereby, the restrictions due to the need of special
calibration objects have been eliminated and the cumbersome handling of calibration
objects under water can be avoided.

R2 & R3. Another contribution of this thesis (C4) has been the development of an
approach for benchmark data generation. Since its main purpose has been to support
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the evaluations with real test data, it addresses the research goals only indirectly. With
the aid of a calibration object that was fixed to a stereo camera in a solid construction, a
simple means for the evaluation of underwater stereo 3D reconstruction could be created.
The overall results of the extensive evaluations of the various approaches for the refractive
calibration of a SFRS on simulated and real test data is a suggested order of their
application, which reads:

1.) Virtual Intersection Error (VIE)
2.) Refractive Reprojection Error (RRE)
3.) Refractive Triangulation Error (RTE)
4.) Virtual Reprojection Error (VRE)

This has been determined based on the following findings:

• The implicit system axis determination (simultaneous strategy) performs better
than the explicit one (consecutive strategy) and simultaneously,
• the pattern-independent cost functions (without calibration object) perform better
than the pattern-based cost functions PAE and PFE (with calibration object).
• In the case of pattern-independent cost functions, the 3D scene cost functions RTE
and VIE and the 2D image cost functions RRE and VRE perform equally well.

An important finding had been that the orientation of the system axis of a SFRS can
be determined independently of the layer thicknesses of the refractive system. However,
the performed experiments have shown that the simultaneous determination works more
accurately. Since the four pattern-independent cost functions and therefore the four
possibilities for coordinate transformations between 3D and 2D spaces performed equally
well during the conducted experiments, the run-times of the single approaches were used
to determine the suggested order of application. Therefore, as was expected, the newly
defined cost function VIE has been the most computationally efficient.
Besides having been analyzed and compared amongst themselves, the proposed strategies
have been compared to alternative strategies from the literature. During the conducted
experiments with real test data, these four performed better than the adapted reimplemen-
tation of the chosen reference approach of Chen and Yang [CY14]. The major difference
between this thesis and the reference approach is the range of the developments. While
the authors of the reference approach concentrate on one aspect of refractive calibration,
namely the development of an optimization problem, the developments in this thesis are
more extensive, since they comprise all the aspects of refractive calibration and also the
remaining concepts of stereo 3D reconstruction.

Concluding Remarks. The final result of the developed approaches for underwater
stereo 3D reconstruction are 3D point clouds of the imaged scene with a metric scale,
which have been created by explicitly considering refractive effects in every computation
step. As has been shown throughout this thesis, the proposed VOP model integrates
very well in each of these steps and benefits all of them. Furthermore, the underlying
principles of the necessary computation steps can be reused frequently between refractive
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calibration, correspondence curve computation and recovery of 3D coordinates. The
integration of the VOP model can be considered as a unique feature, which distinguishes
the developments in this thesis from the related works in the literature.
From an application point of view, the developed approaches can be utilized within the
creation of accurate, metric 3D models of underwater objects. The entirety of such a
measurement campaign gets favored by the developed approaches due to avoiding the
cumbersome and time-consuming handling of a calibration object under water.

8.2 Future Works

A major assumption for the experiments with real test data has been that camera lens
distortion, which is independent of the imaged scene, and refractive distortion, which is
highly dependent on it, do not influence each other and hence are separable. Therefore,
camera lens distortion has been eliminated from the underwater images throughout the
conducted experiments immediately after calibration of the stereo parameters. Since no
significant anomalies occurred, no contradiction has been noticed. However, this topic
should be considered in a more in-depth analysis with real test data and with a variety
of different camera lenses.
Within the proposed approaches for underwater stereo 3D reconstruction, there is also
room for improvements. One example is the applied testing scheme for the refractive
calibration approaches with feature detection and feature description by SIFT [Low99]
and feature matching using the FLANN [ML09], which is a rather simple, repeatedly
performed random selection of a defined number of feature pairs. Although the utilized
combination delivered satisfactory results, any other combination of algorithms for
feature detection, description, matching and selection could have been used. Therefore,
faster feature detectors that SIFT would be a reasonable alternative to increase the
performance, as would be a more sophisticated selection approach. Other examples are the
computation of correspondence curves and the method for dense stereo matching. Since
one correspondence curve needs to be computed per image point, the proposed approach
is already computationally expensive. This is due to the refractive forward projection
that needs to be performed repeatedly in an interval that is defined by a sampling step
width. Although the computational expense of the refractive forward projection has been
relaxed in this thesis, the uniform step width becomes a problem. The depth resolution of
a stereo system decreases with an increasing object distance. Therefore, on the one hand,
when object point are further away, uniform sampling can lead to a mapping of multiple
object points to the same pixel on the correspondence curve and on the other hand, when
object points are close, it can lead to pixels on the correspondence curve that are skipped,
which in turn requires interpolations. Therefore, a non-uniform sampling or a sampling
that starts in the pixel space of the resulting correspondence curves could be beneficial.
The method of choice for dense stereo matching has been block matching with the SAD.
Within the implemented approach, common problems of stereo matching, such as outlier
removal or occlusions, were ignored. Although these first experiments on underwater
stereo 3D reconstruction delivered plausible results, correspondence curve computation

161



8 Conclusion

and stereo matching leave the most room for improvements. Besides this, the conducted
qualitative evaluation should be accompanied by a quantitative evaluation.
As described at the beginning of this thesis, there are various computer vision techniques
for 3D reconstruction. In this thesis, it has been shown how to integrate the proposed
VOP model into the concepts of stereo 3D reconstruction. Thereby, the necessary
extensions for the prevailing conditions of underwater imaging have been realized. Future
works could comprise the analysis of its integrability into further techniques for 3D
reconstruction. These could be passive methods, such as underwater SFM , or active
methods, such as underwater structured light, which replace the second camera with a
laser or a projector.
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A Number of Features

Accuracy Improvement versus Run-Time. In this thesis, three distinct setups
were analyzed with regard to a joint number of feature points, which offers a reasonable
compromise between run-time and accuracy improvement of the approaches for the
refractive calibration of a SFRS . Another aspect was that the determined number of
feature points should match a feasible number of feature points to be utilized during
the experiments with real data. Therefore, both of the proposed calibration strategies
in combination with the six cost functions were executed for the determination of the
number of feature points. The refractive parameters were determined repeatedly. One
stereo image pair with format-filling feature points was generated in every repetition. 100
repetitions were performed for every tested number of feature points. Each repetition
included randomly generated Gaussian noise that was added to the feature points. The
noise level had a standard deviation of σ = 0.5. The 3D point cloud, which was used
to generate the image feature points, was slightly rotated randomly in every repetition.
By doubling the number of tested points, a range from 50 to 1600 feature points was
covered. This amounted to a time-consuming process.
The following two criteria were utilized for the determination of the number of feature
points:

• Angle Error: The difference between the true system axis and the calibrated system
axis in degrees. The angle was measured between the normalized direction vectors
of both axes.

• Air Layer Thickness Error: The difference between the true air layer thickness and
the calibrated air layer thickness in centimeters.

For each of the six cost functions, an error curve was produced for both criteria. Each
visualization contains a mapping of the respective error values with regard to the
conducted mean run-time of the respective algorithm. These visualizations can be seen
in Figures A.1, A.2, A.3, A.4, A.5 and A.6. None of them shows a linear relationship
between accuracy improvement and run-time. The doubling of the amount of feature
points does not imply a doubling of the accuracy improvement. As can be seen, the
largest accuracy improvements happen during the early steps between 50 and 400 feature
points. Afterward, the curve progression becomes significantly flatter in most cases.
Regarding the run-times, the doubling of the amount of feature points implies roughly a
doubling of the run-times. Therefore, and since it was a goal to find a compromise that
keeps the necessary time for performed evaluations in this thesis within days and not
weeks, the chosen number of features was 400.

165



Appendices

run-time a error alt error run-time a error alt error run-time a error alt error

50 0 0.91 0.18 0 1.42 0.31 0 1.28 0.29

100 1 0.68 0.08 1 0.99 0.21 1 1.89 0.48

200 2 0.47 0.06 2 0.92 0.15 2 1.08 0.26

400 6 0.44 0.06 7 0.63 0.11 8 0.95 0.22

800 20 0.37 0.06 26 0.66 0.08 28 0.62 0.12

1600 63 0.20 0.03 74 0.51 0.07 86 0.53 0.10
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Figure A.1: PAE : Accuracy improvement versus run-time.run-time a error alt error run-time a error alt error run-time a error alt error

50 0 1.08 0.19 0 1.67 0.33 0 1.59 0.34

100 1 0.87 0.11 1 0.92 0.20 1 1.07 0.23

200 2 0.57 0.08 2 0.73 0.09 2 0.86 0.19

400 6 0.42 0.06 6 0.56 0.08 7 0.85 0.15

800 17 0.37 0.05 20 0.43 0.07 21 0.60 0.12

1600 54 0.26 0.04 63 0.37 0.06 70 0.36 0.07
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Figure A.2: PFE : Accuracy improvement versus run-time.run-time a error alt error run-time a error alt error run-time a error alt error

50 2 0.09 0.07 2 0.17 0.13 2 0.17 0.11

100 4 0.07 0.05 4 0.12 0.07 4 0.15 0.10

200 9 0.05 0.04 8 0.08 0.06 8 0.11 0.08

400 16 0.04 0.03 16 0.06 0.04 15 0.08 0.06

800 48 0.03 0.02 39 0.04 0.03 45 0.05 0.04

1600 65 0.02 0.02 60 0.03 0.02 59 0.04 0.03
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Figure A.3: RTE : Accuracy improvement versus run-time.
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Number of Features

run-time a error alt error run-time a error alt error run-time a error alt error

50 1 0.12 0.08 1 0.17 0.11 1 0.21 0.12

100 2 0.07 0.06 2 0.10 0.08 1 0.14 0.10

200 3 0.06 0.05 3 0.09 0.06 3 0.11 0.07

400 6 0.05 0.03 6 0.07 0.04 6 0.11 0.06

800 14 0.04 0.02 14 0.06 0.03 15 0.08 0.04

1600 22 0.03 0.02 22 0.04 0.02 22 0.06 0.03
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Figure A.4: VIE : Accuracy improvement versus run-time.run-time a error alt error run-time a error alt error run-time a error alt error

50 1 0.11 0.07 1 0.16 0.12 1 0.21 0.12

100 2 0.08 0.05 2 0.12 0.07 2 0.17 0.11

200 4 0.06 0.04 4 0.09 0.07 4 0.12 0.09

400 7 0.05 0.03 7 0.07 0.04 7 0.09 0.05

800 17 0.04 0.02 18 0.06 0.04 19 0.07 0.04

1600 29 0.02 0.02 28 0.04 0.02 28 0.05 0.03
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Figure A.5: RRE : Accuracy improvement versus run-time.run-time a error alt error run-time a error alt error run-time a error alt error

50 6 0.11 0.08 6 0.18 0.12 5 0.22 0.11

100 12 0.08 0.05 11 0.16 0.08 10 0.21 0.10

200 22 0.05 0.04 21 0.09 0.07 20 0.11 0.07

400 43 0.04 0.03 41 0.09 0.05 39 0.09 0.06

800 90 0.03 0.02 82 0.12 0.03 80 0.06 0.04

1600 171 0.03 0.02 157 0.06 0.02 153 0.04 0.03
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Figure A.6: VRE : Accuracy improvement versus run-time.
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B Simulated Test Data Stage 1 -
Supplementary Setups

The conducted experiments in Simulated Test Data Stage 1 in Section 7.1.1 have been
comprising six distinct setups, which were chosen according to the subsequent experiments
with real data. These setups have been characterized by simulated 3D point clouds of a
checker pattern at a distance of about 25cm to the water-sided interface. This section
will cover a brief analysis of some further setups. In contrast to the previous setups,
these do not show symmetric properties. The main purpose of this evaluation is to show
the validity of the proposed approaches in the case of simulated 3D point clouds of a
checker pattern at distances significantly greater than 25cm.

Setups. Three setups were generated for a constant air layer thickness, which amounted
to ta = d(C,S1) = 5cm (Compare with Figure 7.1). To form a maximally overlapping
field of view at the location of the 3D point cloud, cameras with converging principal
axes p and p′ were necessary. By definition of φ′ = −φ and θ′ = θ, the basic setup for
the conducted experiments was generated with φ = −3.5◦ and θ = 0◦. To avoid perfect
symmetry, random offsets up to one degree were added to the values of φ′, θ′ and θ in
each iteration. As before, the noise levels ranged from a standard deviation of σ = 0
to σ = 1, with a step width of 0.2 and the same evaluation criteria were utilized. The
evaluation was realized in 100 iterations per noise level, each with randomly generated
Gaussian noise and a slight, random rotation of the underlying 3D point cloud. To
evaluate the proposed approaches, the distance d to the simulated 3D point cloud of the
checker pattern and the stereo baseline b were varied. The variations read as follows:
• 1. Setup: d = 100cm, b = 10cm,
• 2. Setup: d = 200cm, b = 20cm,
• 3. Setup. d = 500cm, b = 50cm.

Findings. The error values almost equal to zero in all three categories at noise level
σ = 0 in Figure B.1 show that all of the proposed cost functions continue to be valid
and that the approaches were working correctly. However, the PFE failed at noise levels
greater than σ = 0.2, which makes it the most error-prone. Apart from the PFE , the
remaining cost functions showed a similar behavior. The values of the air layer thickness
error and of the 3D error increased constantly with increasing noise and increasing
distances of the 3D point cloud. The values of the angle error, however, only increased
constantly with increasing noise and vary with increasing distances. Thus, the air layer
thickness error seemes to be more decisive for the overall 3D error.
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Figure B.1: Analysis of the inaccuracies of refractive calibration with PAE , PFE , RTE , VIE ,
RRE and VRE for supplementary setups.

The PAE was more stable than the PAE , but the error values were significantly higher
than the ones of the pattern-independent cost functions RTE , VIE , RRE and VRE . All
four pattern-independent cost functions showed similar values for their air layer thickness
and 3D error. An outcome of this brief analysis is that refractive calibration is preferably
performed with image features of close objects. The resulting refractive parameters can
in turn be used for the recovery of 3D coordinates of distant objects. This approach is
supposed to reduce the 3D error and there is no principled reason against it. However, a
well-founded evaluation has not been conducted in this thesis.
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C Effects of Inaccurate Refractive
Indices

All of the described underwater imaging systems are characterized by a transition of the
light rays through media with differing refractive indices. In general, this is a water-glass-
air transition, of which the refractive index of the protective glass medium is generally
known from the manufacturer. As has been concluded in Section 3.3.2, the best reason
to omit the determination of the refractive indices of air and water during refractive
calibration is that they are commonly known. Nevertheless, according to Mobley [Mob94],
the index of refraction of water changes about 2% in the whole relevant range of water
bodies. Therefore, the commonly presumed refractive index of water, with a value of
1.33, can be inaccurate. The changes depend on the optical wavelength as well as water
temperature, salinity and depth. Significant changes are most likely to occur between
locally separate water bodies, but may also happen rapidly in a single water body on a
thermocline. A device for the measurement of the refractive index is the refractometer.
It can provide reliable values for water bodies with constant properties and presumed
values for water bodies where changes may occur.
This section will comprise a simulation of the effects of inaccurate values of the presumed
refractive index of water. Therefore, the same evaluation criteria as in Simulated Test
Data Stage 1 in Section 7.1.1 were utilized. The simulations were performed for nine
distinct setups. These were the six from Section 7.1.1 and the three from Appendix B. As
before, the parametrization comprised the angles {φ, θ}, which represent the orientation
of the system axis s0 with respect to the master camera, the air layer thickness ta and the
distance d to the simulated point cloud. Within the simulations, the presumed refractive
index of water amounted in each case to 1.33 and the true value ranged from 1.32 to
1.34. The results can be seen in Figures C.1, C.2, C.3, C.4, C.5, C.6, C.7, C.8 and C.9.

Findings. In terms of the accuracy of the recovered 3D point clouds, the results of the
simulations showed that all of the proposed approaches for the refractive calibration of a
SFRS and the reference approach behaved very similar. An outcome of this brief analysis
is that refractive calibration is preferably performed with image features of close objects,
if the presumed refractive index of water can be expected to be very inaccurate. The
resulting refractive parameters can in turn be used for the recovery of 3D coordinates of
distant objects. As in Appendix B, this approach is supposed to reduce the 3D error and
there is no principled reason against it. However, a well-founded evaluation has not been
conducted in this thesis.
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Figure C.1: Angle error for a setup with φ = −10◦, θ = 0◦, d = 25cm and varying air layer
thickness ta. Left: ta = 5cm. Middle: ta = 15cm. Right: ta = 25cm.
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Figure C.2: Angle error for a setup with φ = −10◦, θ = −20◦, d = 25cm and varying air layer
thickness ta. Left: ta = 5cm. Middle: ta = 15cm. Right: ta = 25cm.
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Figure C.3: Angle error for a setup with φ = −10◦, θ = −20◦, ta = 5cm and varying distance
to the simulated point cloud d. Left: d = 100cm. Middle: d = 200cm. Right:
d = 500cm.

Angle Error. With regard to this evaluation criterion, the results showed the greatest
variability. However, the error values were very small overall (See Figures C.1, C.2, C.3).
They only showed significant effects of the varying refractive index in the case of the
strongly tilted setups in Figure C.2. In contrast to the others, the PAE and the PFE
are a part of the consecutive strategy for the determination of the refractive parameters.
The difference of the strategies is reflected in the diagrams. This can be most clearly
seen in Figure C.2, since the PAE and the PFE seemingly got affected the least. Apart
from the PAE and the PFE , the diagrams indicate a symmetric curve characteristic.
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Figure C.4: Air layer thickness error for a setup with φ = −10◦, θ = 0◦, d = 25cm and varying
air layer thickness ta. Left: ta = 5cm. Middle: ta = 15cm. Right: ta = 25cm.
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Figure C.5: Air layer thickness error for a setup with φ = −10◦, θ = −20◦, d = 25cm and varying
air layer thickness ta. Left: ta = 5cm. Middle: ta = 15cm. Right: ta = 25cm.
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Figure C.6: Air layer thickness error for a setup with φ = −10◦, θ = −20◦, ta = 5cm and varying
distance to the simulated point cloud d. Left: d = 100cm. Middle: d = 200cm.
Right: d = 500cm.

Air Layer Thickness Error. With regard to this evaluation criterion, the results
showed very little variances. In all the diagrams (See Figures C.4, C.5, C.6), a symmetric
curve characteristic becomes apparent, as was expected. With an increasing distance
to the simulated point cloud d, the error values became significant. This indicates that
refractive calibration should be preventively performed with image features of close
objects, if the presumed refractive index of water can be expected to be very inaccurate.
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Figure C.7: 3D error for a setup with φ = −10◦, θ = 0◦, d = 25cm and varying air layer
thickness ta. Left: ta = 5cm. Middle: ta = 15cm. Right: ta = 25cm.
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Figure C.8: 3D error for a setup with φ = −10◦, θ = −20◦, d = 25cm and varying air layer
thickness ta. Left: ta = 5cm. Middle: ta = 15cm. Right: ta = 25cm.
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Figure C.9: 3D error for a setup with φ = −10◦, θ = −20◦, ta = 5cm and varying distance to the
simulated point cloud d. Left: d = 100cm. Middle: d = 200cm. Right: d = 500cm.

3D Error. With regard to this evaluation criterion, the results showed very little
variances as well. In all the diagrams (See Figures C.7, C.8, C.9), a symmetric curve
characteristic becomes apparent, as was expected. As a consequence of the lower angle
errors of the PAE and the PFE in the case of the strongly tilted setups in Figure C.2,
the diagrams in Figure C.8 show the same trend. The results of the simulations support
that refractive calibration should be preventively performed with image features of close
objects, if the presumed refractive index of water can be expected to be very inaccurate.

174



D Simulated Test Data Stage 2 -
Supplementary Setups

For the sake of completeness and in accordance with the supplementary setups for
Simulated Test Data Stage 1 in Appendix B, supplementary setups for Simulated Test
Data Stage 2 will be analyzed briefly in this section. Therefore, rendered image data,
which was generated with Blender, was used. In accordance with appendix B, three
setups were generated for a constant air layer thickness, which amounted to ta = 5cm.
To form a maximally overlapping field of view at the location of the 3D point cloud,
cameras with converging principal axes p and p′ were necessary. By definition of φ′ = −φ
and θ′ = θ, the basic setup for the conducted experiments was generated with φ = −3.5◦

and θ = 0◦. To evaluate the proposed approaches, the distance d to the simulated 3D
point cloud of the checker pattern and the stereo baseline b were varied. The results can
be seen in Tables D.1, D.2 and D.3.

175



Appendices

E
R

R
O

R
M

E
A

SU
R

E
E

ST
P

A
E

P
F

E
R

T
E

V
IE

R
R

E
V

R
E

C
Y

D
IS

A
B

S

reprojection
le

f
t(p

ix
e

l)
0

.018
0

.019
0

.050
0

.018
0

.019
0

.018
0

.018
0

.018
0

.827
0

.216
r

ig
h

t(p
ix

e
l)

0
.018

0
.019

0
.050

0
.018

0
.019

0
.019

0
.018

0
.018

0
.841

0
.218

3D
x

(c
m

)
0

.018
0

.035
0

.302
0

.033
0

.026
0

.028
0

.033
0

.022
1

.656
2

.204
y(c

m
)

0
.012

0
.016

0
.044

0
.012

0
.014

0
.014

0
.012

0
.013

0
.439

0
.175

z(c
m

)
0

.078
0

.098
0

.446
0

.093
0

.087
0

.088
0

.093
0

.091
29

.598
1

.498
3

D
(c

m
)

0
.083

0
.111

0
.583

0
.104

0
.096

0
.098

0
.104

0
.097

29
.663

2
.837

length
h

o
r

iz
o

n
ta

l(c
m

)
0

.025
0

.040
0

.193
0

.037
0

.033
0

.034
0

.037
0

.008
5

.759
1

.193
m

easurem
ent

h
o

r
iz

o
n

ta
l(%

)
0

.034
0

.056
0

.268
0

.052
0

.046
0

.048
0

.052
0

.011
7

.999
1

.657
v

e
r

tic
a

l(c
m

)
0

.014
0

.020
0

.074
0

.019
0

.017
0

.018
0

.019
0

.010
1

.594
0

.976
v

e
r

tic
a

l(%
)

0
.028

0
.038

0
.142

0
.036

0
.033

0
.034

0
.036

0
.020

3
.065

1
.878

d
ia

g
o

n
a

l(c
m

)
0

.040
0

.059
0

.238
0

.055
0

.050
0

.052
0

.055
0

.018
7

.067
2

.544
d

ia
g

o
n

a
l(%

)
0

.046
0

.066
0

.268
0

.062
0

.057
0

.058
0

.062
0

.021
7

.957
2

.864

plane
fitting

(c
m

)
0

.044
0

.046
0

.066
0

.045
0

.045
0

.045
0

.045
0

.044
2

.748
0

.705

T
able

D
.1:

Error
analysis

ofthe
recovered

3D
point

cloud
from

sim
ulated

im
age

data
ofa

setup
w
ith

d
=

100cm
,
b

=
10
cm

.

E
R

R
O

R
M

E
A

SU
R

E
E

ST
P

A
E

P
F

E
R

T
E

V
IE

R
R

E
V

R
E

C
Y

D
IS

A
B

S

reprojection
le

f
t(p

ix
e

l)
0

.021
0

.021
0

.033
0

.021
0

.021
0

.022
0

.021
0

.023
0

.700
0

.197
r

ig
h

t(p
ix

e
l)

0
.021

0
.021

0
.033

0
.021

0
.021

0
.022

0
.021

0
.022

0
.700

0
.197

3D
x

(c
m

)
0

.032
0

.090
0

.308
0

.087
0

.049
0

.108
0

.087
0

.122
3

.517
4

.786
y(c

m
)

0
.026

0
.036

0
.118

0
.035

0
.035

0
.052

0
.035

0
.042

0
.630

0
.242

z(c
m

)
0

.190
0

.181
0

.566
0

.181
0

.201
0

.177
0

.181
0

.206
57

.094
2

.940
3

D
(c

m
)

0
.197

0
.217

0
.706

0
.215

0
.217

0
.229

0
.215

0
.261

57
.235

5
.798

length
h

o
r

iz
o

n
ta

l(c
m

)
0

.049
0

.063
0

.120
0

.063
0

.069
0

.059
0

.063
0

.036
8

.327
1

.223
m

easurem
ent

h
o

r
iz

o
n

ta
l(%

)
0

.039
0

.050
0

.095
0

.050
0

.055
0

.047
0

.050
0

.028
6

.608
0

.971
v

e
r

tic
a

l(c
m

)
0

.008
0

.012
0

.028
0

.012
0

.014
0

.011
0

.012
0

.005
2

.274
1

.218
v

e
r

tic
a

l(%
)

0
.009

0
.013

0
.030

0
.013

0
.015

0
.012

0
.013

0
.005

2
.499

1
.338

d
ia

g
o

n
a

l(c
m

)
0

.009
0

.027
0

.098
0

.027
0

.035
0

.022
0

.027
0

.008
10

.343
3

.242
d

ia
g

o
n

a
l(%

)
0

.006
0

.017
0

.063
0

.018
0

.023
0

.014
0

.018
0

.005
6

.655
2

.086

plane
fitting

(c
m

)
0

.092
0

.091
0

.097
0

.091
0

.091
0

.091
0

.091
0

.093
4

.534
1

.045

T
able

D
.2:

Error
analysis

ofthe
recovered

3D
point

cloud
from

sim
ulated

im
age

data
ofa

setup
w
ith

d
=

200cm
,
b

=
20
cm

.

176



Simulated Test Data Stage 2 - Supplementary Setups

E
R

R
O

R
M

E
A

SU
R

E
E

ST
P

A
E

P
F

E
R

T
E

V
IE

R
R

E
V

R
E

C
Y

D
IS

A
B

S

re
pr

oj
ec

ti
on

le
f

t(
p

ix
e

l)
0.

02
0

0.
02

2
0.

47
0

0.
02

0
0.

02
0

0.
02

0
0.

02
0

0.
02

0
0.

85
3

0.
21

0
r

ig
h

t(
p

ix
e

l)
0.

02
0

0.
02

2
0.

61
8

0.
02

0
0.

02
0

0.
02

0
0.

02
0

0.
02

0
0.

83
9

0.
20

9

3D
x

(c
m

)
0.

08
5

0.
38

7
1.

86
4

0.
12

4
0.

09
2

0.
13

8
0.

12
3

0.
17

4
10

.9
57

12
.0

19
y

(c
m

)
0.

05
2

0.
12

1
0.

18
5

0.
05

6
0.

05
2

0.
05

8
0.

05
6

0.
05

9
1.

91
6

0.
57

7
z

(c
m

)
0.

38
5

1.
29

6
4.

72
6

0.
67

6
0.

59
0

0.
69

8
0.

67
2

0.
75

9
14

4.
44

9
12

.6
71

3D
(c

m
)

0.
40

6
1.

37
3

5.
12

6
0.

70
4

0.
61

0
0.

72
9

0.
69

9
0.

79
6

14
4.

99
7

17
.6

78

le
ng

th
h

o
r

iz
o

n
ta

l(
c
m

)
0.

04
0

0.
13

6
0.

55
1

0.
06

2
0.

04
9

0.
06

4
0.

06
1

0.
06

9
25

.0
34

3.
60

7
m

ea
su

re
m

en
t

h
o

r
iz

o
n

ta
l(

%
)

0.
01

2
0.

04
2

0.
17

0
0.

01
9

0.
01

5
0.

02
0

0.
01

9
0.

02
1

7.
72

7
1.

11
3

v
e

r
ti

c
a

l(
c
m

)
0.

04
1

0.
00

7
0.

05
0

0.
01

5
0.

01
6

0.
01

5
0.

01
5

0.
01

6
7.

10
5

3.
31

7
v

e
r

ti
c
a

l(
%

)
0.

01
7

0.
00

3
0.

02
1

0.
00

6
0.

00
7

0.
00

6
0.

00
6

0.
00

7
3.

03
6

1.
41

8
d

ia
g

o
n

a
l(

c
m

)
0.

54
2

0.
30

6
0.

27
0

0.
41

1
0.

42
9

0.
40

8
0.

41
2

0.
40

0
31

.4
49

9.
37

6
d

ia
g

o
n

a
l(

%
)

0.
13

6
0.

07
7

0.
06

8
0.

10
3

0.
10

7
0.

10
2

0.
10

3
0.

10
0

7.
86

9
2.

34
6

pl
an

e
fi

tt
in

g
(c

m
)

0.
19

6
0.

24
4

0.
63

6
0.

20
4

0.
20

0
0.

20
5

0.
20

3
0.

20
8

12
.6

32
2.

88
3

T
ab

le
D
.3
:
Er

ro
r
an

al
ys
is

of
th
e
re
co
ve
re
d
3D

po
in
t
cl
ou

d
fr
om

sim
ul
at
ed

im
ag

e
da

ta
of

a
se
tu
p
w
ith

d
=

50
0c
m
,b

=
50
cm

.

177





Bibliography

[Abd71] Y. I. Abdel-Aziz. „Direct linear transformation from comparator coordinates
in close-range photogrammetry“. In: American Society of Photogrammetry
Symposium on Close-Range Photogrammetry. Falls Church (VA)., 1971.
1971, pp. 1–19.

[AG15] P. Agrafiotis and A. Georgopoulos. „Camera Constant in the Case of Two
Media Photogrammetry“. In: The International Archives of the Photogram-
metry, Remote Sensing and Spatial Information Sciences 40.5 (2015), p. 1.

[Agr+12] A. K. Agrawal, S. Ramalingam, Y. Taguchi, and V. Chari. „A theory
of multi-layer flat refractive geometry“. In: 2012 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2012, pp. 3346–3353.
doi: 10.1109/CVPR.2012.6248073.

[Bea+11] C. Beall, F. Dellaert, I. Mahon, and S. B. Williams. „Bundle adjustment in
large-scale 3D reconstructions based on underwater robotic surveys“. English.
In: OCEANS, 2011 IEEE - Spain. 2011, pp. 1–6. isbn: 978-1-4577-0086-6.
doi: 10.1109/Oceans-Spain.2011.6003631.

[Bel13] J. Belden. „Calibration of multi-camera systems with refractive interfaces“.
en. In: Experiments in Fluids 54.2 (2013), pp. 1–18. issn: 0723-4864, 1432-
1114. doi: 10.1007/s00348-013-1463-0.

[BKN15] C. Bräuer-Burchardt, P. Kühmstedt, and G. Notni. „Combination of air-and
water-calibration for a fringe projection based underwater 3D-scanner“. In:
Computer Analysis of Images and Patterns. 2015, pp. 49–60. doi: 10.1007/
978-3-319-23117-4_5.

[BLJ84] A. A. Bartlett, R. Lucero, and G. O. Johnson. „Note on a common virtual
image“. In: American Journal of Physics 52.7 (1984), pp. 640–643.

[Bos+15a] J. Bosch, N. Gracias, P. Ridao, and D. Ribas. „Omnidirectional Underwater
Camera Design and Calibration“. In: Sensors (Basel, Switzerland) 15.3
(2015), pp. 6033–6065. issn: 1424-8220. doi: 10.3390/s150306033.

[Bos+15b] J. Bosch, P. Ridao, D. Ribas, and N. Gracias. „Creating 360◦ Underwater
Virtual Tours Using an Omnidirectional Camera Integrated in an AUV“.
In: OCEANS 2015 - Genova. 2015, pp. 1–7. doi: 10.1109/OCEANS-Genova.
2015.7271525.

[Bou08] J. Y. Bouguet. Camera Calibration Toolbox for Matlab. 2008. url: http:
//www.vision.caltech.edu/bouguetj/calib_doc/..

179

http://dx.doi.org/10.1109/CVPR.2012.6248073
http://dx.doi.org/10.1109/Oceans-Spain.2011.6003631
http://dx.doi.org/10.1007/s00348-013-1463-0
http://dx.doi.org/10.1007/978-3-319-23117-4_5
http://dx.doi.org/10.1007/978-3-319-23117-4_5
http://dx.doi.org/10.3390/s150306033
http://dx.doi.org/10.1109/OCEANS-Genova.2015.7271525
http://dx.doi.org/10.1109/OCEANS-Genova.2015.7271525
http://www.vision.caltech.edu/bouguetj/calib_doc/.
http://www.vision.caltech.edu/bouguetj/calib_doc/.


Bibliography

[Bra+07] V. Brandou, A. G. Allais, M. Perrier, E. Malis, P. Rives, J. Sarrazin, and
P. M. Sarradin. „3D Reconstruction of Natural Underwater Scenes Using
the Stereovision System IRIS“. English. In: OCEANS 2007 - Europe. 2007,
pp. 1–6. isbn: 978-1-4244-0635-7. doi: 10.1109/OCEANSE.2007.4302315.

[Brä+15a] C. Bräuer-Burchardt, M. Heinze, I. Schmidt, P. Kühmstedt, and G. Notni.
„Compact Handheld Fringe Projection Based Underwater 3D-SCANNER“.
In: ISPRS-International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences 1 (2015), pp. 33–39.

[Brä+15b] C. Bräuer-Burchardt, M. Heinze, I. Schmidt, P. Kühmstedt, and G. Notni.
„Underwater 3D Surface Measurement Using Fringe Projection Based Scan-
ning Devices“. In: Sensors 16.1 (2015), p. 13. doi: 10.3390/s16010013.

[Bra00] G. Bradski. „The OpenCV Library“. In: Dr. Dobb’s Journal of Software
Tools (2000).

[BS79] I. N. Bronstein and K. A. Semendjajew. Taschenbuch der Mathematik.
Ed. by G. Grosche and V. Ziegler. BSB B. G. Teubner Verlagsgesellschaft,
Nauka-Verlag, 1979. isbn: 3871444928.

[BSH15] N. Boutros, M. R. Shortis, and E. S. Harvey. „A comparison of calibration
methods and system configurations of underwater stereo-video systems for
applications in marine ecology“. English. In: Limnology and Oceanography:
Methods 13.5 (2015), pp. 224–236. issn: 1541-5856. doi: 10.1002/lom3.
10020.

[Car+03] M. Carreras, P. Ridao, R. Garcia, and T. Nicosevici. „Vision-based local-
ization of an underwater robot in a structured environment“. In: IEEE
International Conference on Robotics and Automation, 2003. Proceedings.
ICRA ’03. Vol. 1. 2003, pp. 971–976. doi: 10.1109/ROBOT.2003.1241718.

[CC11] Y.-J. Chang and T. Chen. „Multi-View 3D Reconstruction for Scenes under
the Refractive Plane with Known Vertical Direction“. In: ICCV’11. 2011,
pp. 351–358. doi: 10.1109/ICCV.2011.6126262.

[Che+11] Z. Chen, K.-Y. K. Wong, Y. Matsushita, X. Zhu, and M. Liu. „Self-
Calibrating Depth from Refraction“. In: 2011 IEEE International Con-
ference on Computer Vision (ICCV). 2011, pp. 635–642. doi: 10.1109/
ICCV.2011.6126298.

[Che+12] Z. Chen, K.-Y. K. Wong, Y. Matsushita, and X. Zhu. „Depth from Refraction
Using a Transparent Medium with Unknown Pose and Refractive Index“.
en. In: International Journal of Computer Vision 102.1-3 (2012), pp. 3–17.
issn: 0920-5691, 1573-1405. doi: 10.1007/s11263-012-0590-z.

[CS09] V. Chari and P. Sturm. „Multi-View Geometry of the Refractive Plane“. In:
Proceedings of the British Machine Vision Conference. 2009, pp. 56.1–56.11.
isbn: 1-901725-39-1. doi: 10.5244/C.23.56.

180

http://dx.doi.org/10.1109/OCEANSE.2007.4302315
http://dx.doi.org/10.3390/s16010013
http://dx.doi.org/10.1002/lom3.10020
http://dx.doi.org/10.1002/lom3.10020
http://dx.doi.org/10.1109/ROBOT.2003.1241718
http://dx.doi.org/10.1109/ICCV.2011.6126262
http://dx.doi.org/10.1109/ICCV.2011.6126298
http://dx.doi.org/10.1109/ICCV.2011.6126298
http://dx.doi.org/10.1007/s11263-012-0590-z
http://dx.doi.org/10.5244/C.23.56


Bibliography

[CY14] X. Chen and Y.-H. Yang. „Two-View Camera Housing Parameters Calibra-
tion for Multi-layer Flat Refractive Interface“. In: 2014 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). 2014, pp. 524–531.
doi: 10.1109/CVPR.2014.74.

[CY17] X. Chen and Y.-H. Yang. „A Closed-Form Solution to Single Underwater
Camera Calibration Using Triple Wavelength Dispersion and Its Application
to Single Camera 3D Reconstruction“. In: IEEE Transactions on Image
Processing 26.9 (Sept. 2017), pp. 4553–4561. issn: 1057-7149. doi: 10.1109/
TIP.2017.2716194.

[DG16] A. Duda and C. Gaudig. „Refractive forward projection for underwater flat
port cameras“. In: 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). Oct. 2016, pp. 2022–2027. doi: 10.1109/IROS.
2016.7759318.

[FCS05] R. Ferreira, J. P. Costeira, and J. A. Santos. „Stereo Reconstruction of a
Submerged Scene“. English. In: Pattern Recognition and Image Analysis.
Ed. by Jorge S. Marques, Nicolás Pérez de la Blanca, and Pedro Pina.
Vol. 3522. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2005, pp. 102–109. isbn: 978-3-540-26153-7. doi: 10.1007/11492429_13.

[FF86] J. G. Fryer and C. S. Fraser. „On the Calibration of Underwater Cameras“.
en. In: The Photogrammetric Record 12.67 (1986), pp. 73–85. issn: 1477-
9730. doi: 10.1111/j.1477-9730.1986.tb00539.x.

[FM11] P. Figueiredo and L. Machado. „Reconstruction Error of Calibration Vol-
ume’s Coordinates for 3D Swimming Kinematics“. In: Journal of Human
Kinetics 29 (2011), pp. 35–40. issn: 1640-5544. doi: 10.2478/v10078-011-
0037-6.

[GGY11] J. Gedge, M. Gong, and Y.-H. Yang. „Refractive Epipolar Geometry for
Underwater Stereo Matching“. English. In: 2011 Canadian Conference on
Computer and Robot Vision (CRV). 2011, pp. 146–152. isbn: 978-1-61284-
430-5. doi: 10.1109/CRV.2011.26.

[Gla95] A. S. Glassner. Principles of Digital Image Synthesis. English. Morgan
Kaufmann, 1995. isbn: 978-0-08-051475-8.

[GN05] M. D. Grossberg and S. K. Nayar. „The Raxel Imaging Model and Ray-
Based Calibration“. In: International Journal of Computer Vision 61.2
(2005), pp. 119–137. issn: 0920-5691. doi: 10.1023/B:VISI.0000043754.
56350.10.

[Gra80] S. I. Granshaw. „Bundle adjustment methods in engineering photogram-
metry“. In: The Photogrammetric Record 10.56 (1980), pp. 181–207. doi:
10.1111/j.1477-9730.1980.tb00020.x.

[GS00] G. Glaeser and H.-P. Schröcker. „Reflections on Refractions“. In: Journal
for Geometry and Graphics Vol. 4.No. 1 (2000), pp. 1–18.

181

http://dx.doi.org/10.1109/CVPR.2014.74
http://dx.doi.org/10.1109/TIP.2017.2716194
http://dx.doi.org/10.1109/TIP.2017.2716194
http://dx.doi.org/10.1109/IROS.2016.7759318
http://dx.doi.org/10.1109/IROS.2016.7759318
http://dx.doi.org/10.1007/11492429_13
http://dx.doi.org/10.1111/j.1477-9730.1986.tb00539.x
http://dx.doi.org/10.2478/v10078-011-0037-6
http://dx.doi.org/10.2478/v10078-011-0037-6
http://dx.doi.org/10.1109/CRV.2011.26
http://dx.doi.org/10.1023/B:VISI.0000043754.56350.10
http://dx.doi.org/10.1023/B:VISI.0000043754.56350.10
http://dx.doi.org/10.1111/j.1477-9730.1980.tb00020.x


Bibliography

[Han+15] S. Haner, L. Svärm, E. Ask, and A. Heyden. „Joint Under and Over Water
Calibration of a Swimmer Tracking System“. eng. In: Proceedings of the 4th
International Conference on Pattern Recognition Applications and Methods
(ICPRAM 2015). 2015, pp. 142–149. doi: 10.5220/0005183701420149.

[Hat88] H. Hatze. „High-precision three-dimensional photogrammetric calibration
and object space reconstruction using a modified DLT-approach“. In: Journal
of biomechanics 21.7 (1988), pp. 533–538. doi: 10.1016/0021-9290(88)
90216-3.

[Hen+15] S. Henrion, C. W. Spoor, R. P. M. Pieters, U. K. Müller, and J. L. van
Leeuwen. „Refraction corrected calibration for aquatic locomotion research:
application of Snell’s law improves spatial accuracy“. en. In: Bioinspiration
& Biomimetics 10.4 (2015), p. 046009. issn: 1748-3190. doi: 10.1088/1748-
3190/10/4/046009.

[HL14] L. Huang and Y. Liu. „Camera Calibration for Plate Refractive Imaging
System“. In: 2014 22nd International Conference on Pattern Recognition
(ICPR). 2014, pp. 4068–4073. doi: 10.1109/ICPR.2014.697.

[Höh71] J. Höhle. „Zur Theorie und Praxis der Unterwasser-Photogrammetrie“. PhD
thesis. 1971.

[HS88] C. Harris and M. Stephens. „A combined corner and edge detector.“ In:
Alvey vision conference. Vol. 15. 1988, p. 50. doi: 10.5244/C.2.23.

[HS95] E. S. Harvey and M. R. Shortis. „A system for stereo-video measurement of
sub-tidal organisms“. In: Marine Technology Society Journal 29.4 (1995),
pp. 10–22.

[HS98] E. S. Harvey and M. R. Shortis. „Calibration Stability of an Underwater
Stereo-Video System: Implications for Measurement Accuracy and Preci-
sion“. In: Marine Technology Society Journal 32.2 (1998), pp. 3–17.

[HZ04] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Second. Cambridge University Press, 2004.

[Jas+08] P. Jasiobedzki, S. Se, M. Bondy, and R. Jakola. „Underwater 3D mapping
and pose estimation for ROV operations“. English. In: OCEANS 2008. 2008,
pp. 1–6. isbn: 978-1-4244-2619-5. doi: 10.1109/OCEANS.2008.5152076.

[JK12] A. Jordt-Sedlazeck and R. Koch. „Refractive Calibration of Underwater
Cameras“. In: Proceedings of the 12th European Conference on Computer
Vision - Volume Part V. ECCV’12. 2012, pp. 846–859. isbn: 978-3-642-
33714-7. doi: 10.1007/978-3-642-33715-4_61.

[JK13] A. Jordt-Sedlazeck and R. Koch. „Refractive Structure-from-Motion on
Underwater Images“. In: 2013 IEEE International Conference on Computer
Vision (ICCV). 2013, pp. 57–64. doi: 10.1109/ICCV.2013.14.

182

http://dx.doi.org/10.5220/0005183701420149
http://dx.doi.org/10.1016/0021-9290(88)90216-3
http://dx.doi.org/10.1016/0021-9290(88)90216-3
http://dx.doi.org/10.1088/1748-3190/10/4/046009
http://dx.doi.org/10.1088/1748-3190/10/4/046009
http://dx.doi.org/10.1109/ICPR.2014.697
http://dx.doi.org/10.5244/C.2.23
http://dx.doi.org/10.1109/OCEANS.2008.5152076
http://dx.doi.org/10.1007/978-3-642-33715-4_61
http://dx.doi.org/10.1109/ICCV.2013.14


Bibliography

[Joh+10] M. Johnson-Roberson, O. Pizarro, S. B. Williams, and I. Mahon. „Genera-
tion and visualization of large-scale three-dimensional reconstructions from
underwater robotic surveys“. en. In: Journal of Field Robotics 27.1 (2010),
pp. 21–51. issn: 1556-4967. doi: 10.1002/rob.20324.

[Kan+15] L. Kang, L. Wu, Y. Wei, and Z. Yang. „Theory of multi-level refractive
geometry“. In: Electronics Letters 51.9 (2015), pp. 688–690. issn: 0013-5194.
doi: 10.1049/el.2014.4369.

[Kan+17] L. Kang, L. Wu, Y. Wei, S. Lao, and Y.-H. Yang. „Two-view underwater
3D reconstruction for cameras with unknown poses under flat refractive
interfaces“. In: Pattern Recognition 69.Supplement C (Sept. 2017), pp. 251–
269. issn: 0031-3203. doi: 10.1016/j.patcog.2017.04.006. (Visited on
10/10/2017).

[KAP02] Y.-H. Kwon, A. Ables, and P. G. Pope. „Examination of different double-
plane camera calibration strategies for underwater motion analysis“. en.
In: ISBS - Conference Proceedings Archive 1.1 (2002), pp. 329–332. issn:
1999-4168.

[KC06] Y.-H. Kwon and J. B. Casebolt. „Effects of light refraction on the accuracy
of camera calibration and reconstruction in underwater motion analysis“. In:
Sports Biomechanics / International Society of Biomechanics in Sports 5.2
(2006), pp. 315–340. issn: 1476-3141. doi: 10.1080/14763140608522881.

[Ke+08] X. Ke, M. A. Sutton, S. M. Lessner, and M. Yost. „Robust stereo vision
and calibration methodology for accurate three-dimensional digital image
correlation measurements on submerged objects“. In: Journal of Strain
Analysis for Engineering Design 43.8 (2008), pp. 689–704. doi: 10.1243/
03093247JSA425.

[KFO03] P Korduan, T Förster, and R Obst. „Unterwasser-Photogrammetrie zur
3D-Rekonstruktion des Schiffswracks Darsser Kogge“. In: Photogrammetrie
Fernerkundung Geoinformation (2003), pp. 373–382.

[KL00] Y.-H. Kwon and S. L. Lindley. „Applicability of four Localized-Calibration
Methods in Underwater Motion Analysis“. In: ISBS - Conference Proceed-
ings Archive 1.1 (2000), pp. 48–55. issn: 1999-4168.

[KS08] C. Kunz and H. Singh. „Hemispherical Refraction and Camera Calibration
in Underwater Vision“. English. In: OCEANS 2008. 2008, pp. 1–7. isbn:
978-1-4244-2619-5. doi: 10.1109/OCEANS.2008.5151967.

[KS10] C. Kunz and H. Singh. „Stereo Self-Calibration for Seafloor Mapping us-
ing AUVs“. English. In: Autonomous Underwater Vehicles (AUV), 2010
IEEE/OES. 2010, pp. 1–7. isbn: 978-1-61284-980-5. doi: 10.1109/AUV.
2010.5779655.

[Kwo99] Y.-H. Kwon. „A Camera Calibration Algorithm for the Underwater Motion
Analysis“. In: ISBS - Conference Proceedings Archive 1.1 (1999), pp. 257–
260. issn: 1999-4168.

183

http://dx.doi.org/10.1002/rob.20324
http://dx.doi.org/10.1049/el.2014.4369
http://dx.doi.org/10.1016/j.patcog.2017.04.006
http://dx.doi.org/10.1080/14763140608522881
http://dx.doi.org/10.1243/03093247JSA425
http://dx.doi.org/10.1243/03093247JSA425
http://dx.doi.org/10.1109/OCEANS.2008.5151967
http://dx.doi.org/10.1109/AUV.2010.5779655
http://dx.doi.org/10.1109/AUV.2010.5779655


Bibliography

[KWY12a] L. Kang, L. Wu, and Y.-H. Yang. „Experimental study of the influence
of refraction on underwater three-dimensional reconstruction using the
SVP camera model“. In: Applied Optics 51.31 (2012), pp. 7591–7603. doi:
10.1364/AO.51.007591.

[KWY12b] L. Kang, L. Wu, and Y.-H. Yang. „Two-View Underwater Structure and
Motion for Cameras under Flat Refractive Interfaces“. English. In: Computer
Vision - ECCV 2012. Ed. by Andrew Fitzgibbon, Svetlana Lazebnik, Pietro
Perona, Yoichi Sato, and Cordelia Schmid. Vol. 7575. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2012, pp. 303–316. isbn:
978-3-642-33764-2. doi: 10.1007/978-3-642-33765-9_22.

[KYK09] R. Kawai, A. Yamashita, and T. Kaneko. „Three-Dimensional Measurement
of Objects in Water by Using Space Encoding Method“. English. In: IEEE
International Conference on Robotics and Automation, 2009. ICRA ’09.
2009, pp. 2830–2835. isbn: 978-1-4244-2788-8. doi: 10.1109/ROBOT.2009.
5152430.

[Li+97] R. Li, H. Li, W. Zou, R. G. Smith, and T. A. Curran. „Quantitative
Photogrammetric Analysis of Digital Underwater Video Imagery“. In: IEEE
Journal of Oceanic Engineering 22.2 (1997), pp. 364–375. issn: 0364-9059.
doi: 10.1109/48.585955.

[Li95] H. Li. Quantitative analysis of underwater stereo video images. Geomatics
Engineering, University of Calgary, 1995.

[Low99] D. G. Lowe. „Object recognition from local scale-invariant features“. In: The
Proceedings of the Seventh IEEE International Conference on Computer
Vision, 1999. Vol. 2. 1999, pp. 1150–1157. doi: 10.1109/ICCV.1999.790410.

[LRL00] J. M. Lavest, G. Rives, and J. T. Lapresté. „Underwater Camera Cali-
bration“. In: Computer Vision - ECCV 2000. Ed. by Gerhard Goos, Juris
Hartmanis, Jan van Leeuwen, and David Vernon. Vol. 1843. Springer Berlin
Heidelberg, 2000, pp. 654–668. isbn: 978-3-540-67686-7 978-3-540-45053-5.
doi: 10.1007/3-540-45053-X_42.

[LRL03] J. M. Lavest, G. Rives, and J. T. Lapresté. „Dry camera calibration for
underwater applications“. In: Mach. Vision Appl. 13.5-6 (2003), pp. 245–253.
issn: 0932-8092. doi: 10.1007/s00138-002-0112-z.

[LTZ96] R. Li, C. Tao, and W. Zou. „An Underwater Digital Photogrammetric
System for Fishery Geomatics“. In: XVIIIth ISPRS Congress. Vienna,
Austria, 1996, pp. 319–323.

[Maa15a] H.-G. Maas. „A Modular Geometric Model for Underwater Photogramme-
try“. In: ISPRS - International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences 55 (2015), pp. 139–141. doi:
10.5194/isprsarchives-XL-5-W5-139-2015.

184

http://dx.doi.org/10.1364/AO.51.007591
http://dx.doi.org/10.1007/978-3-642-33765-9_22
http://dx.doi.org/10.1109/ROBOT.2009.5152430
http://dx.doi.org/10.1109/ROBOT.2009.5152430
http://dx.doi.org/10.1109/48.585955
http://dx.doi.org/10.1109/ICCV.1999.790410
http://dx.doi.org/10.1007/3-540-45053-X_42
http://dx.doi.org/10.1007/s00138-002-0112-z
http://dx.doi.org/10.5194/isprsarchives-XL-5-W5-139-2015


Bibliography

[Maa15b] H.-G. Maas. „On the Accuracy Potential in Underwater/Multimedia Pho-
togrammetry“. English. In: Sensors (Switzerland) 15.8 (2015), pp. 18140–
18152. issn: 1424-8220. doi: 10.3390/s150818140.

[Maa92] H.-G. Maas. „Digitale Photogrammetrie in der dreidimensionalen Strö-
mungsmesstechnik“. theses. Diss. Techn. Wiss. ETH Zürich, Nr. 9665, 1992.
Ref.: A. Grün ; Korref.: T. Dracos, 1992. doi: 10.3929/ethz-a-000627387.

[Maa95] H.-G. Maas. „New developments in Multimedia Photogrammetry“. In: Sym-
posium A Quarterly Journal In Modern Foreign Literatures 8.3 (1995),
pp. 150–5.

[Men+16] F. Menna, E. Nocerino, F. Fassi, and F. Remondino. „Geometric and
Optic Characterization of a Hemispherical Dome Port for Underwater
Photogrammetry“. en. In: Sensors 16.1 (2016), p. 48. issn: 1424-8220. doi:
10.3390/s16010048.

[MK11] N. J. W. Morris and K. N. Kutulakos. „Dynamic Refraction Stereo“. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence 33.8
(2011), pp. 1518–1531. issn: 0162-8828. doi: 10.1109/TPAMI.2011.24.

[MK75] G. T. Marzan and H. M. Karara. „A computer program for direct linear
transformation solution of the collinearity condition, and some applications
of it“. In: Proceedings of the symposium on close-range photogrammetric
systems. 1975, pp. 420–476.

[ML09] M. Muja and D. G. Lowe. „Fast Approximate Nearest Neighbors with Auto-
matic Algorithm Configuration“. In: International Conference on Computer
Vision Theory and Application VISSAPP’09). 2009, pp. 331–340.

[MM14] C. Mulsow and H.-G. Maas. „A Universal Approach for Geometric Modelling
in Underwater Stereo Image Processing“. In: 2014 ICPR Workshop on
Computer Vision for Analysis of Underwater Imagery (CVAUI). 2014,
pp. 49–56. doi: 10.1109/CVAUI.2014.14.

[MNR17] F. Menna, E. Nocerino, and F. Remondino. „Flat versus Hemispherical
Dome Ports in Underwater Photogrammetry“. In: ISPRS - International
Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences XLII-2/W3 (2017), pp. 481–487. doi: 10.5194/isprs-archives-
XLII-2-W3-481-2017.

[MO15] M. Massot-Campos and G. Oliver-Codina. „Optical sensors and methods
for underwater 3D reconstruction“. English. In: Sensors (Switzerland) 15.12
(2015), pp. 31525–31557. issn: 1424-8220. doi: 10.3390/s151229864.

[Mob94] C. D. Mobley. Light and water: Radiative transfer in natural waters. Aca-
demic press, 1994.

[Mul10] C. Mulsow. „A Flexible Multi-Media Bundle Approach“. In: International
archives of photogrammetry, remote sensing and spatial information sciences
38.5 (2010), pp. 472–477.

185

http://dx.doi.org/10.3390/s150818140
http://dx.doi.org/10.3929/ethz-a-000627387
http://dx.doi.org/10.3390/s16010048
http://dx.doi.org/10.1109/TPAMI.2011.24
http://dx.doi.org/10.1109/CVAUI.2014.14
http://dx.doi.org/10.5194/isprs-archives-XLII-2-W3-481-2017
http://dx.doi.org/10.5194/isprs-archives-XLII-2-W3-481-2017
http://dx.doi.org/10.3390/s151229864


Bibliography

[Nar+05] S. G. Narasimhan, S. K. Nayar, B. Sun, and S. J. Koppal. „Structured light
in scattering media“. English. In: Tenth IEEE International Conference
on Computer Vision, 2005. ICCV 2005. Vol. 1. 2005, pp. 420–427. isbn:
0-7695-2334-X. doi: 10.1109/ICCV.2005.232.

[Nar+12] T. Naruse, T. Kaneko, A. Yamashita, and H. Asama. „3-D Measurement
of Objects in Water Using Fish-Eye Stereo Camera“. In: 2012 19th IEEE
International Conference on Image Processing (ICIP). 2012, pp. 2773–2776.
doi: 10.1109/ICIP.2012.6467474.

[Nis03] D. Nister. „An efficient solution to the five-point relative pose problem“.
In: 2003 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 2003. Proceedings. Vol. 2. 2003, pp. 195–202. doi:
10.1109/CVPR.2003.1211470.

[NN05] S. G. Narasimhan and S. K. Nayar. „Structured light methods for underwater
imaging: light stripe scanning and photometric stereo“. In: Proceedings of
MTS/IEEE OCEANS, 2005. Vol. 3. 2005, pp. 2610–2617. doi: 10.1109/
OCEANS.2005.1640165.

[PES03] O. Pizarro, R. M. Eustice, and H. Singh. „Relative Pose Estimation for
Instrumented, Calibrated Imaging Platforms.“ In: DICTA. 2003, pp. 601–
612.

[PES04] O. Pizarro, R. M. Eustice, and H. Singh. „Large area 3D reconstructions from
underwater surveys“. English. In: OCEANS ’04. MTTS/IEEE TECHNO-
OCEAN ’04. Vol. 2. 2004, pp. 678–687. isbn: 0-7803-8669-8. doi: 10.1109/
OCEANS.2004.1405509.

[PES09] O. Pizarro, R. M. Eustice, and H. Singh. „Large Area 3-D Reconstructions
From Underwater Optical Surveys“. English. In: IEEE Journal of Oceanic
Engineering 34.2 (2009), pp. 150–169. issn: 0364-9059. doi: 10.1109/JOE.
2009.2016071.

[POA03a] N. Pessel, J. Opderbecke, and M.-J. Aldon. „An Experimental Study of a Ro-
bust Self-Calibration Method for a Single Camera“. English. In: Proceedings
of the 3rd International Symposium on Image and Signal Processing and
Analysis, 2003. ISPA 2003. Vol. 1. 2003, pp. 522–527. isbn: 953-184-061-X.
doi: 10.1109/ISPA.2003.1296952.

[POA03b] N. Pessel, J. Opderbecke, and M.-J. Aldon. „Camera Self-Calibration in
Underwater Environment“. In: WSCG’03. 2003.

[QGP15] T. Quick, J. Grebe-Ellis, and O. Passon. „Ein genauer Blick auf die optische
Hebung“. de. In: PhyDid A - Physik und Didaktik in Schule und Hochschule
1.14 (2015), pp. 26–44. issn: 1865-5521.

[Rah+13] T. Rahman, J. Anderson, P. Winger, and N. Krouglicof. „Calibration of
an Underwater Stereoscopic Vision System“. In: Oceans - San Diego, 2013.
2013, pp. 1–6. doi: 10.23919/OCEANS.2013.6741133.

186

http://dx.doi.org/10.1109/ICCV.2005.232
http://dx.doi.org/10.1109/ICIP.2012.6467474
http://dx.doi.org/10.1109/CVPR.2003.1211470
http://dx.doi.org/10.1109/OCEANS.2005.1640165
http://dx.doi.org/10.1109/OCEANS.2005.1640165
http://dx.doi.org/10.1109/OCEANS.2004.1405509
http://dx.doi.org/10.1109/OCEANS.2004.1405509
http://dx.doi.org/10.1109/JOE.2009.2016071
http://dx.doi.org/10.1109/JOE.2009.2016071
http://dx.doi.org/10.1109/ISPA.2003.1296952
http://dx.doi.org/10.23919/OCEANS.2013.6741133


Bibliography

[RHB14] Y. Rzhanov, H. Hu, and T. Boyer. „Dense Reconstruction of Underwater
Scenes from Monocular Sequences of Images“. In: OCEANS 2014 - TAIPEI.
2014, pp. 1–5. doi: 10.1109/OCEANS-TAIPEI.2014.6964337.

[Sch05] O. Schreer. Stereoanalyse und Bildsynthese. German. Springer, 2005. isbn:
3-540-23439-X 978-3-540-23439-5.

[SGN03] R. Swaninathan, M. D. Grossberg, and S. K. Nayar. „A perspective on dis-
tortions“. In: Computer Vision and Pattern Recognition, 2003. Proceedings.
2003 IEEE Computer Society Conference on. Vol. 2. 2003, pp. 594–601.
doi: 10.1109/CVPR.2003.1211521.

[SH98] M. R. Shortis and E. S. Harvey. „Design and calibration of an underwater
stereo-video system for the monitoring of marine fauna populations“. In:
International Archives Photogrammetry and Remote Sensing 32.5 (1998),
pp. 792–799.

[SHA09] M. R. Shortis, E. S. Harvey, and D. Abdo. „A Review Of Underwater
Stereo-image Measurement For Marine Biology And Ecology Applications“.
In: Oceanography and Marine Biology. CRC Press, 2009, pp. 257–292. isbn:
978-1-4200-9421-3 978-1-4200-9422-0.

[Sho+00] M. R. Shortis, S. Miller, E. S. Harvey, and S. Robson. „An analysis of the
calibration stability and measurement accuracy of an underwater stereo-
video system used for shellfish surveys“. In: Geomatics Research Australasia
1.73 (2000), pp. 1–24.

[Sho15] M. R. Shortis. „Calibration Techniques for Accurate Measurements by
Underwater Camera Systems“. en. In: Sensors 15.12 (2015), pp. 30810–
30826. issn: 1424-8220. doi: 10.3390/s151229831.

[Sil+12] A. P. Silvatti, F. A. S. Dias, P. Cerveri, and R. M. L. Barros. „Comparison
of different camera calibration approaches for underwater applications“. In:
Journal of Biomechanics 45.6 (2012), pp. 1112–1116. issn: 0021-9290. doi:
10.1016/j.jbiomech.2012.01.004.

[Sil+13] A. P. Silvatti, P. Cerveri, T. Telles, F. A. S. Dias, G. Baroni, and R. M. L.
Barros. „Quantitative underwater 3D motion analysis using submerged
video cameras: Accuracy analysis and trajectory reconstruction“. English.
In: Computer Methods in Biomechanics and Biomedical Engineering 16.11
(2013), pp. 1240–1248. issn: 1025-5842. doi: 10.1080/10255842.2012.
664637.

[SK11] A. Sedlazeck and R. Koch. „Calibration of Housing Parameters for Under-
water Stereo-Camera Rigs“. In: Proceedings of the British Machine Vision
Conference. 2011, pp. 118.1–118.11. isbn: 1-901725-43-X. doi: 10.5244/C.
25.118.

187

http://dx.doi.org/10.1109/OCEANS-TAIPEI.2014.6964337
http://dx.doi.org/10.1109/CVPR.2003.1211521
http://dx.doi.org/10.3390/s151229831
http://dx.doi.org/10.1016/j.jbiomech.2012.01.004
http://dx.doi.org/10.1080/10255842.2012.664637
http://dx.doi.org/10.1080/10255842.2012.664637
http://dx.doi.org/10.5244/C.25.118
http://dx.doi.org/10.5244/C.25.118


Bibliography

[SK12] A. Sedlazeck and R. Koch. „Perspective and Non-perspective Camera Mod-
els in Underwater Imaging - Overview and Error Analysis“. In: Outdoor
and Large-Scale Real-World Scene Analysis. Ed. by Frank Dellaert, Jan-
Michael Frahm, Marc Pollefeys, Laura Leal-Taixé, and Bodo Rosenhahn.
Vol. 7474. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2012, pp. 212–242. isbn: 978-3-642-34090-1. doi: 10.1007/978-3-642-
34091-8_10.

[SKK09] A. Sedlazeck, K. Köser, and R. Koch. „3D Reconstruction Based on Un-
derwater Video from ROV Kiel 6000 Considering Underwater Imaging
Conditions“. English. In: OCEANS 2009 - EUROPE. 2009, pp. 1–10. isbn:
978-1-4244-2522-8. doi: 10.1109/OCEANSE.2009.5278305.

[SO08] M. Shimizu and M. Okutomi. „Calibration and rectification for reflection
stereo“. In: IEEE Conference on Computer Vision and Pattern Recognition,
2008. CVPR 2008. 2008, pp. 1–8. doi: 10.1109/CVPR.2008.4587690.

[SR12] V. E. Schmidt and Y. Rzhanov. „Measurement of Micro-bathymetry with
a GOPRO Underwater Stereo Camera Pair“. English. In: OCEANS 2012
MTS/IEEE: Harnessing the Power of the Ocean. 2012. isbn: 978-1-4673-
0829-8. doi: 10.1109/OCEANS.2012.6404786.

[SSW13] J. Servos, M. Smart, and S. L. Waslander. „Underwater Stereo SLAM with
Refraction Correction“. In: 2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). 2013, pp. 3350–3355. doi: 10.1109/
IROS.2013.6696833.

[Sze11] R. Szeliski. Computer Vision: Algorithms and Applications. eng. Springer,
2011. isbn: 978-1-84882-935-0 978-1-84882-934-3.

[TF10] G. Telem and S. Filin. „Photogrammetric modeling of underwater environ-
ments“. In: ISPRS Journal of Photogrammetry and Remote Sensing 65.5
(2010), pp. 433–444. issn: 0924-2716. doi: 10.1016/j.isprsjprs.2010.05.
004.

[TMB12] P. A. Tipler, G. Mosca, and M. Basler. Physik für Wissenschaftler und
Ingenieure. ger. Springer Spektrum, 2012. isbn: 978-3-8274-1945-3.

[Tre+12] T. Treibitz, Y. Y. Schechner, C. Kunz, and H. Singh. „Flat Refractive Ge-
ometry“. English. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 34.1 (2012), pp. 51–65. issn: 0162-8828. doi: 10.1109/TPAMI.
2011.105.

[Tri+00] B. Triggs, P. Mclauchlan, R. Hartley, and A. Fitzgibbon. „Bundle adjust-
ment - A modern synthesis“. In: Vision Algorithms: Theory and Practice,
LNCS. 2000, pp. 298–375. doi: 10.1007/3-540-44480-7_21.

[TSS08] T. Treibitz, Y. Y. Schechner, and H. Singh. „Flat Refractive Geometry“.
English. In: IEEE Conference on Computer Vision and Pattern Recognition,
2008. CVPR 2008. 2008, pp. 1–8. isbn: 978-1-4244-2242-5. doi: 10.1109/
CVPR.2008.4587844.

188

http://dx.doi.org/10.1007/978-3-642-34091-8_10
http://dx.doi.org/10.1007/978-3-642-34091-8_10
http://dx.doi.org/10.1109/OCEANSE.2009.5278305
http://dx.doi.org/10.1109/CVPR.2008.4587690
http://dx.doi.org/10.1109/OCEANS.2012.6404786
http://dx.doi.org/10.1109/IROS.2013.6696833
http://dx.doi.org/10.1109/IROS.2013.6696833
http://dx.doi.org/10.1016/j.isprsjprs.2010.05.004
http://dx.doi.org/10.1016/j.isprsjprs.2010.05.004
http://dx.doi.org/10.1109/TPAMI.2011.105
http://dx.doi.org/10.1109/TPAMI.2011.105
http://dx.doi.org/10.1007/3-540-44480-7_21
http://dx.doi.org/10.1109/CVPR.2008.4587844
http://dx.doi.org/10.1109/CVPR.2008.4587844


Bibliography

[WF14] M. Wehkamp and P. Fischer. „A practical guide to the use of consumer-
level digital still cameras for precise stereogrammetric in situ assessments in
aquatic environments“. In: Underwater Technology: International Journal
of the Society for Underwater 32.2 (2014), pp. 111–128. doi: 10.3723/ut.
32.111.

[Yam+03] A. Yamashita, E. Hayashimoto, T. Kaneko, and Y. Kawata. „3-D Measure-
ment of Objects in a Cylindrical Glass Water Tank with a Laser Range
Finder“. English. In: 2003 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, 2003. (IROS 2003). Proceedings. Vol. 2. 2003,
pp. 1578–1583. isbn: 0-7803-7860-1. doi: 10.1109/IROS.2003.1248869.

[Yam+04] A. Yamashita, H. Higuchi, T. Kaneko, and Y. Kawata. „Three Dimensional
Measurement of Object’s Surface in Water Using the Light Stripe Projection
Method“. English. In: 2004 IEEE International Conference on Robotics
and Automation, 2004. Proceedings. ICRA ’04. Vol. 3. 2004, pp. 2736–2741.
isbn: 0-7803-8232-3. doi: 10.1109/ROBOT.2004.1307474.

[Yam+11] A. Yamashita, R. Kawanishi, T. Koketsu, T. Kaneko, and H. Asama.
„Underwater Sensing with Omni-Directional Stereo Camera“. English. In:
2011 IEEE International Conference on Computer Vision Workshops (ICCV
Workshops). 2011, pp. 304–311. isbn: 978-1-4673-0062-9. doi: 10.1109/
ICCVW.2011.6130257.

[YFK08] A. Yamashita, A. Fujii, and T. Kaneko. „Three dimensional measurement of
objects in liquid and estimation of refractive index of liquid by using images
of water surface with a stereo vision system“. English. In: IEEE International
Conference on Robotics and Automation, 2008. ICRA 2008. 2008, pp. 974–
979. isbn: 978-1-4244-1646-2. doi: 10.1109/ROBOT.2008.4543331.

[YGY13] T. Yau, M. Gong, and Y.-H. Yang. „Underwater Camera Calibration Using
Wavelength Triangulation“. In: 2013 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 2013, pp. 2499–2506. doi: 10.1109/CVPR.
2013.323.

[YIK05] A. Yamashita, S. Ikeda, and T. Kaneko. „3-D Measurement of Objects in
Unknown Aquatic Environments with a Laser Range Finder“. English. In:
Proceedings of the 2005 IEEE International Conference on Robotics and
Automation, 2005. ICRA 2005. 2005, pp. 3912–3917. isbn: 0-7803-8914-X.
doi: 10.1109/ROBOT.2005.1570718.

[YKK06] A. Yamashita, S. Kato, and T. Kaneko. „Robust Sensing Against Bubble
Noises in Aquatic Environments with a Stereo Vision System“. English.
In: Proceedings 2006 IEEE International Conference on Robotics and
Automation, 2006. ICRA 2006. 2006, pp. 928–933. isbn: 0-7803-9505-0. doi:
10.1109/ROBOT.2006.1641828.

189

http://dx.doi.org/10.3723/ut.32.111
http://dx.doi.org/10.3723/ut.32.111
http://dx.doi.org/10.1109/IROS.2003.1248869
http://dx.doi.org/10.1109/ROBOT.2004.1307474
http://dx.doi.org/10.1109/ICCVW.2011.6130257
http://dx.doi.org/10.1109/ICCVW.2011.6130257
http://dx.doi.org/10.1109/ROBOT.2008.4543331
http://dx.doi.org/10.1109/CVPR.2013.323
http://dx.doi.org/10.1109/CVPR.2013.323
http://dx.doi.org/10.1109/ROBOT.2005.1570718
http://dx.doi.org/10.1109/ROBOT.2006.1641828


Bibliography

[YNM13] T. Yano, S. Nobuhara, and T. Matsuyama. „3D Shape from Silhouettes in
Water for Online Novel-view Synthesis“. In: IPSJ Transactions on Computer
Vision and Applications 5 (2013), pp. 65–69. doi: 10.2197/ipsjtcva.5.65.

[YSK10] A. Yamashita, Y. Shirane, and T. Kaneko. „Monocular Underwater Stereo
- 3D Measurement Using Difference of Appearance Depending on Opti-
cal Paths -“. English. In: 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). 2010, pp. 3652–3657. isbn: 978-1-
4244-6674-0. doi: 10.1109/IROS.2010.5649444.

[Zha00] Z. Zhang. „A flexible new technique for camera calibration“. In: IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 22 (2000), pp. 1330–
1334. issn: 0162-8828. doi: 10.1109/34.888718.

190

http://dx.doi.org/10.2197/ipsjtcva.5.65
http://dx.doi.org/10.1109/IROS.2010.5649444
http://dx.doi.org/10.1109/34.888718


Own Publications

[DK14] T. Dolereit and A. Kuijper. „Converting Underwater Imaging into Imaging
in Air“. In: VISAPP 2014 - Proceedings of the 9th International Conference
on Computer Vision Theory and Applications, Volume 1, Lisbon, Portugal,
5-8 January, 2014. Ed. by Sebastiano Battiato and José Braz. 2014, pp. 96–
103. isbn: 978-989-758-003-1. doi: 10.5220/0004685600960103.

[DL16] T. Dolereit and U. F. von Lukas. „Calibration of Shared Flat Refractive
Stereo Systems“. In: Image Analysis and Recognition: 13th International
Conference, ICIAR 2016, in Memory of Mohamed Kamel, Póvoa de Varzim,
Portugal, July 13-15, 2016, Proceedings. Ed. by Aurélio Campilho and
Fakhri Karray. Springer International Publishing, 2016, pp. 433–442. isbn:
978-3-319-41501-7. doi: 10.1007/978-3-319-41501-7_49.

[DLK15a] T. Dolereit, U. F. von Lukas, and A. Kuijper. „New Constraints for Un-
derwater Stereo Calibration“. In: 2015 9th International Symposium on
Image and Signal Processing and Analysis (ISPA). 2015, pp. 176–181. doi:
10.1109/ISPA.2015.7306054.

[DLK15b] T. Dolereit, U. F. von Lukas, and A. Kuijper. „Underwater Stereo Calibra-
tion Utilizing Virtual Object Points“. In: OCEANS 2015 - Genova. 2015,
pp. 1–7. doi: 10.1109/OCEANS-Genova.2015.7271593.

[Dol15] T. Dolereit. „Concepts for Underwater Stereo Calibration, Stereo 3D-
Reconstruction and Evaluation“. In: Proceedings of the International Sum-
mer School on Visual Computing 2015. 2015, pp. 71–80. isbn: 978-3-8396-
0960-6. url: http://publica.fraunhofer.de/documents/N- 374915.
html.

[Luk+15] U. F. von von Lukas, J. Quarles, P. Kaklis, and T. Dolereit. „Underwater
Mixed Environments“. en. In: Virtual Realities. Ed. by Guido Brunnett,
Sabine Coquillart, Robert van Liere, Gregory Welch, and Libor Vasa. Lecture
Notes in Computer Science 8844. Springer International Publishing, 2015,
pp. 56–76. isbn: 978-3-319-17042-8 978-3-319-17043-5. doi: 10.1007/978-
3-319-17043-5_4.

[Sch+15] J. Schulz, K. O. Möller, A. Bracher, M. Hieronymi, B. Cisewski, O. Zielin-
ski, D. Voss, E. Gutzeit, T. Dolereit, G. Niedzwiedz, G. Kohlberg, D.
Schories, R. Kiko, A. Körtzinger, C. Falldorf, P. Fischer, N. Nowald, K.
Beisiegel, P. Martinez-Arbizu, N. Rüssmeier, R. Röttgers, J. Büdenben-
der, A. Jordt-Sedlazeck, R. Koch, U. Riebesell, M. Iversen, K. Köser, T.
Kwasnitschka, J. Wellhausen, C. Thoma, K. Barz, S. Rhode, T. W. Nat-

191

http://dx.doi.org/10.5220/0004685600960103
http://dx.doi.org/10.1007/978-3-319-41501-7_49
http://dx.doi.org/10.1109/ISPA.2015.7306054
http://dx.doi.org/10.1109/OCEANS-Genova.2015.7271593
http://publica.fraunhofer.de/documents/N-374915.html
http://publica.fraunhofer.de/documents/N-374915.html
http://dx.doi.org/10.1007/978-3-319-17043-5_4
http://dx.doi.org/10.1007/978-3-319-17043-5_4


Own Publications

tkemper, T. Schoening, F. Peeters, H. Hofmann, J. Busch, H.-J. Hirche,
B. Niehoff, N. Hildebrandt, E. Stohr, C. Winter, G. Herbst, C. Konrad, M.
Schmidt, P. Linke, T. Brey, H. W. Bange, L. Nolle, S. Krägefsky, J. Gröger,
E. Sauter, M. Schulz, J. Müller, G. Rehder, D. Stepputtis, B. Beszteri,
M. Kloster, G. Kauer, A. Göritz, P. Gege, U. F. von Lukas, and U. V.
Bathmann. „Aquatische Optische Technologien in Deutschland“. In: Marine
Science Reports - Meereswissenschaftliche Berichte 97 (2015), pp. 1–83.
doi: 10.12754/msr-2015-97.

192

http://dx.doi.org/10.12754/msr-2015-97


Thesis Statements

1.) Underwater imaging devices are characterized by a transition of the entering light
through different media, such as the very common water-glass-air transition in
a FRS , and therefore get affected by the physical phenomenon of the refraction
of light. Refraction poses a problem to every discipline aiming at the recovery of
metric 3D structure from underwater image data. In contrast to lens distortion,
distortion due to refraction is distance-dependent and therefore not an image space
distortion.

2.) The common strategies to handle refractive effects are their disregard, their ab-
sorption or their explicit modeling. The first two essentially consider refractive
effects to be image space distortions and are based on image formation following
the pinhole camera model, which is invalid for underwater image formation due to
refraction. Consequently, the disregard needs to be avoided and the absorption
should be avoided, since the required setups represent a severe restriction and the
elimination of refractive effects is incomplete. With both of these strategies, an
accurate 3D reconstruction is not possible. The only way to handle refractive effects
physically correct is their explicit modeling, which in turn requires the calibration
of the modeled refractive parameters.

3.) An underwater image formation model that represents the parametrization of
a stereo camera in front of a single flat refractive interface is the model for a
SFRS . There are multiple practical configurations of imaging setups that can be
represented by it and although being more specialized than single camera systems,
it can be designated as a representative of a common viewing condition. The model
for a SFRS comprises a master and a slave camera and shows beneficial properties
that make it worth to adjust the basic design of the imaging system accordingly.
An exemplary benefit is the reduction of the refractive parameters, since these have
to be estimated just with respect to the master camera.

4.) The refractive parameters modeled by the SFRS have to be determined by refractive
calibration. These are the refractive indices of the participating media, and the so-
called system axis and air layer thickness, which essentially represent the orientation
and the distance of the master camera to the flat refractive interface, respectively.
However, since the refractive indices are in general measurable, commonly known
(air and water) or known from manufacturer data (underwater housing), they can
be excluded from algorithmic determination. The system axis can be determined
independently of the air layer thickness.

5.) The refractive calibration of a SFRS can be realized by two different strategies,
which can be distinguished by an implicit (simultaneous strategy) and an explicit
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system axis determination (consecutive strategy). The consecutive strategy can be
realized by determining the system axis with the aid of calibration objects with
feature points arranged in straight lines and a following determination of the air
layer thickness for that system axis. In contrast, the simultaneous strategy can be
realized without any calibration objects.

6.) A VOP model is a beneficial extension for underwater image formation models.
The VOP model can be readily integrated into the underwater image formation
models of monocular and binocular vision. The combined models amount to an
efficient tool for the extension of the concepts of stereo 3D reconstruction in air for
underwater environments with an explicit consideration of refractive effects.
6.1.) The simultaneous and the consecutive strategy for the refractive calibration

of a SFRS both benefit from the integrated VOP model. Based on the VOP
model, an optimization problem can be defined for the determination of the air
layer thickness of a SFRS . This optimization problem can be solved efficiently
by linear optimization and can be realized within both calibration strategies.

6.2.) Reoccurring operations within the concepts of stereo 3D reconstruction are
refractive projections for coordinate transformations between 3D and 2D spaces.
Within a refractive system, these are the computationally intensive refractive
forward projections and refractive back-projections. The integration of the
VOP model serves the development of alternative strategies and the reduction
of the computational expense. Together with these refractive projections, the
VOP model furthermore benefits the computation of adapted and novel cost
functions and the definition of optimization problems for the determination of
the system axis of a SFRS in an iterative fashion.

6.3.) Refractive calibration is the first necessary step of underwater stereo 3D
reconstruction. For the actual recovery of 3D coordinates with an underwater
stereo camera, corresponding pixels in the left and the right view of the stereo
camera need to be computed by stereo matching. Due the invalidity of the
pinhole camera model for underwater image formation, epipolar geometry gets
invalid as well. An alternative is the computation of correspondence curves
based on refractive projections. Finally, the actual recovery of 3D coordinates
can be realized with the aid of refractive projections as well.

7.) A valid approach for benchmark data generation for the evaluation of the developed
approaches with real test data can be realized with the aid of a calibration object
that is fixed to the stereo camera in a solid construction. With such a construction,
it is possible to compute a benchmark 3D point cloud with respect to the stereo
camera in air. This benchmark 3D point cloud can in turn be utilized for the
implicit evaluation of the refractive parameters by explicit evaluation of a recovered
3D point cloud. It represents a simple and efficient means for the evaluation of
underwater stereo 3D reconstruction.
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