Aus dem Institut für Anatomie der Universität Rostock Direktor: Prof. Dr. med. A. Wree

Das Konnektom des Cortex cerebri der Ratte

Inauguraldissertation zur Erlangung des akademischen Grades Doktor der Medizin der Medizinischen Fakultät der Universität Rostock

vorgelegt von

Jennifer Meinhardt

Einreichung: 2017

Verteidigung: 2018

Dekan: Prof. Dr. med. E. Reisinger

 Gutachter: Prof. Dr. med. Oliver Schmitt, Institut für Anatomie der Universität Rostock
 Gutachter: Prof. Dr. med. Dr. h.c. Karl Zilles, JARA Senior Professor an der Rheinisch Westfälischen Technischen Hochschule (RWTH) Aachen/Forschungszentrum Jülich
 Gutachter: Prof. Dr. rer. nat. Georg Füllen, Institut für Biostatistik und Informatik in Medizin und Alternsforschung der Universität Rostock "In such systems, the whole is more than the sum of the parts, not in an ultimate, metaphysical sense, but in the important pragmatic sense that, given the properties of the parts and the laws of their interaction, it is not a trivial matter to infer the properties of the whole." (Simon 1962, S. 468)

Inhaltsverzeichnis

InhaltsverzeichnisI			
Abbil	Abbildungsverzeichnis V		
Tabel	TabellenverzeichnisXI		
Abkü	AbkürzungsverzeichnisXIII		
1	Einleitung1		
1.1	Einführung in die Thematik 1		
1.1.1	Ein Überblick über Konnektomik und Konnektome		
1.1.2	Kurze Einführung in die Netzwerktheorie4		
1.2	Tract-tracing		
1.3	Nicht-Tracer basierte Methoden		
1.3.1	Tract-tracing durch Virus-Stämme		
1.3.2	Axonale Degenerations-Studien und Golgi-Imprägnation		
1.3.3	Digitale Polarisationsmikroskopie		
1.3.4	Laserscanning Photostimulation		
1.3.5	Brainbow9		
1.3.6	Knife-edge scanning microscopy		
1.3.7	CLARITY-Methode		
1.3.8	Diffusions-Tensor Magnetresonanztomographie10		
1.3.9	Resting-State fMRI 10		
1.4	Die Regionen des Cortex cerebri der Ratte11		
1.4.1	Frontal Kortex		
1.4.2	Parietal Kortex		
1.4.3	Temporal Kortex		
1.4.4	Okzipitaler Kortex		
1.4.5	Cingulärer Kortex		
1.4.6	Der retrospleniale Kortex15		
1.4.7	Der orbitofrontale Kortex		

1.4.8	Agranular Insular Kortex
1.4.9	Die parahippokampale Region
1.4.10	Fragestellungen
2	Material und Methoden18
2.1	Material
2.2	NeuroVIISAS
2.3	Literaturauswertung
2.4	Tabellen
2.5	Regionenauswahl für Konnektivitätsanalysen
2.6	Konventionen zur Bezeichnung von Hirnregionen in dieser Arbeit
2.7	Visualisierung in Grafiken
2.8	Graphen und Netzwerke
3	Ergebnisse
3.1	Ausgewertete Publikationen
3.2	Neuroontologie der kortikalen Konnektome
3.3	Konnektivitätsanalyse des C1-Netzwerkes (unilateral)
3.3.1	Konnektivitätsmatrizen
3.3.2	Sensomotorische und visuospatiale kortikale Pfade
3.3.3	Eigenschaften der C1-Adjazenzmatrizen
3.3.4	Beobachtungshäufigkeit, Verifikation und Validität
3.3.5	Reziproke Verbindungsstrukturen
3.3.6	Die C1-Distanzmatrix
3.3.7	Die erweiterte Distanzmatrix
3.3.8	Connnectivity Matching Matrix
3.3.9	Communicability Matrix
3.3.10	GTOM Matrix
3.3.11	Globale Konnektivitätsanalyse
3.3.12	Lokale Konnektivitätsanalyse
3.3.13	Motiv-Analyse

3.3.14	Zyklenanalyse	. 63
3.3.15	Hauptkomponentenanalyse lokaler Parameter	. 63
3.3.16	Metrische Multidimensionale Skalierung	. 66
3.3.17	Vulnerabilitätsanalyse	. 66
3.4	Das bilaterale kortikale C1-Netzwerk	. 66
3.4.1	Konnektivitätsmatrizen	. 67
3.4.2	Globale Konnektivitätsanalyse des bilateralen C1-Netzwerkes	. 69
3.4.3	Lokale Konnektivitätsanalyse des bilateralen C1-Netzwerkes	. 71
3.4.4	Verteilung lokaler Parameter im bilateralen C1-Netzwerk	. 72
3.4.5	Motivanalyse des bilateralen C1-Netzwerkes	. 73
3.4.6	Zyklenanalyse des bilateralen C1-Netzwerkes	. 74
3.4.7	Hauptkomponentenanalyse des bilateralen C1-Netzwerkes	. 75
3.4.8	Metrische multidimensionale Skalierung des bilateralen C1-Netzwerkes	. 77
3.4.9	Verbindungsmuster der Regionen des bilateralen C1-Netzwerkes	. 77
3.5	Analyse des laminären kortikalen-Netzwerkes C2	. 79
3.5.1	Lokale Netzwerkparameter des C2-Netzwerkes	. 83
3.5.2	Motiv-Analyse des laminären C2-Netzwerkes	. 83
4	Diskussion	. 89
4.1	Zusammenfassung der Ergebnisse	. 89
4.2	Kritische Betrachtung der Methodik	. 91
4.3	Kritische Betrachtung der Ergebnisse	. 93
4.4	Kritische Betrachtung der Ergebnisse anderer Arbeitsgruppen	. 94
4.5	Alleinstellungsmerkmale der Konnektomanalyse des Cortex cerebri	. 97
4.6	Ausblick	. 98
4.7	Fazit und Beantwortung der Fragen dieser Arbeit	. 99
5	Literatur1	101
6	Tabellenanhang1	118
7	Bildanhang1	150
8	Thesen	162

Abbildungsverzeichnis

	(Cajal 1909)
Abbildung 2	2: Mit steigendem P verändert sich der Graph von einem regulären Graph zu einem zufälligen Graphen. Graphen mit small-world Eigenschaften ordnen sich dazwischen an. Aus: Watts und Strogatz 1998, S. 441
Abbildung 3	3: Übersicht des zur Auswertung verwendeten Programms neuroVIISAS. Im linken Teilfenster ist die Auswahl der neuronalen Gliederung anhand einer Baumstruktur möglich. Mit der darunterliegenden Suchmaske können einzelne Kerngebiete nach Eingabe von Abkürzungen oder Langnamen gesucht werden. Die mittlere Ansicht veranschaulicht die Lage des jeweiligen kortikalen Segmentes. Am rechten Rand sind die Bezeichnung der Region mit Synonymen und Abkürzungen sowie Bearbeitungsfunktionen auffindbar
Abbildung 4	1: Ausschnitt aus dem Tabellenverarbeitungsprogramm LibreOffice Calc mit einer typischen Auswertung von Konnektivitäten. Vor dem Import in neuroVIISAS wurden die Langnamen-Spalten A und D entfernt
Abbildung 5	5: Struktur einer Textdatei, die aus einem Tabellenprogramm exportiert wurde. Diese csv-Textdateien lassen sich in neuroVIISAS einlesen
Abbildung (5: Die Regionen der C1- und C2-Konnektome sind hierarchisch gegliedert. Diese Gliederung ist hier für C1 in a) dargestellt. Die Dreiecksvisualisierung für C1 dient der Navigation in der komplexen Hierarchie der Gebiete. c) C2-Hierarchie mit d) triangulärer Hierarchie. neuroVIISAS Filtermechanismen erlauben es diese Teilhierarchien aus der gesamten Neuroontologie abzuleiten
Abbildung 7	7: Drei Ansichten der kortikalen Regionen des C1-Konnektoms
Abbildung (3: Regionenauswahl des C1-Netzwerkes. Alle hier dargestellten Regionen weisen mindestens eine Verbindung zu einer anderen Region auf. Die Verbindungshäufigkeiten sind durch die drei rechts dargestellten Farbverläufe kodiert. Jede Region lässt sich noch in Unterregionen gliedern, die hier nicht dargestellt sind. Die zwischen diesen Unterregionen verlaufenden Verbindungen sind jedoch kumulativ in dieser Adjazenzmatrixdarstellung zusammengefasst, so
	dass sich ein besonders vollständiges Bild der konnektionalen Architektur ergibt 28
Abbildung 9	 dass sich ein besonders vollständiges Bild der konnektionalen Architektur ergibt 28 Adjazenzmatrix der Verbindungshäufigkeiten zwischen Untergebieten ausgewählter zytoarchitektonischer kortikaler Regionen. Laminae ohne Verbindungen innerhalb des C2-Konnektoms wurden entfernt

werden im übertragenden Sinn als indirekte Kanten in der Adjazenzmatrixdarstellung akkumuliert und wurden mit einer dunkelgrauen quadratischen Fläche $(d \rightarrow b)$ und einem hellgrauen Rahmen $(e \rightarrow b)$ dargestellt. In den Adjazenzmatrizen werden solche indirekten Verbindungen jedoch mit Zahlenwerten akkumuliert und farbkodiert um besser Verbindungsmuster zu erkennen. Die indirekte Kantenberücksichtigung bietet also eine vollständigere Sicht der Verbindungen einer Knotenauswahl. Zugleich ist diese Darstellung eine Abstraktion und eine Distanzierung von der konkreten Verbindungsbeschreibung einer Publikation. Wichtig ist bei der Analyse von direkten und indirekten Verbindungen, dass die entsprechenden Regionen der Adjazenzmatrizen identisch sind, die Verbindungsinhalte der Matrizen jedoch meist sehr unterschiedlich sein können.... 32 Abbildung 11: a) Adjazenzmatrix der direkten Konnektivitäten des C1-Netzwerkes. Die weißen Felder repräsentieren existierende Verbindungen und die schwarzen Felder kennzeichnen eine nicht vorhandene oder nicht identifizierte Konnektivität. b) Adjazenzmatrix der Konnektivitäten, wenn indirekte Verbindungen zwischen den Abbildung 12: Die Adjazenzmatrix mit S1 und S2 Verbindungen der linken (L) und rechten (R) Hemisphäre auf den Hierarchieleveln 12-15. Es sind nur direkte Verbindungen mit ihren Verbindungsgewichten dargestellt. Es wurde eine vergleichbare Abbildung 13: Bedwell et al. (2014) hierarischer sensomotorischer Pfad von S1 und S2 über den perirhinalen Kortex A35 und prefrontalen (orbitofrontaler Kortex) zu den motorischen Arealen M2 und M1. a) Adjazenzmatrix der ROIs und b) orthogonal Abbildung 14: Adjazenzmatrix der Gebiete, die mit dem retrosplenialen Kortex verbunden sind. a) Alle indirekten und direkten Verbindungen mit Farb-Kodierung der mittleren Kantenintensität zwischen Untergebieten. b) Filterung der Gebiete, die nach Vogt (2015) den visuell-räumlich-motorischen Verarbeitungspfad bilden. c) Darstellung der Verbindungen von b) im bilateralen hierarchischen Netzwerk mit Abbildung 15: Adjazenzmatrix der häufigsten Verbindungsgewichte indirekter Verbindungen

Abbildung 18: Validität bzw. Observation scores der Verbindungen des C1-Netzwerkes........ 45

Abbildung 19: Gefilterte Verbindungen aus Abbildung 18 mit Validitäten größer und gleich 4.
Abbildung 20: Graphen zur Visualisierung der gefilterten Verbin-dungen
Abbildung 21: Reziproke Verbindungen und räumliche Dist-anzen der C1-Regionen. a) Reziprozitätsmatrix mit eingezeichneter Matrixdia-gonale. Das blaue Quadrat markiert den Bereich mit insulären Gebieten, die zahlreiche rezipoke Verbin-dungen aufweisen. Im roten Quadrat liegen parietale kortikale Gebiete, die kaum reziproke Verbindungen besitzen. b) Die räumlichen Distanzen sind hier mittels Grautönen dargestellt. Das Maximum von 2356 Pixeln Abstand entspricht einem räumlichen Abstand von 13862 µm. Dicht zusammen-liegende Gebiete sind hell-grau und weiter entfernt zu-einander liegende Gebiete dunkelgrau kodiert. Die parietalen Kortex Regionen liegen zwar räumlich dicht zusammen, weisen aber kaum reziproke Verbindungen auf. Die insulären Gebiete liegen ebenfalls dicht zusammen und besitzen zahlreiche reziproke Verbindungen
Abbildung 22: Distanzmatrix der C1-Gebiete. Die 3 dunkelgrauen Streifen gehören zu Gebieten, die von C1-Regionen keinen Input erhalten. Der überwiegende Teil der Gebiete ist über 2 Verbindungen bzw. eine Zwischenstation erreichbar
Abbildung 23: Erweiterte Distanzenmatrix des C1-Konnektoms. Für diese und die folgenden Matrizen-Darstellungen wurden Gruppenbezeichnungen von kortikalen Regionen hinzugefügt
Abbildung 24: Connectivity Matching Matrix für Input- und Output-Verbindungen. Je heller die Grautöne, desto ähnlicher sind die Verbindungen eines Regionenpaares
Abbildung 25: Communicability Matrix des C1-Netzwerkes. Großen Communicabilty-Werten wurden hellere Grautöne zugeordnet. Diese größeren Werte bedeuten, dass relativ viele Pfade durch ein Paar von Regionen verlaufen und diese Regionen dann eine große Bedeutung für die gesamte Vernetzungsstruktur des Netzwerkes besitzen 51
Abbildung 26: Die GTOM-Matrix der Regionen des C1-Netzwerkes. Hellere blockförmige Bereiche heben sich von der übrigen Matrix bei den parahippokamaplen, insulären und somatosensiblen Bereichen ab
Abbildung 27: Modularitätsanalyse des C1-Netzwerkes. a) Die Modularitätsanalyse ohne Kantenwichtung ergab 4 Module. Die Häufigkeit von Verbindungen in den Modulen und zwischen den Modulen ist in der nebenstehenden Matrix dargestellt. b) Modularitätsanalyse mit gewichteten Verbindungen und nebenstehenden Kantenhäufigkeiten
Abbildung 28: Modularitätsanalyse des C1-Netzwerkes mit logarithmisch transformierten Verbindungsgewichten
Abbildung 29: Darstellung des Katz-Indexes in Abhängigkeit von Input- und Output- Verbindungen (DG _{All})
Abbildung 30: Darstellung der Betweeness-Zentralität (BC) in Abhängigkeit von Input- und Output- Verbindungen (DG _{All})
Abbildung 31: Darstellung der Eigenvektor-Zentralität (EC) in Abhängigkeit von Input- und Output-Verbindungen (DG _{All})

Abbildung 32	2 : Der Shapley-Index (Shapley) in Abhängigkeit von Input- und Output- Verbindungen (DG _{All})
Abbildung 3 3 H H H H H H H H H H H	3 : a) Motiv-Varianten (bei 3 Knoten ohne Selbstbezüglichkeiten) 3-01: Divergenz, 3-02: Kette, 3-03: Konvergenz, 3-04: Kette mit Reziprozität, 3-05: Divergenz mit Konvergenz, 3-06: Kette mit Reziprozität, 3-07: Kreis, 3-08: Konvergenz mit Reziprozität, 3-09: Doppelte Reziprozität, 3-10: Kreis mit Reziprozität, 3-11: Divergenz mit Reziprozität, 3-12: doppelte Reziprozität mit Konvergenz, 3-13: complette Reziprozität. b) Motiv-Häufigkeiten bei 1000 Rewiring- Randomisierungen. c) Motiv-Häufigkeiten bei 1000 Rewiring- Randomisierungen mit Konstanthaltung reziproker Verbindungen
Abbildung 3 I V J L L L	4: Graphische Visualisierung der Principal-component-analysis des C1-Netzwerkes. Die x-Achse (Zeile eins der Tabelle 9 zeigt von links nach rechts ansteigende Werte). In der y-Achse werden von oben nach unten ansteigende Werte (Zeile 2 der Tabelle 9 abgebildet. a) PCA-Ebene mit Achsenbezeichnungen von Komponente 1 und 2. b) Verhältnis von Gebietsparametern zum perirhinalen Kortex (Kreis in der Mitte). c) Cg1 als zentrales Gebiet. d) S1J als zentrales Gebiet
Abbildung 3	5: MDS-Diagramm des C1-Netzwerkes
Abbildung 3 N N i	6: Adjazenzmatrix der Kantenanzahlen des bilateralen C1-Netzwerkes. Die Verbindungen der aufgeführten C1-Regionen und deren Teilbaum-Gebiete (indirekte Verbindungen) sind hier dargestellt. Die Verbindungshäufigkeiten wurden in nsgesamt 6 Klassen eingeteilt (inkl. "No data" Klasse) und farbkodiert
Abbildung 3' v (i	7: Reziprozitätsmatrix des bilateralen C1-Netzwerkes. Gelber Pfeil: reziproke Verbindungen insulärer Gebiete. Roter Pfeil: reziproke Verbindungen visueller Gebiete. Blauer Pfeil: reziproke Verbindungen kontralateraler motorischer und nsulärer Gebiete
Abbildung 3 Z	8: Globale Parameter des realen bilateralen C1-Netzwerkes und 7 unterschiedlicher Zufallsnetzwerken in 1000 Randomisierungen
Abbildung 3	9 : Modularitätsanalyse des bilateralen C1-Netzwerkes unter Berücksichtigung der Verbindungsgewichte. Die Module sind von 1-4 bezeichnet (s. Text)
Abbildung 4	0: Das bilaterale C1-Netzwerk nach Entfernung aller Gebiete mit weniger als 50 Verbindungen
Abbildung 4 (1: Auf der Ordinate sind die lokalen Parameter Katz-Index, Betweeness-Zentralität (BC), Eigenvektor-Zentralität (EC) und Shapley-Wert aufgetragen. Auf der Abszisse ist der lokale Parameter Degree All (DG _{All}) aufgetragen
Abbildung 4 I	2: Motivanalyse des bilateralen C1-Netzwerkes mit 1000 reziproken rewiring Randomisierungen
Abbildung 4 I (3 : Motiv-Häufigkeiten des bilateralen C1-Netzwerkes mit 1000 einfachen rewiring Randomisierung ohne Erhaltung der Anzahl reziproker Verbindungen wie im Originalnetzwerk
Abbildung 4 I 1 2 2 2	4: Hauptkomponentenanalyse (PCA) des bilateralen C1-Netzwerkes. Rechtshemisphärische Gebiete sind im Vordergrund dargestellt und inkshemisphärische als Kreissegment. Die konnektionalen Beziehungen sind für ausgewählte Gebiete wiedergegeben. Im Mittelpunkt befindet sich das jeweils ausgewählte Gebiet, um welches die direkten (ersten) Nachbarn in Form eines

inneren Kreises angeordnet sind und dann die indirekten (zweiten) Nachbarn auf dem äußeren Kreis. a) Tabelle der lokalen Parameter und Anordnung der Gebiete in der PCA-Ebene. b) Der perirhinaler Kortex wurde als zentrales Gebiet ausgewählt und hat eine maximale erste Komponente. c) Infralimbischer Kortex. d) Lateraler sekundärer visueller Kortex
Abbildung 45: MDS des bilateralen C1-Netzwerkes. Die linkshemisphärischen Regionen sind auf der linken Seite des Diagramms angeordnet
 Abbildung 46: Unterschiedliche Verbindungs-Matrizen des bilateralen C1-Netzwerkes. a) Connectivity matching Matrix für Inputs und Outputs (CMI_{AII}). b) Generalized topological overlaping measure (GTOM) Matrix. c) Communicability Matrix 79
Abbildung 47: Adjazenzmatrix der häufigsten Verbindungsgewichte des bilateralen C2- Netzwerkes
Abbildung 48: Connectivity matching Matrix der Inputs und Outputs des bilateralen C2- Netzwerkes
Abbildung 49: Motiv-Häufigkeiten im bilateralen laminären C2-Netz und in 1000 reziproken rewiring Randomisierungen. Die Häufigkeiten wurden logarithmisch dargestellt 84
 Abbildung 50: Reorganisiertes laminäres Netzwerk. a) Häufigkeiten indirekter Verbindungen kortikaler Laminae. b) Häufigste Gewichte kortikaler Laminae. c) Reziproke Verbindungen. d) Communicability Matrix laminärer Verbindungen. e) Visualisierung gewichteter Verbindungen im bilateralen laminären Netzwerk. Kontralaterale Verbindungen sind gepunktet dargestellt
Abbildung 51: Den laminären Unterregionen der kortikalen Regionen wurden 6 funktionelle kortikale Regionen zugeordnet und bilateral dargestellt. a) Adjazenzmatrix der Kantenhäufigkeiten. b) Gewichtete Adjazenzmatrix. c) Reziproke Matrix. d) Distanzmatrix. e) CMI _{All} Matrix der Verbindungsähnlichkeiten. f) GTOM Matrix.87
Abbildung 52: Das laminäre bilaterale C2-Netzwerk. Kontralaterale Verbindungen wurden mit gepunkteten Linien hervorgehoben. Die Linienfarbe entspricht der Kodierung der Gewicht-Codes
Abbildung 53: Validität bzw. Beobachtungswert (observation score) der Verbindungen des bilateralen C1-Netzwerkes
Abbildung 54: Verbindungsgewichte der bilateralen C1-Adjazenzmatrix. a) direkte Verbindungen zwischen allen sichtbaren C1-Gebieten. b) indirekte Verbindungen zwischen allen Untergebieten der C1-Regionen
Abbildung 55: Distanzmatrix des bilateralen C1-Netzwerkes
Abbildung 56: Erweiterte Distanzmatrix, in welche die graphische Distanz, räumliche Distanz und das Verbindungsgewicht der bilateralen C1-Regionen eingeht. Niedrige Werte stehen für einen graphentheoretisch und räumlich geringen Distanzwert, sowie große Verbindungsgewichte
Abbildung 57: Communicability Matrix des bilateralen C1-Netzwerkes
Abbildung 58: GTOM-Matrix des bilateralen C1-Netzwerkes

Abbildung	59: Auswahl zytoarchitektonischer Schichten für das C2-Netzwerk. a) Die vollständige Zusammenstellung zytoarchitektonsicher Schichten der C1-Regionen ergibt eine dünnbesetzte Adjazenzmatrix. b) Adajazenzmatrix nach Entfernung von zytoarchitektonischen Schichten, zu denen keine Verbindungsinformationen vorliegen. Die Kondensation der Adjazenzmatrix wird sichtbar	6
Abbildung	60: Reziprozitätsmatrix des bilateralen C2-Netzwerkes	7
Abbildung	61: GTOM-Matrix des bilateralen C2-Netzwerkes	8
Abbildung	62: Oben ist das Ergebnis der hierarchischen Clusterung bezüglich der CMI _{All} -Matrix abgebildet. Daneben ist die berechnete Hierarchie zu erkennen. Unten wurde die CMI _{All} -Matrix wiedergegeben, unter Verwendung der Original Sequenz der Regionen, wie sie in der nebenstehenden Hierarchiedarstellung erkennbar ist 15	: 9
Abbildung	63: Streudiagramm der lokalen Parameter des unilateralen laminären C2-Netzwerkes Die Regionen wurden nach mittleren Rängen der Parameter sortiert. Die Rang- Mittelwerte der Regionen sind mit einer grünen Kennlinie verbunden. Die rote Linie verbindet die Schapley-Werte der Regionen. 16	; 0
Abbildung	64: Streudiagramm der lokalen Parameter des bilateralen laminären C2-Netzwerkes. Die Regionen wurden nach mittleren Rängen der Parameter sortiert. Die Rang- Mittelwerte der Regionen sind mit einer grünen Kennlinie verbunden. Die rote Linie verbindet die Schapley-Werte der Regionen	; 0
Abbildung	65: Die reguläre Konnektivität der zytoarchitektonsichen Schichten des bilateralen posteromedialen Barrel-Kortex sind in der Adjazenzmatrixdarstellung der häufigster Gewichte in der oberen Abbildung zu erkennen. Kontralateralen Verbindungen sind auf dieser Ebene nicht dokumentiert. Unten sind die Verbindungen in einer Netzwerkdarstellung wiedergeben	1 1

Tabellenverzeichnis

Tabelle 1: Liste	e der verwendeten Literatur-Suchfilter für die ausgewerteten Regionen 18
Tabelle 2: Gew	ichte der Verbindungen und die dazugehörigen Bezeichnungen (Burns 1997) 22
Tabelle 3: Regi	onen des C1-Netzwerkes in alphabetischer Reihenfolge
Tabelle 4: Verb voi Sc: Un	bindungen der Untergebiete (Subr.) des C1-Netzwerkes. Max.: maximale Anzahl n Outdegrees (Out) oder Indegrees (In) aus Teilbäumen. cx: cortex, Pr: Primary, : Secondary, f: field, hl: hindlimb, fl: forelimb, r: region, Subr.: Anzahl der terregionen
Tabelle 5: Glob Zu ma ref coe	bale Parameter des unilateralen C1-Netzwerkes. Es gibt keine isolierten Knoten (1 sammenhangskomponente). Die 7 Randomisierungsmodelle wurden jeweils 100 Il iteriert. Real: reales C1-Netzwerk, APL-SR: average path length – self- erences, ASC: Average subgraph centrality, DAC: Directed assortativity efficient
Tabelle 6: Liste	e ausgewählter lokaler Netzwerkparameter von C1 (sortiert nach DGa) 57
Tabelle 7: Die 1 100 Ve sor Spa Rä dre Ge	Motive 3-13, syC und syO treten im Original-C1-Netzwerk häufiger auf, als in 00 rewiring randomisierungen mit Konstanthaltung der Anzahl reziproker rbindungen. Die Häufigkeiten der Beteiligungen an den Motivbildungen wurden tiert, um die Ränge der Regionen für die 3 Motive zu bestimmen. Die ersten drei alten, mit den grauen Strichbegrenzungen, stellen den ersten Teil der oberen nge der Häufigkeiten von Gebietsbeteiligungen an den Motiven dar. Die letzten bi Hauptspalten zeigen die unteren Ränge der Häufigkeiten an bietsbeteiligungen
Tabelle 8: Zykl in e bez	lenanalyse des C1-Netzwerkes. Die Zahlen 1 bis 6 geben die Anzahl von Knoten einer zyklischen Verbindung wieder. Die in zwei Teile geteilte Tabelle ist züglich der Häufigkeiten des 6er-Zyklus sortiert
Tabelle 9: Para	meter der Hauptkomponentenanalyse (PCA) für das C1-Netzwerk64
Tabelle 10: Ein und Str (M	ige globale Parameter des bilateralen laminären kortikalen Originalnetzwerkes d Mittelwerte von 1000 Randomisierungen mit dem Erdös-Renyi (ER), Watts- ogatz (WS), Barabasi-Albert (BA), modifizierten BA (MBA), modifizierten OHO OHO), rewiring (REW) und reziproken rewiring (REC) Zufallsprozessen 80
Tabelle 11: Tra	ct-tracing Substanzen, die in den ausgewerteten Artikeln verwendet wurden 118
Tabelle 12: Zus aus BC	sammenstellung typischer Wichtungs-Begriffe (Verbindungsgewichte) sgewerteten Tract-tracing Publikationen und deren semiquantitative Kodierung. G: Background
Tabelle 13: Bet	eiligung einzelner Regionen des C1-Netzwerkes an der Bildung von Motiven. 121
Tabelle 14: Vul Clo	Inerabilitätsanalyse des C1-Netzwerkes. Die Vulnerabilitäten (mittlere beseness) sind absteigend sortiert
Tabelle 15: Ers der	ter Teil der lokalen Parameter des bilateralen C1-Netzwerkes nach Gesamtzahl Verbindungen pro Region sortiert

Tabelle 16:	Zweiter Teil der lokalen Parameter des bilateralen C1-Netzwerkes nach Gesamtzahl der Verbindungen pro Region sortiert
Tabelle 17:	Dritter Teil der lokalen Parameter des bilateralen C1-Netzwerkes nach Gesamtzahl der Verbindungen pro Region sortiert
Tabelle 18:	Zyklenanalyse des bilateralen C1-Netzwerkes. Mittlere Häufigkeiten der Regionen an zyklischen Verbindungen von 1 bis 6 sind wiedergegeben. Der perirhinale Kortex ist beispielsweise im bilateralen C1 Netzwerk im Mittel 49 mal an einem 2er Zyklus beteiligt
Tabelle 19:	Häufigkeiten der Regionen an der Bildung von Motifen im bilateralen C1-Netzwerk. Links und rechtshemisphärische Regionen sind alternierend aufgeführt. Absteigend sortiert wurde nach dem Motif syC
Tabelle 20:	Alle lokalen Parameter wurden für die Regionen des laminären C2-Netzwerkes berechnet. Aus diesem Grund umfasst die Tabelle 12 Seiten. Es wurden nach dem mittleren Rang (AvgRang) über alle lokalen Parameter pro Region aufsteigend sortiert. Je kleiner der Rang ,desto größer ist der normierte lokale Parameter 138

Abkürzungsverzeichnis

A35 Perirhinal cortex	AUDd dorsaler auditiver Kortex
A36 Ectorhinal cortex	AUDp primäres auditives Feld
ACC anteriorer cingulärer Kortex	AUDpo posteriorer auditiver Kortex
AG1 Lateral agranular prefrontral cortex	AUDv ventraler auditiver Kortex
AGm Medial agranular prefrontral cortex	AuV Secondary auditory cortex ventral area, ventraler auditiver Kortex
AID Agranular insular cortex aorsal part	$AvgDG_{nb}$ mittlerer Nachbarschaftsgrad
AIP Agranular insular cortex posterior part	BA Barabasi-Alber
Alv Agranula insular coriex ventral part	BAMS Brain Arcitecture Management System
APIr Amygaalopiriform transition area	BC Betweeness Zentralität
APL-SR average path length - self references Area 24 Area 24 des anterioren cingulären Konter	BOLD blood oxygenation level dependent signal
Aron 240 Untergrag 24g das antorioran	C Clusterkoeffizent
cingulären Kortex	Cg1 Cingulate cortex area 1
Area 24b Unterarea 24b des anterioren	Cg2 Cingulate cortex area 2
cingulären Kortex Area 25 Area 25 des anterioren cingulären	CluC ₂ Clusterkoeffizient der zweiten oder indirekten Nachbarn
Kortex	$CluC_{All}$ Gesamtclusterkoeffizient
Area 29 Area 29 des retrosplenialen Kortex	CMI Connectivity matching index
Area 29a Unterarea 29a des retrosplenialen Kortex	CxA Cortex amygdala transition zone
Area 29b Unterarea 29b des retrosplenialen Kortex	DAC Directed assortativity coeficient DG _{ALL} Gesamtzahl vorhandener
Area 29c Unterarea 29c des retrosplenialen Kortex	Konnektivitaten DI Dysgranular insular cortex
Area 30 Area 30 des retrosplenialen Kortex	DIEnt Dorsal intermediate entorhinal cortex
Area 33 Area 33 des anterioren cingulären	DLEnt Dorsolateral orbital cortex
Kortex	DLO Dorsolateral orbital cortex
Area 35 Agranuläre Area des perirhinalen Kortex	DP Dorsal peduncular cortex
Area 36 Dysgranuläre Area 36 des	DTI diffusion tensor imaging
Aroo 48 wantualatan Baut dag natuaghlanialan	FC Figenvektorzentralität
Kortex	Ect ektorbinale Kortex
ASC Average subgraph centrality	FR Frdös Renvi
Au1 Primary auditory cortex, primärer	FL Forelimb
auditiver Kortex	Fr1 Frontal cortex 1
AuD Secondary auditory cortex dorsal area, dorsaler auditiver Kortex	Fr2 frontal cortex 2

ParPC kaudaler posteriorer parietaler Kortex
ParPD Parietal cortex posterior area dorsal part, dorsale posteriore parietale Kortex
ParPR Parietal cortex posterior area rostral part, rostraler posteriorer parietaler Kortex
ParVC kaudale Part des ventralen parietalen Kortex
ParVR rostrale Part des ventralen parietalen Kortex
PaS Parasubiculum
PCA Principal component analysis
PirL Piriform cortex layers
PLCo Posterolateral cortical nucleus
PLI polarised light imaging
PMCo Posteromedial cortical nucleus
Post Postsubiculum
PrL Prelimbic cortex
PrS Presubiculum
PTLp posteriorer parietale Assoziationskortex
PtPC kaudale posteriore parietale Kortex
PtPD dorsale posteriore parietale Kortex
PtPR rostrale posteriore parietale Kortex
Q Modularitätskoeffizient
REC reziproke rewiring Zufallsprozesse
rewiring Zufallsprozesse Siehe
RSA agranulärer retrosplenialer Kortex
RSC retrosplenialer Kortex
RSd Retrosplenial dorsal
RSG granulärer retrosplenialer Kortex
RSGa Retrosplenial granular cortex a region
RSGb Retrosplenial granular cortex b region
RSGc Retrosplenial granular cortex c region
S1 primärer somatosensorischer Kortex
S1BF primary somatosensory cortex barrel field
S1DZ Primary somatosensory cortex dysgranular region
S1FL primary somatosensory cortex forelimb region

- Fr3 Frontral cortex area 3, Frontal cortex 3
 GI Granular insular cortex
 GTOM Generalized topological overlappping measure
 HL HIndlimb
 IL Infralimbic cortex
 KESM knife edge scanning microscopy
 L Pfadlänge
 LEnt Lateral entorhinal cortex
 LO Lateral orbital cortex, lateraler orbitofrontraler Kortex
- Loc Lokalisationsindex
- LPtA Lateral parietal association cortex
- M1 primärer Motorcortex
- M2 sekundärer Motorcortex
- MBA modifizierten BA
- MCC mid-cingulärer Kortex
- MDS Metrische multidimensionale Skalierung
- MEnt Medial entorhinal cortex
- MO Medial orbital cortex, medialer orbitofrontraler Kortex
- MOHO modifizierte OHO
- MOp primärer somatomotorischer Kortex
- MOs sekundärer somatosenorischer Kortex
- MPtA Medial parietal association cortex
- NeuroVIISASneuroVisualizationImagemappingInformationSystemforAnalysis and SimulationSystemfor
- O2CL lateralen Part es sekundären okzipitalen Kortex
- Oc1B binokularer okzipitaler Kortex
- Oc1M monokularer okzipitaler Kortex
- Oc2L lateraler okzipitaler Kortex
- Oc2LM mediolateraler okzipitaler Kortex
- Oc2MM mediomedialer okzipitaler Kortex
- Par1 primärer parietaler Kortex, primärer parietaler Kortex
- Par2 sekundärer parietaler Kortex, sekundären parietalen Kortex
- ParP Parietal cortex posterior area, posteriore parietale Kortex

- S1HL Primary somatosensory cortex hindlimb region
- S1J Primary somatosensory cortex jaw region
- S1Sh Primary somatosensory cortex shoulder region
- S1Tr Primary somatosensory cortex trunk region
- S1UL Primary somatosensory cortex upper lip region
- S2 Secondary somatosensory cortex, sekundärer somatosensorischer Kortex
- SSp primärer somatosensorischer Kortex, primäre somatosensorische Region
- SSs supplementärer somatosensorischer Kortex
- Te1 primärer temporaler Kortex
- Te2 sekundärer temporaler Kortex
- Te3 teritärer temporaler Kortex
- TeA Temporal association cortex 1, assoziativer temporaler Kortex
- TEa Assoziationsregion des temporalen Kortex
- TeV ventraler temporaler Kortex
- TuO Olfactory tubercle
- V1 Primary visual cortex, primärer visueller Kortex
- V1B Primary visual cortex binoclar area, binokularer Kortex
- V1M Primary visual cortex monocular area, monokularer Kortex

- V2L Secondary visual cortex lateral area, lateraler sekundärer visueller Kortex
- V2M medialer sekundärer visueller Kortex
- V2ML Secondary visual cortex mediolateral area, mediolateraler sekundärer visueller Kortex
- V2MM Secondary visual cortex mediomedial area, mediomedialer sekundärer visueller Kortex
- VC_{DG} Variationskoeffizient der Nachbarstufe
- VIEnt Ventral intermediate entorhinal cortex
- VISal anterolateraler visueller Kortex
- VISam anteromedialer visueller Kortex
- VISli intermediolateraler visueller Kortex
- VISII laterolateraler visueller Kortex
- VISIIa anteriorer Part des laterolateralen visuellen Kortex
- VISm1 mediolateraler visueller Kortex
- VISp primärer visueller Kortex
- VISpl posterolateraler visueller Kortex
- VISpm posteromedialer visueller Kortex
- VISrl rostrolateraler visueller Kortex
- VISx putativer visueller Kortex
- VLO ventrolateraler orbitofrontraler Kortex
- VO Ventral orbital cortex, ventraler orbtiofrontraler Kortex
- VTT Ventral tenia tecta
- WS Watts-Strogatz

1 Einleitung

1.1 Einführung in die Thematik

In der vorliegenden Arbeit wird das Konnektom der Hirnrinde der Laborratte mittels Methoden der Konnektomik untersucht. Konnektomik befasst sich mit der Erzeugung und Analyse von Konnektomen, worunter Gesamtheiten von neuronalen Verbindungen von Nervensystemen verstanden werden. Wie in der Genomforschung, der Entschlüsselung der Gesamtheit aller Gene eines Organismus (Collins et al. 1998), wird in der Konnektomforschung versucht sämtliche Verbindungen zwischen Neuronen (zelluläre Ebene) und übergeordneten Einheiten wie Gehirnregionen und/oder Kerngebieten darzustellen. In dieser Arbeit werden die neuronalen Verbindungen der Laborratte erfasst, da in diesem Säugetier die meisten Tract-tracing Untersuchungen durchgeführt wurden. Die Erforschung von Netzwerkstrukturen durchlief enorme Fortschritte seit 2000, sodass durch eine quantitative Analyse von neuronalen Verbindungen mit Hilfe statistischer und mathematischer Methoden charakteristische konnektionale Muster in Nervensystemen erkannt werden konnten. Es existieren komplexe Netzwerke in vielen Bereichen, zum Beispiel in den Biowissenschaften (biochemische Netzwerke, interzelluläre Signal-Netzwerke, ökologische Netzwerke, neuronale Netzwerke). Ebenfalls existieren Netzwerke in den Sozialwissenschaften (soziale Netzwerke), in der Informatik (webbasierte Hyperlinks) und Publikations- sowie Zitationsnetzwerke (Kas 2011). Die Erforschung von Nervenzellverbindungen besitzt eine große Bedeutung für den neuroanatomischen Aufbau, den elektrophysiologischen Eigenschaften, das Verstehen von neuronaler Dynamik, die Entwicklung des Gehirns und die Visualisierung des Gehirns (Sporns 2011a). Obendrein ist die Erforschung der einzelnen Konnektivitäten und der Komplexität des Gehirns substanziell, um von der klinischen Beobachtung von Krankheiten (z.B. Lähmung von Körperteilen) hin zu sicheren Erklärungen von Ursachen und Wirkungen auf das neuronale Netzwerk (Läsion in den motorischen Gehirnarealen und Bahnen) zu gelangen (Feinberg 2012, S. 16f.). Es muss jedoch hervorgehoben werden, dass neuronale Netzwerke bzw. Konnektome, nur eine Komponente darstellen, um umfassend die Funktionalitäten von Nervensystemen zu verstehen.

In dieser Dissertation wurden mit Hilfe von formalen Verfahren extrinsische und intrinsische Verbindungen der Großhirnrinde der Ratte untersucht. Hierfür wurde eine weitgehende vollständige Metaanalyse der Tract-tracing Studien der letzten Jahrzehnte bis hin zu aktuellen Publikationen durchgeführt. Die gewonnenen Daten wurden mit dem Programm *neuroVIISAS* (Schmitt und Eipert 2012) ausgewertet und so die Konnektivitäten des Telenzephalons abgebildet. Infolgedessen wurde erstmals ein umfassendes Konnektom mit kontralateralen Verbindungen, gewichtete Verbindungen bis hin zu einzelnen Schichten der Großhirnrinde der Laborratte generiert.

1.1.1 Ein Überblick über Konnektomik und Konnektome

Ein Konnektom beschreibt die Gesamtheit aller physischen Verbindungen im Nervensystem. Konnektomik (Hagmann 2005) bezeichnet die Ordnung, Sammlung, bildliche Darstellung und Auswertung der konnektionalen Daten (Sporns 2010). Konnektome sind Netzwerke zwischen Neuronen und Regionen in Nervensystemen. Biochemische Netzwerke und extrazelluläre Signalwege sind ebenfalls essentielle Netzwerke, die auf subzellulärer bzw. molekularer Ebene Interaktionen zwischen Molekülen beschreiben. Auch wenn diese in Neuronen und Gliazellen teilweise bekannt sind, werden sie (bislang) nicht in Konnektomen betrachtet. Partielle Konnektome sind in neuronalen Subsystemen definierbar wie z.B. motorisches, limbisches System. "Isolierte Konnektome" sind solche, die mit serieller Transelektronenmikroskopie auf synaptischer Ebene in kleinvolumigen Gewebeblöcken erfasst werden, ohne Kenntnis der Verbindungen aus dem hochaufgelösten "Konnektomblock" heraus oder herein (Hua et al. 2015). Konnektome im engeren Sinn sind bislang nur für Caenorhabditis elegans bekannt (White et al. 1986). Ein Konnektom einer beliebigen Spezies hilft erheblich das Verständnis über die funktionalen Prozesse verstehen zu lernen und zeigt, wie sich bestimmte neuronale Prozesse aus der konnektionalen Architektur ergeben. Des Weiteren kann damit, wie oben skizziert, ein Schaden auf konnektionaler Ebene und die Wirkung auf das funktionelle System leichter nachvollzogen werden. Durch eine Computersimulation des Nervensystems können diese Abläufe nachgeahmt und vielfältige Aspekte der experimentellen und theoretischen Neuroforschung plastisch dargestellt werden (Sporns et al. 2005).

Den Ursprung der Konnektomforschung findet sich in den Theorien des Anatoms Santiago Ramón y Cajal. Dieser hat Ende des 19. Jahrhunderts/ Anfang des 20. Jahrhunderts die *Neuronen Doktrin* aufgestellt. Seit dieser Doktrin und mit Hilfe der Färbemethode von Golgi (Glickstein 2006) wird das Neuron als strukturelle und funktionelle Einheit des Nervensystems angesehen (Cajal 1995). Durch Cajal wurde auch der Begriff der *dynamischen Polarisation* (Nervenzellen können Aktionspotentiale empfangen und weiterleiten) eingeführt (Sabbatini 2003).

Abbildung 1: Zeichnung von Nervenzellen eines Nagetier Kortex von Santiago Ramón y Cajal (Cajal 1909).

Ein weiterer Meilenstein in der Erforschung der Funktionen des Nervensystems ist Sherringtons Entdeckung von den elektrophysiologischen Grundlagen der Reflexe (Sherrington 1906).

Auf den genannten Grundlagen basiert ein großer Teil des heutigen Verständnisses der neuronalen Netzwerke. So transportieren Nervenzellen (in der Netzwerktheorie auch *nodes/Knoten* genannt) die Informationen durch elektrischer Leiter (*wires*) entweder via Dendriten zum Zellleib oder via Axonen zu anderen Neuronen (Lichtman und Sanes 2008).

Das neuronale Netzwerk respektive das Konnektom kann auf unterschiedlichen Auflösungsebenen dargestellt werden (Leergaard et al. 2012). Synaptische und zelluläre Verbindungen werden auf der Mikroskala abgebildet (Reus und van den Heuvel 2013b), so wird das Konnektom des Caenorhabditis elegans nach White et al. (1986) auf der Mikroskala beschrieben. Auf der Mesoskala werden lokale Schaltkreise zwischen Neuronen Populationen im Nervensystem abgebildet, mit diesen sind die Funktionen des Gehirns genauer darstellbar (Sporns et al. 2005). Um diese lokalen Schaltkreise zu erfassen, können Verfahren des Tract-tracing genutzt werden. Mit der Makroskala lassen sich große Faserverbindungen beschreiben, die zwischen Hirngebieten und anderen Gebieten des Nervensystems liegen (Oh et al. 2014). In einem Netzwerk bedeutet dies, dass die zwei Knoten die verbundenen Gehirnregionen darstellen (Swanson und Bota 2010). Diese können mit optischen invasiven (histologisch) und nichtinvasiven Verfahren sichtbar gemacht werden (Hagmann 2005; Sporns et al. 2005; Schmahmann et al. 2007; van Essen et al. 2013). Ebenfalls sind Verbindungen zwischen Zielregionen durch invasive Tract-tracing Verfahren abbildbar (van den Heuvel et al. 2015). Das hier erfasste Konnektom der Ratte wird aufgrund der Verfügbarkeit von besonders detaillierten Daten in den neurowissenschaftlichen Publikationen umfänglich auf der Makroskala konstruiert. Zudem wurden zahlreiche Tracing-Methoden in den Gehirndimensionen der Laborratte seit Einführung des HRP-Tract-tracing 1972 optimiert und etabliert (LaVail und LaVail 1972).

Als beispielhafter Aufbau für die Konstruktion eines Konnektoms und die graphentheoretische Auswertung soll die Arbeit von White et al. (1986) erwähnt werden: Die Arbeitsgruppe untersuchte und stellte erstmals ein sehr kleines Nervensystem nahezu vollständig auf der Mikroskala (synaptischen und gap-junction Ebene) dar. Der Fadenwurm Caenorhabditis elegans steht im Mittelpunkt der Untersuchung. Die neuronalen Strukturen des Fadenwurms Caenorhabditis elegans wurden mit Hilfe elektronenmikroskopischer Technik kartiert (Lichtman et al. 2008). Der Fadenwurm wurde gewählt, weil er mit 302 Neuronen eine sehr überschaubare Anzahl an Nervenzellen besitzt, die innerhalb der Individuen konstant bleiben und die Anzucht mit Bakterien besiedelten Agarplatten unkompliziert ist (White et al. 1986). Neuere Studien untersuchen das Konnektom des C. elegans noch genauer: so lassen sich hier 279 Neuronen (die pharyngalen und zwei weitere ohne Verbindungen wurden ausgeschlossen) und ein Netzwerk von annähernd 3000 Verbindungen dokumentieren. Die Größe des Netzwerkes ist zwar klein, aber dafür umfasst es viele verschiedene Neuronenklassen, die durch Morphologie und Verbindungsmuster eingeteilt werden (Varshney et al. 2011). Das Konnektom besitzt *Small-World* Eigenschaften (Watts und Strogatz 1998). Das Nervensystem weist sechs modulare Strukturen auf der Mesoskala auf, dort sind die Nervenzellen stärker untereinander verbunden als mit Neuronen außerhalb der Module (Pan et al. 2010). Durch die Anordnung und Verbindungen der Neuronen liegt eine Art der Optimierung der Verdrahtung vor, was die Geschwindigkeit des Informationsaustausches verbessert bzw. die Länge des Verbindungsweges reduziert (Chen et al. 2006). Im Nervensystem des C. elegans existieren 11 Mittelpunktsknoten, die untereinander eine Clique (rich club) bilden und durch einen hohen Grad an Verbindungen und Effizienz (kurze Pfadwege) gekennzeichnet sind. Diese haben eine höhere Effizienz als reguläre Graphen und eine niedrige als zufällige Graphen. Dagegen verfügt das Konnektom von C. elegans über eine niedrigere Clusterbildung als reguläre Graphen und eine höhere als zufällige Graphen. Die Verbindungswege sind eher kurz und das Netzwerk der Nervenzellen, mit Ausnahme der 11 stark verbundenen Knoten, wenig verknüpft. Zahlreiche Motive (Muster von wenigen (ca. 3-4) Knoten umfassenden Untergraphen) sind in dem Konnektom erkennbar. Ein Motiv, was hervorsticht, zeigt Verbindungen von peripheren Knoten über Mittelpunktsknoten und wieder zurück zu peripheren Knoten (Towlson et al. 2013). Weitere umfangreiche Konnektomuntersuchungen wurden bspw. für die Makaken Primatengattung (Felleman und van Essen 1991, van Essen 1992, Young 1992, Young 1993, Stephan et al. 2001, Kötter 2004, Sporns et al. 2007, Honey et al. 2007, Modha und Singh 2010, Elston et al. 2010, Scholtens et al. 2014) und die Katze (Scannell et al. 1995, Scannell et al. 1999, Gómez-Gardeñes et al. 2010, Reus und van den Heuvel 2013a, Beul et al. 2014) erstellt.

1.1.2 Kurze Einführung in die Netzwerktheorie

In den letzten Jahrzehnten ist ein neuer Zweig, die Netzwerktheorie, für das weitere Verständnis von Nervensystemen gewachsen. Diese Theorie besagt, dass das Nervensystem ein komplexes Netzwerk darstellt, es dynamischen Prozessen unterliegt und sie beschreibt, wie die Gehirnregionen untereinander auf funktioneller Ebene interagieren (Varela et al. 2001). Im Folgenden wird die Entwicklung der Netzwerktheorie im Zusammenhang mit der Konnektomforschung erläutert.

Der Grundgedanke der Netzwerktheorie und somit auch der Konnektomforschung geht auf einen Mathematiker namens Leonhard Euler zurück. Dies wird häufig als Anfang der Graphentheorie bezeichnet (Reijneveld et al. 2007). Euler befasste sich mit dem Königsberger Brückenproblem, ein Rundgang durch Königsberg, indem jede Brücke nur einmal übertreten werden darf und bewies mit Hilfe eines Graphen, dass dieses Problem nicht lösbar ist (Euler 1736, Hopkins und Wilson 2007). Mit Hilfe von Knoten und Kanten lassen sich ebenso viele andere komplexe Systeme, wie Genom- und Proteindatenbanken, aber auch die Vernetzung des Internets, darstellen (Meunier et al. 2009).

Für die weitere Entwicklung ist die Beschreibung der zufälligen Graphen (*random graphs*) wichtig (Solomonov und Rapoport 1951, Erdös und Rényi 1960). Erdös und Rényi analysierten, wie sich die Struktur des Graphen mit *n* Knoten und *m* Kanten entwickelt und welche vorhersagbaren Eigenschaften dieser besitzt (Bollobás und Riordan 2003). Deshalb entwickelten sie ein Modell, indem die Anzahl der Knoten vorgegeben ist und anschließend stetig mehr Kanten zwischen den Knotenpaaren

durch zufälliges Auswählen hinzugefügt werden. Es wurde festgestellt, dass sich ab einem gewissen Punkt die Netzwerkeigenschaften signifikant verändern. Außerdem wurden Methoden entwickelt, um Standardeigenschaften für Graphen zu bestimmen (Sporns 2008).

Dieser sprunghafte Übergang bzw. Änderung von Netzwerkeigenschaften bei der Generierung von Graphen wird auch als phase transition bezeichnet (Bollobás 1998). Für die Erforschung von realen Netzwerken, wie der neuronalen Konnektivitäten, sind die Strukturen der Zufallsgraphen jedoch zu einfach. So benötigt man für die Beschreibung weitere Informationen, wie eine hochgradige Clusterbildung (high clustering) und die Anzahl der Konnektivitäten, die pro Knoten nach dem Potenzgesetz zugewiesen werden (power law degree) (Reijneveld et al. 2007). Auch ist ein hoher Clusterkoeffizient, Motive (motifs) (Milo et al. 2002) und eine ausgeprägte Modularität (modularity) wichtig für die lokale Struktur von Netzwerken. Der Clusterkoeffizient sowie die Motive stehen für die lokale Eingliederung der einzelnen Knoten in das Netzwerk und die Modularität für die Zerlegbarkeit des Netzwerkes in Segmente bzw. Gruppen von Gebieten (Newman und Girvan 2004, Guimerà et al. 2004) und deren gebietsspezifische strukturelle Verbundenheit. Die Modularität lässt sich durch den Modularitätskoeffizienten O bestimmten. Dieser stellt die Anzahl der verbundenen Knoten in einem Modul im Vergleich mit einem randomisierten Netzwerk dar. Ein hohes O deutet auf eine höhere modulare Struktur hin (Newman 2006). Mit Hilfe der Motivbildung können große Netzwerke in mehrere kleine aufgeteilt werden und damit die lokalen Strukturen günstiger abgebildet werden. Für das menschliche Gehirn sind Clusterbildung (Bildung von Zusammengehörigkeitsstrukturen) und Module in oder zwischen Gehirnregionen wichtig, da dadurch Informationen untereinander ausgetauscht werden und das Gehirn zu einem funktionellen System wird (Sporns 2008). Sporns und Kötter (2004) unterteilen Motive in strukturelle, als anatomisches Grundgerüst mit möglicher Vernetzung mehrerer Regionen, und funktionelle Bausteine, für die Verarbeitung und Weiterleitung von Informationen.

Ein weiteres Element haben viele reale Netzwerke gemeinsam: die Entfernungen zwischen Verbindungen sind in Netzwerken erstaunlich kurz (Reijneveld et al. 2007). So entdeckte Stanley Milgram ein Phänomen, bei dem jeder Mensch über 6 andere Personen miteinander bekannt ist. Dies wird auch als *small-world phenomenon* bezeichnet (Milgram 1967). Die Idee dazu wurde schon früher aufgegriffen, wobei hier nur von fünf Pfadlängen ausgegangen wurde (Karinthy 1929). Die *small worldness* (Humphries und Gurney 2008) wurde auch im neuronalen Netzwerk des Gehirns gefunden (He et al. 2007, Hagmann et al. 2007, Iturria-Medina et al. 2008). Ein bedeutender Fortschritt für die Netzwerkerforschung war eine Veröffentlichung von Watts und Strogatz (1998). Sie untersuchten, ob das *small-world* Phänomen in Gruppen oder Netzwerken existiert. So zeigten sie, dass bei Schauspielern, dem Stromnetz der westlichen USA und dem neuronalen Konnektom vom Fadenwurm Caenorhabditis elegans *small-world* Eigenschaften vorhanden sind: jeder Knoten *n* (hier als *vertex* bezeichnet) ist anfangs nur mit seiner unmittelbaren Nachbarkante *k* verbunden. Von dieser ringförmigen Struktur ausgehend werden nun durch zufälliges Auswählen *p* neue Kanten hinzugefügt. Durch dieses Prozedere entsteht entweder ein regulärer Graph (p=0) oder ein zufälliger Graph (p=1) (siehe Abbildung 2) Small-World Eigenschaften korrelieren mit einer hohen lokalen und globalen Effizienz für den Informationsaustausch (Bassett et al. 2008). Da bisher über die Graphen von 0 relativ wenig bekanntist, wurden weitere Untersuchungen vorgenommen. Watts und Strogatz suchten nach einem Graphen,der eine große Anzahl an Knoten, aber dafür wenige Verbindungen besitzt. Mit Hilfe des Clusterkoeffizienten*C*(Wahrscheinlichkeit, dass der Nachbarknoten von einem Knoten ebenfalls Verbindungeneingeht) und der Pfadlänge*L*(Entfernung, die Anzahl der Kanten, zwischen zwei Knoten) lässt sichdies bestimmen. Bei einem regulären Graphen existiert ein hoher Clusterkoeffizient und eine großePfadlänge, bei einem zufälligen Graphen sind*C*und*L*niedrig. Ein Graph mit*small-world*Eigenschaften besitzt dagegen ein hohes*C*und dafür ein niedriges*L*, der Graph oder das Netzwerk besitzen alsohochgradige Verbindungen und kurze Pfadlängen (Watts und Strogatz 1998).

Abbildung 2: Mit steigendem P verändert sich der Graph von einem regulären Graph zu einem zufälligen Graphen. Graphen mit smallworld Eigenschaften ordnen sich dazwischen an. Aus: Watts und Strogatz 1998, S. 441.

Eine folgende wichtige Entwicklung ist die Entdeckung der skalenfreien Eigenschaften in komplexen Netzwerken. Nach Barabási und Albert wird die Zuteilung von Knoten zu Kanten durch den Grad des zugehörigen Knotens bestimmt. Sie begannen ebenfalls damit, Knoten zufällig mit Kanten zu verbinden. Ein hoher Grad eines Knotens wird durch seine große Anzahl an Kanten definiert. Ein solcher Knoten hat nun die Tendenz, sich mit immer mehr Kanten verbinden zu wollen, dies ist auch in vielen realen Netzwerken (z. B. unter Schauspielern) erkennbar. Die Verbindungen (*k*) werden demnach nach dem Potenzgesetz $P(k) \sim k^{-y}$ verteilt, was skalenfreie Eigenschaften aufweist (Barabàsi und Albert 1999, Barabàsi und Albert 2013). Knoten mit vielen Verbindungen werden auch als Knotenpunkte oder Mittelpunktsknoten (*hubs*) bezeichnet (Barabàsi und Albert 2013). Zu den Phänomenen, welche eng mit den Konnektor-Hubs assoziiert sind, zählt das Rich-Klub Phänomen. Knoten, die zum Rich-Klub gehören besitzen auch untereinander besonders viele Verbindungen (Colizza et al. 2006, van den Heuvel und Sporns 2013b). Ein Rich-Klub deutet auf die Integration von Informationen von räumlich getrennten funktionellen Systemen hin (van den Heuvel und Sporns 2013a).

Um zu überprüfen, wie stark (*strength*) oder effektiv (*efficiency*) Knoten miteinander verbunden sind oder zur Bestimmung der Pfadlänge von Verbindungen, werden den Kanten Gewichte (Axondichten) zugeordnet und womit eine weitere Analysemöglichkeit von gewichteten Graphen verfügbar ist. Bei ungewichteten Graphen besitzen alle Kanten eine gleiche Wertigkeit (Reijneveld et al. 2007). Gewichtete Graphen werden oftmals zur Beschreibung von komplexen Netzwerken verwendet (Newman

7

2004, Barrat et al. 2004, Park et al. 2004, Barthélemy et al. 2005). Das Kantengewicht entspricht in neuronalen Konnektomen der relativen Dichte von Axonen.

Die hier in Kürze vorgestellten und einige weitere Eigenschaften von Konnektomen werden im Ergebnisteil speziell für das kortikale Konnektom der Laborratte geprüft.

1.2 Tract-tracing

Für die Erstellung der Konnektome können Tract-tracing Publikationen verwendet werden, so wurde für die vorliegende Arbeit eine Metaanalyse von Tract-tracing Studien von gesunden Ratten durchgeführt. Der Vorteil der Methodik ist, dass Tract-tracing zur Gewinnung neuronaler Daten seit 1972 angewendet wird und sehr verlässlich ist (LaVail und LaVail 1972, Wouterlood et al. 1997). Die Tract-tracing Substanzen werden in vivo in das Nervensystem injiziert (muskuläre und nicht-neuronale Applikationen sind für diese Arbeit nicht relevant) und verteilen sich nach festgelegten Zeitpunkten in den Gebieten, die Verbindungen aufweisen. In den Zielgebieten werden die Tracer durch die direkte optische Detektion des Tracers selbst oder durch den radioaktiven Zerfall bei radioaktiv markierten aminosäurehaltigen Tracern, was auch als Autoradiographie bezeichnet wird, erkannt (Kamper 2004).

Es werden zwei Arten von Markierungssubstanzen unterschieden, physiologische und physikochemische. Physiologische Tracersubstanzen werden meist in einer lebenden Nervenzelle aufgenommen und weitertransportiert (Philipp 2012). Physikochemische Tracer können ebenfalls vom Perikaryon aufgenommen werden und aktiv oder passiv (lipophile Tracer) transportiert werden und bilden die Grundlage der vorliegenden Arbeit, hierbei handelt sich vor allem um Farbstoffe oder indirekt nachweisbare Substanzen (Kettlitz 2013). Die Tracer werden durch verschiedene Verfahren eingebracht: Hochdruck Einspritzung/high pressure application (z.B. Dextran-Amin), per Iontophorese (z.B. Biozytin) oder mit Hilfe von Farbkristallen (z.B. Dil). Die Aufnahme der Tracer in die Axone oder Dendriten erfolgt entweder über aktiven Transport, passiven Transport (Diffusion) oder intrazelluläre Injektion. Die Metaanalyse bezieht sich auf Tracer mit aktiven Transportmechanismen, da diese sehr effektiv ist (Köbbert et al. 2000). So werden für die neuronale Verknüpfung Makromoleküle entweder Rezeptor vermittelt oder via vesikulärer Endozytose aufgenommen und weitertransportiert. Retrograde Tracttracing Experimente nutzen den retrograden Transport (Transport von Axonterminalen oder terminalen Synapsen hin zum Perikaryon) und anterograde Tract-tracing Untersuchungen den anterograden Transport (vom Perikaryon in Richtung terminale Synapse). Ein Tracer kann auch in beide Richtungen projizieren, in dem Fall wird der Transport als bidirektional bezeichnet (Lanciego und Wouterlood 2011). Fluoro-Gold ist ein Beispiel für einen ausschließlich retrograden Tracer, radioaktiv markierte Aminosäuren werden nur anterograd und Biozytin oder WGA-HRP bidirektional transportiert.

Die Richtung des Tracer Transportes ist essentiell für das Auffinden der Afferenzen und Efferenzen von Hirnregionen, so lassen sich damit die exakten Ziel- und Projektionsgebiete und indirekt die gerichtete Weiterleitung der Aktionspotentiale bestimmen. Dies wird als orientierte Verbindung bezeichnet. So haben nicht-orientierte Verbindungen den Nachteil bloß Konnektivitäten zwischen Regionen darstellen zu können, aber sie erlauben keine Rückschluss auf die Richtung der Ausbreitung von Aktionspotentialen (Kettlitz 2013). Ausführliche Übersichtsarbeiten über Tract-tracing Methoden sind in den Veröffentlichungen von Watts und Strogatz (1998), Köbbert et al. (2000), Vercelli et al. (2000), Lichtman und Sanes (2008) und Arenkiel (2015) zu finden. Eine vollständige Liste aller in den ausgewerteten Publikationen verwendeten Tracer befindet sich im Tabellenanhang unter **Tabelle 11**.

1.3 Nicht-Tracer basierte Methoden

Nicht-Tracer basierte Methoden für die Identifizierung der Konnektivitäten werden vorgestellt. Bei manchen ist kein oder lediglich ein ungenügender Richtungsweg der Verbindungen darstellbar und sie werden hier als nicht-orientierte Methoden bezeichnet. Andere Verfahren sind schwierig validierbar (axonale und Degeneration) und schwierig steuerbar bzgl. der Spezifität (virales Tract-tracing).

1.3.1 Tract-tracing durch Virus-Stämme

Neurotrope Viren besitzen günstige Eigenschaften, um neuronale Verbindungen bestimmen zu können. Durch Virus basiertes Tract-tracing werden entweder monosynaptische, multisynaptische oder transneuronale Verbindungen dargestellt (Callaway 2008). Nach transsynaptischer Übertragung werden sie im Empfänger Neuron repliziert und es lassen sich über die entstandene Infektion die Konnektivitäten quantifizieren (Kuypers und Ugolini 1990, Loewy 1998). Zwei Virus Klassen werden für transsynaptische Verbindungen detektiert, Rhabdoviridae (bspw. Rabies-Virus) und Herpesviridae (Ugolini 2010). Rabies-Viren werden retrograd (Kelly und Strick 2000, Ugolini 2008) und Herpes-Viren anterograd und/oder retrograd (LaVail et al. 1997) transportiert. Diese Methode wird durch die mangelnde Spezifität bei polysynaptischen Verschaltungen, die inkongruente Ausbreitungsgeschwindigkeit und die bei einigen Viren vorkommende Induktion zum Zelltod der Nervenzellen limitiert (Callaway 2008).

1.3.2 Axonale Degenerations-Studien und Golgi-Imprägnation

Ein weiteres Verfahren sind Läsionsstudien, in denen definierten Gehirnstrukturen durch Substanzen (Lundberg et al. 1994) oder mechanisch (Pearson et al. 1987, O'Reilly et al. 2013) Verletzungen zugeführt werden, so dass es zu einer retrograden Degeneration kommt. Die verletzten Axone können beispielsweise mittels einer Silberlösung sichtbar gemacht werden (Nauta 1950, Fink und Heimer 1967). Die Technik lässt nur begrenzt Aussagen zur Konnektionalität zu, da nur läsionierte Nervenzellen dargestellt werden und durch Ungenauigkeiten in der Auswertung lediglich variable zeitliche sowie strukturelle Beobachtungen möglich sind (Cowan et al. 1972).

Mit Hilfe der Golgi-Technik (Das et al. 2013) wird zwar nur ein Prozent aller Neurone eines histologischen Schnittes gefärbt und dünne myelinisierte Axone werden ebenfalls nicht markiert, dafür werden die Neuronen aber vollständig dargestellt. Diese Technik eignet sich nicht zur vollständigen Erfassung von neuronalen Verbindungen in Schnittserien.

1.3.3 Digitale Polarisationsmikroskopie

Mit Hilfe der digitalen Polarisationsmikroskopie (*polarised light imaging/PLI*) wird eine hochaufgelöste Darstellung von postmortalen humanen Gehirnen, aber auch Nervensystemen anderer Organismen, möglich (Axer et al. 2000, Axer et al. 2001). Die Technik nutzt die optischen Eigenschaften anisotropen Gewebes (z.B. Myelinscheide) (Campos Vidal et al. 1980). Nach Überarbeitung der Methode ist der dreidimensionale Verlauf kurzer und langer Projektionen in 100 µm dicken Gehirnschnitten abbildbar (Palm et al. 2010, Axer et al. 2011). Die 3D-Polarisationsmikroskopie ist durch fehlende Wiedergabe der Richtungsorientierung zu den jeweiligen Kern- und Zielgebiete limitiert.

1.3.4 Laserscanning Photostimulation

Bei der Laserscanning Photostimulation werden mit Hilfe einer Lichtquelle und dem erregenden Neurotransmitter Glutamat lokale Schaltkreise und synaptische Verbindungen lokalisiert und hochaufgelöst sichtbar gemacht. Die physiologische Funktionsweise der neuronalen Verknüpfung wird durch anfangs inaktiviertes Glutamat, welches durch kurze Impulse ultravioletter Bestrahlung aktiviert wird, limitiert (Callaway und Katz 1993, Katz und Dalva 1994). Diese Technik stellt leider keine längeren Projektionen zwischen Kerngebieten dar und wird deshalb in dieser Arbeit nicht weiter betrachtet.

1.3.5 Brainbow

Eine neuere Methode zur Visualisierung von neuronalen Netzwerkstrukturen sind genetisch markierte Nervenzellen, die durch über 90 Farben sichtbar gemacht werden können. In Brainbow Transgenen wird Cre/lox-Rekombination verwendet, um zwischen drei oder mehr fluoreszierenden Proteinen (XFPs) auszuwählen. Mit Hilfe der Brainbow Kopien in der transgenetisch veränderten Maus, der Drosophila-Fliege (Hampel et al. 2011) oder dem Zebrafisch (Pan et al. 2011) werden damit eine zufällige Auswahl an fluoreszierenden Proteinen (Farben) ermittelt, mit denen die individuellen Neuronentypen und lokale Schaltkreise darstellt werden. Die Brainbow-Methodik ist für Konnektivitäten zwischen großen Kerngebieten nur eingeschränkt nutzbar und wird infolgedessen nicht in dieser Arbeit verwendet (Livet et al. 2007, Lichtman et al. 2008, Cai et al. 2013).

1.3.6 Knife-edge scanning microscopy

Das Knife-edge scanning microscopy (KESM) ist ein hochauflösendes Verfahren für die vollständige Erfassung zellulärer Systeme eines Organismus und räumlich hochaufgelöste Repräsentationen zu generieren (Mayerich et al. 2008, Chung et al. 2011). So werden über längere Zeiträume (ca. 100 Stunden) mit einer Auflösung von 300 nm die vollständigen Gehirnstrukturen kleinster Bereiche (1 mm³) des Mausgehirns abgebildet. KESM setzt sich aus dem Positionierungstisch, dem Elektronenmikroskop, Diamentmesser für das Zuschneiden der Gehirnblöcke, dem Abbildungssystem und einem Computer für die Berechnung des späteren Modells zusammen (McCormick 2002, McCormick und Mayerich 2004). Die Grenzen des Verfahrens werden durch den Zuschnitt der Blöcke (Verschnitt von

10

Zwischenräumen) und noch unausgereifte Färbetechniken für die En-Bloc Präparate gebildet. Hochaufgelöste bis auf die synaptische Ebene abgebildete räumliche Rekonstruktionen von kleinen Blockförmigen Gewebeproben sind an den sechs Flächen der würfelförmigen Probe abgeschnitten. Damit fehlt die Konnektivität außerhalb der Probe, womit lediglich ein synaptisch isoliertes Konnektom beschrieben werden kann.

1.3.7 CLARITY-Methode

Die von Karl Deisseroth entwickelte Methode Clarity ist zur detaillierten Darstellung insbesondere von dem Gehirn, aber auch Organsystemen, geeignet (Underwood 2013). Mit ihr lassen sich Konnektivitäten zwischen Kerngebieten, lokale Schaltkreise, Verbindungen zwischen einzelnen Nervenzellen und sogar subzelluläre Strukturen, wie Proteine und Neurotransmitter abbilden. Postmortal wird dem Gehirn der Lipidgehalt entzogen und durch Hydrogele (bspw. Acrylamid) und Formaldehyd ersetzt. Das Gewebe wird anschließend immunhistochemisch gefärbt und mittels fluoreszierender Technik sichtbar gemacht, um damit 3D Aufnahmen erzeugen zu können. Da Clarity ein noch relativ junges Verfahren ist, ist weitere Forschung über den Nutzen und die Grenzen notwendig. Unklar ist, wie groß der Verlust der strukturellen Verbindungen ist und zudem treten Gewebeschäden auf. So werden etwa acht Prozent aller Proteine durch diese Methodik eliminiert (Chung et al. 2013, Chung und Deisseroth 2013).

1.3.8 Diffusions-Tensor Magnetresonanztomographie

Mit der Diffusions-Tensor-Bildgebung (*diffusion tensor imaging*/DTI) werden die Diffusionsbewegung und der Richtungsweg von Wasserstoffmolekülen gemessen und visualisiert (Basser et al. 1994). Durch eine freiere Diffusionsbewegung entlang longitudinaler Nervenfasern lässt sich auf die axonale Ausbreitung schließen (Basser und Özarslan 2009). Das menschliche neuronale Netzwerk wird mit dieser nicht-invasiven in vivo Methodik auf der Makroskala abbildbar gemacht (Gong et al. 2009, Craddock et al. 2013). Einschränkend sind die fehlende Darstellung, in welche Richtung (anterograd/retrograd) weitergeleitet wird und relativ niedrige Bildauflösung, mit der nur größere Faserbahnen rekonstruierbar sind (Mori und Zhang 2006).

1.3.9 Resting-State fMRI

Mit dem Resting-State fMRI kann die Funktionsweise des Gehirns unter Ruhebedingungen im lebenden Organismus dargestellt werden, so lassen sich damit Interaktionen zwischen Gehirnregionen beim Menschen untersuchen. Die Technik basiert auf der Messung der Änderung des Blutstroms (Blood Oxygenation Level-Dependent Signal, kurz BOLD), welche mit Hilfe der funktionellen Magnetresonanztomografie sichtbar gemacht wird (Biswal et al. 1995, Biswal et al. 1997). Durch das Resting-State fMRI können neurologische Krankheiten wie Alzheimer, Schizophrenie und psychotische Störungen diagnostiziert werden (Koch et al. 2012, Agosta et al. 2012, Binnewijzend et al. 2012, Hoptman et al. 2012, Argyelan et al. 2015). Nachteil dieser Methodik ist die fehlende Darstellung der Verbindungen auf neuronaler Ebene und der exakten Anatomie auf der Makroskala (Smith et al. 2013). Ferner variieren die Untersuchungsergebnisse zwischen den Individuen (Harrison et al. 2015). Werden DTI und fMRI kombiniert, können Richtungsinformationen geschätzt werden (Kunath 2008).

1.4 Die Regionen des Cortex cerebri der Ratte

Die in diesem Kapitel beschriebene Regionenauswahl und das in dieser Arbeit untersuchte Konnektom beziehen sich auf die Veröffentlichungen von Paxinos (2004) und Paxinos (2015). Wesentlich sind hier die Kapitel nach Palomero-Gallagher und Zilles (2004), Palomero-Gallagher und Zilles (2015), Vogt (2015) und Cappaert et al. (2015). Im Folgenden werden die Regionen des Isokortizes: der frontale Kortex, der parietale Kortex, der temporale Kortex und okzipitale Kortex sowie die Zwischenregionen zwischen Isokortex und Allokortex, dem Mesokortex (Palomero-Gallagher und Zilles 2015): der cinguläre Kortex, der retrospleniale Kortex, die orbitofrontalen kortikalen Gebiete, insuläre Kortizes, der perirhinale Kortex und die parahippokampalen Gebiete (Palomero-Gallagher und Zilles 2004, Cappaert et al. 2015) ausführlicher vorgestellt und Begriffs- sowie Gebietsunterschiede zu anderen Autoren erläutert.

Da in dieser Arbeit auch auf das laminäre Konnektom eingegangen wird, wird dieses im folgenden Abschnitt kurz beschrieben. Der Isokortex ist aus fünf bis sechs Schichten aufgebaut, welche parallel zur Gehirnoberfläche verlaufen. Die Schichten sind mit römischen Ziffern (I-VI) von der Oberfläche bis zum Übergang der Substantia alba angeordnet (Palomero-Gallagher und Zilles 2015, S. 602).

1.4.1 Frontal Kortex

Der frontale Kortex wird in die motorischen Felder frontaler Kortex 1 (Fr1), frontaler Kortex 2 (Fr2) und frontaler Kortex 3 (Fr3) unterteilt (Palomero-Gallagher und Zilles 2015). Der frontale Kortex 1 beinhaltet den primären motorischen Kortex und der frontale Kortex 3 untersteht dem Fr1 als sein somatotopisches Areal (Hall und Lindholm 1974, Donoghue und Wise 1982, Neafsey et al. 1986, Palomero-Gallagher und Zilles 2015, S. 603). Frontaler Kortex 2 repräsentiert drei Areale im Gehirn: den primär prämotorischen Kortex, das ergänzende motorische Feld (supplementär motorischer Kortex) und die frontalen Augenfelder (Wise et al. 1979, Neafsey und Sievert 1982, Neafsey et al. 1986, Palomero-Gallagher und Zilles 2015, S. 603). Die vorgestellte Gliederung nach Palomero-Gallagher und Zilles (2015), auf welcher zugleich die Nomenklatur des Konnektoms dieser Arbeit basiert, weist Unterschiede im Vergleich zu weiteren Atlanten auf. Das Feld Fr1 wird bei dem Atlas von Paxinos und Watson (2013) als primärer Motorkortex (M1) bezeichnet. Das Äquivalent zu Fr2 ist der sekundäre Motorkortex (M2). Der Fr3 behält seine Bezeichnung im Atlas von Paxinos und Watson (2013), besitzt aber eine kleinere Ausdehnung im Gegensatz zu dem Fr3 von Palomero-Gallagher und Zilles (2015). Hier wird der Fr3 mit einer Ausdehnung bis zu einem Bregma von -0,12, was dem Hindlimb des primären somatosensorischen Kortex von Paxinos und Watson (2013) entspricht, beschrieben. In

dem Atlas von Swanson (2004) wird Fr1 und Fr2 als primärer somatomotorischer (MOp) und sekundärer somatomotorischer (MOs) Kortex benannt. Fr3 ist bei Swanson (2004) keine eigenständige Region und wird dem MOp und der primären somatosensorischen Region (SSp) zugeordnet. Fr3 verfügt dagegen aber über eine größere Ähnlichkeit, in Hinblick auf die agranuläre Architektur (Zilles und Wree 1995a) und die neurochemische Beschaffenheit (Palomero-Gallagher und Zilles 2004), zu den frontalen Feldern. Deswegen wird Fr3 zu den frontalen Regionen zugeordnet (Zilles und Wree 1995a, Palomero-Gallagher und Zilles 2015). In dem Atlas von Zilles (1985) wird der frontale Kortex in gleicher Weise wie bei Palomero-Gallagher und Zilles (2015) bezeichnet.

1.4.2 Parietal Kortex

Der parietale Kortex wird in einen ventralen, posterioren und anterioren Teil unterteilt, welcher die größte Fläche einnimmt (Palomero-Gallagher und Zilles 2015).

Der ventrale parietale Kortex wird nochmals in einen rostralen (ParVR) und kaudalen (ParVC) Teil aufgegliedert. Der rostrale Teil wird dorsal vom primären parietalen Kortex (Par1) und ventral vom agranulären insulären Kortex begrenzt. Der kaudale Part ordnet sich zwischen dem sekundären parietalen Kortex (Par2) und gleichermaßen ventral angrenzend an den agranulären insulären Kortex an (Palomero-Gallagher und Zilles 2015, S. 611). Im Atlas von Paxinos und Watson (2013) werden die Regionen divergierend beschrieben, sie gehören dort dem anterioren parietalen Kortex an und werden durch unterschiedliche Zytoarchitektonik definiert. So werden sie in eine granuläre und dysgranuläre insuläre Region untergliedert. Nach Swanson (2004) entsprechen die gustatorischen und viszeralen Areale den Regionen ParVR und ParVC. Im Atlas von Zilles (1985) entspricht der gustatorische Kortex dem ventralen parietalen Kortex.

Der posteriore parietale Kortex (ParP) wird in drei Unterfelder gruppiert, dem dorsalen posterioren parietalen (ParPD), rostralen posterioren parietalen (ParPR) und dem kaudalen posterioren parietalen (ParPC) Feld. Begrenzt wird er vom anterioren parietalen Kortex und dem lateralen Teil des sekundären okzipitalen Kortex, O2CL (Palomero-Gallagher und Zilles 2015). Paxinos und Watson (2013) unterteilen den posterioren parietalen Kortex in gleicher Weise, jedoch werden die Unterfelder mit den Kurznamen PtPD, PtPR und PtPC abgekürzt. Bei Swanson (2004) wird der ParP als posteriorer parietaler Assoziationskortex (PTLp) bezeichnet. Anfangs wurde der ParP bei dem Atlas von Zilles (1985) nicht als eigenständige Region erkannt und dem sekundären okzipitalen Kortex zugeordnet. Später wurden Teile des O2CL als autonome Region definiert und als posteriorer parietaler Kortex bezeichnet (Palomero-Gallagher und Zilles 2004).

Der anteriore parietale Kortex wird in die vier Regionen primärer parietaler Kortex (Par1), sekundärer parietaler Kortex (Par2), Hintergliedmaßen-Region (Hindlimb, HL) und Vordergliedmaßen-Region (Forelimb, FL) unterteilt (Palomero-Gallagher und Zilles 2015). Diese Gliederung basiert auf der von Zilles (1985). Die drei Regionen Par1, HL und FL werden dem primären somatosensorischen Kortex (S1) zugeordnet. Par2 entspricht dem sekundären somatosensorischen Kortex (S2) (Zilles und Wree

1995a). Nach dem Atlas von Paxinos und Watson (2013) wird Par2 in den primären somatosensorischen Kortex mit einer großer Anzahl weiterer Unterregionen unterteilt. Hierzu gehören der sekundäre somatosensorische Kortex und zwei dysgranuläre Areale, welche in ein einfaches dysgranuläres und ein orales dysgranuläres unterschieden werden. Die Unterregionen des S1 beinhalten die Hindlimbund Forelimb-Regionen und weitere somatotopische Felder. Bei Swanson (2004) weist die anteriore parietale Region zwei große Felder auf, den primären somatosensorischen (SSp) mit nicht näher bezeichneten Unterfeldern und den supplementären somatosensorischen (SSs) Kortex.

1.4.3 Temporal Kortex

Der temporale Kortex wird in den primären (Te1), sekundären (Te2), tertiären (Te3) und ventralen (TeV) temporalen Kortex aufgegliedert (Palomero-Gallagher und Zilles 2015). Im Mittelpunkt befindet sich Te1, die übrigen Regionen umgeben diese Region (Zilles und Wree 1995a). Die Organisation von Paxinos und Watson (2013) weist deutliche Unterschiede auf. In ihrem Atlas wird der temporale Kortex zwar in einen ebenfalls zentral gelegenen primären auditiven (Au1) und darum parallel verlaufende Regionen, dem dorsalen auditiven (AuD), ventralen auditiven (AuV) und assoziativen temporalen Kortex (TeA) unterteilt, jedoch ist die Ausdehnung des temporalen Kortex hier kleiner. Des Weiteren wurde ein dysgranuläres Areal, der ektorhinale Kortex (Ect), identifiziert, welches topographisch dem TeV von Palomero-Gallagher und Zilles (2015) entspricht. Im Altas von Swanson (2004) entspricht diese Region der Assoziationsregion des temporalen Kortex (TEa). Der Kortex setzt sich weiterhin aus dem primären (AUDp) und den sekundären Feldern, dem dorsalen (AUDd), dem ventralen (AUDv) und dem posterioren (AUDpo) auditiven Kortex zusammen. Unterschiede bestehen bei AUDd und AUDv. AUDd entspricht nach Palomero-Gallagher und Zilles (2015) dem dorsalen Segment von Te2 und dem dorsalen Rand vom rostralen Segment von Te3. AUDv ist überlagert mit dem ventralen Teil und einem kleinen Stück vom rostralen Teil von Te3. AUDpo besitzt die gleiche Position wie der kaudale Part von Te2. Die Aufteilung nach Palomero-Gallagher und Zilles (2015) wurde bereits von Zilles (1985) vorgeschlagen. Auch die Anordnung mit dem zentralen Tel und den umspannenden sekundären sowie tertiären Regionen ist ähnlich (Zilles und Wree 1995a). TeV lagert sich ventral an diese Formation an (Palomero-Gallagher und Zilles 2015).

1.4.4 Okzipitaler Kortex

Der okzipitale Kortex wird in fünf Untergebiete eingeteilt. Den primären Kortexgebieten: monokularer (Oc1M) und binokularer (Oc1B) okzipitaler Kortex und den sekundären Gebieten: lateraler (Oc2L) und mediomedialer (Oc2MM) und mediolateraler (Oc2LM) Kortex (Palomero-Gallagher und Zilles 2015). Die Aufteilung von Zilles (1985) ist ähnlich und wurde von Palomero-Gallagher und Zilles (2004) modifiziert und aktualisiert. In diesem Atlas existieren ebenso fünf Areale, welche mit den gleichen Kurznamen benannt werden. Auch der Atlas von Paxinos und Watson (2013) weist Ähnlich-keiten auf und wird in sechs Felder untergliedert. Der okzipitale Kortex unterteilt sich in einen pri-

mären visuellen Kortex (V1), welcher einen monokularen (V1M) und einen binokularen (V1B) Kortex besitzt und einen sekundären visuellen Kortex, welcher einen lateralen (V2L) und einen medialen (V2M) Kortex aufweist. V2M ist keine eigenständige Region und wird wiederum in ein laterales (V2ML) und ein mediales (V2MM) Segment aufgeteilt. Oc1M und Oc1B bilden das Äquivalent zu V1M und V1B, wobei bei Paxinos und Watson (2013) das rostrale Ende der Felder den primären visuellen Kortex (V1) bilden. Oc2L entspricht V2L, Oc2ML V2ML und Oc2MM V2MM. In beiden Darstellungen verlaufen die Felder parallel zueinander und bilden bandförmige Strukturen am hinteren Ende des zerebralen Kortex (Palomero-Gallagher und Zilles 2015). Swanson (2004) definiert die Grenzen und die Organisation des okzipitalen Kortex abweichend von den vorher genannten Atlanten. In seinem Atlas besitzt die dorsolaterale Grenze des okzipitalen Kortex eine größere Ausdehnung, die mediale Reichweite ist minimal größer. Zudem gliedert Swanson (2004) den okzipitalen Kortex in 11 kortikale Gebiete: den primären (VISp), anterolateralen (VISal), anterioren Part des laterolateralen (VISIIa), laterolateralen (VISII), intermediolateralen (VISIi), mediolateralen (VISml), rostrolateralen (VISrl), posterolateralen (VISpl), anteromedialen (VISam), posteromedialen (VISpm) und den putativen (VISx) visuellen Kortex. Fernerhin besitzt sein posteriorer parietaler Kortex rostrale Anteile von den Feldern Oc1M, Oc1B, Oc2MM und Oc2ML (Zilles 1985, Palomero-Gallagher und Zilles 2004, Palomero-Gallagher und Zilles 2015). Verglichen mit der Gliederung nach Palomero-Gallagher und Zilles (2015) und dieser Arbeit entspricht der rostrale Part des VISpm von Swanson (2004) dem zentralen Anteil von Oc2MM und der kaudale Anteil von VISpm Fragmenten von Oc1M und Oc1B. Des Weiteren kongruiert der posteriore visuelle Kortex mit Arealen von Oc1M, Oc1B und Oc2ML. VISam hingegen kann den rostralen Teil von Oc2MM und Oc2ML zugeordnet werden. Der kaudale Teil von VISal entspricht dem rostralen Teil von Oc2L. Der posteriore parietale Kortex von Palomero-Gallagher und Zilles (2015) weist Anteile von dem rostralen Teil von VISal und VISrl auf. Ferner umfasst Oc2L die Felder VISII, VISIi, VISIm, VISpl und VISx von Swanson (2004).

1.4.5 Cingulärer Kortex

Der cinguläre Kortex wird in drei kortikale Gebiete, dem anterioren cingulären Kortex (ACC), midcingulären Kortex (MCC) und retrosplenialen Kortex (RSC) unterteilt (Vogt et al. 2004, Paxinos und Watson 2013, Vogt und Paxinos 2014, Vogt 2015). Die weitere Klassifikation des cingulären Kortex basiert auf der von Vogt (2015), auf dieser gründet sich auch die Einteilung für das hier vorgestellte Konnektom.

Der anteriore cinguläre Kortex wird wiederum in vier Areale aufgegliedert: Areal 24, 25, 32 und 33 (Vogt 2015). Areal 24 wird nochmals in die Unterareale 24a und 24b unterteilt (Paxinos und Watson 2013). Das Areal 32 wird in ein dorsales und ventrales Segment parzelliert (Paxinos und Watson 2013, Vogt und Paxinos 2014, Vogt 2015). Das anteriore liegende Areal 25 befindet sich unter dem Genu des Corpus callosum und grenzt an das Areal 33. Oberhalb des Areals 25 ist das unterteilte Areal 32 benachbart. Die Unterareale 24a und 24b befinden sich neben dem Areal 32 und oberhalb des Areals

33 (Paxinos und Watson 2013). Die Region 33 scheint außerdem einen Teil des mid-cingulären Kortex zu okkupieren (Vogt 2015). Areal 33 (Paxinos und Watson 2013, Vogt und Paxinos 2014) entspricht bei Swanson (2004) dem infralimbischen Kortex (ILA).

Der mid-cinguläre Kortex (MCC) besitzt ebenfalls die Felder 24a' und 24b'. Um zu kennzeichnen, dass es sich um unterschiedliche Regionen im Vergleich zu dem Areal 24 im ACC handelt, wurde der Apostroph hinzugefügt. Der MCC weist zum ACC deutliche Unterschiede, zytologisch, wie größere Nervenzellen (Paxinos und Watson 2013), abweichende Stoffwechseleigenschaften und Rezeptor-Aktivitäten (Vogt et al. 2001, Vogt 2009, Palomero-Gallagher et al. 2009) und ein differentes Bild der Konnektivitäten (Shibata 1993, Vertes und Hoover 2008) auf (Vogt 2015).

1.4.6 Der retrospleniale Kortex

Der retrospleniale Kortex (RSC) unterteilt sich in das Areal 29, welche in drei Unterfelder 29a, 29b und 29c organisiert ist und ein Areal 30 (Vogt 2015). 29c und 30 gliedern sich abermals in einen posterioren und anterioren Part auf (Vogt und Paxinos 2014). Der posteriore Part von 29c und 30 schließt sich an das Splenium des Corpus Callosum an (Paxinos und Watson 2013, Vogt 2015). Die Region 29a besitzt die ventralste Position des RSC und grenzt an das Postsubikulum, welches auch als Areal 48 bezeichnet wird (Vogt 2015).

Palomero-Gallagher und Zilles (2004) teilen den retrosplenialen Kortex in ein granuläres retrospleniales (RSG) und ein agranuläres retrospleniales (RSA) Gebiet ein. Der RSG entspricht den Gebieten 29a, 29b und 29c nach Vogt (2015). In einer älteren Publikation von Vogt und Gabriel (1993) wurde, zusätzlich zu den Gebieten 29a, 29b und 29c, die Area 29d mit aufgeführt. Diese ist in der aktuellen Publikation nun nicht mehr vorhanden und der agranuläre retrospleniale Kortex scheint nach bildlicher Darstellung der Area 30 nach Vogt (2015) gleichzukommen (Palomero-Gallagher und Zilles 2015, Palomero-Gallagher und Zilles 2004).

1.4.7 Der orbitofrontale Kortex

Der orbitofrontale Kortex wird in vier Untergebiete, dem medialen orbitalen Gebiet (MO), dem ventralen orbitalen Gebiet (VO), dem ventrolateralen orbitalen Gebiet (VLO) und dem lateralen orbitalen Gebiet (LO), gegliedert. Die Gebiete liegen, wie es der Name bereits andeutet, innerhalb des frontalen Kortex in den medialen, lateralen und basalen Bereichen (Palomero-Gallagher und Zilles 2004).

1.4.8 Agranular Insular Kortex

Der agranuläre insuläre Kortex wird in die drei Gebiete, dem ventralen, dem dorsalen und posterioren Gebiet unterteilt und befindet sich um den Sulcus rhinalis (Palomero-Gallagher und Zilles 2004, Zilles und Wree 1995b).

1.4.9 Die parahippokampale Region

Die Unterteilung der parahippokampalen Region erfolgt nach Kjonigsen et al. (2011), Boccara et al. (2015) und Cappaert et al. (2015). Zu dieser Region gehören: der entorhinale Kortex, das Presubikulum, das Parasubikulum, der perirhinale und postrhinale Kortex. Die parahippokampale Region ist, wie die isokortikalen Gebiete, ebenfalls in sechs Schichten aufgegliedert. Es werden der entorhinale Kortex, das Presubiculum und das Parasubiculum zu den periallokortikalen Strukturen gezählt, einer Region zwischen dem Allokortex mit einer dreier Schichtung und dem Isokortex mit sechs Schichten (Stephan 1975, Boccara et al. 2015, Cappaert et al. 2015).

Der entorhinale Kortex nimmt den größten Anteil der parahippokampalen Region ein und ist gleichzeitig der zentrale Teil, der von den restlichen Regionen umgeben wird. Des Weiteren grenzt er lateral an den piriformen Kortex, dorsolateral an den Sulcus rhinalis und medial an den periamygdaloiden Kortex und den posterioren kortikalen Nucleus der Amygdala. Der entorhinale Kortex wird in mehrere Felder untergliedert (Boccara et al. 2015, Cappaert et al. 2015). Nach Brodmann (1909) wurde er in das laterale Feld 28a und das mediale Feld 28b unterteilt. Aktuellere Publikationen differenzieren noch weitere Felder, die dem medialen und lateralen Teil zugeordnet werden können (Krettek und Price 1977, Wyss 1981, Ruth et al. 1982, Ruth et al. 1988, Insausti et al. 1997). So gehören das dorsolaterale, das dorsale intermediäre und das ventrale intermediäre entorhinale Feld zum lateralen entorhinalen Kortex. Das kaudale und mediale entorhinale Feld werden hingegen dem medialen entorhinalen Kortex zugeordnet (Boccara et al. 2015, Cappaert et al. 2015).

Das Presubikulum grenzt mit einer großen Fläche an das Subikulum. Auf der anderen Seite liegt es dem Parasubikulum flächig an. Ein kleiner Teil grenzt kaudal an den entorhinalen Kortex und dorsal an den retrosplenialen Kortex. Von einigen Autoren wird das Presubikulum in zwei Gebiete unterteilt (Boccara et al. 2015, Cappaert et al. 2015). So unterteilt es Krieg (1946) in einen dorsalen und ventralen Teil, diese Darstellung wird auch von Boccara et al. (2015) übernommen. Cappaert et al. (2015) unterscheiden zwischen einem septalen und temporalen Teil. Es gibt noch zahlreiche weitere Untergliederungen bzw. Nomenklaturen: Der dorsale bzw. septale Teil wird auch als Postsubikulum oder Brodmann Area 48 und der ventrale bzw. temporale Teil als das eigentliche presubikale Gebiet oder Brodmann Area 27 bezeichnet (Brodmann 1909, Rose und Woolsey 1948, Swanson und Cowan 1977, Vogt und Miller 1983, van Groen und Wyss 1990, Boccara et al. 2015, Cappaert et al. 2015).

Das Parasubikulum liegt zwischen dem entorhinalen Kortex, genauer dem medialen entorhinalen Kortex und Presubikulum. Ein kleiner Teil grenzt lateral an den postrhinalen Kortex (Boccara et al. 2015, Cappaert et al. 2015).

Der postrhinale Kortex liegt dem Sulcus rhinalis an. Er grenzt ventral an den entorhinalen Kortex und teilweise an das Parasubikulum. Dorsal wird er vom temporalen Kortex und kaudal vom okzipitalen Kortex begrenzt. Rostral nähert er sich dem perirhinalen Kortex an.

Der perirhinale Kortex befindet sich rostral des Sulcus rhinalis (Boccara et al. 2015, Cappaert et al. 2015). Es werden ein Areal 35 und ein Areal 36 unterschieden (Brodmann 1909). Areal 35 wird auch

als agranulär und Areal 36 als dysgranulär bzw. ektorhinaler Kortex (Palomero-Gallagher und Zilles 2015) bezeichnet (Cappaert et al. 2015). Beide Areale werden kaudal vom postrhinalen Kortex und rostral vom insulären Kortex begrenzt. Areal 35 befindet sich innerhalb des Sulcus rhinalis und grenzt ventral den entorhinalen Kortex. Die ventral gelegene Area 36 grenzt dorsal an den temporalen Assoziationskortex (Cappaert et al. 2015). Burwell (2001) untergliedert die Area 35 nochmals in einen ventralen und dorsalen Teil und Area 36 in einen dorsalen, ventralen und posterioren Teil. Deacon et al. (1983), Burwell et al. (1995), Burwell (2001), Kealy und Commins (2011), Boccara et al. (2015) und Cappaert et al. (2015) definieren den postrhinalen und perirhinalen Kortex als eigenständige Gebiete.

In der Definition von Palomero-Gallagher und Zilles (2004) hingegen gehört der postrhinale Kortex als kaudaler Part und die Areale 35 und 36 als rostrale Gebiete zum perirhinalen Kortex. Hier grenzt der als ausschließlich perirhinal bezeichnete Kortex an den kaudalen Teil des Sulcus rhinalis. Rostral wird er vom insulären Kortex, ventral vom entorhinalen Kortex und dorsal vom temporalen Kortex umgeben.

1.4.10 Fragestellungen

Im Folgenden werden konkrete quantitative Fragestellungen sowie qualitative Fragen vorgestellt, die mit dieser Arbeit beantwortet werden. Die Grundlagen zur Beantwortung der Fragen werden im Ergebnisteil erläutert und die direkte Beantwortung der Fragen erfolgt nach der Diskussion der konnektionalen Befunde:

- 1. Wie viele Verbindungen existieren im Konnektom des Cortex cerebri (C1-Konnektom) der Laborratte?
- 2. Wie viele ipsilaterale und kontralaterale Konnektivitäten wurden in dem kortikalen Netzwerk beschrieben?
- 3. Welche besonders bedeutsamen kortikalen Projektionspfade wurden in dem Konnektom gefunden?
- 4. Welche Konnektivitäten sind besonders valide hinsichtlich ihrer Existenz?
- 5. Warum ist die Betrachtung kontralateraler Verbindungen von Bedeutung?
- 6. Welche Regionen weisen die meisten Input- und Output-Verbindungen auf?
- 7. Welche intrinsischen und extrinsischen Verbindungen sind besonders intensiv verbunden?
- 8. Welche Regionen sind besonders stark untereinander verbunden?
- 9. Sind Regionen besonders bedeutsam für das Netzwerk hinsichtlich der Erreichbarkeit der Regionen?
- 10. Wie sieht das laminäre Konnektom (C2-Konnektom) aus?
- 11. Wie sehen die reorganisierten C2-Netzwerke aus?

2 Material und Methoden

2.1 Material

Um das Konnektom der Ratte zu vervollständigen, wurde in den Literaturdatenbanken, hauptsächlich PubMed (http://ncbi.nlm.nih.gov), nach Veröffentlichungen zum Thema Tract-tracing Studien der Ratte recherchiert. Es wurden vorher verschiedene Kriterien festgelegt, um eine quantifizierbare Auswertung der Studien zu liefern (Schmitt et al. 2012a). Gesucht wurde nach Studien, die als Versuchstiere gesunde und nicht genveränderte Laborratten verwendeten. Überwiegend wurde die Wistarratte (*Rattus norvegicus forma domestica*) eingesetzt. Es wurden ausschließlich Tract-tracing Studien des ZNS der Ratte berücksichtigt, da zu diesem Organismus die meisten Publikationen (März 2015: 6841) mit zytoarchitektonischen, chemoarchitektonischen und hodologischen Merkmalen erschienen sind und sich somit das vollständigste und umfangreichste Konnektom entwickeln lässt (Schmitt und Eipert 2012, Bota et al. 2015).

Unter den folgenden Suchbegriffen (siehe folgenden Kasten) wurden bis März 2015 Publikationen zum Thema Cerebral Cortex heruntergeladen und ausgewertet: Mit Hilfe dieser Filter wurden insgesamt 2400 Arbeiten gefunden.

(rat AND brain AND (pathway* OR projection* OR afferent* OR efferent* OR connect*) AND (trace* OR tracing OR retrog* OR anterog*) NOT (virus OR viral))

Dieser wird durch den Operator "AND" mit dem variablen Teil verknüpft:

Tabelle 1: Liste der verwendeten Literatur-Suchfilter für die ausgewerteten Regionen.

Variabler Filterteil	Anzahl der Publikationen
(cortex OR isocort* OR neocort*)	2400
(hippo* OR parahippo*)	872

Vor Beginn der Auswertung der Publikationen wurden aus dem Suchergebnis noch Läsionsstudien, Transplantationsstudien, Entwicklungsstudien, Studien mit Faserbahnen als Injektionsort des Tracers oder auch Arbeiten mit multiplen Rezeptorbindungsreaktionen aussortiert. Des Weiteren wurden auch Publikationen, in denen Experimente mit anderen Spezies, pränatalen und juvenilen Entwicklungsstadien durchgeführt wurden, ausgesondert. Gelegentlich sind Publikationen durch die einzelnen Filter mehrfach selektiert worden, da gleiche Suchbegriffe in unterschiedlichen Publikationen verwendet wurden. Auch wurden solche Publikationen nicht bearbeitet, die bereits ausgewertet worden sind.

Resultat dieser ausgiebigen Vorauswahl sind insgesamt 378 Arbeiten über die Großhirnrinde. Diese bilden die Grundlage der vorliegenden Arbeit.

Die ausgewählten Arbeiten wurden anschließend aus den digitalen Archiven der entsprechenden Verlage heruntergeladen oder mit Hilfe einer Suchmaschine recherchiert. Publikationen, die nicht im In-
ternet direkt auffindbar waren, wurden über die Universitätsbibliothek mittels Fernleihe bestellt. Die heruntergeladenen Publikationen wurden gespeichert und mit Hilfe des Literaturverwaltungsprogramms *JabRef* (JabRef Development Team 2015) sortiert. Durch *JabRef* lassen sich die Dateien in das *BibTex* Format übersetzen und mit dem von Schmitt und Eipert entwickelten Programm *neuroVII-SAS* importieren, sodass jede Konnektivität in *neuroVIISAS* mit den Literaturstellen der passenden Studien in Jabref verbunden und damit hinsichtlich ihrer experimentellen Beobachtung eindeutig identifizierbar ist.

2.2 NeuroVIISAS

neuroVIISAS (**neuro V**isualization, Imagemapping, Information System for Analysis and Simulation) ist ein für jede Spezies anwendbares generisches neurowissenschaftliches Programm, mit dem man strukturelle und funktionelle Aspekte des Nervensystems darstellen, untersuchen und damit Verbindungen eines Konnektoms in 3D abbilden kann (Schmitt und Eipert 2012). Ein Vorteil von *neuroVII-SAS* liegt in der Möglichkeit einer Ontologie-Generierung, womit eine Gliederung des peripheren oder zentralen Nervensystems, hier des Kortex erstellt werden kann (siehe **Abbildung 3**). Mit *neuroVIISAS* sind umfangreiche Analysen von Konnektivitäten möglich, welche im Programm in Projekt-Form verwaltet werden. In diesem Projekt wurden zum jetzigen Zeitpunkt alle Gebiete des Zentralnervensystems der Ratte, inklusive der vorliegenden Arbeit, ausgewertet. Neuere Konnektivitätsanalysen befassen sich mit der Amygdala (Schmitt et al. 2012a) und den Basalganglien Konnektom (Schmitt et al. 2014) und zeigen, dass *neuroVIISAS* ein umfassendes Programm für die Erzeugung und Analyse von Konnektomen ist. Alle in dem Ergebnisteil aufgeführten Abbildungen wurden mit *neuroVIISAS* generiert, so auch die dreidimensionale Visualisierung der Konnektivitäten der kortikalen Regionen.

Abbildung 3: Übersicht des zur Auswertung verwendeten Programms *neuroVIISAS*. Im linken Teilfenster ist die Auswahl der neuronalen Gliederung anhand einer Baumstruktur möglich. Mit der darunterliegenden Suchmaske können einzelne Kerngebiete nach Eingabe von Abkürzungen oder Langnamen gesucht werden. Die mittlere Ansicht veranschaulicht die Lage des jeweiligen kortikalen Segmentes. Am rechten Rand sind die Bezeichnung der Region mit Synonymen und Abkürzungen sowie Bearbeitungsfunktionen auffindbar.

Ausgangspunkt dieser Abhandlung ist das Ratten-Atlas-Projekt (ratFrontal_05_03_2015_atlas.brain), in welchem bislang 5652 ausgewertete Tract-tracing-Publikationen mit 537793 ipsi- und kontralateralen Konnektivitäten enthalten sind (Stand 9.3.2015). So wurden die ausgewerteten Daten der Tracttracing Studien über die Großhirnrinde und vorhandener Gehirnkartierung zusammengefügt (Basis ist hier der Ratten-Atlas von Paxinos und Watson (2007)). Außerdem wurde das Netzwerk der analysierten Tract-tracing Studien bildlich dargestellt und eine Simulation der vorhandenen Konnektivitäten integriert. Das entstandene Konnektom wurde weiterhin mit graphentheoretischen Ansätzen untersucht und es wurden globale und lokale Netzwerkfunktionen sichtbar gemacht, so wurde unter anderem nach möglichen vorhandenen Motiven oder *small-world* Phänomenen gesucht (Schmitt und Eipert 2012). Die genaue Beschreibung und Analyse findet im Ergebnisteil statt.

Das Programm ist frei zugänglich und auf der Internetseite <u>http://neuroviisas.med.uni-rostock.de/versions/</u> abrufbar, sodass es auch von anderen Arbeitsgruppen verwendet werden kann.

2.3 Literaturauswertung

Der Anfang der Auswertung jeder einzelnen Publikation war zunächst die Überprüfung, ob es sich um Experimente mit Injektionen von Tracersubstanzen in das zentrale Nervensystem von adulten Ratten handelt. Publikationen über Degenerationsstudien, Viral-Tracing, Studien über Entwicklungsphasen

und Experimente mit transgenen Ratten wurden nicht berücksichtigt. Da das Geschlecht der Ratte für die Analyse nicht von Bedeutung war, wurde es vernachlässigt.

Im Abschnitt "Material and Methods" jeder Publikation sind die Informationen zu den Versuchstieren, den verwendeten Tracersubstanzen, dem Tracer-Injektionsort und weiteren Angaben zum genaueren Versuchsaufbau aufgeführt. Die Autoren geben an dieser Stelle meist Informationen über die Transportrichtung der Tracersubstanzen (anterograd, retrograd, bidirektional).

Ein beispielhafter Aufbau für den Material- und Methodenteil ist: Beschreibung der gewählten Versuchstiere, Art, Menge, Injektionsort und Transportrichtung der Tracer, Länge der Überlebenszeit der Tiere nach Injektion, Postfixation und Zuschnitt der Gehirne, Auffindung und Sichtbarmachung der Tracer mit immunzytochemischen und immunhistochemischen Verfahren und Färbung der Gehirnschnitte (z.B. Aparicio 2010).

Die Eigenschaften der Verbindungen zwischen den einzelnen Kerngebieten werden im Abschnitt "Results" geschildert. Wichtungen von Verbindungen werden bei der Auswertung ebenfalls erfasst. Das Gewicht (weight) der Konnektivitäten wird in den meisten Publikationen semiquantitativ in Gruppen eingeteilt und mit der im Tabellenanhang dargestellten

Tabelle 12 aufgeführten Begriffen beschrieben. Eine weitere Variante der semiquantitativen Beschreibung ist eine symbolische Klassifikation mit den Zeichen +, ++, +++ oder *, **, ***. Neben Zahlenangaben zur Dichte von axonalen Terminalen bei anterograden oder Perikaryen-Anzahlen bei retrograden Experimenten, wird meist eine Klassifikation in drei Klassen vorgenommen (1: geringe Dichte, 2: mittlere Dichte und 3: große Dichte).

Fehlt diese Klassifikation, wurde eine solche für die quantitativen Angaben zu axonalen Terminalen und Perikaryen Publikationsintern gemäß den Klassen in **Tabelle 2** durchgeführt (Burns 1997). Wenn z.B. relativ starke bzw. dichte Verbindungen beschrieben wurden, entspricht dies dem Wert 3 (*strong*) in der Tabelle. Mit den Gewichtungen in Abbildungen oder der Darstellung mit Symbolen wurde gleichermaßen verfahren. Wurde die gleiche Verbindung zwischen zwei Kerngebieten in einer Publikation mehrmals erwähnt, wurden die Dichtewerte zusammengefasst: die eine Verbindung wurde als dicht beschrieben, so wurde ihr wieder der Wert 3 (*strong*) zugewiesen. Die andere als wenig dicht bezeichnet, ergab diese Verbindung einen Wert von 1 (*light/sparse*). Die beiden Werte wurden zusammengezählt und der Mittelwert daraus gebildet, infolgedessen wurde eine Gewichtung von 2 (*moderate/dense*) für die Verbindung ermittelt. Diese Vorgehensweise kann bei den entsprechenden Projektionen beliebig fortgeführt werden.

Bei Konnektivitäten, die ohne Wichtung angegeben waren, wurde der Wert -0,5 (*exists*) verwendet. Wenn Zweifel bestand, ob Verbindungen tatsächlich existieren, wurde der Wert -3 (*unknown, not known*) gewählt. Bei Unklarheiten zu welchen Hirngebieten die Verbindung zählte oder es widersprüchliche Aussagen über die Konnektivität gab, wurde der Wert -1 (*not clear*) eingesetzt. Der Terminus für den Wert -2 (*fibers of passage*) wurde gewählt, wenn es Nervenfasern gab, die nur die graue Substanz oder weiße Substanz des Gehirn passieren und dort keine Axonendigungen oder Perikaryen besitzen (Cajal 1894). Größtenteils sind die Gewichte der Verbindungen allerdings präzise im Text beschrieben.

Gewicht	Terminus
-3	unknown, not known
-2	fibers of passage
-1	not clear
-0,5	exists
0	not present
0,5	very light
1	light / sparse
1,5	light /moderate
2	moderate / dense
2,5	moderate / strong
3	strong
4	very strong

Tabelle 2: Gewichte der Verbindungen und die dazugehörigen Bezeichnungen (Burns 1997).

Für die Integration unterschiedlichster Verbindungen aus uneinheitlichen Beschreibungen in Tracttracing-Publikationen wurde genau geprüft, welche Regionen denen im Ratten-Projekt entsprechen (Synonyme und Überlappungen von Regionen). Zum Beispiel wird in *neuroVIISAS* die Nomenklatur "Lateral agranular prefrontal cortex" anstatt "Primary motor cortex" verwendet. Andererseits ist es mit Hilfe von *neuroVIISAS* möglich den dazugehörenden Kurznamen und synonyme Kurznamen nachzuschlagen, wobei oftmals der in der Literatur gebräuchlichste Kurzname für die Auswertung verwendet wurde (siehe Beispiel unten im Kasten). Die gesammelten Informationen, wie exakte Kernbezeichnung, Kurzname und Gewicht der Verbindung wurden im folgenden Schritt in einer Excel-Tabelle zusammengefasst.

Teilweise wiesen einige Kerngebiete viele Alternativnamen auf, wie beispielsweise:

Lateral agranular prefrontal cortex – Abkürzung: AGl

Alternativnamen: Primary motor area, Lateral agranular cortex, First motor cortex, Brodmann area 4, Area gigantopyramidalis, Cranial motor cortex, Area 4 of Krieg, Lateral agranular field of the motor cortex, Primary somatomotor area

Alternativabkürzungen: Agl, M1, MOp, PrCl, Prc2, BA4

In den Excel-Tabellen wurde auf eine Seitenangabe (rechts/links) der einzelnen Kerngebiete verzichtet. Im Vordergrund stand hier die Projektion einzelner Kerne zur kontralateralen Seite, welche gesondert ("CONTRA") in der Excel-Tabelle dokumentiert wurde.

2.4 Tabellen

Die Daten der ausgewerteten Publikationen wurden in eine Tabelle übertragen. Die Tabelle wurde mit einem beliebigen Tabellenkalkulationsprogramm (LibreOffice Calc, OpenOffice calc, Microsoft Excel) nach der Vorlage von Burns (1997) entworfen.

Hinzugefügt wurde die Langnamenbezeichnung für die einzelnen kortikalen Regionen. Diese Tabelle (**Abbildung 4**) enthält die obligaten Größen der Konnektivitäten für die Übertragung in das Programm *neuroVIISAS*.

Elle Edit View Insert Format Tools Data Window Help	V D D	(% A) Z) 🔼 🕽		0						×
		∾• z• ו		•						
T10		0 -								•
A B C D	E E G		JKII	M N		0 R S 💻	UVW	X	Y 7	-
1 Description of source Source Target Description of	target Weight LessIpsi NG Referen	e Tracer Case	ke Animal Labelling So	oma SomaNote Later	ality Terminal Termina	alNote Terminalic TransportDirection Mod	ality Page Annotation Collator	Date		Ē
2 V1L2 VR1B2a	3 Hughes	1990 HRP	V1	1L2 CON	IRA VR1B2a	IPSI r	Meinhard	16-05-2014		
3 V1L3 VR1B2a	3 Hughes	1990 HRP	V1	1L3 CON	IRA VR1B2a	IPSI r	Meinhard	16-05-2014		
4 V1L4 VR1B2a	3 Hughes	1990 HRP	V1	1L4 CON	IRA VR1B2a	IPSI r	Meinhard	16-05-2014		
5 V1L5py VR1B2a	3 Hughes	1990 HRP	V1	1L5py CON	TRA VR1B2a	IPSI r	Meinhard	16-05-2014		
6 V1L6 VR182a	3 Hughes	1990 HRP	V1	1L6 CON	TRA VR1B2a	IPSI r	Meinhardt	16-05-2014		
7 V2LL2 VR182a	3 Hughes	1990 HRP	V2	2LL2 CON	IRA VR1B2a	IPSI r	Meinhard	16-05-2014		
8 V2LL3 VR1B2a	3 Hughes	1990 HRP	V2	2LL3 CON	IRA VR1B2a	IPSI r	Meinhard	16-05-2014		
9 V2LL4 VR1B2a	3 Hughes	1990 HRP	V2	2LL4 CON	TRA VR1B2a	IPSI r	Meinhard	16-05-2014		- 12
10 pyramidal cells of laye#V2LL5py VR1B2a	3 Hughes	1990 HRP	V2	2LL5py CON	IRA VR1B2a	IPSI r	Meinhard	16-05-2014		_
11 nonpyramidal cells of PV2LL5npy VR1B2a	3 Hughes	1990 HRP	V2	2LL5npy CON	IRA VR1B2a	IPSI r	Meinhard	16-05-2014		- 1
12 V2LL6 VR1B2a	3 Hughes	1990 HRP	V2	2LL6 CON	IRA VR1B2a	IPSI r	Meinhardt	16-05-2014		- 8
13 V2ML2 VR1B2a	3 Hughes	1990 HRP	V2	2ML2 CON	IRA VR1B2a	IPSI r	Meinhard	16-05-2014		- 8
14 V2ML3 VR1B2a	3 Hughes	1990 HRP	V2	2ML3 CON	IRA VR1B2a	IPSI r	Meinhardt	16-05-2014		- 8
15 V2ML4 VR1B2a	3 Hughes	1990 HRP	V2	2ML4 CON	TRA VR1B2a	IPSI r	Meinhard	16-05-2014		- 8
16 pyramidal cells of layer V2ML5py VR1B2a	3 Hughes	1990 HRP	V2	2ML5py CON	IRA VR1B2a	IPSI r	Meinhard	16-05-2014		
17 V2ML6 VR1B2a	3 Hughes	1990 HRP	V2	2ML6 CON	TRA VR1B2a	IPSI r	Meinhard	16-05-2014		-
18 VR1B2aL2 VR1B2a	4 Hughes	1990 HRP	VF	R1B2aL2 CON	IRA VR1B2a	IPSI r	Meinhard	16-05-2014		
19 VR1B2aL3 VR1B2a	4 Hughes	1990 HRP	VP	R1B2aL3 CON	RA VR1B2a	IPSI r	Meinhard	16-05-2014		-8
20 VR1B2aL4 VR1B2a	4 Hughes	1990 HRP	VF	R1B2aL4 CON	IRA VR1B2a	IPSI r	Meinhard	16-05-2014		
21 pyramidal cells of layePVR1B2aL5py_VR1B2a	4 Hughes	1990 HRP	VP	R1B2aL5py CON	IRA VR1B2a	IPSI r	Meinhard	16-05-2014		-
VR1B2aL6 VR1B2a	4 Hugnes	1990 HRP	VE	R1B2aL6 CON	IRA VR1B2a	IPSI r	Meinnard	16-05-2014		-
23 VR182a V1L2	-0.5 Hughes	1990 WGA-HRP	VP	R1B2a CON	IRA VIL2	IPSI a	Meinhard	16-05-2014		-
24 VR182a V1L3	-U.S Hughes	1990 WGA HRP	VE	R1B2a CON	TRA VIL3	IPSI a	Meinnard	16-05-2014		-
20 VR1828 V1L4	-0.5 Hughes	1990 WOA-HRP	VP	RIB2a CON	TRA VILA	1001 -	Meinhard	16-05-2014		-
20 VR1828 V1L5	0.5 Hughes	1990 WOAHRP	VP	D1P2a CON	TDA VILO	1891	Meinhard	10:05:2014		-1
28 VP1028 V1L0	-0.5 Hughes	1000 IAGA.UPP	VP	P1P2a CON	TPA 1/211.2	1PSI 3	Meinhard	16-05-2014		-1
29 VP182a V2LL2	-0.5 Hughes	1990 WG4.HRP	VE	R1B2a CON	TRA V2113	IPSI a	Meinhard	16-05-2014		-8
30 //P1P2a //2LL3	-0.6 Hughes	1990 MIGA-UPP	100	P1P35 CON	TRA VOLLA	IPSI a	Meinhard	16-05-2014		- 12
31 VP1B2a V2LL5	-0.5 Hughes	1990 WGA-HRP	VE	R1B2a CON	TRA V2LLS	IPSI 9	Meinhard	16-05-2014		- 12
32 VE182a V2LL5	-0.5 Hughes	1990 WGA-HRP	VE	R1B2a CON	TRA V2LL6	IPSI a	Meinhard	16-05-2014		-12
33 VR1B2a V2ML2	-0.5 Hughes	1990 WGA-HRP	VE	R1B2a CON	TRA V2ML2	IPSI a	Meinhard	16-05-2014		-
TEMP /Regions /Tracer /Export LongNames /SpinalCo	ordTemplates /Barreletts /Barrel septa /B	arrel A I < C					moninteres		. 12	Y
Find V	Match Case 🚜 🙀	/ 🖃 🍚 / T	H 🕥 🔿 🔯	• 🎱 • 👄 • 🔳 • 🕻	- 🛧 - 1/6 TA	N 📇 🗐		nternes Audio Inte	rmes Audio ALSA plug-ir	n
Sheet 5 / 10	PageStyle_LongNa	nes			= 0	+1 1	Sum=0	nalog Stereo Ana	log Stereo [plugin-contain ALSA Playbar	aer]: ick

Abbildung 4: Ausschnitt aus dem Tabellenverarbeitungsprogramm LibreOffice Calc mit einer typischen Auswertung von Konnektivitäten. Vor dem Import in *neuroVIISAS* wurden die Langnamen-Spalten A und D entfernt.

Die Beschriftung am Kopf der einzelnen Spalten wird durch die Auflistung nach Philipp (2012) erläu-

tert. Der Punkt 1. source, Punkt 4. target und 20.- 24. wurden neu eingefügt:

- 1. *Source*: Ursprungsregion einer Konnektivität, die Somata der projizierenden Neuronen enthält. In der Spalte vor Source wurde die vom Autor verwendete Bezeichnung der jeweiligen Region zur eindeutigen Identifizierung eingetragen.
- 2. S: Für *neuroVIISAS* definierter Kurzname einer Ursprungsregion einer Konnektivität, die Perikaryen der weitergeleiteten Nervenzellen aufweist.
- 3. *T*: Für *neuroVIISAS* definierter Kurzname einer Terminationsregion einer Konnektivität, die Axonterminale der weitergeleiteten Nervenzellen aufweist.
- 4. Target: Zielregion einer Konnektivität, die Axonendigungen der projizierenden Neuronen enthält. In die auf Target folgenden Spalte wurde, analog zu Source, die vom Autor verwendete Bezeichnung der jeweiligen Region zur eindeutigen Identifizierung eingetragen.
- 5. *d*: Gewicht der Projektion (vgl. Tab. 1).
- 6. IC: Ipsicontra: Mehr weniger Relationen in Hinblick auf Lateralität, i>c, c>i.
- 7. *Nc*: nicht bestimmt.
- 8. Reference: Publikationsschlüssel der bibtex Datei von JabRef.
- 9. I: Abkürzung des verwendeten Tracers.
- 10. Case: Abbildungsnummer, die die jeweilige Konnektivität dokumentiert.
- 11. *M*: Nummer des Versuchstieres, in welchem eine Konnektivität gefunden wurde.
- 12. λ : Dichte einer Konnektivität.
- 13. *Soma*: Für *neuroVIISAS* definierter Kurzname einer Ursprungsregion einer Konnektivität, die Perikaryen der weitergeleiteten Nervenzellen aufweist.
- 14. Soma Notes: Kommentare zu der Region, die Zellkörper einer Projektion enthält.

- 15. *Soma ipsi contra*: Lateralisierung der Konnektivitäten, bei ipsilateralen Verbindungen wurde *IPSI* gewählt und bei kontralateralen Verbindungen *CONTRA*.
- 16. *Terminals*: Für *neuroVIISAS* definierter Kurzname einer Terminationsregion einer Konnektivität, die Axonterminale der weitergeleiteten Nervenzellen aufweist.
- 17. Terminal Notes: Freie Kommentare zu der Region, die Axonterminale einer Projektion enthält.
- 18. *Terminals ipsi contra*: Lateralisierung der Konnektivitäten, bei ipsilateralen Verbindungen wurde *IPSI* gewählt und bei kontralateralen Verbindungen *CONTRA*.
- 19. *Transport-direction/T*: Richtung der Tracer Projektionen: anterograd *a*, retrograd *r*, bidirektional *a/r*
- 20. *Modality: C*: Axon colateral (Information über die Anwesenheit von Kolateralen (Seitenzweige, die aus einem Axon der Zielregion stammen, erleichtern die Kontaktaufnahme eines Neurons mit anderen Nervenzellen (Bähr 2014))., *P*: Pathway.
- 21. Page: Seite in Publikation, auf der eine Verbindung beschrieben wird.
- 22. Annotation: Freies Anmerkungs- oder Kommentarfeld für eine Verbindung.
- 23. Collator: Nachname der Person, die die Verbindung aus einer Publikation ausgewertet hat.
- 24. Date: Datum, an dem die Verbindung in die Tabelle eingetragen wurde.

Die Daten der Tabellenkalkulierungsprogramms wurden in das .csv Format für den Transfer in *neuroVIISAS* übertragen und können mit einem Bearbeitungsprogramm für Dateien (Editor) geöffnet werden. Zur Abgrenzung der Spalten wurde die Tabulatortaste als Delimiter benutzt. In diesem Format **(Abbildung 5)** wurden die Werte in *neuroVIISAS* integriert.

							4 . E.W.					
							1 - Editor			-	• • • •	-
<u>D</u> atei	<u>B</u> earbeiten	F <u>o</u> rmat	<u>Ansicht</u>									
Sourc	:e S 51	T 511.6	Target d IO	Nc Reference Wise:1976a	1 Case	M λ Soma S1	Soma Notes Soma ipsi - contra	Terminals Terminal Notes	Terminal ipsi - contra TPST	T Col	laterals	~
	S1	52L1	2	Wise:1976a	PROLEU	51	CONTRA	52L1	IPSI	a c		
	S1	S2L6	2	Wise:1976a	PROLEU	S1	CONTRA	S2L6	IPSI	a		
	S1L3	S1	3	Wise:1976a	HRP	S1L3	CONTRA	51	IPSI	r		
	S1L5	S1	3	Wise:1976a	HRP	S1L5	CONTRA	S1	IPSI	r		
	S1L2	S1	2	Wise:1976a	HRP	S1L2	CONTRA	51	IPSI	r		
	S1L4	S1	1	Wise:1976a	HRP	S1L4	CONTRA	51	IPSI	r		
	S1L6a	S1	1	Wise:1976a	HRP	S1L6a	CONTRA	S1	IPSI	r		
												v
۲.											>	

Abbildung 5: Struktur einer Textdatei, die aus einem Tabellenprogramm exportiert wurde. Diese csv-Textdateien lassen sich in *neuroVIISAS* einlesen.

2.5 Regionenauswahl für Konnektivitätsanalysen

Nach dem Import aller csv-Textdateien der ausgewerteten Tract-tracing Publikationen in *neuroVIISAS* wurden aus der Neuroontologie des Ratten-Konnektom-Projektes die Regionen des hüllenförmig aufgebauten Cortex cerebri in dem Modul *Erweiterte Konnektivitäten-Analyse* zusammengestellt. Die charakteristisch hüllenförmige Verteilung der Regionen lässt sich mittels einer 3D-Rekonstruktion veranschaulichen. Alle weiteren Analysen der Verbindungsmatrizen (Adjazenzmatrizen), der extrinsischen Konnektivitäten, der intrinsischen Konnektivitäten, der globalen und lokalen Parameter beziehen sich auf diese Regionenauswahlen. Als intrinsische Konnektivitäten wurden Verbindungen klassifiziert, die innerhalb der Großhirnrinde existieren und als extrinsische Konnektivitäten, die zwischen dem Kortex und den übrigen Gebieten projizieren.

Die Auswahl von Regionen ist ein wichtiger Schritt vor der Auswertung der Netzwerke, da die quantitativen Netzwerkeigenschaften von der Auswahl der Regionen abhängen. Ausgegangen wird von einem kortikalen Netzwerk (C1), dass nur Regionen enthält, die in dem Atlas von Paxinos und Watson (2007) die Gesamtheit des Cortex cerebri bilden, liegen (Abbildung 6, Abbildung 7). Die hippokampalen Regionen Subikulum, Dentate gyrus, CA1-CA3 wurden nicht in dem kortikalen Konnektom C1 berücksichtigt. Die parahippokampalen Regionen PRh (A35), Ect (A36), LEnt, MEnt, Post und PaS sind jedoch in C1 enthalten. C1 setzt sich aus 65 Regionen zusammen. Von diesen verbleiben 63 Regionen, da Regionen ohne Verbindungen entfernt wurden, wobei ein hierarchisch höherliegendes Gebiet der entfernten Regionen Verbindungen zu C1 Regionen aufweist (Abbildung 8). Navicular nucleus, basal forebrain, caudomedial entorhinal cortex und primary somatosensory cortex oral dysgranular region besitzen keine Verbindungen zu den C1 Regionen, die miteinander verbunden sind. Die 63 Regionen sind auf den Hierarchieebenen 9 bis 15 verteilt, wobei der überwiegende Teil auf den Hierarchieebenen 11-13 liegen.

Das Netzwerk C2 ist bis zur Ebene der zytoarchitektonischen Schichten erweitert worden (**Abbildung** 9). Es wurden nur 158 Regionen in C2 belassen, die Verbindungen innerhalb von C2 besitzen. 148 zytoarchitektonische Schichten ohne Verbindungen innerhalb des C2 Konnektoms wurden entfernt.

Die Regionen des C1- und laminären C2-Netzwerkes werden in den Tabellen im Ergebnisteil aufgeführt. Ausgehend von diesen Basisnetzwerken wird die Konnektomstruktur untersucht und um die kontralaterale Seite erweitert.

2.6 Konventionen zur Bezeichnung von Hirnregionen in dieser Arbeit

Es wurden häufig die angloamerikanischen Gebietsbezeichnungen verwendet, die auch in der Originalliteratur benutzt wurden. Dieses Vorgehen reduziert die Bildung neuer Begriffe für bereits im Englischen bezeichnete Regionen und erlaubt eine direkte Recherche, der hier verwendeten Begriffe in Literaturdatenbanken und neuroanatomischen Datenbanken wie Neurolex, Braininfo und BAMS. In den Netzwerkpräsentationen von laminären Untergebieten, wie Lamina molecularis des entorhinalen Kortex, wurde eine andere (Leerzeichen freie) Schreibweise für Abkürzungen, als in dem vorliegenden Text, verwendet. Eine Gebietsabkürzung mit Laminarbezeichnung wird durch eine Gebietsabkürzung gefolgt von einer römischen Ziffer der entsprechenden Lamina beschrieben. In dem hier gewählten Beispiel also als "Ent I" notiert.

2.7 Visualisierung in Grafiken

Zahlreiche Abbildungen in dieser Arbeit wurden in WORD als eps-Grafiken eingebettet, so dass es in der pdf-Version dieser Arbeit möglich ist, sehr kleine Details interaktiv mit einem pdf-Viewer darzustellen. Die eps-Einbettung führt jedoch in der Bildschirmanzeige der WORD Version zu einer relativ grobkörnigen Ansicht dieser Grafiken.

Abbildung 6: Die Regionen der C1- und C2-Konnektome sind hierarchisch gegliedert. Diese Gliederung ist hier für C1 in a) dargestellt. Die Dreiecksvisualisierung für C1 dient der Navigation in der komplexen Hierarchie der Gebiete. c) C2-Hierarchie mit d) triangulärer Hierarchie. *neuroVIISAS* Filtermechanismen erlauben es diese Teilhierarchien aus der gesamten Neuroontologie abzuleiten.

Dorsal, oben

Ventral, unten

Sagittal

Abbildung 7: Drei Ansichten der kortikalen Regionen des C1-Konnektoms.

Abbildung 8: Regionenauswahl des C1-Netzwerkes. Alle hier dargestellten Regionen weisen mindestens eine Verbindung zu einer anderen Region auf. Die Verbindungshäufigkeiten sind durch die drei rechts dargestellten Farbverläufe kodiert. Jede Region lässt sich noch in Unterregionen gliedern, die hier nicht dargestellt sind. Die zwischen diesen Unterregionen verlaufenden Verbindungen sind jedoch kumulativ in dieser Adjazenzmatrixdarstellung zusammengefasst, so dass sich ein besonders vollständiges Bild der konnektionalen Architektur ergibt.

Abbildung 9: Adjazenzmatrix der Verbindungshäufigkeiten zwischen Untergebieten ausgewählter zytoarchitektonischer kortikaler Regionen. Laminae ohne Verbindungen innerhalb des C2-Konnektoms wurden entfernt.

2.8 Graphen und Netzwerke

Zur Veranschaulichung und gezielten Auswertung lassen sich Verbindungen von Nervensystemen in Form von Graphen darstellen. In der Graphentheorie ist ein *Graph* eine abstrakte Struktur, die eine Menge von Objekten und deren Verbindungen untereinander beschreibt. Graphen bestehen aus Knoten, die durch Kanten verbunden sein können. Die *Knoten* des Graphen (Vertex, Vertices) repräsentieren die entsprechenden Kerngebiete oder Hirnareale. Des Weiteren symbolisieren die *Kanten* die einzelnen Konnektivitäten (Axone) zwischen den Knoten, als Übertragungsweg für Aktionspotentiale. Durch die Verwendung von anterograden und retrograden Tracern lassen sich Ursprünge (Perikaryen) und Ziele (Axonterminalen) erfassen und somit in dem Graphen als gerichtete Verbindungen darstellen. Graphen, die aus gerichteten Verbindungen aufgebaut sind, werden als *Digraphen* oder *gerichtete Graphen* bezeichnet. Die ordinalskalierten Kantengewichte entsprechen Schätzungen von axonalen Dichten. *Eine* gerichtete Verbindung zwischen zwei neuroanatomischen Gebieten wird somit durch *mehrere* Axone repräsentiert. Graphen, in denen zwei Knoten durch mehrere Kanten (entsprechenden Axonen) verbunden sind, bezeichnet man als *Multigraphen*, die auch Schleifen oder Selbstreferenzen

30

aufweisen dürfen. Ein Digraph mit gewichteten Kanten wird in der Graphentheorie als *Netzwerk* bezeichnet. Die im Folgenden analysierten Konnektome sind also im Hinblick auf die Graphentheorie *Netzwerke* (Diestel 2010).

Neuronen sind häufig aus Axonen und Dendriten aufgebaut, deren Enden außerhalb des Gebietes liegen, in welchem das Perikaryon des Neurons sich befindet. "Außerhalb des Gebietes" muss immer in Bezug auf die gerade angewendete räumliche Auflösung betrachtet werden. Für diese Betrachtung ist die räumliche Auflösung von Gebieten gemeint, wie sie im stereotaktischen Atlas (Paxinos und Watson 2007, Paxinos und Watson 2013) verwendet wird. Soweit bekannt, wurde bislang in noch keiner konnektionalen Publikation klar definiert, wie sich die im graphentheoretischen Sinn punktförmigen Ursprünge und Ziele von Verbindungen in Hinsicht auf die bisweilen gebietsübergreifende Morphologie von Neuronen definieren lassen. So liegen die Somata von großen Pyramidenzellen häufig in der Lamina 5, aber die dendritischen Endigungen dieser Zellen in den Laminae 1-3. Wo befindet sich nun ein solches Neuron bezüglich aller seiner Fortsätze: in Lamina 5 oder in einer anderen Schicht? Hier wurde eine eindeutige Zuordnung von Ursprung und Ziel Verbindung für das Axon-Initialsegment festgelegt, womit eine kleine umschriebene subzelluläre Struktur betrachtet wird, die eindeutig nur einer Region zugeordnet wird. In einem ganz anderen Bereich der Quantifizierung von biologischen Einheiten in räumlichen Stichproben in Form histologischer Schnitte wird eine solche kleinste eindeutig unterscheidbare Einheit als charakteristischer Punkt bezeichnet (Stereologie). Ursprünge und Ziele von Verbindungen werden als charakteristische Punkte betrachtet, die eindeutig neuroanatomischen Gebieten zugeordnet werden können.

Weiterhin soll die Gerichtetheit einer neuronalen Verbindung eindeutig definiert werden, da zwei Betrachtungsweisen möglich sind. Zum einen kann der Ursprung einer neuronalen Verbindung ausschließlich strukturell definiert werden, insofern die Verbindung ihren Ursprung dort hat, wo sich der charakteristische Punkt befindet und von hier aus die Verbindung zu einem Zielgebiet verläuft. Die Verbindungsdefinition bezieht sich also allein auf den räumlichen Verlauf von dem charakteristischen Punkt zu mindestens einem Ende des Axons oder zu den Endigungen mindestens zweier Kolateralen, die selbstverständlich auch in unterschiedlichen Regionen terminieren können. Die zweite Betrachtung von Gerichtetheit kann ausschließlich bezüglich der Ausbreitung eines Aktionspotentials unter normalen in vivo Bedingungen, also nicht in einem artifiziellen experimentellen System wie z.B. Dickschnitten für intrazelluläre Ableitungen vorgenommen werden. In diesem Fall ist die Gerichtetheit über die Ausbreitungsrichtung vom charakteristischen Punkt zu den Axonterminalen definiert. Meist entspricht die strukturelle Definition der neuronalen Gerichtetheit im ZNS der funktionellen Gerichtetheit. Bei der Auswertung von Publikationen waren die Beschreibungen von Verbindungen häufig uneindeutig, wodurch eine einheitliche Interpretation erschwert wurde. Daher ist eine eindeutige Definition wichtig. Da die Gerichtetheit bzw. Orientierung neuronaler Verbindungen in einem direkten Zusammenhang mit der neuronalen Dynamik in Netzwerken steht und diese vor allem durch die Ausbreitungsrichtung von Aktionspotentialen bestimmt wird, wurde die funktionelle Gerichtetheit einer neuronalen Verbindung als Definition für Ursprung und Ziel einer Verbindung festgelegt. Eine Ausnahme, die jedoch

nicht für diese Arbeit relevant ist, gilt für das periphere Nervensystem hinsichtlich transganglionärer Verbindungen, deren Ursprung nicht somanah ist, sondern somafern in der Körperperipherie und deren Ziel häufig ebenfalls nicht somanah liegt, sondern somafern im Zentralnervensystem auf spinaler oder supraspinaler Ebene.

Im Folgenden werden einfache aber häufig verwendete Begriffe, die selten eindeutig in Lehrbüchern der Neuroanatomie und Neurobiologie definiert werden, erklärt. Sie sind bei der Beschreibung von Konnektomen wichtig und können bisweilen unterschiedlich verstanden werden: unilateral, bilateral, ipsilateral und kontralateral. Unilateral bedeutet eine Verbindung oder strukturell sowie funktionell (sensorisches Sprachzentrum) definierte Region existiert nur in einer Hemisphäre des ZNS. Bilaterale Verbindung bedeutet, eine Verbindung, die in beiden Hemisphären gleiche Regionen verbindet und zusätzlich Verbindungen von einer Ursprungsregion A der linken Hemisphäre zu einer Zielregion B in der rechten Hemisphäre (erster kontralateraler Anteil der bilateralen Verbindung) besitzt und des Weiteren eine Verbindung von der Ursprungsregion A der rechten Hemisphäre zu einer Zielregion B in der linken Hemisphäre (zweiter kontralateraler Anteil der bilateralen Verbindung) besitzt.

Ipsilateral ähnelt zwar dem Begriff unilateral, aber wird meist im Zusammenhang mit der Applikation von Tracern oder experimentell eingesetzten Substanzen verwendet. Der Begriff *ipsilateral* bezeichnet eine Verbindung oder die Applikation einer Substanz oder die Beobachtung eines Effektes innerhalb einer Hemisphäre. Mit *kontralateral* wird die Verbindung einer Hemisphäre zur gegenüberliegenden Hemisphäre bezeichnet bzw. allgemeiner auch die Applikation von Substanzen und funktionelle Ereignisse und deren Effekte in der gegenüberliegenden Hemisphäre. Diese Begriffe setzen eine strukturelle Symmetrie des ZNS voraus.

Die Gliederung der kortikalen Regionen wird als azyklischer Graph dargestellt (Abbildung 10). Die Beziehungen der Regionen in dieser Hierarchie wird durch Kantenattribute definiert ("Teil von", "benachbart zu", "eingeschlossen von", die zugleich eine Eigenschaft von Ontologien (Konzepte zur Wissensdarstellung) sind. Die neuronalen Verbindungen werden ebenfalls als Graph dargestellt und lassen sich graphentheoretisch und statistisch untersuchen. Der Graph des neuronalen Netzwerkes ist jedoch zyklisch und repräsentiert eine andere Wissenskategorie. Neuronale Verbindungen zwischen den in Abbildung 10 dargestellten Enden, die auch als Blätter bezeichnet werden, werden im Folgenden als "direkte Verbindungen" bezeichnet. Häufig sind die Blätter aber noch weiter neuronanatomisch oder funktionell unterteilt. Diese nicht aufgeklappten Blätter sind unsichtbar. Eine wichtige Visualisierungseigenschaft von neuroVIISAS besteht darin, diese verdeckten neuronalen Verbindungen in den sichtbaren Blättern zuzuordnen bzw. zu akkumulieren. Diese zusammengefassten Verbindungen von Untergebieten werden im Folgenden als "indirekte Verbindungen" bezeichnet. Nahezu alle graphenanalytischen und statistischen Funktionen können auf direkte oder indirekte Verbindungsrepräsentationen in neuroVIISAS angewendet werden. Diese Eigenschaft erlaubt besonders komplexe Verbindungsarchitekturen auf hochaufgelösten Beschreibungsebenen zu reduzieren, um allgemeine Verbindungsprinzipien zu erkennen und zu visualisieren.

Abbildung 10: Darstellung der Konzepte "direkte Kanten" und "indirekte Kanten". a) Exemplarische Gebietshierarchie mit den drei Gebieten a, b und c. Die hellgrauen Pfeile stellen die neuronalen Verbindungen zwischen den Gebieten dar. Diese Gebiete und ihre Verbindungen lassen sich in der darunterstehenden Adjazenzmatrix veranschaulichen. b) Die gleiche Hierarchie wie in a) ist hier gezeigt. Die Hierarchie beinhaltet jedoch noch Untergebiete, die in a) verdeckt oder noch nicht "aufgeklappt" wurden. Hier sind es die Gebiete d und e und deren gestrichelte Hierarchieverbindungen sollen anzeigen, dass sie nicht sichtbar sind. Auch diese nicht aufgeklappten Gebiete können Verbindungen besitzen, z.B. zu dem aufgeklappten Gebiet b. Diese unsichtbaren Verbindungen werden in der darunter abgebildeten Adjazenzmatrixdarstellung als indirekte Verbindungen bezeichnet. Die mittelgraue Verbindung von d nach b und die hellgraue Verbindung von e nach b werden im übertragenden Sinn als indirekte Kanten in der Adjazenzmatrixdarstellung akkumuliert und wurden mit einer dunkelgrauen quadratischen Fläche (d \rightarrow b) und einem hellgrauen Rahmen (e \rightarrow b) dargestellt. In den Adjazenzmatrizen werden solche indirekten Verbindungen jedoch mit Zahlenwerten akkumuliert und farbkodiert um besser Verbindungsmuster zu erkennen. Die indirekte Kantenberücksichtigung bietet also eine vollständigere Sicht der Verbindungen einer Knotenauswahl. Zugleich ist diese Darstellung eine Abstraktion und eine Distanzierung von der konkreten Verbindungsbeschreibung einer Publikation. Wichtig ist bei der Analyse von direkten und indirekten Verbindungen, dass die entsprechenden Regionen der Adjazenzmatrizen identisch sind, die Verbindungsinhalte der Matrizen jedoch meist sehr unterschiedlich sein können.

3 Ergebnisse

3.1 Ausgewertete Publikationen

Die Literatursuche in der PubMed-Datenbank lieferte, mit Hilfe der im Material- und Methodenteil definierten Suchfilter (siehe Abschnitt 2.1), nach einer Filterung 378 Arbeiten. Nach Auswertung (siehe Abschnitt 2.4) der einzelnen Publikationen wurden die Daten in das Programm *neuroVIISAS* eingelesen. Zur weiteren Datenanalyse mit *neuroVIISAS* wurden die gesamten Verbindungsdaten in zwei Netzwerken zusammengestellt. Das Netzwerk C1 enthält alle kortikalen Regionen mit Ausnahme der Regionen der hippokampalen Formation. Das C2-Netzwerk stellt eine verfeinerte Version des C1-Netzwerkes dar, insofern alle zytoarchitektonischen Schichten, die Verbindungen untereinander aufweisen, sichtbar gemacht wurden.

3.2 Neuroontologie der kortikalen Konnektome

Eine Ontologie wird als "[…] eine explizite Spezifikation einer Konzeptualisierung" charakterisiert (Gruber 1993). Die Konzeptualisierung steht für ein vereinfachtes Modell eines Systems, welches zu einer bestimmten Intention angefertigt wird. Eine Ontologie definiert also ein Wissensgebiet basierend auf einer bereits vorhandenen Nomenklatur, den dort existierenden Relationen und möglichen Erweiterungen. So benötigen Computer oder Automaten eine Datenbank über Definitionen und deren Zusammenhänge, um Suchanfragen und Befehle auszuführen, die sich auf gespeichertes Wissen oder Metadaten beziehen (Hesse 2002, S. 477). Bei der Generierung einer Ontologie wird auf Metadaten zurückgegriffen, diese werden durch einen Wissensprozess erzeugt. Zuerst werden Dokumente mit dem benötigten Wissen erstellt oder falls vorhanden aus Datenbanken heruntergeladen, anschließend ausgewertet, in ein externes Programm exportiert und dort analysiert (Staab 2002, S. 8).

Durch Hinzufügen weiterer Relationen, neuen Definitionen und Verschiebungen von Kategorien innerhalb des Wissensgebietes, sind sie einer reinen Taxonomie (strenge Klassifikationsordnung von beispielsweise der Einteilung von Lebewesen in Kategorien nach festgelegten Kriterien) überlegen. Angesichts dessen werden sie auch zur Gliederung in den Neurowissenschaften verwendet (Larson und Martone 2009). Nach einer Definition von Woodward (2014) bedeutet Ontologie, die grundlegenden Eigenschaften eines Forschungsaspektes zu bestimmen und das gesammelte Wissen sinnvoll zu klassifizieren. Dahingehend wird auch die Neuroontologie der Ratte für die aktuelle Arbeit genutzt, mit ihrer Hilfe werden die gewonnenen Metadaten für die spätere Analyse integriert und somit die Ontologie durch eine neue Informationskategorie erweitert.

Zur Visualisierung und exakten Auswertung der neuronalen Verbindungen wurden Graphen verwendet. Als Graphen werden netzartige Gebilde bezeichnet, die sich durch Knoten (*nodes*) und die verbindenden Kanten (*edges*) definieren (Tittmann 2011). In der Konnektomik werden die Nervenzellen als Knoten und die Verbindungen der Nervenzelle als Kanten bezeichnet (Koch und Laurent 1999). In der vorliegenden Arbeit stellen die Knoten die einzelnen Gehirnregionen bzw. Laminae und die Kanten die Verbindungen zwischen den Knoten dar.

3.3 Konnektivitätsanalyse des C1-Netzwerkes (unilateral)

Die erste Auswertung erfolgt anhand der Auswahl von 63 Gebieten in C1 (Filterdatei: cortexenvelope.xml). Zu dieser Auswahl gehören die in **Tabelle 3** aufgeführten Regionen. Diese Regionen sind alle in dem stereotaktischen Atlas von Paxinos und Watson (2007) und Paxinos und Watson (2013) eindeutig identifiziert und stellen den Ausgangspunkt für die nachfolgenden Analysen des detaillierten C2-Konnektom dar.

Region	Abk.	Region	Abk.
Agranular insular cortex dorsal part	AID	Posterolateral cortical nucleus	PLCo
Agranular insular cortex posterior part	AIP	Posteromedial cortical nucleus	РМСо
Agranular insular cortex ventral part	AIV	Postsubiculum	Post
Amygdalopiriform transition area	APir	Prelimbic cortex	PrL
Cingulate cortex area 1	Cg1	Presubiculum	PrS
Cingulate cortex area 2	Cg2	Primary auditory cortex	Au1
Cortex amygdala transition zone	CxA	Primary somatosensory cortex barrel field	S1BF
Dorsal intermediate entorhinal cortex	DIEnt	Primary somatosensory cortex dysgranular region	S1DZ
Dorsal peduncular cortex	DP	Primary somatosensory cortex forelimb region	S1FL
Dorsal tenia tecta	DTT	Primary somatosensory cortex hindlimb region	S1HL
Dorsolateral entorhinal cortex	DLEnt	Primary somatosensory cortex jaw region	S1J
Dorsolateral orbital cortex	DLO	Primary somatosensory cortex shoulder region	S1Sh
Dysgranular insular cortex	DI	Primary somatosensory cortex trunk region	S1Tr
Ectorhinal cortex	A36	Primary somatosensory cortex upper lip region	S1ULp
Frontal cortex area 3	Fr3	Primary visual cortex	V1
Granular insular cortex	GI	Primary visual cortex binocular area	V1B
Infralimbic cortex	IL	Primary visual cortex monocular area	V1M
Lateral agranular prefrontal cortex	AGl	Retrosplenial dorsal	RSd
Lateral entorhinal cortex	LEnt	Retrosplenial granular cortex a region	RSGa
Lateral orbital cortex	LO	Retrosplenial granular cortex b region	RSGb
Lateral parietal association cortex	LPtA	Retrosplenial granular cortex c region	RSGc
Medial agranular prefrontal cortex	AGm	Secondary auditory cortex dorsal area	AuD
Medial entorhinal cortex	MEnt	Secondary auditory cortex ventral area	AuV
Medial orbital cortex	MO	Secondary somatosensory cortex	S2
Medial parietal association cortex	MPtA	Secondary visual cortex lateral area	V2L
Olfactory tubercle	TuO	Secondary visual cortex mediolateral area	V2ML
Parasubiculum	PaS	Secondary visual cortex mediomedial area	V2MM
Parietal cortex posterior area	ParP	Temporal association cortex 1	TeA
Parietal cortex posterior area dorsal part	ParPD	Ventral intermediate entorhinal cortex	VIEnt
Parietal cortex posterior area rostral part	ParPR	Ventral orbital cortex	VO
Perirhinal cortex	A35	Ventral tenia tecta	VTT
Piriform cortex layers	PirL		

Tabelle 3: Regionen des C1-Netzwerkes in alphabetischer Reihenfolge.

3.3.1 Konnektivitätsmatrizen

Der nachfolgende Auswertungsteil wurde mit Hilfe der *Adjazenzmatrix* aus dem erweiterten Analysemodul von *neuroVIISAS* erstellt. Eine Adjazenzmatrix oder Verbindungsmatrix ist eine $n \times n$ Matrix für *n* Knoten mit Output-Zeilen (Efferenzen) und Input-Spalten (Afferenzen). An Position (i, j) (i: Output-Zeile, j: Input-Spalte) der Adjazenzmatrix steht eine 1 oder 0, wenn der Output-Knoten eine Verbindung zu einem Input-Knoten besitzt (1) oder keine Verbindung besteht (0). Bei einer nicht vorliegenden Verbindung wird eine 0 in das entsprechende Feld eingetragen. Diese Zuordnungen definieren *gerichtete Graphen*. Adjazenzmatrizen lassen sich in unterschiedliche Kategorien einteilen. Die einfachste Kategorie ist eine *einfache, binäre Adjazenzmatrix*, die Verbindungen als existent (1) oder nicht vorhanden (0) charakterisiert (**Abbildung 11**). Für die ersten Untersuchungen der Ergebnisse wurden binäre Adjazenzmatrizen verwendet. Im Unterschied dazu existiert noch die *erweiterte Adjazenzmatrix*, die Gewichte von Verbindungen enthält. Die folgenden Auswertungen im Abschnitt 3.3.1 beziehen sich immer auf die linkshemisphärischen Regionen von C1.

Abbildung 11: a) Adjazenzmatrix der direkten Konnektivitäten des C1-Netzwerkes. Die weißen Felder repräsentieren existierende Verbindungen und die schwarzen Felder kennzeichnen eine nicht vorhandene oder nicht identifizierte Konnektivität. b) Adjazenzmatrix der Konnektivitäten, wenn indirekte Verbindungen zwischen den Untergebieten der C1-Gebiete berücksichtigt werden.

Abbildung 11a zeigt die direkten Konnektivitäten der Knoten, wohingegen die Abbildung 11b auch die Verbindungen zwischen Untergebieten der C1-Regionen abbildet. Direkte Verbindungen verlaufen von und zu Blättern. Blätter sind in einer Baumstruktur von neuroanatomischen Gebieten genau solche Knoten, die nicht weiter untergliedert sind.

3.3.2 Sensomotorische und visuospatiale kortikale Pfade

Aus der C1-Adjazenzmatrix lassen sich typische kortiko-kortikale Projektionspfade (Verarbeitungsströme, processing streams) auslesen. Zakiewicz et al. (2014) beschreiben einen bilateralen sensosensorischen und senso-motorischen Pfad, der verkürzt als $S1 \rightarrow S1_c$ (das tiefgestellte "c" symbolisiert ein kontralaterales Gebiet) sowie $S1 \rightarrow S2$, $S1 \rightarrow S2_c$, $S1 \rightarrow M1$ und $S1 \rightarrow M1_c$ dargestellt wird. Die letzten beiden Verbindungen, eine ipsilaterale und eine kontralaterale Verbindung, werden zusammengenommen als bilaterale Verbindung bezeichnet.

Die afferenten und efferenten Verbindungen von S1 lassen sich unter Festlegung unterschiedlicher Filterkriterien in eine Adjazenzmatrix übertragen (Abbildung 12). Die Adjazenzmatrix weist diese

von Zakiewicz et al. 2014) beschriebenen auf, da die zugrundeliegende Publikation ausgewertet wurde.

Linkshemisphärische Regionen Rechtshemisphärische Regionen

Abbildung 12: Die Adjazenzmatrix mit S1 und S2 Verbindungen der linken (_L) und rechten (_R) Hemisphäre auf den Hierarchieleveln 12-15. Es sind nur direkte Verbindungen mit ihren Verbindungsgewichten dargestellt. Es wurde eine vergleichbare Farbkodierung wie in van den Heuvel et al. (2015) verwendet.

Die Konnektom Datenbank des Ratten Konnektom Projektes in *neuroVIISAS* stellt jedoch zusätzliche Informationen zu diesen Verbindungen bereit. Auch in 4 anderen Publikationen wurden dieselben Verbindungen von $S1 \rightarrow S2$ beobachtet. Ferner wurden die anderen Verbindungen in 1-3 anderen Publikationen beschrieben. Somit sind die von Zakiewicz et al. (2014) beobachteten Verbindungen durch andere Arbeitsgruppen ebenfalls beobachtet und damit indirekt bestätigt worden.

Bedwell et al. (2014) beschreiben einen hierarchischen Pfad von sensorischen Arealen über den prefrontalen Kortex zu motorischen Arealen, wobei Assoziationsareale wie der perirhinale Kortex zwischen dem sekundären sensorischen und dem prefrontalen Kortex geschaltet sind $(S1\rightarrow S2\rightarrow Assoziationskortex\rightarrow PFC\rightarrow M2\rightarrow M1)$. Der sensomotorische Pfad wird als hierarchischfunktionell (Fuster 2001, Botvinick 2008) und zugleich sequentiell verstanden. Da bis auf den perirhinalen Kortex kein anderes Assoziationsareal in Bedwell et al. (2014) erwähnt wird, soll auch dieses

nur als Assoziationsareal hier berücksichtigt werden. Die Literatur zu Assoziationsarealen ist umfangreich und erlaubt sogar funktionelle Differenzierungen zwischen unterschiedlichen Typen von Assoziationsarealen (z.B. posteriorer paritealer Kortex (Rosenberg-Lee et al. 2011), die im Wesentlichen über ihre Modalitäten definiert sind (Pandya und Yeterian 1985) und daher auch als polysensorische, multisensorische heteromodale und "crossmodale" Kortizes bezeichnet werden. Als prefrontales Areal werden die orbitofrontalen Unterregionen (Brown und Bowman 2002, Uylings et al. 2003) angesehen. Dieser komplexe Pfad kann im Konnektom der Ratte rekonstruiert werden. Die Adjazenzmatrix der indirekten Verbindungen mit Verbindungsgewichten ist in **Abbildung 13** dargestellt. Aus der Adjazenzmatrix geht auch hervor, dass auf der kontralateralen Seite durch die Verbindung von S1 \rightarrow S2_c ein vollständig kontralateraler Pfad vorliegt.

Abbildung 13: Bedwell et al. (2014) hierarischer sensomotorischer Pfad von S1 und S2 über den perirhinalen Kortex A35 und prefrontalen (orbitofrontaler Kortex) zu den motorischen Arealen M2 und M1. a) Adjazenzmatrix der ROIs und b) orthogonal hierarchische Graphenvisualisierung.

b

Für die visuell-räumlich-motorische Koordination kommt dem retrosplenialen Kortex (RS) eine wichtige Funktion zu (Vogt 2015). Die Untergebiete von RS erhalten Afferenzen vom Postsubiculum, der primären und sekundären Sehrinde und weisen Efferenzen zum primären (AGI) und sekundären motorischen Kortex (AGm) auf. Diese Konnektivität lässt sich nicht mehr auf den relativ niedrig aufgelösten Hierarchieebenen von C1 mit direkten Verbindungen rekonstruieren. Daher wurden die Adjazenzmatrix der indirekten Verbindungen von und zu Untergebieten des retrosplenialen Kortex erzeugt (**Abbildung 14**). Alle von Vogt (2015) erwähnten Verbindungen konnten im Konnektom wieder gefunden werden. Darüber hinaus zeigt sich jedoch eine auffallend dichte kontralaterale Konnektivität zwischen RS, V1, V2, Post, AGl und AGm, die nicht von Vogt (2015) beschrieben wurde und die zeigt, wie wichtig eine kontralaterale Untersuchung von Konnektivitäten ist.

	i in the second s
New York to the Table of the Contract of Table of the Table of the Contract of	Na data / hidder -3 unknown
and an the rest of the second s	-2 fibers of pass -1 not clear
■ 19 19 19 19 19 19 19 19 19 19 19 19 19	-0,001 0 rot present
	0,5 very light 0,550 1 light spirse
	1,5 light/modes 2 moderate/dat
	2,5 2,5 moderatel at 3 stress
	3.16 3.76 4.967 stress
the state of the second second second second of the second of the second se	
- "你是你,你们你你的,你是我 知道 话我们""你?""你""你们,你们不知道你们?"	
- 小教 化氯化氯化物 化氯化氯化物 计分子 化分子 化分子子 化分子子 机量子子 计	-
- 1. 静脉 计算机 化氯化化 化氯化化化 计算法 医子宫 计算法 化分子分子	•
and an	
- "你們 我們 你们你的说道,我們們們想想了!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	
■ 2017年2月1日,1月18日第6日第6日前前,1月19日前日前前回来,1月1日日日,1月1日日,1月1日日,1月1日日,1月1日日日,1月1日日日。	
Constant of the second state and a second state of the second stat	•
👷 an Bu'g' dan nange e at been sa ters det been sters 🔤 en en gesters som est terses set te sterses	
御神 教 ほう に ましんして 部分 アイ・コール 読 卸 (単) 二 可能な (相) - ビデー (人) -	
The second s	
■ "你你说你,你你们就能好吗?""你?""你说你?"你不知道,你 你你你说,你你说你你 你?""你""你""你"	***
the specific property states and an even the contract of the second party of the second party and a second se	
■ 1999年1月1日:1月1日 - 1月1日 - 1月1日 - 1月1日日日 - 1月1日日 - 1月1日日 - 1月1日 - 1月1日 - 1月1日日 - 1月1日 - 1月1	~
ander fill die eine eine eine eine eine eine eine	**
i fa e e e e e e e e e e e e e e e e e e	
· · · · · · · · · · · · · · · · · · ·	
na ta sa 🔰 🐘 ta san ang sa na kana kana kana 🖓 🖓 🖓 👘 👘 👘 👘	
ang sa manang sa pang sa pang sa kasaran ^{ma} na sa pang	•
an an an transformer that the first of the state was and the state of the state of the state of the state of the	1 - F
The second se	
· 网络小麦 · · · · · · · · · · · · · · · · · · ·	
an example a service of the service of the service of the service service setting of the	
and the second	

a

Abbildung 14: Adjazenzmatrix der Gebiete, die mit dem retrosplenialen Kortex verbunden sind. a) Alle indirekten und direkten Verbindungen mit Farb-Kodierung der mittleren Kantenintensität zwischen Untergebieten. b) Filterung der Gebiete, die nach Vogt (2015) den visuell-räumlich-motorischen Verarbeitungspfad bilden. c) Darstellung der Verbindungen von b) im bilateralen hierarchischen Netzwerk mit Kantengewichten.

3.3.3 Eigenschaften der C1-Adjazenzmatrizen

Von den 63 Regionen des C1-Netzwerkes sind 60 Regionen durch 684 *direkte* Verbindungen miteinander verbunden. Werden auch die Verbindungen zwischen Untergebieten der 63 Regionen berücksichtigt, so sind 927 *kumulierte* Verbindungen zwischen 63 Regionen bekannt. Im Folgenden wird das C1-Netzwerk mit den detaillierteren Verbindungen zwischen Untergebieten, die auch als indirekte Verbindungen bezeichnet werden, untersucht, da sich für die einzelnen Regionen und deren Bedeutung im Netzwerk ein vollständigeres Bild ergibt.

Die Liniendichte des C1-Konnektoms beträgt 23,7% bei einer mittleren Anzahl von 29,4 Verbindungen pro Gebiet. 343 reziproke Verbindungen liegen im C1-Konnektom vor und damit mehr als in Zufallsmodellen gleicher Verbindungs- und Regionenanzahl.

Die Adjazenzmatrix der häufigsten Gewichte indirekter Verbindungen zeigt zwei dichter besetzte Matrixbereiche auf (**Abbildung 15**). Ein Verbindungs-Cluster befindet sich im Bereich insulärer kortikaler Gebiete und das zweite Cluster liegt in sensorischen Arealen. Typisch für diese beiden Bereiche mit häufigen Verbindungen ist die Lage im Bereich der Hauptdiagonalen der Matrix, was bedeutet, dass die Gebiete innerhalb eines Clusters untereinander besonders stark verbunden sind. Taenia tecta, subikuläre Regionen und Gebiete des superficial amygdaloid complex weisen etwas mehr grau kodierte Verbindungen auf, die explizit in den Publikationen als nicht existent beschrieben wurden.

Abbildung 15: Adjazenzmatrix der häufigsten Verbindungsgewichte indirekter Verbindungen des unilateralen C1-Netzwerkes. Im oberen Bereich sind diverse Verbindungen grau kodiert, was bedeutet, dass diese explizit als nicht existent beschrieben wurden. Eine lokale Verbindungsanhäufung bzw. Cluster befindet sich etwas unterhalb der Mitte der Matrix um die Hauptdiagonale und kennzeichnet die dichten Verbindungen insulärer Gebiete. Dann folgt noch ein etwas weniger dichtes Cluster um die Hauptdiagonale für die sensorischen Gebiete. Die seitlichen Histogramme geben die mittleren Gewichte der Verbindungen wieder. Das untenstehende Histogramm gibt das mittlere Input-Kanten-Gewicht und das rechts stehende Histogramm das mittlere Output-Kanten-Gewicht wieder.

Die im C1-Netzwerk ausgewählten Gebiete folgen alle einer sehr viel feineren Untergliederung, die sich aus der Auswertung der Tract-tracing Literatur ergibt. Die Verbindungshäufigkeiten bezüglich der Efferenzen und Afferenzen wurden in **Tabelle 4** zusammengefasst. Die Gebiete wurden hinsichtlich ihrer Efferenzen sortiert, so dass die Ränge der Regionen ersichtlich werden. Der perirhinale Kortex hat den umfangreichsten Output (367) gefolgt von LEnt (302) und AGI (225) sowie MEnt (220). Das Maximum dieser Output Verbindungen wird in der folgenden Spalte von **Tabelle 4** angegeben und dem entsprechenden Zielgebiet zugeordnet. In den folgenden Spalten werden dann die Werte für die Afferenzen wiedergegeben. Hier steht der ectorhinale Kortex mit 394 Input-Verbindungen an erster Stelle gefolgt von LEnt (385) und S1 (305).

Tabelle 4: Verbindungen der Untergebiete (Subr.) des C1-Netzwerkes. Max.: maximale Anzahl von Outdegrees (Out) oder Indegrees (In) aus Teilbäumen. cx: cortex, Pr: Primary, Sc: Secondary, f: field, hl: hindlimb, fl: forelimb, r: region, Subr.: Anzahl der Unterregionen.

Region	Out	Max	Target	In	Max	Source	Subr.
Perirhinal cx.	367	98	Lateral entorhinal cx.	385	64	Lateral entorhinal cx.	111
Lateral entorhinal cx.	302	69	Ectorhinal cx.	394	98	Perirhinal cx.	188
Lateral agranular prefrontal cx.	225	28	Pr. somatosensory cx. hl. r.	305	45	Pr. somatosensory cx. barrel f.	537
Medial entorhinal cx.	220	50	Parasubiculum	282	100	Presubiculum	236
Retrosplenial granular cx. b r.	220	75	Cingulate cx. a. 2	237	82	Retrosplenial granular cx. c r.	377
Sc. somatosensory cx.	217	38	Pr. somatosensory cx. hl. r.	229	59	Pr. somatosensory cx. barrel f.	104
Agranular insular cx. posterior part	215	24	Infralimbic ex.	56	18	Dysgranular insular cx.	46
Presubiculum	181	100	Medial entorhinal cx.	161	38	Retrosplenial granular cx. a r.	143
Sc. visual cx. lateral a.	167	46	Pr. visual cx.	88	41	Pr. visual cx.	60
Retrosplenial granular cx. c r.	165	82	Retrosplenial granular cx. b r.	108	65	Retrosplenial granular cx. b r.	116
Infralimbic cx.	159	43	Prelimbic cx.	227	55	Perirhinal cx.	84
Granular insular ex.	157	49	Perirhinal cx.	62	21	Dysgranular insular cx.	72
Pr. somatosensory cx. hl. r.	152	39	Lateral agranular prefrontal cx.	127	38	Sc. somatosensory cx.	34
Medial agranular prefrontal cx.	149	20	Retrosplenial granular cx. b r.	166	23	Pr. somatosensory cx. hl. r.	117
Retrosplenial granular cx. a r.	144	41	Retrosplenial granular cx. b r.	20	6	Postsubiculum	72
Pr. somatosensory cx. barrel f.	143	59	Sc. somatosensory cx.	77	19	Sc. somatosensory cx. Agranular insular cx posterior	1195
Dysgranular insular cx.	142	21	Granular insular cx.	65	24	part	82
Ectorhinal cx.	142	69	Lateral entorhinal cx.	187	69	Lateral entorhinal cx.	44
Agranular insular cx. ventral part	137	26	Perirhinal cx.	52	18	Dorsolateral entorhinal cx.	13
Pr. somatosensory cx. fl. r.	137	28	Sc. somatosensory cx.	143	34	Sc. somatosensory cx.	55
Agranular insular cx. dorsal part	136	44	Perirhinal cx.	49	7	Sc. somatosensory cx.	35
Prelimbic cx.	124	24	Infralimbic cx.	242	61	Perirhinal cx.	75
Pr. visual cx.	91	41	Sc. visual cx. lateral a.	128	46	Sc. visual cx. lateral a.	164
Cingulate cx. a. 2	90	52	Retrosplenial granular cx. b r.	135	75	Retrosplenial granular cx. b r.	96
Dorsolateral entorhinal cx.	78	25	Prelimbic cx.	90	25	Agranular insular cx. dorsal part	33
Parasubiculum	76	29	Medial entorhinal cx.	190	50	Medial entorhinal cx.	79
Pr. somatosensory cx. trunk r.	69	18	Pr. somatosensory cx. fl. r.	73	20	Pr. somatosensory cx. fl. r.	10
Temporal association cx. 1	57	22	Pr. visual cx.	32	13	Sc. visual cx. lateral a.	248
Dorsal peduncular cx.	55	37	Infralimbic cx.	21	7	Infralimbic cx.	28
Pr. somatosensory cx. upper lip r.	49	13	Lateral agranular prefrontal cx.	45	12	Pr. somatosensory cx. trunk r.	7
Lateral orbital cx.	43	8	Retrosplenial granular cx. b r.	57	10	Lateral agranular prefrontal cx.	39
Medial orbital cx.	42	6	Retrosplenial granular cx. b r.	26	6	Retrosplenial granular cx. b r.	18
Pr. somatosensory cx. dysgranular r.	41	17	Sc. somatosensory cx.	9	6	Pr. somatosensory cx. barrel f.	47
Ventral orbital cx.	41	10	Retrosplenial granular cx. b r.	50	12	Retrosplenial granular cx. b r.	8
Amygdalopiriform transition a.	32	7	Lateral entorhinal cx.	17	3	Perirhinal cx.	13
Retrosplenial dorsal	31	4	Medial entorhinal cx.	20	5	Prelimbic cx.	16
Cingulate cx. a. 1	28	4	Lateral agranular prefrontal cx.	33	7	Prelimbic cx.	17
Pr. auditory cx.	26	6	Perirhinal cx.	53	31	Sc. visual cx. lateral a.	133
Pr. somatosensory cx. jaw r.	23	13	Sc. somatosensory cx.	13	9	Sc. somatosensory cx.	19
Posterolateral cortical nucleus	22	7	Lateral entorhinal cx.	23	3	Perirhinal cx.	12
Posteromedial cortical nucleus	20	3	Lateral entorhinal cx.	13	2	Lateral entorhinal cx.	6
Postsubiculum	20	6	Retrosplenial granular cx. a r.	61	31	Retrosplenial granular cx. a r.	42
Parietal cx. posterior a.	19	2	Medial entorhinal cx.	51	11	Lateral agranular prefrontal cx.	18
Medial parietal association cx.	13	3	Pr. somatosensory cx. barrel f.	12	3	Pr. somatosensory cx. fl. r.	23
Pr. visual ex. binocular a.	12	1	Presubiculum	12	1	Medial entorhinal cx.	14
Piritorm cx. layers	11	5	Lateral entorhinal cx.	0	0		12
Lateral parietal association cx.	10	4	Pr. somatosensory cx. fl. r.	13	4	Pr. somatosensory cx. fl. r.	7
Sc. auditory cx. ventral a.	10	5	Pr. auditory cx.	0	0		9
Dorsolateral orbital cx.	10	1	Lateral entorhinal cx.	14	2	Lateral agranular pretrontal cx.	17
Ventral tenia tecta	7	1	Dorsal tenia tecta	9	1	Posterolateral cortical nucleus	7
Dorsal intermediate entorhinal cx.	-7	1	Dorsal tenia tecta	71	21	Agranular insular cx. ventral part	31
Parietal cx. posterior a. dorsal part	7	4	Sc. visual cx. lateral a.	20	9	Sc. visual cx. lateral a.	6
Cortex amygdala transition zone	6	3	Lateral entorhinal cx.	0	0	Agranular insular cx. posterior	4
Frontal ex. a. 3	0	3	Lateral agranular prefrontal cx.	45	18	part	16
rr. somatosensory cx. shoulder r.	6	1	Lateral parietal association cx.	0	0	Medial and drive?	0
Dorsal tenia tecta	5	1	Lateral entorhinal cx.	10	2	Medial entorhinal cx.	4
ventral intermediate entorhinal cx.	5	1	Prelimbic cx.	20	12	Intralimbic cx.	11
Sc. auditory cx. dorsal a.	5	5	PT. auditory cx.	2	1	Pr. auditory cx.	7
Sc. visual cx. mediolateral a.	4	4	Lateral agranular prefrontal cx.	0	0	Transaction	0
Sc. visual cx. mediomedial a.	4	4	Lateral agranular pretrontal cx.	1	1	remporal association cx. I	0
Denietal au mostorior e nativilizzat	4	2	minalimbic cx.	54	9	Initialimpic cx.	41
ranetal cx. posterior a. rostral part	3	3	Sc. visual cx. lateral a.	1	1	Sc. visual cx. lateral a.	8
Pr. visual cx. monocular a.	2	1	PT. VISUAI CX.	5	4	PT. VISUAI CX.	33

3.3.4 Beobachtungshäufigkeit, Verifikation und Validität

Die Häufigkeit mit der direkte Verbindungen in den ausgewerteten Publikationen beobachtet wurden, zeigt zugleich wie wahrscheinlich die wirkliche Existenz der Verbindung ist, da bei den Beobachtungen von Ursprüngen und Zielen axonaler Verbindung auch falsch positive sowie falsch negative Beobachtungen dokumentiert und dann erfasst werden können. Die Beobachtungshäufigkeiten für die direkten Verbindungen lassen sich wieder in Matrixform darstellen (**Abbildung 16**). Sofern in einer Publikation dieselbe Verbindung in einem anderen Versuchstier (Case) oder anderen experimentellen Bedingungen beobachtet wurde, erhöht sich die Beobachtungshäufigkeit genauso, wie wenn dieselbe Verbindung in unterschiedlichen Publikationen beschrieben wird. Das Maximum von 11 Beobachtungen liegt für die Verbindung vom perirhinalen zum prelimbischen Kortex vor. Ferner wurden Verbindungen des infralimbischen Kortex und der visuellen Felder besonders häufig beobachtet.

TO	ᄩ		PMCo PrS	Pas Post DLEnt		PirL RSG RSGa	582 60 59 60 50 60	卢그입	ParP ParPD			GI A35 A36	AGI S1BF		S1Tr S2 V1 V2 ML	V2IMM V1B V1M		
	1	1	1		1	1		22 11	1	1	111	1 1 1 1	11		1	1	11	No data
APir PLCo PMCo PrS PaS Post DLEnt	1 1 2 1	1 4 4 4 3 3 1	2 1 2 1 1 1 1 3 1 3 1 4 1	2 1 1 1 1 1 4 4 1 4 5 1	2 2 2 4 3 4 1 2	1 1 1 1 3 1		58 35 24 22 22 11 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 3 2 1 2 2 1 1 1 1 1	4 2 1 4 1 1 1 1 5 2 4 2 5 1 1 1 1	2 3 1 1 1 2 1 3 1 2 1 1		1 1 1 1 2 1 1 1		1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1	-10 -2 >0
DIEnt LEnt MEnt VIEnt Bid	11	33 1	43	4 1 1	3 5 2	2 1		1 1 4 4 1 1 1 1	2 1	1 2 1	2 2 2 1 1 1	1 1 6 3 3 2 1	1 32 11 1		1 1 2 1	11	1 2 1 2 3 1 1 1	
RSd RSGa RSGb RSGc			1 3 1	33 11	3 1	1	1	11	111	1	1	32	11		2	1	11	
Cg1 Cg2							1	22 11					11	1			1 1	4 >4
PrL IL Er3	2 1 2 2	2 2 3 4	12 12	11	4 2 5 2	1 1 1	1 1 2 1	57 94	1 1 1	1	3 1 2 4 4 3	2 7 3 1 2 <mark>10</mark> 3	136 114	1	3 1 3 2	1111	2 2 2 2 5 2 2 2 4	
LPtA MPtA														11	1			
ParP ParPD ParPR			1		2 1			11		1	1	22	2 4 1 1	11	1	1	112	
TeA Au1 AuD	1 1	1 1	11	11	2 1	1		1 1	<mark>1</mark> 2	2 1 1	111	2 1 2 2	221	I	13 12	13 11	1 1	
AID AID AIP AIV	1 1	1 1 2 3 2 2	1 2 2 1	21	2 1 1 3 1 1 2 1	1		33 23 33	1 1 1	1	2 1 1 1 2 1 1 1	1 1 2 2 1 5 3 1 2 2	1 2 1 2 1 1		2 1 2 1 1 1	11	2 2 2 1 2 1 2 3	
GI A35 A36 DP	1 1 1 1 1	1 1 2 2 1 1	1 1 2 1 1 1	1 1 2 3 1 1	1 4 3 2 2	1 2 1		2 3 11 7 5 5	1 1 1 3 2	1 2 2	1 1 1 3 2 4 2 2 2	1 1 1 1 2 1 2	1 2 4 5 2 2 3 1	2 1 1	2 1 1 1 4 1 2	1 1 3 1 1 1	2 1 1 3 2 4 1 1 2 1 2	>8
AGI AGM S1BF S1DZ	1 1 1 1	11	11	11	2 1 2 1	1	1	3 1 5 2 1	1 2 1 1 2	1	1 1 1 1 1 1	222 132	2 4 1 4 2 1 4 3 1	13 12	121 111 51	1 1 1 1	1 1 2 1 1 2 1 1 1	
S1J S1ULp S1FL S1HL S1Sh								1 1 1 1 1	1 1 1 1 1 1				1 1 3 2 1 1 1 1 1	1	1 1 2 2 1		1 1	
S1Tr S2 V1 V2ML V2MM	11	1 1 1 1	1 1 1 2	1 1 1 1	1 2 1	1	1	2 2 1 1	1 1 2 3 1	1 1 3 1		3341 142	1 1 5 3 3 3 3 2		2 2 1 1 1 2 8	1 1 10 1 2	1 1 1 12	
V2L V1B	1 1	1 1 1 1	13 11	2 1 1 1	1	1	1	32 11	2 3 ⁻ 1	1 1 2	1 1 1	22 111	2 3 1 1		1 10 1 1	5 1 1 1	2 2 1 1	
DLO LO			1 1	11	1 2 1	1	1	1	1	1	1	1122	11112	1	1	1	1 2 3 1	11
MO VO TuO	1 1	2 2 1	2 1 2	11 22	2 1 2	1	1	32 33 12	1 1	1 1	111 322	22 133	15 45	1	1 4 1	1 1	1 1 1 1 2 1 2 1 1 2 1 1 1	

Abbildung 16: Beobachtungshäufigkeiten direkter Verbindungen des C1-Netzwerkes.

Eine Verbindung, die sowohl mit einem anterograd (axonale Endigungen) als auch retrograd (Perikaryen) transportierten Tracer nachgewiesen wurde, lässt sich auch in Matrixform sichtbar machen (**Abbildung 17**). Ein solcher "bilateraler Nachweis" wird häufig in den Studien als Überprüfung oder Verifikation einer beobachteten Verbindung betrachtet und impliziert eine größere Wahrscheinlichkeit dafür, dass die Verbindung wirklich existiert.

Abbildung 17: Die Transportrichtungen antero- und retrograd von Tracern, die für den Nachweis von Verbindungen im C1-Netzwerk verwendet wurden, ist hier dargestellt. Höherwertige Verbindung in Hinblick auf deren wirkliche Existenz sind solche, die Werte zwischen 3 und 6 haben. Die Kodierung 7-12 dient für transsynaptische Verbindungen, von denen in diesem Konnektom keine vorliegen.

Aus der Matrix geht hervor, dass die Verbindung vom perirhinalen zum prelimbischen Kortex, sowie $V1 \rightarrow V2$ und $V2 \rightarrow V1$ jeweils mit antero- und retrograden Tracern nachgewiesen wurden und daher zuzüglich ihrer häufigen Beobachtungen zuverlässig hinsichtlich ihrer Existenz sind.

Beobachtungshäufigkeiten und die Verifikation von Verbindungen mittels antero- und retrograden Tracern wurden in ein spezielles Maß der Validität bzw. des "Observation scores" zusammengefasst (**Abbildung 18**). Dieser lässt sich filtern (**Abbildung 19**), um nur die besonders zuverlässigen Verbindungen zu erhalten und zu visualisieren (**Abbildung 20**).

Abbildung 18: Validität bzw. Observation scores der Verbindungen des C1-Netzwerkes.

Abbildung 19: Gefilterte Verbindungen aus Abbildung 18 mit Validitäten größer und gleich 4.

Abbildung 20: Graphen zur Visualisierung der gefilterten Verbindungen.

3.3.5 Reziproke Verbindungsstrukturen

Aus der Matrix der reziproken Verbindungen des C1-Netzwerkes geht hervor, dass nicht alle bekannten Verbindungen der C1-Gebiete in reziproker Form vorliegen (**Abbildung 21**). Ferner wird auch deutlich, dass die beiden Teilverbindungen (Hinverbindung und Rückverbindung) derselben reziproken Verbindung nicht immer die identischen Verbindungsgewichte besitzen. Die Reziprozitäten-Matrix zeigt eine Häufung von reziproken Verbindungen im Bereich der insulären Rindenfelder, A35, A36, AGl und AGm. Häufig weisen die Gebiete mit Verbindungen um die Hauptdiagonale auch topologische Beziehungen auf, insofern sie direkt benachbarte Regionen sind oder der räumliche Abstand zwischen den Regionenoberflächen gering ist.

Abbildung 21: Reziproke Verbindungen und räumliche Distanzen der C1-Regionen. a) Reziprozitätsmatrix mit eingezeichneter Matrixdiagonale. Das blaue Quadrat markiert den Bereich mit insulären Gebieten, die zahlreiche rezipoke Verbindungen aufweisen. Im roten Quadrat liegen parietale kortikale Gebiete, die kaum Verbindungen reziproke besitzen. b) Die räumlichen Distanzen sind hier mittels Grautönen dargestellt. Das Maximum von 2356 Pixeln Abstand entspricht einem räumlichen Abstand von 13862 µm. Dicht zusammenliegende Gebiete sind hellgrau und weiter entfernt zueinander liegende Gebiete dunkelgrau kodiert. Die parietalen Kortex Regionen

liegen zwar räumlich dicht zusammen, weisen aber kaum reziproke Verbindungen auf. Die insulären Gebiete liegen ebenfalls dicht zusammen und besitzen zahlreiche reziproke Verbindungen.

3.3.6 Die C1-Distanzmatrix

Die Distanzmatrix gibt die kürzesten Wege zwischen zwei C1-Regionen wieder. Die Wege entsprechen der Anzahl von Verbindungen zwischen den beiden Gebieten. Da die drei Gebiete secondary visual cortex mediolateral area, secondary auditory cortex ventral area und primary somatosensory shoulder region keine Afferenzen von anderen C1-Regionen erhalten, sind in der Distanzmatrix die entsprechenden Spalten schwarz gefärbt. Der überwiegende Teil der Gebiete ist über zwei Verbindungen erreichbar, gefolgt von direkt verbundenen Gebieten. Seltener finden sich Verbindungen über drei Kanten bzw. zwei Zwischenstationen und 13 Gebiete sind so weit voneinander entfernt im Graphen, dass mindestens vier Verbindungen bzw. drei Zwischenstationen notwendig sind, um sie miteinander zu verbinden (**Abbildung 22**). Vor allem Verbindungen zu CxA, V2MM und ParPR sind länger im Vergleich zu anderen C1-Regionen.

Abbildung 22: Distanzmatrix der C1-Gebiete. Die 3 dunkelgrauen Streifen gehören zu Gebieten, die von C1-Regionen keinen Input erhalten. Der überwiegende Teil der Gebiete ist über 2 Verbindungen bzw. eine Zwischenstation erreichbar.

3.3.7 Die erweiterte Distanzmatrix

Die erweiterte Distanzmatrix kombiniert die räumliche Distanz mit der graphentheoretischen Distanz und dem Verbindungsgewicht, bzw. den Verbindungsgewichten sofern die graphentheoretische Distanz größer als 1 ist. Um die Zahlenbereiche der räumlichen Distanz und der Gewichte aufeinander abzustimmen bzw. fein einzustellen, dient eine Anpassungsformel: F1* D + F2 / W + S (F1: Faktor zur Anpassung des Wertebereichs der räumlichen Distanz D, F2: Faktor zur Anpassung der Verbindungsgewichte, S: Faktor zur Anpassung der graphentheoretischen Distanz). Räumlich dicht zusammenliegende Regionen, die über eine direkte Verbindung mit großem Gewicht wie z.B. 3 oder 4 verbunden sind, lassen sich mit dieser Matrixdarstellung besser von Verbindungen zwischen Regionen abgrenzen, die räumlich weit entfernt sind, direkt verbunden und ein geringes Verbindungsgewicht besitzen. Für die Berechnung wurde ein F1 von 0,0004 gewählt (F1=10/(maximale räumliche Distanz), F2=2, S=1).

In **Abbildung 23** sind 5 Bereiche in der Matrix hervorgehoben, die relativ geringe erweiterte Distanzen aufweisen. Hierzu gehören die parahippokampalen Gebiete und deren intrinsische Konnektivität um die Hauptdiagonale (blauer Bereich oben links). Dann die parahippokampale Output-Konnektivität zu insulären Gebieten, A35 und A36 (blauer Bereich oben rechts) und dann das umgekehrte Muster der insulären Output Konnektivität mit parahippokampalen Gebieten (rotes Gebiet unten links). Die intrinsische insuläre Konnektivität um die Hauptdiagonale (rotes rechts Gebiet) weist ebenfalls geringe erweiterte Distanzen auf. Das orange Gebiet schließt die somatosensorische Konnektivität ein, die intrinsisch ist und um die Hauptdiagonale liegt. Auch für diese Konnektivitäten gelten relativ kleine erweiterte Distanzwerte, so dass eine lokal intensive Netzwerkstruktur vorliegt bzw. lokal dichtverbundene Regionen erkennbar sind.

Auffallend sind die relativ großen erweiterten Distanzen von V2ML und V2MM zu den meisten anderen C1-Gebieten. Des Weiteren fällt die relativ hell kodierte Spalte der erweiterten Distanzmatrix von VLEnt auf. Die meisten C1-Gebiete sind von VLEnt aus relativ weit entfernt.

Abbildung 23: Erweiterte Distanzenmatrix des C1-Konnektoms. Für diese und die folgenden Matrizen-Darstellungen wurden Gruppenbezeichnungen von kortikalen Regionen hinzugefügt.

3.3.8 Connnectivity Matching Matrix

Die Connectivity Matching Matrix lässt sich jeweils für Input-, Output oder beide Verbindungstypen zusammen berechnen. In **Abbildung 24** ist die Connectivity Matching Matrix für Input und Output Verbindungen zusammen wiedergegeben. Der Maximalwert von 1 wird erreicht, wenn die Verbindungen eines Regionenpaares jeweils identisch sind. Je größer die Übereinstimmung von Verbindungen im Vergleich mit einer anderen Region sind, desto größer ist der Connectivity Matching Wert. In der Matrix sind wieder Bereiche erkennbar, die relativ hohe Connectivity Matching Werte besitzen (AID, AIP, AIV, DI, GI, A35, A36, DP, AGI, AGm) und parahippokampale Regionen. Die intrinsischen insulären Verbindungen zwischen den entsprechenden Regionenpaaren weisen die höchsten Connectivity Matching Werte auf.

Abbildung 24: Connectivity Matching Matrix für Input- und Output-Verbindungen. Je heller die Grautöne, desto ähnlicher sind die Verbindungen eines Regionenpaares.

3.3.9 Communicability Matrix

Die Summe der Verbindungen, die durch ein Paar von Regionen verläuft und damit als Parameter genutzt werden kann, der die Bedeutung von Regionenpaaren für Pfade des Netzwerkes oder die globale Bedeutung von Regionenpaaren für Verbindungen im Netzwerk widerspiegelt, wird in der Communicability Matrix dargestellt (**Abbildung 25**). Bereiche mit größeren Werten finden sich wieder für insuläre Regionenpaare sowie zwischen insulären Gebieten, restrosplenialen Regionen und limbischen Rindenfeldern. Die parahippokampalen Regionen zeigen untereinander keine überdurchschnittlichen Werte auf. Allerdings finden sich größere Communicability Werte zwischen parahippokampalen und limbischen Regionen.

Ergebnisse

Abbildung 25: Communicability Matrix des C1-Netzwerkes. Großen Communicabilty-Werten wurden hellere Grautöne zugeordnet. Diese größeren Werte bedeuten, dass relativ viele Pfade durch ein Paar von Regionen verlaufen und diese Regionen dann eine große Bedeutung für die gesamte Vernetzungsstruktur des Netzwerkes besitzen.

3.3.10 GTOM Matrix

Das generalized topological overlapping measure (GTOM) gibt die Anzahl gleicher Nachbarregionen wieder, die ein Paar von Regionen gemeinsam haben. Hierbei werden nur die tatsächlich existierenden Verbindungen dieser beiden Regionen berücksichtigt. Die GTOM-Werte sind zwischen 0 und 1 normiert. Die Matrix hat Ähnlichkeit mit der Connectivity Matching Matrix und weist ein ähnliches Muster von blockartigen Bereichen mit relativ großen GTOM-Werten auf. Die parahippokampalen Gebiete haben große GTOM-Werte untereinander sowie zu insulären Gebieten. Dann zeigen sich Blöcke großer GTOM-Werte für die insulären Regionen und für somatosensorische Rindengebiete (Abbildung 26).

Abbildung 26: Die GTOM-Matrix der Regionen des C1-Netzwerkes. Hellere blockförmige Bereiche heben sich von der übrigen Matrix bei den parahippokamaplen, insulären und somatosensiblen Bereichen ab.

3.3.11 Globale Konnektivitätsanalyse

Einige allgemeine Parameter, die das C1-Netwerk beschreiben, wurden zu Beginn der Darstellung der Adjazenzmatrizen bereits aufgeführt. Das aus 63 Regionen bestehende Netzwerk verfügt über 971 Verbindungen (kumulierte Verbindungen) dieser Gebiete sowie den darunterliegenden Untergebieten. Betrachtet man lediglich die 63 Regionen ohne ihre Unterregionen so finden sich 727 Verbindungen (direkte Verbindungen). Die Definition der Parameter und der in **Tabelle 5** aufgeführten Parameter wurde in Schmitt und Eipert (2012) und Schmitt et al. (2014) veröffentlicht und von Philipp (2012) sowie Kettlitz (2013) ausführlicher beschrieben.

Um die Frage zu beantworten wie zufällig die Verbindungen in einem Netzwerk vorliegen, kann das Originalnetzwerk mit zufällig erzeugten Netzwerken verglichen werden. Es gibt diverse Verfahren zufällige Netzwerke zu erzeugen, da bestimmte Eigenschaften dieser zufälligen Netzwerke mit speziellen Parametern der Verfahren gesteuert werden können, wie z.B. die Tendenz wenige Regionen mit vielen Verbindungen zu generieren oder alle Regionen mit gleicher Wahrscheinlichkeit zu Verbindungen. Das einfachste zufällige Netzwerk ist das Erdös-Rényi (ER) Netzwerk. Alle zufälligen Netzwerke sollen genauso viele Knoten und Verbindungen enthalten wie das Originalnetzwerk. Dem Originalnetzwerk am ähnlichsten sind zufällige Rewiring und Rewiring-Reziproke Netzwerke. Bei Letzterem wird die Anzahl reziproker Verbindungen ebenfalls konstant gehalten. Für das C1-Konnektom hat sich herausgestellt, dass die Anzahl reziproker Verbindungen besonders groß ist bzw. die Häufigkeit von reziproken Verbindungen in ER-Netzwerken deutlich geringer ist. Dies ist eine interessante Eigenschaft, die nur mit bestimmten Zufallsgeneratoren angenähert werden kann: Watts-Strogatz, modifiziertes OHO-Netzwerk und natürlich das reziproke Rewiring Netzwerk. Die Modularität beträgt 0,196 und ist größer als bei Rewiring und Reciprocal rewiring Netzwerkrandomisierungen aber kleiner als im Watts-Strogatz (0,337) Randomisierungsmodell, da hier Gruppenbildungen algorithmisch generiert werden. Die Rewiring-Randomisierung erzeugt die ähnlichsten Netzwerke, wenn sie mit realen Netzwerken verglichen werden. Der Modularitätsparameter wurde über 100 Rewiring-Randomisierungen gemittelt und beträgt 0,086. Somit ist die Modularität im realen Netzwerk hochgradig different von der Rewiring-Randomisierung.

Ein zentraler globaler Parameter eines Netzwerkes ist die mittlere Pfadlänge, die angibt wieviel Kanten im Durchschnitt erforderlich sind, um von einem Knoten zu einem beliebigen anderen Knoten zu gelangen. Sie beträgt 1,89 und der mittlere Clusterkoeffizient ist 0,601 für die Berechnung von Verbindungen zwischen Untergebieten. Im ER-Netzwerk beträgt der mittlere Clusterkoeffizient lediglich 0,243. Die Small-Worldness ist ein Koeffizient von Pfadlänge und Clusterkoeffizient des Originalnetzwerkes und des randomisierten Netzwerkes.

APL-SR: average path leng	gin – sen-rei	erences, AS	C: Average su	ograph centi	faility, DAC:	Directed as	sonalivity c	berncient.
Unilateral	Real	Erdös-Rényi	Watts-Strogatz	Barabasi-	Mod. BA	Mod. OHO	Rewiring	Reciprocal
Reciprocal edges	343	88	335,04	223,16	255,02	325,54	229,17	343
Heterogeneity	0,703	0,159	0,08	0,522	0,617	0,47	0,703	0,703
Degree distribution entropy	3,634	2,78	2,178	3,151	3,606	3,224	3,634	3,634
Diameter	4	3	3,01	3,02	4,01	3,76	3,94	3,92
Average path length	1,891	1,787	1,906	1,807	1,859	1,931	1,836	1,841
APL - SR	1,339	1,381	1,365	1,372	1,413	1,365	1,41	1,125
Centrality	0,474	0,156	0,084	0,39	0,379	0,262	0,49	0,474
Central point dominance	0,896	0,424	0,481	0,828	0,822	0,765	0,886	0,887
ASC [*10 ⁶]	25,541	0,038	0,044	1,405	8,429	2,392	15,334	17,323
Average cluster coefficient	0,601	0,241	0,42	0,349	0,417	0,421	0,514	0,497
Average flow coefficient	0,551	0,307	0,623	0,408	0,419	0,572	0,378	0,542
Small-worldness	2,321	1	1,631	1,428	1,66	1,613	2,071	1,998
Modularity	0,196	0,129	0,337	0,113	0,101	0,24	0,086	0,109
Transitivity	0,525	0,24	0,472	0,357	0,425	0,457	0,456	0,454
Global Efficiency	0,556	0,615	0,595	0,611	0,57	0,591	0,564	0,564
Harmonic mean	1,798	1,627	1,681	1,635	1,754	1,693	1,772	1,774
Vulnerability	0,037	0,003	0,004	0,013	0,022	0,011	0,032	0,037
Local Efficiency	0,765	0,589	0,653	0,649	0,655	0,697	0,724	0,698
DAC	-0,159	0,009	0,1	-0,1	-0,11	0,206	-0,25	-0,247
Cyclic coefficient	0,134	0,135	0,143	0,14	0,136	0,143	0,134	0,131
Average search information	5,726	5,681	6,172	5,912	5,655	6,173	5,49	5,593
Knotty-centredness	0,694	0,121	0,111	0,54	0,501	0,548	0,657	0,663
	Δ=0,9	Δ=2,6	Δ=5,3	$\Delta = 1,5$	Δ=0,9	Δ=1,2	$\Delta = 0,9$	Δ=0,9
Scale-Free property	γ=0,08	γ=-1,18	γ=-0,52	γ=0,61	γ=-0,06	γ=0,8	γ=0,08	γ=0,08
	α=0,03	α=0	α=0,01	α=0,22	α=0,02	α=0,42	α=0,03	α=0,03
	Δ=0,9	Δ=2,6	Δ=5,3	$\Delta = 1,4$	Δ=0,9	Δ=1,3	$\Delta = 0,9$	Δ=0,9
Exponential approximation	γ=249,83	γ=-27,87	γ=-232,84	γ=54	γ=-1165,3	γ=42,76	γ=249,83	γ=249,83
	$\alpha = 0.02$	$\alpha = 0.02$	α=0.06	$\alpha = 0.05$	$\alpha = 0.02$	$\alpha = 0.06$	$\alpha = 0.02$	$\alpha = 0.02$

Tabelle 5: Globale Parameter des unilateralen C1-Netzwerkes. Es gibt keine isolierten Knoten (1 Zusammenhangskomponente). Die 7 Randomisierungsmodelle wurden jeweils 100 mal iteriert. Real: reales C1-Netzwerk, APL-SR: average path length – self-references. ASC: Average subgraph centrality. DAC: Directed assortativity coefficient.

Die Small-Worldness Eigenschaft des Originalnetzwerkes beträgt 2,3 und ist damit größer als bei den zufälligen Netzwerken. Dies bedeutet, dass das Originalnetzwerk eine spezifische Struktur bezüglich der gemittelten Verbindungsanordnung aufweist, die auf eine relativ starke Gruppenbildung hinweist. Diese Tendenz konnte bereits in den Matrizendarstellungen (erweiterte Distanzmatrix, Communicability Matrix, GTOM Matrix) in Form von blockartigen größeren Expressionen der entsprechenden Matrixwerte gesehen werden.

Die Modularitätsanalyse erzeugt eine Gruppierung von Regionen in Abhängigkeit von der Anzahl oder dem Gewicht, der sie verbindenden Kanten. Somit werden Regionen zu einem Modul zusammengefasst, wenn diese untereinander stärker verbunden sind als zu Regionen in anderen Modulen (**Abbildung 27**). Die Modularitätsanalyse ohne Berücksichtigung von Kantengewichten ergab 168 Verbindungen innerhalb von Modul 1. In Modul 1 liegen Verbindungen von limbischen, retrosplenialen, orbitalen Kortexarealen vor, sowie einzelne Regionen, wie S1J, A35 und Pir, sowie die beiden taenialen Regionen (**limbisch-orbitales Modul**). In Modul 2 liegen 56 intrinsische Verbindungen und das Modul setzt sich hauptsächlich aus insulären Gebieten zusammen (**insuläres Modul**). Modul 3 besitzt 131 intrinsische Verbindungen und wird aus visuellen, auditorischen, entorhinalen, parahippokampalen und temporalen Regionen gebildet (**visuell-auditorisches Modul**). Das Modul 4 ist aus 93 intrinsischen Verbindungen aufgebaut und setzt sich hauptsächlich aus somatosensiblen, motorischen, parietalen und sekundär visuellen Arealen zusammen (**sensomotorisches Modul**).

Die gewichtete Modularitätsanalyse ergab andere Verbindungshäufigkeiten in den Modulen. Das größte Modul 1 setzt sich aus insulären und entorhinalen Gebieten sowie Gebieten der Amygdala zusammen. Das Modul 2 beinhaltet visuelle, auditorische, parahippokampale und retrospleniale Regionen und ist mit dem visuell-auditorischen Modul der ungewichteten Analyse vergleichbar. Das Modul 3 enthält limbische und orbitale Gebiete, die im ungewichteten Modul 1 lagen. Das Modul 4 ist dann wieder mit dem sensomotorischen Modul aus der ungewichteten Analyse vergleichbar. Zusammenfassend kann festgestellt werden, dass das visuell-auditorische Modul und das sensomotorische Modul mit der gewichteten als auch ungewichteten Modularitätsanalyse detektiert wurde.

Die semiquantitativen Gewichte wurden logarithmisch transformiert, um eine realistische Dichteschätzung der Verbindungen für die gewichtete Modularitätsanalyse zu verwenden (Schmitt et al. 2015). Das Ergebnis sind wiederum 4 Module und ist in **Abbildung 28** wiedergegeben. Die Gruppierung weist stärkere Unterschiede zu den beiden vorher vorgestellten Varianten der Modularitätsanalyse auf. Auditorische, orbitale und einige somatosensible Areale finden sich in Modul 1 wieder. Modul 2 besitzt amygdaläre, insuläre und parahippokampale Regionen. Weitere parahippokampale Regionen sind in Modul 3 mit temporalen und parietalen Regionen zu finden. Interessanterweise wurden visuelle, sensomotorische u.a. Regionen dem größten Modul 4 mit 164 intrinsischen Verbindungen zugeordnet.

Abbildung 27: Modularitätsanalyse des C1-Netzwerkes. a) Die Modularitätsanalyse ohne Kantenwichtung ergab 4 Module. Die Häufigkeit von Verbindungen in den Modulen und zwischen den Modulen ist in der nebenstehenden Matrix dargestellt. b) Modularitätsanalyse mit gewichteten Verbindungen und nebenstehenden Kantenhäufigkeiten.

Abbildung 28: Modularitätsanalyse des C1-Netzwerkes mit logarithmisch transformierten Verbindungsgewichten.

3.3.12 Lokale Konnektivitätsanalyse

Zusätzlich zur globalen Konnektivitätsanalyse sollen nun die konnektionalen Eigenschaften spezifischer Regionen des C1-Netzwerkes mittels lokaler Parameter vorgestellt werden. Es wurden 10 von 42 lokalen Parametern ausgewählt (**Tabelle 6**). Genaue Parameter Definitionen finden sich u.a. im Supplement von Schmitt et al. (2012a).

Die in der **Tabelle 6** aufgeführten C1-Regionen sind absteigend nach dem Wert DGa sortiert, welcher sich aus der Summe der Werte für DGo (Efferenzen) und DGi (Afferenzen) zusammensetzt.

Der perirhinale Kortex besitzt die meisten Input und Output Verbindungen von und zu Untergebieten der restlichen C1-Regionen. Über 74 Verbindungen verfügt der prelimbische Kortex und 72 Verbindungen besitzt der infralimbische Kortex. Danach folgen dann der mediale agranuläre prefrontale Kortex (71) und der laterale agranuläre prefrontale Kortex (69).

Der *Katz-Index* gibt einen Hinweis auf die Wichtigkeit eines Knotens innerhalb eines Netzwerkes. Er umfasst die Summe der direkten und indirekten Inputs eines Knotens gewichtet mit α^k (k: Pfadlänge des Inputs, α : liegt zwischen 0 und dem größten absoluten Eigenwert der Adjazenzmatrix). Ein niedriger Katz-Index sagt aus, dass der jeweilige betrachtete Knoten keine große Bedeutung für das Netzwerk aufweist. Große Werte des Katz-Indexes sind mit großen DG_{ALL} Werten korreliert. Die Gebiete perirhinaler Kortex (\approx 38,3), infralimbischer Kortex (\approx 35,3), prelimbischer Kortex (\approx 34,5), LEnt (\approx 34,2) und ectorhinaler Kortex (\approx 33,9) kommen aufgrund ihres relativ großen Katz-Indexes eine große Bedeutung im Netzwerk C1 zu. Den mit Abstand niedrigsten Wert für den Katz-Index (\approx 0,6) besitzt das mediomediale Untergebiet des sekundären visuellen Kortex. Der unten dargestellte Graph (**Abbildung 29**) zeigt eine lineare Verteilung für den Katz-Index.

	Tabelle 6: Liste ausgewählter	lokaler Netzwerk	parameter von C1 (sortiert nach DGa)
--	-------------------------------	------------------	--------------------	-------------------	---

Ergebnisse

Tabelle 6: Liste ausgewählter lokaler Net	zwerkpa	rameto	er von	C1 (se	ortiert nac	ch DGa).				
Region	Rec	DGa	DGo	DGi	Katz	BC	EC	Shapley	Hub	Auth
Perirhinal cortex	39	87	45	42	38,2639	0,1156	1,0000	-0,5654	1,0000	1,0000
Prelimbic cortex	31	74	37	37	34,4903	0,0570	0,8542	-0,4017	0,8828	0,9240
Infralimbic cortex	32	72	35	37	35,2474	0,0570	0,8112	-0,4529	0,8222	0,9055
Medial agranular prefrontal cortex	30	71	35	36	31,9304	0,0596	0,8381	-0,3791	0,8493	0,8786
Lateral agranular prefrontal cortex	28	69	31	38	30,5356	0,0883	0,7833	-0,6913	0,7338	0,8497
Lateral entorhinal cortex	32	68	34	34	34,2425	0,0437	0,8839	-0,3870	0,8900	0,8850
Medial entorhinal cortex	30	65	34	31	33,1133	0,0297	0,8558	-0,3472	0,8742	0,8486
Ectorhinal cortex	30	62	31	31	33,8598	0,0209	0,8542	-0,3157	0,8355	0,8744
Agranular insular cortex posterior part	19	55	31	24	26,7697	0,0173	0,7807	-0,1184	0,8130	0,7359
Secondary somatosensory cortex	23	54	27	27	25,5992	0,0350	0,6724	-0,2463	0,6417	0,6968
Ventral orbital cortex	19	52	29	23	25,8238	0,0211	0,7095	-0,1500	0,7341	0,6641
Primary visual cortex	18	50	23	27	25,1196	0,0476	0,5093	-0,2789	0,5312	0,6611
Piriform cortex	18	48	20	28	28,5445	0,0271	0,5177	-0,5861	0,5236	0,7413
Agranular insular cortex dorsal part	18	47	21	26	28,3438	0.0087	0.5875	-0.0904	0.6152	0.7597
Lateral orbital cortex	15	47	23	24	26,3022	0.0128	0.6365	-0.0574	0.6496	0.7139
Agranular insular cortex ventral part	18	44	23	21	25,2873	0.0067	0.6116	-0.0642	0.6332	0.6796
Medial orbital cortex	14	43	28	15	18,2951	0.0107	0.7213	-0.0427	0.7586	0.4480
Granular insular cortex	15	41	20	17	20 4863	0.0064	0.6806	-0.0114	0.6936	0 5457
Secondary visual cortex lateral area	12	40	25	15	13 5792	0.0524	0.6409	-0.6201	0.6562	0.3632
Parietal cortex posterior area	12	38	17	21	21.0560	0.0087	0,0405	-0.0151	0.4530	0,5052
Dysgranular insular cortex	12	38	22	16	21,9300	0,0037	0,4035	-0.0062	0,4337	0,5754
Cinculate contex	13	26	10	10	10,0230	0,0049	0,0298	-0,0002	0,0377	0,5459
Drogukieuhum	12	25	19	24	25 2154	0,0039	0,3388	0,0147	0,3041	0,5085
Presubiculum Detrace legislations	11	35	11	24	25,5154	0,0083	0,2937	0,0617	0,5064	0,0831
Retrospieniai dorsai	13	35	20	15	18,/105	0,0093	0,5081	0,0187	0,5551	0,4559
Primary somatosensory cortex barrel field	13	34	1/	1/	14,2139	0,0199	0,3894	-0,0376	0,3653	0,3638
Primary auditory cortex	12	33	19	14	14,3007	0,0256	0,5043	-0,4281	0,4963	0,3821
Posterolateral cortical nucleus	11	31	15	16	17,5993	0,0042	0,4460	0,0647	0,4508	0,4763
Amygdalopiriform transition area	11	30	15	15	17,2549	0,0012	0,4554	0,0713	0,4817	0,4640
Parasubiculum	9	30	10	20	21,8350	0,0055	0,3123	0,1151	0,3356	0,5822
Postsubiculum	9	28	10	18	19,6037	0,0055	0,2451	0,1005	0,2720	0,5159
Retrosplenial granular cortex b region	11	27	15	12	12,5371	0,0092	0,3327	0,0413	0,3543	0,3092
Olfactory tubercle	4	27	4	23	24,1550	0,0016	0,1217	0,2125	0,1181	0,6453
Posteromedial cortical nucleus	9	25	15	10	12,3096	0,0006	0,3999	0,1315	0,4390	0,3181
Cingulate cortex area 2	9	25	12	13	12,9888	0,0025	0,3708	0,1003	0,3491	0,3698
Primary somatosensory cortex hindlimb region	9	25	14	11	9,0868	0,0091	0,2980	0,1021	0,3014	0,2173
Primary visual cortex binocular area	7	25	13	12	13,9145	0,0011	0,3467	0,1480	0,3859	0,3875
Dorsolateral entorhinal cortex	7	24	14	10	12,5689	0,0011	0,4051	0,1481	0,4073	0,3334
Temporal association cortex 1	8	24	14	10	12,7408	0,0169	0,4131	-0,1913	0,3911	0,3531
Primary somatosensory cortex forelimb region	9	24	11	13	9,9165	0,0058	0,2118	0,1049	0,1995	0,2539
Dorsolateral orbital cortex	7	22	10	12	14,0553	0,0016	0,3151	0,1480	0,3220	0,3718
Dorsal peduncular cortex	3	20	11	9	9,4504	0,0011	0,2764	0,2240	0,3059	0,2718
Primary somatosensory cortex trunk region	9	20	9	11	8,5225	0,0032	0,1644	0,1144	0,1675	0,2079
Ventral tenia tecta	5	18	8	10	12,0557	0,0006	0,2159	0,2056	0,2555	0,3030
Primary somatosensory cortex upper lip region	9	18	9	9	6,4529	0,0016	0,1543	0,1256	0,1598	0,1568
Dorsal intermediate entorhinal cortex	3	17	8	9	11,3596	0,0009	0,1941	0,2538	0,2188	0,3069
Dorsal tenia tecta	6	16	6	10	12,1543	0,0002	0,2170	0,1928	0,2270	0,3063
Retrosplenial granular cortex c region	5	15	9	6	6.8318	0.0005	0.2613	0.2030	0.2558	0.1773
Medial parietal association cortex	5	14	6	8	4.8823	0.0007	0.0883	0.2067	0.0877	0.1326
Lateral parietal association cortex	5	13	5	8	4.8823	0.0007	0.0537	0.2092	0.0513	0.1326
Parietal cortex posterior area dorsal part	3	12	4	8	7,7474	0.0006	0.1157	0.2603	0.1120	0.2317
Frontal cortex area 3	3	11	4	7	9.0281	0.0002	0.1134	0.2681	0.1232	0.2322
Ventral intermediate entorhinal cortex	2	10	. 6	4	5 5669	0.0000	0 1579	0.3105	0 1921	0.1453
Primary sometosensory cortex dysgranular region	2	10	7	3	3,5761	0,0000	0,1575	0,2767	0.2182	0,0926
Primary somatosensory cortex tay region	5	10	, 5	5	6 3260	0.0001	0.1566	0 2070	0.1565	0.1652
Patroeplanial granular aartax a region	2	10	л	5	5 9274	0,0001	0.0546	0.2714	0,1505	0,1052
Renospieniai granular contex a region	3	9	4	2	3,6274	0,0000	0,0340	1,0000	0,0895	0,1217
Contary somatosensory cortex shoulder region	0	0	0	1	1,2057	0,0000	0,1108	1,0000	0,1200	0,0000
Contex anygoala transition zone	U	4	5	1	1,305/	0,0000	0,0640	0,5721	0,0859	0,0241
rinnary visual cortex monocular area	2	4	2	2	1,/809	0,0000	0,0531	0,3335	0,0438	0,0548
Secondary auditory cortex dorsal area	1	3	1	2	1,8135	0,0000	0,0222	0,5000	0,0164	0,0474
Parietal cortex posterior area rostral part	1	2	1	1	0,6299	0,0000	0,0283	0,5000	0,0155	0,0303
Secondary auditory cortex ventral area	0	2	2	0	0,0000	0,0000	0,0663	1,0000	0,0592	0,0000
Secondary visual cortex mediomedial area	0	2	1	1	0,5919	0,0000	0,0345	0,6665	0,0364	0,0180
Secondary visual cortex mediolateral area	0	1	1	0	0,0000	0,0000	0,0345	1,0000	0,0364	0,0000

Abbildung 29: Darstellung des Katz-Indexes in Abhängigkeit von Input- und Output-Verbindungen (DG_{All}).

Die *Betweeness-Zentralität (BC)* errechnet sich aus dem Quotienten der Anzahl der kürzesten Pfade von a nach b über v, dividiert durch die Anzahl der kürzesten Pfade von a nach b. Ein hoher Wert repräsentiert die Wichtigkeit eines spezifischen Knotens für das gesamte Netzwerk. Ähnlich der vorangegangenen Auswertung für den Katz-Index haben der perirhinale Kortex (BC $\approx 0,12$) und der laterale agranuläre prefrontale Kortex (BC $\approx 0,09$) sowie der mediale agranuläre prefrontale Kortex (BC $\approx 0,06$) eine große Relevanz für das Netzwerk. Danach liegen aber erst die Werte für den infralimbischen und den prelimbischen Kortex um ca. 0,05. Einige visuelle Gebiete liegen für diesen Parameter sogar vor parahippocampalen Regionen wie LEnt und MEnt. Die Verteilung der BC-Werte in Abhängigkeit von der Gesamtzahl von Verbindungen pro Region ist in **Abbildung 30** dargestellt.

Abbildung 30: Darstellung der Betweeness-Zentralität (BC) in Abhängigkeit von Input- und Output- Verbindungen (DG_{AII}).

Analog dazu, wurden mit der *Eigenvektorzentralität (EC)* weitere Gebiete mit großer Bedeutung bestimmt (Tabelle 6, **Abbildung 31**). EC-Werte gegen 1 weisen auf eine besonders große Bedeutung eines Knotens im Netzwerk hin. Der perhinale Kortex (1), LEnt ($\approx 0,88$) und MEnt ($\approx 0,86$) haben die größten EC-Werte. Danach folgen der prelimbische und der ectorhinale Kortex (0,85). Für diesen Parameter weisen die motorischen Gebiete medialer agranulärer prefrontaler ($\approx 0,84$) und lateraler agranulärer prefrontaler ($\approx 0,78$) Kortex sowie der infralimbische Kortex ($\approx 0,81$) relativ niedrige Werte auf.

Abbildung 31: Darstellung der Eigenvektor-Zentralität (EC) in Abhängigkeit von Input- und Output-Verbindungen (DG_{All}).

Des Weiteren eignet sich auch der *Shapley-Index* zur Beurteilung von Konnektivitäten in einem Netzwerk, welcher aus der mathematischen Spieltheorie stammt. Niedrige Shapley-Werte signalisieren eine große Bedeutung des einzelnen Kerngebiets für das gesamte Netzwerk (Kötter et al. 2007). Der laterale agranuläre prefrontale Kortex weist im C1-Netzwerk den kleinsten Shapley-Wert von -0,69 auf, gefolgt von der lateralen Area des sekundären visuellen Kortex mit -0,62 und dem piriformen Kortex mit -0,586. Hiernach folgen der perirhinale Kortex (-0,56) sowie die infralimbischen (-0,45) und primären auditorischen Kortizes (-0,43) (**Tabelle 6, Abbildung 32**).

Abbildung 32: Der Shapley-Index (Shapley) in Abhängigkeit von Input- und Output-Verbindungen (DG_{All}).

3.3.13 Motiv-Analyse

Die Analyse von *Motiven* ermöglicht es, die Häufigkeit von elementaren Verbindungsmustern mit zufälligen Netzwerken zu vergleichen. Bei Motiven handelt es sich um kleine Verschaltungen (Subgraphen), die in einem Netzwerk auftreten können. 13 unterschiedliche Motive (**Abbildung 33**) lassen sich maximal generieren, wenn drei Knoten mit gerichteten Verbindungen betrachtet werden und Selbstbezüglichkeiten nicht berücksichtigt werden. Im Folgenden werden die Motiv-Häufigkeiten mit denen von randomisierten Netzwerken verglichen.

Zusätzlich zu den 13 Motiven wurden 9 spezielle Motive definiert, um die Häufigkeit von 4- und 5-Knoten reziproken und nicht-reziproken Motiven (r4ci, r5ci, nr4ci, nr5ci9) zu untersuchen (zyklisch regulative Motive). Die zweite Klasse von Motiven (r4ca, r5ca) sind reziproke und nicht reziproke 4und 5-Knoten Kettenmotive (projektive Motive). Die dritte Klasse von Motiven (syC, syI, syO) sind solche mit einem zentralen Knoten der zwei Verbindungen besitzt, die zu identischen reziprok verbundenen Knotenpaaren führen (lokal regulative Motive).

Für den Vergleich der Motiv-Häufigkeiten im Original C1-Netzwerk und randomisierten Netzwerken gleicher Knotenzahl und Verbindungsanzahl wie im Original-C1-Netzwerk wurden 1000 Rewiring-Randomisierungen ohne (Abbildung 33b) und mit gleicher Anzahl von reziproken (Abbildung 33c) Verbindungen, wie im Original Netzwerk, angewendet.

Der Vergleich mit einem randomisierten Netzwerk gibt Anhaltspunkte für eine nicht-zufällige Häufung bestimmter Motive. Die schwarzen Punkte (Motiv-Häufigkeit pro Simulation) und roten Quadrate kennzeichnen die mittlere Häufigkeit der Motive im randomisierten Netzwerk. Als Extremwerte werden Punkte außerhalb des roten Quadrates bezeichnet, die seltener auftreten. Die kräftigen blauen Punkte in der Grafik repräsentieren die Häufigkeiten für das reale Netzwerk der einzelnen Motive. Blaue außerhalb des roten Bereichs liegende Punkte weisen auf eine signifikante Abweichung hin.

Abbildung 33: a) Motiv-Varianten (bei 3 Knoten ohne Selbstbezüglichkeiten) 3-01: Divergenz, 3-02: Kette, 3-03: Konvergenz, 3-04: Kette mit Reziprozität, 3-05: Divergenz mit Konvergenz, 3-06: Kette mit Reziprozität, 3-07: Kreis, 3-08: Konvergenz mit Reziprozität, 3-09: Doppelte Reziprozität, 3-10: Kreis mit Reziprozität, 3-11: Divergenz mit Reziprozität, 3-12: doppelte Reziprozität mit Konvergenz, 3-13: komplette Reziprozität. b) Motiv-Häufigkeiten bei 1000 Rewiring- Randomisierungen. c) Motiv-Häufigkeiten bei 1000 Rewiring- Randomisierungen mit Konstanthaltung reziproker Verbindungen.

Bei der Rewiring-Randomisierung ohne die gleiche Anzahl von reziproken Verbindungen wie im Original-C1-Netzwerk zeigten sich insbesondere bei Motiven mit reziproken Verbindungen größere Unterschiede. So kommt das Motiv 3-09 (reziproke Kette) deutlich häufiger im Originalnetzwerk vor, wobei 3-08, 3-10 und 3-11 ebenfalls eine reziproke Verbindung haben, aber seltener im Originalnetzwerk angetroffen werden. Das vollständig reziproke Motiv 3-13 ist wiederum deutlich häufiger im Original-C1-Netzwerk anzutreffen. Die speziellen sy-Motive sind alle häufiger im C1-Originalnetzwerk und die 4er und 5er reziproken Ketten ebenfalls. Auffallend ist, dass zirkuläre 4er und 5er Motive entweder gleich häufig wie in den Randomisierungen oder seltener auftreten. Ist die Anzahl der reziproken Verbindungen in den Rewiring-Randomisierungen genauso groß wie in dem C1-Originalnetzwerk, dann findet sich das 3-09 Motiv deutlich seltener und das 3-13 Motiv nur noch leicht häufiger im C1-Originalnetzwerk im Vergleich zu 1000 randomisierten Netzwerken. Die syC und syO Motive sind nach wie vor im C1-Originalnetzwerk häufiger als in den Randomisierungen und damit vergleichbar mit dem Ergebnis mit dem ersten Randomisierungsverfahren. Die 4er und 5er reziproken Ketten sind hingegen nun seltener im C1-Originalnetzwerk, im Vergleich zu den randomisierten Netzwerken, vorzufinden. Die Rewiring-Netzwerke mit Konstanthaltung der reziproken Verbindungen ähneln dem C1-Originalwerk am stärksten und es zeigen sich deutlich weniger Unterschiede in den Häufigkeiten von Motiven des Originalnetzwerkes im Vergleich mit den Randomisierungen. Im Tabellenanhang unter Tabelle 13 wird die Beteiligung der einzelnen Regionen des C1-Netzwerkes an der Motivbildung dargestellt. Es bleiben jedoch 3 auffallende Motive, die auch bei dieser hohen Ähnlichkeit der randomisierten Netzwerke mit dem Originalnetzwerk häufiger auftreten als in 1000 Randomisierungen, nämlich das 3-13, syC und syO Motiv. Daher wurde ein Regionen-Ranking für diese Motive erstellt, um festzustellen, welche Regionen am häufigsten an der Bildung dieser Motive beteiligt sind (Tabelle 7). Am häufigsten sind A35, LEnt und A36 an der Bildung von Motiv 3-13 beteiligt. syC wird vor allem von V2L, S1BF und S1FL, also visuellen und sensomotorischen Arealen, gebildet. syO konstituiert sich hauptsächlich aus Pir, PrS und V1. Somit ist kein Gebiet mehrfach unter den ersten 3 Rängen bei den 3 Motiven vertreten. Pir und S1FL finden sich allerdings auf Rang 4 für syC und syO wieder.

Tabelle 7: Die Motive 3-13, syC und syO treten im Original-C1-Netzwerk häufiger auf, als in 1000 rewiring randomisierungen mit Konstanthaltung der Anzahl reziproker Verbindungen. Die Häufigkeiten der Beteiligungen an den Motivbildungen wurden sortiert, um die Ränge der Regionen für die 3 Motive zu bestimmen. Die ersten drei Spalten, mit den grauen Strichbegrenzungen, stellen den ersten Teil der oberen Ränge der Häufigkeiten von Gebietsbeteiligungen an den Motiven dar. Die letzten drei Hauptspalten zeigen die unteren Ränge der Häufigkeiten an Gebietsbeteiligungen.

3-13	3-13	syC	syC	syO	syO	3-13	3-13	syC	syC	syO	syO	
A35	249	V2L	682	Pir	375	S1FL	28	PrS	177	PaS	106	
LEnt	206	S1BF	632	PrS	249	S1HL	28	DLEnt	175	DI	106	
A36	201	S1FL	515	V1	247	Cg2	24	DI	171	S2	103	
MEnt	194	Pir	461	S1FL	233	TeA	24	vo	163	RSGc	97	
PrL	184	IL	385	Post	227	Post	23	RSGc	163	AIP	96	
IL	175	RSGb	368	AID	226	RSGb	23	LO	146	DTT	78	
AGm	166	S1HL	367	Au1	222	S1Tr	23	PrL	144	VO	74	
AGl	147	V1	362	V2L	221	DLEnt	19	MO	125	TeA	71	
AIP	123	AIP	360	Cg1	220	V1B	18	S1DZ	123	DLO	65	
S2	115	SIULp	359	RSd	220	DTT	15	Fr3	122	VTT	60	
AIV	109	LPtA	319	S1BF	215	DLO	15	TeA	121	S1J	55	
AID	105	MPtA	319	GI	211	VTT	10	DP	112	PrL	54	
VO	98	S1Tr	294	DLEnt	209	LPtA	9	VTT	110	Fr3	50	
Pir	91	S2	272	PMCo	208	MPtA	9	DTT	104	V1M	47	
DI	83	AID	268	APir	197	RSGc	7	TuO	97	LO	41	
GI	81	Post	257	RSGa	191	S1J	7	AuD	80	S1DZ	37	
V1	75	DLO	253	S1Tr	190	TuO	5	DIEnt	75	TuO	36	
LO	75	ParP	252	ParP	184	DIEnt	3	V1M	69	ParPD	36	
MO	57	V1B	245	AGl	179	RSGa	3	S1J	64	DIEnt	35	
RSd	56	Cg2	240	S1HL	171	ParPD	3	AGl	63	MEnt	26	
PLCo	52	AIV	233	LPtA	167	DP	3	ParPD	53	LEnt	21	
APir	49	Cg1	224	MPtA	167	S1DZ	3	ParPR	43	ParPR	16	
Cg1	48	Au1	222	S1ULp	166	Fr3	2	VIEnt	31	VIEnt	14	
ParP	43	GI	211	MO	163	VIEnt	1	AGm	20	AGm	12	
Au1	40	RSd	205	RSGb	154	V1M	1	A36	17	A36	7	
S1BF	38	PLCo	199	V1B	151	CxA	0	LEnt	14	AuD	0	
РМСо	36	PaS	197	IL	140	ParPR	0	A35	8	A35	0	
PrS	34	MEnt	194	AIV	140	AuD	0	CxA	0	CxA	0	
PaS	30	APir	192	DP	138	AuV	0	AuV	0	AuV	0	
V2L	30	PMCo	192	Cg2	133	S1Sh	0	S1Sh	0	S1Sh	0	
S1ULp	28	RSGa	191	PLCo	128	V2ML	0	V2ML	0	V2ML	0	
						V2MM	0	V2MM	0	V2MM	0	

3.3.14 Zyklenanalyse

Die Zyklenanalyse (*CycleCount*) ermittelt die Anzahl der Zwischenstationen, über die Knoten zu sich selbst zurückprojizieren. In **Tabelle 8** ist die Häufigkeit von Zyklen für die Zyklengrößen 1 bis 6 aufgeführt. Eine Zyklusgröße von 1 bedeutet, dass es eine Verbindung innerhalb des Gebietes gibt und 2 bedeutet, dass es eine Zwischenstation gibt bzw. 2 Kanten oder Verbindungen notwendig sind, um zum Ausgangsgebiet wieder zurückzukommen.

Die größte Zahl von Zyklen weist der perirhinale Kortex gefolgt von LEnt und dem prelimbischen Kortex auf. Die Häufigkeiten für Zyklen nehmen mit zunehmender Zyklusgröße zu.

Region	123	4	5	6	Region	1	2	3	4	5	6	
Perirhinal cortex	1 39 683	13445	251131	4501169	Postsubiculum	0	9	107	1850	35600	670344	
Lateral entorhinal cortex	1 32 548	10828	203413	3681767	Cingulate cortex area 2	1	9	91	1742	33844	639508	
Prelimbic cortex	1 31 538	10570	198763	3603523	Posteromedial cortical nucleus	1	9	112	1892	34664	635877	
Ectorhinal cortex	1 30 531	10353	195059	3537279	Dorsolateral orbital cortex	0	7	83	1690	32850	614434	
Infralimbic cortex	1 32 531	10288	192489	3492305	Retrosplenial granular cortex b region	1	11	88	1489	29246	561937	
Medial entorhinal cortex	1 30 517	10182	191914	3487049	Olfactory tubercle	0	4	64	1192	22976	433341	
Medial agranular prefrontal cortex	1 30 503	9601	180373	3282471	Dorsal peduncular cortex	1	3	55	1016	19454	365355	
Lateral agranular prefrontal cortex	1 28 455	8618	162149	2964455	Primary somatosensory cortex hindlimb region	1	9	89	1191	19789	359616	
Agranular insular cortex posterior part	1 19 395	7733	147064	2691951	Ventral tenia tecta	0	5	53	997	19025	355299	
Ventral orbital cortex	1 19 337	6692	129178	2388513	Dorsal tenia tecta	0	6	48	990	18381	338381	
Agranular insular cortex dorsal part	0 18 327	6377	121582	2232370	Dorsal intermediate entorhinal cortex	0	3	40	854	16651	312512	
Lateral orbital cortex	1 15 309	6202	119272	2203055	Primary somatosensory cortex forelimb region	1	9	82	986	15462	274998	
Secondary somatosensory cortex	1 23 328	6271	118238	2177330	Retrosplenial granular cortex c region	1	5	38	642	12118	228817	
Agranular insular cortex ventral part	1 18 304	5723	108010	1980591	Primary somatosensory cortex trunk region	1	9	59	677	10041	175875	
Piriform cortex	1 18 303	5573	104407	1915691	Frontal cortex area 3	0	3	18	373	7243	137274	
Granular insular cortex	1 15 259	5108	97934	1807561	Parietal cortex posterior area dorsal part	0	3	19	348	6605	126166	
Medial orbital cortex	1 14 251	4878	94397	1755438	Primary somatosensory cortex upper lip region	0	9	57	540	7178	121129	
Primary visual cortex	1 18 256	4782	90333	1680392	Primary somatosensory cortex jaw region	0	5	16	309	6249	117410	
Dysgranular insular cortex	1 15 239	4743	90617	1673612	Ventral intermediate entorhinal cortex	0	2	17	348	6278	115400	
Parietal cortex posterior area	0 12 213	4047	76488	1418345	Primary somatosensory cortex dysgranular region	1	3	15	282	5226	96083	
Cingulate cortex area 1	1 12 187	3793	73261	1364049	Medial parietal association cortex	0	5	26	270	3712	63720	
Retrosplenial dorsal	1 13 179	3453	66732	1244882	Retrosplenial granular cortex a region	1	3	12	117	2230	43641	
Secondary visual cortex lateral area	1 12 173	3261	62368	1164303	Lateral parietal association cortex	0	5	19	194	2375	39648	
Amygdalopiriform transition area	1 11 163	2985	55742	1025626	Cortex amygdala transition zone	0	0	3	39	725	13310	
Posterolateral cortical nucleus	1 11 163	3000	55502	1019034	Primary visual cortex monocular area	1	2	2	26	402	7482	
Presubiculum	1 11 147	2730	52694	987857	Secondary auditory cortex dorsal area	0	1	1	14	228	4216	
Primary auditory cortex	1 12 149	2661	50385	940776	Secondary visual cortex mediomedial area	0	0	1	8	155	3064	
Parasubiculum	1 9135	2510	48188	897551	Parietal cortex posterior area rostral part	0	1	0	0	0	0	
Primary somatosensory cortex barrel fiel	d 1 13 138	2214	39663	732417	Secondary auditory cortex ventral area	0	0	0	0	0	0	
Temporal association cortex 1	1 8 100	1915	37022	693785	Primary somatosensory cortex shoulder region	0	0	0	0	0	0	
Dorsolateral entorhinal cortex	1 7 1 0 3	1920	36914	690783	Secondary visual cortex mediolateral area	0	0	0	0	0	0	
Primary visual cortex binocular area	0 7 1 03	1924	36841	689871								

Tabelle 8: Zyklenanalyse des C1-Netzwerkes. Die Zahlen 1 bis 6 geben die Anzahl von Knoten in einer zyklischen Verbindung wieder. Die in zwei Teile geteilte Tabelle ist bezüglich der Häufigkeiten des 6er-Zyklus sortiert.

3.3.15 Hauptkomponentenanalyse lokaler Parameter

Mit der *Principal-component-analysis* (Hauptkomponentenanalyse, PCA) bestimmter lokaler Parameter ist es möglich, konnektionale Muster bezüglich einer gewählten Region in Relation zu den übrigen Regionen eines Netzwerkes zu untersuchen. Grundsätzlich werden im Vektorraum der Parameter die Hauptrichtungen (Hauptkomponenten) bestimmt, in denen die Punktwolke der Daten die größten Ausdehnungen besitzt. Die zwei einflussreichsten Richtungen können dann in der Ebene visualisiert werden (Jones und Peters 1985). Mit diesem Vorgehen lassen sich einzelne Regionen und ihre lokale Bedeutung im Netzwerk charakterisieren (Echtermeyer et al. 2011). Das Ergebnis der Hauptkomponentenanalyse lässt sich visualisieren, um die Nachbarknoten ersten und zweiten Grades hervorzuheben bzw. ihre Beziehung zueinander zu klären. In der **Tabelle 9** befinden sich die sechs verschiedenen Komponenten zu denen folgende Kriterien gehören: Gesamtzahl vorhandener Konnektivitäten (DG_{ALL}) , mittlerer Nachbarschaftsgrad $(AvgDG_{nb})$, Gesamtclusterkoeffizient $(CluC_{All})$, Clusterkoeffizient der zweiten oder indirekten Nachbarn $(CluC_2)$, Variationskoeffizient der Nachbarstufe (VC_{DG}) und Lokalisationsindex (Loc). Die Ausprägung der Parameter und dessen Anteil an Komponenten sind für sechs Dimensionen aufgeführt. Die Lokalisation der Gebiete in Hinblick auf die entscheidenden Komponenten (Hauptkomponenten, Tabelle 9) werden in Abbildung 34 in der PCA-Ebene dargestellt. Diese zwei Achsen werden durch die Werte der ersten und zweiten Zeile von Tabelle 9 bestimmt. Die erste Zeile stellt die Werte der x-Achse dar und die y-Achse wird durch die Werte der zweiten Achse repräsentiert. Die in den Zeilen aufgeführten Werte dienen als Faktoren zur Errechnung, der zur graphischen Darstellung notwendigen Zahlenwerte.

Tubene 7. Turumet	i del Haupiko	mponentenanary	30 (1 C/1) 1u1 uu	S C1 HOLZWOIK.			
Komponente	DG_{All}	AvgDG _{nb}	CluC _{All}	$CluC_2$	VC _{DG}	Loc	Share [%]
1	0,524	-0,311	-0,303	-0,442	0,265	0,522	56,38
2	-0,162	-0,617	0,18	0,324	0,655	-0,159	21,02
3	-0,048	-0,311	-0,788	0,417	-0,314	-0,082	14,96
4	0,206	-0,502	0,5	0,194	-0,595	0,25	6,05
5	0,405	0,415	0,058	0,698	0,216	0,356	1,29

Tabelle 9: Parameter der Hauptkomponentenanalyse (PCA) für das C1-Netzwerk.

Der DG_{ALL}-Wert bildet die Summe aus den Afferenzen und Efferenzen des jeweiligen Kerngebiets. Der Average neighbor degree ($AvgDG_{nb}$) beschreibt die durchschnittliche Anzahl an Nachbarknoten.

Der Quotient aus der Anzahl der Kanten zwischen allen Nachbarn und der maximal möglichen Anzahl berechnet den Gesamtclusterkoeffizient ($CluC_{All}$). Davon abgeleitet ergibt sich der Clusterkoeffizient von indirekten oder zweiten Nachbarn ($CluC_2$), welcher der Quotient der Anzahl der Kanten zwischen allen Nachbarn zweiten Grades und der maximal möglichen Anzahl ist. Der Lokalisationsindex (Loc) errechnet sich aus der Anzahl der Kanten im Subgraphen des Referenzknotens und dessen direkten Nachbarn dividiert durch die Anzahl aller, diesen Subgraphen berührenden Kanten (Loc(i) = Nint(i) / [Nint(i) + Next(i)], Nint: Anzahl der Kanten zwischen den ersten Nachbarn, plus Anzahl der Kanten zwischen ersten Nachbarn und dem Referenzknoten, Next: Anzahl der Kanten von ersten und zweiten Nachbarn (Costa et al. 2009). Der Anteil einer Komponente an der Gesamtinformation wird durch den Share-Wert angegeben. Für die Komponente 1 beträgt der Share-Wert ca. 63,5%. Die Werte der Parameter geben den Beitrag an, den der Parameter zu der Komponente hat (Faktor mit dem der Parameter multipliziert wird).

Die Abbildung 34a visualisiert mit Hilfe verschiedener Graustufen die Dichte von Regionen in der PCA-Ebene. Hellere Bereiche signalisieren eine große Dichte an benachbart liegenden Kerngebieten. Im Gegensatz dazu ist das Ausmaß an vorhandenen Knoten in dunkleren Bereichen geringer.

Der perirhinale Kortex besitzt die meisten Verbindungen im C1-Netzwerk (**Abbildung 34b**) und hat eine besonders große erste Komponente in der PCA. Daher bestehen für dieses Gebiet sehr viele direkte Verbindungen zu anderen Gebieten des C1-Netzwerkes und deutlich weniger indirekte Verbindungen zu indirekten Nachbarn (Gebiete, die nur über eine Zwischenstation erreichbar sind). Cg1 hingegen hat ungefähr gleich viele direkte als auch indirekte Verbindungen und es existieren mehr Verbindungen zwischen den indirekten Nachbarn von Cg1 (**Abbildung 34c**). S1J hat wenige direkte Nachbarn, aber dafür existieren umso dichtere Verbindungen zwischen den indirekten Nachbarn (**Abbildung 34d**).

Weitere Gebiete, die besonders zahlreiche Verbindungen aufweisen und damit die obersten Ränge der meisten lokalen Parameter einnehmen, sind der prelimbische Kortex, infralimbische Kortex, motorische Gebiete und entorhinale Gebiete. Alle diese Gebiete besitzen eine relativ große erste Komponente in der PCA und damit trägt der Parameter der Input und Output Verbindungssumme (DG_{All}) am stärksten zur ersten Komponente bei.

Abbildung 34: Graphische Visualisierung der Principal-component-analysis des C1-Netzwerkes. Die x-Achse (Zeile eins der Tabelle 9 zeigt von links nach rechts ansteigende Werte). In der y-Achse werden von oben nach unten ansteigende Werte (Zeile 2 der Tabelle 9 abgebildet. a) PCA-Ebene mit Achsenbezeichnungen von Komponente 1 und 2. b) Verhältnis von Gebietsparametern zum perirhinalen Kortex (Kreis in der Mitte). c) Cg1 als zentrales Gebiet. d) S1J als zentrales Gebiet.

3.3.16 Metrische Multidimensionale Skalierung

Die Unterschiede der Verbindungen von Regionen können auch mit der metrischen multidimensionalen Skalierung (MDS) berechnet und dargestellt werden. Wenn der Unterschied der Verbindungen zweier Regionen klein ist (oder die Ähnlichkeit groß), werden sie dicht zusammen im MDS-Diagramm positioniert (Abbildung 35). Aus der MDS geht hervor, dass motorische Gebiete (AGm, AGl), sensomotorische Gebiete, parahippokampale Gebiete, orbitale und insuläre Gebiete dichter zueinander liegen als zu Gebieten, die nicht zu diesen Gruppen gehören. Dies gilt auch für amygdaloide Transitions-Gebiete. Visuelle Gebiete hingegen sind sowohl im oberen rechten als auch im unteren rechten Teil des MDA-Diagramms lokalisiert. Auch auditorische Gebiete liegen weiter voneinander entfernt.

Abbildung 35: MDS-Diagramm des C1-Netzwerkes.

3.3.17 Vulnerabilitätsanalyse

Werden eine Region und deren zugehörige Verbindungen aus dem Netzwerk entfernt, lässt sich die relative Zunahme (positive Werte) oder Abnahme (negative Werte) des mittleren Closeness Parameters berechnen. Die Closeness nimmt um maximal 3,48% ab, wenn AGI entfernt wird, gefolgt von 2,512% bei Entfernung von V2L und 2,396% bei Entfernung des perirhinalen Kortex. Diese Regionen sind somit besonders wichtig für den mittleren Abstand bzw. die Erreichbarkeit der Regionen untereinander. Die vollständige Vulnerabilitätstabelle wurde in dem Tabellenanhang dargestellt (siehe **Tabel-le 14**).

3.4 Das bilaterale kortikale C1-Netzwerk

Im Folgenden wird das C1-Netzwerk bilateral betrachtet. Zusätzlich zu der bereits ausgewerteten unilateralen Ebene (Abschnitt 3.3) wird in diesem Abschnitt besonderes Augenmerk auf die kontralateralen Verbindungen gelegt, da kortikale kontralaterale Verbindungen ein wesentlicher Bestandteil funktioneller Kontrollprozesse sind. Die Kombination von ipsilateraler mit kontralateraler Konnektivität wird speziell in Parametern, welche die Lateralität quantifizieren sichtbar.

3.4.1 Konnektivitätsmatrizen

Aus der Adjazenzmatrix des bilateralen C1-Netzwerkes in **Abbildung 36** geht hervor, dass unilaterale Verbindungen häufiger auftreten und größere mittlere Gewichte aufweisen als kontralaterale Verbindungen. Nebendiagonalen deuten auf Verbindungskonzentrationen zwischen gleichen Gebieten der linken und rechten Hemisphäre hin und sind in der bilateralen C1-Matrix sichtbar. Aber auch die Verbindungshäufigkeiten um die Hauptdiagonale und somit Verbindungen zwischen Gebieten der gleichen Hemisphäre zeigen größere Werte. Speziell um insuläre Regionen, A35 und A36 findet sich ein auffallend dichter Verbindungsbereich in der Adjazenzmatrix.

Die Distanzmatrix ist im Anhang dieser Arbeit abgebildet (**Abbildung 55**). Nicht alle Gebiete können von allen anderen Regionen des bilateralen C1-Netzwerkes erreicht werden. Die maximale Distanz beträgt 6. Die erweiterte Distanzenmatrix (**Abbildung 56**) wurde ebenfalls für das unilaterale C1-Netzwerk berechnet (F2=0,0037). In dieser Matrixdarstellung zeigen sich die Unterschiede der Verbindungen über größere Bereiche der Matrix. Räumlich und graphentheoretisch dichte Regionen der linken Hemisphäre liegen größtenteils in den beiden unteren Klassen bzw. Farbkodierungen. Die mittleren Verbindungsgewichte der direkten Verbindungen und Verbindungen zwischen Unterbaumregionen sind im Abbildungsanhang vergleichend in **Abbildung 54** zusammengestellt. Hierzu wurde auch eine Validitätsanalyse in Matrixform hinzugefügt, um die Zuverlässigkeit bestimmter Verbindungen beurteilen zu können (**Abbildung 53**). Des Weiteren wurden die Communicability (**Abbildung 57**) und GTOM-Matrizen (**Abbildung 58**) in dem Abbildungsanhang platziert.

Außerdem wurden die reziproken Verbindungen im bilateralen C1-Netzwerk gezielt herausgefiltert und in einer farbkodierten Reziprozitätsmatrix dargestellt (**Abbildung 37**). Dichtere Verbindungsanhäufungen mit größeren Reziprozitätswerten finden sich für insuläre Gebiete sowie kontralaterale Verbindungen des visuellen, des motorischen Systems und der insulären Regionen.

Abbildung 36: Adjazenzmatrix der Kantenanzahlen des bilateralen C1-Netzwerkes. Die Verbindungen der aufgeführten C1-Regionen und deren Teilbaum-Gebiete (indirekte Verbindungen) sind hier dargestellt. Die Verbindungshäufigkeiten wurden in insgesamt 6 Klassen eingeteilt (inkl. "No data" Klasse) und farbkodiert.

Abbildung 37: Reziprozitätsmatrix des bilateralen C1-Netzwerkes. Gelber Pfeil: reziproke Verbindungen insulärer Gebiete. Roter Pfeil: reziproke Verbindungen visueller Gebiete. Blauer Pfeil: reziproke Verbindungen kontralateraler motorischer und insulärer Gebiete.

3.4.2 Globale Konnektivitätsanalyse des bilateralen C1-Netzwerkes

Für die Berechnung der globalen Parameter liegen 126 Gebiete mit 2450 Verbindungen zugrunde, von denen 508 kontralateral verlaufen (**Abbildung 38**). Die Liniendichte von ca. 15,5% besagt, dass etwas mehr als 1/7 aller möglichen Verbindungen im bilateralen C1-Netzwerk realisiert wurden. Der mittlere Grad bzw. die Valenz beträgt ca. 38,9, womit jedes Gebiet durchschnittlich ungefähr 39 Verbindungen aufweist.

Im Vergleich zum unilateralen C1-Netzwerk ist die durchschnittliche Pfadlänge beim bilateralen C1-Netzwerk mit $\approx 2,1$ lediglich um $\approx 0,2$ Kanten größer. Der mittlere Clusterkoeffizient unterscheidet sich mit 0,529 kaum vom unilateralen C1-Netzwerk. Der Fehlerwert Δ mit 0,7 der Scale-Free Eigenschaft ist gleich groß wie bei dem unilateralen C1-Netzwerk. Der Small-Worldness Parameter ist deutlich erhöht (unilateral: 2,249, bilateral: 3,111).

Dies spricht für eine lokal größere Anzahl von verbundenen Gebieten. Die Modularität beträgt 0,318 und ist damit fast doppelt so groß wie bei dem unilateralen C1-Netzwerk (0,191).

Ergebnisse

126 2450 80 971 971 508 38.889 15.556% 2405 0.151 12.4 Collat Source (C) ITRA Collat Target (PS) Collat Target (PS) Collat Complex 0.151 12.4 Randomizations Erdos Renyi Wasts-Strogatz Flagsabas-Albert Modified DA Powering Residence Partneter Name Real network Erdos Renyi Watts-Strogatz Panabas-Albert Modified DHO Residence Residence Name Real network Erdos Renyi Watts-Strogatz Banbasi-Albert Modified BH Modified OHO Rewing Reciproca Solated nodes 0 0 0 8 1.565 9 0 0 0 Connected components 1 1 1 1 1.001 1	Nodes	Edges	Self-references	Ipsilateral L	Ipsilateral R	Contralateral	Avg DG	Line density	Cy	CyC	Avg HD
Collat Source IPSI Collat Source CONTRA Collat Target IPSI Collat Target CONTRA Collat Target CONTRA Collat Complete Paths complete Randomizations Efdos Revi Watts-Strogatz Barabasi-Albert Modified DHO Iooo Ioooo Iooooo Ioooooooooooooooooooooooooooooooooooo	126 245	0	80	971	971	508	38,889	15,556%	2405	0,151 12	4
Product of the output of the outp	Collat Source II	PSI	Collat Source (ONTRA	Collat Tarnet IP	SI	Collat Target CONTRA		Collat.complete	Paths co	mnlete
Paradomizations P trobs Remyi C Watts-Strogatz B anabas-Albert Modified DA C Modified DA C Recliprocal Number 1000 0<	7	7	oonat oource e	2	oonactargeen	2	oonarrangerooniniter	0	oonat complete	0	Inproto
Randemizations ≥ if dos Remyi ∞ Wordite Strop with sevent	·		_	-		~		-			
Nume 1000 1000 1000 1000 1000 1000 Paramet 0 0 0 0 0 0 0 Solar tonds 0	Randomizations 🖌 Erdos	Renyi	Watts-Strogatz	Barabasi-Alb	ert Modified E	A Modifie	d OHO	iring 🖌	Reciprocal		
Parameter 0	Number 1000	1	000	1000	1000	1000	1000	10	00		
Name Real network Erdos Renyl Watts-Strogatz Barabasi-Albert Modified BA Modified OHO Rewining Recipro Isolate nodes 0	Parameter	0).2 B		1.0	6					
Name Keal network Erös Kenyi Valles Strögatz Barladst-kulser Monted OH Medming Redung Redung Connected components I 1 1 1 1 0	News	la Destaute		ter Denni	100	P Download Albert	11-17-1 D.		1.0110	Barriston .	D
Boladi Dobes 0 1 0 <t< td=""><td>Name</td><td>Real netw</td><td>/ork Er</td><td>dos Kenyi</td><td>vvatts-Strogatz</td><td>Barabasi-Albert</td><td>Modified BA</td><td>Modifie</td><td>Id OHO</td><td>Rewinng</td><td>Reciprocal</td></t<>	Name	Real netw	/ork Er	dos Kenyi	vvatts-Strogatz	Barabasi-Albert	Modified BA	Modifie	Id OHO	Rewinng	Reciprocal
Current and components P	Connected common of the	1	0	0		8	1,001	0	0	0	
Instrument Dist Diversion Diversion <thdiversion< th=""> <thdiversion< th=""> <thdiver< td=""><td>Connected components</td><td>060</td><td>100.442</td><td>1</td><td>24.7</td><td>400.026</td><td>528,505</td><td>024.652</td><td>444.440</td><td>062</td><td></td></thdiver<></thdiversion<></thdiversion<>	Connected components	060	100.442	1	24.7	400.026	528,505	024.652	444.440	062	
Internegativity D.74 D.75 D.74 D.74 <thd.74< th=""> D.74 D.74</thd.74<>	Heterogeneity	0.724	190,443	0.0	74	499,920	0.696	0.403	411,410	0.724	
Degree statution multipy 2/10 2/12 5/10 2/12 5/10 5	Degree distribution optropy	2.765	0,145	0,0	70	2.554	4,001	0,495	0,724	0,724	
Demangs thile ingth 2 08 9 68 1.097 1.137 1.991 1.998 Average path length 2.067 1.857 1.836 1.997 1.137 1.991 1.998 Average path length 0.644 1.137 1.355 1.443 1.555 1.466 0.387 Central path formance 0.644 0.647 0.11 0.655 0.655 0.857 0.891 0.892 Average subtract formance 0.648 0.647 0.444 0.659 0.558 0.557 0.891 0.327 0.346 0.337 Average subtract fortifient 0.539 0.547 0.548 0.557 0.548 0.346 0.346 0.323 Average subtract fortifient 0.539 0.544 0.597 0.546 0.346 0.323 0.558 0.548 0.346 0.323 0.557 0.538 0.548 0.324 0.324 0.523 Average subtract fortifient 0.549 0.549 0.546 0.346 0.324 0.523 0	Diamotor	4	3,013	2,0	76	2.012	4,031	4.024	4 200	4 294	
Average path longth - Self-L 1.367 1.362 1.365 1.446 1.365 1.466 1.137 Central point dominance 0.864 0.11 0.055 0.376 0.218 0.436 1.137 Central point dominance 0.864 0.11 0.055 0.376 0.218 0.438 0.387 Central point commance 0.863 0.497 0.484 0.863 0.853 0.527 0.581 0.882 Average subgraph central by 521.467/1078,343 4202524,444 4680102,603 871035610,082 3528247123,592 3526119800,103 35392271669,372 4520452424,92 Average clastroceticient 0.538 0.284 0.623 0.516 0.378 0.283 0.311 0.38 0.348 0.333 Average clastroceticient 0.539 0.294 0.597 0.346 0.52 0.549 0.324 0.523 Small-wordness 3.08 1 2.212 1.836 1.867 2.136 2.12 2.021 Modularity 0.318 <td>Average nath length</td> <td>2.08</td> <td>1.885</td> <td>2.0</td> <td>80</td> <td>1 868</td> <td>1 007</td> <td>2 157</td> <td>1 001</td> <td>1 998</td> <td></td>	Average nath length	2.08	1.885	2.0	80	1 868	1 007	2 157	1 001	1 998	
Contrainf 0.364 0.11 0.055 0.374 0.273 0.218 0.488 0.837 Central point dominance 0.890 0.477 0.484 0.653 0.559 0.827 0.891 0.892 Average subgraph centrally 57.147711078,343 4065254,446 4660102,603 871333610,082 0.5582,47123,592 9576119800,103 35932771669,372 45209552424,92 Average subgraph centrally 57.45771069,343 4050524,492 0.346 0.326 0.548 0.346 0.324 0.346 0.324 0.346 0.324 0.346 0.324 0.233 Average subgraph centrally 0.549 0.254 0.254 0.234 0.234 0.234 0.232 0.231 0.346 0.324 0.223 0.231 0.316 0.944 0.12 1.737 0.243 0.217 0.236 0.217 0.232 0.121 0.319 0.316 0.944 0.12 0.217 0.336 0.221 0.13 0.414 0.12 0.217 0.336 0.211	Average nath length - Self-r	1 367	1,382	1.3	55	1 355	1 443	1 365	1 486	1 1 37	
Central point dominance 0.899 0.497 0.484 0.893 0.659 0.827 0.891 0.892 Average subgraph centrality 521 4671078,343 420554,446 4660102,603 8710353610,082 3528247123,592 3556119800,103 35392271969,372 4520952424,92 Average function control 0.539 0.294 0.567 0.346 0.352 0.549 0.324 0.233 Average function control 0.539 0.294 0.567 0.346 0.352 0.549 0.324 0.533 Average function control 0.539 0.294 0.567 0.346 0.362 0.549 0.324 0.523 Small-wordmess 3.08 1 2.212 1.886 1.887 2.136 2.12 2.021 Modularity 0.316 0.944 0.12 0.316 0.944 0.12 0.319 Global Efficiency 0.516 0.571 0.54 0.599 0.528 0.526 0.53 0.529 Vuherability 0.018 0.002<	Centrality	0.364	0.11	0.0	55	0.374	0.373	0.218	0.438	0.367	
Average subgraph centrally IS7140771078,343 420254,446 4600102,020 953810,082 9528124723,592 957011980,113 1539277 452095224,92 Average subgraph centrally 0.539 0.258 0.156 0.378 0.283 0.111 0.38 0.346 0.338 Average subgraph centrally 0.539 0.294 0.597 0.283 0.111 0.38 0.324 0.233 Average subgraph centrally 0.539 0.294 0.597 0.283 0.562 0.549 0.324 0.523 Modulanty 0.318 0.116 0.394 0.105 0.103 0.316 0.044 0.12 Global Efficiency 0.518 0.571 0.549 0.296 0.526 0.53 0.53 0.591 0.529 Vulnerability 0.118 0.651 0.571 0.54 0.696 1.96 1.9 1.888 1.881 Vulnerability 0.118 0.692 0.695 0.675 0.675 0.675 0.675 0.675 0.675	Central point dominance	0.888	0.497	0.4	84	0.863	0.859	0.827	0.881	0.882	
Average loss coefficient 0.529 0.156 0.378 0.283 0.311 0.38 0.348 0.333 Average loss coefficient 0.539 0.264 0.567 0.346 0.622 0.544 0.523 Small-worldness 3.06 1 2.212 1.866 1.867 2.136 2.12 2.021 Modularly 0.318 0.116 0.394 0.055 0.103 0.316 0.094 0.12 Global Efficiency 0.518 0.155 0.439 0.296 0.317 0.383 0.221 0.319 Global Efficiency 0.518 0.571 0.54 0.509 0.528 0.526 0.53 0.529 Vulnerability 0.433 0.602 0.002 0.008 0.13 0.007 0.018 0.019 Circla Efficiency 0.739 0.605 0.675 0.589 0.681 0.625 0.595 Directed assortativity coefficient 0.138 0.13 0.141 0.129 0.133 0.141	Average subgraph centrality	52146771078.34	3 4205254.4	46 468	0102.603	8710353610.082	35288247123.592	3526119800.1	03 35392271	1969.372 4520955	52424.922
Average flow coefficient 0.539 0.294 0.597 0.346 0.562 0.549 0.324 0.523 Modulanty 0.318 11 2.12 1.836 1.897 2.136 2.12 2.021 Modulanty 0.318 0.116 0.394 0.105 0.101 0.316 0.994 0.12 Global Efficiency 0.518 0.571 0.549 0.266 0.317 0.333 0.321 0.319 Global Efficiency 0.516 0.571 0.54 0.509 0.528 0.526 0.53 0.529 Vulnerability 0.018 0.002 0.002 0.008 0.013 0.007 0.018 0.019 Cyclic coefficiency 0.739 0.509 0.605 0.675 0.689 0.681 0.625 0.656 Dirested assortativity com1014 0.129 0.133 0.141 0.129 0.133 0.141 0.122 0.13 Average search information 7.182 6.745 7.371 6.038 </td <td>Average cluster coefficient</td> <td>0.529</td> <td>0.156</td> <td>0.3</td> <td>78</td> <td>0.283</td> <td>0.311</td> <td>0.38</td> <td>0.348</td> <td>0.333</td> <td></td>	Average cluster coefficient	0.529	0.156	0.3	78	0.283	0.311	0.38	0.348	0.333	
Small-wordness 3,08 1 2,212 1,836 1,887 2,136 2,12 2,021 Modularity 0,518 0,116 0,394 0,105 0,103 0,316 0,094 0,12 Transitivity 0,518 0,155 0,439 0,266 0,317 0,383 0,351 0,319 Global Efficiency 0,516 0,571 0,54 0,569 0,528 0,526 0,53 0,529 Global Efficiency 0,739 0,002 0,002 0,008 0,13 0,007 0,018 0,019 Local Efficiency 0,739 0,509 0,605 0,575 0,589 0,681 0,625 0,595 Ulterability 0,116 0,009 0,605 0,575 0,589 0,681 0,625 0,595 Directed assortativity costtill 0,113 0,141 0,129 0,133 0,141 0,132 0,13 Average search information 7,162 6,745 7,371 6,038 6,796 7	Average flow coefficient	0.539	0.294	0.5	97	0.346	0.362	0.549	0.324	0.523	
Modularity 0.518 0.116 0.394 0.105 0.103 0.316 0.094 0.12 Transtitivity 0.433 0.155 0.439 0.296 0.177 0.330 0.321 0.319 Global Efficiency 0.518 0.571 0.54 0.509 0.528 0.526 0.53 0.529 Vulnerability 0.018 0.002 0.002 0.008 0.13 0.007 0.018 0.019 Local Efficiency 0.739 0.509 0.605 0.675 0.589 0.681 0.625 0.656 Directed assortativity com. 0.116 0.008 0.055 -0.076 0.275 -0.155 0.152 Orgeted assortativity com. 0.118 0.018 0.022 0.055 -0.076 0.275 -0.155 0.152 Orgeted assortativity com. 0.114 0.129 0.133 0.141 0.129 0.133 0.141 0.129 0.133 0.141 0.129 0.133 0.141 0.129 0.134	Small-worldness	3.08	1	2,2	12	1,836	1,887	2,136	2,12	2,021	
Transitivity 0.433 0.155 0.439 0.296 0.317 0.303 0.321 0.319 Obola Efficiency 0.516 0.571 0.54 0.509 0.528 0.526 0.53 0.529 Harmonic mean 1.937 1.751 1.861 1.963 1.996 1.9 1.888 1.891 Universalitity 0.018 0.002 0.002 0.008 0.013 0.007 0.018 0.019 Local Efficiency 0.739 0.509 0.605 0.575 0.599 0.661 0.625 0.595 Directed assortative coefficient 0.13 0.141 0.129 0.133 0.141 0.132 0.13 Average search information 7.145 7.371 6.038 6.796 7.688 6.778 6.882 Korbp-entrelenses 0.469 0.044 0.478 0.349 0.471 0.421 Scale-Free prometry 6.70 6.72 6.74 6.79 6.70.8 6.70.7 6.70.6	Modularity	0,318	0,116	0,3	94	0,105	0,103	0,316	0,094	0,12	
Global Efficiency 0.516 0.571 0.54 0.509 0.528 0.526 0.53 0.529 Harmonic man 1.937 1.751 1.851 1.963 1.996 1.9 1.888 1.891 Vulnerability 0.018 0.002 0.002 0.008 0.013 0.007 0.018 0.019 Local Efficiency 0.739 0.509 0.605 0.575 0.589 0.681 0.625 0.595 Directed assortativity com0.116 0.008 0.082 -0.055 -0.076 0.275 -0.155 -0.152 0.13 Cyclic coefficient 0.138 0.13 0.141 0.129 0.133 0.141 0.132 0.13 Average search information 7.182 6.745 7.371 6.038 6.796 7.668 6.778 6.882 Cyclic coefficient 0.469 0.044 0.478 0.248 0.476 0.419 0.421 Average search information 7.669 0.649 0.499 4-0.6	Transitivity	0,433	0,155	0,4	39	0,296	0,317	0,393	0,321	0,319	
Harmonic mean 1,937 1,751 1,861 1,963 1,896 1,9 1,888 1,891 Vulnerability 0,118 0,002 0,002 0,018 0,017 0,018 0,019 Local Efficiency 0,739 0,509 0,605 0,575 0,589 0,681 0,625 0,595 Directed assortability coeffi 0,118 0,012 0,055 -0,076 0,275 -0,155 -0,152 Opcilic coefficiency 0,138 0,131 0,141 0,129 0,133 0,141 0,132 0,13 Average search information 7,182 6,745 7,371 6,038 6,796 7,688 6,778 6,882 Knobp-centredness 0,469 0,044 0,478 0,349 0,476 0,419 0,421 Scale-Free property Wo10 6 We1 23 We1 23 We1 26 We1 06	Global Efficiency	0,516	0,571	0,5	4	0,509	0,528	0,526	0,53	0,529	
Vulnerability 0.018 0.002 0.008 0.013 0.007 0.018 0.019 Local Efficiency 0.739 0.509 0.605 0.575 0.589 0.681 0.625 0.565 Directed assortativity com0.116 0.008 0.082 -0.055 -0.076 0.275 -0.155 -0.152 Cyclic coefficient 0.138 0.141 0.129 0.133 0.141 0.132 0.13 Average search information 7,162 6,745 7,371 6,038 6,796 7,668 6,778 6,882 Knothy-centradrass 0.469 0.044 0,478 0.248 0.476 0.419 0.421 Scalas-Fried monethy ben 0.7 ben 2.2 ben 4 ben 9 ben 0.6 ben 9 ben 0.6 ben 0.6	Harmonic mean	1,937	1,751	1,8	51	1,963	1,896	1,9	1,888	1,891	
Local Efficiency 0.739 0.509 0.605 0.757 0.589 0.681 0.625 0.595 Directed assortability codm0.116 0.008 0.062 -0.055 -0.076 0.275 -0.155 -0.152 Optic coefficient 0.138 0.13 0.141 0.129 0.133 0.141 0.132 0.13 Average search information 7.45 7.371 6.038 6.796 7.668 6.778 6.882 Knothy-centredrates 0.469 0.044 0.478 0.348 0.476 0.419 0.421 Scale-Free nonerity be10 be17 be18 be14 be10.6 be10.6 be10.6	Vulnerability	0,018	0,002	0,0	02	0,008	0,013	0,007	0,018	0,019	
Directed assortativity coefficient 0.116 0.008 0.082 -0.055 -0.076 0.275 -0.155 -0.152 Orclic coefficient 0.138 0.13 0.141 0.129 0.133 0.141 0.132 0.13 Average search information 7,162 6,745 7,371 6,038 6,796 7,668 6,778 6,882 Knomp-centredness 0.649 0.044 0,478 0.349 0.476 0.419 0.421 Scales-Free monethy Gr0.05 ker.39 ker.06	Local Efficiency	0,739	0,509	0,6	05	0,575	0,589	0,681	0,625	0,595	
Cyclic coefficient 0.138 0.13 0.141 0.129 0.133 0.141 0.132 0.13 Average search information 7.182 6.745 7.371 6.038 6.796 7.688 6.778 6.882 Knothy-centreduess 0.469 0.044 0.478 0.348 0.476 0.419 0.421 Scale-Free nonetry Jen 0.7 Jen 2.2 Jen 4 Jen 9.9 Jen 0.6 Jen 9.8 Jen 0.7 Jen 7.7 Scale-Free nonetry Jen 0.6 Jen 14 Jen 9.8 Jen 0.6 Jen 0.6 <td>Directed assortativity coeffi</td> <td>-0,116</td> <td>-0,008</td> <td>0,0</td> <td>32</td> <td>-0,055</td> <td>-0,076</td> <td>0,275</td> <td>-0,155</td> <td>-0,152</td> <td></td>	Directed assortativity coeffi	-0,116	-0,008	0,0	32	-0,055	-0,076	0,275	-0,155	-0,152	
Average search information [7,182] 6,745 7,371 6,039 6,796 7,668 6,778 6,882 Knothy-centradness 0.469 0.044 0.478 0.349 0.477 0.419 0.421 Scale-Free monethy Gr0.06 d=0.7 d=0.6 d=0.06	Cyclic coefficient	0,138	0,13	0,1	41	0,129	0,133	0,141	0,132	0,13	
Knothy-centredness 0.469 0.048 0.044 0.478 0.348 0.476 0.419 0.421 Δ=0,7 Δ=0,7 Δ=2,2 Δ=4 Δ=0,9 Δ=0,6 Δ=0,8 Δ=0,7 Δ=0,7 Strails-Free property k=0.16 k=1.72 k=1.72 k=1.65 k=0.14 k=0.08 k=0.06 k=0.06 <td>Average search information</td> <td>7,182</td> <td>6,745</td> <td>7,3</td> <td>71</td> <td>6,038</td> <td>6,796</td> <td>7,668</td> <td>6,778</td> <td>6,882</td> <td></td>	Average search information	7,182	6,745	7,3	71	6,038	6,796	7,668	6,778	6,882	
Δ=0,7 Δ=2,2 Δ=4 Δ=0,9 Δ=0,6 Δ=0,8 Δ=0,7 Δ=0,7 Δ=0,7 μ=1,72 μ=0,85 μ=0,14 μ=0,9 μ=0,06 μ=0,0 μ=0,06 μ=0	Knotty-centredness	0,469	0,048	0,0	44	0,478	0,348	0,476	0,419	0,421	
IScale-Free property Iv=0.06 Iv=1.23 Iv=-1.72 Iv=0.85 Iv=0.14 Iv=0.98 Iv=0.06 Iv=0.06		∆=0,7	∆=2,2	∆=4		∆=0,9	∆=0,6	∆=0,8	∆=0,7	∆=0,7	
	Scale-Free property	Y=0,06	V=1,23	V=-1	,72	V=0,85	V=0,14	V=0,98	V=0,06	V=0,06	
		α=0,02	a=2,51	α=ι		a=0,38	α=0,02	a=0,69	α=0,02	α=0,02	
Δ=0,7 Δ=2,2 Δ=4 Δ=0,9 Δ=0,6 Δ=0,8 Δ=0,7 Δ=0,7 Δ=0,7		Δ=0,7	∆=2,2	∆=4		∆=0,9	∆=0,6	∆=0,8	∆=0,7	△=0,7	
Exponential approximation (P=339,9 (P=339,9))))))))))))))))))))	Exponential approximation	A=338'8	V=25,99	V=-1	28,46	V=03,80	V=188'83	V=52,52	V=339,9 a=0.02	V=339,9	

Abbildung 38: Globale Parameter des realen bilateralen C1-Netzwerkes und 7 unterschiedlicher Zufallsnetzwerken in 1000 Randomisierungen.

Die Modularitätsanalyse des bilateralen C1-Netzwerkes ergab 4 Module (**Abbildung 39**). Den beiden größten Modulen wurden gleiche Regionen unterschiedlicher Hemisphären zugeordnet, da die Verbindungen zwischen diesen Regionen innerhalb eines Moduls zahlreicher sind, als zwischen den Modulen. Die übrigen beiden Module 2 und 3 beinhalten aber Regionen aus beiden Hemisphären, die jedoch nur kortikale oder thalamische Zugehörigkeit haben. Auffallend ist die Häufung von somatosensorischen Regionen beider Hemisphären in Modul 3.

Abbildung 39: Modularitätsanalyse des bilateralen C1-Netzwerkes unter Berücksichtigung der Verbindungsgewichte. Die Module sind von 1-4 bezeichnet (s. Text).

3.4.3 Lokale Konnektivitätsanalyse des bilateralen C1-Netzwerkes

Sämtliche lokale Parameter der 63 links- und 63 rechtshemisphärischen Regionen des bilateralen C1-Netzwerkes wurden berechnet und im Tabellenanhang in **Tabelle 15** bis **Tabelle 17** zusammengefasst. Die lokale Parametertabelle wurde bezüglich der Gesamtzahl der Verbindungen pro Region (DG_{All}) absteigend sortiert. Die meisten Verbindungen besitzt der perirhinale Kortex (119), der infralimbische Kortex (113) und der mediale agranuläre prefrontale Kortex sowie der prelimbische Kortex (97). Im bilateralen C1-Netzwerk hat der AGl (primärer motorischer Kortex) den kleinsten Shapley-Wert (-0,775), aber liegt auf Rang 9 bei Sortierung der Verbindungsanzahlen. Der Shapley-Wert ist ein Maß für die Bedeutung einer Region im Netzwerk, wie auch die Eigenvektorzentralität (EC), die jedoch für den perirhinalen Kortex maximal ist (1), gefolgt vom infralimbisch und lateralen agranulär prefrontalen Kortex. Zentralitätsmaße und Bedeutungsmaße weisen Variabilitäten auf, so dass eine Region mit einer maximalen Anzahl von Verbindungen in einem Netzwerk nicht notwendigerweise immer den ersten Rang der Zentralitätsmaße oder Bedeutungsmaße zukommt.

Die Verbindungslateralität wurde mit der Gesamtzahl der Verbindungen, Outputs, Inputs und Reziprozitäten pro Gebiet untersucht. Werte die größer als 0,5 und kleiner 1 sind, bedeuten eine größere Anzahl von ipsilateralen als kontralateralen Verbindungen und ein Wert kleiner oder gleich 0,5 und größer 0 bedeutet eine größere Anzahl von kontralateralen als ipsilateralen Verbindungen. Beträgt der Wert genau 1, so sind ipsi- und kontralaterale Verbindungen pro Region gleich häufig. Stärker ausgeprägte kontralaterale Verbindungen weisen die monokulare Area des primär visuellen Kortex auf, sowie die Area 3 des frontalen Kortex. Besonders große ipsilaterale Werte finden sich für die Area 2 des cingulären Kortex, den ektorhinalen Kortex sowie den dorsalen intermedialen entorhinalen Kortex. Die Kontralateralität reziproker Verbindungen ist besonders stark bei der dysgranulären Region des primär somatosensorischen Kortex, monokularen Area des primär visuellen Kortex und wieder der Area 3 des frontalen Kortex ausgeprägt. Am stärksten findet sich ipsilaterale Reziprozität für den ektorhinalen Kortex, den ventralen Teil des agranulär insulären Kortex sowie der posterioren Area des parietalen Kortex.

Auch die *Hubness* oder *hub centrality* ist maximal für den perirhinalen Kortex, gefolgt von dem infralimbischen Kortex und dem lateralen agranulären prefrontalen Kortex, wobei sich diese Rangfolge der Regionen für das Maß *Authoritativeness* oder *authority centrality* (Kleinberg 1999) wieder ändert: die stärkste Authoritativeness besitzt der mediale agranuläre prefrontale Kortex gefolgt vom infralimbischen und prelimbischen Kortex. Regionen, wie der mediale agranuläre prefrontale Kortex, die eine große Authoritativeness haben, sind mit vielen Gebieten verbunden, die ihrerseits eine große Hubness aufweisen. Regionen, die eine große Hubness besitzen, sind wiederum mit vielen Regionen verbunden, die über eine große Authoritativeness verfügen. Die Interpretation dieser rekursiven Definition kann schwierig werden, da häufig Regionen, die eine große Authoritativeness mit einer größeren Anzahl von Inputs einher und Regionen mit großer Hubness haben häufig zahlreiche Verbindungen zu Regionen mit großer Authoritativeness (Newman 2010). Aus dem Vergleich der lokalen Parameter des unilateralen und bilateralen C1-Netzwerkes geht hervor, dass der infralimbische und laterale agranulä-

re prefrontale Kortex eine deutlich größere Bedeutung in dem bilateralen Netzwerk einnehmen. Werden alle Regionen mit weniger als 50 Verbindungen aus dem bilateralen C1-Netzwerk entfernt, existiert noch eine Zusammenhangskomponente mit massiver Konnektivität (60% Liniendichte), die in **Abbildung 40** wiedergegeben ist. Somit ergibt sich, dass Regionen die zahlreiche Verbindungen haben, auch untereinander besonders intensiv verbunden sind.

Abbildung 40: Das bilaterale C1-Netzwerk nach Entfernung aller Gebiete mit weniger als 50 Verbindungen.

3.4.4 Verteilung lokaler Parameter im bilateralen C1-Netzwerk

Die Verteilung von Katz-Indices, Betweeness-Zentralitäten, Eigenvektor-Zentralitäten und Shapley-Werten in Abhängigkeit von Degree All-Werten (DG_{All}) ist in **Abbildung 41** wiedergegeben. Die Verteilungen ähneln denen des unilateralen C1-Netzwerkes (**Abbildung 29** bis **Abbildung 32**). Mit zunehmenden DG_{All} (Summe der Inputs und Outputs einer Region) nehmen der Katz-Index, die Betweeness-Zentralität (BC) und die Eigenvektorzentralität zu. Umgekehrt ist es für den Shapley-Wert: je kleiner der Wert, desto größer ist der DG_{All}. Diese Parameter kennzeichnen die Bedeutung von Gebieten in dem Netzwerk. Je mehr Verbindungen ein Gebiet aufweist, desto bedeutender wird es für das Netzwerk. Dieses Prinzip gilt sowohl für das kleinere unilaterale C1-Netzwerk, als auch für das doppelt so große bilaterale C1-Netzwerk.

Abbildung 41: Auf der Ordinate sind die lokalen Parameter Katz-Index, Betweeness-Zentralität (BC), Eigenvektor-Zentralität (EC) und Shapley-Wert aufgetragen. Auf der Abszisse ist der lokale Parameter Degree All (DG_{All}) aufgetragen.

3.4.5 Motivanalyse des bilateralen C1-Netzwerkes

Die *Motivanalyse* des bilateralen Netzwerkes von C1 wurde mit der Rewiring Randomisierung durchgeführt. Zum einen erfolgte eine Rewiring Randomisierung mit Konstanthaltung der reziproken Verbindungen, so dass in jedem randomisierten Netzwerk die gleiche Anzahl reziproker Kanten vorkommt, wie im Originalnetzwerk (**Abbildung 42**). Das Originalnetzwerk besteht aus 868 reziproken Verbindungen, die sich jeweils aus zwei Verbindungen zusammensetzen (insgesamt ist das Netzwerk aus 2462 Kanten aufgebaut). Dies bedeutet, dass 1736 Verbindungen von 2462 Verbindungen an der Bildung reziproker Kanten beteiligt sind, also ca. 70% der Verbindungen sind reziprok. Zum anderen wurden unabhängig von der Anzahl reziproker Verbindungen Rewiring Randomisierungen durchgeführt (**Abbildung 43**). Beide Randomisierungsverfahren wurden 1000 Mal wiederholt. Wie auch bei der Motivanalyse des unilateralen C1-Netzwerkes werden 22 verschiedene Motivvarianten (**Abbildung 33**) betrachtet.

Ein offensichtlicher Unterschied in der Häufigkeit von Motiv syC besteht zwischen den beiden Randomisierungsarten und des signifikant häufigeren Auftretens im Originalnetzwerk. Es ist zugleich das einzige Motiv, welches häufiger im Originalnetzwerk exprimiert ist, als alle anderen untersuchten Motive. Interessant ist, dass dieses Motiv auch im unilateralen C1-Netzwerk häufiger im Originalnetzwerk als in randomisierten Netzwerken gefunden wurde (**Abbildung 33**) und somit das gehäufte Auftreten dieses Motives unabhängig von der Lateralität ist. Die reziproken Motivketten r4ca und r5ca sind deutlich seltener im Originalnetzwerk, als im Fall der rewiring Randomisierungen mit Konstanthaltung der reziproken Kanten, anzutreffen. Zirkuläre Motive ohne reziproke Verbindungen treten im Originalnetzwerk seltener auf, als in einfachen rewiring Randomisierungen. Dafür finden sich bei einfachen rewiring Randomisierungen im Originalnetzwerk häufiger kettenförmige Motive mit reziproken Kanten.

Abbildung 42: Motivanalyse des bilateralen C1-Netzwerkes mit 1000 reziproken rewiring Randomisierungen.

Abbildung 43: Motiv-Häufigkeiten des bilateralen C1-Netzwerkes mit 1000 einfachen rewiring Randomisierung ohne Erhaltung der Anzahl reziproker Verbindungen wie im Originalnetzwerk.

Die Häufigkeiten der Beteiligung an Motiven im bilateralen C1-Netzwerk ist in **Tabelle 19** wiedergegeben. Das laterale Gebiet des sekundären visuellen Kortex weist die häufigsten Beteiligungen (6494) an der Bildung des syC-Motives auf, gefolgt vom primären visuellen Kortex (5387) und dem Presubiculum (5280).

3.4.6 Zyklenanalyse des bilateralen C1-Netzwerkes

Die Zyklenanalyse (siehe Anhang **Tabelle 18**) des bilateralen C1-Netzwerkes zeigt stets symmetrische Häufigkeiten für links- und korrespondierende rechtshemisphärische Gebiete. Hemisphärische Asymmetrien der Zyklen wurden nicht gefunden. Die Häufigkeit von Gebietspassagen in Zyklen nimmt mit zunehmender Zyklusgröße zu. Ist eine Region besonders häufig in zyklischen Verbindungen präsent, so spricht dies für eine entsprechende Bedeutung des Gebietes bzgl. zyklischer Verbindungen und der Integration zyklischer Verbindungen über dieses spezielle Gebiet in das C1-Netzwerk. Der perirhinale Kortex, infralimbische Kortex und der prelimbische Kortex sind am häufigsten in zyklischen Verbindungen integriert. Danach folgen der sekundäre und primäre motorische Kortex sowie der sekundäre somatosensorische Kortex. Das mediodorsale Untergebiet des sekundären visuellen Kortex ist besonders selten in zyklische Verbindungen eingebunden.

3.4.7 Hauptkomponentenanalyse des bilateralen C1-Netzwerkes

Die Hauptkomponentenanalyse (PCA) wurde für die sechs lokalen Parameter DG_{All} , $AvgDG_{nb}$, Clu- C_{All} , Clu C_2 , VC_{DG} und Loc des bilateralen C1-Netzwerkes durchgeführt (**Abbildung 44a**). Die Dichte der C1-Regionen in der PCA-Ebene wurden mit Grauwerten kodiert und ergibt ein konzentrisches Muster. Die erste Komponente wird vor allem durch den Parameter Lokalität (Loc) mit 0,527 bestimmt und die zweite Komponente durch den Parameter mittlerer Knotengrad (AvgDG_{nb}).

In der PCA-Ebene in **Abbildung 44a** sind die rechtshemisphärischen Gebiete im Vordergrund gezeigt und als Kreissegment dahinter die linkshemisphärischen. Der perirhinale Kortex (A35) hat eine besonders stark ausgeprägte erste Komponente mit einer großen Anzahl direkter Nachbarn, die intensiv untereinander verbunden sind (**Abbildung 44b**). Eine vergleichbare Verteilung von direkten Nachbarn und Verbindungen zeigt auch der infralimbische Kortex (IL), der in der PCA direkt neben A35 liegt (**Abbildung 44c**). Eine weniger dichte Konnektivität wurde für das laterale Gebiet des sekundären visuellen Kortex (V2L) gefunden (**Abbildung 44d**). Dieses Gebiet weist eine besonders große Beteiligung an dem signifikanten syC Motivs auf und gehört aufgrund der PCA auch zu den Gebieten, mit dichten Verbindungen zwischen direkten Nachbarn von V2L. Gebiete, die im Zentrum der PCA Ebene liegen und damit ähnlich starke Ausprägungen der ersten und zweiten Komponente aufweisen, sind beispielsweise cinguläre, insuläre und retrospleniale Gebiete.

Abbildung 44: Hauptkomponentenanalyse (PCA) des bilateralen C1-Netzwerkes. Rechtshemisphärische Gebiete sind im Vordergrund dargestellt und linkshemisphärische als Kreissegment. Die konnektionalen Beziehungen sind für ausgewählte Gebiete wiedergegeben. Im Mittelpunkt befindet sich das jeweils ausgewählte Gebiet, um welches die direkten (ersten) Nachbarn in Form eines inneren Kreises angeordnet sind und dann die indirekten (zweiten) Nachbarn auf dem äußeren Kreis. a) Tabelle der lokalen Parameter und Anordnung der Gebiete in der PCA-Ebene. b) Der perirhinaler Kortex wurde als zentrales Gebiet ausgewählt und hat eine maximale erste Komponente. c) Infralimbischer Kortex. d) Lateraler sekundärer visueller Kortex.

Die Ähnlichkeiten der Verbindungen der Regionen im bilateralen C1-Netzwerk sind mit der metrischen multidimensionalen Analyse (MDS) untersucht worden (**Abbildung 45**). Regionen mit ähnlichen Verbindungen liegen hier dicht zusammen. Beispielsweise sind LEnt und MEnt dicht neben A36 gelegen. Auch AGm und AGl liegen dichter zusammen. Das Gleiche gilt für die visuellen Regionen V1, V2L und V1B. Allerdings zeigen V2MM und V1M hierzu Abweichungen. Somatosensorische Regionen S2BF, S1J, S1DZ, S1HK, S1FL und S1Tr liegen ebenfalls verhältnismäßig dicht zusammen, aber S2 liegt in einem ganz anderen Bereich. Insuläre Regionen und orbitale Regionen weisen ebenfalls deutliche Ähnlichkeiten auf.

Abbildung 45: MDS des bilateralen C1-Netzwerkes. Die linkshemisphärischen Regionen sind auf der linken Seite des Diagramms angeordnet.

3.4.9 Verbindungsmuster der Regionen des bilateralen C1-Netzwerkes

Ähnliche Muster von Inputs und Outputs von zwei Regionen lassen sich mit Hilfe des *Connectivity Matching Index (CMI)* in Form der CMI_{all} Matrix vergleichen (**Abbildung 46a**). Die Verbindungen von Gebieten innerhalb einer Hemisphäre haben hellere Blautöne und größere CMI_{all} Werte, womit Inputs und Outputs zweier Regionen der gleichen Hemisphäre (z.B. LEnt_L und MEnt_L: 0,8784) ähnlicher sind, als die gleicher Regionen in unterschiedlichen Hemisphären (z.B. LEnt_L und MEnt_L und MEnt_R: 0,1892). Ein maximaler Wert von 1 wurde für das links- und rechtshemisphärische monookuläre Rindengebiet, primary visual cortex monoocular part gefunden. Dieses liegt auf der Nebendiagonalen kontralateraler Gebietspaare, auf der sich auch ein größerer Wert für frontal cortex area 3 (0,7619) und retrosplenial granular cortex a region (0,8) befindet.

Die Verbindungen eines Knotens zu direkten und weiter entfernten Nachbarn, lassen sich ebenfalls für zwei Gebiete ermitteln und in Form einer Matrix vergleichen. Das *Generalized topological overlapping measure* (GTOM) (Yip und Horvath 2007) lässt sich für jedes mögliche Paar von Gebieten in der GTOM-Matrix bestimmen (**Abbildung 46b**). Die Verbindungen von Gebieten innerhalb einer Hemisphäre haben helle Blautöne und größere GTOM-Werte, womit Inputs und Outputs zweier Regionen der gleichen Hemisphäre (z.B. DIEnt_L und PrL_L: 1,0) ähnlicher sind als die gleicher Regionen in unterschiedlichen Hemisphären (z.B. DIEnt L und PrL R: 0,5625).

Matrix-Bereiche mit erhöhten GTOM Werten sind für intrahemisphärische entorhinale und parahippokampale Gebiete erkennbar. Ferner fällt ein Bereich mit größeren GTOM-Werten um die insulären und parahippokampalen Gebiete auf. Schließlich sind erhöhte GTOM-Werte von orbitalen Regionen mit entorhinalen und insulären Gebieten erkennbar. Die höchsten GTOM Werte lassen intrahemisphärisch um Ursprungs- und Zielgebiete, die zum selben System gehören, finden: parahippokampale, insuläre, somatosensorische und orbitale Kortexareale, also Gebiete, die um die Hauptdiagonale der GTOM-Matrix lokalisiert sind.

Die gewichtete Summe aller Wege zwischen zwei Gebieten wird mit der *Communicability*-Berechnung bestimmt (Estrada und Hatano 2008). Je mehr Wege, unter Berücksichtigung der Weglängen, zwischen zwei Gebieten existieren, desto größer ist die Communicability sämtlicher direkter und indirekter Verbindungen zwischen zwei Gebieten. Auch für dieses Maß eignet sich die Matrix-Darstellung in **Abbildung 46c**. Besonders große Communicability-Werte finden sich zwischen insulären Gebieten, sowie insulären und parahippokampalen Regionen. Für die Input-Spalten der somatosensorischen Gebiete sind die Communicability Werte relativ klein, da relativ wenige Wege durch die somatosensorischen "Endstationen" verlaufen.

Abbildung 46: Unterschiedliche Verbindungs-Matrizen des bilateralen C1-Netzwerkes. a) Connectivity matching Matrix für Inputs und Outputs (CMI_{All}). b) Generalized topological overlaping measure (GTOM) Matrix. c) Communicability Matrix.

3.5 Analyse des laminären kortikalen-Netzwerkes C2

Das laminäre C2-Netzwerk besteht aus zytoarchitektonischen Schichten der C1-Regionen, über die Verbindungsinformationen verfügbar sind. Es bietet eine relativ vollständige Zusammenstellung auf einer nicht zu detaillierten Gebietsunterteilung von Regionen, die intrakortikale Inputs und Outputs besitzen. Feinere Teilgebiete in Form von Neuronenpopulationen und einzelnen Neuronen sind teilweise auf der kortikalen Ebene verfügbar, allerdings existieren hier nur sehr wenige Verbindungsinformationen über alle Regionen.

Die zytoarchitektonischen Schichten sind Teile der C1-Regionen und liegen somit in der Hierarchie "unter" den C1-Regionen. Werden alle C1-Regionen systematisch bis zu ihren einzelnen zytoarchitektonischen Schichten erweitert, so werden 90 Schichten sichtbar, zu denen keine Verbindungsinformationen verfügbar sind (siehe Anhang **Abbildung 59a**) und zudem 7 Zusammenhangskomponenten (nicht zusammenhängende Netzwerke).

Werden danach alle 90 Gebiete entfernt, die keine intrakortikalen Verbindungen aufweisen, verbleibt eine kondensierte Matrix, die eine Zusammenhangskomponente des C2-Netzwerkes kodiert (siehe Anhang **Abbildung 59b**).

Das kondensierte bilaterale C2-Netzwerk setzt sich aus 326 Regionen zusammen, die durch 2484 Kanten miteinander verbunden sind. Jedes Gebiet empfängt und/oder sendet durchschnittlich circa 15 Verbindungen. Die Verbindungsmatrix ist dünn besetzt und weist eine Liniendichte von annähernd 2,3% auf. 601 Verbindungen sind reziprok, womit von den 2484 Verbindungen insgesamt 1202 Verbindungen reziproke Verbindungen bilden. Die mittlere Pfadlänge beträgt 4 und der mittlere Clusterkoeffizient 0,441. Die Small-Worldness ist stark ausgeprägt und beträgt 15. Auch die Modularität zeigt einen größeren Wert von 0,689.

Tabelle 10: Einige globale Parameter des bilateralen laminären kortikalen Originalnetzwerkes und Mittelwerte von 1000 Randomisierungen mit dem Erdös-Renyi (ER), Watts-Strogatz (WS), Barabasi-Albert (BA), modifizierten BA (MBA), modifizierten OHO (MOHO), rewiring (REW) und reziproken rewiring (REC) Zufallsprozessen.

	Org	ER	WS	BA	MBA	MOHO	REW	REC
Reciprocal edges	601	29,263	805,6	151,03	164,86	729,86	82,329	601
Average path length	4,006	3,069	3,614	2,817	2,903	3,849	2,917	2,922
Average cluster coefficient	0,441	0,023	0,276	0,08	0,072	0,316	0,086	0,077
Small-worldness	14,421	1	9,991	3,738	3,269	10,739	3,869	3,467
Modularity	0,689	0,226	0,599	0,215	0,205	0,631	0,197	0,243

Der Vergleich des C2-Netzwerkes mit randomisierten Netzwerken zeigt eine deutliche konnektionale Struktur, die mit keinem der 7 Zufallsprozesse angenähert werden kann. Insbesondere der mittlere Clusterkoeffizient und die Small-worldness zeigen größere Unterschiede des Originalnetzwerkes mit den randomisierten Netzwerken (**Tabelle 10**).

Bei der Betrachtung der Adjazenzmatrix des Originalnetzwerkes wird deutlich, dass es diverse kleinere intrinsisch stark verbundene Regionencluster gibt, zwischen denen weite Matrixgebiete frei von Einträgen sind. Somit liegt eine im besonderen Maße strukturierte Matrix vor, die zugleich dünn besetzt ist (**Abbildung 47**). Der Anteil unbekannter Verbindungsgewichte ist groß, da viele Autoren, bei derart feinen Untergliederungen kaum noch Verbindungsgewichte beschreiben, beobachten oder messen. Blockartige Anhäufungen von Verbindungsclustern liegen auf der Hauptdiagonalen und nicht in anderen Bereichen der Matrix, was vor allem für spezifische lokale konnektionale Muster spricht.

Reziproke Verbindungsstrukturen (siehe Anhang **Abbildung 60**) lassen sich ebenfalls im Verlauf der Hauptdiagonalen in Form blockartiger Cluster beobachten, die deutlich seltener und nicht so prägnant um die Hauptdiagonale herumliegen. Die Nebendiagonale ist noch geringfügig erkennbar.

Abbildung 47: Adjazenzmatrix der häufigsten Verbindungsgewichte des bilateralen C2-Netzwerkes.

Die oben beschriebene besondere Struktur der laminären Verbindungsmatrix wirft die Frage auf, ob Verbindungsmuster in der Connectivity Matching (CMI) Matrix erkennbar sind (**Abbildung 48**). Die CMI Matrix stellt gleiche Verbindungen von Regionenpaaren dar. Dies wurde sowohl für Input- als auch Output-Verbindungen (CMI_{All}) durchgeführt. In der CMI Matrix offenbart sich eine relativ große Dichte blockförmiger Ähnlichkeits-Cluster. Die blockförmige Häufung kann zunächst einmal als Indiz für eine passende Zusammenstellung von laminaren Regionen in der Hierarchie gewertet werden. Laminae gleicher kortikaler Regionen zeigen also deutliche Ähnlichkeiten bezüglich von Verbindungsmustern. Interessant sind in dieser Darstellung Verbindungsähnlichkeiten zwischen laminaren Regionen unterschiedlicher kortikaler Gebiete, die leicht identifiziert werden können, da sie nicht auf der Hauptdiagonalen liegen. MEnt und LEnt Verbindungen sind z.B. laminären pre- und parasubikulären Verbindungsähnlichkeiten einiger motorischer und sensibler kortikaler Gebiete. Visuelle Laminae, vor allem des primären visuellen Kortex, zeigen große Verbindungsähnlichkeiten mit Schichten des parie-

82

talen Assoziationskortex, retrosplenialer, mesokortikaler, perirhinaler und ektorhinaler Regionen. Vergleichbare Blockbildungen ähnlicher Verbindungsmuster finden sich auch in der GTOM-Matrix wieder (siehe Anhang **Abbildung 61**).

Abbildung 48: Connectivity matching Matrix der Inputs und Outputs des bilateralen C2-Netzwerkes.

Des Weiteren wurde untersucht, wie sich eine hierarchische Clusteranalyse auf die CMI_{All}-Matrix auswirkt. Von besonderem Interesse sind neue Blockbildungen in der Matrix als Indiz für umfangreiche Verbindungsähnlichkeiten von Gebietspaaren, die mit der Regionensequenz in der Originalhierarchie nicht erkennbar sind. Vergleichend wurden beide Matrizen untereinander dargestellt (siehe Anhang **Abbildung 62**). Nach der Clusteranalyse sind keine Blockbildungen in den Nebendiagonalen erkennbar, womit ähnliche kontralaterale Verbindungsmuster umgeordnet wurden. Stattdessen ist eine Verdichtung von Verbindungsähnlichkeiten auf der Hauptdiagonalen entstanden. Die Links-Rechts-Struktur des Netzwerkes wurde umgeordnet zu einer mehr alternierenden Struktur, in der stärker Lamina-lokale Verbindungsähnlichkeiten berücksichtigt werden.

3.5.1 Lokale Netzwerkparameter des C2-Netzwerkes

Die lokale Netzwerkanalyse des laminären C2-Netzwerkes ergibt eine besonders große Konnektivität für die Schichten 2 und 3, insbesondere des medialen und lateralen entorhinalen Kortex. Kortikale Regionen ohne geeignete laminäre Verbindungsinformationen, wie der mediale oder laterale Bereich des sekundären visuellen Kortex, besitzen ebenfalls besonders viele Verbindungen auf einer etwas gröberen Gliederungsebene. Die lokalen Parameter des unilateralen C2-Netzwerkes wurden parameterweise Rängen zugeordnet und anschließend der mittlere Rang für jede Region berechnet (siehe Anhang Tabelle 20). Diese rangsortierten Daten wurden zusätzlich als Streudiagramm für das unilaterale (Abbildung 63) und bilaterale (Abbildung 64) C2-Netzwerk im Bildanhang dargestellt. Die höchsten Ränge fanden sich für die Schichten 2, 3 und 5 von parahippokampalen Regionen. Danach folgen oberflächliche Schichten des infralimbischen und primär visuellen Kortex. Lamina 2 des medialen entorhinalen Kortex hat den höchsten mittleren Rang von 28,271. Der niedrigste Rang ergab sich für den sekundären auditorischen Kortex, für den nicht ausreichend laminäre Konnektivität zur Verfügung stand (109,104). Das bilaterale laminäre C2-Netzwerk ergibt ebenfalls hohe Ränge für die parahippokampalen Schichten 2, 3 und 5 des lateralen und medialen entorhinalen Kortex, sowie Presubiculum und perirhinalen Kortex. Danach schließen sich in der Rangfolge erst Schichten des primär visuellen Kortex und prelimbischen Kortex an.

Das mediale und laterale sekundäre visuelle Areal weist die höchste Vulnerabilität im bilateralen C2-Netzwerk auf. Zu diesen Gebieten sind keine genaueren laminären konnektionalen Daten verfügbar, so dass umso mehr die Verbindungen auf der gröberen Gebietsebene die Konnektivität dieser Gebiete bestimmen. Da auf gröberen Gebietsebenen mehr Verbindungen beschrieben wurden, macht sich dieser methodische Effekt bei der Berechnung des Vulnerabilitätsparameters bemerkbar. Die Hinterlauf-Region des primären somatosensorischen Kortex und die retrospleniale granuläre Kortex Region A finden sich auf Rang 3 und 4 in der Vulnerabilitätsliste wieder. Erst dann erscheinen auf Rang 5 die Schicht 4 der perirhinalen Kortex und die Schicht 2 des presubikulären Kortex (Rang 7). Im unilateralen C2-Netzwerk nimmt die primär somatosensorische Kieferregion den 3. Rang ein und die Schicht 4 des perirhinalen Kortex liegt auf Rang 2 der Vulnerabilität. Rang 1 wird wieder von der lateralen Region des sekundären visuellen Kortex eingenommen.

3.5.2 Motiv-Analyse des laminären C2-Netzwerkes

Die Motiv-Analyse des bilateralen laminären C2-Netzwerkes zeigt für 6 Motive signifikant häufigeres Auftreten im Originalnetzwerk als in reziproken rewiring Randomisierungen und eine für 12 Motive signifikant seltenere Expression. Die Motive 3-08 und 3-11 haben beide eine reziproke Verbindung und zwei Verbindungen, die im Motiv 3-08 konvergent und in 3-11 divergent gerichtet sind. Somit weisen diese beiden Motive eine entgegengesetzte Struktur auf. Die dritte Möglichkeit für 3er Motive mit einer reziproken Verbindung ist eine kettenartige Verbindung über einen Knoten in dem Motiv, was in Motiv 3-10 realisiert ist. Auch dieses Motiv ist signifikant häufiger im Originalnetzwerk realisiert. Das Motiv 3-05 ist ebenfalls signifikant häufiger im Originalnetzwerk vorhanden und beinhaltet keine reziproke Verbindung. Die Verbindungen in diesem Motiv lassen sich als eine konvergente und eine divergente Struktur interpretieren. Interessant ist, dass die Motive 3-05, 3-10 und 3-11, die signifikant häufiger im Originalnetzwerk auftreten, gewisse strukturelle Beziehungen untereinander aufweisen (**Abbildung 49**).

Abbildung 49: Motiv-Häufigkeiten im bilateralen laminären C2-Netz und in 1000 reziproken rewiring Randomisierungen. Die Häufigkeiten wurden logarithmisch dargestellt.

Um die laminäre Konnektivität gezielter zu untersuchen, wurden alle Schichten Regionen-unabhängig in Schichtenklassen unterteilt (reorganisiertes laminäres Netzwerk). Die ipsilateralen sind deutlich größer als die kontralateralen Kantenhäufigkeiten (Abbildung 50a). Seltener treten Verbindungen von Schicht 1 und 4 auf. Die größten Verbindungsgewichte sind in Abbildung 50b wiedergegeben. Es fällt auf, dass nur bei ipsilateralen Verbindungen das Verbindungsgewicht "exist" (-0,5) vorhanden ist. Die kontralateralen Verbindungsgewichte sind eindeutiger in der Literatur festgelegt. Bei den kontralateralen Verbindungsgewichten kommen schwache (1) bis mittelstarke (2) Verbindungsgewichte am häufigsten vor. Starke kontralaterale Verbindungen bestehen zwischen Schicht 2 und Schicht 5 sowie 6 Neuronen. Die reziproke ipsi- und kontralaterale Konnektivität ist relativ stark ausgebildet (Abbildung 50c), was sich an der dicht besetzten Matrix zeigt und der "weiß" kodierten Übergangsklasse (mittelstarke Reziprozitäten). Die Output Communicability (Abbildung 50d) der Schicht 4 ist schwächer ausgeprägt. Zudem wird in der Communicability Matrix deutlich, dass die Schicht 5 etwas kleinere Communicability Werte besitzt und damit schwächer in dem laminären Konnektom vernetzt ist. Eine orthogonale bilaterale verbindungsgewichtete Netzwerkvisualisierung ist in Abbildung 50e gezeigt, wo nochmal die Verbindungen ohne Kantengewicht deutlich erkennbar sind. Die kontralateralen Verbindungen sind hier als gepunktete Linien dargestellt.

Abschließend wurden die konnektionalen Strukturen in einem mehr funktionell reorganisierten laminären Netzwerk untersucht. Hierzu wurden die Schichten 1 bis 6 jeweils 6 übergeordneten bzw. virtuellen Schichten zugewiesen. Die Überregion Layer_1 enthält nun alle Lamina 1 Schichten. Unterhalb der Überregionen wurden dann teils funktionelle und teils größere strukturelle Regionen definiert wie "insular", "limbic", "parahippo", "somatosensory", "frontal", "association", "motoric" and "visual". Von der Gliederungsebene dieser funktionellen und strukturellen Einheiten wurden, die in Abbildung 51 gezeigten Matrizen, berechnet. Dieses reorganisierte Netzwerk enthält eine Region "Other", die alle kortikalen Gebiete beinhaltet, deren Schichten keine Verbindungen aufweisen, aber die zugehörigen kortikalen Überregionen Verbindungen besitzen. Diese "Hilfsregion" dient als konnektionale Verbindung um eine Zusammenhangskomponente und eine möglichst vollständige Verbindung der laminären Regionen zu erhalten. Das reorganisierte Netzwerk besteht aus 182 Gebieten, die über 884 Kanten verbunden sind. Eine detaillierte Netzwerkanalyse wurde für dieses Netzwerk nicht durchgeführt, da hier ein neuer konnektionaler Aspekt demonstriert werden soll. Die Matrizen (Abbildung 51) weisen unterschiedliche Formen von kleineren Mustern auf. Allen Mustern gemeinsam ist, dass sie aus elementaren Anordnungen von Matrixelementen bestehen, die im Sinn der mathematischen Morphologie über Matrixelementkanten zusammenhängen und zeilen- und spaltenweise Streifen bestimmter Längen bilden, welche periodisch auftreten. Hinzukommen diagonale Matrixelement-Muster und blockweise Muster. Streifen, Diagonalen und Blöcke sind quasi-periodisch geordnet (also nicht exakt periodisch). Horizontale Streifen bedeuteten eine Output-Verdichtung aufeinanderfolgender Regionen. Solche Output Muster finden sich für die Schichten 1, 5 und 6 des insulären Kortex. Vertikale Streifen bedeuteten eine Input-Verdichtung aufeinanderfolgender Regionen. Diese sind bei visuellen Regionen der Laminae 1-5, parahippokampale (Lamina 1-3) sowie limbische Regionen (Lamina 1-6) erkennbar. Blöcke lassen sich als starke lokale Konnektivität zwischen mehreren benachbarten Gebieten interpretieren. Diagonalen kennzeichnen Verbindungsstrukturen zwischen unterschiedlichen Laminae unterschiedlicher aber aufeinanderfolgenden Regionen (interlaminär und interregional). Diagonalen sind für Lamina $3 \rightarrow 5$, $4 \rightarrow 3$ und $6 \rightarrow 3$ Verbindungen erkennbar. Die Musterbildungen konnektionaler Strukturen hängen stark von der Aufeinanderfolge von Gebieten in der Hierarchie bzw. den Matrizendarstellungen ab. In der reziproken Matrix fallen die langen Matrixdiagonalen auf, die jedoch Lücken aufweisen. Dies spricht für eine Art übergeordneter Verbindungsstruktur, die insbesondere bei reziproken laminären Verbindungen beobachtet wurde. Dieses bilaterale laminäre Netzwerk mit funktioneller Gliederung wurde abschließend mit einer neuen Symmetrie erhaltenden Layout Technik für Kanten und Gebiete visualisiert, womit nochmals die Komplexität dieses relativ kleinen Subgraphen zur Darstellung kommt (Abbildung 52).

Ergebnisse

Abbildung 50: Reorganisiertes laminäres Netzwerk. a) Häufigkeiten indirekter Verbindungen kortikaler Laminae. b) Häufigste Gewichte kortikaler Laminae. c) Reziproke Verbindungen. d) Communicability Matrix laminärer Verbindungen. e) Visualisierung gewichteter Verbindungen im bilateralen laminären Netzwerk. Kontralaterale Verbindungen sind gepunktet dargestellt.

Abbildung 51: Den laminären Unterregionen der kortikalen Regionen wurden 6 funktionelle kortikale Regionen zugeordnet und bilateral dargestellt. a) Adjazenzmatrix der Kantenhäufigkeiten. b) Gewichtete Adjazenzmatrix. c) Reziproke Matrix. d) Distanzmatrix. e) CMI_{All} Matrix der Verbindungsähnlichkeiten. f) GTOM Matrix.

Abbildung 52: Das laminäre bilaterale C2-Netzwerk. Kontralaterale Verbindungen wurden mit gepunkteten Linien hervorgehoben. Die Linienfarbe entspricht der Kodierung der Gewicht-Codes.

Abschließend ist noch anzumerken, dass die laminare Konnektivität des Barrel-Kortex nicht im Rahmen dieser Arbeit untersucht wurde. Die funktionellen (sensiblen, motorischen), topographischen (anterolateral, posterolateral, posteromedial barrel fields und posteromedial barrel septa) und subkortikalen (Hirnstamm barrelet und thalamische barreloid Mappings) Aspekte erfordern eine spezielle konnektionale Untersuchung. Im Bildanhang wurde die Adjazenzmatrix des posteromedialen Barrel Kortex auf der laminären Ebene wiedergegeben, um zu zeigen, dass auch diese Verbindungsdaten alle im Ratten Konnektom vorhanden sind (**Abbildung 65**).

4 Diskussion

Die folgenden Unterkapitel befassen sich mit der Zusammenfassung der Ergebnisse, einer kritischen Auseinandersetzung mit der Methodik und den angewendeten Materialen, der Beurteilung der Ergebnisse sowie den Schlussfolgerungen dieser Arbeit und eine vergleichende Betrachtung der Ergebnisse weiterer Arbeitsgruppen. Es werden die Alleinstellungsmerkmale dieser Konnektomanalyse des Cortex cerebri dargelegt. Des Weiteren wird ein Ausblick auf zukünftige Untersuchungsaspekte, die sich aus der Arbeit ergeben, dargeboten. Die zu Beginn der Arbeit gestellten Kernfragen werden im Kapitel 4.7 beantwortet.

4.1 Zusammenfassung der Ergebnisse

Durch die Metaanalyse der Konnektivitäten in 378 Arbeiten wurden verschiedene kortikale Netzwerke erstellt und diese genauer analysiert. Das Netzwerk C1, welches in ein unilaterales und ein erweitertes bilaterales Netzwerk untergliedert wurde, setzt sich aus allen kortikalen Regionen, exklusive der hippokampalen Formation, zusammen. Das C2-Netzwerk ist ein um zytoarchitektonische Schichten erweitertes C1-Netzwerk. Im C2-Netzwerk konnte beinahe die komplette laminäre Konnektivität von Regionen, für die intrakortikale Inputs und Outputs existieren, konstruiert werden. Feinere Strukturen wie Neuronenpopulationen oder einzelne Neuronen sind ebenfalls in den Netzwerken integriert, allerdings wurden hierfür nur wenige Informationen über Verbindungen in der ausgewerteten Literatur gefunden. Auch das C2-Netzwerk wurde in ein unilaterales und bilaterales Netzwerk aufgeteilt. Des Weiteren wurde noch ein reorganisiertes laminäres C2-Netzwerk entwickelt und ein neuer konnektionaler Gesichtspunkt untersucht.

Das unilaterale C1-Netzwerk enthält 63 kortikale Gebiete mit 927 Verbindungen. Die Verbindungen wurden durch Konnektivitätsmatrizen ausgewertet, so wird z. B. eine hohe Dichte an kontralateralen Verbindungen zwischen RS, V1, V2, Post, AGI und AGm nachgewiesen, die bislang noch nicht beschrieben wurden. Wiederum können zahlreiche bereits vorher beschriebene Konnektivitäten (Bedwell et al. 2014, Zakiewicz et al. 2014, Vogt 2015) bestätigt werden. Im doppelt so großen bilateralen C1-Netzwerk wurde ein Augenmerk auf die kontralateralen Verbindungen gelegt. Es zeigte sich, dass kontralaterale Verbindungen seltener und durchschnittlich mit geringeren Gewichten auftreten als unilaterale Verbindungen. Besonders konzentriert sind die Konnektivitäten gleicher Gebiete zwischen den Hemisphären, jedoch wurden auch Verbindungskonzentrationen in den insulären Gebieten, A35 und A36 innerhalb einer Hemisphäre nachgewiesen. Dichte reziproke Verbindungshäufigkeiten wurden für die kontralateralen Verbindungen der visuellen, motorischen und insulären Gebiete demonstriert. Für die insulären Gebiete wurden auch Konnektivitätshäufungen für unilaterale Verbindungen gefunden.

Für die globale Konnektivitätsanalyse wurden 126 Regionen mit 2450 Verbindungen, davon 508 kontralaterale Verbindungen, im bilateralen C1-Netzwerk berücksichtigt. Im Vergleich mit dem unilateralen C1-Netzwerk sind die Small-Worldness mit 3,111 zu 2,249 und die Modularität mit 0,318 zu 0,191 stark erhöht, dies gibt einen Hinweis auf eine lokal größere Anzahl von verbundenen Regionen. Annähernd gleich sind die durchschnittliche Pfadlänge, der mittlere Clusterkoeffizient und der Fehlerwert der Scale-Free Eigenschaft. So zeigt sich, dass beide Originalnetzwerke eine relativ starke Gruppenbildung besitzen. Dies wurde bereits in dem Ergebnisteil genannten Matrizendarstellungen (erweiterte Distanzmatrix, Communicability Matrix und GTOM Matrix) durch blockartige Expressionen der Matrixwerte angedeutet. Die Verteilung der lokalen Parameter im bilateralen C1-Netzwerk ist der des unilateralen C1-Netzwerkes sehr ähnlich. In der lokalen Konnektivitätsanalyse besitzt der perirhinale Kortex sowohl im unilateralen als auch im bilateralen C1-Netzwerk die größte Bedeutung, was durch höchste DG_{All} -, EC-, BC-Werte, dem höchsten Katz-Index und einem niedrigen Shapley-Index zum Ausdruck kommt. Aber auch der infralimbische, prelimbische, der laterale und mediale agranuläre prefrontale Kortex u. a. besitzen hohe bzw. beim Shapley-Index niedrige Werte. Beim Vergleich der lokalen Parameter mit dem unilateralen C1-Netzwerk kommt dem infralimbischen und lateralen agranulären prefrontalen Kortex im bilateralen C1-Netzwerk eine noch größere Relevanz zu. Es wurde festgestellt, dass Regionen die zahlreiche Verbindungen besitzen, auch untereinander besonders intensiv verbunden sind. Damit wurde für das kortikale Konnektom gezeigt, je mehr Verbindungen eine Region aufweist, desto bedeutender wird sie für das Netzwerk.

Das laminäre C2-Netzwerk besteht aus den zytoarchitektonischen Schichten der C1-Regionen, sodass hier eine Hierarchieebene unter den C1-Regionen betrachtet wird. Nach Entfernung aller Schichten über die keine Verbindungsinformationen existieren, besitzt das kondensierte bilaterale C2-Netzwerk 326 Regionen, welche über 2484 Kanten miteinander verbunden sind und wovon 1202 Verbindungen reziprok sind. Jedes Gebiet weist im Durchschnitt 15 Verbindungen auf. Auch besitzt das Netzwerk nur eine Liniendichte von 2,3%. Das C2-Netzwerk verfügt im Vergleich zu Zufallsnetzwerken über einen starken konnektionalen Aufbau, dies zeigt sich durch eine deutlich höhere Small-Worldness (15) und eine höhere Modularität (0,689), auch im Vergleich zu den C1-Netzwerken. Die mittlere Pfadlänge (4) ist im Vergleich zu den C1-Netzwerken (unilateral: 1,89, bilateral: 2,1) ebenfalls deutlich erhöht. Der mittlere Clusterkoeffizient ist mit 0,441 niedriger als bei den C1-Netzwerken (unilateral: 0,601, bilateral: 0,529). Des Weiteren ergibt sich eine hochstrukturierte, aber dünnbesetzte Adjazenzmatrix, die Blockbildungen von Verbindungsclustern auf der Hauptdiagonale zeigt. Dies weist ebenfalls auf lokale konnektionale Strukturen hin. Ebenfalls wurden blockartige Cluster in reziproken Verbindungsstrukturen bewiesen, welche jedoch deutlich seltener um die Hauptdiagonale liegen. In der CMI Matrix offenbart sich eine relativ große Dichte blockförmiger Ähnlichkeits-Cluster. Zudem wurde nachgewiesen, dass Laminae gleicher kortikaler Regionen Ähnlichkeiten an Verbindungsmustern besitzen, aber auch Verbindungsähnlichkeiten zwischen Laminae unterschiedlicher kortikaler Regionen z.B. Konnektivitäten von MEnt und LEnt ähneln laminären pre- und presubikulären Verbindungen. Dies wurde auch durch die GTOM-Matrixanalyse bestätigt. In der lokalen Netzwerkanalyse des unilateralen und bilateralen C2-Netzwerkes weisen die höchsten Ränge der Parameter die parahippokampalen Regionen und hier besonders die Laminae 2, 3 und 5 des medialen und lateralen entorhinalen Kortex auf. Das reorganisierte laminäre Netzwerk zeigt, dass ipsilaterale Kantenhäufigkeiten grö-
ßer sind als kontralaterale. Auch wurde gezeigt, dass kontralaterale Verbindungsgewichte eindeutiger in der Literatur beschrieben werden, die Werte jedoch geringer sind als bei ipsilateralen Verbindungsgewichten. Starke kontralaterale Verbindungen wurden zwischen den Laminae 2 und 5 entdeckt. Ein mit funktioneller Gliederung reorganisiertes laminäres Netzwerk beinhaltet 182 Gebiete, welche über 884 Kanten verbunden sind. In diesem Netzwerk existieren verschiedene kleine Muster, welche durch die Abfolge der Regionen in der Rangordnung bzw. den Matrixdarstellungen bestimmt werden. Horizontale Streifen, also eine Output-Verdichtung aufeinanderfolgender Regionen sind in den Laminae 1, 5 und 6 des insulären Kortex vorhanden. Vertikale Streifen, also eine Input-Verdichtung aufeinanderfolgender Regionen sind in den Laminae 1-5 der visuellen, der Laminae 1-3 der parahippokampalen sowie der Laminae 1-6 der limbischen Regionen nachweisbar. Erkennbare Diagonalen, also Verbindungen zwischen unterschiedlichen Laminae interlaminärer und interregionärer Regionen ergeben sich aus der Anordnung von Verbindungen zwischen Lamina 3 und 5, Lamina 4 und 3 sowie 6 und 3.

4.2 Kritische Betrachtung der Methodik

Als Untersuchungsmethode wurde eine Metaanalyse von zahlreichen Tract-tracing Studien durchgeführt. Dieses Verfahren ist zur Auswertung konnektionaler Daten etabliert und wird von vielen Forschungsgruppen angewendet (Sugar et al. 2011, Bota et al. 2012, Papp et al. 2016, Pereira et al. 2016, Zseli et al. 2016). Um ein möglichst vollständiges Konnektom des Cortex cerebri abzubilden, wurden alle bis zur Auswertung publizierten Studien, welche die unten genannten Bedingungen erfüllen, ausgewertet. Nachfolgende Studien können nachträglich in das Programm neuroVIISAS eingepflegt werden, sind aber nicht mehr Teil dieser Arbeit und somit der hier vorgestellten Netzwerke. Um eine große Auswertungsobjektivität zu erzielen, wurden bestimmte Voraussetzungen eingehalten: Injektion von Tracersubstanzen in den Cortex cerebri der adulten Ratte, Ausschluss von Degenerationsstudien, Viral-Tracing, Studien an neonatalen Ratten während der kortikalen Entwicklung und Versuche mit transgen veränderten Tieren. Sowie der Ausschluss von Verbindungen, die von fibers of passage ausgehen und somit die Ursprungsregion nicht sicher bestimmbar ist. So wurden annähernd gleiche Versuchsbedingungen berücksichtigt und nur gesunde erwachsene Tiergehirne betrachtet. Das Geschlecht der Ratte wurde vernachlässigt. Es könnten dennoch Unterschiede, bspw. in der Verteilung der Tracersubstanzen zwischen den Geschlechtern, existieren. So wurde in der Studie von Bayless und Daniel (2015) ein höherer Gehalt des anterograden Tracers biotinylated dextran amine im dorsal striatum (Injektionsort orbital frontal cortex) der weiblichen Ratte im Vergleich zum männlichen Geschlecht gefunden.

Ein weiterer kritischer Punkt ist, dass durch überholte Methoden Tracersubstanzen in Publikationen älterer Generation teilweise nicht präzise in die vorgesehenen Regionen bzw. Laminae injiziert wurden und somit eventuell inkorrekte Daten mit in die Auswertung aufgenommen wurden (Sugar et al. 2011). Dieses Problem wurde einerseits durch die genaue Auswahl der Publikationen, andererseits durch die große Anzahl an verwendeten Studien und durch Einschluss aktuellerer Studien minimiert. Zusätzlich beschreibt ebendiese die Problematik der möglicherweise vorhandenen, aber nicht genann-

ten Verbindungen bzw. nichtexistenten Verbindungen. Region A besitzt beschriebene Verbindungen zu Region B. Jedoch wurde keine Verbindung von Region A1 zu Region B beschrieben bzw. gar nicht erst erwähnt. Gleichwohl ist Region A1 eine Unterregion von A und es ist möglich, dass auch hier Verbindungen existieren. Als Lösungsansatz wurden bei Nennung nichtexistenter Verbindungen diese als nichtexistent bzw. not present (0) mit aufgenommen. Bei Unsicherheit, ob die Verbindung existent ist, wurde der Wert unknown, not known (-3) gewählt und bei großer Unsicherheit die Verbindung nicht erfasst. So wurden möglichst exakte und echte Daten beschrieben und der interessante Aspekt, welche Regionen nicht miteinander verbunden sind, wurde ebenfalls in der Auswertung berücksichtigt. Teilweise wurde in den Publikationen beschrieben, dass Nachbarregionen bei Injektion mitangefärbt wurden und es Unklarheit darüber bestand, ob auch die Nachbarregionen zu dem zu untersuchenden Gebiet Verbindungen besitzen (Allen und Hopkins 1998). Hier wurden die Verbindungen größtenteils nicht mit in die Auswertung aufgenommen, außer die Verbindung wurde exakt beschrieben, da die Unsicherheit über inkorrekte Daten zu groß war. Des Weiteren variierte die Einwirkzeit der Tracersubstanzen bzw. die Überlebenszeit der Tiere: z.B. Gonchar und Burkhalter (2003) 18-24h Einwirkdauer, Iida et al. (2010) 7-10 Tage. So sind möglicherweise bei längerer Einwirkzeit eine größere Anzahl von Verbindungen bzw. höhere Verbindungsgewichte vorhanden. Auch die Applikationsart unterscheidet sich, teilweise wurden Druckinjektionen oder Iontophorese zum schnelleren Transport der Tracer durchgeführt, was auch zu dem eben genannten Effekt führen könnte. Weitere methodische Varianten sind die Benutzung von verschiedenen Konzentrationen und Volumina der Tracer. Zur Lösung sollten möglichst gleiche Versuchsbedingungen vorherrschen, jedoch würde dies bei den bereits ausgewerteten Studien zu einer Dezimierung an Publikationen führen und die Stichprobe der Metaanalyse damit zu klein ausfallen. Auch die Darstellung der Regionen und den zugehörigen Verbindungen variiert unter den Autoren. So geben manche Autoren die Verbindungen nur in Textform an, andere in Bildern und wiederum andere in Tabellen oder kombiniert. Zur exakten Auswertung ist eine Tabellenform mit Angabe von Ursprungs- und Zielregion, Laminae und Beschreibung der Verbindungsgewichte gut geeignet.

Eine weitere Limitation der hier angewendeten Tract-tracing Methodik ist, dass funktionelle Aspekte, wie ob eine Verbindung inhibitorisch oder exitatorisch ist (Sugar et al. 2011), nicht untersucht wurden. So wurden in den meisten Publikationen keine Angaben über Neurotransmitter und Rezeptoren gefunden (Fisk und Wyss 1999) bzw. die Untersuchung der laminären Strukturen und der Kontralateralität standen im Vordergrund. Eine weitere Auswertung mit Augenmerk auf die Elektrophysiologie erscheint sinnvoll für die Zukunft.

Abschließend ist das von Kamper (2004) beschriebene Parzellierungsproblem eine Einschränkung. Durch unterschiedliche Definitionen und Grenzen der Regionen durch verschiedene Autoren ist eine exakte Zuordnung oftmals schwierig. Auch werden divergierende Nomenklaturen für dasselbe Gebiet verwendet, als Beispiel dient der bereits im Material und Methoden genannte *lateral agranular prefrontal cortex*, so sind weitere in der Literaturauswertung beschriebene Bezeichnungen u. a. *prima*-

93

ry motor area, lateral agranular cortex, first motor cortex und area 4 of Krieg. Zur Problemlösung wurden für die Einbettung der Konnektivitäten sorgfältig die Regionen nach dem Atlas von Paxinos und Watson (2007) und Paxinos und Watson (2013) ausgewählt oder die in der Literatur gebräuchlichste Bezeichnung verwendet bzw. bei großer Uneindeutigkeit eine Unterregion zur Fehlerminimierung eingefügt. Die in den Tract-tracing Publikationen verwendeten Synonyme wurden zum späteren Nachschlagen in *neuroVIISAS* integriert.

4.3 Kritische Betrachtung der Ergebnisse

Wie bereits angedeutet, ist die unterschiedliche Nomenklatur der Regionen ein Problem für die korrekte Auswertung. Dies wurde minimiert, indem das C1-Netzwerk als Grundlage genommen wurde. Dieses enthält nur Regionen, welche sich in dem Atlas von Paxinos und Watson (2007) befinden und speziell die Großhirnrinde abbilden. Die hippokampalen Regionen wurden aufgrund einer eigenständigen Untersuchung im gleichen Fachbereich ausgeklammert, die parahippokampalen Regionen aber integriert. Kerngebiete ohne Verbindungen wurden ebenfalls nicht mit eingebettet. So wurden die Kerngebiete um Unterkerngebiete erweitert. Dennoch wurden von einigen Autoren für dieselbe Gehirnregion divergierende Bezeichnungen oder aber für unterschiedliche Gehirnregionen ähnliche bzw. gleiche Bezeichnungen benutzt. So ist es möglich, dass Gehirnregionen fälschlicherweise mehrfach in die Regionenauswahl miteinfügt werden können. Durch das Zuklappen der Teilbäume und damit die Integration der synonymen Regionen in übergeordneter Regionen wurde versucht dies zu verhindern. Mit dieser Methodik ist auf einer hohen Gliederungsebene eine große Zuverlässigkeit zu gewähren, jedoch kommt es auf tieferer Gliederungsebene zu Ungenauigkeiten. Das C2 beinhaltet die Gehirnregionen von C1, es ist bis zur Ebene der zytoarchitektonischen Schichten erweitert worden.

Im Ergebnisteil fiel auf, dass viel weniger kontralaterale Verbindungen im Vergleich zu ipsilateralen Konnektivitäten existieren. So stellt sich die Frage, ob eine kleinere Anzahl kontralateraler Verbindungen vorhanden sind oder die Autoren kontralaterale Verbindungen seltener untersuchten. Des Weiteren würde ein vollständiges Konnektom alle Skalen (Makro-, Meso- und Mikroskala) und alle Gebiete des Nervensystems inklusive bspw. peripheres Nervensystem abbilden (Bota et al. 2015, Bota et al. 2012). Dies ist noch nicht möglich, jedoch wird es zumindest für die Regionenauswahl durch aktuelle Projekte mit Hilfe von *neuroVIISAS* versucht. Abschließend wird geklärt, welchen klinischen Nutzen die hier vorgestellten Ergebnisse aufweisen. Neurologen können durch neurowissenschatftliche Programme wie z.B. *neuroVIISAS* oder *Golgi* (unter www.usegolgi.com) ein detaillierteres Wissen über die Neuroanatomie, Projektionspfade und Informationsströme erlangen (Brown und Swanson 2015). So werden Anatomie und Funktion im tierexperimentellen Bereich noch besser für das Verständnis von Erkrankungen dargestellt und auf den neuesten Wissensstand gebracht.

4.4 Kritische Betrachtung der Ergebnisse anderer Arbeitsgruppen

Golgi ist ein interaktiver Atlas des Rattengehirns, der im Internet frei unter <u>www.usegolgi.com</u> verfügbar ist. Das Programm basiert auf den Daten des Projektes *BAMS* (Brain Architecture Management System) und besitzt den Vorteil, dass der Nutzer leicht verständlich konnektionale Daten auf der Makroskala abrufen und auch selbst einlesen kann. Mit dieser Software lassen sich u.a. Projektionspfade in einer übersichtlichen 2D-Darstellung abbilden. Auch für klinisch tätige Ärzte und zur Planung von Experimenten kann dieser Atlas nützlich sein. Zurzeit sind nur Informationen zur Ratte Bota et al. (2012) verfügbar und erst bei Integration durch viele Nutzer kann das Programm auf andere Spezies ausgeweitet werden (Brown und Swanson 2015), was in *neuroVIISAS* bereits seit mehreren Jahren verfügbar ist und genutzt wird.

BAMS ist ein für die Allgemeinheit nutzbares neurowissenschaftliches System mit HTML-Schnittstelle, in das ein Administrator Daten oder Metadaten über Konnektivitätsstudien der Ratte und Maus integrieren kann. Es stellt Informationen über die Verbindungsstrukturen des Nagetier-Nervensystems auf der Meso- und Makroskala zur Verfügung. Es wird jedoch nur eine Gehirnhälfte mit ipsilateralen Verbindungen abgebildet (Bota et al. 2005, Bota und Swanson 2007, Bota und Swanson 2008, Bota und Swanson 2010, Bohland et al. 2009). Bota et al. (2012) entwickelten ihr Programm, jetzt BAMS-II dahingehend weiter, dass es nun 52.458 Literaturstellen umfasst und das Ratten Konnektom eine Matrix mit 27.796 Verbindungen, wobei unklar ist wieviele Publikationen tatsächlich ausgewertet wurden. Damit sind über 11 Prozent des Nervensystems der Ratte erforscht. Es wurden 317 Output Regionen und 406 Input Regionen der grauen Substanz beschrieben, die über mindestens eine Verbindung verfügen. Die Information über die Verbindungen ist ausschließlich ipsilateral. Regionen mit den meisten Inputs sind der prelimbische und infralimbische Kortex, Nucleus striae terminalis und das laterale Areal des Hypothalamus. Das laterale Areal des Hypothalamus verfügt über die meisten Output-Verbindungen. Die anatomische Nomenklatur basiert auf den stereotaktischen Atlas von Swanson (2004).

Eine aktuelle Studie von Bota et al. (2015) über das Konnektom des Cerebral cortex, welches mit der Datenbank *BAMS-II* (Bota und Swanson 2007, Bota et al. 2012) entwickelt wurde, befasst sich mit einer neuartigen Beschreibung der Organisation der kortikalen Strukturen. Dafür wurden über 16.000 Verbindungen aus der Literatur erfasst und mit diversen Methoden ausgewertet. Die Verbindungen auf der Makroebene umfassen annähernd 2370 Verbindungen zwischen 73 analysierten Kortex Regionen, die Output Verbindungen der kortikalen Gebiete liegen durchschnittlich bei 30 Konnektivitäten pro Gebiet. 69 Regionen, die restlichen vier Regionen wurden erst später hinzugefügt, unterteilen sich auf vier separate Module M1-M4. Die Module und nicht modularen Regionen, einschließlich der nicht erforschten oder explizit erwähnten nicht vorhandenen Verbindungen, werden in einer Matrix dargestellt, die 15 Prozent des gesamten zentralen Nervensystems ausmachen und das kortikale assoziative Konnektom bilden. Die vier Module besitzen Verbindungen zu den nicht modularen Regionen des Netzwerkes. Zur Visualisierung wurden die vier Module farblich getrennt markiert und die Gewich-

tung der Konnektivitäten durch die Größe der Knotenpunkte (kortikale Region) belegt. Zwei der vier Module sind schalenartig aufbaut, die restlichen beiden bilden den "Kern" unter der Schale. Das Modul M3 enthält die kortikalen Gebiete anteriorer cingulärer und retrosplenialer Kortex und den überwiegenden Anteil der hippokampalen Formation. Das Modul M4 beinhaltet die größte Anzahl an Regionen, das olfaktorische System, den medialen prefrontalen Kortex und die Minderheit der hippokampalen Formation: lateraler entorhinaler Kortex, ventrales Subikulum und ventrales Feld des Ammonshorns Area 1. Das kaudale Modul M1 wird aus visuellen und auditiven Regionen, posterioren parietalen Kortex und dem ventralen und dorsalen temporalen Kortex gebildet. M2, das rostrale Modul, enthält somatische und viszerale sensomotorische und gustatorische Regionen, orbitale Areale, den agranulären insulären und perirhinalen Kortex. Ein Modul besitzt innerhalb des Moduls (intramodular) eine hohe Gewichtung an Verbindungen, dagegen sind die Konnektivitäten zwischen den Modulen (intermodular) eher mäßig ausgeprägt. Der hohe Clusterkoeffizient und die kurzen Pfadwege, die innerhalb der Module gefunden wurden, weisen auf Small-World Eigenschaften in dem kortikalen Konnektom hin. Des Weiteren wurden der ektorhinale, der perirhinale und der lateral entorhinale Kortex als Mittelpunktsknoten (Network Hubs) identifiziert. Diese drei Regionen sind die am stärksten verbunden Regionen, die ein durchgehendes Band durch den Kortex laufend bilden. Die Rich-Klub Analyse zeigt, dass ebenfalls drei Rich-Klub Knoten, der laterale und mediale entorhinale Kortex und das Claustrum existieren. Um diese drei Rich-Klub Knoten ordnen sich 15 weitere stark verbundene Knoten verteilt über alle vier Module an. Der laterale entorhinale Kortex weist die höchste Tendenz Verbindungen einzugehen auf. Die dargestellten Eigenschaften der vier Module innerhalb des kortikalen Konnektoms deuten darauf hin, die morphologischen Grundlagen des Cortex cerebri zu bilden (Bota et al. 2015). So wurde ein umfangreiches Konnektom des Cortex cerebri der Laborratte aus einer nicht näher definierten Rohdatenmenge in BAMS-II entwickelt. Im Vergleich mit dem hier vorgestellten Konnektom zeigen sich einige Gemeinsamkeiten und signifikante Unterschiede. So finden sich in beiden konnektionalen Studien Small-World Eigenschaften. Auch ist ein modulhafter Aufbau mit jeweils vier Modulen vorhanden, jedoch ist der hier vorgestellte Aufbau divergierend (Hülle und Kerne vs. ausschließlich hüllenförmig aufgebaut) und der Cerebral cortex wurde nicht vollständig in die vier Module aufgeteilt. Die Analyse von Bota et al. (2015) befasst sich zudem nicht gezielt mit den kontralateralen Verbindungen und einem laminären Konnektom.

Eine weitere aktuelle Publikation befasst sich ebenfalls mit dem kortikalen Konnektom auf Basis der Daten von *BAMS-II* (Bota und Swanson 2007, Bota et al. 2012). Das kortikale Konnektom enthält 67 (71) kortikale und subkortikale Regionen, welche auf der Makroskala verfügbar sind und gerichtete (anterograd/retrograd/bidirektional) und gewichtete Verbindungen enthalten. Vier Regionen besitzen keine Konnektivitäten oder verfügen nur über Verbindungen innerhalb der Strukturen und werden somit nicht in die Netzwerkanalyse integriert. Es existieren drei unterschiedlich farbig markierte Module, die jeweils ein bis drei Untermodule, insgesamt sechs Untermodule, besitzen. Die Matrix, ein binäres direktes Netzwerk, setzt sich aus den 67 Knoten und 1397 Kanten respektive Pfadwegen zu-

sammen. Das Netzwerk weist Eigenschaften wie Small-Worldness, kurze, nicht länger als drei Kanten entfernte Pfadwege und einen stark verbundenen zentralen Rich-Klub mit Konnektor-Hubs auf. Die 14 entdeckten Hubs, sekundärer motorischer Kortex, infralimbischer Kortex, piriformer Kortex, dorsaler Part des anterioren cingulären Kortex, prelimbischer Kortex, das mediale orbitale Areal, posteriore agranuläre insuläre Kortex, temporale assoziative Areale, ektorhinale Kortex, perirhinale Kortex, das laterale Segment und die dorsale Zone des medialen Segments des entorhinalen Kortex, lateraler Kern und das posteriore Segment des basolateralen Kerns der Amygdala, bilden den Rich-Klub des Netzwerkes. In dem Netzwerk wird zwischen Verbindungen der Hub-Regionen, welche 11 Prozent des Konnektoms ausmachen, Verbindungen zwischen Hub-Region und Nicht Hub-Region mit In- und Output Unterscheidung und Konnektvitäten zwischen Nicht Hub-Regionen, den lokalen Verbindungen, unterschieden. Den größten Anteil haben die lokalen Verbindungen mit einem Anteil von 37% am gesamten Netzwerk. Die Hub Knoten überwinden längere Distanzen im Gehirn und besitzen häufiger eine bidirektionale Richtung. Ferner wird das Konnektom durch eine modulare Struktur, mit stärkerer Gewichtung der intramodularen Verbindungen und einer eher mäßigen Gewichtung der intermodularen Verbindungen aufgeteilt. Die Verbindungsanzahl des Rich-Klubs ist dagegen zwischen den Modulen (intermodular) höher. Eine weitere entdeckte Eigenschaft ist, dass kurze Verbindungen eine höhere Gewichtung aufweisen als längere Verbindungen. Konnektiviäten mit einer starken Gewichtung zeigen eine hohe Clusterbildung, eine starke Tendenz weitere Verbindungen einzugehen und besitzen längere Pfadwege als Verbindungen mit schwacher Gewichtung. Die schwächsten Verbindungen werden hingegen von einer geringen Clusterbildung und von einem starken Einfluss der Kommunikation der Kantenwege für das globale Netzwerk bestimmt (van den Heuvel et al. 2015).

Tract-tracing Daten lassen sich mit einem weiteren Open-Source Programm (Tallis et al. 2011), welches einen Ratten-Atlas generiert, sammeln, nach Swanson (2004) kartographieren bzw. in einen digitalen Atlas abbilden und durch den Endbenutzer erweitern. Dieses Programm fügt die bestehende Software NeuARt (Dashti AE et al. 2001, Burns et al. 2006) und Bioscholar (Russ et al. 2011) zusammen und erweitert sie. Mit dem Open-Source Projekt werden Verbindungen auf der Makroskala und auf der Mesoskala (zwischen Neuronen Populationen) dargestellt, welche auf den Daten von BAMS (Bota et al. 2005, Bota und Swanson 2008, Bota und Swanson 2010) basieren. Die so entwickelte Software enthält 78 Experimente mit 58 Kerngebieten und 383 Zielgebieten, verbunden über 3000 Konnektivitäten (Tallis et al. 2011). Ebenfalls wurde mit Hilfe der funktionellen Magnetresonanztomografie das globale Netzwerk des Rattengehirns darstellbar gemacht. In diesem Netzwerk wurden Parameter wie Small-Worldness und Potenzgesetz Eigenschaften beobachtet, welche eine lineare Abhängigkeit der Frequenz der Knotengrade aufweisen (Schwarz et al. 2012).

Weitere konnektionale Studien der letzten Jahre sind auf spezifische Gehirnregionen der Hirnrinde beschränkt. Diese wurden teilweise in die Auswertung dieser Arbeit integriert.

Sugar et al. (2011) hat eine Analyse, die ebenfalls auf der Tract-tracing Methodik an gesunden unbehandelten Ratten basiert, durchgeführt: zusammen mit dem parahippokampalen-hippokampalen Konnektom (van Strien et al. 2009, Agster und Burwell 2013) besitzt das retrosplenialeparahippokampale Netzwerk annähernd 2600 unilaterale Verbindungen. Das Konnektom lässt sich in ein intrinsisches Netzwerk mit Projektionen innerhalb einer Region und den vier Regionen sowie einem extrinsischen Netzwerk unterscheiden.

Das Parietal-Kortex Konnektom wurde ebenfalls bezüglich von Tract-tracing Verbindungen untersucht. Es zeigte sich, dass der Parietal Kortex eine Vielzahl an Verbindungen aufweist. Welcher Abschnitt des parietalen Kortex Projektionen von anderen Gehirnregionen besitzt, divergiert hauptsächlich entlang der lateralen und medialen Achse (Wilber et al. 2014).

Einen Teilaspekt demonstrierten Shim et al. (2013), in dem sensomotorischen Konnektom wurden acht Regionen durch das Resting-State fMRI ausgewählt, welche signifikante Eigenschaften für das Netzwerk besitzen.

Der Barrel-Kortex wurde von zahlreichen Arbeitsgruppen untersucht. So wurde eine ausführliche Beschreibung der Efferenzen der Barrels des primären somatosensorischen Kortex, dem Whiskerareal und Forelimbareal auf Basis von Tract-tracing Daten von Zakiewicz et al. (2014) und der Gliederung nach Paxinos und Watson (2007) erstellt. In dieser Arbeit wurden auch kontralaterale Verbindungen betrachtet, diese wurden als schwach bis mäßig beschrieben (Zakiewicz et al. 2014). Eine weitere Tract-tracing Studie über den Whisker Output zu kortikalen Arealen stellt ähnliche Ergebnisse wie bei Zakiewicz et al. (2014) beschrieben dar. Ein Unterschied besteht in der Darstellung der Laminae. Zudem fehlt die Beschreibung der nicht kortikalen Gebiete und der kontralateralen Betrachtung (Stehberg et al. 2014). Eine detaillierte Übersichtsarbeit über die kortikalen Verbindungen der Vibrissen Region bei Nagetieren bietet Bosman et al. (2011). In diesem Review wird gezeigt, dass das Schnurrhaar Areal von vielen Gehirnregionen Input erhält und viele Informationen von ihr an kortikale und assoziative Gebiete gesendet werden.

Teile von Gehirnstrukturen bzw. Konnektome verschiedener Spezies, wie z.B. Fadenwurm, Katze, Makak, Maus und Mensch wurden in zahlreichen Veröffentlichungen ausgewertet (White et al. 1986; Felleman und van Essen 1991; Young 1992; Young 1993; Scannell et al. 1999; Kaiser und Hilgetag 2006; Honey et al. 2007; Iturria-Medina et al. 2008; Modha und Singh 2010; Sporns 2011b; Harriger et al. 2012; Oh et al. 2014; Henriksen et al. 2016; Goulas et al. 2016; Jeong et al. 2016). Hier ist besonders die aktuelle Studie von Betzel et al. (2017) zu nennen, welche sich mit der Untersuchung der Konnektome auf der Mesoscala des Menschens, Drosophilas, der Maus, des Makake-Affens und auch der Ratte beschäftigten.

4.5 Alleinstellungsmerkmale der Konnektomanalyse des Cortex cerebri

Durch die vorliegende Arbeit wurde ein nahezu vollständiges Konnektom des Cortex cerebri der Ratte generiert. Besonders die Bilateralität mit Darstellung der kontralateralen Verbindungen stand im Vordergrund. Ebenfalls wurde erstmalig ein laminäres Konnektom der Großhirnrinde erstellt, ausgewertet und visualisiert. Auch wurde erstmals eine eindeutige Zuordnung von Ursprung und Ziel einer Verbindung für das Axon Initialsegment bestimmt. Somit kann eine subzelluläre Struktur untersucht werden, welche eindeutig nur einer Region zugeordnet ist. Die vorliegenden Konnektomdaten des Ratten Nervensystems sind inzwischen vollständig bezüglich der verfügbaren Literatur. Es gibt kein vergleichbares Projekt, das in einer Metaanalyse einen neurowissenschaftlichen Prototyporganismus derart intensiv ausgewertet hat.

4.6 Ausblick

Es konnten bereits alle Gehirnregionen, aber auch das gesamte periphere Nervensystem der Ratte, durch konnektionale Forschung erfasst und in neuroVIISAS verfügbar gemacht werden. Im Gegensatz zu den im Diskussionsteil erwähnten Ratten Konnektom Projekten wurde die Tract-tracing Literatur in mehreren Teilprojekten vollständig ausgewertet (ca. 7500 Publikationen). Neben der Erfassung von Kolateralen und transsynpatischen Virustracing in anderen Auswertungen wurden die Regionen-Daten des Konnektoms konsequent hierarchisch organisiert. Zusammen mit der Berücksichtigung kontralateraler gewichteter Konnektivität enthält das Konnektom eine exakte Abbildung der dokumentierten biologischen Konnektivität. Ein weiterer bereits in Punkt 4.2 skizzierter Aspekt ist die Untersuchung der funktionellen Interaktionen. So ist eine Betrachtung, ob eine Verbindung exzitatorisch oder inhibitorisch ist bzw. welche Neurotransmitter sie enthält, interessant (Sugar et al. 2011). Damit könnte das neuronale Netzwerk noch realistischer abgebildet werden. Es existieren bereits einige Ansätze wie z.B. Ullo et al. (2015), hier wurde jedoch nur ein unvollständiges Konnektom auf der Mesoskala generiert. So entwickelten Noori et al. (2017) zur besseren Darstellung der neurochemischen Prozesse in Konnektomen eine Datenbank (ChemNetBD). Auch wäre eine spezifische konnektionale Kolateralenanalyse sinnvoll. Teilweise wurde diese bereits in dem Projekt integriert, jedoch waren die Informationen über Kolateralen in den ausgewerteten Publikationen häufig zu gering. Eine semiautomatische Auswertung der Metadaten könnte zu Vergleichsdaten führen und wurde von Autoren wie Papp et al. (2016) bereits erprobt. Daten von anderen Spezies liegen seit längerer Zeit in neuroVIISAS vor und können stets in das System eingelesen und aktualisiert werden, womit zeitnahe Darstellungen und Analysen neuer und aktualisierter Konnektome möglich sind. Die konnektionalen Daten der einzelnen Spezies stehen der Allgemeinheit zum Herunterladen auf der neuroVIISAS Webpage zur Verfügung. Eine Ausweitung auf das humane Konnektom wäre wichtig, wobei bereits menschliche traktographische Datensätze in neuroVIISAS importiert wurden. Bota et al. (2012) beschrieben, dass ein Konnektom erst vollständig ist, wenn alle Daten auf der Makroskala mit Gehirnarealen, der Mesoskala mit Neuronenpopulationen und der Mikroskala mit individuellen Neuronen integriert wurden. Dies wäre ein wichtiger Fortschritt für die zukünftige Konnektomforschung und kann durch bereits konzeptuell mit neuroVIISAS (Schmitt und Eipert 2012) verwirklicht werden. Eine weitere Überlegung ist, mit den in neuroVIISAS gesammelten Metadaten Simulationen mit Läsionen verschiedener neuronaler funktioneller Systeme zu erstellen. Hiermit könnten die Veränderungen auf globaler und lokaler Ebene untersucht werden. Insbesondere Projektionspfade mit relevanten Informationen zur neuronalen Dynamik könnten besser bezüglich ihrer Funktionalität verstanden werden und besser für die Aufklärung neurologischer Störungen genutzt werden.

4.7 Fazit und Beantwortung der Fragen dieser Arbeit

1. Wie viele Verbindungen existieren im Konnektom des Cortex cerebri?

Das unilaterale C1-Netzwerk beinhaltet 63 kortikale Gebiete mit 971 Verbindungen. Das bilaterale C1-Netzwerk besitzt 126 Gebiete mit 2450 Verbindungen. Das bilaterale laminäre C2-Netzwerk ist mit 326 Regionen und 2484 Konnektivitäten das größte Netzwerk. Das reorganisierte C2-Netzwerk, wo die einzelnen Schichten übergeordneten Regionen zugeordnet wurden und die Regionen mit Laminae ohne Verbindungen, jedoch die kortikalen Überregionen Verbindungen aufweisen, für ein möglichst vollständiges Netzwerk in die Region "Other" integriert wurden, besteht aus 182 Regionen, welche über 884 Kanten verbunden sind.

2. Wie viele ipsilaterale und kontralaterale Konnektivitäten wurden in einem Netzwerk beschrieben?

Das bilaterale C1-Netzwerk weist 1942 ipsilaterale und 508 kontralaterale Verbindungen auf. Es zeigt sich, dass deutlich mehr ipsilaterale Verbindungen existieren bzw. untersucht wurden.

3. Welche besonders bedeutsamen kortikalen Projektionspfade wurden in dem Konnektom gefunden?

Die u. a. von Zakiewicz et al. (2014) beschriebenen wichtigen kortiko-kortikalen Pfade $S1 \rightarrow S1_c$, $S1 \rightarrow S2$, $S1 \rightarrow S2_c$, $S1 \rightarrow M1$ und $S1 \rightarrow M1_c$ sind in dem Konnektom enthalten und durch andere Autoren verifiziert worden. Auch der von Bedwell et al. (2014) dargelegte Projektionspfad $S1 \rightarrow S2 \rightarrow Assoziations$ Kortex $\rightarrow PFC \rightarrow M2 \rightarrow M1$ ist im Netzwerk integriert und nachgewiesen worden. Die genannten Pfade besitzen eine hohe Bedeutung für das Netzwerk.

4. Welche Konnektivitäten sind besonders valide hinsichtlich ihrer Existenz?

Im C1-Konnektom sind die Verbindungen vom perirhinalen zum prelimbischen Kortex, sowie $V1 \rightarrow V2$ und $V2 \rightarrow V1$ aufgrund einer hohen Beobachtungshäufigkeit und durch den bilateralen Nachweis besonders verifiziert.

5. Warum ist die Betrachtung kontralateraler Verbindungen von Bedeutung?

So wurden die von Vogt (2015) beschriebenen Verbindungen für die visuelle, räumliche und motorische Koordination im Netzwerk ermittelt. Doch die mit großen Verbindungsgewichten besetzte kontralaterale Verbindung zwischen RS, V1, V2, Post, AGl und AGm wurde nicht von dem Autor genannt. Sie wurde jedoch in unserem Konnektom gefunden und durch die umfangreiche Metaanalyse der Publikationen belegt. So besitzen im bilateralen C1-Netzwerk die monokulare Area des primär visuellen Kortex und die Area 3 des frontalen Kortex eine ausgeprägte kontralaterale Konnektivität. Bei reziproken Verbindungen findet sich die stärkste ausgeprägte Kontralateralität bei der dysgranulären Region des primär somatosensorischen Kortex, monokularen Area des primär visuellen Kortex und der Area 3 des frontalen Kortex.

6. Welche Regionen weisen die meisten Input- und Output-Verbindungen auf?

Im C1-Konnektom besitzt der perirhinale Kortex mit 367 die meisten Efferenzen. Die meisten Afferenzen wurden im ektorhinalen Kortex mit 394 Konnektivitäten gefunden.

7. Welche intrinsischen und extrinsischen Verbindungen sind besonders intensiv verbunden?

Eine lokal intensive Netzwerkstruktur, also geringe räumliche Abstände und große Verbindungsgewichte besitzen im C1-Konnektom die parahippokampalen und insulären Regionen mit jeweils intrinsischer Konnektivität. Diese beiden Regionen sind ebenfalls untereinander verbunden und weisen beide Output-Konnektivität auf. Die somatosensorische Region ist wiederum besonders intrinsisch verbunden.

8. Welche Regionen sind besonders stark untereinander verbunden?

Im C1-Netzwerk wurden 4 Module gefunden, hier wurden zur realistischen Dichteschätzung die Verbindungsgewichte logarithmisch umgewandelt. Modul 1 ist aus auditorischen, orbitalen und einigen somatosensiblen Regionen zusammengesetzt. Modul 2 weist amygdaläre, insuläre und parahippokampale Regionen auf. Modul 3 besitzt weitere parahippokampale, temporale und parietale Areale. Das größte Modul mit 164 intrinsischen Verbindungen ist insbesondere durch visuelle und sensomotorische Regionen gekennzeichnet.

9. Sind Regionen besonders bedeutsam für das Netzwerk hinsichtlich der Erreichbarkeit der Regionen?

Der AGl weist eine große Bedeutung im C1-Netzwerk durch eine Abnahme der Closeness um 3,48% nach Entfernung der Region auf. Im unilateralen C2-Netzwerk besitzt die Entfernung der lateralen Region des sekundären visuellen Kortex die höchste Vulnerabilität. Die mediale und laterale sekundäre visuelle Area haben die höchsten Ränge im bilateralen C2-Netzwerk inne.

10. Wie sieht das laminäre C2-Konnektom aus?

Das laminäre C2-Konnektom besteht aus den zytoarchitektonischen Schichten der C1-Regionen und es sind 326 Regionen, welche über 2484 Kanten miteinander verbunden sind, integriert. Jedes Gebiet weist im Durchschnitt 15 Verbindungen auf und ist somit mit einer Liniendichte von 2,3% dünn besetzt. Das C2-Netzwerk verfügt im Vergleich mit Zufallsnetzwerken über einen starken konnektionalen Aufbau.

11. Wie sehen die reorganisierten C2-Netzwerke aus?

Ipsilaterale Kantenhäufigkeiten sind größer als kontralaterale Kantenhäufigkeiten. Die kontralateralen Verbindungsgewichte sind allerdings eindeutiger in der Literatur beschrieben.

5 Literatur

- 1. Agosta F, Pievani M, Geroldi C, Copetti M, Frisoni GB, Filippi M (2012) Resting state fMRI in Alzheimer's disease: beyond the default mode network. Neurobiology of aging 33:1564–1578.
- 2. Agster KL, Burwell RD (2013) Hippocampal and subicular efferents and afferents of the perirhinal, postrhinal, and entorhinal cortices of the rat. Behavioural brain research 254:50–64.
- 3. Allen GV, Hopkins DA (1998) Convergent prefrontal cortex and mamillary body projections to the medial pontine nuclei: A light and electron microscopic study in the rat. Journal of Comparative Neurology 398:347–358.
- Aparicio MA (2010) Projections From The Inferior Colliculus To The Tectal Longitudinal Column In The Rat. Neuroscience:653–664.
- 5. Arenkiel BR (2015) Neural Tracing Methods: Tracing Neurons and Their Connections. Springer New York, New York, NY.
- Argyelan M, Gallego JA, Robinson DG, Ikuta T, Sarpal D, John M, Kingsley PB, Kane J, Malhotra AK, Szeszko PR (2015) Abnormal Resting State fMRI Activity Predicts Processing Speed Deficits in First-Episode Psychosis. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 40:1631–1639.
- Axer H, Axer M, Krings T, Keyserlingk DG (2001) Quantitative estimation of 3-D fiber course in gross histological sections of the human brain using polarized light. Journal of Neuroscience Methods 105:121–131.
- 8. Axer H, Berks G, Keyserlingk DG (2000) Visualization of nerve fiber orientation in gross histological sections of the human brain. Microsc Res Tech 51:481–492.
- 9. Axer M, Amunts K, Grässel D, Palm C, Dammers J, Axer H, Pietrzyk U, Zilles K (2011) A novel approach to the human connectome: ultra-high resolution mapping of fiber tracts in the brain. NeuroImage 54:1091–1101.
- 10. Bähr M (2014) Neurologisch-topische Diagnostik: Anatomie Funktion Klinik. Thieme, Stuttgart.
- 11. Barabàsi A-L, Albert R (1999) Emergence of Scaling in Random Networks. Science 286:509-512.
- Barabàsi A-L, Albert R (2013) The Barabàsi-Albert Model.
 http://www.academia.edu/10565517/The_Barabàsi-Albert_Model. Zugegriffen: 21. August 2017.

- Barrat A, Barthélemy M, Pastor-Satorras R, Vespignani A (2004) The architecture of complex weighted networks. Proceedings of the National Academy of Sciences of the United States of America 101:3747–3752.
- 14. Barthélemy M, Barrat A, Pastor-Satorras R, Vespignani A (2005) Characterization and modeling of weighted networks. Physica a: Statistical mechanics and its applications 346:34–43.
- 15. Basser PJ, Mattiello J, LeBihan D (1994) MR diffusion tensor spectroscopy and imaging. Biophysical Journal 66:259–267.
- Basser PJ, Özarslan E (Hrsg) (2009) Chapter 1: Introduction to Diffusion MR. Johansen-Berg, Behrens,
- Bassett DS, Bullmore E, Verchinski BA, Mattay VS, Weinberger DR, Meyer-Lindenberg A (2008) Hierarchical Organization of Human Cortical Networks in Health and Schizophrenia. J Neurosci 28:9239–9248.
- Bayless DW, Daniel JM (2015) Sex differences in myelin-associated protein levels within and density of projections between the orbital frontal cortex and dorsal striatum of adult rats: implications for inhibitory control. Neuroscience 300:286–296.
- 19. Bedwell SA, Billett EE, Crofts JJ, Tinsley CJ (2014) The topology of connections between rat prefrontal, motor and sensory cortices. Frontiers in systems neuroscience 8:177.
- 20. Betzel RF, Medaglia JD, Bassett DS (2017) Diversity of meso-scale architecture in human and non-human connectomes.
- 21. Beul SF, Grant S, Hilgetag CC (2014) A predictive model of the cat cortical connectome based on cytoarchitecture and distance. Brain Struct Funct 220:3167–3184.
- 22. Binnewijzend MAA, Schoonheim MM, Sanz-Arigita E, Wink AM, van der Flier, Wiesje M, Tolboom N, Adriaanse SM, Damoiseaux JS, Scheltens P, van Berckel, Bart N M, Barkhof F (2012) Resting-state fMRI changes in Alzheimer's disease and mild cognitive impairment. Neurobiology of aging 33:2018–2028.
- 23. Biswal B, Zerrin Yetkin F, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar mri. Magn. Reson. Med. 34:537–541.
- 24. Biswal BB, van Kylen J, Hyde JS (1997) Simultaneous assessment of flow and BOLD signals in resting-state functional connectivity maps. NMR in biomedicine 10:165–170.
- 25. Boccara CN, Kjonigsen LJ, Hammer IM, Bjaalie JG, Leergaard TB, Witter MP (2015) A threeplane architectonic atlas of the rat hippocampal region. Hippocampus 25:838–857.

- 26. Bohland JW, Wu C, Barbas H et al (2009) A proposal for a coordinated effort for the determination of brainwide neuroanatomical connectivity in model organisms at a mesoscopic scale. PLoS computational biology 5:1–9.
- 27. Bollobás B (1998) Graduate Texts in Mathematics: Modern graph theory. Springer, New York.
- Bollobás B, Riordan OM (2003) Kapitel 1: Mathematical results on scale-free random graphs. In: Bornholdt S, Schuster HG (Hrsg) Handbook of graphs and networks: From the genome to the internet. Wiley-VCH, Weinheim, S 1–35.
- 29. Bosman LWJ, Houweling AR, Owens CB, Tanke N, Shevchouk N, Rahmati, Teunissen WHT, Ju C, Gong W, Koekkoek SKE, Zeeuw CI de (2011) Anatomical pathways involved in generating and sensing rhythmic whisker movements. Frontiers in integrative neuroscience 5:53.
- Bota M, Dong H-W, Swanson LW (2005) Brain architecture management system. Neuroinformatics 3:15–48.
- 31. Bota M, Dong H-W, Swanson LW (2012) Combining collation and annotation efforts toward completion of the rat and mouse connectomes in BAMS. Frontiers in neuroinformatics 6:1–10.
- 32. Bota M, Sporns O, Swanson LW (2015) Architecture of the cerebral cortical association connectome underlying cognition. Proceedings of the National Academy of Sciences of the United States of America 112:2093–2101.
- Bota M, Swanson LW (2007) Online workbenches for neural network connections. The Journal of comparative neurology 500:807–814.
- Bota M, Swanson LW (2008) BAMS Neuroanatomical Ontology: Design and Implementation. Frontiers in neuroinformatics 2:1–8.
- 35. Bota M, Swanson LW (2010) Collating and Curating Neuroanatomical Nomenclatures: Principles and Use of the Brain Architecture Knowledge Management System (BAMS). Frontiers in neuroinformatics 4:1–16.
- 36. Botvinick MM (2008) Hierarchical models of behavior and prefrontal function. Trends in Cognitive Sciences 12:201–208.
- Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth, Leipzig.
- Brown RA, Swanson LW (2015) Golgi: Interactive Online Brain Mapping. Frontiers in neuroinformatics 9:1–16.
- Brown VJ, Bowman EM (2002) Rodent models of prefrontal cortical function. Trends in Neurosciences 25:340–343.

- 40. Burns G (1997) Neural Connectivity of the Rat: Theory, Methods and Applications. Dissertation zur Erlangung Dr. phil., Oxford.
- 41. Burns G, Cheng W-C, Thompson RH, Swanson LW (2006) The NeuARt II system: a viewing tool for neuroanatomical data based on published neuroanatomical atlases. BMC Bioinformatics 7:531.
- 42. Burwell RD (2001) Borders and cytoarchitecture of the perirhinal and postrhinal cortices in the rat.J. Comp. Neurol. 437:17–41.
- 43. Burwell RD, Witter MP, Amaral DG (1995) Perirhinal and postrhinal cortices of the rat: a review of the neuroanatomical literature and comparison with findings from the monkey brain. Hippo-campus 5:390–408.
- 44. Cai D, Cohen KB, Luo T, Lichtman JW, Sanes JR (2013) Improved tools for the Brainbow toolbox. Nature methods 10:540–547.
- 45. Cajal SR (1894) The Croonian Lecture: La Fine Structure des Centres Nerveux. Proceedings of the Royal Society of London 55:444–468.
- 46. Cajal SR (1909) Histologie du système nerveux de l'homme et des vertébré. A. Maloine, Paris.
- 47. Cajal SR (1995) Histology of the Nervous System of Man and Vertebrates. Originally published in 1909, translated into French in 1928 and translated from French to English by Swanson, N. and Swanson, LW. Oxford University Press.
- 48. Callaway EM (2008) Transneuronal circuit tracing with neurotropic viruses. Current opinion in neurobiology 18:617–623.
- 49. Callaway EM, Katz LC (1993) Photostimulation using caged glutamate reveals functional circuitry in living brain slices. Proceedings of the National Academy of Sciences of the United States of America 90:7661–7665.
- 50. Campos Vidal B de, Mello ML, Caseiro-Filho AC, Godo C (1980) Anisotropic properties of the myelin sheath. Acta Histochem 66:32–39.
- 51. Cappaert NLM, van Strien NM, Witter MP (2015) Hippocampal Formation. In: Paxinos G (Hrsg) The rat nervous system. Elsevier/Academic Press, Amsterdam, S 511–573.
- 52. Chen BL, Hall DH, Chklovskii DB (2006) Wiring optimization can relate neuronal structure and function. Proceedings of the National Academy of Sciences of the United States of America 103:4723–4728.
- 53. Chung JR, Sung C, Mayerich D, Kwon J, Miller DE, Huffman T, Keyser J, Abbott LC, Choe Y (2011) Multiscale exploration of mouse brain microstructures using the knife-edge scanning microscope brain atlas. Frontiers in neuroinformatics 5:1–17.

- 54. Chung K, Deisseroth K (2013) CLARITY for mapping the nervous system. Nature methods 10:508–513.
- 55. Chung K, Wallace J, Kim S-Y, Kalyanasundaram S, Andalman AS, Davidson TJ, Mirzabekov JJ, Zalocusky KA, Mattis J, Denisin AK, Pak S, Bernstein H, Ramakrishnan C, Grosenick L, Gradinaru V, Deisseroth K (2013) Structural and molecular interrogation of intact biological systems. Nature 497:332–337.
- 56. Colizza V, Flammini A, Serrano MA, Vespignani A (2006) Detecting rich-club ordering in complex networks. Nat Phys 2:110–115.
- 57. Collins FS, Patrinos A, Jordan E, Chakravarti A, Gesteland R, Walters L (1998) New goals for the U.S. Human Genome Project: 1998-2003. Science 282:682–689.
- 58. Costa LdF, Rodrigues FA, Hilgetag CC, Kaiser M (2009) Beyond the average: Detecting global singular nodes from local features in complex networks. Europhys. Lett. 87:1-6 (18008).
- 59. Cowan WM, Gottlieb DI, Hendrickson AE, Price JL, Woolsey TA (1972) The autoradiographic demonstration of axonal connections in the central nervous system. Brain research 37:21–51.
- 60. Craddock RC, Jbabdi S, Yan C-G, Vogelstein JT, Castellanos FX, Di Martino A, Kelly C, Heberlein K, Colcombe S, Milham MP (2013) Imaging human connectomes at the macroscale. Nature methods 10:524–539.
- 61. Das G, Reuhl K, Zhou R (2013) The Golgi-Cox method. Methods Mol Biol. 1018:313–321.
- 62. Dashti AE, Burns GAPC, Simmons DM, Swanson L, Ghandeharizadeh S, Shahabi C, Stone J, Jia S (2001) The Neuroanatomical Rat Brain Viewer (NeuARt): A system for registering data against brain atlases. In: Grethe J. S., Arbib M. A. (Hrsg) Computing the Brain: A Guide to Neuroinformatics. Academic Press, San Diego, S 189–202.
- 63. Deacon TW, Eichenbaum H, Rosenberg P, Eckmann KW (1983) Afferent connections of the perirhinal cortex in the rat. Journal of Comparative Neurology 220:168–190.
- 64. Diestel R (2010) Graphentheorie. Springer, Heidelberg [u.a.].
- 65. Echtermeyer C, Costa LdF, Rodrigues FA, Kaiser M (2011) Automatic network fingerprinting through single-node motifs. PloS one 6:1-8.
- 66. Elston GN, Okamoto T, Oga T, Dornan D, Fujita I (2010) Spinogenesis and pruning in the primary auditory cortex of the macaque monkey (Macaca fascicularis): an intracellular injection study of layer III pyramidal cells. Brain research 1316:35–42.
- 67. Erdös P, Rényi A (1960) On the evolution of random graphs. Publ Math Inst Hung Acad Sci:17–61.

- 68. Estrada E, Hatano N (2008) Communicability in complex networks. Physical review. E, Statistical, nonlinear, and soft matter physics 77:1–30.
- 69. Euler L (1736) Solutio problematis ad geometriam situs pertinentis.: Commentarii Academiae Scientiarum Imperialis Petropolitanae:8.
- 70. Feinberg TE (2012) Neuroontology, neurobiological naturalism, and consciousness: a challenge to scientific reduction and a solution. Physics of life reviews 9:13–34.
- 71. Felleman DJ, van Essen D (1991) Distributed Hierarchical Processing in the Primate Cerebral Cortex, Houston, Texas.
- 72. Fink RP, Heimer L (1967) Two methods for selective silver impregnation of degenerating axons and their synaptic endings in the central nervous system. Brain research 4:369–374.
- 73. Fisk GD, Wyss JM (1999) Associational projections of the anterior midline cortex in the rat: Intracingulate and retrosplenial connections. Brain research 825:1–13.
- 74. Fuster JM (2001) The prefrontal cortex--an update: time is of the essence. Neuron 30:319–333.
- 75. Glickstein M (2006) Golgi and Cajal: The neuron doctrine and the 100th anniversary of the 1906 Nobel Prize. Current biology : CB 16:147–151.
- 76. Gómez-Gardeñes J, Zamora-López G, Moreno Y, Arenas A (2010) From modular to centralized organization of synchronization in functional areas of the cat cerebral cortex. PloS one 5:1–11.
- 77. Gonchar Y, Burkhalter A (2003) Distinct GABAergic targets of feedforward and feedback connections between lower and higher areas of rat visual cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience 23:10904–10912.
- 78. Gong G, He Y, Concha L, Lebel C, Gross DW, Evans AC, Beaulieu C (2009) Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cereb Cortex 19:524–536.
- 79. Goulas A, Uylings HBM, Hilgetag CC (2016) Principles of ipsilateral and contralateral corticocortical connectivity in the mouse. Brain structure & function 3:1281–1295.
- Gruber TR (1993) A translation approach to portable ontology specifications. Knowledge Acquisition 5:199–220.
- Guimerà R, Sales-Pardo M, Amaral L (2004) Modularity from fluctuations in random graphs and complex networks. Phys. Rev. E 70:1–4.
- Hagmann P (2005) From diffusion MRI to brain connectomics. Dissertation zur Erlangung des Doktorgrades in den Ingenieurswissenschaften, Lausanne.

- 83. Hagmann P, Kurant M, Gigandet X, Thiran P, van Wedeen J, Meuli R, Thiran J-P (2007) Mapping human whole-brain structural networks with diffusion MRI. PloS one 2:1–9.
- 84. Hampel S, Chung P, McKellar CE, Hall D, Looger LL, Simpson JH (2011) Drosophila Brainbow: a recombinase-based fluorescence labeling technique to subdivide neural expression patterns. Nature methods 8:253–259.
- 85. Harriger L, van den Heuvel, Martijn P, Sporns O (2012) Rich club organization of macaque cerebral cortex and its role in network communication. PloS one 7:1–13.
- Harrison SJ, Woolrich MW, Robinson EC, Glasser MF, Beckmann CF, Jenkinson M, Smith SM (2015) Large-scale probabilistic functional modes from resting state fMRI. NeuroImage 109:217–231.
- 87. He Y, Chen ZJ, Evans AC (2007) Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb Cortex 17:2407–2419.
- 88. Henriksen S, Pang R, Wronkiewicz M (2016) A simple generative model of the mouse mesoscale connectome. eLife 5:1-19.
- 89. Hesse W (2002) Ontologie(n). Informatik-Spektrum 25:477-480.
- 90. Honey CJ, Kötter R, Breakspear M, Sporns O (2007) Network structure of cerebral cortex shapes functional connectivity on multiple time scales. PNAS 104:10240–10245.
- 91. Hopkins B, Wilson R (2007) The Truth about Königsberg Leonhard Euler: Life, Work and Legacy. Elsevier, S 409–420.
- 92. Hoptman MJ, Zuo X-N, D'Angelo D, Mauro CJ, Butler PD, Milham MP, Javitt DC (2012) Decreased interhemispheric coordination in schizophrenia: a resting state fMRI study. Schizophrenia research 141:1–7.
- 93. Hua Y, Laserstein P, Helmstaedter M (2015) Large-volume en-bloc staining for electron microscopy-based connectomics. Nature communications 6:1–7.
- 94. Humphries MD, Gurney K (2008) Network 'small-world-ness': a quantitative method for determining canonical network equivalence. PloS one 3:1–10.
- 95. Iida C, Oka A, Moritani M, Kato T, Haque T, Sato F, Nakamura M, Uchino K, Seki S, Bae YC, Takada K, Yoshida A (2010) Corticofugal direct projections to primary afferent neurons in the trigeminal mesencephalic nucleus of rats. Neuroscience 169:1739–1757.
- 96. Insausti R, Herrero MT, Witter MP (1997) Entorhinal cortex of the rat: Cytoarchitectonic subdivisions and the origin and distribution of cortical efferents. Hippocampus 7:146–183.

- 97. Iturria-Medina Y, Sotero RC, Canales-Rodríguez EJ, Alemán-Gómez Y, Melie-García L (2008) Studying the human brain anatomical network via diffusion-weighted MRI and Graph Theory. NeuroImage 40:1064–1076.
- 98. JabRef Development Team (2015) JabRef. http://jabref.sf.net. Zugegriffen: 21. August 2017.
- 99. Jeong M, Kim Y, Kim J, F. DD, Mitra P, Osten P, Kim D (2016) Comparative three-dimensional connectome map of motor cortical projections in the mouse brain. Scientific reports 6:1–14.
- 100. Jones EG, Peters A (Hrsg) (1985) Association and Auditory Cortices. Springer US, Boston, MA.
- 101. Kaiser M, Hilgetag CC (2006) Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems. PLoS computational biology 2:805–815.
- 102. Kamper L (2004) Analyse und Computersimulation der Organisation und funktionellen Bedeutung thalamo-präfrontaler Projektionen. Medizinische Disseration, Düsseldorf.
- 103. Karinthy F (1929) Chain-Links. https://djjr-courses.wdfiles.com/local--files/soc180%3Akarinthychain-links/Karinthy-Chain-Links_1929.pdf. Zugegriffen: 22. August 2017.
- 104. Kas M (2011) Structures and statistics of citation networks. M.S. thesis, Pittsburgh.
- 105. Katz LC, Dalva MB (1994) Scanning laser photostimulation: a new approach for analyzing brain circuits. Imaging Techniques in Neurobiology 54:205–218.
- 106. Kealy J, Commins S (2011) The rat perirhinal cortex: A review of anatomy, physiology, plasticity, and function. Progress in Neurobiology 93:522–548.
- 107. Kelly RM, Strick PL (2000) Rabies as a transneuronal tracer of circuits in the central nervous system. Journal of Neuroscience Methods 103:63–71.
- 108. Kettlitz R (2013) Das Konnektom der Basalganglien der Ratte. Medizinische Doktorarbeit, Rostock.
- 109. Kjonigsen LJ, Leergaard TB, Witter MP, Bjaalie JG (2011) Digital atlas of anatomical subdivisions and boundaries of the rat hippocampal region. Frontiers in neuroinformatics 5:1–7.
- 110. Kleinberg JM (1999) Authoritative sources in a hyperlinked environment. J. ACM 46:604–632.
- 111. Köbbert C, Apps R, Bechmann I, Lanciego JL, Mey J, Thanos S (2000) Current concepts in neuroanatomical tracing. Progress in Neurobiology 62:327–351.
- 112. Koch C, Laurent G (1999) Complexity and the nervous system. Science 284:96–98.
- 113. Koch W, Teipel S, Mueller S, Benninghoff J, Wagner M, Bokde, Arun L W, Hampel H, Coates U, Reiser M, Meindl T (2012) Diagnostic power of default mode network resting state fMRI in the detection of Alzheimer's disease. Neurobiology of aging 33:466–478.

- 114. Kötter R (2004) Online retrieval, processing, and visualization of primate connectivity data from the CoCoMac database. Neuroinformatics 2:127–144.
- 115. Kötter R, Reid AT, Krumnack A, Wanke E, Sporns O (2007) Shapley ratings in brain networks. Frontiers in neuroinformatics 1:1–9.
- 116. Krettek JE, Price JL (1977) Projections from the amygdaloid complex and adjacent olfactory structures to the entorhinal cortex and to the subiculum in the rat and cat. The Journal of comparative neurology 172:723–752.
- 117. Krieg WJS (1946) Connections of the cerebral cortex. I. The albino rat. A. Topography of the cortical areas. J. Comp. Neurol. 84:221–275.
- 118. Kunath F (2008) Visualisierung des motorischen Systems bei Patienten mit Hirntumoren durch kombinierte funktionelle Kernspinresonanz- und Diffusions-Tensor-Bildgebung. Medizinische Dissertation, Tübingen.
- 119. Kuypers H, Ugolini G (1990) Viruses as transneuronal tracers. Trends in Neurosciences 13:71–
 75.
- Lanciego JL, Wouterlood FG (2011) A half century of experimental neuroanatomical tracing. Journal of chemical neuroanatomy 42:157–183.
- 121. Larson SD, Martone ME (2009) Ontologies for Neuroscience: What are they and What are they Good for? Frontiers in neuroscience 3:60–67.
- 122. LaVail JH, Lavail MM (1972) Retrograde Axonal Transport in the Central Nervous System. Science 176:1416–1417.
- 123. LaVail JH, Topp KS, Giblin PA, Garner JA (1997) Factors that contribute to the transneuronal spread of herpes simplex virus. J Neurosci Res 49:485–496.
- 124. Leergaard TB, Hilgetag CC, Sporns O (2012) Mapping the connectome: multi-level analysis of brain connectivity. Frontiers in neuroinformatics 6:1–6.
- 125. Lichtman JW, Livet J, Sanes JR (2008) A technicolour approach to the connectome. Nature reviews. Neuroscience 9:417–422.
- 126. Lichtman JW, Sanes JR (2008) Ome sweet ome: what can the genome tell us about the connectome? Current opinion in neurobiology 18:346–353.
- 127. Livet J, Weissman TA, Kang H, Draft RW, Lu J, Bennis RA, Sanes JR, Lichtman JW (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450:56–62.

- 128. Loewy AD (1998) Viruses as Transneuronal Tracers for Defining Neural Circuits. Neuroscience & Biobehavioral Reviews 22:679–684.
- 129. Lundberg C, Wictorin K, Björklund A (1994) Retrograde degenerative changes in the substantia nigra pars compacta following an excitotoxic lesion of the striatum. Brain research 644:205–212.
- 130. Mayerich D, Abbott L, McCormick B (2008) Knife-edge scanning microscopy for imaging and reconstruction of three-dimensional anatomical structures of the mouse brain. Journal of microscopy 231:134–143.
- 131. McCormick BH (2002) Development of the Brain Tissue Scanner. Technical Report, Texas.
- 132. McCormick BH, Mayerich DM (2004) Three-Dimensional Imaging Using Knife-Edge Scanning Microscopy. Microsc Microanal 10:1466–1467.
- 133. Meunier D, Lambiotte R, Fornito A, Ersche KD, Bullmore ET (2009) Hierarchical modularity in human brain functional networks. Frontiers in neuroinformatics 3:1–12.
- 134. Milgram S (1967) The Small-World Problem. Psychology Today 1:61-67.
- 135. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298:824–827.
- 136. Modha DS, Singh R (2010) Network architecture of the long-distance pathways in the macaque brain. Proceedings of the National Academy of Sciences of the United States of America 107:13485–13490.
- 137. Mori S, Zhang J (2006) Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 51:527–539.
- 138. Nauta WJH (1950) Über die sogenannte terminale Degeneration im Zentralnervensystem und ihre Darstellung durch Silberimprägnation. Schweiz. Arch. Neurol. Psychiat:353–376.
- 139. Newman MEJ (2004) Analysis of weighted networks. Phys. Rev. E 70:1-9 (56131).
- 140. Newman MEJ (2006) Modularity and community structure in networks. Proceedings of the National Academy of Sciences of the United States of America 103:8577–8582.
- 141. Newman MEJ (2010) Networks: An introduction. Oxford University Press, Oxford, New York.
- 142. Newman MEJ, Girvan M (2004) Detecting community structure in networks. The European Physical Journal B - Condensed Matter 38:321–330.
- 143. Noori HR, Schöttler J, Ercsey-Ravasz M, Cosa-Linan A, Varga M, Toroczkai Z, Spanagel R (2017) A multiscale cerebral neurochemical connectome of the rat brain. PLoS biology 15:1–23 (e2002612).

- 144. Oh SW, Harris JA, Ng L et al (2014) A mesoscale connectome of the mouse brain. Nature 508:207–214.
- 145. O'Reilly JX, Croxson PL, Jbabdi S, Sallet J, Noonan MP, Mars RB, Browning, Philip G F, Wilson, Charles R E, Mitchell AS, Miller KL, Rushworth, Matthew F S, Baxter MG (2013) Causal effect of disconnection lesions on interhemispheric functional connectivity in rhesus monkeys. Proceedings of the National Academy of Sciences of the United States of America 110:13982–13987.
- 146. Palm C, Axer M, Gräßel D, Dammers J, Lindemeyer J, Zilles K, Pietrzyk U, Amunts K (2010) Towards ultra-high resolution fibre tract mapping of the human brain - registration of polarised light images and reorientation of fibre vectors. Frontiers in human neuroscience 4:1–16.
- 147. Palomero-Gallagher N, Vogt BA, Schleicher A, Mayberg HS, Zilles K (2009) Receptor architecture of human cingulate cortex: evaluation of the four-region neurobiological model. Human brain mapping 30:2336–2355.
- 148. Palomero-Gallagher N, Zilles K (2015) Chapter 22: Isocortex. In: Paxinos G (Hrsg) The rat nervous system. Elsevier Academic Press, Amsterdam, Boston, S 601–624.
- 149. Palomero-Gallagher N, Zilles KJ (2004) The rat isocortex. In: Paxinos G (Hrsg) The rat nervous system. Elsevier Academic Press, Amsterdam, Boston.
- 150. Pan RK, Chatterjee N, Sinha S (2010) Mesoscopic organization reveals the constraints governing Caenorhabditis elegans nervous system. PloS one 5:1-5.
- 151. Pan YA, Livet J, Sanes JR, Lichtman JW, Schier AF (2011) Multicolor Brainbow imaging in zebrafish. Cold Spring Harbor protocols 2011:1–8.
- 152. Pandya DN, Yeterian EH (1985) Architecture and Connections of Cortical Association Areas. In: Jones EG, Peters A (Hrsg) Association and Auditory Cortices. Springer US, Boston, MA, S 3–61.
- 153. Papp EA, Leergaard TB, Csucs G, Bjaalie JG (2016) Brain-Wide Mapping of Axonal Connections: Workflow for Automated Detection and Spatial Analysis of Labeling in Microscopic Sections. Frontiers in neuroinformatics 10:1–11.
- 154. Park K, Lai Y-C, Ye N (2004) Characterization of weighted complex networks. Phys. Rev. E 70:1-4 (026109).
- 155. Paxinos G (Hrsg) (2004) The Rat Nervous System. Elsevier Academic Press, San Diego, Calif.
- 156. Paxinos G (Hrsg) (2015) The rat nervous system. Elsevier Academic Press, Amsterdam, Boston.
- 157. Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates. Elsevier, Amsterdam, Boston.

- 158. Paxinos G, Watson C (2013) The Rat Brain in Stereotaxic Coordinates: Hard Cover Edition. Elsevier Science, Burlington.
- 159. Pearson RCA, Neal JW, Powell TPS (1987) Bilateral morphological changes in the substantia nigra of the rat following unilateral damage of the striatum. Brain research 400:127–132.
- 160. Pereira IT, Agster KL, Burwell RD (2016) Subcortical connections of the perirhinal, postrhinal, and entorhinal cortices of the rat. I. afferents. Hippocampus 26:1189–1212.
- 161. Philipp K (2012) Das Amygdala-Konnektom der Ratte. Medizinische Dissertation, Rostock.
- 162. Reijneveld JC, Ponten SC, Berendse HW, Stam CJ (2007) The application of graph theoretical analysis to complex networks in the brain. Clinical neurophysiology: official journal of the International Federation of Clinical Neurophysiology 118:2317–2331.
- 163. Reus MA de, van den Heuvel MP (2013a) Rich club organization and intermodule communication in the cat connectome. J Neurosci 33:12929–12939.
- 164. Reus MA de, van den Heuvel MP (2013b) The parcellation-based connectome: Limitations and extensions. Mapping the Connectome 80:397–404.
- 165. Rose JE, Woolsey CN (1948) Structure and relations of limbic cortex and anterior thalamic nuclei in rabbit and cat. J. Comp. Neurol. 89:279–347.
- 166. Rosenberg-Lee M, Chang TT, Young CB, Wu S, Menon V (2011) Functional dissociations between four basic arithmetic operations in the human posterior parietal cortex: a cytoarchitectonic mapping study. Neuropsychologia 49:2592–2608.
- 167. Russ TA, Ramakrishnan C, Hovy EH, Bota M, Burns, Gully A P C (2011) Knowledge engineering tools for reasoning with scientific observations and interpretations: a neural connectivity use case. BMC Bioinformatics 12:1–15.
- 168. Ruth RE, Collier TJ, Routtenberg A (1982) Topography between the entorhinal cortex and the dentate septotemporal axis in rats: I. Medial and intermediate entorhinal projecting cells. The Journal of comparative neurology 209:69–78.
- 169. Ruth RE, Collier TJ, Routtenberg A (1988) Topographical relationship between the entorhinal cortex and the septotemporal axis of the dentate gyrus in rats: II. Cells projecting from lateral entorhinal subdivisions. The Journal of comparative neurology 270:506–516.
- 170. Sabbatini RME (2003) Neurons and Synapses: The History of Its Discovery. Brain & Mind Magazine:1–6.
- 171. Scannell JW, Blakemore C, Young MP (1995) Analysis of connectivity in the cat cerebral cortex. The Journal of Neuroscience:1463–1483.

- 172. Scannell JW, Burns GAPC, Hilgetag CC, O'Neil MA, Young MP (1999) The Connectional Organization of the Cortico-thalamic System of the Cat. Cerebral Cortex 9:277–299.
- 173. Schmahmann JD, Pandya DN, Wang R, Dai G, D'Arceuil HE, de Crespigny, Alex J, van Wedeen J (2007) Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain 130:630–653.
- 174. Schmitt O, Eipert P (2012) neuroVIISAS: approaching multiscale simulation of the rat connectome. Neuroinformatics 10:243–267.
- 175. Schmitt O, Eipert P, Kettlitz R, Lessmann F, Wree A (2014) The connectome of the basal ganglia. Brain Struct Funct:753–814.
- 176. Schmitt O, Eipert P, Philipp K, Kettlitz R, Fuellen G, Wree A (2012a) The intrinsic connectome of the rat amygdala. Frontiers in neural circuits 6:81.
- 177. Scholtens LH, Schmidt R, de Reus, Marcel A, van den Heuvel, Martijn P (2014) Linking macroscale graph analytical organization to microscale neuroarchitectonics in the macaque connectome. J Neurosci 34:12192–12205.
- 178. Schwarz AJ, Gozzi A, Chessa A, Bifone A (2012) Voxel scale complex networks of functional connectivity in the rat brain: neurochemical state dependence of global and local topological properties. Computational and mathematical methods in medicine 2012:1–15.
- 179. Sherrington CS (1906) The integrative action of the nervous system. Charles Scribner's Sons, New York.
- 180. Shibata H (1993) Efferent projections from the anterior thalamic nuclei to the cingulate cortex in the rat. J Comp Neurol 330:533–542.
- 181. Shim WH, Baek K, Kim JK, Chae Y, Suh J-Y, Rosen BR, Jeong J, Kim YR (2013) Frequency distribution of causal connectivity in rat sensorimotor network: resting-state fMRI analyses. Journal of neurophysiology 109:238–248.
- 182. Simon HA (1962) The Architecture of Complexity. Proceedings of the American Philosophical Society 106:467–482.
- 183. Smith SM, Vidaurre D, Beckmann CF, Glasser MF, Jenkinson M, Miller KL, Nichols TE, Robinson EC, Salimi-Khorshidi G, Woolrich MW, Barch DM, Uğurbil K, Van Essen, David C (2013) Functional connectomics from resting-state fMRI. Trends in Cognitive Sciences 17:666–682.
- 184. Solomonov R, Rapoport (1951) A Connectivity of random nets. Bull Math Biophys:107–117.
- 185. Sporns O (2008) Networks of the Brain. MIT Press, Cambridge, Massachusetts, London, England.

- 186. Sporns O (2010) Connectome. Indiana University. http://www.scholarpedia.org/article/Connectome. Zugegriffen: 21. August 2017.
- 187. Sporns O (2011a) Networks of the brain. MIT Press, Cambridge, Mass.
- 188. Sporns O (2011b) The human connectome: a complex network. Annals of the New York Academy of Sciences 1224:109–125.
- 189. Sporns O, Honey CJ, Kötter R (2007) Identification and classification of hubs in brain networks. PloS one 2:1–14.
- 190. Sporns O, Kötter R (2004) Motifs in brain networks. PLoS biology 2:1910–1918.
- 191. Sporns O, Tononi G, Kötter R (2005) The human connectome: A structural description of the human brain. PLoS computational biology 1:245–251.
- 192. Staab S (2002) Wissensmanagement mit Ontologien und Metadaten. Institut AIFB, Universität Karlsruhe. https://link.springer.com/article/10.1007/s002870200226. Zugegriffen: 21. August 2017.
- 193. Stehberg J, Dang PT, Frostig RD (2014) Unimodal primary sensory cortices are directly connected by long-range horizontal projections in the rat sensory cortex. Frontiers in neuroanatomy 8:1– 19.
- 194. Stephan H (1975) Allocortex. Springer Berlin Heidelberg, Berlin, Heidelberg.
- 195. Stephan KE, Kamper L, Bozkurt A, Burns GAPC, Young MP, Kötter R (2001) Advanced database methodology for the Collation of Connectivity data on the Macaque brain (CoCoMac). Philosophical Transactions of the Royal Society of London B: Biological Sciences 356:1159–1186.
- 196. Sugar J, Witter MP, van Strien, Niels M, Cappaert, Natalie L M (2011) The retrosplenial cortex: intrinsic connectivity and connections with the (para)hippocampal region in the rat. An interactive connectome. Frontiers in neuroinformatics 5:1–13.
- 197. Swanson LW (2004) Brain maps III: Structure of the rat brain : an atlas with printed and electronic templates for data, models, and schematics. Academic, San Diego, Calif.
- 198. Swanson LW, Bota M (2010) Foundational model of structural connectivity in the nervous system with a schema for wiring diagrams, connectome, and basic plan architecture. Proceedings of the National Academy of Sciences of the United States of America 107:20610–20617.
- 199. Swanson LW, Cowan WM (1977) An autoradiographic study of the organization of the efferent connections of the hippocampal formation in the rat. The Journal of comparative neurology 172:49–84.

- 200. Tallis M, Thompson R, Russ TA, Burns, Gully A P C (2011) Knowledge synthesis with maps of neural connectivity. Frontiers in neuroinformatics 5:1–10.
- 201. Tittmann P (2011) Graphentheorie: Eine anwendungsorientierte Einführung. Hanser Verlag, München.
- 202. Towlson EK, Vértes PE, Ahnert SE, Schafer WR, Bullmore ET (2013) The rich club of the C. elegans neuronal connectome. J Neurosci 33:6380–6387.
- 203. Ugolini G (2008) Use of rabies virus as a transneuronal tracer of neuronal connections: implications for the understanding of rabies pathogenesis. Dev Biol (Basel) 131:493–506.
- 204. Ugolini G (2010) Advances in viral transneuronal tracing. Proceedings of the Workshop "Neuroanatomical Tracing and Systems Neuroscience: The State of the Art" 194:2–20.
- 205. Ullo S, Murino V, Maccione A, Berdondini L, Sona D (2015) Bridging the gap in connectomic studies: A particle filtering framework for estimating structural connectivity at network scale. Medical image analysis 21:1–14.
- 206. Underwood E (2013) Neuroscience. Tissue imaging method makes everything clear. Science 340:131–132.
- 207. Uylings HB, Groenewegen HJ, Kolb B (2003) Do rats have a prefrontal cortex? Behavioural brain research 146:3–17.
- 208. van den Heuvel MP, Scholtens LH, Reus MA de (2015) Topological organization of connectivity strength in the rat connectome. Brain Struct Funct 221:1719–1736.
- 209. van den Heuvel MP, Sporns O (2013a) An anatomical substrate for integration among functional networks in human cortex. J Neurosci 33:14489–14500.
- 210. van den Heuvel MP, Sporns O (2013b) Network hubs in the human brain. Trends in Cognitive Sciences 17:683–696.
- 211. van Essen D (1992) Information processing in the primate visual system: An integrated systems perspective. Science:419–423.
- 212. van Essen D, Smith SM, Barch DM, Behrens, Timothy E J, Yacoub E, Ugurbil K (2013) The WU-Minn Human Connectome Project: an overview. NeuroImage 80:62–79.
- 213. van Groen T, Wyss JM (1990) The postsubicular cortex in the rat: Characterization of the fourth region of the subicular cortex and its connections. Brain research 529:165–177.
- 214. van Strien NM, Cappaert NLM, Witter MP (2009) The anatomy of memory: an interactive overview of the parahippocampal-hippocampal network. Nature reviews. Neuroscience 10:272–282.

- 215. Varela F, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci:229–239.
- 216. Varshney LR, Chen BL, Paniagua E, Hall DH, Chklovskii DB (2011) Structural properties of the Caenorhabditis elegans neuronal network. PLoS computational biology 7:1–41.
- 217. Vercelli A, Repici M, Garbossa D, Grimaldi A (2000) Recent techniques for tracing pathways in the central nervous system of developing and adult mammals. Brain Research Bulletin 51:11–28.
- 218. Vertes RP, Hoover WB (2008) Projections of the paraventricular and paratenial nuclei of the dorsal midline thalamus in the rat. The Journal of comparative neurology 508:212–237.
- 219. Vogt BA (2009) Regions and Subregions of the Cingulate Cortex. In: Vogt BA (Hrsg) Cingulate neurobiology and disease. Oxford University Press, Oxford, New York, S 4–30.
- 220. Vogt BA (2015) Chapter 21: Cingulate Cortex and Pain Architecture. In: Paxinos G (Hrsg) The rat nervous system. Elsevier Academic Press, Amsterdam, Boston, S 575–599.
- 221. Vogt BA, Gabriel M (Hrsg) (1993) Structural Organization of Cingulate Cortex: Areas, Neurons, and Somatodendritic Transmitter Receptors. Birkhauser Verlag, Basel.
- 222. Vogt BA, Miller MW (1983) Cortical connections between rat cingulate cortex and visual, motor, and postsubicular cortices. The Journal of comparative neurology 216:192–210.
- 223. Vogt BA, Paxinos G (2014) Cytoarchitecture of mouse and rat cingulate cortex with human homologies. Brain Struct Funct 219:185–192.
- 224. Vogt BA, Vogt L, Farber NB (2004) Cingulate cortex and disease models. In: GPaxinos G (Hrsg) The Rat Nervous System. Elsevier, San Diego, Calif., S 705–727.
- 225. Vogt LJ, Sim-Selley LJ, Childers SR, Wiley RG, Vogt BA (2001) Colocalization of mu-opioid receptors and activated G-proteins in rat cingulate cortex. J Pharmacol Exp Ther 299:840–848.
- 226. Watts DJ, Strogatz SH (1998) Collective dynamics of 'small-world' networks. Nature 393:440–442.
- 227. White JG, Southgate E, Thomson JN, Brenner S (1986) The Structure of the Nervous System of the Nematode Caenorhabditis elegans. Philosophical Transactions of the Royal Society B: Biological Sciences 314:1–340.
- 228. Wilber AA, Clark BJ, Demecha AJ, Mesina L, Vos JM, McNaughton BL (2014) Cortical connectivity maps reveal anatomically distinct areas in the parietal cortex of the rat. Frontiers in neural circuits 8:1–15.
- 229. Woodward J (2014) Methodology, ontology, and interventionism. Synthese:1-22.

- 230. Wouterlood FG, Goede PH, Jorritsma-Byham B, Witter M (Hrsg) (1997) Neuroanatomical tracing based on cellular transport: Horseradish peroxidase, Phaseolus vulgaris-Leucoagglutinin and Biotinylated dextranamine: Neuroanatomical Tract-Tracing 3: Molecules, neurons, and systems. Springer.
- 231. Wyss JM (1981) An autoradiographic study of the efferent connections of the entorhinal cortex in the rat. The Journal of comparative neurology 199:495–512.
- 232. Yip AM, Horvath S (2007) Gene network interconnectedness and the generalized topological overlap measure. BMC bioinformatics 8:1-14 (22).
- 233. Young MP (1992) Objective analysis of the topological organization of the primate cortical visual system. Nature 358:152–155.
- 234. Young MP (1993) The organization of neural systems in the primate cerebral cortex. Proceedings. Biological sciences / The Royal Society 252:13–18.
- 235. Zakiewicz IM, Bjaalie JG, Leergaard TB (2014) Brain-wide map of efferent projections from rat barrel cortex. Frontiers in neuroinformatics 8:1–15.
- 236. Zilles K, Wree A (1995a) Cortex. In: Paxinos G (Hrsg) The Rat Nervous System. Academic Press, San Diego, S 649–685.
- 237. Zilles K, Wree A (1995b) Cortex: Areal and laminar structure. In: Paxinos G (Hrsg) The Rat Nervous System. Academic Press, San Diego, S 375–415.
- 238. Zilles KJ (1985) The Cortex of the Rat: A Stereotaxic Atlas. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo.
- 239. Zseli G, Vida B, Martinez A, Lechan RM, Khan AM, Fekete C (2016) Elucidation of the anatomy of a satiety network: Focus on connectivity of the parabrachial nucleus in the adult rat. The Journal of comparative neurology 524:2803–2827.

6 Tabellenanhang

Tabelle 11: Tract-tracing Substanzen, die in den ausgewerteten Artikeln verwendet wurden.

Abkürzung	Tracing Substanz	Transportrichtung
ADE	[³ H]adenosine	retrograd
AF	Alexa Fluor nonconjugated	retrograd
AF-CTB	Alexa Fluor conjucated CTB	retrograd
AMM	C14 labelled Aminoacid mix	anterograd
ASP	D-[³ H]aspartate	retrograd
BDA 3k / BD	Biotinylated Dextran Amine 3000 MW	retrograd
BDA10k / BD	Biotinylated Dextran Amine 10000 MW = Dextran Biotin	anterograd
DIC	Diocytili Dishanzamida	ratrograd
B-WGA	Biotin-wheat germ agglutinin	retrograd
CHOL	[³ H]Choline	retrograd
CLC	Cobaltic lysine complex	anterograd
COL	Coumarin latex spheres	retrograd
CT, CTX, CTB, CTb	Cholera toxin subunit B	retrograd
CT-HRP	Cholera toxin subunit B conjugated with horseradish peroxidase	anterograd/retrograd
CTB488	Cholera toxin subunit B conjugated with Alexa 488	retrograd
CVS	Challenge virus strain of rabies virus	retrograd
DA3kDA	Dextran amin 3000 Mw	anterograd
DAPI	4',6-Diamidin-2-phenylindol	retrograd
DiA	4-(4-(dihexadecylamino)styryl)-N-methylpyridiniumiodide	retrograd
	Dioctadecul-3 3 3 3-tetramethyllindocarbocyanine perchlorat	anterograd
DR	Dioctate y_1 -3,3,3-tetrainet ny middet a bocyannie per chiorat	retrograd
DTX	Dextran tetramethyl-rhodamine	anterograd
DY	Diamidino Yellow	retrograd
EB	Evans Blue	retrograd
FB	Fast blue	retrograd
FCM	Fluorescein-coated microspheres	retrograd
FDA	Dextran amin conjucated fluorescein	anterograd
FE	Fluoro-Emerald	retrograd
FG	Fluorogold	retrograd
FGr, FL-Gr	Fluoro-Green	retrograd
FR, FL-Re	Fluoro-Red	retrograd
FLB	Fluorescein labeled latex beeds, Fluorescent latex microspheres	retrograd
FIIC	Fluorescein-isothiocyanate conjugated microspheres	retrograd
FKUD		anterograd/retrograd
GR	Granular Blue	retrograd
GLY	[3H]Glycin	retrograd
GOLD	Colloquial gold	retrograd
HRP	Horseradish peroxidase	retrograd
HRP-lectin	Horseradish peroxidase lectin	retrograd
ID	Iron dextran	retrograd
LEU	[³ H]Leucin	anterograd
[3H]MPTP	1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine	retrograd
MIX	[³ H]Prolin -[³ H]Leucin -[³ H]Lysine	anterograd
MN2Cl	Mangan Chlorid	anterograd
MR	Micro Ruby = Mini Ruby	retrograd
ND [125]]NT	Neurotonsin	retrograd
NY	Nuclear vellow	retrograd
PRI	Primuline	retrograd
PI	Propidium iodide	retrograd
PHA-L	Phaseolus vulgaris leukoagglutinin	anterograd
PHA-P	Phaseolus vulgaris leukoagglutinin P-Form	anterograd
PHA-E	Phaseolus vulgaris leukoagglutinin E-Form	anterograd
PRO	$[^{3}H]$ Prolin = tritiated prolin	anterograd
PROLEU	[³ H]Prolin and [³ H]Leucin mixture	anterograd
[3H]Pro,Leu,Lys,Hist,Tyro	3H-cocktail	anterograd
DD	Knodamine-labeled latex beads (Luma-Fluor),	
KD DoD	Riodannie-labled fluorescent latex microspheres	retrograd
RCM	Rendamine-coated microspheres	retrograd
RDA	Rhodamine-dextran-amine, Rhodamine-conjugate dextran	anterograd/retrograd
RFL	Radiofrequency lesion	anterograd
RHO-D	D"(tetramethylrhodamine-dextran)	anterograd
RHO-L	Rhodamine latex sphere, Rhodamine latex microspheres (Lumafluor)	retrograd
SEL	Selenium tracing	retrograd
SITS	4-acetamido-4-isothiocyanostilbene-2,2'-disulfonic acid	retrograd

Tabellenanhang

SOSE	Sodium selenium (Na ₂ SeO ₃)	retrograd
ТВ	True Blue	retrograd
TMR-DA	Tetramethylrhodamine dextran amine	retrograd
TRITC	Tetramethylrhodamine isothiocyanate conjugated microspheres	retrograd
VASO	Vasopressin efferents of SCh and Pa	anterograd
WGA-HRP	Wheat germ agglutin horseradish peroxidase	retrograd
WGA-Au-HRP	Wheat germ agglutin conjugated to horseradish peroxidase coupled with gold	retrograd

Tabelle 12: Zusammenstellung t	ypischer Wichtungs-]	Begriffe (Verbindungsgewi	ichte) ausgewerteten Trac	ct-tracing Publikationen und derei	1 semiquantitative Kodierung. BG: Background.
0	0.5	1	2	3	4
absence of terminal labeling	few faintly labeled	a few labeled	an accumulation of	a significant number of	a very large number of
absent	few, if any, labeled cells	a number of	an appreciable number	clearly visible at lower power magnification	dense collection of
almost free of label	extremely lightly	a small path of labeling	certain number	clumps of labeled fibers	extremely intense
clearly tend to avoid	just greater BG	conspicuous	fair projection	considerable number of	heavy localised clumps of innervation
completely free of labeled cells	minimal	did not projects strongly	labelled cells are prominent	crowed with terminal-like labeling	numerous intensely labelled
devoid of labeled fibers	much lighter	diffuse projections	mid level	dense fields of	very dense
devoid of reaction product	ocassionally	diffusely distributed	moderate	dense labeling	strikingly dense
largely devoid of fibers	occasional labbeled	discrete collection of	moderately dense	especially prominent	
largely free of innervation	only sparsely	discrete population of labeled cells	moderately heavy	extensive labeling	
negliable	rare	disperse fibers	moderate proportion of labeled	fibers are very concentrated	
negligible quantity of labeled cells	receive very little label	distinct groups of neurons	relative significantly	fibers heavily fill	
neither injection site produced sign. labeling	relative free of label	few	several labeled	filled with densely labeled cells	
nil	scant	few scattered	their numbers are more modest	heaviest terminal labeling	
no labeling	scanty innervated	gave rise to less labeling		heavy labeled	
remains void of labelled fibers	some disperse fibers	label was seen in patches		high density	
totally unlabelled	very light	label was reliably found		high concentration of terminals	
unlaheled	verv lightly	light density of		high proportion of labeled neurons	
	verv little fiber labelling	light projection		important contingent	
	verv minor labeling	lightly labeled		impressive number of	
	very modest	limited number of		intense terminal label	
	verv rarelv	low		labeled fibrs were concentrated	
	to my from	minor projection		labelling was strong	
	very sparse	multiple projection		lauciung was su ong larga mumbare of	
	very scarce				
		occasional labbeled		large proportion of labeled neurons	
		only a minor portion		many intensively labeled	
		paucity of stained elements		massive input	
		relatively few		most numerous	
		scant		most richly supplied area	
		scarse		much greater density	
		scattered		numerous labeled	
		significant contralateral label		produced pronounced labeling	
		slightly more pronounced		produce substantial numbers of	
		smal sliver show terminal labeling		rrofitse axonal labelino	
		small number of		prominent accumulation of	
		small population of lightly neurons		brominent ageregation	
		some		prominent axonal labeling	
		some disperse labeling		prominent group of labeled cells	
		some labeled		prominent terminal field	
		sometimes		prominent terminal-like	
		sparse		relative high density of	
		weak		relative numerous	
		weak axonal label		relative prominent collection of labeled cells	
				relative prominent labeling	
				rich source	
				richly supplies efferents	
				significant portion	
				sizable numbers of neurons	
				strong bundle of	
				strong labeling was	
				substantial number of	

Tabellenanhang

Tabelle 13: Beteiligung einzelner Regioner	n des C1-Netzwer-	kes an e	der Bil	dung	von M(otiven.																
Region	Abk.	3-01	3-02	3-03	3-04	3-05	3-06 3-(7 3-0	8 3-09	3-10	3-11	3-12	3-13	syC	syI	syO	r4ca	r5ca r4	ci r50	si nr4	ci nr5	Sci
Dorsal tenia tecta	DTT	15	13	3	41	3	29	0	0 128	0	2	18	15	104	28	78	197	260	0	0	0	0
Ventral tenia tecta	VTT	17	40	28	59	9	35	0	5 88	ŝ	3	30	10	110	53	60	176	216	0	0	0	0
Cortex amygdala transition zone	CxA	-	14	21	15	7	42	0	0	3	-	0	0	0	0	0	0	0	0	0	0	0
Amygdalopiriform transition area	APir	17	14	16	53	8	83	0 1	2 93	13	15	52	49	192	108	197	162	190	0	0	1	0
Posterolateral cortical nucleus	PLCo	17	31	17	47	٢	57	1	5 111	12	11	46	52	199	112	128	263	314	0	0	2	0
Posteromedial cortical nucleus	PMCo	П	13	31	39	4	68	0	2 94	5	9	35	36	192	76	208	246	347	0	0	0	0
Presubiculum	PrS	50	28	24	66	24	99	0 3	0 91	2	22	LL	34	177	76	249	260	335	7	7	0	0
Parasubiculum	PaS	49	28	40	84	10	54	0 1	4 95	8	16	67	30	197	162	106	149	142	0	0	0	0
Postsubiculum	Post	39	35	13	94	Ξ	40	2 2	0 84	7	15	52	23	257	88	227	300	297	5	9	0	0
Dorsolateral entorhinal cortex	DLEnt	28	32	27	72	3	100	0	6 67	21	10	4	19	175	127	209	171	214	0	0	0	-
Dorsal intermediate entorhinal cortex	DIEnt	37	56	25	72	8	44	0 1	1 64	5	2	29	3	75	22	35	62	50	0	0	3	7
Lateral entorhinal cortex	LEnt	2	9	3	67	2	107	0 1	7 253	7	9	129	206	14	10	21	557	553	5	4	0	0
Medial entorhinal cortex	MEnt	9	8	4	103	7	59	0 2	3 235	18	10	Ξ	194	194	29	26	562	669	6	4	0	-
Ventral intermediate entorhinal cortex	VIEnt	13	22	27	35	9	60	0	2 48	4	2	Ξ	-	31	5	14	69	73	0	0	0	7
Piriform cortex	Pir	18	34	28	91	12	100	0	9 102	25	27	96	16	461	154	375	317	543	2	0	1	0
Retrosplenial dorsal	RSd	22	26	27	83	3	87	0	7 152	10	5	57	56	205	69	220	219	141	2	1	0	0
Retrosplenial granular cortex a reg.	RSGa	4	12	6	61	0	26	0	2 18	2	3	4	3	191	35	191	190	408	0	0	0	0
Retrosplenial granular cortex b reg.	RSGb	3	16	11	69	7	71	0 1	0 112	5	3	37	23	368	163	154	477	687	13 1	2	0	0
Retrosplenial granular cortex c reg.	RSGc	10	22	12	31	7	86	0	1 74	4	33	20	٢	163	62	76	140	221	0	0	0	0
Cingulate cortex area 1	Cg1	23	42	40	72	٢	82	5 1	6 133	18	24	68	48	224	103	220	213	223	6	9	2	2
Cingulate cortex area 2	Cg2	18	33	16	65	5	76	2	6 114	×	10	33	24	240	153	133	256	377	5 1	2	-	7
Prelimbic cortex	PrL	11	33	17	154	10	148	1 3	9 233	18	25	151	184	144	89	54	342	219	5	0	0	0
Infralimbic cortex	П	9	23	6	120	3	124	_	7 260	19	20	161	175	385	56	140	481	541	5	2	0	0
Frontal cortex area 3	Fr3	22	20	4	78	1	30	0	4 60	7	2	12	7	122	22	50	129	100	0	0	-	-
Lateral parietal association cortex	LPtA	13	5	7	60	0	20	0	1 26	0	3	1	6	319	124	167	250	778	5	0	0	0
Medial parietal association cortex	MPtA	12	∞	10	58	1	41	0	1 21	7	ŝ	9	6	319	124	167	172	574	4	0	0	0
Parietal cortex posterior area	ParP	33	49	26	96	12	16	6 1	7 97	31	14	90	43	252	85	184	178	280	9	0	2	0
Parietal cortex posterior area dorsal part	ParPD	27	18	6	79	7	27	0	44	9	4	7	3	53	52	36	154	106	0	0	0	0
Parietal cortex posterior area rostral part	ParPR	0	0	0	13	0	3	0	0	0	0	0	0	43	46	16	57	55	0	0	0	0
Temporal association cortex 1	TeA	25	33	14	59	×	60	2	5 114	4	4	46	24	121	32	71	223	142	0	0	2	0
Primary auditory cortex	Aul	12	33	19	68	5	88	0	8 120	4	10	65	40	222	138	222	316	318	0	0	1	0
Secondary auditory cortex dorsal area	AuD	4	6	0	24	0	2	0	0 10	0	0	-	0	80	72	0	106	192	0	0	0	0
Secondary auditory cortex ventral area	AuV	0	13	ŝ	0	0	49	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
Agranular insular cortex dorsal part	AID	20	34	27	75	10	96	3 2	2 120	16	15	98	105	268	88	226	257	272	1	6	3	0
Agranular insular cortex posterior part	AIP	52	54	18	139	31	80	4	5 87	28	21	117	123	360	109	96	171	158	0	0	3	0
Agranular insular cortex ventral part	AIV	16	27	16	120	9	57	0 2	7 105	6	7	77	109	233	169	140	208	257	-	0	0	4
Dysgranular insular cortex	DI	16	23	20	79	6	60	0 2	3 143	10	5	63	83	171	118	106	245	354	4	2	0	0
Granular insular cortex	GI	25	39	21	83	12	82	1 2	6 114	×	10	88	81	211	178	211	178	154	0	0	1	0
Perirhinal cortex	A35	12	17	6	208	1	133	0 2	2 376	12	6	173	249	×	0	0	416	174	5	0	0	0
Ectorhinal cortex	A36	-	2	-	76	0	70	0	2 217	7	2	122	201	17	6	7	518	542	3	4	0	0
Dorsal peduncular cortex	DP	36	39	37	59	22	73	3 1	0 39	16	10	30	3	112	52	138	116	108	0	0	3	4
Lateral agranular prefrontal cortex	AGI	12	35	43	110	9	226	0	6 240	24	24	137	147	63	42	179	577	474	11	0	0	4
Medial agranular prefrontal cortex	AGm	13	26	26	117	10	145	0 2	8 252	12	23	159	166	20	6	12	582	423	3	0	0	0

Primary somatosensory cortex dysgranular reg.S1D202027131770257059312323Primary somatosensory cortex upper lipreg.S1U000027020001000276441Primary somatosensory cortex lipreg.S1U000230370001128359133Primary somatosensory cortex lipreg.S1U0231011449111123231331113001123244Primary somatosensory cortex liprilim reg.S1U52331611232444Primary somatosensory cortex liprilim reg.S1U232913131423161123244Primary somatosensory cortex liprilim reg.S1T232921440117211123244Primary somatosensory cortexS211123912144901117211123244Scondary somatosensory cortexS2333534433353532323232323232Scondary visual cortexVI2336112334<	Primary somatosensory cortex barrel field	SIBF	Ξ	38	2 8:	7	104	-	9	112	17	5	4	38 6	32 19	96 21	5 37	.6 68	6 13	2	2	-
Primary somatosensory cortex jaw reg.S1J000270200010100276441Primary somatosensory cortex upper lip reg.S1ULb000230370001310128339133Primary somatosensory cortex hiddlimb reg.S1HL52811271052244599112833913313313313313313313313313313313313313313313314133001112323444Primary somatosensory cortex hindlimb reg.S1T99911239101123142316112324444Primary somatosensory cortex hindlimb reg.S1T991044011172316112324444Secondary visual cortex modeloateral areaV1123910113021142316112324444Secondary visual cortex modeloateral areaV112391013021142316112324444Secondary visual cortex modeloateralV1123244423161123242424Secondary visual co	Primary somatosensory cortex dysgranular reg.	SIDZ	0	20	7 13	-	<i>LL</i>	0	2	57	0	5	6	3 1	23	5	12 12	9 10	1 0	0	0	0
Primary somatosensory cortex upper lip reg.S1ULp000000000128359135Primary somatosensory cortex forelimb reg.S1FL9281271052245991211202851518Primary somatosensory cortex forelimb reg.S1FL9281318753102145412112028367244Primary somatosensory cortex thuldinb reg.S1FL9231971434101712111232944Primary somatosensory cortex thurk reg.S1Fr99112339121434101712111232944Primary somatosensory cortex thurk reg.S1Fr004410111623101117232444Scondary visual cortex mediolateral areaV2IL2339121413000000011232324Scondary visual cortex mediolateral areaV1M33433353335353236373632 <th< td=""><td>Primary somatosensory cortex jaw reg.</td><td>SIJ</td><td>0</td><td>0</td><td>0 2′</td><td>0</td><td>20</td><td>0</td><td>0</td><td>101</td><td>0</td><td>0</td><td>7</td><td>7</td><td>49</td><td>Ħ</td><td>5 28</td><td>6 234</td><td>4 5</td><td>0</td><td>0</td><td>0</td></th<>	Primary somatosensory cortex jaw reg.	SIJ	0	0	0 2′	0	20	0	0	101	0	0	7	7	49	Ħ	5 28	6 234	4 5	0	0	0
Primary somatosensory cortex forelimb reg.S1FL92812710522459912152851518Primary somatosensory cortex hindlimb reg.S1HL52818753102145412112028367244Primary somatosensory cortex shoulder reg.S1HL528187531021454121120283672444Primary somatosensory cortex trunk reg.S1Tr9991214401772111232944Primary somatosensory cortex trunk reg.S1Tr03313614133001772111232944Primary sinal cortexVII233	Primary somatosensory cortex upper lip reg.	SIULp	0	0	0 2	0	37	0	0	73	0	0	1	28 3	59 1:	36 16	66 34	-8 53:	5 1	0	0	0
Primary somatosensory cortex hindlimb reg.S1HL 5 28 18 75 3 102 1 4 54 12 11 20 28 367 24 Primary somatosensory cortex shoulder reg.S1Tr 9 9 0 40 0 1 77 2 11 11 23 24 4 Primary somatosensory cortex trunk reg.S1Tr 9 9 0 40 0 44 0 1 77 2 11 11 23 24 4 Primary somatosensory cortex trunk reg.S1Tr 9 9 0 41 13 0 1 77 2 1 11 23 24 4 Primary visual cortex mediolateral area $V2ML$ 0 3 3 3 14 133 0 21 144 23 16 11 23 362 322 Secondary visual cortex mediolateral area $V2ML$ 0 3	Primary somatosensory cortex forelimb reg.	SIFL	6	28	2 7	0	52	2	4	59	6	12	15	28 5	15 1	30 23	3 24	4 35(0	0	0	0
Primary somatosensory cortex shoulder reg.S1Sh 6 14 23 0 1 84 0 0 0 8 0 0 0 Primary somatosensory cortex trunk reg.S1Tr 9 9 0 44 0 1 77 2 1 11 23 244 41 Secondary somatosensory cortex trunk reg.S1Tr 9 9 0 44 0 1 77 2 1 11 23 244 41 Secondary visual cortex medionateral areaVZML 0 3 36 14 133 0 21 144 23 16 11 81 115 272 88 Secondary visual cortex medionedial areaVZML 0 3 36 14 133 0 21 44 33 36 22 144 23 16 11 23 362 322 <td>Primary somatosensory cortex hindlimb reg.</td> <td>SIHL</td> <td>2</td> <td>28</td> <td>8 7:</td> <td>3</td> <td>102</td> <td>-</td> <td>4</td> <td>54</td> <td>12</td> <td>11</td> <td>20</td> <td>28 3</td> <td>67 2.</td> <td>94</td> <td>1 18</td> <td>0 234</td> <td>4</td> <td>0</td> <td>2</td> <td>0</td>	Primary somatosensory cortex hindlimb reg.	SIHL	2	28	8 7:	3	102	-	4	54	12	11	20	28 3	67 2.	94	1 18	0 234	4	0	2	0
Primary sonatosensory cortex trunk reg.S1Tr9904004401772111232441Secondary sonatosensory cortexS2112391214901162316118111527288Primary visual cortexV123503813614133021142316837536233Secondary visual cortex medionatirataV2ML039002800000000Secondary visual cortex medionatirataV2ML0397021142316837536232Secondary visual cortex medionatirataV2ML039021142316118111527288Secondary visual cortex medionatirataV2L3345339525127319872437863068222Primary visual cortex monocular areaV1B25352323231273198724378630682231411707019201000000000000000000116917	Primary somatosensory cortex shoulder reg.	S1Sh	9	14	3	-	84	0	0	0	0	×	0	0	0	0	0	0	0	0	0	0
Secondary somatosensory cortexS2112391214901162316118111527288Primary visual cortexV12350381361413302114423168375362332Secondary visual cortex mediolateral areaV2ML0390028000<	Primary somatosensory cortex trunk reg.	SITr	6	6	0 4(0	4	0	-	<i>TT</i>	2	-	Ξ	23 2	. 44	11 16	0 35	4 56'	7 9	0	0	0
Primary visual cortexV12350381361413302114423168375362323Secondary visual cortex mediolateral areaV2ML0390028000	Secondary somatosensory cortex	S2	Ξ	23	9 12	4	90	-	16	223	16	Ξ	81	15 2	72	30 1(3 78	.96 96,	7 9	0	1	0
Secondary visual cortex mediolateral area V2ML 0 3 9 0 0 28 0 </td <td>Primary visual cortex</td> <td>V1</td> <td>23</td> <td>20</td> <td>8 130</td> <td>14</td> <td>133</td> <td>0</td> <td>21</td> <td>144</td> <td>23</td> <td>16</td> <td>83</td> <td>75 3</td> <td>62 3.</td> <td>27 24</td> <td>17 39</td> <td>3 469</td> <td>6 6</td> <td>2</td> <td>0</td> <td>0</td>	Primary visual cortex	V1	23	20	8 130	14	133	0	21	144	23	16	83	75 3	62 3.	27 24	17 39	3 469	6 6	2	0	0
Secondary visual cortex mediomedial area V2MM 5 5 9 7 0 27 0 0 1 0 <td>Secondary visual cortex mediolateral area</td> <td>V2ML</td> <td>0</td> <td>3</td> <td>6</td> <td>•</td> <td>28</td> <td>0</td> <td>0 0</td> <td>0</td> <td>0</td> <td>0</td>	Secondary visual cortex mediolateral area	V2ML	0	3	6	•	28	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0
Secondary visual cortex lateral area V2L 33 45 33 95 25 127 3 19 87 24 37 86 30 682 223 Primary visual cortex binocular area V1B 25 35 29 84 17 80 0 13 64 17 10 50 18 245 55 Primary visual cortex binocular area V1B 25 35 29 84 17 80 0 1 64 17 10 50 18 245 55 Primary visual cortex V1M 0 0 18 0 12 0 0 1 64 17 10 50 18 245 55 Dorsolateral obtical cortex DLO 28 32 13 57 3 74 2 8 106 12 75 146 11 Medial obtical cortex DO 34 67 43 84 20 94 6 127 75 146 11 Medial	Secondary visual cortex mediomedial area	V2MM	5	5	. 6	0	27	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0
Primary visual cortex binocular area VIB 25 35 29 84 17 80 0 13 64 17 10 50 18 245 55 Primary visual cortex monocular area VIM 0 0 18 0 12 0 0 26 0 0 1 69 66 Dorsolateral obtial cortex DLO 28 32 13 57 3 74 2 8 106 12 6 0 0 1 69 66 Dorsolateral obtial cortex DLO 28 32 13 57 3 74 2 8 106 12 7 16 61 16 66 16 13 14 17 169 66 18 14 12 7 3 14 11 169 66 11 169 67 13 14 24 13 14 11 17 10 50 13 14 11 13 14 11 13 14 11	Secondary visual cortex lateral area	V2L	33	45	3.9	25	127	б	19	87	24	37	86	30 6	82 2:	23 22	1 23	3 194	4	0	-	-
Primary visual cortex monocular area VIM 0 0 18 0 12 0 26 0 0 1 69 66 Dorsolateral orbital cortex DLO 28 32 13 57 3 74 2 8 106 12 5 39 15 253 144 Dorsolateral orbital cortex Lateral orbital cortex LO 34 67 43 84 20 94 6 38 95 26 14 127 75 146 11. Medial orbital cortex MO 49 28 31 91 24 91 1 21 102 28 131 Ventral orbital cortex MO 49 28 31 91 24 91 1 21 108 57 123 133 Ventral orbital cortex VO 44 42 16 143 9 93 3 27 137 26 12 112 98 163 10	Primary visual cortex binocular area	VIB	25	35 2	-8 8	. 17	80	0	13	64	17	10	50	18 2	45	59 15	61 17	1 6	3	0	-	0
Dorsolateral orbital cortex DLO 28 32 13 57 3 74 2 8 106 12 5 39 15 253 144 Lateral orbital cortex LO 34 67 43 84 20 94 6 38 95 26 14 127 75 146 11: Medial orbital cortex MO 49 28 31 91 24 91 1 21 102 28 131 Ventral orbital cortex VO 44 42 16 143 9 93 3 27 137 26 12 112 98 163 10	Primary visual cortex monocular area	VIM	0	0	0 18	0	12	0	0	26	0	0	0	1	69	2 99	14	6 173	2	0	0	0
Lateral orbital cortex LO 34 67 43 84 20 94 6 38 95 26 14 127 75 146 11: Medial orbital cortex MO 49 28 31 91 24 91 1 21 02 28 21 108 57 125 13: Ventral orbital cortex VO 44 42 16 143 9 93 3 27 137 26 12 10 Occurrentiant VO 44 42 16 143 9 93 3 27 137 26 12 10	Dorsolateral orbital cortex	DLO	28	32	3 5'	ŝ	74	2	~	106	12	5	39	15 2	53 1-	91	55 25	5 140	5 5	0	-	0
Medial orbital cortex MO 49 28 31 91 24 91 1 21 102 28 21 108 57 125 137 Ventral orbital cortex VO 44 42 16 143 9 93 3 27 137 26 12 19 163 10'	Lateral orbital cortex	ΓO	34	67 4	3 8	. 20	94	9	38	95	26	14	127	75 1	46 1	3	11 12	0 159	0 6	0	0	0
Ventral obtial cortex VO 44 42 16 143 9 3 27 137 26 12 98 163 100	Medial orbital cortex	MO	49	28	1 9	24	91	-	21	102	28	21	108	57 1	25 1.	39 16	3 18	1 26	5 2	0	-	0
	Ventral orbital cortex	NO	4	12	6 143	6	93	3	27	137	26	12	112	98 1	63 11	6	4 28	9 32'	7 9	0	-	0
Olfactory tubercie 1 u 20 44 40 02 141 55 50 0 70 25 9 0 45 5 7 7	Olfactory tubercle	TuO	4	40	2 14	33	30	0	76	25	6	9	45	5	. 16	75	9 9	8	0	0	0	0

Tabelle 14: Vulnerabilitätsanalyse des C1-Netzwerkes. Die Vul	nerabilitäten (mittlere Cloeseness)) sind absteigend sortiert.
---	-------------------------------------	-----------------------------

Region	Vulnerability	Region	Vulnerability
Lateral agranular prefrontal cortex	3,476	Postsubiculum	0,03
Secondary visual cortexateral area	2,512	Primary somatosensory cortex hindlimb region	0,022
Perirhinal cortex	2,396	Cingulate cortex area 2	0,015
Piriform cortex	1,604	Primary visual cortex binocular area	-0,045
Medial agranular prefrontal cortex	1,323	Dorsolateral entorhinal cortex	-0,075
Infralimbic cortex	1,308	Olfactory tubercle	-0,078
Prelimbic cortex	1,278	Posteromedial cortical nucleus	-0,082
Primary auditory cortex	1,241	Primary somatosensory cortex forelimb region	-0,09
Lateral entorhinal cortex	1,211	Dorsolateral orbital cortex	-0,09
Temporal association cortex 1	1,005	Retrosplenial granular cortex c region	-0,239
Medial entorhinal cortex	0,972	Primary somatosensory cortex trunk region	-0,247
Primary visual cortex	0,893	Dorsal peduncular cortex	-0,247
Ectorhinal cortex	0,89	Ventral tenia tecta	-0,254
Secondary somatosensory cortex	0.77	Dorsal intermediate entorhinal cortex	-0.262
Agranular insular cortex posterior part	0,729	Dorsal tenia tecta	-0,299
Ventral orbital cortex	0,673	Primary somatosensory cortex upperip region	-0,359
Lateral orbital cortex	0,546	Frontal cortex area 3	-0,389
Agranular insular cortex dorsal part	0,478	Primary somatosensory cortex jaw region	-0,411
Medial orbital cortex	0,434	Primary somatosensory cortex dysgranular region	-0,419
Agranular insular cortex ventral part	0,426	Parietal cortex posterior area dorsal part	-0,434
Granular insular cortex	0,374	Medial parietal association cortex	-0,452
Parietal cortex posterior area	0.321	Ventral intermediate entorhinal cortex	-0.478
Dysgranular insular cortex	0,299	Lateral parietal association cortex	-0,598
Primary somatosensory cortex barrel field	0,295	Retrosplenial granular cortex a region	-0,68
Cingulate cortex area 1	0,284	Primary visual cortex monocular area	-0,863
Retrosplenial dorsal	0,269	Cortex amygdala transition zone	-0,886
Presubiculum	0,239	Secondary auditory cortex dorsal area	-1,005
Retrosplenial granular cortex b region	0,108	Secondary visual cortex mediomedial area	-1,08
Parasubiculum	0,093	Parietal cortex posterior area rostral part	-1,091
Posterolateral cortical nucleus	0,06	Primary somatosensory cortex shoulder region	-1,884
Amygdalopiriform transition area	0,06	Secondary auditory cortex ventral area	-1,951
		Secondary visual cortex mediolateral area	-2,101

Tabelle 15: Erster Teil der lokalen Parameter des bilatera	len C1-	Netzwer	kes nach	Gesamtz	zahl der V	'erbindun	gen pro I	tegion so	rtiert.						
Name (Lokale Parameter Teil 1)	REC	$\mathrm{DG}_{\mathrm{All}}$	DGout	$\mathrm{DG}_{\mathrm{ln}}$	CDC	Lat _{All}	Lat_{Out}	Lat_{ln}	Lat_{Rec}	Katz	L_{Circle}	Triag	CyclC	Eccout	Ecc _{in}
Perirhinal cortex [L]	49	119	63	56	0,4706	0,7311	0,7143	0,75	0,7959	52,207	1	4219	0,1335	3	3
Perirhinal cortex [R]	49	119	63	56	0,4706	0,7311	0,7143	0,75	0,7959	52,207	1	4219	0,1335	3	3
Infralimbic cortex [L]	45	113	56	57	0,5044	0,6372	0,625	0,6491	0,7111	55,303	1	3884	0,1357	3	ŝ
Infralimbic cortex [R]	45	113	56	57	0,5044	0,6372	0,625	0,6491	0,7111	55,303	1	3884	0,1357	3	3
Prelimbic cortex [L]	36	76	4	53	0,5464	0,7629	0,8409	0,6981	0,8611	52,868	1	3307	0,1376	3	3
Medial agranular prefrontal cortex [L]	34	76	42	55	0,567	0,732	0,8333	0,6545	0,8824	52,34	-	3243	0,1353	3	3
Prelimbic cortex [R]	36	76	44	53	0,5464	0,7629	0,8409	0,6981	0,8611	52,868	1	3307	0,1376	3	3
Medial agranular prefrontal cortex [R]	34	76	42	55	0,567	0,732	0,8333	0,6545	0,8824	52,34	1	3243	0,1353	3	3
Lateral agranular prefrontal cortex [L]	35	94	47	47	0,5	0,734	0,6596	0,8085	0,8	40,011	1	2986	0,1323	3	3
Lateral agranular prefrontal cortex [R]	35	94	47	47	0,5	0,734	0,6596	0,8085	0,8	40,011	1	2986	0,1323	3	3
Secondary somatosensory cortex [L]	36	86	46	40	0,4651	0,6279	0,587	0,675	0,6389	37,808	1	2612	0,1356	3	33
Secondary somatosensory cortex [R]	36	86	46	40	0,4651	0,6279	0,587	0,675	0,6389	37,808	1	2612	0,1356	3	3
Lateral entorhinal cortex [L]	35	76	39	37	0,4868	0,8947	0,8718	0,9189	0,9143	36,17	1	2368	0,1418	3	3
Lateral entorhinal cortex [R]	35	76	39	37	0,4868	0,8947	0,8718	0,9189	0,9143	36,17	1	2368	0,1418	3	33
Agranular insular cortex posterior part [L]	24	74	43	31	0,4189	0,7432	0,7209	0,7742	0,7917	35,445	1	2527	0,1432	3	3
Agranular insular cortex posterior part [R]	24	74	43	31	0,4189	0,7432	0,7209	0,7742	0,7917	35,445	1	2527	0,1432	ю	33
Medial entorhinal cortex [L]	33	73	37	36	0,4932	0,8904	0,9189	0,8611	0,9091	37,971	1	2301	0,1431	3	33
Medial entorhinal cortex [R]	33	73	37	36	0,4932	0,8904	0,9189	0,8611	0,9091	37,971	1	2301	0,1431	3	3
Ectorhinal cortex [L]	31	67	35	32	0,4776	0,9254	0,8857	0,9688	0,9677	34,45	1	2340	0,1469	3	33
Ectorhinal cortex [R]	31	67	35	32	0,4776	0,9254	0,8857	0,9688	0,9677	34,45	1	2340	0,1469	3	3
Ventral orbital cortex [L]	22	65	35	30	0,4615	0,8	0,8286	0,7667	0,8636	34,852	1	1909	0,1432	3	3
Ventral orbital cortex [R]	22	65	35	30	0,4615	0,8	0,8286	0,7667	0,8636	34,852	-	1909	0,1432	3	3
Primary visual cortex [L]	22	61	28	33	0,541	0,8197	0,8214	0,8182	0,8182	27,799	П	1295	0,1368	3	3
Primary visual cortex [R]	22	61	28	33	0,541	0,8197	0,8214	0,8182	0,8182	27,799	1	1295	0,1368	3	3
Agranular insular cortex dorsal part [L]	21	60	29	31	0,5167	0,7833	0,7241	0,8387	0,8571	33,93	2	1870	0,1459	Э	3
Agranular insular cortex dorsal part [R]	21	60	29	31	0,5167	0,7833	0,7241	0,8387	0,8571	33,93	2	1870	0,1459	3	3
Lateral orbital cortex [L]	17	59	29	30	0,5085	0,7966	0,7931	0,8	0,8824	31,366	-	1601	0,1427	3	3
Lateral orbital cortex [R]	17	59	29	30	0,5085	0,7966	0,7931	0,8	0,8824	31,366	-	1601	0,1427	Э	ю
Piriform cortex [L]	20	58	24	34	0,5862	0,8276	0,8333	0,8235	0,9	33,39	1	1470	0,1427	3	3
Piriform cortex [R]	20	58	24	34	0,5862	0,8276	0,8333	0,8235	0,9	33,39	П	1470	0,1427	3	3
Granular insular cortex [L]	20	56	31	25	0,4464	0,7321	0,7742	0,68	0,75	31,159	1	1765	0,1478	3	3
Granular insular cortex [R]	20	56	31	25	0,4464	0,7321	0,7742	0,68	0,75	31,159	-	1765	0,1478	3	3
Medial orbital cortex [L]	17	55	33	22	0,4	0,7818	0,8485	0,6818	0,8235	26,215	П	1475	0,1451	3	3
Medial orbital cortex [R]	17	55	33	22	0,4	0,7818	0,8485	0,6818	0,8235	26,215	1	1475	0,1451	3	3
Secondary visual cortex [L]ateral area [L]	16	54	30	24	0,4444	0,7407	0,8333	0,625	0,75	21,048	П	1052	0,1291	3	3
Secondary visual cortex [L]ateral area [R]	16	54	30	24	0,4444	0,7407	0,8333	0,625	0,75	21,048	П	1052	0,1291	3	3
Agranular insular cortex ventral part [L]	19	53	26	27	0,5094	0,8302	0,8846	0,7778	0,9474	33,625	-	1602	0,1476	4	ŝ
Agranular insular cortex ventral part [R]	19	53	26	27	0,5094	0,8302	0,8846	0,7778	0,9474	33,625	1	1602	0,1476	4	3

Name (Fortsetzung lokale Parameter Teil 1)	REC	DG_{AII}	DG _{out}	$\mathrm{DG}_{\mathrm{in}}$	CDC	Lat_{All}	Lat_{Out}	Lat_{ln}	Lat_{Rec}	Katz	Lcircle	Triag	CyclC	Eccout	Ecc _{in}
Primary somatosensory cortex barrel field [L]	18	49	23	26	0,5306	0,6939	0,7391	0,6538	0,7222	24,546	1	941	0,1411	4	3
Primary somatosensory cortex barrel field [R]	18	49	23	26	0,5306	0,6939	0,7391	0,6538	0,7222	24,546	1	941	0,1411	4	С
Dysgranular insular cortex [L]	18	46	26	20	0,4348	0,8261	0,8462	0,8	0,8333	26,526	1	1294	0,1508	3	ŝ
Dysgranular insular cortex [R]	18	46	26	20	0,4348	0,8261	0,8462	0,8	0,8333	26,526	1	1294	0,1508	3	ŝ
Presubiculum [L]	13	43	15	28	0,6512	0,814	0,7333	0,8571	0,8462	29,014	1	876	0,1429	3	3
Retrosplenial granular cortex b region [L]	14	43	28	15	0,3488	0,6279	0,5357	0,8	0,7857	14,351	1	728	0,1405	3	4
Presubiculum [R]	13	43	15	28	0,6512	0,814	0,7333	0,8571	0,8462	29,014	1	876	0,1429	3	ю
Retrosplenial granular cortex b region [R]	14	43	28	15	0,3488	0,6279	0,5357	0,8	0,7857	14,351	1	728	0,1405	3	4
Parietal cortex posterior area [L]	13	42	19	23	0,5476	0,9048	0,8947	0,913	0,9231	24,035	2	928	0,1474	3	3
Parietal cortex posterior area [R]	13	42	19	23	0,5476	0,9048	0,8947	0,913	0,9231	24,035	2	928	0,1474	3	3
Cingulate cortex area 1 [L]	14	40	21	19	0,475	0,9	0,9048	0,8947	0,8571	21,061	1	872	0,1475	4	3
Cingulate cortex area 1 [R]	14	40	21	19	0,475	0,9	0,9048	0,8947	0,8571	21,061	1	872	0,1475	4	3
Parasubiculum [L]	12	39	14	25	0,641	0,7692	0,7143	0,8	0,75	27,525	1	782	0,147	3	3
Parasubiculum [R]	12	39	14	25	0,641	0,7692	0,7143	0,8	0,75	27,525	1	782	0,147	3	3
Primary auditory cortex [L]	13	38	23	15	0,3947	0,8684	0,8261	0,9333	0,9231	13,601	1	679	0,1307	3	3
Primary auditory cortex [R]	13	38	23	15	0,3947	0,8684	0,8261	0,9333	0,9231	13,601	Т	679	0,1307	3	3
Retrosplenial dorsal [L]	13	35	20	15	0,4286	П	П	1	1	17,895	П	723	0,15	4	3
Primary somatosensory cortex forelimb region [L]	12	35	15	20	0,5714	0,6857	0,7333	0,65	0,75	18,592	-	596	0,1389	4	3
Retrosplenial dorsal [R]	13	35	20	15	0,4286	1	1	1	1	17,895	1	723	0,15	4	3
Primary somatosensory cortex forelimb region [R]	12	35	15	20	0,5714	0,6857	0,7333	0,65	0,75	18,592	1	596	0,1389	4	3
Amygdalopiriform transition area [L]	Π	34	19	15	0,4412	0,8824	0,7895	1	1	17,152	1	796	0,1527	4	4
Primary somatosensory cortex hindlimb region [L]	12	34	18	16	0,4706	0,7353	0,7778	0,6875	0,75	14,759	1	564	0,1457	4	ю
Amygdalopiriform transition area [R]	11	34	19	15	0,4412	0,8824	0,7895	1	1	17,152	1	796	0,1527	4	4
Primary somatosensory cortex hindlimb region [R]	12	34	18	16	0,4706	0,7353	0,7778	0,6875	0,75	14,759	1	564	0,1457	4	3
Posterolateral cortical nucleus [L]	11	33	16	17	0,5152	0,9394	0,9375	0,9412	1	18,188	1	713	0,1521	4	3
Postsubiculum [L]	6	33	11	22	0,6667	0,8485	0,9091	0,8182	1	21,525	2	568	0,147	3	3
Posterolateral cortical nucleus [R]	11	33	16	17	0,5152	0,9394	0,9375	0,9412	-	18,188	1	713	0,1521	4	3
Postsubiculum [R]	6	33	Π	22	0,6667	0,8485	0,9091	0,8182	-	21,525	2	568	0,147	3	3
Temporal association cortex 1 [L]	6	31	19	12	0,3871	0,7742	0,7368	0,8333	0,8889	13,113	-	519	0,1482	3	3
Olfactory tubercle [L]	4	31	4	27	0,871	0,871	-	0,8519	-	28,901	2	505	0,1536	4	3
Temporal association cortex 1 [R]	6	31	19	12	0,3871	0,7742	0,7368	0,8333	0,8889	13,113	1	519	0,1482	3	3
Olfactory tubercle [R]	4	31	4	27	0,871	0,871	-	0,8519	-	28,901	2	505	0,1536	4	3
Posteromedial cortical nucleus [L]	10	28	17	Π	0,3929	0,8929	0,8824	0,9091	0,9	12,016	-	512	0,1524	4	4
Posteromedial cortical nucleus [R]	10	28	17	Ξ	0,3929	0,8929	0,8824	0,9091	0,9	12,016	-	512	0,1524	4	4
Cingulate cortex area 2 [L]	6	27	12	15	0,5556	0,9259	-	0,8667	-	14,64	-	410	0,1481	4	4
Cingulate cortex area 2 [R]	6	27	12	15	0,5556	0,9259	-	0,8667	-	14,64	1	410	0,1481	4	4
Primary somatosensory cortex trunk region [L]	Π	26	11	15	0,5769	0,7692	0,8182	0,7333	0,8182	11,638	1	350	0,1485	4	3
Primary somatosensory cortex trunk region [R]	Π	26	П	15	0,5769	0,7692	0,8182	0,7333	0,8182	11,638	-	350	0,1485	4	3
Primary visual cortex binocular area [L]	7	25	13	12	0,48	1	Т	Ч	Т	13,477	2	441	0,1538	ю	3

Name (Fortsetzung lokale Parameter Teil 1)	REC	DG _{All}	DG _{out}	$\mathrm{DG}_{\mathrm{ln}}$	CDC	Lat _{All}	Latout	Lat_{ln}	Lat _{Rec}	Katz	LCircle	Triag	CyclC	Sccout	Ecc_{ln}
Primary visual cortex binocular area [R]	7	25	13	12	0,48	-	1	-	-	13,477	2	441	0,1538	3	ю
Dorsolateral entorhinal cortex [L]	7	24	14	10	0,4167	1	1	1	1	12,394	1	405	0,1573	4	4
Dorsal peduncular cortex [L]	5	24	13	Π	0,4583	0,8333	0,8462	0,8182	0,6	12,404	1	311	0,1473	4	4
Dorsolateral entorhinal cortex [R]	7	24	14	10	0,4167	-	-	-	-	12,394	П	405	0,1573	4	4
Dorsal peduncular cortex [R]	5	24	13	11	0,4583	0,8333	0,8462	0,8182	0,6	12,404	1	311	0,1473	4	4
Frontal cortex area 3 [L]	9	23	10	13	0,5652	0,4783	0,4	0,5385	0,5	16,981	2	301	0,1462	4	3
Frontal cortex area 3 [R]	9	23	10	13	0,5652	0,4783	0,4	0,5385	0,5	16,981	2	301	0,1462	4	ŝ
Retrosplenial granular cortex c region [L]	7	22	14	8	0,3636	0,6818	0,6429	0,75	0,7143	8,1824	1	270	0,1495	3	4
Dorsolateral orbital cortex [L]	٢	22	10	12	0,5455	1	1	1	1	13,847	2	331	0,1556	4	с
Retrosplenial granular cortex c region [R]	7	22	14	8	0,3636	0,6818	0,6429	0,75	0,7143	8,1824	1	270	0,1495	3	4
Dorsolateral orbital cortex [R]	٢	22	10	12	0,5455	1	1	1	1	13,847	2	331	0,1556	4	с
Lateral parietal association cortex [L]	8	19	8	11	0,5789	0,6842	0,625	0,7273	0,625	7,6121	2	158	0,1318	4	б
Lateral parietal association cortex [R]	8	19	8	Ξ	0,5789	0,6842	0,625	0,7273	0,625	7,6121	2	158	0,1318	4	3
Dorsal tenia tecta [L]	9	18	8	10	0,5556	0,8889	0,75	1	1	11,881	2	234	0,1571	4	4
Ventral tenia tecta [L]	5	18	8	10	0,5556	1	1	1	1	11,684	2	228	0,1544	4	4
Dorsal intermediate entorhinal cortex [L]	3	18	8	10	0,5556	0,9444	1	0,9	1	13,755	2	208	0,1499	4	ю
Primary somatosensory cortex dysgranular region [L]	9	18	12	9	0,3333	0,5556	0,5833	0,5	0,5	7,408	1	195	0,1505	3	3
Primary somatosensory cortex upper [L]ip region [L]	6	18	6	6	0,5	1	1	1	1	7,4436	2	228	0,158	4	4
Dorsal tenia tecta [R]	9	18	8	10	0,5556	0,8889	0,75	1	1	11,881	2	234	0,1571	4	4
Ventral tenia tecta [R]	5	18	8	10	0,5556	1	1	1	1	11,684	2	228	0,1544	4	4
Dorsal intermediate entorhinal cortex [R]	3	18	8	10	0,5556	0,9444	1	0,9	1	13,755	2	208	0,1499	4	б
Primary somatosensory cortex dysgranular region [R]	9	18	12	9	0,3333	0,5556	0,5833	0,5	0,5	7,408	-	195	0,1505	3	3
Primary somatosensory cortex upper [L]ip region [R]	6	18	6	6	0,5	-	-	-	-	7,4436	2	228	0,158	4	4
Retrosplenial granular cortex a region [L]	5	17	8	6	0,5294	0,5294	0,5	0,5556	0,6	10,696	1	157	0,1443	4	4
Retrosplenial granular cortex a region [R]	5	17	8	6	0,5294	0,5294	0,5	0,5556	0,6	10,696	1	157	0,1443	4	4
Medial parietal association cortex [L]	5	14	9	8	0,5714	-	-	-	-	5,1678	2	109	0,1328	4	4
Primary somatosensory cortex jaw region [L]	٢	14	7	7	0,5	0,7143	0,7143	0,7143	0,7143	9,8229	2	120	0,1548	3	ю
Medial parietal association cortex [R]	5	14	9	%	0,5714	-	-	-	-	5,1678	2	109	0,1328	4	4
Primary somatosensory cortex jaw region [R]	٢	14	7	7	0,5	0,7143	0,7143	0,7143	0,7143	9,8229	2	120	0,1548	3	3
Parietal cortex posterior area dorsal part [L]	ю	13	4	6	0,6923	0,9231	1	0,8889	1	9,0463	2	100	0,1528	4	б
Parietal cortex posterior area dorsal part [R]	3	13	4	6	0,6923	0,9231	1	0,8889	1	9,0463	2	100	0,1528	4	3
Ventral intermediate entorhinal cortex [L]	2	11	9	5	0,4545	0,9091	1	0,8	1	8,1051	2	91	0,1577	4	4
Ventral intermediate entorhinal cortex [R]	2	11	9	5	0,4545	0,9091	-	0,8	-	8,1051	2	91	0,1577	4	4
Primary visual cortex monocular area [L]	4	8	4	4	0,5	0,5	0,5	0,5	0,5	3,4213	1	48	0,1667	4	3
Primary visual cortex monocular area [R]	4	8	4	4	0,5	0,5	0,5	0,5	0,5	3,4213	-	48	0,1667	4	3
Primary somatosensory cortex shoulder region [L]	0	9	9	0	0	1	-	0	0	0	0	17	0	4	0
Primary somatosensory cortex shoulder region [R]	0	9	9	0	0	1	1	0	0	0	0	17	0	4	0
Cortex amygdala transition zone [L]	0	4	з	-	0,25	П	1	1	0	1,1662	3	10	0,1667	4	4
Name (Fortsetzung lokale Parameter Teil 1)	REC	DG_{All}	DG _{out}	$\mathrm{DG}_{\mathrm{ln}}$	CDC	Lat _{All}	Latout	Lat_{ln}	Lat_{Rec}	Katz	LCircle	Triag	CyclC	Eccout	Ecc _{in}
---	-----	------------	-------------------	-----------------------------	--------	--------------------	--------	------------	-------------	--------	---------	-------	--------	--------	-------------------
Cortex amygdala transition zone [R]	0	4	3	1	0,25	1	1	1	0	1,1662	3	10	0,1667	4	4
Secondary auditory cortex dorsal area [L]	1	ŝ	1	2	0,6667	1	1	1	-	1,4525	2	4	0,1667	4	4
Secondary auditory cortex dorsal area [R]	1	б	1	2	0,6667	1	1	1	1	1,4525	2	4	0,1667	4	4
Parietal cortex posterior area rostral part [L]	1	2	1	1	0,5	1	1	1	-	0,7383	2	0	0	4	4
Secondary auditory cortex ventral area [L]	0	2	2	0	0	1	1	0	0	0	0	2	0	4	0
Secondary visual cortex mediomedial area [L]	0	2	1	1	0,5	1	1	1	0	0,4632	3	2	0,1667	4	4
Parietal cortex posterior area rostral part [R]	1	2	1	1	0,5	1	1	1	-	0,7383	2	0	0	4	4
Secondary auditory cortex ventral area [R]	0	2	2	0	0	1	1	0	0	0	0	2	0	4	0
Secondary visual cortex mediomedial area [R]	0	2	1	1	0,5	1	1	1	0	0,4632	3	2	0,1667	4	4
Secondary visual cortex mediolateral area [L]	0	1	1	0	0	1	1	0	0	0	0	0	0	4	0
Secondary visual cortex mediolateral area [R]	0	1	1	0	0	1	1	0	0	0	0	0	0	4	0

)	, ,									ĺ
Name (Lokale Parameter Teil 2)	CluCout	CluCh	CluCAI	CluC _{Triss}	CluC	$AvgDG_{ab}$	VC_{DG}	Lev	Loc	CC Out	CCIn	BC	BC	SC	PRC
Perirhinal cortex [L]	0,2942	0,3156	0,2638	0,3026	0,0898	49,471	0,5572	0,4486	0,6465	0,6685	0,6378	0,0698	1	3E+11	0,9303
Perirhinal cortex [R]	0,2942	0,3156	0,2638	0,3026	0,0898	49,471	0,5572	0,4486	0,6465	0,6685	0,6378	0,0698	1	3E+11	0,9303
Infralimbic cortex [L]	0,2987	0,3217	0,2816	0,3091	0,0947	50,794	0.5486	0,4177	0,652	0,623	0,6313	0,0535	0,8867	3E+11	1
Infralimbic cortex [R]	0.2987	0.3217	0.2816	0.3091	0.0947	50,794	0.5486	0.4177	0.652	0.623	0.6313	0.0535	0.8867	3E+11	-
Prelimbic cortex [L]	0.3784	0.352	0,3096	0.3579	0,0907	53,033	0,5417	0,3388	0,5937	0,595	0,6219	0,031	0,7165	2E+11	0,8318
Medial agranular prefrontal cortex [L]	0,3902	0,3313	0,3108	0,3508	0,0664	54,333	0,5045	0,3226	0,6011	0,592	0,6313	0,0346	0,7103	2E+11	0,8502
Prelimbic cortex [R]	0.3784	0.352	0.3096	0.3579	0.0907	53,033	0.5417	0.3388	0.5937	0.595	0.6219	0.031	0.7165	2E+11	0.8318
Medial agranular prefrontal cortex [R]	0,3902	0,3313	0,3108	0,3508	0,0664	54,333	0,5045	0,3226	0,6011	0,592	0,6313	0,0346	0,7103	2E+11	0,8502
Lateral agranular prefrontal cortex [L]	0,3904	0,3113	0,3054	0,3443	0,0978	52,61	0,5702	0,3358	0,5632	0,6041	0,601	0,0486	0,8779	2E+11	0,808
Lateral agranular prefrontal cortex [R]	0.3904	0.3113	0.3054	0.3443	0.0978	52.61	0.5702	0.3358	0.5632	0.6041	0.601	0.0486	0.8779	2E+11	0.808
Secondary somatosensory cortex [L]	0.3676	0.3571	0.3453	0.3609	0.1035	55,16	0.5597	0.2763	0.4995	0.601	0.5787	0,0324	0.8014	2E+11	0.6781
Secondary somatosensory cortex [R]	0,3676	0,3571	0,3453	0,3609	0,1035	55,16	0,5597	0,2763	0,4995	0,601	0,5787	0,0324	0,8014	2E+11	0,6781
Lateral entorhinal cortex [L]	0,4204	0,4204	0,3915	0,4206	0,1515	53,146	0,4927	0,2241	0,4803	0,5749	0,5482	0,021	0,6573	1E+11	0,6585
Lateral entorhinal cortex [R]	0,4204	0,4204	0,3915	0,4206	0,1515	53,146	0,4927	0,2241	0,4803	0.5749	0,5482	0,021	0,6573	1E+11	0.6585
Agranular insular cortex posterior part [L]	0,4252	0,5538	0,3902	0,472	0,094	58,14	0,4957	0,1724	0,5381	0,595	0,5556	0,0112	0,7843	1E+11	0,4711
Agranular insular cortex posterior part [R]	0,4252	0,5538	0,3902	0,472	0,094	58,14	0,4957	0,1724	0,5381	0,595	0,5556	0,0112	0,7843	1E+11	0,4711
Medial entorhinal cortex [L]	0,4332	0,4548	0,4218	0,4434	0,1466	55,125	0,4922	0,1872	0,4848	0,5613	0,558	0,0145	0,6126	1E+11	0.6509
Medial entorhinal cortex [R]	0,4332	0,4548	0,4218	0,4434	0,1466	55,125	0,4922	0,1872	0,4848	0,5613	0,558	0,0145	0,6126	1E+11	0,6509
Ectorhinal cortex [L]	0.5143	0.5655	0.5079	0.5367	0.1264	61.556	0,4344	0.0856	0.4606	0.5749	0.5435	0.0072	0.6556	1E+11	0.5583
Ectorhinal cortex [R]	0,5143	0,5655	0,5079	0,5367	0,1264	61,556	0,4344	0,0856	0,4606	0,5749	0,5435	0,0072	0,6556	1E+11	0,5583
Ventral orbital cortex [L]	0,4235	0,5161	0,397	0,4638	0,0996	59,14	0,5057	0,1089	0,439	0,5721	0,558	0,0112	0,6239	1E+11	0.5628
Ventral orbital cortex [R]	0,4235	0.5161	0.397	0.4638	0,0996	59.14	0.5057	0.1089	0.439	0.5721	0.558	0.0112	0.6239	1E+11	0.5628
Primary visual cortex [L]	0.3651	0.3561	0.3124	0.3581	0.1543	48,103	0.5763	0.189	0.3831	0.5336	0.5411	0.0243	0.3985	6E+10	0.5888
Primary visual cortex [R]	0,3651	0,3561	0,3124	0,3581	0,1543	48,103	0,5763	0,189	0,3831	0,5336	0,5411	0,0243	0,3985	6E+10	0,5888
Agranular insular cortex dorsal part [L]	0,5505	0,5247	0,4764	0,5346	0,1076	63,154	0,4776	0,0359	0,436	0,5459	0,5411	0,0056	0,5869	1E+11	0,4971
Agranular insular cortex dorsal part [R]	0.5505	0,5247	0,4764	0.5346	0,1076	63,154	0,4776	0,0359	0,436	0.5459	0,5411	0,0056	0.5869	1E+11	0,4971
Lateral orbital cortex [L]	0,4951	0,4667	0,3984	0,4726	0,1133	57,071	0,4619	0,0706	0,4448	0,5561	0,5507	0,0096	0,5252	9E+10	0,4894
Lateral orbital cortex [R]	0,4951	0,4667	0,3984	0,4726	0,1133	57,071	0,4619	0,0706	0,4448	0,5561	0,5507	0,0096	0,5252	9E+10	0,4894
Piriform cortex [L]	0,4909	0,418	0,3862	0,4501	0,1873	51.5	0,572	0,1352	0,4346	0.5174	0,5252	0,0161	0,4043	7E+10	0,6448
Piriform cortex [R]	0,4909	0,418	0,3862	0,4501	0,1873	51,5	0,572	0,1352	0,4346	0,5174	0,5252	0,0161	0,4043	7E+10	0,6448
Granular insular cortex [L]	0.5602	0.62	0.5071	0.5806	0,099	66.333	0,44	-0.028	0,4079	0.5509	0.5342	0.0047	0.6491	1E+11	0.3796
Granular insular cortex [R]	0,5602	0,62	0,5071	0,5806	0,099	66,333	0,44	-0.028	0,4079	0,5509	0,5342	0,0047	0,6491	1E+11	0,3796
Medial orbital cortex [L]	0,4848	0.5281	0,4531	0,5024	0,1056	62	0,4749	0,0006	0,4138	0,5587	0.5274	0,0067	0.5979	8E+10	0,4477
Medial orbital cortex [R]	0,4848	0.5281	0.4531	0.5024	0.1056	62	0,4749	0.0006	0.4138	0.5587	0.5274	0.0067	0.5979	8E+10	0,4477
Secondary visual cortex [L]ateral area [L]	0,4092	0.3496	0.3627	0.3717	0.1271	54.29	0.5582	0.0817	0.3752	0.5434	0.5319	0.0297	0.4788	5E+10	0.4853
Secondary visual cortex [L]ateral area [R]	0,4092	0,3496	0,3627	0,3717	0,1271	54,29	0,5582	0,0817	0,3752	0,5434	0,5319	0,0297	0,4788	5E+10	0,4853
Agranular insular cortex ventral part [L]	0,5646	0,6339	0,5339	0,5894	0,1047	67,324	0,4452	-0,056	0,3951	0,5219	0,5342	0,0044	0,4772	8E+10	0,4216
Agranular insular cortex ventral part [R]	0.5646	0.6339	0.5339	0.5894	0.1047	67.324	0.4452	-0.056	0.3951	0.5219	0.5342	0.0044	0.4772	8E+10	0,4216
Primary somatosensory cortex barrel field [L]	0,413	0,3969	0,3796	0,4063	0,1237	56,71	0,5541	0,0125	0,2976	0,5197	0,5297	0,0115	0,3766	5E+10	0,4906
Primary somatosensory cortex barrel field [R]	0,413	0,3969	0,3796	0,4063	0,1237	56,71	0,5541	0,0125	0,2976	0,5197	0,5297	0,0115	0,3766	5E+10	0,4906
Dysgranular insular cortex [L]	0.5846	0,7158	0,5767	0,6362	0,1385	65,536	0,4217	-0,119	0,3565	0.5289	0,5102	0,0023	0,5259	7E+10	0,3238
Dysgranular insular cortex [R]	0,5846	0,7158	0,5767	0,6362	0,1385	65,536	0,4217	-0,119	0,3565	0,5289	0,5102	0,0023	0,5259	7E+10	0,3238
Presubiculum [L]	0.5381	0.4947	0.4586	0.4921	0.153	57.4	0.4898	-0.077	0.3416	0.5021	0.523	0.005	0.2373	4E+10	0.5154
Retrosplenial granular cortex b region [L]	0,3823	0,5095	0,3941	0,4094	0,1427	54,966	0,5242	-0,043	0,3003	0,5385	0,4596	0,0076	0,432	3E+10	0,3129
Presubiculum [R]	0,5381	0,4947	0,4586	0,4921	0,153	57,4	0,4898	-0,077	0,3416	0,5021	0,523	0,005	0,2373	4E+10	0.5154
Retrosplenial granular cortex b region [R]	0.3823	0.5095	0.3941	0,4094	0,1427	54,966	0.5242	-0.043	0.3003	0.5385	0,4596	0.0076	0.432	3E+10	0.3129
Parietal cortex posterior area [L]	0.5409	0.5553	0.5197	0.5472	0.1261	63.172	0,4624	-0.137	0.3291	0.5064	0.5252	0.0032	0.3427	4E+10	0,403
Parietal cortex posterior area [R]	0.5409	0,5553	0,5197	0,5472	0,1261	63,172	0,4624	-0,137	0,3291	0,5064	0,5252	0,0032	0,3427	4E+10	0,403
Cingulate cortex area 1 [L]	0,5952	0,5439	0,52	0,5692	0,1398	62,269	0,4624	-0,153	0,3065	0,5129	0,502	0,0025	0,4202	5E+10	0,3357
Cingulate cortex area 1 [R]	0.5952	0.5439	0.52	0.5692	0.1398	62,269	0,4624	-0.153	0.3065	0.5129	0.502	0.0025	0,4202	5E+10	0.3357

Tabelle 16: Zweiter Teil der lokalen Parameter des bilateralen C1-Netzwerkes nach Gesamtzahl der Verbindungen pro Region sortiert.

Name (Fortsetzung lokale Parameter Teil 2)	CluCout	CluCh	CluCAII	CluC _{Triss}	CluC	$AvgDG_{nh}$	VCna	Lev	Loc	CC Out	CC In	BC	EC	SC	PRC
Parasubiculum [L]	0.5989	0.4967	0.4801	0.5364	0.1503	60,407	0.4351	-0.162	0.2982	0.4897	0.5102	0.0029	0.2468	4E+10	0.4637
Parasubiculum [R]	0,5989	0,4967	0,4801	0,5364	0,1503	60,407	0,4351	-0,162	0,2982	0,4897	0,5102	0,0029	0,2468	4E+10	0,4637
Primary auditory cortex [L]	0,4625	0.5524	0,4317	0,492	0,1444	54.6	0.5704	-0,072	0,2834	0.5265	0,4735	0,0143	0,3987	3E+10	0,3251
Primary auditory cortex [R]	0.4625	0.5524	0.4317	0,492	0.1444	54.6	0.5704	-0.072	0.2834	0.5265	0.4735	0.0143	0.3987	3E+10	0.3251
Retrosplenial dorsal [L]	0.5368	0.7524	0.5152	0.6211	0.1702	57	0.5433	-0.148	0.2828	0.4877	0.4789	0.0026	0.3311	3E+10	0.3029
Primary somatosensory cortex forelimb region [L]	0.5524	0,4868	0,4526	0,5111	0,1497	55,348	0,6291	-0,101	0,2635	0,4595	0.5102	0,004	0,202	2E+10	0,4008
Retrosplenial dorsal [R]	0,5368	0,7524	0,5152	0,6211	0,1702	57	0,5433	-0,148	0,2828	0,4877	0,4789	0,0026	0,3311	3E+10	0,3029
Primary somatosensory cortex forelimb region [R]	0.5524	0.4868	0.4526	0.5111	0.1497	55,348	0.6291	-0,101	0.2635	0,4595	0.5102	0.004	0.202	2E+10	0.4008
Amygdalopiriform transition area [L]	0,6901	0,7905	0,6542	0,7236	0,1468	68	0,4159	-0,278	0,3067	0,5129	0,4496	0,0008	0,3911	4E+10	0,2728
Primary somatosensory cortex hindlimb region [L]	0,4837	0,5625	0,4654	0,5137	0,1551	57,273	0,6224	-0,138	0,2512	0,4917	0,4941	0,0041	0,2635	2E+10	0,3538
Amygdalopiriform transition area [R]	0,6901	0,7905	0,6542	0,7236	0,1468	68	0,4159	-0,278	0,3067	0.5129	0,4496	0,0008	0,3911	4E+10	0,2728
Primary somatosensory cortex hindlimb region [R]	0,4837	0,5625	0,4654	0,5137	0,1551	57,273	0,6224	-0,138	0,2512	0,4917	0,4941	0,0041	0,2635	2E+10	0,3538
Posterolateral cortical nucleus [L]	0,7417	0,6618	0,5714	0,6896	0,1944	56,546	0,5149	-0,17	0,3143	0,4798	0,4647	0,0022	0,3052	3E+10	0,2911
Postsubiculum [L]	0,5636	0,5238	0,5072	0,5472	0,1602	56,917	0,4868	-0,198	0,2882	0,4857	0,4864	0,0028	0,1893	2E+10	0,4335
Posterolateral cortical nucleus [R]	0,7417	0,6618	0.5714	0.6896	0,1944	56,546	0.5149	-0,17	0,3143	0,4798	0,4647	0,0022	0,3052	3E+10	0,2911
Postsubiculum [R]	0.5636	0.5238	0.5072	0.5472	0.1602	56.917	0.4868	-0.198	0.2882	0.4857	0.4864	0.0028	0.1893	2E+10	0.4335
Temporal association cortex 1 [L]	0.5351	0.6212	0.5022	0.5691	0.1318	62,818	0.4213	-0.269	0.2412	0.5265	0.4699	0.0098	0.3847	3E+10	0.2147
Olfactory tubercle [L]	0,9167	0.5057	0.5057	0.5477	0,1489	59,407	0.5227	-0.214	0,309	0,4132	0.5165	0,0008	0,0851	1E+10	0,4653
Temporal association cortex 1 [R]	0,5351	0,6212	0,5022	0,5691	0,1318	62,818	0,4213	-0,269	0,2412	0,5265	0,4699	0,0098	0,3847	3E+10	0,2147
Olfactory tubercle [R]	0.9167	0.5057	0.5057	0.5477	0.1489	59.407	0.5227	-0.214	0.309	0.4132	0.5165	0.0008	0.0851	1E+10	0.4653
Posteromedial cortical nucleus [L]	0,6618	0,7545	0,634	0,6957	0,1921	58,944	0,5606	-0,258	0,2704	0,4857	0,4401	0,000	0,3045	2E+10	0,2063
Posteromedial cortical nucleus [R]	0,6618	0,7545	0,634	0,6957	0,1921	58,944	0,5606	-0.258	0,2704	0,4857	0,4401	0,000	0,3045	2E+10	0,2063
Cingulate cortex area 2 [L]	0.7273	0,5095	0.5327	0.5994	0,1554	61,722	0,4865	-0.317	0,2104	0,4741	0,4735	0,0008	0.2697	2E+10	0,2513
Cingulate cortex area 2 [R]	0,7273	0,5095	0.5327	0,5994	0,1554	61,722	0,4865	-0.317	0,2104	0,4741	0,4735	0,0008	0,2697	2E+10	0,2513
Primary somatosensory cortex trunk region [L]	0,6091	0.5238	0.5238	0,5573	0,2071	47,933	0.5857	-0,198	0,2371	0,4359	0,4613	0,0017	0,1553	9E+09	0,3376
Primary somatosensory cortex trunk region [R]	0,6091	0,5238	0,5238	0,5573	0,2071	47,933	0,5857	-0,198	0,2371	0,4359	0,4613	0,0017	0,1553	9E+09	0,3376
Primary visual cortex binocular area [L]	0,7115	0,8106	0,7026	0,7526	0,1629	64,111	0.355	-0,403	0,2556	0,463	0,4562	0,0003	0,2268	2E+10	0,2188
Primary visual cortex binocular area [R]	0.7115	0.8106	0.7026	0.7526	0.1629	64,111	0.355	-0,403	0.2556	0,463	0.4562	0,0003	0.2268	2E+10	0.2188
Dorsolateral entorhinal cortex [L]	0.6648	0.8556	0.6985	0.7528	0.1627	65.882	0.4352	-0.406	0.2415	0.476	0.434	0.0003	0.2813	2E+10	0.1917
Dorsal peduncular cortex [L]	0.5321	0,6182	0,5292	0.5738	0,2225	53,79	0.5495	-0,289	0,2553	0,4577	0,4464	0,000	0,2148	1E+10	0,2075
Dorsolateral entorhinal cortex [R]	0,6648	0,8556	0,6985	0,7528	0,1627	65,882	0,4352	-0,406	0,2415	0,476	0,434	0,0003	0,2813	2E+10	0,1917
Dorsal peduncular cortex [R]	0.5321	0.6182	0.5292	0.5738	0.2225	53.79	0.5495	-0.289	0.2553	0.4577	0,4464	0,000	0.2148	1E+10	0.2075
Frontal cortex area 3 [L]	0,4222	0,75	0,5956	0,6093	0,1464	69,824	0,4355	-0,439	0,1805	0,4779	0,5	0,0005	0,1769	2E+10	0,2299
Frontal cortex area 3 [R]	0,4222	0,75	0,5956	0,6093	0,1464	69,824	0,4355	-0,439	0,1805	0,4779	0,5	0,0005	0,1769	2E+10	0,2299
Retrosplenial granular cortex c region [L]	0.5604	0.6786	0.5714	0.6027	0.1538	66,067	0.5386	-0.392	0.1763	0.4938	0,4433	0,000	0.279	1E+10	0,161
Dorsolateral orbital cortex [L]	0,7778	0,7197	0,7286	0,7388	0,1649	70,133	0,3852	-0,467	0,1947	0,4612	0,4579	0,0004	0,2294	2E+10	0,2388
Retrosplenial granular cortex c region [R]	0,5604	0,6786	0,5714	0,6027	0,1538	66,067	0,5386	-0,392	0,1763	0,4938	0,4433	0,0009	0,279	1E+10	0,161
Dorsolateral orbital cortex [K]	0,7778	0,7197	0,7286	0,7388	0,1649	70,133	0,3852	-0,467	0,1947	0,4612	0,4579	0,0004	0,2294	2E+10	0,2388
Lateral parietal association cortex [L]	0,6071	0,4182	0,4182	0,4847	0.2418	43,182	0.7261	-0.246	0,1515	0.4075	0,448	0,0007	0,087	3E+09 3E+00	0.2335
	0.60/1	0.4182	0.4182	0.484/	0.2418	43.182	0.1201	-0.240	6161.0 2011.0	C/07.0	0.448	0.000/	0.08/	3E+09	0.2220
Dorsal tenia tecta L	0,8214	0,7889	0,697	0,7959	0,1776	72,917	0,4823	-0,508	0,1405	0,476	0,4401	0,0003	0,1992	1E+10	0,2156
Venuai tenta teota (1.) Dorred intermediota entorkinol contex [1]	1/00,0	0.0	0 505 0	0,1/0	0 1765	20,0C	2010.0	-0,447	CI81'0	0,4290	0.4570	70000	12410	0E+00	01210
Derimary commetoceneony context due granul ar region [1]	0.6430	000010 8 U	2060'N	0,6633	0.154	50 731 77	0 3888 0	104.0-	0.1348	0.4807	7104,0	0.0007	1401,0	1E+10	0.1468
Primary somatosensory cortex upper [L]ip region [L]	0.7917	0.7917	0.7917	0.7917	0.2523	50.444	0.6183	-0.355	0.1889	0.422	0.4195	0.0003	0.12	5E+09	0.2338
Dorsal tenia tecta [R]	0.8714	0 7889	0.697	0 7959	91776	719 77	0.4873	-0.508	0 1405	0.476	0 4401	0.0003	0 1997	1F+10	0.2156
Ventral tenia tecta [R]	0.8571	0.7	0.6538	0.7703	0.2004	58.692	0.5152	-0,44	0.1815	0,4296	0,4433	0,0002	0.1385	8E+09	0.2107
Dorsal intermediate entorhinal cortex [R]	0,625	0,8556	0,5952	0,6933	0,1765	63	0,5223	-0,467	0,1744	0,4595	0,4579	0,0004	0,1341	9E+09	0,1842
Primary somatosensory cortex dysgranular region [R]	0,6439	0,8	0,6439	0,6633	0,154	77,167	0,3888	-0,566	0,1348	0,4897	0,4647	0,0007	0,2721	1E+10	0,1468
Primary somatosensory cortex upper [L]ip region [R]	0,7917	0,7917	0,7917	0,7917	0,2523	50,444	0,6183	-0,355	0,1889	0,422	0,4195	0,0003	0,12	5E+09	0,2338
Retrosplenial granular cortex a region [L]	0.6786	0.6111	0.5833	0.5992	0.2169	59.5	0.5586	-0.471	0.1581	0.3902	0.4529	0,0004	0.0714	4E+09	0.2215
Retrosplenial granular cortex a region [R]	0,6786	0,6111	0,5833	0,5992	0,2169	59,5	0,5586	-0,471	0,1581	0,3902	0,4529	0,0004	0,0714	4E+09	0,2215

Name (Fortsetzung lokale Parameter Teil 2)	CluCo	CluC _h	CluCAII	CluCTring	CluC	AvgDG.,	VCno	Lev	Loc	CC Out	CC In	BC	EC	SC	PRC
Medial parietal association cortex [L]	0.9333	0,4464	0.5556	0.6337	0.234	46,222	0.7498	-0.376	0.1436	0,402	0.4223	0.0002	0.0676	2E+09	0.1925
Primary somatosensory cortex jaw region [L]	0,7143	0,7143	0,7143	0,7143	0,1705	84,857	0,368	-0,662	0,078	0,4818	0,4699	0,0002	0,1753	9E+09	0,1539
Medial parietal association cortex [R]	0,9333	0,4464	0,5556	0,6337	0,234	46,222	0,7498	-0,376	0,1436	0,402	0,4223	0,0002	0,0676	2E+09	0,1925
Primary somatosensory cortex jaw region [R]	0.7143	0.7143	0.7143	0.7143	0.1705	84.857	0.368	-0.662	0.078	0.4818	0,4699	0.0002	0.1753	9E+09	0.1539
Parietal cortex posterior area dorsal part [L]	0.9167	0.5972	0.6444	0.6667	0.2041	60.7	0.353	-0.612	0.1293	0,4007	0,4448	0.0001	0.0716	3E+09	0.1768
Parietal cortex posterior area dorsal part [R]	0,9167	0,5972	0,6444	0,6667	0,2041	60.7	0,353	-0,612	0,1293	0,4007	0,4448	0,0001	0,0716	3E+09	0,1768
Ventral intermediate entorhinal cortex [L]	0,8	0,95	0,8056	0,8585	0,1849	75,778	0,4532	-0,689	0,1106	0,4457	0,434	0	0,1121	5E+09	0,1232
Ventral intermediate entorhinal cortex [R]	0.8	0.95	0.8056	0.8585	0.1849	75.778	0.4532	-0.689	0.1106	0,4457	0,434	0	0.1121	5E+09	0.1232
Primary visual cortex monocular area [L]	-	-	1	1	0,2498	57,5	0,0609	-0,755	0,1081	0,4048	0,4032	0	0,0615	1E+09	0,117
Primary visual cortex monocular area [R]	1	1	1	П	0,2498	57.5	0,0609	-0,755	0,1081	0,4048	0,4032	0	0,0615	1E+09	0,117
Primary somatosensory cortex shoulder region [L]	0,5667	0	0,5667	0,5667	0,2455	57.5	0,6184	-0,71	0,0701	0,4124	0	0	0,0931	-	0,0537
Primary somatosensory cortex shoulder region [R]	0,5667	0	0,5667	0,5667	0,2455	57.5	0,6184	-0,71	0,0701	0,4124	0	0	0,0931	1	0,0537
Cortex amygdala transition zone [L]	0,6667	0	0,8333	0,8333	0,3475	49,5	0,3765	-0,832	0,0745	0,3696	0,3463	0	0,0355	2E+08	0,0766
Cortex amygdala transition zone [R]	0,6667	0	0,8333	0,8333	0,3475	49,5	0,3765	-0,832	0,0745	0,3696	0,3463	0	0,0355	2E+08	0,0766
Secondary auditory cortex dorsal area [L]	0	-	1	1	0,2944	49.5	0.2323	-0.88	0.0515	0,3459	0,3582	0	0,0135	1E+08	0,0836
Secondary auditory cortex dorsal area [R]	0	1	1	1	0.2944	49.5	0.2323	-0.88	0.0515	0.3459	0.3582	0	0.0135	1E+08	0.0836
Parietal cortex posterior area rostral part [L]	0	0	0	0	0.3829	54	0	-0.929	0.037	0.3531	0.3482	0	0.0162	6E+07	0.0675
Secondary auditory cortex ventral area [L]	1	0	1	1	0,2573	78.5	0.5159	-0,934	0,0258	0,4138	0	0	0,0474	1	0,0537
Secondary visual cortex mediomedial area [L]	0	0	1	-	0,3012	62,5	0,504	-0,919	0,0325	0,379	0,3213	0	0,0297	7E+07	0,0633
Parietal cortex posterior area rostral part [R]	0	0	0	0	0.3829	54	0	-0.929	0.037	0.3531	0.3482	0	0.0162	6E+07	0.0675
Secondary auditory cortex ventral area [R]	1	0	1	-	0,2573	78.5	0,5159	-0,934	0,0258	0,4138	0	0	0,0474	1	0,0537
Secondary visual cortex mediomedial area [R]	0	0	1	-	0,3012	62.5	0,504	-0,919	0,0325	0,379	0,3213	0	0,0297	7E+07	0,0633
Secondary visual cortex mediolateral area [L]	0	0	0	0	0,3161	94	0	-0,979	0,0106	0.3785	0	0	0,0297	-	0,0537
Secondary visual cortex mediolateral area [R]	0	0	0	0	0,3161	94	0	-0,979	0,0106	0.3785	0	0	0,0297	-	0,0537

							-)								
Name (Lokale Parameter Teil 3)	FC	Stress	Shapley	Z_{Out}	Z_{ln}	Z_{AII}	PCout	PC_{l_n}	PC_{AII}	Radout	$\operatorname{Rad}_{\operatorname{in}}$	Cenout	Centra	Hub	Aut	Knot
Perirhinal cortex [R]	0,7203	9613	-0,709	2,1156	2,3599	2,3145	0,5563	0,433	0,505	3,336	3,432	0	0	1	0,9431	1
Infralimbic cortex [L]	0.6907	8558	-0.665	1.6352	1.8686	1.8118	0.5351	0.5091	0.5225	3.232	3.416	-13	-2	0.919	0.9914	-
Infralimbic cortex [R]	0,6907	8558	-0,665	1,6352	1,8686	1,8118	0,5351	0,5091	0,5225	3,232	3,416	-13	-2	0,919	0,9914	-
Prelimbic cortex [L]	0,6273	5839	-0,438	1,9234	1,8686	1,9626	0,3099	0,4713	0,4119	3,16	3,392	-22	5	0,746	0,9849	-
Medial agranular prefrontal cortex [L]	0,5827	6880	-0,418	1,347	1,2791	1,3593	0,4478	0,5937	0,5499	3,152	3,416	-23	-2	0,726	-	-
Prelimbic cortex [R]	0.6273	5839	-0.438	1.9234	1.8686	1.9626	0.3099	0.4713	0.4119	3.16	3.392	-22	-S	0.746	0.9849	-
Medial agranular prefrontal cortex [R]	0,5827	6880	-0,418	1,347	1,2791	1,3593	0,4478	0,5937	0.5499	3,152	3,416	-23	-2	0,726	1	1
Lateral agranular prefrontal cortex [L]	0,6353	7925	-0,775	0,8666	1,2791	1,108	0,6039	0,545	0.5792	3,184	3,336	-19	-12	0,857	0,7538	-
Lateral agranular prefrontal cortex [R]	0.6353	7925	-0.775	0.8666	1.2791	1.108	0.6039	0.545	0.5792	3.184	3.336	-19	-12	0.857	0.7538	-
Secondary somatosensory cortex [L]	0,7363	5978	-0,445	0,3862	0,3949	0,4041	0,6503	0,6138	0,6363	3,176	3,272	-20	-20	0,794	0,6859	1
Secondary somatosensory cortex [R]	0,7363	5978	-0,445	0,3862	0,3949	0,4041	0,6503	0,6138	0,6363	3,176	3,272	-20	-20	0,794	0,6859	1
Lateral entorhinal cortex [L]	0,8585	3701	-0,395	1,7313	1,7704	1,8118	0,2235	0,149	0,1884	3,104	3,176	-29	-32	0,67	0,6301	0
Lateral entorhinal cortex [R]	0.8585	3701	-0,395	1.7313	1.7704	1,8118	0,2235	0,149	0,1884	3,104	3,176	-29	-32	0.67	0,6301	0
Agranular insular cortex posterior part [L]	0,5343	2671	-0,174	1,347	0,7879	1,108	0,4456	0,3496	0,4076	3,16	3.2	-22	-29	0,816	0,674	0
Agranular insular cortex posterior part [R]	0,5343	2671	-0,174	1,347	0,7879	1,108	0,4456	0,3496	0,4076	3,16	3,2	-22	-29	0,816	0,674	0
Medial entorhinal cortex [L]	0.8327	2792	-0.357	1.7313	1.4756	1,661	0,149	0,2392	0,1952	3,064	3,208	-34	-28	0.62	0.6557	0
Medial entorhinal cortex [R]	0,8327	2792	-0,357	1,7313	1,4756	1,661	0,149	0,2392	0,1952	3,064	3,208	-34	-28	0,62	0,6557	0
Ectorhinal cortex [L]	0.8643	1763	-0.286	1.347	1.4756	1.4599	0.2547	0.0605	0.1666	3.104	3.16	-29	-34	0.671	0.6038	0
Ectorhinal cortex [R]	0.8643	1763	-0,286	1.347	1,4756	1,4599	0,2547	0,0605	0,1666	3,104	3,16	-29	-34	0,671	0,6038	0
Ventral orbital cortex [L]	0,5692	2453	-0,162	1,2509	0,5914	0.9571	0,2841	0,4067	0,3441	3,096	3,208	-30	-28	0,634	0,6342	0
Ventral orbital cortex [R]	0.5692	2453	-0.162	1.2509	0.5914	0.9571	0.2841	0.4067	0.3441	3.096	3.208	-30	-28	0.634	0.6342	0
Primary visual cortex [L]	0,6086	3806	-0,159	0,4822	0,7879	0,6555	0,4056	0,4334	0,4209	2,976	3,152	45	-35	0,415	0,5073	0
Primary visual cortex [R]	0,6086	3806	-0,159	0,4822	0,7879	0,6555	0,4056	0,4334	0,4209	2,976	3,152	45	-35	0,415	0,5073	0
Agranular insular cortex dorsal part [L]	0,5924	1371	-0,117	0,3862	0,8861	0,6555	0,4614	0,3288	0,3994	3,016	3,152	4	-36	0,626	0,6278	0
Agranular insular cortex dorsal part [R]	0.5924	1371	-0.117	0.3862	0.8861	0.6555	0,4614	0.3288	0.3994	3.016	3.152	4	-36	0.626	0.6278	0
Lateral orbital cortex [L]	0,4954	2007	-0,056	0,6744	0,6896	0,7058	0,3282	0,38	0,3562	3,048	3,184	-36	-31	0.546	0,596	0
Lateral orbital cortex [R]	0,4954	2007	-0,056	0,6744	0,6896	0,7058	0,3282	0,38	0,3562	3,048	3,184	-36	-31	0,546	0,596	0
Piriform cortex [L]	0,5661	2511	-0.585	0,3862	1,1809	0,8063	0,2778	0,2907	0,2854	2,92	3,096	-52	-42	0,422	0,5859	0
Piriform cortex [R]	0,5661	2511	-0,585	0,3862	1,1809	0,8063	0,2778	0,2907	0,2854	2,92	3,096	-52	42	0,422	0,5859	0
Granular insular cortex [L]	0.5992	1341	-0.075	0.7705	0.1001	0.4544	0.3496	0.4352	0.3922	3.032	3.128	-38	-38	0.653	0.5893	0
Granular insular cortex [R]	0,5992	1341	-0,075	0,7705	0,1001	0,4544	0,3496	0,4352	0.3922	3,032	3,128	-38	-38	0.653	0,5893	0
Medial orbital cortex [L]	0,5043	1727	-0,059	1,1548	-0,0964	0.5549	0,2571	0,4339	0,3412	3,056	3,104	-35	41	0.627	0,4739	0
Medial orbital cortex [R]	0.5043	1727	-0.059	1.1548	-0.0964	0.5549	0.2571	0.4339	0.3412	3.056	3.104	-35	4	0.627	0,4739	0
Secondary visual cortex [L]ateral area [L]	0,5007	4094	-0,529	0,8666	-0,2929	0,3036	0,2778	0,5799	0,4438	3,008	3,12	41	40	0,486	0,3842	0
Secondary visual cortex [L]ateral area [R]	0,5007	4094	-0,529	0,8666	-0,2929	0,3036	0,2778	0,5799	0,4438	3,008	3,12	41	40	0,486	0,3842	0
Agranular insular cortex ventral part [L]	0,6087	1182	-0,064	0,6744	0,4931	0,6052	0,2041	0,3457	0,282	2,936	3,128	-50	-38	0,498	0,6241	0
Agranular insular cortex ventral part [R]	0.6087	1182	-0,064	0.6744	0,4931	0.6052	0.2041	0.3457	0.282	2.936	3.128	-50	-38	0.498	0.6241	0
Primary somatosensory cortex barrel field [L]	0,6237	2066	-0,077	0,8944	1,1269	1,0674	0,62	0,6509	0,6397	2,928	3,112	-51	40	0,362	0,4346	0
Primary somatosensory cortex barrel field [R]	0,6237	2066	-0,077	0,8944	1,1269	1,0674	0,62	0,6509	0,6397	2,928	3,112	-51	40	0,362	0,4346	0
Dysgranular insular cortex [L]	0,664	689	-0,031	0,4822	-0,0964	0,203	0,3225	0,395	0,3554	2,96	3,04	47	49	0,522	0,4855	0
Dysgranular insular cortex [R]	0,664	689	-0,031	0,4822	-0,0964	0,203	0,3225	0,395	0,3554	2,96	3,04	-47	49	0,522	0,4855	0
Presubiculum [L]	0,4678	1068	0,0573	-0,575	0,6896	0,0522	0,48	0,3087	0,3797	2,864	3,088	-59	43	0,257	0,4937	0
Retrosplenial granular cortex b region [L]	0.5	1424	0,0122	-0,19	-0,4894	-0.35	0,5612	0,4267	0.5473	2,992	2,824	40	-74	0,455	0,2416	0
Presubiculum [R]	0,4678	1068	0,0573	-0.575	0,6896	0,0522	0,48	0,3087	0.3797	2,864	3,088	-59	43	0,257	0,4937	0
Retrosplenial granular cortex b region [R]	0.5	1424	0.0122	-0.19	-0,4894	-0.35	0.5612	0,4267	0.5473	2.992	2.824	40	-74	0.455	0.2416	0
Parietal cortex posterior area [L]	0,5222	708	0,0326	-0,286	0,1984	-0,048	0,4765	0,3629	0,4184	2,88	3,096	-58	43	0,36	0,4467	0
Parietal cortex posterior area [R]	0,5222	708	0,0326	-0,286	0,1984	-0,048	0,4765	0.3629	0,4184	2,88	3,096	-58	-43	0,36	0,4467	0
Cingulate cortex area 1 [L]	0,5923	606	0,03	0,0979	0,0019	0,0522	0,3265	0,277	0,3038	2,904	3,008	-54	-53	0,433	0,3716	0
Cingulate cortex area 1 [R]	0.5923	606	0.03	0.0979	0.0019	0.0522	0.3265	0.277	0.3038	2.904	3.008	-54	-53	0.433	0.3716	0

Name (Fortsetzung lokale Parameter Teil 3)	FC	Stress	Shapley	Zout	$Z_{\rm ln}$	Z_{AII}	PCourt	PC_{ln}	PCAIL	Radou	$\operatorname{Rad}_{\operatorname{in}}$	Cenour	Cen	Hub	Aut	Knot
Parasubiculum [L]	0.4815	668	0.0802	-0.575	0.2966	-0,149	0,4082	0.3808	0.3932	2.816	3.04	-65	49	0.279	0,4746	0
Parasubiculum [R]	0,4815	668	0,0802	-0,575	0,2966	-0,149	0,4082	0,3808	0,3932	2,816	3,04	-65	49	0,279	0,4746	0
Primary auditory cortex [L]	0.5533	1975	-0,417	0,0979	-0,1946	-0,048	0,4159	0.1244	0.3144	2.952	2,888	49	-68	0,39	0.2687	0
Primary auditory cortex [R]	0.5533	1975	-0,417	0.0979	-0,1946	-0.048	0.4159	0.1244	0.3144	2.952	2.888	-49	-68	0.39	0.2687	0
Retrosplenial dorsal [L]	0.6212	421	0.071	0.194	-0.0964	0.0522	0.18	0	0.1078	2.808	2.912	-66	-65	0.361	0.3035	0
Primary somatosensory cortex forelimb region [L]	0,5692	858	0,0769	1,3416	1,1269	1,2452	0.5244	0,62	0,5861	2,688	3,04	-75	49	0,197	0.3265	0
Retrosplenial dorsal [R]	0,6212	421	0,071	0,194	-0,0964	0,0522	0,18	0	0,1078	2,808	2,912	-66	-65	0,361	0,3035	0
Primary somatosensory cortex forelimb region [R]	0.5692	858	0.0769	1.3416	1.1269	1.2452	0.5244	0.62	0.5861	2.688	3.04	-75	49	0.197	0.3265	0
Amygdalopiriform transition area [L]	0,5415	249	0,1101	-0,094	-0,0964	-0,099	0,3324	0	0,2076	2,904	2,776	-54	-82	0,439	0,3014	0
Primary somatosensory cortex hindlimb region [L]	0,5974	006	0,0772	1,3416	0,8452	1,0674	0,5494	0,5703	0,5657	2,824	2,976	-64	-57	0,273	0,2503	0
Amygdalopiriform transition area [R]	0.5415	249	0,1101	-0,094	-0,0964	-0,099	0,3324	0	0,2076	2,904	2,776	-54	-82	0,439	0,3014	0
Primary somatosensory cortex hindlimb region [R]	0,5974	006	0,0772	1,3416	0,8452	1,0674	0,5494	0,5703	0,5657	2,824	2,976	-64	-57	0,273	0,2503	0
Posterolateral cortical nucleus [L]	0,5649	504	0,1107	-0,094	0,0019	-0,048	0,1172	0,1107	0,1139	2,776	2,848	-70	-73	0,314	0,3327	0
Postsubiculum [L]	0,4221	622	0,1404	-0,671	0,1001	-0,3	0,314	0,376	0,3563	2,8	2,944	-68	-62	0,193	0,359	0
Posterolateral cortical nucleus [R]	0,5649	504	0,1107	-0,094	0,0019	-0,048	0,1172	0,1107	0,1139	2,776	2,848	-70	-73	0,314	0,3327	0
Postsubiculum [R]	0,4221	622	0.1404	-0.671	0.1001	-0.3	0.314	0.376	0.3563	2.8	2,944	-68	-62	0.193	0.359	0
Temporal association cortex 1 [L]	0,474	1556	-0,189	-0.19	-0.5876	-0,4	0.3878	0.2778	0.3496	2.952	2.872	49	-70	0.341	0.2614	0
Olfactory tubercle [L]	0,1481	211	0,2351	-1,151	0,6896	-0,249	0	0,2524	0,2248	2,456	3,064	-98	48	0,088	0,5006	0
Temporal association cortex 1 [R]	0,474	1556	-0,189	-0,19	-0,5876	-0,4	0,3878	0,2778	0,3496	2,952	2,872	49	-70	0,341	0,2614	0
Olfactory tubercle [R]	0.1481	211	0.2351	-1.151	0.6896	-0.249	0	0.2524	0.2248	2.456	3,064	-98	48	0.088	0.5006	0
Posteromedial cortical nucleus [L]	0.5784	180	0,1382	-0,094	-0,5876	-0,35	0,2076	0,1653	0,1913	2.8	2,728	-67	-88	0,325	0,2201	0
Posteromedial cortical nucleus [R]	0,5784	180	0,1382	-0,094	-0.5876	-0.35	0,2076	0,1653	0,1913	2,8	2,728	-67	-88	0,325	0,2201	0
Cingulate cortex area 2 [L]	0.5588	208	0,1505	-0,383	-0,3911	-0,4	0	0.3378	0,203	2,752	2,888	-73	-68	0.253	0,281	0
Cingulate cortex area 2 [R]	0,5588	208	0,1505	-0,383	-0,3911	-0,4	0	0,3378	0,203	2,752	2,888	-73	-68	0,253	0,281	0
Primary somatosensory cortex trunk region [L]	0,7333	348	0,1087	0	0,5634	0.3558	0.562	0,5511	0,5562	2,576	2,832	-86	-73	0,154	0,199	0
Primary somatosensory cortex trunk region [R]	0,7333	348	0,1087	0	0,5634	0,3558	0,562	0,5511	0,5562	2,576	2,832	-86	-73	0,154	0,199	0
Primary visual cortex binocular area [L]	0,4869	86	0,1949	-0,286	-0,3911	-0,35	0	0	0	2,704	2,808	-80	-79	0,245	0,254	0
Primary visual cortex binocular area [R]	0.4869	86	0.1949	-0.286	-0.3911	-0.35	0	0	0	2.704	2.808	-80	-79	0.245	0.254	0
Dorsolateral entorhinal cortex [L]	0.489	58	0.1939	-0.286	-0.5876	-0.451	0.1327	0	0.0799	2.76	2.696	-72	-92	0.294	0.2183	0
Dorsal peduncular cortex [L]	0,4035	178	0.2265	-0,479	-0,6859	-0,601	0,2604	0,2975	0,2778	2,68	2,76	-71	-82	0,238	0,2212	0
Dorsolateral entorhinal cortex [R]	0,489	58	0,1939	-0,286	-0,5876	-0,451	0,1327	0	0,0799	2,76	2,696	-72	-92	0,294	0,2183	0
Dorsal peduncular cortex [R]	0,4035	178	0.2265	-0.479	-0.6859	-0.601	0.2604	0.2975	0.2778	2.68	2.76	-71	-82	0.238	0.2212	0
Frontal cortex area 3 [L]	0,4559	104	0,2165	-0,447	-1,4086	-1,067	0,62	0,5562	0,6503	2,768	3	-68	-55	0,189	0,3312	0
Frontal cortex area 3 [R]	0,4559	104	0,2165	-0,447	-1,4086	-1,067	0,62	0,5562	0,6503	2,768	3	-68	-55	0,189	0,3312	0
Retrosplenial granular cortex c region [L]	0.5	269	0.1964	-0.671	-0.9806	-0.853	0,4592 î	0.375	0.4339	2.832	2.744	-63	-84 1	0.268	0.1591	0 0
Dorsolateral orbital cortex L	1850,0	2	0,194	c/ c.0-	-0,4894	166,0-	0	0,1528	0,0868	2,696	2,816	-81	-/8	0,222	0,24/9	0
Ketrospieniai granular cortex c region K Doreolateral orbital cortex [P]	C.U 1953 O	697	0,1964	-0.6/1	-0,9806	-0,853	0,4592	C/5.0 9731.0	0,4559 0.0868	2,832 7,606	2,/44	-03	48- 24 5	0,268	1961,0	
Lateral narietal association cortex [1.]	0 7773	143	0.1811	0.4472	0.5634	0.5337	0.2188	0.4298	0.3546	2,020	2.768	10-	-84	0.085	0.1392	
Lateral parietal association cortex [R]	0.7273	143	0.1811	0,4472	0.5634	0.5337	0.2188	0.4298	0.3546	2.424	2.768	-97	-84	0.085	0.1392	0
Dorsal tenia tecta [L]	0,5606	98	0,2233	-0,959	-0.5876	-0,802	0,375	0	0,1975	2,76	2,728	-73	-89	0,222	0,1971	0
Ventral tenia tecta [L]	0,4808	34	0,2271	-0,767	-0.5876	-0,702	0	0	0	2.544	2,744	-87	-85	0,168	0,1971	0
Dorsal intermediate entorhinal cortex [L]	0,3667	109	0,2688	-0,767	-0,6859	-0,752	0	0,18	0,1049	2,688	2,816	-82	-78	0,152	0,246	0
Primary somatosensory cortex dysgranular region [L]	0.5	171	0.2239	-1.789	-1.1269	-1.423	0.6111	0.6667	0.642	2.816	2,848	-65	-73	0.269	0.1406	0
Primary somatosensory cortex upper [L]ip region [L]	1	84	0,1631	0	0	0	0,4444	0,4444	0,4444	2,504	2,616	-97	-101	0,127	0,1225	0
Dorsal tenia tecta [R]	0,5606	98	0,2233	-0,959	-0.5876	-0,802	0,375	0	0,1975	2,76	2,728	-73	-89	0,222	0,1971	0
Ventral tenia tecta [R]	0,4808	34	0.2271	-0.767	-0.5876	-0.702	0	0	0	2.544	2,744	-87	-85	0.168	0.1971	0
Dorsal intermediate entorhinal cortex [R]	0,3667	109	0,2688	-0,767	-0,6859	-0,752	0	0,18	0,1049	2,688	2,816	-82	-78	0,152	0,246	0
Primary somatosensory cortex dysgranular region [R]	0.5	171	0,2239	-1,789	-1,1269 °	-1,423	0,6111	0,6667	0,642	2,816	2,848	-65	-73	0,269	0,1406	0
Primary somatosensory cortex upper [L]ip region [K]	I I	84 7 2	0,1631	0 0	0 0	0 0	0,4444	0,4444	0,4444	2,504	2,616	16-	101-	0,127	0,1225	0 0
ketrospleniai granular cortex a region i L. Retrosnlenial granular cortex a region [R]	0.5076	152 152	0.2249	> o	> 0	> 0	0.5938 0.5938	0.5679	0.5813	2.32	2.792	16- 16-	- 78	0.093 0.093	0.1667 0.1667	> 0
			-								í	1		11212		,

Name (Fortsetzung lokale Parameter Teil 3)	FC	Stress	Shanlev	Zour	Z	Zau	PCour	PC.	PC	Rado	Rad	Ceno	Cen	Hub	Aut	Knot
Medial parietal association cortex [L]	0.5972	46	0.2273	-0.447	0	-0.178	0.2778	0.375	0.3367	2.392	2.632	-102	-101	0.068	0.0896	0
Primary somatosensory cortex jaw region [L]	1	65	0,2048	-1,055	-1,0789	-1,104	0,4082	0,4082	0,4082	2,784	2,872	-70	-71	0,168	0,1808	0
Medial parietal association cortex [R]	0.5972	46	0.2273	-0,447	0	-0,178	0.2778	0.375	0.3367	2.392	2.632	-102	-101	0,068	0,0896	0
Primary somatosensory cortex jaw region [R]	1	65	0.2048	-1.055	-1.0789	-1.104	0.4082	0,4082	0.4082	2.784	2.872	-70	-71	0.168	0.1808	0
Parietal cortex posterior area dorsal part [L]	0.3667	28	0.2745	-1.151	-0.7841	-1,004	0	0.1975	0.142	2.384	2.752	-100	-84	0.081	0.1687	0
Parietal cortex posterior area dorsal part [R]	0,3667	28	0,2745	-1,151	-0,7841	-1,004	0	0,1975	0,142	2,384	2,752	-100	-84	0,081	0,1687	0
Ventral intermediate entorhinal cortex [L]	0,3889	5	0,3158	-0,959	-1,1771	-1,104	0	0,32	0,1653	2,624	2,696	-90	-91	0,138	0,1358	0
Ventral intermediate entorhinal cortex [R]	0.3889	5	0.3158	-0.959	-1.1771	-1.104	0	0.32	0.1653	2.624	2.696	-90	-91	0.138	0.1358	0
Primary visual cortex monocular area [L]	1	0	0,2499	-1,343	-1,3736	-1,406	0.5	0,5	0,5	2,408	2.52	-87	-95	0,058	0,0627	0
Primary visual cortex monocular area [R]	1	0	0,2499	-1,343	-1,3736	-1,406	0.5	0.5	0.5	2,408	2,52	-87	-95	0,058	0,0627	0
Primary somatosensory cortex shoulder region [L]	0	0	-	-1,342	-1,6903	-1,601	0.5	-	0.5	2,472	0	-102	-126	0,098	0	0
Primary somatosensory cortex shoulder region [R]	0	0	1	-1,342	-1,6903	-1,601	0.5	1	0,5	2,472	0	-102	-126	0,098	0	0
Cortex amygdala transition zone [L]	0,25	0	0,5774	-1.247	-1,4718	-1,406	0	0	0	2,184	2,112	-117	-125	0,048	0,0147	0
Cortex amygdala transition zone [R]	0,25	0	0,5774	-1,247	-1,4718	-1,406	0	0	0	2,184	2,112	-117	-125	0,048	0,0147	0
Secondary auditory cortex dorsal area [L]	0.5	0	0.5	-1,439	-1.3736	-1,456	0	0	0	2,008	2,208	-119	-119	0,009	0,028	0
Secondary auditory cortex dorsal area [R]	0.5	0	0.5	-1.439	-1.3736	-1.456	0	0	0	2.008	2.208	-119	-119	0.009	0.028	0
Parietal cortex posterior area rostral part [L]	0	0	0.5	-1.439	-1.4718	-1.506	0	0	0	2.064	2.128	-119	-125	0.013	0.0169	0
Secondary auditory cortex ventral area [L]	0	0	-	-1,343	-1,5701	-1,506	0	1	0	2,48	0	-111	-126	0,04	0	0
Secondary visual cortex mediomedial area [L]	0,5	0	0,6666	-1,439	-1,4718	-1,506	0	0	0	2,248	1,888	-119	-125	0,025	0,0119	0
Parietal cortex posterior area rostral part [R]	0	0	0.5	-1.439	-1,4718	-1.506	0	0	0	2.064	2.128	-119	-125	0.013	0.0169	0
Secondary auditory cortex ventral area [R]	0	0	-	-1,343	-1,5701	-1,506	0	1	0	2,48	0	-111	-126	0,04	0	0
Secondary visual cortex mediomedial area [R]	0,5	0	0,6666	-1,439	-1,4718	-1,506	0	0	0	2,248	1,888	-119	-125	0,025	0,0119	0
Secondary visual cortex mediolateral area [L]	0	0	-	-1,439	-1,5701	-1.557	0	-	0	2,264	0	-119	-126	0,025	0	0
Secondary visual cortex mediolateral area [R]	0	0	-	-1,439	-1,5701	-1,557	0	-	0	2,264	0	-119	-126	0,025	0	0

Tabelle 18: Zyklenanalyse des bilateralen C1-Netzwerkes. Mittlere Häufigkeiten der Regionen an zyklischen Verbindungen von 1 bis 6 sind wiedergegeben. Der perirhinale Kortex ist beispielsweise im bilateralen C1 Netzwerk im Mittel 49 mal an einem 2er Zyklus beteiligt.

Region	1	2	3	4	5	6
Perirhinal cortex	1	49	1032	26211	655696	16278447
Infralimbic cortex	1	45	955	24436	619642	15547988
Prelimbic cortex	1	36	780	19609	492108	12288188
Medial agranular prefrontal cortex	1	34	753	18976	479892	12071064
Lateral agranular prefrontal cortex	1	35	724	17943	452133	11381299
Secondary somatosensory cortex	1	36	634	15359	384147	9677189
Agranular insular cortex posterior part	1	24	582	14607	368494	9252745
Lateral entorhinal cortex	1	36	606	13949	334524	8220424
Medial entorhinal cortex	1	33	571	13216	317339	7799171
Ectorhinal cortex	1	31	575	13088	310878	7551396
Ventral orbital cortex	1	22	457	11483	291491	7361463
Agranular insular cortex dorsal part	0	21	443	10970	275593	6909388
Granular insular cortex	1	20	416	10464	266545	6737533
Lateral orbital cortex	1	17	373	9042	227176	5724224
Agranular insular cortex ventral part	1	19	372	8836	218898	5462361
Medial orbital cortex	1	17	348	8409	212873	5381044
Piriform cortex	1	21	370	8061	193173	4776118
Dysgranular insular cortex	1	18	311	7568	187351	4679231
Primary visual cortex	1	22	308	6443	153652	3824853
Secondary visual cortex lateral area	1	16	242	5464	136562	3492545
Primary somatosensory cortex barrel field	1	18	235	5126	123934	3117708
Cingulate cortex area 1	1	14	212	5047	123903	3073470
Parietal cortex posterior area	0	13	228	5102	121841	2999617
Presubiculum	1	13	182	3914	96042	2426326
Amygdalopiriform transition area	1	11	184	4027	95726	2350448
Parasubiculum	1	12	179	3773	92706	2336973
Retrosplenial granular cortex b region	1	14	159	3240	81849	2139393
Retrosplenial dorsal	1	13	179	3763	86637	2070308
Posterolateral cortical nucleus	1	11	173	3580	81346	1952853
Primary auditory cortex	1	13	163	3273	76185	1866982
Temporal association cortex 1	1	9	124	2774	68947	1745819
Postsubiculum	0	9	126	2522	60433	1506829
Cingulate cortex area 2	1	9	95	2270	54938	1368129
Primary somatosensory cortex hindlimb region	1	12	137	2457	54166	1318074
Primary somatosensory cortex forelimb region	1	12	142	2429	52532	1270617
Dorsal peduncular cortex	1	8	105	2150	51159	1267231
Posteromedial cortical nucleus	1	10	118	2328	52546	1257109
Dorsolateral entorhinal cortex	1	7	103	2199	51194	1234749
Dorsolateral orbital cortex	0	7	83	1951	46926	1146899
Primary visual cortex binocular area	0	7	103	2112	47959	1144730
Frontal cortex area 3	0	6	65	1548	40206	1040403
Olfactory tubercle	1	4	73	1570	37378	921075
Dorsal tenia tecta	0	6	62	1490	36163	894370
Retrosplenial granular cortex c region	1	7	63	1227	29728	755859
Dorsal intermediate entorhinal cortex	0	3	46	1120	26785	654002
Ventral tenia tecta	1	6	63	1228	27347	645609
Primary somatosensory cortex dysgranular region	1	6	41	1005	25039	633861
Primary somatosensory cortex trunk region	1	11	88	1295	25487	592417
Primary somatosensory cortex jaw region	0	7	30	799	20529	525899
Ventral intermediate entorhinal cortex	0	2	22	535	12291	301962
Primary somatosensory cortex upper lip region	0	9	57	708	12738	284355
Retrosplenial granular cortex a region	1	5	31	436	10564	278782
Lateral parietal association cortex	0	8	37	528	10045	230562
Parietal cortex posterior area dorsal part	0	3	22	430	9416	230484
Medial parietal association cortex	0	5	26	325	5840	131092
Primary visual cortex monocular area	1	4	12	126	2222	56004
Cortex amygdala transition zone	0	0	3	44	815	18238
Secondary auditory cortex dorsal area	0	1	1	15	265	5843
Secondary visual cortex mediomedial area	0	0	1	8	201	5136
Parietal cortex posterior area rostral part	0	1	0	0	0	0
Secondary auditory cortex ventral area	0	0	0	0	0	0
Primary somatosensory cortex shoulder region	0	0	0	0	0	0
Secondary visual cortex mediolateral area	0	0	0	0	0	0

- O	
Ģ	
Ξ	
3	
÷	
E -	
Ξ	
E	
Š	
ă	
Ð	
<u>.</u> ଇ	
e e	
S	
9	
\triangleleft	
نہ	
Ξ	
÷.	
Ξ	
- So	
ι, Έψ	
R	
Ľ,	
Ð	
5	
٠Ĕ	
E	
ē	
EL L	
g	
·H	
<i>o</i>	
ň	
лe	
<u></u>	
. 20	
S.	
К	
a'	
hę	
^o	
·is	
ä	
4	
5	
÷	
Ξ	
e	
S	
E	
5	
e	
- C	
Ξ.	
Ĕ,	
9	
3	
Ξ.	
÷	
5	
ž	
ZW6	
etzwe	
Netzwe	
-Netzwe	
31-Netzwe	
C1-Netzwe	
n C1-Netzwe	
len C1-Netzwe	
alen C1-Netzwe	
eralen C1-Netzwe	
ateralen C1-Netzwe	
ilateralen C1-Netzwe	
bilateralen C1-Netzwe	
n bilateralen C1-Netzwe	
im bilateralen C1-Netzwe	
n im bilateralen C1-Netzwe	
en im bilateralen C1-Netzwe	
ifen im bilateralen C1-Netzwe	
otifen im bilateralen C1-Netzwe	
Aotifen im bilateralen C1-Netzwe	
Motifen im bilateralen C1-Netzwe	
n Motifen im bilateralen C1-Netzwe	
on Motifen im bilateralen C1-Netzwe	
von Motifen im bilateralen C1-Netzwe	
ig von Motifen im bilateralen C1-Netzwe	
ang von Motifen im bilateralen C1-Netzwe	
dung von Motifen im bilateralen C1-Netzwe	
ildung von Motifen im bilateralen C1-Netzwe	
Bildung von Motifen im bilateralen C1-Netzwe	
r Bildung von Motifen im bilateralen C1-Netzwe	
ler Bildung von Motifen im bilateralen C1-Netzwe	
der Bildung von Motifen im bilateralen C1-Netzwe	
in der Bildung von Motifen im bilateralen C1-Netzwe	
an der Bildung von Motifen im bilateralen C1-Netzwe	
an an der Bildung von Motifen im bilateralen C1-Netzwe	
nen an der Bildung von Motifen im bilateralen C1-Netzwe	
onen an der Bildung von Motifen im bilateralen C1-Netzwe	
gionen an der Bildung von Motifen im bilateralen C1-Netzwe	
egionen an der Bildung von Motifen im bilateralen CI-Netzwe	
Regionen an der Bildung von Motifen im bilateralen C1-Netzwe	
r Regionen an der Bildung von Motifen im bilateralen C1-Netzwe	
ler Regionen an der Bildung von Motifen im bilateralen C1-Netzwe	
der Regionen an der Bildung von Motifen im bilateralen C1-Netzwe	
m der Regionen an der Bildung von Motifen im bilateralen C1-Netzwe	
ten der Regionen an der Bildung von Motifen im bilateralen C1-Netzwe	
eiten der Regionen an der Bildung von Motifen im bilateralen C1-Netzwe	
keiten der Regionen an der Bildung von Motifen im bilateralen C1-Netzwe	
igkeiten der Regionen an der Bildung von Motifen im bilateralen C1-Netzwe	vC.
ıfigkeiten der Regionen an der Bildung von Motifen im bilateralen CI-Netzwe	svC.
äufigkeiten der Regionen an der Bildung von Motifen im bilateralen C1-Netzwe	fsvC
Häufigkeiten der Regionen an der Bildung von Motifen im bilateralen C1-Netzwe	btif svC.
Häufigkeiten der Regionen an der Bildung von Motifen im bilateralen C1-Netzwe	fotif svC.
9: Häufigkeiten der Regionen an der Bildung von Motifen im bilateralen C1-Netzwe	Motif svC.
19: Häufigkeiten der Regionen an der Bildung von Motifen im bilateralen C1-Netzwe	n Motif svC.
e 19: Häufigkeiten der Regionen an der Bildung von Motifen im bilateralen C1-Netzwe	em Motif svC.
lle 19: Häufigkeiten der Regionen an der Bildung von Motifen im bilateralen C1-Netzwe	dem Motif svC.
belle 19: Häufigkeiten der Regionen an der Bildung von Motifen im bilateralen C1-Netzwe	h dem Motif svC.
abelle 19: Häufigkeiten der Regionen an der Bildung von Motifen im bilateralen C1-Netzwe	ch dem Motif svC.
Tabelle 19: Häufigkeiten der Regionen an der Bildung von Motifen im bilateralen C1-Netzwe	nach dem Motif svC.

nach dem Mour syc.																						
Rezion	Abk.	3-01	3-02	3-03	3-04	-05	-06 3-	07 3-	08 3-	09 3-1	0 3-1	3-12	3-13	svC	svI	svO	r4ca	r5ca	r4ci	r5ci r	r4ci m	5ci
Secondary visual cortex lateral area	V2L	75	153	LL	295	40	272	9	25 1	69 4	2	3 112	41	6494	3746	2097	1153	4521	15	57	11	7
Secondary visual cortex lateral area	V2L	75	153	LL	295	40	272	9	25 1	69 4	2	3 112	41	6494	3746	2097	1153	4521	15	57	11	7
Primary visual cortex	V1	59	96	77	259	22	274	1	25 2	78 2	7 2	104	88	5387	4170	3433	2215	11184	31	204	3	1
Primary visual cortex	VI	59	96	77	259	22	274	1	25 2	78 2	7 2	104	88	5387	4170	3433	2215	11184	31	204	ю	1
Presubiculum	PrS	85	127	51	209	28	173	0	40 1	45	6 2,	7 100	38	5280	1730	2317	066	4461	13	46	1	9
Presubiculum	PrS	85	127	51	209	28	173	0	40 1	45	6 2'	7 100	38	5280	1730	2317	066	4461	13	46	-	9
Primary somatosensory cortex barrel field	SIBF	30	94	45	250	6	221	2	15 2	51 3	4	3 73	63	4680	2994	1734	1666	7001	42	94	6	4
Primary somatosensory cortex barrel field	SIBF	30	94	45	250	6	221	2	15 2	51 3.	4	3 73	63	4680	2994	1734	1666	7001	42	94	6	4
Secondary somatosensory cortex	S_2	40	90	36	344	6	282	1	51 5	80 3	7 2	192	202	4549	2047	1071	3742	12815	52	134	3	5
Secondary somatosensory cortex	S_2	40	90	36	344	6	282	1	51 5	80 3	7 2	192	202	4549	2047	1071	3742	12815	52	134	3	5
Piriform cortex	Pir	53	66	78	220	17	248	4	20 2	14 3	7 34	131	66	4431	3058	2782	1607	6692	40	58	2	4
Piriform cortex	Pir	53	66	78	220	17	248	4	20 2	14 3	7 34	131	66	4431	3058	2782	1607	6692	40	58	2	4
Medial entorhinal cortex	MEnt	13	38	6	238	3	182	0	25 4	48 2	5 14	4 140	203	4113	1931	1368	3546	14396	123	164	0	5
Medial entorhinal cortex	MEnt	13	38	6	238	3	182	0	25 4	48 2	5 14	4 140	203	4113	1931	1368	3546	14396	123	164	0	5
Infralimbic cortex	IL	53	147	72	523	28	487	×	59 6	93 6	9 52	2 340	269	3922	2822	1263	3348	8318	54	105	ŝ	4
Infralimbic cortex	IL	53	147	72	523	28	487	~	59 6	93 6	9 5.	2 340	269	3922	2822	1263	3348	8318	54	105	3	4
Agranular insular cortex posterior part	AIP	142	171	67	367	47	269	4	83 2	32 4	4	5 214	160	3913	2031	1802	1156	3011	28	18	16	4
Agranular insular cortex posterior part	AIP	142	171	67	367	47	269	4	83 2	32 4	4	5 214	160	3913	2031	1802	1156	3011	28	18	16	4
Retrosplenial granular cortex b r.	RSGb	49	88	80	193	23	244	1	29 1	42 2	2	78	29	3797	3162	2383	1000	3935	17	17	0	3
Retrosplenial granular cortex b r.	RSGb	49	88	80	193	23	244	1	29 1	42 2	2	78	29	3797	3162	2383	1000	3935	17	17	0	.0
Ventral orbital cortex	ΛO	96	143	52	338	21	256	×	56 2	54 4	7 33	3 176	113	3789	2160	1811	1335	5343	34	61	4	7
Ventral orbital cortex	ΛO	96	143	52	338	21	256	×	56 2	54 4	7 33	3 176	113	3789	2160	1811	1335	5343	34	61	4	7
Primary somatosensory cortex forelimb r.	SIFL	40	83	32	218	5	121	ю	11 1	18 1	5 2	41	41	3719	1849	1403	685	2099	10	0	4	0
Primary somatosensory cortex forelimb r.	SIFL	40	83	32	218	5	121	3	11 1	18	5 2	41	41	3719	1849	1403	685	2099	10	0	4	0
Medial agranular prefrontal cortex	AGm	94	185	162	363	49	571	4	87 4	08 5	8	307	192	3550	2054	2321	2124	4735	38	12	×	2
Medial agranular prefrontal cortex	AGm	94	185	162	363	49	571	4	87 4	08 5	8	307	192	3550	2054	2321	2124	4735	38	12	×	2
Perirhinal cortex	A35	70	126	37	660	23	428	9	54 8	02 4	9 35	323	327	3459	1537	1458	3971	8811	84	100	2	1
Perirhinal cortex	A35	70	126	37	660	23	428	9	54 8	02 4	9 35	323	327	3459	1537	1458	3971	8811	84	100	7	1
Agranular insular cortex dorsal part	AID	45	129	80	221	26	268	4	42 2	39 3	7 3'	7 162	120	3439	2057	1240	1305	4663	16	76	5	10
Agranular insular cortex dorsal part	AID	45	129	80	221	26	268	4	42 2	39 3	7 3'	7 162	120	3439	2057	1240	1305	4663	16	76	5	10
Lateral agranular prefrontal cortex	AGI	48	193	94	382	20	492	4	43 4	70 6	1 59	271	194	3264	1810	1774	2764	0606	64	99	1	4
Lateral agranular prefrontal cortex	AGI	48	193	94	382	20	492	4	43 4	70 6	1 59	271	194	3264	1810	1774	2764	0606	64	99	-	4
Lateral entorhinal cortex	LEnt	14	22	29	279	7	219	0	21 5	02	~	160	219	3215	4087	1217	3952	16313	160	159	0	0
Lateral orbital cortex	ΓO	89	185	105	267	40	264	7	56 1	76 4	7 3(5 163	78	3215	2253	1586	1045	3004	23	24	5	4
Lateral entorhinal cortex	LEnt	14	22	29	279	7	219	0	21 5	02	~	160	219	3215	4087	1217	3952	16313	160	159	0	0
Lateral orbital cortex	ΓO	89	185	105	267	40	264	7	56 1	76 4	7 30	5 163	78	3215	2253	1586	1045	3004	23	24	5	4
Prelimbic cortex	PrL	78	158	116	391	30	500	-	81 4	40 5	90 5) 273	227	3169	3738	2365	2412	4465	54	16	0	3
Prelimbic cortex	PrL	78	158	116	391	30	500	1	81 4	40 5	2) 273	227	3169	3738	2365	2412	4465	54	16	0	3
Medial orbital cortex	МО	94	126	83	264	40	226	4	42 1	98 5	1 35	3 153	70	3138	2062	1907	1044	4015	18	35	5	3
Medial orbital cortex	МО	94	126	83	264	40	226	4	42 1	98 5	1 38	3 153	70	3138	2062	1907	1044	4015	18	35	5	3
Granular insular cortex	GI	57	108	58	249	18	226	1	45 2	61 2	0 2	157	119	3079	1847	1467	1137	3707	27	42	3	8
Granular insular cortex	GI	57	108	58	249	18	226	1	45 2	61 2	0 2	157	119	3079	1847	1467	1137	3707	27	42	з	8
Primary somatosensory cortex hindlimb r.	SIHL	25	63	43	179	5	172	1	7 1	24 1	9 19	35	41	3073	2115	1392	773	2635	16	0	5	0
Primary somatosensory cortex hindlimb r.	SIHL	25	63	43	179	5	172	1	7 1	24 1	9 19	35	41	3073	2115	1392	773	2635	16	0	5	0
Postsubiculum	Post	62	118	46	179	23	117	5	24 1	02 1	3	7 62	23	3036	1788	1303	766	2774	5	×	ŝ	6
Postsubiculum	Post	62	118	46	179	23	117	5	24 1	02 1		7 62	23	3036	1788	1303	766	2774	5	×	ŝ	6
Agranular insular cortex ventral part	AIV	99	121	35	300	21	189	1	55 1	71 3.	5	5 121	109	2909	1650	1341	838	3128	13	12	-	9
Agranular insular cortex ventral part	AIV	99	121	35	300	21	189	1	55 1	71 3.	5	5 121	109	2909	1650	1341	838	3128	13	12	-	9

Region	Abk.	3-01	3-02	3-03	3-04	3-05 3	-06 3	-07 3-	08 3-	09 3-	10 3-1	1 3-1	2 3-13)vs	NS	Ovs	r4ca	r5ca	r4ci	r5ci	nr4ci	nr5ci
Retrosplenial dorsal	RSd	35	33	33	132	ę	149	0	7 2	-07	10	5 5	7 56	280	1526	1983	1123	3939	2	13	0	0
Parietal cortex posterior area	ParP	67	94	57	215	26	187	9	24 1	56	37 1	7 9	9 43	277	1944	1570	1008	4580	22	38	ŝ	10
Parietal cortex posterior area	ParP	67	94	57	215	26	187	9	24 1	56	37 1	7 9	9 43	277	1944	. 1570	1008	4580	22	38	3	10
Parasubiculum	PaS	88	75	67	212	15	150	1	20 1	71	12 1	9 6	0 38	272	7 3384	2026	1006	3884	17	48	0	2
Parasubiculum	PaS	88	75	67	212	15	150	1	20 1	71	12 1	6 6	0 35	272	, 3384	2026	1006	3884	17	48	0	7
Dorsal peduncular cortex	DP	46	53	43	147	17	110	3	14 1	33	16	7 5	0 18	237	1735	1084	817	2798	8	9	Э	4
Dorsal peduncular cortex	DP	46	53	43	147	17	110	3	14 1	33	16	7 5	50 15	237	1735	1084	817	2798	8	9	3	4
Dysgranular insular cortex	DI	39	58	35	190	6	139	0	27 2	81	15 1	0	101	234	1801	884	1743	6613	37	61	0	_
Dysgranular insular cortex	DI	39	58	35	190	6	139	0	27 2	81	15 1	5 0	4 101	234	1801	884	1743	6613	37	61	0	-
Primary auditory cortex	Aul	33	60	74	149	6	169	0	9	16	13 1	3 7	70 4C	231	3540	1424	1300	5750	16	54	-	0
Primary auditory cortex	Aul	33	60	74	149	6	169	0	9	91	13 1	3 7	70 4	231	3540	1424	1300	5750	16	54	-	0
Cingulate cortex area 1	Cg1	32	76	61	143	9	178	5	17 2	36	22 2	3	'3 5t	227:	1891	1321	1393	5716	33	51	ŝ	ŝ
Cingulate cortex area 1	Cg1	32	76	61	143	9	178	5	17 2	36	22 2	3 7	3 56	227.	1891	1321	1393	5716	33	51	б	б
Ectorhinal cortex	A36	ŝ	21	25	202	4	230	0	21 3	44	6	6 14	4 211	222	2605	1369	2319	9451	6	128	0	0
Ectorhinal cortex	A36	ŝ	21	25	202	4	230	0	21 3	44	6	6 14	4 211	222	2605	1369	2319	9451	6	128	0	0
Retrosplenial granular cortex a r.	RSGa	21	65	30	175	5	47	0	6	29	6 1	1	3 6	220	1113	821	312	1672	0	-	0	7
Retrosplenial granular cortex a r.	RSGa	21	65	30	175	5	47	0	6	29	6 1	1	3 6	220	1113	821	312	1672	0	1	0	7
Temporal association cortex 1	TeA	55	110	43	130	13	173	4	10 1	62	12 1	3 6	0 24	218	1402	1628	911	3087	8	42	5	с
Temporal association cortex 1	TeA	55	110	43	130	13	173	4	10 1	62	12 1	3 6	0 24	218	1402	1628	911	3087	8	42	5	З
Primary somatosensory cortex trunk r.	SITr	20	21	4	83	0	87	0	2 1	41	4	1 2	4 30	207	751	1801	1109	4410	21	29	0	0
Primary somatosensory cortex trunk r.	SITr	20	21	4	83	0	87	0	2 1	41	4	1 2	4 30	207	751	1801	1109	4410	21	29	0	0
Amygdalopiriform transition area	APir	22	59	73	110	22	230	0	21 1	28	21 2	1 6	5 45	203	1426	1236	675	1922	0	0	-	-
Amygdalopiriform transition area	APir	22	59	73	110	22	230	0	21 1	28	21 2	1 6	5 45	203	1426	1236	675	1922	0	0	1	-
Posterolateral cortical nucleus	PLCo	27	53	40	134	6	123	1	17 1	50	15	9 5	3 52	201	1395	844	878	2373	0	0	7	2
Posterolateral cortical nucleus	PLCo	27	53	40	134	6	123	-	17 1	50	15	9 5	3 52	201	1395	844	878	2373	0	0	7	7
Cingulate cortex area 2	Cg2	32	65	25	135	10	141	2	7 1	55	8	4 6	17 24	200	1711	711	875	2643	5	12	7	7
Cingulate cortex area 2	Cg2	32	65	25	135	10	141	7	7 1	55	8	4 6	17 24	200	1711	711	875	2643	5	12	7	7
Primary visual cortex binocular area	VIB	41	68	48	133	17	119	0	13	85	17 1	0 5	50 15	192	1391	1074	541	1927	0	0	-	4
Primary visual cortex binocular area	VIB	41	68	48	133	17	119	0	13	85	17 1	0 5	30 15	192	1391	1074	541	1927	0	0	_	4
Lateral parietal association cortex	LPtA	20	6	0 0	92	0	49	0		88	0	4.	3 17	189	1066	905	865	3971	24	6	0	0
Lateral parietal association cortex	LPtA	50	6 1	61	92	0 1	49 1	0	- :	88	•	4 .	- 17 -	189	1066	905	865	3971	24	6	0 1	0 ·
Frontal cortex area 3	Fr3	89 (02	77	208	- 1	86	0 0	10	5 23	41 :		2 °	188	695	54 ÷	469	1298		01 :	- 1	4 .
Frontal cortex area 3 Destensional and and and area	PT3 DMCo	20 5	0/ 02	77	907 907	~ °	80 147		10	22	14 1	0 F	~ C	162	1631	- 40 - 10	404	2016	- :	01 01	~ <	4 <
rosteromedial cortical nucleus Posteromedial cortical nucleus	PMCo	1 1	00	55 55	00 86	c x	142			46	o 9		10 36 0	182	1691	619 913	981	3916	1 1	0 8		
Primary visual cortex monocular area	VIM	0	0	0	6	0	38	0	0	60	0	. 0	0	181	1186	910	470	2580	0	0	0	0
Primary visual cortex monocular area	VIM	0	0	0	40	0	38	0	0	60	0	0	0 6	181	1186	910	470	2580	0	0	0	0
Primary somatosensory cortex upper lip r.	SIULp	0	0	0	4	0	99	0	0	13	0	0	1 28	166	69	1007	903	3315	7	2	0	0
Primary somatosensory cortex upper lip r.	SIULp	0	0	0	4	0	99	0	0	13	0	0	1 28	166	69	. 1007	903	3315	7	7	0	0
Retrosplenial granular cortex c r.	RSGc	20	54	56	86	5	183	-	6 1	90	9	8	i6 10	165	1321	720	537	1739	4	4	0	0
Dorsolateral orbital cortex	DLO	40	70	22	100	ŝ	123	7	8	36	12	5 3	15 15	165.	106	468	863	2995	7	15	4	5
Retrosplenial granular cortex c r.	RSGc	20	54	56	86	ŝ	183	-	6	90	9	80 - 100 -	11	165	1321	720	537	1739	4	4	0	0
Dorsolateral orbital cortex	DLO	40	20	22	100	m i	123	7	~ ~	36	12	5 ·	51 S	165	106	468	863	2995	6	15	4	ŝ
Dorsolateral entorhinal cortex	DLEnt	35	62	57	102	т с	161	0 0	9	97 22	21 1	00	4 ·	151	104	1048	750	1949	0 0	0 0	0 0	00
Dorsolateral enforminal contex	ULEII	6	705	6	107	ŝ	101		•	16	1 17	 	4 - 2 -	341	940 1	010	00/	1949	0 0	~ ~	-	ب د
Ventral tenta tecta	VTT	00	с с	96	16	0 4	10		 0 y	51	, t	, , , , , , , , , , , , , , , , , , ,		241 741	200	049	912	2096				
Ventual tenta tecta Madial nariatal association cortav	MP+A	00	с с	oc C	16	o –	60 90		- 	24	t (t (1	- 1 - 4	ΞΞ	202	C40	01/	2183	o v	с (
Internal particular association contex Medial narietal association contex	MPrA	02	17	1 1	12		909			1 7	1 (n 6	 	Ē		701 191	417	2183	n v	1 0		
Primary somatosensory cortex dysgranular r.	SIDZ		51	73	58	ŝ	146	0	6	55	1 (1	9 1	- 11 - 11	109	742	269	703	1866	n vo	10	0	0
Primary somatosensory cortex dysgranular r.	SIDZ	1	51	73	58	5	146	0	6 1	55	2	9 1	7 11	109	742	269	703	1866	5	0	0	0
Primary somatosensory cortex jaw r.	SIJ	0	0	0	68	0	48	0	0 2	90	0	0	4 13	107	528	438	1069	3135	12	19	0	0

Region	Abk.	3-01	3-02	3-03	3-04	-05 3	-06 3-	07 3	-08 3	-09 3.	10 3-	11 3-1	2 3-1	3 sv	C s	/I sv() r4ca	a r5ci	a r4ci	r5ci	nr4ci	nr5ci
Primary somatosensory cortex jaw r.	SIJ	0	0	0	68	0	48	0	0	206	0	0	4 1	3 107	2 52	8 43	8 1069	313	5 12	19	0	0
Dorsal tenia tecta	DTT	22	39	31	103	5	127	_	-	157	4	6	1 1	5 102	2 96	9 43	3 601	210	0	0	0	0
Dorsal tenia tecta	DTT	22	39	31	103	5	127	1	1	157	4	3	1 1	5 102	2 96	9 43	3 601	210	0	0	0	0
Parietal cortex posterior area dorsal part	ParPD	58	47	16	113	4	51	0	7	54	7	4	6	3 9(7 87	8 57	7 344	t 1390	0	0	0	0
Parietal cortex posterior area dorsal part	ParPD	58	47	16	113	4	51	0	7	54	7	4	6	3 9(7 87	8 57	7 344	t 1390	0	0	0	0
Dorsal intermediate entorhinal cortex	DIEnt	61	81	34	142	6	74	2	14	89	9	4	2	3 86	5 36	3 22	9 380) 73'	7 0	0	4	б
Dorsal intermediate entorhinal cortex	DIEnt	61	81	34	142	6	74	7	14	89	9	4	5	3 86	5 36	3 22	9 380) 73'	7 0	0	4	б
Olfactory tubercle	TuO	66	116	114	285	48	55	0	91	41	12	9		5 82	7 425	6 46	2 228	3 62(0	0	0	0
Olfactory tubercle	TuO	66	116	114	285	48	55	0	91	41	12	9	1	5 82	7 425	6 46	2 228	3 62(0	0	0	0
Parietal cortex posterior area rostral part	ParPR	0	0	0	14	0	8	0	0	15	0	0	0	0 46	9 35	9 16	5 105	5 516	6 0	0	0	0
Parietal cortex posterior area rostral part	ParPR	0	0	0	14	0	8	0	0	15	0	0	0	0 46	9 35	9 16	5 105	5 510	6	0	0	0
Secondary auditory cortex dorsal area	AuD	S	11	0	31	0	7	0	0	11	0	0	1	0 27	0 54	0 4	3 162	880	0	0	0	0
Secondary auditory cortex dorsal area	AuD	S	11	0	31	0	7	0	0	11	0	0	1	0 27	0 54	0 4	3 162	880	0	0	0	0
Ventral intermediate entorhinal cortex	VIEnt	30	47	39	90	7	92	1	б	64	9	3	3	1 23	9 14	5 20	0 264	4 54	0	0	0	7
Ventral intermediate entorhinal cortex	VIEnt	30	47	39	90	7	92	1	б	64	9	3	3	1 23	9 14	5 20	0 264	4 54	0	0	0	7
Cortex amygdala transition zone	CxA	ŝ	22	25	18	7	46	0	0	0	3	1	0	0	0	0	0	- -	0	0	0	0
Secondary auditory cortex ventral area	AuV	0	24	٢	0	0	60	0	0	0	0	1	0	0	0	0	0	- -	0	0	0	0
Primary somatosensory cortex shoulder r.	S1Sh	9	33	4	0	-	114	0	0	0	0	8	0	0	0	0 2	1	- -	0	0	0	0
Secondary visual cortex mediolateral area	V2ML	0	12	11	0	0	35	0	0	0	0	0	0	0	0	0	0	- -	0	0	0	0
Secondary visual cortex mediomedial area	V2MM	6	15	11	8	0	34	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
Cortex amygdala transition zone	CxA	б	22	25	18	7	46	0	0	0	3	1	0	0	0	0	0	- -	0	0	0	0
Secondary auditory cortex ventral area	AuV	0	24	7	0	0	60	0	0	0	0	1	0	0	0	0	0	- -	0	0	0	0
Primary somatosensory cortex shoulder r.	SISh	9	33	4	0	-	14	0	0	0	0	8	0	0	0	0 2	1	- -	0	0	0	0
Secondary visual cortex mediolateral area	V2ML	0	12	11	0	0	35	0	0	0	0	0	0	0	0	0	0	- -	0	0	0	0
Secondary visual cortex mediomedial area	V2MM	6	15	Ξ	~	0	34	0	0	0	1	0	0	0	0	0	0	0	0 (0	0	0

Tabelle 20: Alle lokalen Parameter wurden für die Regionen des laminären C2-Netzwerkes berechnet. Aus diesem Grund umfasst die Tabelle 12 Seiten. Es wurden nach dem mittleren Rang (AvgRang) über alle lokalen Parameter pro Region aufsteigend sortiert. Je kleiner der Rang ,desto größer ist der normierte lokale Parameter.

Name (Lokale Parameter Teil 1)	REC	AvgRang	DG₄⊪	DGout	DGIn	CDC	Katz	LCircle	Triag	CvclC	Eccout	Eccin
Medial entorhinal cortex layer 2	19	28,2708	53	22	31	0,5849	1199,6285	1	1001	0,1217	8	9
Lateral entorhinal cortex layer 2	13	30,4792	44	21	23	0,5227	906,58	2	776	0,1239	8	8
Lateral entorhinal cortex layer 5	13	31,5833	46	31	15	0,3261	830,9729	2	874	0,1247	7	8
Lateral entorhinal cortex layer 3	18	31.8125	51	32	19	0.3725	777.4608	2	901	0.1189	7	8
Medial entorhinal cortex layer 3	14	31.8958	45	18	27	0.6	1027.856	1	863	0.1287	8	9
Presubiculum layer 2	13	32,1875	34	18	16	0.4706	830,5526	1	659	0.1465	8	9
Medial entorbinal cortex layer 6	13	34 375	36	21	15	0.4167	860 7537	1	754	0 148	8	9
Presubiculum layer 5	12	34 4167	35	20	15	0.4286	700 5947	1	588	0 1354	8	9
Secondary visual cortex lateral area	14	35 5208	55	20	31	0.5636	110 6752	1	276	0.0508	8	ó
Secondary visual cortex medial area	14	25 5417	50	24	10	0.3030	82 7082	1	202	0.0508	0	9
Lateral antarkinal contex layor 6	10	26 5209	24	22	19	0.30	662,0277	2	292	0.0721	0	2
Lateral enforminal cortex layer 6	10	26,7092	34	11	12	0.5529	864.1616	2	510	0,151	0	0
Medial entorninal cortex layer 1	11	36,7083	26	11	15	0.5769	864,1616	1	510	0,1594	8	9
Lateral entorninal cortex layer 4	10	36,/91/	35	22	13	0,3/14	6/3,196/	2	661	0,1293	8	8
Medial entorhinal cortex layer 5	11	36,8333	26	11	15	0.5769	860,7537	2	514	0,1583	8	9
Medial entorhinal cortex layer 4	9	36,9583	35	21	14	0,4	793,8436	2	592	0,1347	7	9
Presubiculum layer 3	11	37,1458	33	20	13	0,3939	650,0244	2	534	0,144	8	10
Perirhinal cortex layer 3	3	39	25	10	15	0,6	228,4244	2	200	0.0769	7	9
Perirhinal cortex layer 6	4	39,25	21	8	13	0,619	241,9447	2	155	0,0825	8	9
Perirhinal cortex layer 2	4	39,4583	26	13	13	0,5	215,048	2	238	0,0685	7	9
Prelimbic cortex layer 2	8	41,2917	22	9	13	0,5909	24,7282	1	299	0,1102	9	10
Lateral entorhinal cortex layer 1	8	41,6458	22	8	14	0,6364	803,0666	2	372	0,1595	8	9
Presubiculum layer 1	4	41,7917	23	5	18	0,7826	854,3409	2	313	0,1517	9	9
Prelimbic cortex layer 3	8	42,3542	22	9	13	0,5909	24,7282	1	299	0,1102	9	10
Retrosplenial granular cortex b region	4	42,875	27	18	9	0,3333	74,2849	1	68	0,0605	9	9
Infralimbic cortex layer 2	7	43,3958	30	21	9	0,3	10,218	1	319	0,0635	8	11
Primary visual cortex layer 4	7	44,375	16	7	9	0,5625	27,4844	1	184	0,157	9	10
Infralimbic cortex layer 4	7	44.4167	30	21	9	0.3	10.218	1	319	0.0635	8	11
Infralimbic cortex layer 3	7	44,4375	30	21	9	0.3	10.218	1	319	0.0635	8	11
Ectorhinal cortex layer 2	3	44.6667	24	17	7	0.2917	148,9731	2	225	0.0694	7	9
Primary visual cortex layer 2	6	45.0417	15	7	8	0.5333	25,3974	1	166	0.1567	9	10
Presubiculum layer 6	3	45 125	21	12	9	0.4286	451 3298	2	292	0 1462	ģ	9
Primary visual cortex layer 5	6	45,125	17	0	8	0,4200	25 3074	1	172	0.1345	ó	10
Declimbic contex layer 5	5	45 2059	22	0	12	0,4700	23,3974	1	225	0,1545	10	10
Primary contex layer 5	10	45,5956	22	20	15	0.3909	24,7282	1	100	0.080	10	10
Primary somalosensory cortex mindmino region	19	45,5655	39	20	19	0.4672	9,430	1	100	0.0755	,	10
Primary visual cortex layer 6	/	45,0007	15	8	/	0,400/	25,062	1	162	0,159	9	10
Ectorhinal cortex layer 6	3	45,7083	19	11	8	0.4211	159,8554	2	161	0.0761	7	9
Parasubiculum layer 5	4	45,9375	21	6	15	0,7143	761,5229	1	254	0,1247	9	9
Primary visual cortex layer 3	6	46,0833	15	7	8	0,5333	25,3974	1	166	0,1567	9	10
Infralimbic cortex layer 6	9	46,4167	22	11	11	0,5	13,7738	1	314	0,1034	9	11
Infralimbic cortex layer 5	9	46,4375	23	12	11	0,4783	13,7738	1	320	0.0942	9	11
Parasubiculum layer 2	4	46,8958	19	7	12	0,6316	646,7011	1	230	0,1471	9	9
Primary visual cortex layer 1	4	47,0417	13	4	9	0,6923	27,4844	1	124	0,1615	9	10
Parasubiculum layer 3	4	48,1042	19	7	12	0.6316	592,5632	1	217	0,1471	9	9
Prelimbic cortex layer 6	3	48,5625	20	9	11	0,55	20,9186	1	187	0,083	10	10
Primary somatosensory cortex upper lip region	13	48,8125	26	13	13	0,5	7,5056	2	188	0,1376	7	7
Perirhinal cortex layer 5	1	49,1667	16	5	11	0,6875	227,6153	2	102	0,0901	8	9
Parasubiculum layer 6	2	50,6875	15	2	13	0,8667	672,7498	2	147	0,1569	9	9
Infralimbic cortex layer 1	7	50,9167	19	10	9	0,4737	10,218	1	262	0,1094	9	11
Retrosplenial dorsal layer 5	5	51,75	13	6	7	0,5385	6,4994	1	90	0,1417	9	11
Retrosplenial granular cortex a region	3	51,7708	17	14	3	0.1765	61.8847	1	80	0.1147	9	10
Parasubiculum layer 1	2	53 3958	14	2	12	0.8571	665 8129	2	136	0 1 5 9 1	9	9
Primary somatosensory cortex trunk region	9	53 5417	18	9	9	0.5	5 8808	- 1	140	0 1453	7	7
Secondary somatosensory cortex layer 3	4	53 5417	12	6	6	0.5	5 3781	2	77	0 149	6	6
Parirhinal aartax lavar 4	2	52 5922	15	2	12	0.8667	220 8208	2	44	0.0257	•	5
Petroanlanial dancel lavan 4	2	52,2000	13	4	15	0.0007	230,8308	2	++ 02	0.0257	0	12
Secondem comptessencem contex lossen 5	5	52 9542	11	5	3	0.4343	2,9430	1	62	0,1355	9	12
Secondary somatosensory cortex layer 5	5	54,0922	12	3	5	0,3855	3,9079	1	03	0,1458	0	0
Secondary somatosensory cortex layer o	5	54,0855	12	7	5	0.416/	4,6947	2	03	0,1472	0	0
Primary somatosensory cortex jaw region	/	54,375	14	/	/	0,5	20,3532	2	20	0,0879	/	5
Retrosplenial dorsal layer 1	5	54,5	12	5	7	0,5833	6,4994	1	86	0,1478	10	11
Cingulate cortex area 2	3	55,1458	8	3	5	0,625	21,6793	1	20	0,1248	9	8
Ectorhinal cortex layer 5	1	55,2708	13	6	7	0,5385	138,4235	2	55	0,078	8	9
Temporal association cortex 1 layer 3	1	55,7708	8	6	2	0,25	14,3294	2	51	0,1667	9	10
Presubiculum laver 4	3	55,7917	12	7	5	0,4167	222,3348	2	88	0,1456	9	10
Temporal association cortex 1 superficial layer	1	55,7917	8	6	2	0,25	14,3294	2	51	0,1667	9	10
Retrosplenial dorsal layer 2	5	56,2917	10	5	5	0.5	2,9436	1	80	0,1667	10	12
Retrosplenial dorsal layer 3	5	56,3125	10	5	5	0,5	2,9436	1	80	0,1667	10	12
Retrosplenial dorsal layer 6	5	56,3125	10	5	5	0,5	2,9436	1	80	0,1667	10	12
Secondary somatosensory cortex layer 2	4	57,9167	10	5	5	0,5	4,766	2	40	0,1437	6	6
Secondary somatosensory cortex layer 4	4	59,2917	10	6	4	0,4	4,1899	2	56	0,1542	6	6

Name (Lakala Parameter Tail 2)	PEC	AvaDana	DG	DG	DG	CDC	Votz	T	Triag	CualC	Eaa	Eaa
Parasubiculum layer 4	1	59 9375	7	2	5	0 7143	255 248	LCirolo 2	26	0.15	9	10
Dysgrapular insular cortex	2	62 625	15	0	6	0,7145	3 1807	1	31	0,15	6	7
Parietal cortex posterior area dorsal part layer 3	1	62 7017	3	1	2	0,4	1/ 320/	2	1	0,0500	0	10
Parietal cortex posterior area dorsal part layer 2	1	62,8125	3	1	2	0.6667	14 3294	2	4	0.1667	9	10
Parietal cortex posterior area dorsal part layer 5	1	62 8333	3	1	2	0,6667	14,3294	2	4	0.1667	9	10
Lateral agranular prefrontal cortex layer 3	4	63 8125	8	4	4	0.0007	2 6382	1	40	0.1597	8	8
Primary visual cortex monocular area	1	64	4	1	3	0.75	12 3109	1	10	0.1667	9	10
Lateral agranular prefrontal cortex layer 5	3	64 0833	6	3	3	0.75	2 2311	1	24	0.1667	8	8
Lateral agranular prefrontal cortex layer 2	3	64.125	6	3	3	0.5	2.2311	1	24	0.1667	8	8
Agranular insular cortex posterior part layer 5	1	64.4167	25	24	1	0.04	0.298	1	140	0	7	1
Agranular insular cortex posterior part layer 6	1	64.4167	25	24	1	0.04	0.298	1	140	0	7	1
Retrosplenial granular cortex c region	2	64,9583	5	2	3	0.6	7,7907	1	8	0.1111	10	9
Primary somatosensory cortex barrel field layer 6	2	65,3542	7	2	5	0,7143	2,7534	1	10	0,0781	11	7
Primary somatosensory cortex barrel field layer 5	2	66,6458	5	2	3	0,6	1,0741	2	6	0,0729	12	8
Lateral orbital cortex layer 2	0	68,4167	3	1	2	0,6667	11,7347	3	4	0,1458	9	10
Lateral orbital cortex layer 3	0	68,6875	3	1	2	0,6667	11,7347	3	4	0,1458	9	10
Perirhinal cortex layer 1	0	68,8958	19	0	19	1	405,4554	0	91	0	0	9
Ectorhinal cortex layer 3	0	68,9792	7	2	5	0,7143	115,884	4	4	0,045	9	9
Medial parietal association cortex	3	69.0208	7	3	4	0.5714	2,7396	2	24	0.1111	8	8
Lateral parietal association cortex	3	69,0417	7	3	4	0,5714	2,7396	2	24	0,1111	8	8
Posterolateral cortical nucleus	1	69,5208	7	3	4	0,5714	1,4044	1	9	0	2	8
Primary somatosensory cortex dysgranular region	1	69,9792	4	2	2	0,5	17,0208	1	2	0,0556	9	6
Prelimbic cortex layer 1	0	70,7292	14	0	14	1	26,7689	0	112	0	0	10
Lateral agranular prefrontal cortex layer 6	2	70,9583	6	4	2	0,3333	1,7656	2	8	0,1074	7	8
Ectorhinal cortex layer 1	0	71,4792	14	0	14	1	323,3661	0	56	0	0	9
Temporal association cortex 1 layer 5	0	72,0833	2	1	1	0,5	8,1609	3	2	0,1667	9	10
Primary somatosensory cortex barrel field layer 4	1	72,1042	4	3	1	0,25	0,4733	2	4	0,1667	10	8
Primary somatosensory cortex barrel field layer 3	1	73,0208	4	2	2	0,5	0,664	1	6	0,1528	12	9
Posteromedial cortical nucleus	1	74,375	6	4	2	0,3333	0,6751	1	8	0	1	9
Olfactory tubercle	0	76,3542	13	0	13	1	7,1973	1	18	0	0	8
Medial agranular prefrontal cortex layer 6	1	76,9167	4	3	1	0,25	0,9519	2	0	0,0812	7	8
Prelimbic cortex layer 4	0	77,7083	8	0	8	1	18,661	0	28	0	0	10
Lateral orbital cortex layer 1	0	78,1667	2	0	2	1	11,7347	0	2	0	0	10
Lateral orbital cortex layer 5	0	78,2083	2	0	2	1	11,7347	0	2	0	0	10
Temporal association cortex 1 layer 6	0	78,25	2	0	2	1	14,3294	0	2	0	0	10
Medial agranular prefrontal cortex layer 2	1	78,3125	3	2	1	0,3333	0,9519	2	0	0,0625	8	8
Medial agranular prefrontal cortex layer 3	1	78,3333	3	2	1	0,3333	0,9519	2	0	0,0625	8	8
Dorsolateral orbital cortex	1	78,3542	5	1	4	0,8	2,7513	2	0	0,0667	8	6
Medial agranular prefrontal cortex layer 5	1	78,375	3	2	1	0,3333	0,9519	2	0	0,0625	8	8
Primary somatosensory cortex forelimb region layer	1	79,1667	3	2	1	0,3333	0,9519	2	0	0,0714	7	8
Primary somatosensory cortex forelimb region layer	1	79,1667	3	2	1	0,3333	0.9519	2	0	0,0714	7	8
Ventral tenia tecta	0	79,5	4	2	2	0,5	0,7021	1	5	0	1	9
Parietal cortex posterior area dorsal part layer 1	0	79,6042	2	0	2	1	14,3294	0	2	0	0	10
Agranular insular cortex ventral part layer 5	0	80,0833	19	19	0	0	0	0	32	0	7	0
Agranular insular cortex ventral part layer 6	0	80,0833	19	19	0	0	0	0	32	0	7	0
Ventral orbital cortex layer 2	0	80,1875	2	1	1	0,5	5,5662	4	0	0,125	9	10
Ventral orbital cortex layer 3	0	80,2083	2	1	1	0,5	5,5662	4	0	0,125	9	10
Piriform cortex layer 2	1	80,9583	4	3	1	0,25	0,298	2	2	0	2	1
Agranular insular cortex ventral part laver 3	0	81,125	19	19	0	0	0	0	32	0	7	0
Dorsolateral entorhinal cortex layer 2	0	81,4375	2	0	2	1	159,1251	0	2	0	0	10
Presubiculum border of layer 1 and 2	0	82,3958	2	0	2	1	104.6372	0	2	0	0	10
Ventral intermediate entorhinal cortex laver 2	0	82,5208	3	0	3	1	3,0198	0	6	0	0	12
Ventral intermediate entorhinal cortex layer 3	0	82,5208	3	0	3	1	3,0198	0	6	0	0	12
Ventral intermediate enforminal cortex deep layers	0	82,5208	3	0	3	1	3,0198	0	0	0	0	12
Postsubiculum layers	0	82,08/5	2	0	2	1	115 994	0	2	0	0	10
Description of the second seco	0	04,4575	5	0	5	1	2.9407	0	4	0	0	12
Summer and a law of the frontel contex deep layers	0	85,9585	0	0	0	1	3,8497	0	0	0	0	12
Supragranular layers of the frontal cortex area 5	0	80,4383 86 4582	2	0	2	1	0,5959	0	2	0	0	1
Frontal cortex area 3 layer 5	0	86 / 582	2	0	2	1	0,5959	0	2	0	0	1
Frontal cortex area 3 layer 6	0	86 1592	2	0	2	1	0,5959	0	2	0	0	1
A granular insular cortex posterior part laver 1	0	86 / 582	2	0	2	1	0,5959	0	2	0	0	1
A granular insular cortex posterior part layer 1	0	86 4583	2	0	2	1	0 5050	0	2	0	0	1
Frontal cortex area 3 layer 4	0	87 5	2	0	2	1	0.5959	0	2	0	0	1
A granular insular cortex posterior part layer 3	0	87.5	2	0	2	1	0.5959	0	2	0	0	1
Agranular insular cortex posterior part layer 5	0	87.5	2	0	2	1	0.5959	0	2	0	0	1
Granular insular cortex laver 4	0	88,5625	2	0	2	1	0.5959	0	2	0	0	1
Agranular insular cortex dorsal part deep lavers	0	88.8542	7	7	0	0	0	0	10	0	7	0

Tabellenanhang

Name (Lokale Parameter Teil 3)	REC	AvgRang	DGAII	DGout	DG	CDC	Katz	LCirola	Triag	CvclC	Eccout	Ecc ₁
Piriform cortex layer 1	1	89,625	2	1	1	0,5	0,298	2	0	0	3	1
Primary somatosensory cortex barrel field layer 2	0	90,125	2	2	0	0	0	1	2	0	12	0
Parietal cortex posterior area superficial layers	0	91,6667	1	0	1	1	8,1609	0	0	0	0	10
White matter of the parietal cortex posterior area	0	91,6667	1	0	1	1	8,1609	0	0	0	0	10
Parietal cortex posterior area deep gray matter layers	0	91,6667	1	0	1	1	8,1609	0	0	0	0	10
Dorsal intermediate entorhinal cortex superficial layers	0	92,25	4	0	4	1	1,1066	0	0	0	0	1
Dorsal tenia tecta	0	92,7708	2	0	2	1	0,6519	0	1	0	0	10
Dorsolateral entorhinal cortex layer 5	0	94,1042	3	0	3	1	0,8299	0	0	0	0	1
Dorsolateral entorhinal cortex layer 6	0	94,1042	3	0	3	1	0,8299	0	0	0	0	1
Primary visual cortex binocular area	0	94,2917	1	0	1	1	8,1609	0	0	0	0	10
Primary auditory cortex layers	0	94,5417	1	0	1	1	6,1685	0	0	0	0	10
Amygdalopiriform transition area layers	0	94,6875	1	0	1	1	85,6765	0	0	0	0	10
Primary visual cortex border of layer 1 2	0	94,9792	1	0	1	1	2,087	0	0	0	0	11
Dorsal intermediate entorhinal cortex layer 3	0	95,1458	3	0	3	1	0,8299	0	0	0	0	1
Dorsal intermediate entorhinal cortex layer 4	0	95,1458	3	0	3	1	0,8299	0	0	0	0	1
Dorsal peduncular cortex layers	0	96,9792	2	2	0	0	0	0	0	0	9	0
Medial orbital cortex layer 2	0	98,5833	1	1	0	0	0	0	0	0	9	0
Medial orbital cortex layer 3	0	98,5833	1	1	0	0	0	0	0	0	9	0
Cingulate cortex area 1 layers	0	98,9792	1	1	0	0	0	0	0	0	9	0
Cortex amygdala transition zone	0	99,4792	2	2	0	0	0	0	1	0	3	0
Parietal cortex posterior area dorsal part layer 4	0	99,625	1	1	0	0	0	0	0	0	9	0
Parietal cortex posterior area rostral part layer 2	0	99,625	1	1	0	0	0	0	0	0	9	0
Parietal cortex posterior area rostral part layer 3	0	99,625	1	1	0	0	0	0	0	0	9	0
Parietal cortex posterior area rostral part layer 5	0	99,625	1	1	0	0	0	0	0	0	9	0
Primary somatosensory cortex shoulder region	0	100,6458	2	2	0	0	0	0	0	0	9	0
Secondary auditory cortex	0	109,1042	1	1	0	0	0	0	0	0	9	C

Name (Lokale Parameter Teil 4)	CluCout	CluC ₁	CluCAU	$CluC_{Triag}$	CluC ₂	AvgDG _{nb}	VC _{DG}	Lev	Loc	CC Out	CC In	BC
Medial entorhinal cortex layer 2	0,4502	0,3323	0,295	0,3683	0,1215	25,8235	0,4516	0,3763	0,7135	0,2873	0,3537	0,0318
Lateral entorhinal cortex layer 2	0,5262	0,3597	0,3355	0,4159	0,0684	26,0968	0,4378	0,2867	0,7163	0,2873	0,3569	0,0217
Lateral entorhinal cortex layer 5	0,3204	0,7333	0,3106	0,4276	0,0627	25,4848	0,4594	0,3204	0,729	0,3369	0,3102	0,0328
Lateral entorhinal cortex layer 3	0,3095	0,462	0,2945	0,3584	0,0655	24,9091	0,4566	0,3727	0,7084	0,3378	0,3515	0,04
Medial entorhinal cortex layer 3	0,5948	0,3789	0,3333	0,4421	0,1034	27,5484	0,4115	0,2718	0,6637	0,2841	0,3494	0,0146
Presubiculum layer 2	0,549	0,65	0,5476	0,6013	0,0609	31,2857	0,3679	0,0747	0,6337	0,3199	0,3093	0,0309
Medial entorhinal cortex layer 6	0,5024	0,7905	0,5316	0,611	0,1238	29,1304	0,4312	0,1479	0,7725	0,2873	0,2893	0,002
Presubiculum layer 5	0.4737	0,5429	0,4941	0,5043	0,1344	28,1739	0,4669	0,159	0,7297	0,2981	0,3021	0,0119
Secondary visual cortex lateral area	0,1214	0.0763	0.0524	0.0938	0,116/	8,8049	1,1446	0.7592	0,5518	0,324	0.3706	0,1395
Leteral enterbinal cortex layer 6	0,1075	0,1579	0.0762	0,1203	0.0823	12,4103	0.8472	0,0414	0,4820	0,3598	0.3/54	0,1485
Madial antorhinal cortex layer b	0,3132	0,7043	0,4891	0,3802	0,1010	29,2083	0,4075	0,113	0,7033	0,288	0,3077	0,0033
I steral entorhinal cortex layer 4	0.5152	0.7702	0.7702	0.565	0.08	28.06	0.25	0.1207	0,3013	0.2797	0.2932	0.0015
Medial entorhinal cortex layer 5	0.8545	0,0540	0.405	0.8185	0.0947	36 6667	0.2532	-0.1512	0.5079	0.200	0.2893	0.00055
Medial entorhinal cortex layer 5	0.3571	0.7857	0.3954	0.5051	0.08	27.9231	0.431	0.1523	0.6226	0.3232	0.2907	0.0136
Presubiculum layer 3	0.5079	0.5449	0.4784	0.5164	0.1667	27.0455	0.4327	0.141	0.6791	0.2867	0.2929	0.0049
Perirhinal cortex layer 3	0.4222	0.219	0.3139	0.3367	0.0364	30,5909	0.4611	-0.0411	0.322	0.3307	0.373	0.0807
Perirhinal cortex layer 6	0.4821	0.3333	0.3529	0.3762	0.038	32,4118	0.4699	-0.1415	0.2571	0.3248	0.3625	0.0292
Perirhinal cortex layer 2	0,4295	0,25	0,3225	0,3707	0,0443	28,9091	0,4793	0,0062	0,3593	0,3333	0,3196	0,0163
Prelimbic cortex layer 2	0,8333	0,5833	0,5714	0,6704	0,0312	25,6429	0,3146	-0,0542	0,5114	0,255	0,3152	0,0207
Lateral entorhinal cortex layer 1	0,8929	0,8077	0,8077	0,8341	0,0828	37,7143	0,231	-0,2467	0,4436	0,2587	0,2886	0,0003
Presubiculum layer 1	0,85	0,5686	0,5702	0,6285	0,0626	32	0,367	-0,123	0,5278	0,2495	0,3231	0,0043
Prelimbic cortex layer 3	0,8333	0,5833	0,5714	0,6704	0,0312	25,6429	0,3146	-0,0542	0,5114	0,255	0,3152	0,0207
Retrosplenial granular cortex b region	0,1111	0,0972	0,0731	0,098	0,1219	11,913	1,0343	0,4996	0,3216	0,306	0,3382	0,0803
Infralimbic cortex layer 2	0,2548	0,8056	0,2549	0,3727	0,1045	21,0435	0,5615	0,2394	0,4787	0,3223	0,2442	0,0153
Primary visual cortex layer 4	0,9286	0,7361	0,7361	0,8142	0,023	21,7778	0,768	-0,0253	0,5067	0,2725	0.2959	0,0006
Infralimbic cortex layer 4	0,2548	0,8056	0,2549	0,3727	0,1045	21,0435	0,5615	0,2394	0,4787	0,3223	0,2442	0,0153
Infralimbic cortex layer 3	0,2548	0,8056	0,2549	0,3727	0,1045	21,0435	0,5615	0,2394	0,4787	0,3223	0,2442	0,0153
Ectorhinal cortex layer 2	0,3934	0,3571	0,369	0,4121	0,0361	30,4286	0,4763	-0,0565	0,3698	0,3692	0,3069	0,0072
Primary visual cortex layer 2	0,9524	0,75	0,75	0,8384	0,023	21,8889	0,7622	-0,0583	0,5067	0,2725	0,2952	0,0005
Presubiculum layer 6	0,6667	0,7361	0,6699	0,7053	0,0992	33,1111	0,3354	-0,1893	0,578	0,253	0,2974	0,0004
Primary visual cortex layer 5	0,5972	0,75	0,5182	0,6615	0,0251	18,1818	0,9283	0,1417	0,5461	0,2737	0,2952	0,0053
Prelimbic cortex layer 5	0,4167	0,6026	0,4375	0,5199	0,0327	23,0588	0,4012	0,0152	0,5319	0,2361	0,3152	0,0171
Primary somatosensory cortex hindlimb region	0,1237	0,1374	0,1237	0,1302	0,1429	8,35	0,6735	0,6675	0,7571	0,3113	0,2148	0,1011
Primary visual cortex layer 6	0,75	0,9286	0,75	0,8265	0,0221	23,125	0,7532	-0,0693	0,4305	0,2731	0,2944	0,0003
Ectorhinal cortex layer 6	0,4545	0,4464	0,4333	0,4792	0,1135	28,4375	0.4783	-0,1384	0,3504	0,3136	0.3077	0,0013
Parasubiculum layer 5	0,5	0.6524	0,5699	0,6165	0,1034	31,5882	0,4103	-0,1352	0,4691	0,2361	0,3085	0,0027
Primary visual cortex layer 3	0.9524	0,75	0,75	0,8384	0,023	21,8889	0,7622	-0.0583	0,5067	0,2725	0,2952	0,0005
Infralimbic cortex layer 6	0.6/2/	0,7455	0.6282	0,7072	0.0292	22.3077	0.2/32	0.0153	0.6453	0.256	0.2452	0,0015
Infraimble cortex layer 5	0,5855	0,7455	0,5549	0,000/	0.03/9	21,5/14	0.2936	0.0557	0,0385	0,2500	0,2452	0.0027
Parasubiculum layer 2	0,7619	0.0894	0.07778	0,0880	0.086	22 1111	0,3125	-0,2058	0,4249	0,2365	0,3061	0,0002
Primary visual conex layer 1	0 7610	0,7778	0,7778	0,6378	0,025	22,1111	0,7497	0.2221	0,4900	0,2702	0,2959	0,0003
Prelimbic cortex layer 6	0.7019	0.5273	0.0093	0.0497	0.0327	23 1765	0.3041	-0.0334	0.5319	0.2361	0.3135	0.0002
Primary somatosensory cortex upper lip region	0 3013	0.3013	0,3013	0 3013	0.0379	11 7692	0 7249	0.4255	0,5517	0.2668	0.2125	0.0166
Perirhinal cortex layer 5	0.5015	0.5015	0.5015	0.4286	0.0459	32 4667	0.4566	-0.2677	0.2481	0.3017	0.3102	0.0038
Parasubiculum layer 6	1	0.6923	0.6923	0.7136	0.0947	36,4615	0.2723	-0.392	0.3361	0.226	0.3069	0.0001
Infralimbic cortex layer 1	0,8111	0,8056	0,7197	0,7988	0,0299	23,75	0,1892	-0,1007	0,62	0,2555	0,2442	0
Retrosplenial dorsal layer 5	0,7	0,5714	0,4821	0,6164	0,1024	18,125	0,7089	-0,0677	0,371	0,2737	0,2484	0,0241
Retrosplenial granular cortex a region	0,3022	0,3333	0,3022	0,3008	0,082	22,7143	0,5302	-0,0536	0,3105	0,3002	0,3069	0,0235
Parasubiculum layer 1	1	0,7424	0,7424	0,764	0,0946	38,25	0,2711	-0,4331	0,3102	0,226	0,2871	0
Primary somatosensory cortex trunk region	0,4861	0,4861	0,4861	0,4861	0,022	15	0,6674	0,1668	0,5688	0,2635	0,2109	0,0046
Secondary somatosensory cortex layer 3	0,5333	0,7333	0,625	0,621	0,0517	18,25	0,4998	-0,1494	0,4234	0,292	0,2511	0,0284
Perirhinal cortex layer 4	0	0,2821	0,2821	0,2136	0,1228	23,6923	0,5524	-0,1305	0,2235	0,1936	0,3694	0,1351
Retrosplenial dorsal layer 4	0.7	1	0.7	0,82	0,0818	17,5	0,8332	-0,1039	0,4222	0,2737	0,2007	0,0094
Secondary somatosensory cortex layer 5	0,3	0,619	0,619	0,5164	0,0492	19,4286	0,4716	-0,1837	0,3739	0,2913	0,2527	0,0287
Secondary somatosensory cortex layer 6	0,619	0,3	0,619	0,5164	0,0492	19,4286	0,4716	-0,1837	0,3455	0,2926	0,2516	0,0289
Primary somatosensory cortex jaw region	0,119	0,119	0,119	0,119	0,1696	10,8571	0,2625	0,1433	0,2676	0,2352	0,3037	0,1297
Retrosplenial dorsal layer 1	1	0,5714	0,5714	0,7049	0,5385	13,7143	0,3458	-0,0383	0,5325	0,2167	0,2484	0,0085
Cingulate cortex area 2	0,6667	0,3	0,3	0,4	0,0242	35,2	0,509	-0,4884	0,0983	0,2696	0,3569	0,0206
Ectorhinal cortex layer 5	0,4667	0,3571	0,3258	0,3571	0,0408	37	0,3981	-0,4256	0,1397	0,3282	0,2685	0,0059
Temporal association cortex 1 layer 3	0.9	1	0,9286	0,9444	0,0216	25,8571	0.6552	-0,43	0,331	0,248	0,2907	0
Presubiculum layer 4	0,6429	0.8	0.6111	0,6984	0,2425	28,4444	0.3485	-0.367	0,2642	0,25	0,271	0,0001
Temporal association cortex 1 superficial layer	0,9	1	0,9286	0,9444	0,0216	25,8571	0,6552	-0,43	0,331	0,248	0,2907	0
Retrosplenial dorsal layer 2	1	1	1	1	0.6667	11.2	0.1041	-0.0538	0.8537	0.2167	0.2007	0
Retrosplenial dorsal layer 3	1	1	1	1	0,6667	11,2	0,1041	-0,0538	0,8537	0,2167	0,2007	0
Retrosplenial dorsal layer 6	1	1	0.4667	0.4970	0.0494	20 2222	0,1041	-0.0538	0.8537	0,2167	0,2007	0
Secondary somatosensory cortex layer 2	0.3	0,7	0.4667	0.4878	0.0484	20,3333	0.4757	-0,2814	0,2222	0,2913	0,2489	0.0284
Secondary somatosensory cortex layer 4	0.7333	0,5	0,/333	0.6829	0.0359	19,8333	0,5046	-0,2633	0,3299	0,2657	0,2484	0.0156

Name (Lokale Parameter Teil 5)	CluCour	CluC	CluCAU	CluC _{Tring}	CluC ₂	AvgDG _{nb}	VC _{DG}	Lev	Loc	6.6	CC In	BC
Parasubiculum layer 4	0.2056	0,0	0,0	0,05	0,1944	25,0760	0,3022	-0,05	0,125	0,220	0,28/1	0 0550
Dysgranular insular cortex	0,3056	0,100/	0,100/	0,1505	0.0897	25,0769	0.5914	-0,1434	0,1018	0.3083	0.2053	0.0559
Parietal cortex posterior area dorsal part laver 3	0	1	1	1	0.0318	52.5	0.0476	-0.8917	0.0485	0.2452	0.2907	0
Parietal cortex posterior area dorsal part layer 5	0	1	1	1	0.0318	52,5	0.0476	-0.8917	0.0485	0.2452	0.2907	0
Lateral agranular prefrontal cortex layer 3	0.8333	0.8333	0.8333	0.8333	0.0792	19.25	0.7285	-0.2258	0.3099	0.2392	0.1779	0
Primary visual cortex monocular area	0,0000	1	1	1	0.0412	29	0.6346	-0.6875	0.1341	0.2452	0.2723	0
Lateral agranular prefrontal cortex layer 5	1	1	1	1	0,0699	24,3333	0,5223	-0,5004	0,2143	0,2387	0,1776	0
Lateral agranular prefrontal cortex layer 2	1	1	1	1	0,0699	24,3333	0,5223	-0,5004	0,2143	0,2387	0,1776	0
Agranular insular cortex posterior part layer 5	0,212	0	0,212	0,2341	0,1333	13,4167	0,7987	0,4099	0,7249	0,3341	1	0
Agranular insular cortex posterior part layer 6	0,212	0	0,212	0,2341	0,1333	13,4167	0,7987	0,4099	0,7249	0,3341	1	0
Retrosplenial granular cortex c region	1	0,3333	0,3333	0,5	0,0833	13,6667	0,6924	-0,3364	0,2195	0,2352	0,2843	0,0024
Primary somatosensory cortex barrel field layer 6	0	0,25	0,25	0,2632	0	3,8	0,2578	0,3081	0,875	0,1248	0,2218	0,0273
Primary somatosensory cortex barrel field layer 5	0,5	0,3333	0,3333	0,375	0,5	4,3333	0,4742	0,1243	0,6364	0,1112	0,1824	0,0022
Lateral orbital cortex layer 2	0	1	0,6667	0,6667	0,0224	44	0,2771	-0,8611	0,0547	0,2456	0,29	0,0003
Lateral orbital cortex layer 3	0	1	0,6667	0,6667	0,0224	44	0,2771	-0,8611	0,0547	0,2456	0,29	0,0003
Perirhinal cortex layer 1	0	0,2661	0,2661	0,2661	0,0384	31,4737	0,4014	-0,1948	0,217	0	0,3861	0
Ectorhinal cortex layer 3	1	0,1	0,0952	0,0952	0,0527	37	0,4264	-0,6297	0,0431	0,2702	0,2685	0,0046
Medial parietal association cortex	1	0,5	0,5	0,6667	0.0331	21,25	0,6308	-0,289	0,1646	0,2387	0,1782	0,0024
Lateral parietal association cortex	1	0,5	0,5	0,6667	0.0331	21,25	0,6308	-0,289	0,1646	0,2387	0,1782	0,0024
Posterolateral cortical nucleus	0,5	0,0833	0,2	0,225	0,1071	7,3333	0,6665	0,0857	0,3902	0,8	0,1761	0,0136
Primary somatosensory cortex dysgranular region	0	0	0,3333	0.2	0.2238	8,6667	0.5357	-0.2839	0.3077	0,1641	0.2768	0,0406
Prelimbic cortex layer 1	0	0,6154	0,6154	0,6154	0,0312	26,2143	0,2855	-0,2853	0,4941	0	0,3171	0
Lateral agranular prefrontal cortex layer 6	0,1667	1	0,1667	0,3077	0.0929	18,75	0.7732	-0,2941	0,1096	0,2679	0,17/4	0,0012
Ectorhinal cortex layer I	0	0.30/7	0,3077	0,3077	0,1073	30,5714	0,3301	-0,341	0,1882	0	0,3268	0
Temporal association cortex 1 layer 5	0 2222	0	0 2222	1	0.0318	52,5	0.0476	-0.9265	0.0388	0.265/	0.2/1/	0 0212
Primary somatosensory cortex barrel field layer 4	0,3333	0	0.3333	0.4	0,1007	5 2 2 2 2	0.2828	-0.0909	0,4615	0,1421	0,1818	0,0212
Printary solitatosensoly contex barren neid layer 5	0 2222	0.5	0,0007	0,0	0 1001	5,5555	0,2339	-0,1279	0,7143	0,1112	0,1549	0.0024
Olfactory tubercle	0.3333	0.1154	0.25	0.1154	0.1091	15 8462	0.6506	0.0909	0.3172	0	0.1303	0.0024
Medial agranular prefrontal cortex layer 6	0	0,1154	0,1154	0,1154	0.0641	23 6667	0,5949	-0.5557	0,1049	0 3183	0,249	0.0053
Prelimbic cortex layer 4	0	0.5	0.5	0.5	0.0373	26.75	0.3374	-0.5179	0.1935	0.5105	0.312	0.0055
Lateral orbital cortex layer 1	0	1	1	1	0.05	38.5	0.2987	-0.8926	0.0533	0	0.2903	0
Lateral orbital cortex layer 5	0	1	1	1	0.05	38.5	0.2987	-0.8926	0.0533	0	0.2903	0
Temporal association cortex 1 layer 6	0	1	1	1	0,0318	52,5	0,0476	-0,9265	0,0388	0	0,2918	0
Medial agranular prefrontal cortex layer 2	0	0	0	0	0.0638	33	0,1818	-0,8286	0,0455	0,3113	0,1771	0,0051
Medial agranular prefrontal cortex layer 3	0	0	0	0	0,0638	33	0,1818	-0,8286	0,0455	0,3113	0,1771	0,0051
Dorsolateral orbital cortex	0	0	0	0	0,3222	6,25	0,7705	0,0533	0,2	0,1907	0,2427	0,0054
Medial agranular prefrontal cortex layer 5	0	0	0	0	0,0638	33	0,1818	-0,8286	0,0455	0,3113	0,1771	0,0051
Primary somatosensory cortex forelimb region layer 2	0	0	0	0	0,0417	47	0,1702	-0,8768	0,0319	0,309	0,1771	0,0083
Primary somatosensory cortex forelimb region layer 3	0	0	0	0	0,0417	47	0,1702	-0,8768	0,0319	0,309	0,1771	0,0083
Ventral tenia tecta	0	1	0,4167	0,4167	0,1091	7	0,5624	-0,1672	0,44	1	0,151	0,0023
Parietal cortex posterior area dorsal part layer 1	0	1	1	1	0,0318	52,5	0,0476	-0,9265	0,0388	0	0,2918	0
Agranular insular cortex ventral part layer 5	0,0936	0	0,0936	0,0936	0,1433	12,5789	0,6346	0,2841	0,2464	0,3137	0	0
Agranular insular cortex ventral part layer 6	0,0936	0	0,0936	0,0936	0,1433	12,5789	0,6346	0,2841	0,2464	0,3137	0	0
Ventral orbital cortex layer 2	0	0	0	0	0,0373	41	0,3415	-0,8959	0,0244	0,2461	0,2544	0,0003
Ventral orbital cortex layer 3	0	0	0	0	0,0373	41	0,3415	-0,8959	0,0244	0,2461	0,2544	0,0003
Piriform cortex layer 2	0,3333	0	0,3333	0,2	0,2	5	0,432	-0,0465	0,4615	0,6667	1	0,0002
Agranular insular cortex ventral part layer 3	0,0936	0	0,0936	0,0936	0,1433	12,5789	0,6346	0,2841	0,2464	0,3137	0	0
Dorsolateral entorhinal cortex layer 2	0	1	1	1	0.2831	49	0.0816	-0,9211	0.0417	0	0,2647	0
Presubiculum border of layer 1 and 2	0	1	1	1	0.5584	28	0.25	-0.859	0.0741	0	0,2388	0
Ventral intermediate entorminal contex layer 2	0	1	1	1	0.1974	20	0	-0.0102	0,1071	0	0,1985	0
Ventral intermediate enterhinal cortex days layers	0	1	1	1	0.1974	30	0	-0.8182	0,1071	0	0,1985	0
Postsubiculum lavers	0	1	1	1	0,1974	20	0 2273	-0,8182	0,1071	0	0,1985	0
Fotorhinal cortex layer 4	0	0.1	0.1	0.1	0.092	30.8	0.2273	-0.6258	0.0952	0	0.2571	0
Dorsal intermediate entorhinal cortex deen layers	0	0.1	0.1	0.1	0.2004	24.5	0.2245	-0.5933	0.0401	0	0.2003	0
Supragranular layers of the frontal cortex area 3	0	1	1	1	0.2035	24,5	0.2245	-0.8519	0.0833	0	1	0
Frontal cortex area 3 laver 3	0	1	1	1	0.2035	25	0	-0.8519	0.0833	0	1	0
Frontal cortex area 3 layer 5	0	1	1	1	0.2035	25	0	-0.8519	0.0833	0	1	0
Frontal cortex area 3 layer 6	0	1	1	1	0,2035	25	0	-0,8519	0,0833	0	1	0
Agranular insular cortex posterior part layer 1	0	1	1	1	0,2035	25	0	-0.8519	0.0833	0	1	0
Agranular insular cortex posterior part layer 2	0	1	1	1	0,2035	25	0	-0.8519	0,0833	0	1	0
Frontal cortex area 3 layer 4	0	1	1	1	0,2035	25	0	-0,8519	0,0833	0	1	0
Agranular insular cortex posterior part layer 3	0	1	1	1	0,2035	25	0	-0,8519	0,0833	0	1	0
Agranular insular cortex posterior part layer 4	0	1	1	1	0,2035	25	0	-0,8519	0,0833	0	1	0
Granular insular cortex layer 4	0	1	1	1	0,2035	25	0	-0,8519	0,0833	0	1	0
Agranular insular cortex dorsal part deep layers	0,2381	0	0,2381	0,2381	0,2452	18	0,3826	-0,3689	0,1466	0,2938	0	0

Tabellenanhang

Name (Lokale Parameter Teil 6)	CluCour	CluC _{1n}	CluCAU	CluCTring	CluC ₂	AvgDG _{nb}	VC _{DG}	Lev	Loc	CC Out	CC In	BC
Piriform cortex layer 1	0	0	0	0	1	4	0	-0,3333	0,5	0,4286	1	0
Primary somatosensory cortex barrel field layer 2	1	0	1	1	0.3333	6	0,1667	-0,4921	0,5	0,1119	0	0
Parietal cortex posterior area superficial layers	0	0	0	0	0.0551	55	0	-0,9643	0.0182	0	0,2721	0
White matter of the parietal cortex posterior area	0	0	0	0	0,0551	55	0	-0,9643	0,0182	0	0,2721	0
Parietal cortex posterior area deep gray matter layers	0	0	0	0	0,0551	55	0	-0,9643	0,0182	0	0,2721	0
Dorsal intermediate entorhinal cortex superficial layers	0	0	0	0	0,1046	16	0,3248	-0,5573	0,0625	0	1	0
Dorsal tenia tecta	0	0,5	0,5	0,5	0.3333	5	0,2	-0,4167	0,3333	0	0,1325	0
Dorsolateral entorhinal cortex layer 5	0	0	0	0	0,1046	19	0	-0,7273	0.0526	0	1	0
Dorsolateral entorhinal cortex layer 6	0	0	0	0	0,1046	19	0	-0,7273	0,0526	0	1	0
Primary visual cortex binocular area	0	0	0	0	0,0551	55	0	-0.9643	0,0182	0	0,2721	0
Primary auditory cortex layers	0	0	0	0	0,0804	50	0	-0,9608	0,02	0	0,2746	0
Amygdalopiriform transition area layers	0	0	0	0	0,3134	53	0	-0,963	0,0189	0	0,2629	0
Primary visual cortex border of layer 1 2	0	0	0	0	0.6333	17	0	-0,8889	0,0588	0	0,2294	0
Dorsal intermediate entorhinal cortex layer 3	0	0	0	0	0,1046	19	0	-0,7273	0,0526	0	1	0
Dorsal intermediate entorhinal cortex layer 4	0	0	0	0	0,1046	19	0	-0,7273	0,0526	0	1	0
Dorsal peduncular cortex layers	0	0	0	0	0,0759	31,5	0,5873	-0,8282	0,0317	0,2678	0	0
Medial orbital cortex layer 2	0	0	0	0	0,0551	55	0	-0,9643	0,0182	0,2462	0	0
Medial orbital cortex layer 3	0	0	0	0	0,0551	55	0	-0,9643	0,0182	0,2462	0	0
Cingulate cortex area 1 layers	0	0	0	0	0,0804	50	0	-0,9608	0,02	0,2661	0	0
Cortex amygdala transition zone	0,5	0	0,5	0,5	0,1061	10	0,3	-0,6444	0,1579	0,5556	0	0
Parietal cortex posterior area dorsal part layer 4	0	0	0	0	0,0551	55	0	-0,9643	0,0182	0,2462	0	0
Parietal cortex posterior area rostral part layer 2	0	0	0	0	0,0551	55	0	-0,9643	0,0182	0,2462	0	0
Parietal cortex posterior area rostral part layer 3	0	0	0	0	0,0551	55	0	-0,9643	0,0182	0,2462	0	0
Parietal cortex posterior area rostral part layer 5	0	0	0	0	0,0551	55	0	-0.9643	0,0182	0,2462	0	0
Primary somatosensory cortex shoulder region	0	0	0	0	1	7	0	-0,5556	0,1429	0,1945	0	0
Secondary auditory cortex	0	0	0	0	0	5	0	-0,6667	0.2	0,1612	0	0

1	1	1
	4	-4

Name (Lokale Parameter Teil 7)	EC	SC	PRC	FC	Stress	Shaplev	Zout	Zu	ZAU	PCout	PC	PCAU
Medial entorhinal cortex layer 2	0,875	165479,947	0,5497	0,5909	12745	-0,9833	1,3853	1,9449	1,7687	0	0,4807	0,3211
Lateral entorhinal cortex layer 2	0,8262	109801,4324	0,4542	0,5054	11242	-0,6944	0,9902	0,7189	0,9743	0,1723	0,4802	0,3605
Lateral entorhinal cortex layer 5	0,98	120872,3205	0,2279	0,428	19141	-0,4343	0,9902	0,5146	0,886	0,4745	0,1244	0,4168
Lateral entorhinal cortex layer 3	1	113435,6846	0,2614	0,5587	18217	-0,7257	1,1219	-0,0984	0,7095	0,4688	0,5263	0,4913
Medial entorhinal cortex layer 3	0,8401	135361,7632	0,3418	0,5075	6426	-0,3644	0,8585	1,1276	1,0626	0	0,524	0,3664
Presubiculum layer 2	0.8048	106290.7582	0.2454	0.6548	7614	-0.3033	0.7268	0.7189	0.7977	0.1049	0.1172	0.1107
Medial entorhinal cortex layer 6	0.8681	118543,1466	0.2191	0.5968	1900	-0.2846	1.2536	0.7189	1.1508	0	0	0
Presubiculum layer 5	0.8073	90058 8282	0 2435	0.5692	4946	-0.3298	0.9902	0 5146	0.886	0.095	0 1244	0 1078
Secondary visual cortex lateral area	0.0701	1850.611	1	0.4451	22650	-1 1363	3 532	4 6033	4 1677	0.2188	0.4070	0.3310
Secondary visual cortex medial area	0.1155	2002 2866	0 5094	0.1151	22033	1 0221	2 7207	2 0424	2.0591	0.4405	0.5420	0.5016
Lateral enterhinal cortex layer 6	0.1155	82406 4061	0.1021	0.57	120720	0.1426	1 1210	0.0084	0 7005	0.1652	0.1529	0.1644
Madial antarkinal sortex layer 0	0,0402	02202 2228	0,1951	0,7001	1502	0,1705	0.0624	0,7190	0,7095	0,1055	0,1520	0,1044
Internal entorminal contex layer 1	0.0801	95505,2228	0.2337	0,7555	1392	-0,1795	-0,0034	0.7189	0,2081	0 1 (5 2	0 2722	0 2072
Lateral enforminal cortex layer 4	0,8462	84555,0505	0,1966	0,46	436/	-0,1461	1,1219	-0.0984	0,7095	0,1055	0,2722	0,2073
Medial entorhinal cortex layer 5	0,6097	7/851,9887	0,2116	0,7333	989	-0,1685	-0,0634	0.7189	0,2681	0	0	0
Medial entorhinal cortex layer 4	0,6691	78589,0598	0,2048	0,4385	9022	-0,1046	0,4634	0,3103	0,4446	0,4082	0,1327	0,32
Presubiculum layer 3	0,7697	76234,4099	0,2254	0,539	3068	-0,246	1,1219	0,1059	0,7977	0	0,142	0,0588
Perirhinal cortex layer 3	0,3159	10037,3737	0,1382	0,3182	20636	0,2281	0,1423	1,024	0,6885	0,58	0,6844	0,6624
Perirhinal cortex layer 6	0,3128	10579,4128	0,139	0,3676	5975	0,1613	-0,185	1,3809	0,5043	0,5938	0,5444	0,5941
Perirhinal cortex layer 2	0,3707	11127,6935	0,0944	0,3571	9694	0,1753	0,6333	1.024	1,2408	0,5207	0,6036	0,5799
Prelimbic cortex layer 2	0,0848	1165,6731	0,129	0,5989	12930	-0.0138	0,4933	1,3629	0,9773	0	0,2604	0,1653
Lateral entorhinal cortex layer 1	0,4627	54953,7932	0,1897	0,5714	614	-0,0218	-0,4585	0,5146	-0,085	0	0	0
Presubiculum layer 1	0,2784	35588,1748	0,2586	0,2515	1244	0,17	-0,8536	0,9232	-0,1733	0	0,1975	0,1588
Prelimbic cortex layer 3	0,0848	1165,6731	0,129	0,5989	12930	-0,0138	0,4933	1,3629	0,9773	0	0,2604	0,1653
Retrosplenial granular cortex b region	0,076	935,6269	0,2403	0,3123	32900	-0,8583	1,5456	0,1816	0,9499	0,5123	0,5926	0,6145
Infralimbic cortex layer 2	0,2536	979,7469	0,09	0,3597	10528	0,0487	1,0601	0,8656	1,1954	0,5488	0	0,4289
Primary visual cortex layer 4	0,0217	566,1924	0,2477	0,7778	210	0,0411	0,751	1,3452	1,0609	0	0	0
Infralimbic cortex layer 4	0,2536	979,7469	0,09	0,3597	10528	0,0487	1,0601	0,8656	1,1954	0,5488	0	0,4289
Infralimbic cortex layer 3	0,2536	979,7469	0,09	0,3597	10528	0,0487	1,0601	0,8656	1,1954	0,5488	0	0,4289
Ectorhinal cortex layer 2	0 4935	10316 3744	0.0711	0 2762	3263	0 2346	0 797	0 3103	1.0567	0.5813	0 4082	0 5417
Primary visual cortex layer 2	0.0217	502 9556	0 2043	0.6944	206	0.0952	0.751	1 1125	0 9499	0.0010	0,1002	0,2 117
Presubiculum layer 6	0.5127	34145 8001	0.1142	0 3/31	406	0.1880	0.0683	-0.7113	-0.2616	0	0 1075	0.0007
Primary visual cortex layer 5	0.0221	513 107	0 2003	0.5451	1062	0.0052	1 1/83	1 1125	1 1718	0	0.1775	0.0707
Prolimbia cortex layor 5	0,0221	655 2262	0,2095	0.4119	7070	0.0421	0.2000	1 2620	0.7502	0 2457	0.2604	0.214
Primary comptoson contex his dlimb region	0,0207	471 4512	0,129	0,4110	56260	2 5761	2 5220	2 5014	2 5522	0,0457	0,2004	0,514
Primary solitatosensory cortex initiatino region	0.0139	4/1,4512 540.072	0.3404	0.95	30200	-3,3701	0.0406	0.8708	0.0400	0.093	0	0.05
Estarbinel contex layer 6	0,0221	7842 7802	0,2301	0,875	4J	0,040	0,9490	0,6770	0,9499	0 4629	0 275	0 4221
Ectorminal contex layer o	0.551	/643./693	0.0747	0.3342	300	0.248	0,4097	0.0072	0.8720	0,4028	0.373	0,4521
Parasubiculum layer 5	0.2656	32298,9386	0.2015	0,3162	1422	0.1/69	-0,/219	0,5146	-0,2616	0	0,1244	0.0907
Primary visual cortex layer 3	0,0217	502,9556	0,2043	0,6944	206	0.0952	0,751	1,1125	0,9499	0	0	0
Infralimbic cortex layer 6	0,0868	1088,3754	0,1075	0.7179	2314	-0.0638	0,7767	1,3629	1,1954	0	0	0
Infralimbic cortex layer 5	0,0868	1088,3754	0,1082	0,6758	2878	-0,0638	0,7767	1,3629	1,1954	0,1528	0	0,0832
Parasubiculum layer 2	0,3084	31707,115	0,1673	0,381	350	0,1648	-0,5902	-0,0984	-0,4381	0	0,1528	0,0997
Primary visual cortex layer 1	0,0172	375,2177	0,2291	0,4444	206	0,1959	0,155	1,3452	0,728	0	0	0
Parasubiculum layer 3	0,3084	29338,1283	0,1629	0,381	245	0,167	-0,5902	-0,0984	-0,4381	0	0,1528	0,0997
Prelimbic cortex layer 6	0,0287	516,5348	0,1067	0,3529	6997	0,1386	0,2099	0,8656	0,5412	0,3457	0,2975	0,34
Primary somatosensory cortex upper lip region	0,0115	293,5553	0,4031	1	12978	-0,5672	2,0894	2,0703	2,1004	0	0	0
Perirhinal cortex layer 5	0,2509	8007,1137	0,0897	0,2571	2056	0.3963	-0,676	1,3809	-0,048	0,32	0,3967	0,5547
Parasubiculum layer 6	0,1182	11750,8816	0,1614	0,1538	19	0,3255	-1,2487	0,1059	-0,7912	0	0,142	0,1244
Infralimbic cortex layer 1	0,0868	860,9594	0,0863	0,6288	2	0,0488	0,635	0,8656	0,8683	0	0	0
Retrosplenial dorsal layer 5	0,01	110,5055	0,2177	0,6607	6896	-0,0573	0	0	0	0,2778	0,4082	0,3787
Retrosplenial granular cortex a region	0,3551	3589,0429	0,0682	0,2143	3503	0,2509	-0,0436	-0,2838	-0,1597	0,3367	0,4444	0,4152
Parasubiculum layer 1	0,1182	11639,0024	0,1631	0,1667	7	0,3305	-1,2487	0,1059	-0,7912	0	0	0
Primary somatosensory cortex trunk region	0,0117	250,7642	0,2897	1	5165	-0,1006	1,1266	1,1163	1,1325	0	0	0
Secondary somatosensory cortex layer 3	0,029	109,1927	0,1981	0,5714	19192	0,1908	0,4044	0,4007	0,4065	0	0	0
Perirhinal cortex layer 4	0,0006	22,9871	0,2135	0,1538	64578	-0,4164	-0,5124	1,7377	0,3202	0,5	0,4615	0,4978
Retrosplenial dorsal layer 4	0,01	81,7573	0,1982	0.8333	1588	0,0553	0	0	0	0,2778	0	0,1653
Secondary somatosensory cortex layer 5	0,029	140,7385	0,2184	0,7143	19076	0,1221	0,1637	0,6392	0,4065	0	0	0
Secondary somatosensory cortex layer 6	0.031	107.4462	0.1697	0.7143	19079	0.1199	0.6451	0.1622	0.4065	0	0	0
Primary somatosensory cortex iaw region	0,0086	73,0914	0.38	1	73414	-1,3075	0,4044	0,4007	0,4065	0,2449	0,2449	0,2449
Retrosplenial dorsal layer 1	0,0019	81,7573	0,2124	0,7143	4472	0,0553	0	0	0	0	0,4082	0,2778
Cingulate cortex area 2	0.0148	95.6274	0,1619	0.6	11570	0.166	-0.0436	0,1816	0.0622	0	0.32	0.2188
Ectorhinal cortex layer 5	0 259	5037 1357	0.0595	0.3106	2806	0.4117	-0.676	0.3103	-0.6004	0.4444	0.4082	0.6154
Temporal association cortex 1 laver 3	0.0121	117 9044	0.082	0 2610	2000	0 4077	0 5523	-0 2838	0 1732	0,7777	0,7002	0,0104
Presubiculum layer 4	0.0121	9280 8444	0.0771	0 4444	36	0 2588	-0 5002	-1 5286	_1.056	0	032	0 1578
Temporal association cortex 1 superficial laws	0.2720	117 0044	0.0771	0.2610	50	0.4077	0 5522	-0 2820	0 1722	0	0,52	0,1520
Potroeplonial doreal layer 2	0,0121	72 2662	0.1024	0,2019	0	0,40//	0,3323	-0,2030	0,1/32	0	0	0
Retrosplenial dorsal layer 2	0.0019	72,2003	0.1934	1	0	0.1405	0	0	0	0	0	0
Retrospiental dorsal layer 3	0,0019	72,2003	0,1934	1	0	0,1405	0	0	0	U	U	U
Retrospieniai dorsai layer o	0.0019	/2,2003	0,1934	1	10101	0,1465	0	0 1 (22	0	U	U	0
Secondary somatosensory cortex layer 2	0,027	84,7622	0.1775	0,7	19191	0,1934	0,1637	0,1622	0,1645	0	0	0
Secondary somatosensory cortex layer 4	0,0072	88,0669	0,1554	0,6667	11876	0,1934	0.4044	-0,0763	0,1645	0	0	0

			22.0				~	~	~	20		
Name (Lokale Parameter Teil 8)	EC 0.1182	SC 4526 4201	PRC	FC 0.2	Stress	Shapley	Zo	Z ₁₀	ZAU 1.4074	PCourt	PC ₁₀	PC
Parasubiculum layer 4	0,1182	4536,4391	0,0847	0,3	14	0,4181	-1,248/	-1,5280	-1,49/4	0 5020	0,32	0,2449
Dysgranular insular cortex Pariatal aartay pagtariar area dareal part layar 3	0.3404	45,8469	0.151	0.3333	28954	0.3138	-0,5585	-0.0763	-0.3194	0.5926	0,4444	0.6933
Parietal cortex posterior area dorsal part laver 2	0.0049	31,4812	0.082	0.5	0	0.5	-0,4409	-0.2838	-0.3816	0	0	0
Parietal cortex posterior area dorsal part layer 5	0.0049	31 4812	0.082	0,5	0	0,5	-0 4409	-0.2838	-0.3816	0	0	0
Lateral agranular prefrontal cortex layer 3	0.0024	72.0979	0.1459	1	2	0.1943	-0.077	-0.0763	-0.0774	0	0	0
Primary visual cortex monocular area	0.0052	47,4042	0.1122	0.3333	0	0.5	-0.4409	-0.0511	-0.2706	0	0	0
Lateral agranular prefrontal cortex layer 5	0,0022	55,9958	0,1129	1	0	0,2621	-0,3177	-0,3148	-0,3194	0	0	0
Lateral agranular prefrontal cortex layer 2	0,0022	55,9958	0,1129	1	0	0,2621	-0,3177	-0,3148	-0,3194	0	0	0
Agranular insular cortex posterior part layer 5	0,1283	4,1945	0,0338	0,0417	0	0,5	2,4771	-1,1235	1,4135	0.0799	0	0,0768
Agranular insular cortex posterior part layer 6	0,1283	4,1945	0,0338	0,0417	0	0,5	2,4771	-1,1235	1,4135	0,0799	0	0,0768
Retrosplenial granular cortex c region	0,0068	18,1595	0,1072	0,6667	275	0,3306	-0,2423	-0,2838	-0,2706	0	0,4444	0,32
Primary somatosensory cortex barrel field layer 6	0	6,61	0,417	0,4	12496	-0,4167	0	1,4142	1,4142	0	0,32	0,2449
Primary somatosensory cortex barrel field layer 5	0	3,2755	0,3208	0,6667	434	0,2621	0	0,7071	0,7071	0	0	0
Lateral orbital cortex layer 2	0,0049	20,5335	0,0579	0,3333	70	0,5867	-0,4409	-0,2838	-0,3816	0	0	0
Lateral orbital cortex layer 3	0,0049	20,5335	0,0579	0,3333	70	0,5867	-0,4409	-0,2838	-0,3816	0	0	0
Perirhinal cortex layer 1	0	1	0,1834	0	0	1	-0,676	1,3809	-0,048	1	0,687	0,687
Ectorhinal cortex layer 3	0,0129	209,6485	0,0502	0,2381	2438	0,5069	-0,676	-0,4034	-0,9687	0	0,48	0,6531
Medial parietal association cortex	0.0027	53,1548	0,1232	0.75	2387	0,2621	-0,3177	-0.0763	-0,1984	0	0	0
Lateral partetal association cortex	0,0027	55,1548	0,1232	0.75	2387	0,2621	-0,31//	-0.0765	-0,1984	0	0 275	0 2440
Posterolateral cortical nucleus	0	4,1945	0,101	0,3007	20000	0,5	0,9297	0,8292	1,3804	0.5	0,375	0,2449
Prelimbic cortex layer 1	0	4,4406	0,1626	0.3	20090	0,1003	-0,3124	-1,11/1	-1,1328	0.3	0,3	0.3
Lateral agranular prefrontal cortex layer 6	0.0024	28 1704	0.0819	0.5	244	0 3306	-0,782	-0 5534	-0 4404	0 375	0,2449	0,244)
Externinal cortex layer 1	0.0024	20,1704	0.119	0.5	244	0,5500	-0.676	0.6672	-0.4163	0.575	0 6429	0.6429
Temporal association cortex 1 layer 5	0.008	21 3494	0.068	0.5	0	0.6665	-0 4409	-0.5165	-0.4926	0	0.0429	0.0429
Primary somatosensory cortex barrel field layer 4	0,000	2.6486	0.2098	0.3333	14785	0.0833	0	-0.7071	-0.7071	0.4444	0	0.375
Primary somatosensory cortex barrel field layer 3	0	4,8566	0,2284	0,5	1	0,426	0	0	0	0	0	0
Posteromedial cortical nucleus	0	4,1945	0,0838	0,35	1281	0,5	1,6903	0,1508	1,3804	0	0	0
Olfactory tubercle	0	2,7183	0,1776	0	0	1	-1,3522	2,186	0,8157	1	0,6982	0,6982
Medial agranular prefrontal cortex layer 6	0,0064	9,9182	0,0556	0,3333	5087	0,5	-0,5585	-0,7919	-0,6824	0,4444	0	0,375
Prelimbic cortex layer 4	0	1	0,0985	0	0	1	-0,782	0,1197	-0,5492	1	0,375	0,375
Lateral orbital cortex layer 1	0	1	0,0579	0	0	1	-0,6395	-0,2838	-0,4926	1	0	0
Lateral orbital cortex layer 5	0	1	0,0579	0	0	1	-0,6395	-0,2838	-0,4926	1	0	0
Temporal association cortex 1 layer 6	0	1	0,082	0	0	1	-0,6395	-0,2838	-0,4926	1	0	0
Medial agranular prefrontal cortex layer 2	0,0064	9,6305	0,0556	0,5	5073	0,5	-0,7992	-0,7919	-0,8034	0,5	0	0,4444
Medial agranular prefrontal cortex layer 3	0,0064	9,6305	0,0556	0,5	5073	0,5	-0,7992	-0,7919	-0,8034	0,5	0	0,4444
Dorsolateral orbital cortex	0,0006	3,467	0,1396	0.25	3608	0,5	-0,7992	-0,0763	-0,4404	0	0	0
Medial agranular prefrontal cortex layer 5	0,0064	9,6305	0,0556	0.5	5073	0,5	-0,7992	-0,7919	-0,8034	0,5	0	0,4444
Primary somatosensory cortex forelimb region layer 2	0,006	9,6364	0,0556	0.5	1575	0.5	-0,7992	-0,7919	-0,8034	0.5	0	0,4444
Primary somatosensory cortex forelimb region layer 3	0,006	9,6364	0.0556	0.5	15/5	0.5	-0,7992	-0./919	-0.8034	0.5	0	0,4444
Periotal contax posterior area dersal part lavor 1	0	2,7185	0,079	0,3333	12/3	1	0,109	0,1308	0,231	1	0	0
A granular insular cortex ventral part laver 5	0 1645	1	0.0326	0	0	1	-0.0393	-0.2838	1 7932	0.0997	1	0 0997
Agranular insular cortex ventral part layer 6	0 1645	1	0.0326	0	0	1	2,27	-1 474	1 7932	0.0997	1	0.0997
Ventral orbital cortex layer 2	0.0049	6.8304	0.044	0.5	70	0.67	-0.4409	-0.5165	-0.4926	0.077	0	0.0777
Ventral orbital cortex layer 3	0,0049	6,8304	0,044	0,5	70	0,67	-0,4409	-0,5165	-0,4926	0	0	0
Piriform cortex layer 2	0	1,5431	0,0795	0,3333	7	0,5	0,9297	-0,5276	0,251	0	0	0
Agranular insular cortex ventral part layer 3	0,1645	1	0,0326	0	0	1	2,27	-1,474	1,7932	0,0997	1	0,0997
Dorsolateral entorhinal cortex layer 2	0	1	0,07	0	0	1	-1,5121	-1,9373	-1,8505	1	0	0
Presubiculum border of layer 1 and 2	0	1	0,0715	0	0	1	-1,5121	-1,9373	-1,8505	1	0	0
Ventral intermediate entorhinal cortex layer 2	0	1	0,0435	0	0	1	-0,782	-0,6262	-0,8763	1	0	0
Ventral intermediate entorhinal cortex layer 3	0	1	0,0435	0	0	1	-0,782	-0,6262	-0,8763	1	0	0
Ventral intermediate entorhinal cortex deep layers	0	1	0,0435	0	0	1	-0,782	-0,6262	-0,8763	1	0	0
Postsubiculum layers	0	1	0,0481	0	0	1	-0,6395	-0,2838	-0,4926	1	0	0
Ectorhinal cortex layer 4	0	1	0,0502	0	0	1	-0,676	-0,4034	-0,9687	1	0,48	0,48
Dorsal intermediate entorhinal cortex deep layers	0	1	0,0479	0	0	1	-0,676	-0,4034	-0.9687	1	0,5	0.5
Supragranular layers of the frontal cortex area 3	0	1	0.035	0	0	1	-0,782	-0.8748	-0.9854	1	0	0
Frontal cortex area 3 layer 3	0	1	0,035	0	0	1	-0,782	-0,8748	-0,9854	1	0	0
Frontal cortex area 3 layer 5	0	1	0,035	0	0	1	-0,782	-0,8/48	-0,9854	1,	0	0
A grapular incular agentar postariar part lavor 1	0	1	0,035	0	0	1	-0,782	-0,8/48	-0,9854	1,	0	0
A granular insular cortex posterior part layer 1	0	1	0.035	0	0	1	-0.782	-0.8748	-0.9634	1	0	0
Frontal cortex area 3 layer 4	0	1	0.035	0	0	1	-0.782	-0 8748	-0 9854	1	0	0
Agranular insular cortex nosterior part layer 3	0	1	0.035	0	0	1	-0 782	-0 8748	-0 9854	1	0	0
Agranular insular cortex posterior part layer 4	0	1	0.035	0	0	1	-0.782	-0.8748	-0.9854	1	0	0
Granular insular cortex layer 4	0	1	0.035	0	0	1	-0,782	-0,8748	-0.9854	1	0	0
Agranular insular cortex dorsal part deep layers	0,0869	1	0,0326	0	0	1	0,4697	-1,474	-0,2322	0	1	0

Name (Lokale Parameter Teil 9)	EC	SC	PRC	FC	Stress	Shapley	Zour	Z	ZAU	PCourt	PCIn	PCAU
Piriform cortex layer 1	0	1,5431	0,0551	0	0	0,5	-0,5916	-0,5276	-0,8784	0	0	0
Primary somatosensory cortex barrel field layer 2	0	2,7183	0,0326	0	0	1	0	-1,4142	-1,4142	0	1	0
Parietal cortex posterior area superficial layers	0	1	0,068	0	0	1	-0,6395	-0,5165	-0,6035	1	0	0
White matter of the parietal cortex posterior area	0	1	0,068	0	0	1	-0,6395	-0,5165	-0,6035	1	0	0
Parietal cortex posterior area deep gray matter layers	0	1	0,068	0	0	1	-0,6395	-0,5165	-0,6035	1	0	0
Dorsal intermediate entorhinal cortex superficial layers	0	1	0,0409	0	0	1	-0,676	-0,0465	-0,7845	1	0	0
Dorsal tenia tecta	0	1	0,084	0	0	1	-1,3522	0,1508	-0,8784	1	0	0
Dorsolateral entorhinal cortex layer 5	0	1	0,037	0	0	1	-0,676	-0,4034	-0,9687	1	0	0
Dorsolateral entorhinal cortex layer 6	0	1	0,037	0	0	1	-0,676	-0,4034	-0,9687	1	0	0
Primary visual cortex binocular area	0	1	0,068	0	0	1	-0,6395	-0,5165	-0,6035	1	0	0
Primary auditory cortex layers	0	1	0,0466	0	0	1	-0,6395	-0,5165	-0,6035	1	0	0
Amygdalopiriform transition area layers	0	1	0,0538	0	0	1	-1,5121	-2,1416	-1,9388	1	0	0
Primary visual cortex border of layer 1 2	0	1	0,0524	0	0	1	-0,6395	-0,5165	-0,6035	1	0	0
Dorsal intermediate entorhinal cortex layer 3	0	1	0,037	0	0	1	-0,676	-0,4034	-0,9687	1	0	0
Dorsal intermediate entorhinal cortex layer 4	0	1	0,037	0	0	1	-0,676	-0,4034	-0,9687	1	0	0
Dorsal peduncular cortex layers	0,008	1	0,0326	0	0	1	-0,5916	-1,206	-1,4431	0,5	1	0,5
Medial orbital cortex layer 2	0,0049	1	0,0326	0	0	1	-0,4409	-0,7493	-0,6035	0	1	0
Medial orbital cortex layer 3	0,0049	1	0,0326	0	0	1	-0,4409	-0,7493	-0,6035	0	1	0
Cingulate cortex area 1 layers	0,008	1	0,0326	0	0	1	-0,4409	-0,7493	-0,6035	0	1	0
Cortex amygdala transition zone	0	1	0,0326	0	0	1	0,169	-1,206	-0,8784	0	1	0
Parietal cortex posterior area dorsal part layer 4	0,0049	1	0,0326	0	0	1	-0,4409	-0,7493	-0,6035	0	1	0
Parietal cortex posterior area rostral part layer 2	0,0049	1	0,0326	0	0	1	-0,4409	-0,7493	-0,6035	0	1	0
Parietal cortex posterior area rostral part layer 3	0,0049	1	0,0326	0	0	1	-0,4409	-0,7493	-0,6035	0	1	0
Parietal cortex posterior area rostral part layer 5	0,0049	1	0,0326	0	0	1	-0,4409	-0,7493	-0,6035	0	1	0
Primary somatosensory cortex shoulder region	0,0004	1	0,0326	0	0	1	-0,5585	-1,0304	-0,8034	0	1	0
Secondary auditory cortex	0	1	0.0326	0	0	1	-0.7002	-1 0304	-0 9244	0	1	0

Name (Lokale Parameter Teil 10)	Radout	Rad	Cenout	Cen	Hub	Aut	Knot
Medial entorhinal cortex layer 2	7,463	7,284	-74	-28	0,7353	0.7244	0
Lateral entorhinal cortex layer 2	7 8642	7.3025	-/5	-24	0./9//	0.7244	0
[ateral entorhinal cortex layer 3	7 8704	7 2716	-33	-49	0.97	0.6911	0
Medial entorhinal cortex layer 3	7,4321	7,2593	-79	-33	0.6447	0.975	0
Presubiculum layer 2	7,7407	6,9938	-46	-53	0,6294	0,7146	0
Medial entorhinal cortex layer 6	7,463	6,8333	-75	-75	0,751	0,7205	0
Presubiculum layer 5	7,5617	6,9383	-76	-58	0,6657	0,6042	0
Secondary visual cortex lateral area	7,7716	7,3765	-44	-4	0,1044	0,1406	1
Secondary visual cortex medial area	8,0123	7,4012	-7	2	0,1475	0,1166	1
Lateral entorhinal cortex layer 6	7,4691	6,9815	-74	-52	0,8373	0,5588	0
Medial entorhinal cortex layer 1	7,3889	6,8827	-86	-67	0,4322	0,7366	0
Lateral entorhinal cortex layer 4	7,4691	7,0062	-74	-48	0,8354	0,592	C
Medial entorhinal cortex layer 5	7,3889	6,8333	-87	-76	0,4483	0,7418	0
Medial entorhinal cortex layer 4	7,7654	6,8457	-49	-74	0.7169	0.6749	(
Presubiculum layer 3	7 921	0,8042	-//	-/4	0,7257	0,4308	1
Perirhinal contex layer 5	/,821 9777 7	7,3009	-40	-10	0,5155	0,4178	1
Perirhinal cortex layer 2	7 8395	7,0679	-47	-19	0,2312	0,3778	0
Prelimbic cortex layer 2	7.1173	7.037	-104	-69	0.0443	0.1078	0
ateral entorhinal cortex layer 1	7,1605	6,8272	-115	-77	0,3131	0,7209	(
Presubiculum layer 1	7,0494	7.0926	-113	-40	0,2238	0,7388	(
Prelimbic cortex layer 3	7,1173	7,037	-104	-69	0,0443	0,1078	(
Retrosplenial granular cortex b region	7,6296	7,1914	-62	-34	0,0909	0,0814	(
nfralimbic cortex laver 2	7,7593	6,3765	-57	-107	0,2938	0.0683	(
Primary visual cortex layer 4	7,3148	6,8889	-113	-83	0,0215	0,0273	(
nfralimbic cortex layer 4	7,7593	6,3765	-57	-107	0,2938	0,0683	(
nfralimbic cortex layer 3	7,7593	6,3765	-57	-107	0,2938	0,0683	(
Ectorhinal cortex layer 2	8.0679	6.9753	5	-77	0,4705	0.2379	(
rimary visual cortex layer 2	7,3148	6,8827	-113	-84	0,0216	0,0261	(
resubiculum layer 6	7.0926	6,9012	-106	-65	0,4863	0.4806	
Prelimbic cortex layer 5	6 8704	7 037	-111	-69	0,0223	0,020	
rimary somatosensory cortex hindlimb region	7 6728	5 9753	-68	-81	0,0039	0.0034	Č
rimary visual cortex layer 6	7.321	6.8765	-112	-85	0.0222	0.0251	Ì
Ectorhinal cortex layer 6	7,6914	6,9815	-61	-76	0,3426	0,271	(
arasubiculum layer 5	6,8704	6,9877	-112	-52	0,1976	0,7055	
Primary visual cortex layer 3	7,3148	6,8827	-113	-84	0,0216	0,0261	(
nfralimbic cortex layer 6	7,1296	6,3889	-102	-105	0,0531	0,0904	(
nfralimbic cortex layer 5	7,1358	6,3889	-101	-105	0,0608	0,0899	(
arasubiculum layer 2	6,8765	6,9691	-111	-54	0,2638	0,6069	(
Primary visual cortex layer 1	7,2901	6,8889	-117	-83	0,0172	0,0276	(
Parasubiculum layer 3	6,8765	6,9691	-111	-55	0.2671	0,5473	(
relimbic cortex layer 6	6,8704	7,0247	-96	-69	0,037	0,1021	(
rimary somatosensory cortex upper lip region	7,2531	5,9383	-70	-88	0.0025	0,001	
ernnnai conex layer 5 Parasubiculum layer 6	6 7220	6 0752	-// _121	-/3	0,1901	0.5001	
arasuoreurum rayer 0 afralimbic cortex laver 1	7 1225	6 3765	-121	-55	0.0938	0.0854	
etrosplenial dorsal laver 5	7,3272	6,4259	-105	-107	0.0071	0.0059	
etrosplenial granular cortex a region	7,5802	6,9753	-70	-69	0,3429	0.0636	
arasubiculum layer 1	6,7222	6,8148	-121	-79	0,0958	0,629	
rimary somatosensory cortex trunk region	7,216	5,9136	-74	-91	0,0024	0,0009	
econdary somatosensory cortex layer 3	7,5062	6,4568	-68	-80	0,0017	0,0024	
erirhinal cortex layer 4	6,142	7,3704	-116	-46	0	0,3631	
etrosplenial dorsal layer 4	7,3272	5,7407	-115	-111	0,0074	0.0007	
econdary somatosensory cortex layer 5	7,5	6,4753	-68	-76	0,0008	0,0159	
econdary somatosensory cortex layer 6	7,5123	6,463	-68	-79	0,0019	0,0156	
rimary somatosensory cortex jaw region	6,858	6,9506	-106	-68	0,0224	0,0004	
etrosplenial dorsal layer 1	6,5741	6,4259	-122	-103	0,0006	0,0064	
ingulate cortex area 2	7,284	7,3025	-118	-16	0,0114	0,0248	
ctorninal cortex layer 5	7,8025	6,642	-43	-102	0,2026	0,2513	
emporal association cortex 1 layer 3	7,0309	0.8457	-121	-91	0.0152	0.0177	
resubleuturin layer 4	7,0300	6.8457	-112	-80	0.0152	0.2192	
emporar association conex 1 superficial layer	6 5741	0,845/ 5 7407	-121	-91 -111	0,0152	0,0177	
etrosplenial dorsal layer 3	6.5741	5,7407	-122	-111	0.0009	0.0012	
etrosplenial dorsal layer 6	6.5741	5,7407	-122	-111	0.0009	0.0012	
econdary somatosensory cortex laver 2	7.5	6,4321	-68	-84	0.0008	0.0022	
Secondary somatosensory cortex layer 4	7 2407	6 4250	_71	-85	0.0006	0.0022	

Name (Lokale Parameter Teil 11)	Radow	Rad ₁₀	Cenout	Cen	Hub	Aut	Knot
Parasubiculum layer 4	7.6491	5 821	-121	-80	0,0938	0,2303	0
Parietal cortex posterior area dorsal part layer 3	6 9938	6 8457	-09	-106	0.1908	0.0094	0
Parietal cortex posterior area dorsal part laver 2	6.9938	6.8457	-127	-91	0.0078	0.0177	0
Parietal cortex posterior area dorsal part layer 5	6,9938	6,8457	-127	-91	0,0078	0,0177	0
Lateral agranular prefrontal cortex layer 3	6,9136	5,284	-123	-112	0,0003	0,0005	0
Primary visual cortex monocular area	6,9938	6,679	-126	-113	0,0078	0,0105	0
Lateral agranular prefrontal cortex layer 5	6,9074	5,2778	-124	-113	0,0003	0,0005	0
Lateral agranular prefrontal cortex layer 2	6,9074	5,2778	-124	-113	0,0003	0,0005	0
Agranular insular cortex posterior part layer 5	8,5864	0,0741	-34	-120	0,0639	0,0045	0
Agranular insular cortex posterior part layer 6	8,5864	0,0741	-34	-120	0,0639	0,0045	0
Retrosplenial granular cortex c region	6,858	6,7901	-125	-83	0,0059	0,0073	0
Primary somatosensory cortex barrel field layer 6	3,9074	6,0802	-129	-107	0	0,0014	0
Primary somatosensory cortex barrel field layer 5	3,142	5,3827	-130	-114	0,0001	0	0
Lateral orbital cortex layer 2	7	6,8395	-127	-93	0,0078	0,0168	0
Lateral orbital cortex layer 3	7	6,8395	-127	-93	0,0078	0,0168	0
Perirhinal cortex layer 1	0	7,5185	-140	-2	0	0,6137	0
Ectorhinal cortex layer 3	7,2901	6,642	-120	-104	0,0143	0,1941	0
Medial parietal association cortex	6,9074	5,2901	-125	-112	0,0003	0,0006	0
Lateral parietal association cortex	6,9074	5,2901	-125	-112	0,0003	0,0006	0
Posterolateral cortical nucleus	0,2901	5,4691	-130	-111	0,0078	0,0147	0
Primary somatosensory cortex dysgranular region	5,4136	6,7222	-119	-104	0,0202	0	0
Prelimbic cortex layer 1	0	7,1111	-140	-69	0	0,111	0
Lateral agranular prefrontal cortex layer 6	7,2654	5,2716	-75	-115	0,0008	0,0005	0
Ectorhinal cortex layer 1	0	7,179	-140	-55	0	0,5069	0
Temporal association cortex 1 layer 5	7,2407	6,6728	-127	-116	0,0065	0,0074	0
Primary somatosensory cortex barrel field layer 4	4,6728	5,3704	-124	-116	0,0001	0	0
Primary somatosensory cortex barrel field layer 3	3,142	4,6852	-130	-114	0,0001	0	0
Posteromedial cortical nucleus	0,2963	4,7407	-130	-118	0,0086	0,0006	0
Olfactory tubercle	0	6,821	-138	-62	0	0,1385	0
Medial agranular prefrontal cortex layer 6	7,7284	5,2654	-67	-116	0,0048	0,0003	0
Prelimbic cortex layer 4	0	/,0/41	-140	-69	0	0,039	0
Lateral orbital cortex layer 1	0	6,9012	-140	-93	0	0,0168	0
Lateral orbital cortex layer 5	0	6,9012	-140	-93	0	0.0168	0
Medial acronylan material contex 1 layer 6	7 6728	5 2654	-140	-91	0.0047	0,0177	0
Medial agranular prefrontal cortex layer 2	7,0728	5 2654	-/3	-110	0.0047	0.0003	0
Democlateral askital contex layer 5	6.0902	6 259	-/3	-110	0,0047	0.0003	0
Medial agranular prefrontal cortex layer 5	7 6728	5 2654	-120	-90	0.0047	0.002	0
Primary somatosensory cortex forelimb region layer 2	7.6543	5 2654	-73	-116	0.0047	0.0003	0
Primary somatosensory cortex forelimb region layer 3	7.6543	5 2654	-73	-116	0.008	0.0003	0
Ventral tenia tecta	0 1481	4 8025	-134	-119	0.0078	0.0012	0
Parietal cortex posterior area dorsal part laver 1	0,1401	6 9136	-140	-91	0,0070	0.0177	0
Agranular insular cortex ventral part laver 5	8.0556	0.0150	-72	-124	0.2625	0.01//	0
Agranular insular cortex ventral part layer 6	8 0556	0	-72	-124	0.2625	0	0
Ventral orbital cortex layer 2	7.0062	6.4938	-127	-116	0.0078	0.0064	0
Ventral orbital cortex layer 3	7,0062	6,4938	-127	-116	0,0078	0,0064	0
Piriform cortex layer 2	0,4259	0,0741	-129	-121	0,0009	0	0
Agranular insular cortex ventral part layer 3	8,0556	0	-72	-124	0,2625	0	0
Dorsolateral entorhinal cortex layer 2	0	6,6605	-140	-113	0	0,0971	0
Presubiculum border of layer 1 and 2	0	6,3642	-140	-113	0	0,0608	0
Ventral intermediate entorhinal cortex layer 2	0	5,7469	-140	-114	0	0,0621	0
Ventral intermediate entorhinal cortex layer 3	0	5,7469	-140	-114	0	0,0621	0
Ventral intermediate entorhinal cortex deep layers	0	5,7469	-140	-114	0	0,0621	0
Postsubiculum lavers	0	6,5802	-140	-111	0	0,0305	0
Ectorhinal cortex laver 4	0	6,6975	-140	-104	0	0,1941	0
Dorsal intermediate entorhinal cortex deep layers	0	5,821	-140	-108	0	0,1175	0
Supragranular layers of the frontal cortex area 3	0	0,1481	-140	-120	0	0,009	0
Frontal cortex area 3 layer 3	0	0,1481	-140	-120	0	0,009	0
Frontal cortex area 3 layer 5	0	0,1481	-140	-120	0	0,009	0
Frontal cortex area 3 layer 6	0	0,1481	-140	-120	0	0,009	0
Agranular insular cortex posterior part layer 1	0	0,1481	-140	-120	0	0,009	0
Agranular insular cortex posterior part layer 2	0	0,1481	-140	-120	0	0,009	0
Frontal cortex area 3 layer 4	0	0,1481	-140	-120	0	0,009	0
Agranular insular cortex posterior part layer 3	0	0,1481	-140	-120	0	0,009	0
Agranular insular cortex posterior part layer 4	0	0,1481	-140	-120	0	0,009	0
Granular insular cortex laver 4	0	0,1481	-140	-120	0	0,009	0
Agranular insular cortex dorsal part deep layers	7,642	0	-88	-124	0,144	0	0

Tabellenanhang

Name (Lokale Parameter Teil 12)	Radout	Rad	Cenow	Cen	Hub	Aut	Knot
Piriform cortex layer 1	0,3951	0,0741	-132	-120	0	0,0001	0
Primary somatosensory cortex barrel field layer 2	3,2099	0	-129	-122	0,0001	0	0
Parietal cortex posterior area superficial layers	0	6,7346	-140	-116	0	0,0074	0
White matter of the parietal cortex posterior area	0	6,7346	-140	-116	0	0,0074	0
Parietal cortex posterior area deep gray matter layers	0	6,7346	-140	-116	0	0,0074	0
Dorsal intermediate entorhinal cortex superficial layers	0	0,2963	-140	-119	0	0,0656	0
Dorsal tenia tecta	0	4,142	-140	-120	0	0,0012	0
Dorsolateral entorhinal cortex layer 5	0	0,2222	-140	-121	0	0,0554	0
Dorsolateral entorhinal cortex layer 6	0	0,2222	-140	-121	0	0,0554	0
Primary visual cortex binocular area	0	6,7346	-140	-116	0	0,0074	0
Primary auditory cortex layers	0	6,7593	-140	-116	0	0,0104	0
Amygdalopiriform transition area layers	0	6,642	-140	-116	0	0.0517	0
Primary visual cortex border of layer 1 2	0	6,2407	-140	-116	0	0,0016	0
Dorsal intermediate entorhinal cortex layer 3	0	0,2222	-140	-121	0	0,0554	0
Dorsal intermediate entorhinal cortex layer 4	0	0,2222	-140	-121	0	0,0554	0
Dorsal peduncular cortex layers	7,321	0	-125	-124	0,0142	0	0
Medial orbital cortex layer 2	7,0617	0	-127	-124	0,0078	0	0
Medial orbital cortex layer 3	7,0617	0	-127	-124	0,0078	0	0
Cingulate cortex area 1 layers	7,3025	0	-127	-124	0,0065	0	0
Cortex amygdala transition zone	0,3457	0	-130	-124	0,0085	0	0
Parietal cortex posterior area dorsal part layer 4	7,0617	0	-127	-124	0,0078	0	0
Parietal cortex posterior area rostral part layer 2	7,0617	0	-127	-124	0,0078	0	0
Parietal cortex posterior area rostral part layer 3	7,0617	0	-127	-124	0,0078	0	0
Parietal cortex posterior area rostral part layer 5	7,0617	0	-127	-124	0,0078	0	0
Primary somatosensory cortex shoulder region	6,2099	0	-126	-124	0,0001	0	0
Secondary auditory cortex	5,3704	0	-126	-124	0,0001	0	0

7 Bildanhang

Abbildung 53: Validität bzw. Beobachtungswert (observation score) der Verbindungen des bilateralen C1-Netzwerkes.

Abbildung 54: Verbindungsgewichte der bilateralen C1-Adjazenzmatrix. a) direkte Verbindungen zwischen allen sichtbaren C1-Gebieten. b) indirekte Verbindungen zwischen allen Untergebieten der C1-Regionen.

	 FES¢	83.0 B	11-1-1 99555				i E <mark>∡</mark> s					<mark>,</mark>		55 <mark>~55</mark> 59.555								, Sae 200			
	0>04		0033	>4.44	22004:	20 3 2 4 4		<<<<00			60 >>	>>>>=====	~~~~~~			200230	3244	 <	*****				ISF	Not	connected
PLCaL PMCaL PNSL		2.4		١.		н							150		12				ш				1	>0.0	
Post L DLEnt L DIEnt L						ы																			
MERT L VIERT L Phr L													_		-								-1		
RSGAL RSGbL RSGcL CalL	-						t i				r.				2								2		
		1				10																	а.		
LPIAL MPIAL PerPL PerPDL				÷																		-	Π.		
PerPR L TeA_L Au1_L Au0_L																									
																		51			- 1		E	5.0	
G L A35 L A36 L	- -					11									88		16		10				в.		
AGEL AGML S1BFL S1D7				5		18			10			ALC: N			Η.							ш.			
SIJ L SIULP L SIFL L SIHL L				1		10						100			15	12			- 6	17			Ξ.		
819h L 81Tr L 82 L V1 L								-																	
V2NL_L V2NM_L V2L_L V1B_L																									
						12			151			20			18	18		1.1	12			1.0	28		
															5								Ε.		
APIT R PLCa R PMCa R PMC R				Ľ																					
Pas R Post R DIEnt R DUEnt R																									
LEnt R MEnt R Vient R Pir_R	-									_															
RSG_R RSG6_R RSG6_R RSGc_R																									
						Ъř.				10		1.0													
LPIA R MPIA R ParP R															1				18				Ξ.		
PerPR_R TeA_R Au1_R Au0_R																									
AUV R AID R AIP R AIV R				P		10																			
DI R GI R A38_R A38_R						18				-11	l.	1.00							2.0						
AGER AGER AGMR S1BFR				÷		10	11	12.5	86.						15	12	18	83	50			1.00	н.		
S1U2_R S1J_R S1ULp_R S1FL_R				ų.		81			10				-		11					91		100	Π.		
S1Sh R S1Tr R S2 R V1 R												and the second second			Ľ						ō.				
V2ML_R V2MM_R V2L_R V1B_R									-																
VIN R DLO R LO R MO R							E					1 mail													

Abbildung 55: Distanzmatrix des bilateralen C1-Netzwerkes.

Abbildung 56: Erweiterte Distanzmatrix, in welche die graphische Distanz, räumliche Distanz und das Verbindungsgewicht der bilateralen C1-Regionen eingeht. Niedrige Werte stehen für einen graphentheoretisch und räumlich geringen Distanzwert, sowie große Verbindungsgewichte.

		ಶ-ರಶ		<mark>ب ب</mark>	ರ-ವೆ.				dd <mark>d</mark> ai	สี่งง่าง	T	ہے ہے ا	~~ ~~		55	ő_~ ⁵	a a a a a	a a 5	Se al	.	a a a		~~ <mark>~</mark> 5	- Tree	5 4 5		
	Stan Saga		122225	fe de la	2222	259 <u>3</u>	₽₽≥ <mark></mark>	9 <mark>88</mark> 99	Stl Star	5416		<u>9885</u> 5	EE <mark>S</mark> EI	25555		RSG RSG	22288	2,55g	2222			888 B 9				999 ²	
																			_								No data
APICOL																											>0.0
Pr8_L PeS_L																											
Post L DLEnt L DIEnt L																											
LENLL MENTL																											
PIL L RSd L																											
RSG6_L									_																		
									10																		
							_																				7184136
ParPD L ParPR L																											
						12																					
																			81								
				1.1		н.		-				 -								н.							
DP L AGLL																			11								
SIBF_L SIDZ L					11			-					1						21			- 11				-	
81J L 81UL9 L																											
SIHL L SISh L																											
V2ML_L V2MM_L																											
						н.																					
VO L TUO L					11														21								
VTT R CMA R																											
APIE R PLCo R PMCo R																											
PrS R Pas R																											
DIENL R DIENL R DIENL R																											
LENL R MERL R																											
Pir R RSd R																											
RSG5 R RSG5 R																											
Cal_R Ca2_R	_											 															
LR Fr3 R																											
MPIAR ParP R							_																				
ParPD_R ParPR_R																											
Au1_R Au0_R																											
A35_R A36_R				1.1	88			- 1	10									1		н.			10				
AGL R																											
SIBF R																											
SIULP_R SIFL_R																											
S1HL R S1Sh R S1Tr R																											
82 R V1 R																											
V2MLR V2MM_R V2LR																											
V1B_R V1M_R DLO_R																											
LO R MO R																											
VO_R TuO R																											

Abbildung 57: Communicability Matrix des bilateralen C1-Netzwerkes.

			888888 88888 88888 88888 88888 88888 8888			AGALL SSUCL				Pack R R R R R R R R R R R R R R R R R R R	DLEAR MEAR NEAR NEAR NEAR NEAR NEAR NEAR NEAR N	22555 200 200 200 200 200 200 200 200 20	NPU Republic to the second sec		AGE R R R R R R R R R R R R R R R R R R R	811 R 811 R 811 R 811 R 818 R 818 R 818 R 818 R 818 R 818 R	S2 R V2ML R V2ML R		
		НB			H.	200		88	÷.										0 >0.0
PMCoL PrSL PaSL PostL DEExtL	87	10			12									17	1 H				
DIEnt L LEnt L MEnt L VIEnt L						1214													
RSG L RSGa L RSGb L RSGc L		26				22									in teach		in n I		
Carl L Carl L Pril L IL L Fra L			100		12	225	u de	15					l Para		28	an i	i e		
LPIAL MPIAL ParPL ParPDL				2 \sim 2		22											5.5		1.0
TeAL Au1 L AuD L AuV L																			
AID_L AIP_L AIV_L DIL GIL		12		- 14	13	255						225		12	11.0				
A36_L A36_L DP_L AGEL	100				100	098	12		12										
S1BF L S1DZ L S1J L S1ULp L		22		28	62	10 M	5	22				12							
S1FL L S1HL L S1Sh L S1Tr_L S2 L		24	_	20			84					-	23			24	Ξ.	1	
V1_L V2ML_L V2MM_L V2L_L		1				192		24											
VIM L DLO L LO L MO L		12	107		1	200	٠.	12	24						éđ.		61		
TUOL DTT R VTT R CMAR		12			10	120			ШZ	1.00	12		<u> </u>					1 23	
APIr_R PLCo_R PMCo_R PrS_R PaS_R	r a	11	- 18			11	١,		٠.	100	142	10.			18				
Poet_R DIEnt_R DLEnt_R LEnt_R									17		12		16						
VIEnt R Phr R RSd R RSGa R	-		. i ii								20					1			
RSG0_R Ca1_R Ca2_R PIL_R					-83	1 A. A.	1		5	1		22			5	÷.,	ι.	1	
IL_R Fr3_R LPIA_R MPIA_R ParR_R													52		28	ET.	11		
ParPD_R ParPR_R TeA_R Au1_R				1 - E									\mathbf{S}						
AUV R AID R AID R AIV R			-14		19-6									23	196				
GIR A35_R A36_R DP R			- 22	le :	- 62	89 F	Цų.		8	12	12	82	11	13	C73	70	(EE	130	
AGE R AGm R S1BF_R S1DZ_R S1 D													5			98			
SIULP R SIFL_R SIHL_R SISh_R			- 5						1										
82_R V1_R V2ML_R V2ML_R																20	57		
VIB R VIB R VIM R DLO R								Ξ.		-	- 6			H	88				
MO_R VO_R																			

Abbildung 58: GTOM-Matrix des bilateralen C1-Netzwerkes.

Abbildung 59: Auswahl zytoarchitektonischer Schichten für das C2-Netzwerk. a) Die vollständige Zusammenstellung zytoarchitektonsicher Schichten der C1-Regionen ergibt eine dünnbesetzte Adjazenzmatrix. b) Adajazenzmatrix nach Entfernung von zytoarchitektonischen Schichten, zu denen keine Verbindungsinformationen vorliegen. Die Kondensation der Adjazenzmatrix wird sichtbar.

Abbildung 60: Reziprozitätsmatrix des bilateralen C2-Netzwerkes.

Abbildung 61: GTOM-Matrix des bilateralen C2-Netzwerkes.

Abbildung 62: Oben ist das Ergebnis der hierarchischen Clusterung bezüglich der CMI_{All}-Matrix abgebildet. Daneben ist die berechnete Hierarchie zu erkennen. Unten wurde die CMI_{All}-Matrix wiedergegeben, unter Verwendung der Original Sequenz der Regionen, wie sie in der nebenstehenden Hierarchiedarstellung erkennbar ist.

Abbildung 63: Streudiagramm der lokalen Parameter des unilateralen laminären C2-Netzwerkes. Die Regionen wurden nach mittleren Rängen der Parameter sortiert. Die Rang-Mittelwerte der Regionen sind mit einer grünen Kennlinie verbunden. Die rote Linie verbindet die Schapley-Werte der Regionen.

Abbildung 64: Streudiagramm der lokalen Parameter des bilateralen laminären C2-Netzwerkes. Die Regionen wurden nach mittleren Rängen der Parameter sortiert. Die Rang-Mittelwerte der Regionen sind mit einer grünen Kennlinie verbunden. Die rote Linie verbindet die Schapley-Werte der Regionen.

Abbildung 65: Die reguläre Konnektivität der zytoarchitektonsichen Schichten des bilateralen posteromedialen Barrel-Kortex sind in der Adjazenzmatrixdarstellung der häufigsten Gewichte in der oberen Abbildung zu erkennen. Kontralateralen Verbindungen sind auf dieser Ebene nicht dokumentiert. Unten sind die Verbindungen in einer Netzwerkdarstellung wiedergeben.

8 Thesen

- Insgesamt wurden in dieser Metastudie nach einer eingehenden Filterung 378 Publikationen von Tract-tracing Studien der adulten, nicht veränderten und gesunden Laborrate berücksichtigt. Zur Gewinnung der Konnektivitätsdaten wurden die jeweiligen Verbindungen zwischen den kortikalen Regionen mit Ursprungs- und Zielregion und deren Verbindungsgewichten ermittelt und in ein neurowissenschaftliches Programm namens *neuroVIISAS* integriert.
- Innerhalb des Cortex cerebri wurden zwei große Netzwerke (C1, C2) aufgrund der untersuchten Daten mit Hilfe *neuroVIISAS* dargestellt und ausführlich untersucht. Diese beinhalten alle kortikalen Regionen.
- 3. Beide Netzwerke werden jeweils in ein unilaterales und bilaterales Netzwerk unterteilt. Zusätzlich existiert für das C2-Netzwerk ein reorganisiertes laminäres Netzwerk.
- Das unilaterale C1-Netzwerk enthält 63 kortikale Gebiete mit 927 Verbindungen. Das bilaterale C1-Netzwerk beinhaltet 126 Regionen mit 2450 Verbindungen.
- 5. Das C2-Netzwerk ist ein auf dem C1-Netzwerk basierendes Netzwerk, welches um die zytoarchitektonischen Schichten erweitert wurde. Es besitzt 326 Regionen mit 2484 Verbindungen.
- 6. Ein neuer konnektionaler Aspekt wurde in dem reorganisierten laminären C2-Netzwerk untersucht. Das reorganisierte Netzwerk besteht aus 182 Gebieten und 884 Kanten. Verschiedene kleine Muster in Matrizen beinhalten periodisch auftretende horizontale oder vertikale Streifen, diagonale Matrixelemente und blockweise Muster. Horizontale Streifen repräsentieren eine Output-Verdichtung und vertikale Streifen eine Input-Verdichtung aufeinanderfolgender Regionen. Diagonalen stellen Verbindungsstrukturen zwischen verschiedener Laminae unterschiedlicher aber aufeinanderfolgenden Regionen (interlaminär und interregional) dar. Blöcke bedeuten eine ausgeprägte lokale Konnektivität zwischen mehreren dicht beisammen liegenden Gebieten.
- Die Liniendichte des bilateralen C1-Konnektoms ist mit einer Liniendichte 15,5% bei einer mittleren Anzahl von 39 Verbindungen pro Gebiet größer als die des bilateralen C2-Netzwerkes mit einer Liniendichte von 2,3% und einer mittleren Anzahl von 15 Verbindungen pro Gebiet.
- 8. Ein Hauptaugenmerk wurde auf die Untersuchung kontralateraler Verbindungen gelegt. Kontralaterale Verbindungen treten seltener in den Netzwerken auf und weisen geringere Verbindungsgewichte als unilaterale Konnektivitäten auf. Die größte Anzahl an kontralateralen Verbindungen wurde zwischen übereinstimmenden Regionen der rechten und linken Hemisphäre entdeckt.
- 9. Bekannte kortikale Projektionspfade konnten in den Netzwerken gefunden und mit Hilfe einer Quantifizierung durch andere Autoren indirekt bewiesen werden (z.B. die bilateralen sensosensorischen und senso-motorischen Pfade von Zakiewicz et al. (2014)). Zusätzlich wurden weitere dichte Konnektivitätsstrukturen entdeckt, die durch andere Autoren vorher nicht explizit als Projektionspfade beschrieben wurden.
- 10. Zentrale globale Netzwerkparameter wurden untersucht und damit deutlich konnektionale Strukturen in den Netzwerken entdeckt, so wurde zum Beispiel für alle untersuchten Netzwerke eine Small-Worldness größer als in Zufallsnetzwerken bewiesen. Dies spricht für eine starke Gruppenbildung, auf welche auch die blockartigen Expressionen der verschiedenen Matrixwerte in Matrizendarstellungen (bspw. GTOM Matrix) hinweisen.
- 11. Es existieren auch Unterschiede bei den Ergebnissen der globalen Netzwerkparameter zwischen den unterschiedlichen Netzwerken. So besitzt das bilaterale C1-Netzwerk eine deutlich höhere Small-Worldness (unilateral: 2,249, bilateral: 3,111) als das unilaterale C1-Netzwerk. Wiederum besitzt das bilaterale C2-Netzwerk eine noch höhere Small-Worldness von 15. Dies weist auf eine lokal größere Anzahl von verbundenen Gebieten hin.
- 12. Lokale Netzwerkparameter wie bspw. der DGall-Wert und der Katzindex zeigen, dass im unilateralen C1-Netzwerk der perirhinale Cortex die meisten Input- und Outputverbindungen zu den übrigen kortikalen Gebieten besitzt und ein wichtiger Knotenpunkt innerhalb des Netzwerkes ist. Im bilateralen C1-Netzwerk ist ebenfalls der perirhinale Kortex eine der wichtigsten Regionen. Im bilateralen C2-Netzwerk besitzt die Lamina 2 des medialen entorhinalen Kortex die größten DGallund Katzindex-Werte.

Publikationen

Poster:

Meinhardt J, Beier J, Schmitt O (2016) Cortical connectomics of the rat. 111th Annual Meeting of the Anatomische Gesellschaft, Göttingen 21.9.- 24.9.2016.

Schmitt O, Eipert P, Schwanke S, Klünker A-C, **Meinhardt J**, Leßmann F, Beier J, Karnitzki A, Jenssen J, Kadir K, Kuch L, Sellner L (2016). neuroVIISAS was also build for the ferretome. Ferret Brain Meeting 2016. Hamburg 30.6.- 1.7.2016.

Schmitt O, Eipert P, Klünker A-C, **Meinhardt J**, Lessmann F, Beier J, Kadir K, Karnitzki A, Jenssen J, Kuch L, Wree A (2015). The rat connectome: All known connections of the rat nervous system in one database. 11th Göttingen Meeting of the German Neuroscience Society 2015.

Schmitt O, Eipert P, Hoffmann R, Morawska P, Klünker A-C, **Meinhardt J**, Lessmann F, Beier J, Kadir K, Karnitzki A, Jenssen J, Kuch L, Sellner L, Wree A (2014). Central and peripheral monosynaptic, polysynaptic and collaterals connectivity in the rat. INCF conference, Selected talk. Leiden 25.8.- 27.8.2014.

Schmitt O, Eipert P, Morawska P, Klünker A-C, **Meinhardt J**, Lessmann F, Beier J, Kadir K, Karnitzki A, Jenssen J, Kuch L, Sellner L, Wree A (2014). Integrating the peripheral and central nervous system connectoms of the rat at micro-, meso- and macroscale levels. "Micro-, Meso- and macroconnectomics of the brain", Fondation Ipsen, Paris May 5, 2014.

Schmitt O, Eipert P, Klünker A-K, Kettlitz R, Morawska P, **Meinhardt J**, Wree A (2013). Poperties of the Intrinsic and Extrinsic Uni- and Bilateral Connectome of the Spinal Cord of the Rat. INCF conference, Stockholm 27.8.- 29.8.2013.

Schmitt O, Lessmann F, Schwanke S, Eipert P, **Meinhardt J**, Beier J, Kadir K, Karnitzki A, Sellner L, Klüncker A-C, Kuch L, Ruß F, Jenssen J-C, Wree A (2017) Connectomics of the rat hypothalamus. 112th Annual Meeting / 32. Arbeitstagung der Anatomischen Gesellschaft, 20.9.-22.9.2017.

Schmitt O, Lessmann F, Schwanke S, Eipert P, **Meinhardt J**, Beier J, Kadir K, Karnitzki A, Sellner L, Klünker A-C, Kuch L, Ruß F, Jenssen J, Wree A (2017) Differential connectomics of the rat thalamus. Computational Neuroscience Meeting 2017Antwerpen.

Vorträge:

Meinhardt J (2017) Das Konnektom des Cortex cerebri der Ratte. Wissenschaftskonferenz der Universitätsmedizin Rostock, Klinik für Psychiatrie und Psychotherapie, Rostock 01.03.2017.

Meinhardt J (2017) Das Konnektom des Cortex cerebri der Ratte. Tagung norddeutscher Psychiatrieverbund, Norderney 09.03.- 10.03.2017.

Artikel:

Schmitt O, Eipert P, Schwanke S, Lessmann F, **Meinhardt J**, Beier J, Kadir K, Karnitzki A, Sellner L, Klünker A-C, Kuch L, Ruß F, Jenssen J (2017) Inter-rater and connection reliability of a complete whole-body connectome metastudy of the laboratory rat. Eingereicht.

Lebenslauf

Jennifer Meinhardt
10.07.1988
Bochum
Weiterbildungsassistentin in der evangelischen
Lungenfachklinik, PGDiakonie, Berlin
Weiterbildungsassistentin in der Psychiatrie und
Psychotherapie, Unimedizin Rostock
Promotionsstudentin Humanmedizin, Universität Rostock
Abschluss: Approbierte Ärztin
Gesamtnote aller ärztlichen Prüfungen: 2,8
Klinischer Abschnitt inklusive praktisches Jahr
Universität Rostock
Abschluss: 1. Abschnitt der ärztlichen Prüfung
Vorklinischer Abschnitt des Humanmedizin-Studiums
Philipps-Universität Marburg
ung des akademischen Grades Dr. med.
Das Konnektom des Cortex Cerebri der Ratte
Betreuer: Professor Dr. med. O. Schmitt
Institut für Anatomie, Universität Rostock
Ausbildung zur Gesundheits- und Krankenpflegerin
Bergmannsheil – berufsgenossenschaftliches Universitätsklini-
kum, Bochum
(vorzeitige Beendigung aufgrund Zulassung zum Studium)
Abschluss: Abitur

Erklärung

Die Dissertation wurde bisher weder vorher noch gleichzeitig in gleicher oder ähnlicher Form bei einer anderen Prüfungsbehörde vorgelegt.

Ich versichere an Eides Statt, dass ich die vorliegende Dissertation selbständig und ohne fremde Hilfe, bis auf die Personen denen in der Danksagung gedankt wird, verfasst und andere als die von mir angegebenen Hilfsmittel und Quellen nicht benutzt habe. Die in den verwendeten Werken wörtlich oder inhaltlich entnommenen Stellen wurden als solche kenntlich gemacht.

Ich erkläre, dass ich noch kein Promotionsverfahren an einer anderen wissenschaftlichen Einrichtung erfolglos beendet habe und dass eine Aberkennung eines erworbenen Doktorgrades nicht vorliegt.

Rostock, den

Danksagung

Zuallererst möchte ich mich ganz herzlich bei Herrn Prof. Dr. med. O. Schmitt für die wunderbare Betreuung und Unterstützung der letzten fünf Jahre und die unglaubliche Geduld, die er besitzt, bedanken.

Herrn Prof. Dr. med. A. Wree danke ich für die notwendigen Rahmenbedingungen zur Realisierung dieser Arbeit.

Ebenso gebührt Herrn Dr. rer. hum. Dipl.-Math. P. Eipert für die freundliche Hilfe bei der Auswertung der Netzwerkanalyse großer Dank.

Zum Schluss danke ich meinem Ehemann, der Familie und Freunden, dass sie für mich immer eine große Stütze waren.