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Abstract 

Transition metal-catalyzed carbonylation of nitrogen-containing heterocycles via C-H 
activation 

Zechao Wang 

Leibniz‐Institut für Katalyse e.V. an der Universität Rostock 

  The dissertation is mainly concerned with the development of transition metal-catalyzed 

carbonylation of nitrogen-containing compounds via C-H activation, which includes different catalysts, 

various nitrogen-containing substrates, safe CO surrogates, and the applications of novel carbonylative 

methods. We have described a palladium-catalyzed carbonylation of aromatic C-H bonds with alcohols 

using Mo(CO)6 as the CO Source. Then we have synthesized 3-methyleneisoindolin-1-ones and 

2-phenylisoindolin-1-ones via C-H carbonylation using Mo(CO)6 as well. In addition, a convenient 

procedure for the synthesis of 3-acylindoles from simple indoles and aryl iodides has been established 

via C-H carbonylation. Furthermore, we have described a copper-catalyzed double carbonylation 

reaction of indoles with alcohols using C6O6∙8H2O as the CO Source. Besides, we have described many 

control experiments to understand the transition metal-catalyzed carbonylation mechanisms such as 

the palladium, the ruthenium, and the copper catalytic cycle. 

Übergangsmetall-katalysierte Carbonylierung von stickstoffhaltigen Heterocyclen 
über CH-Aktivierung 

Zechao Wang 

Leibniz‐Institut für Katalyse e.V. an der Universität Rostock 

  Die vorliegende Dissertation beschäftigt sich hauptsächlich mit der Entwicklung der 

Übergangsmetall-katalysierten Carbonylierung von stickstoffhaltigen Heterocyclen über 

CH-Aktivierung, der verschiedenen Katalysatoren, der verschiedenen stickstoffhaltige Substrate, 

sicheren CO-Surrogaten und der Anwendung neuartiger carbonylierender Methoden. Wir haben eine 

Palladium-katalysierte Carbonylierung von aromatischen CH-Bindungen mit Alkoholen beschrieben, 

wobei Mo(CO)6 als CO-Quelle verwendet wurde. Weiterhin wurden 3-Methylenisoindolin-1-one und 

2-Phenylisoindolin-1-one über CH-Carbonylierung mit Mo(CO)6 synthetisiert. Darüber hinaus wurde 

ein effizientes Verfahren zur Synthese von 3-Acylindolen aus einfachen Indolen und Aryliodiden über 

die C-H-Carbonylierung entwickelt. Anschließend wird eine kupferkatalysierte Doppelcarbonylierung 

von Indolen mit Alkoholen mit C6O6 8H2O als CO-Quelle beschrieben. Schließlich wird auf diverse 

Kontrollexperimente eingegangen, die zum Verständnis der Übergangsmetall-katalysierten 

Carbonylierungsmechanismen im Falle des Katalysezyklus von Palladium, Ruthenium und Kupfer 

beitragen. 
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1. Introduction 

  Transition metal-catalyzed carbonylation reactions have already become one of the most powerful 

reactions in the toolbox of modern organic chemists.
[1]

 Since the pioneering work by Heck in 1974 

with palladium catalyst,
[2]

 it became one of the most preferred ways of introducing a carbonyl group in 

organic molecules with various nucleophiles. During last decades, many achievements have been 

made in this area. However, the interests have been mainly focused on the utility of aryl halides as the 

starting materials for the formation of carbon-metal bond via the oxidative addition of metal catalyst 

to the C-X bond.
[3]

 However, the pre-functionalization of arene is required to synthesize the aromatic 

halides, which causes the waste of halogens. At this point, the straightforward taking advantage of 

hydrocarbon itself will enhance the efficiency. The inert C-H bond activation has also experienced 

impressive improvements as it can avoid the pre-functionalization step, which is environmentally 

benign and green.
[4]

 As compared with the non-carbonylative C-H functionalization reactions, the 

reports on C-H carbonylation reactions are fewer, indicating that this research area still faces many 

challenges: (i) The research of catalyst in C-H activation cabonylation is mainly on palladium catalyst. 

(ii) Carbon monoxide is utilized as the CO source in most research.
[5]

 

  Carbon monoxide is the mainly applied carbonyl source. With carbon monoxide as a carbonyl 

source, valuable carbonyl-containing organic molecules can be easily prepared. Although CO as one of 

the cheapest carbonyl sources, holding advantages in industrial scale applications, its special 

characters (eg., high toxicity, smell-less, flammable, and etc.) limit its usage in laboratories. Notably, 

the CO pressure is usually high in carbonylations. Hence, the developing of synthetic procedures 

based on CO surrogates will be meaningful for the synthetic community.
[6]

 The typical known CO 

surrogates are listed in Scheme 1.1. ‘CO gen’ (A),
[7]

 pivaloyl chloride (B),
[7]

 and silacarboxylic acids (C)
[8]

 

are sufficient to promote carbonylative transformations. N-formylsaccharin (D) is known as a CO 

source for the transition metal-catalyzed carbonylation of aryl halides to access aryl aldehydes as 

well.
[9]

 However, the atom efficiency and waste generation for CO alternatives A-D still remain to be 

concerned. CO2 (E) becomes an ideal C1 building block in organic synthesis because of its abundance, 

nontoxicity, and recyclability. Notably, the catalytic in situ generation of CO from CO2 reduction and its 

incorporation in the following carbonylation reactions has been realized.
[10]

 It is a promising process 

using CO2 instead of CO as a carbonyl resource. However, the substrate scope is limited by the 

required reductants. It is well known that CO can be released from formic acid (F; R=H) by dehydration 

in sulfuric acid (Morgan reaction).
[11]

 Methanol (G) is an abundant and potentially renewable chemical 

and can be a carbonyl source as well.
[12]

 In addition, formaldehyde (H) is also an atom economic CO 

surrogate for carbonylation reactions with suitable reactivity.
[13]

 Formamides (I) have already been 

used for the carbonylation.
[14]

 Recently, our group developed benzene-1,3,5-triyl triformate (TFBen, J) 

as a kind of convenient and efficient CO source for the first time.
[15]

 The character of TFBen as a potent 
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and non-reacting CO source has been proven by the numerous synthetic applications in carbonylation 

reactions. 1,3,5-trihydroxybenzene, the starting material for TFBen synthesis, is an abundant and 

naturally occurring substance which is recovered during the product purification process. Moreover, 

transition metal carbonyls are useful in organic synthesis, which can release CO gas. A variety of 

transition metal carbonyls have been reported in carbonylation reactions such as Cr(CO)6,
[16]

 

Mo(CO)6,
[17]

 W(CO)6,
[18]

 and Co2(CO)8.
[19]

 A potential drawback of them is the presence of 

stoichiometric amounts of additional transition metals in the reaction mixture. It is a major problem 

on an industrial scale. However, the preparative ease of this system far outweighs this disadvantage 

for small applications in research laboratories. When one compares classical carbonylations with those 

carried out with solid CO surrogates, the ease with which many syntheses can be conducted quickly 

and safely, results in an overall reduction in the cost per compound. Besides, hexaketocyclohexane 

octahydrate (C6O6∙8H2O, L) as a non-toxic solid is an attractive CO source, which was formed by 

oligomerization of carbon monoxide through the formation of molybdenum carbonyls.
[20]

 Among all 

the candidates, Mo(CO)6 and C6O6∙8H2O were studied in my research. 

 

Scheme 1.1 Typical CO surrogates. 

  Nitrogen-containing compounds (Scheme 1.2), such as indoles, lactams, carbazoles, pyrroles, 

imidazoles, pyridines, isoquinolines, isoquinolones, azobenzenes, pyridones, and ketimines, have been 

found to be important in natural products, synthetic intermediates, pharmaceutical agents, wide 

range of potential biological activities, and therapeutically useful materials.
[21]

 For this reason, more 

and more synthetic chemists are interested in the construction and functionalization of heterocyclic 

cores. On the other hand, carbonylations have already been applied in the C-H activation of 

nitrogen-containing compounds in past years. Therefore, it is important to broaden the area of C-H 
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carbonylation using nitrogen-containing compounds. In my experiments, pyridines, ketimines, 

azobenzenes and indoles are discussed as the nitrogen-containing substrates.  

 

Scheme 1.2 Nitrogen-containing compounds. 

  Above all mentioned, this dissertation mainly focuses on developing new methods of transition 

metal-catalyzed C-H carbonylation of nitrogen-containing compounds using different CO surrogates. 

1.1 Palladium-catalyzed carbonylation of nitrogen-containing compounds via C-H activation 

1.1.1 C-H carbonylation without directing group 

  In 2011, Lei and co-workers reported a protocol for a palladium-catalyzed C-H carbonylation of 

heteroarenes using alcohols as the nucleophiles (Scheme 1.3).
[22]

 Aliphatic alcohols and aromatic 

alcohols worked well under the conditions. Both electron-donating and electron-withdrawing 

substituents on indole ring were well tolerated in this reaction. Thiophene and benzo[b]thiophene 

were also investigated and C-H activation predominantly occurred at C2 position in this oxidative 

carbonylation. In addition, when NH indoles were employed in this oxidative carbonylation, the 

regioselectivity of the oxidative process was switched in favor of reaction at NH site. This reaction with 

primary and secondary alcohols could afford the corresponding carbamates. Various indoles with both 

electron-donating and electron-withdrawing groups were tested and the N-carbonylation products 

were formed in good to excellent yields. Halogen substituents were well tolerated in this 

carbonylation as well. 

  Later on, they developed a palladium/copper co-catalyzed oxidative double C-H carbonylation of 

diphenylamines with DTBP as the oxidant under 1 bar of CO (Scheme 1.4).
[23]

 This reaction delivered 

an efficient and atom economic way to access synthetically useful acridones. Various acridones were 

synthesized in good to high yields. Diphenylamines with electron-donating substituents, such as OMe, 
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OEt, and t-Bu, gave in high yields of products. The electron-withdrawing group on the aromatic ring 

could also furnish the desired products. However, the yield was slightly lower. In addition, substitution 

on the ortho- or meta-position of the diphenylamines could lead to the desired products in good yield. 

It was worth noting that 2-benzylisoindolin-1-one was obtained in 70% yield under the standard 

conditions when they used dibenzylamine as the substrate. They also demonstrated the post synthetic 

transformations of nitrogen-containing acridones. 

  Gaunt and co-workers developed a general process for the palladium-catalyzed carbonylation of 

methylene C-H bonds at the β-position to an unprotected aliphatic amine (Scheme 1.5).
[24]

 The 

operationally straightforward palladium-catalyzed process exploited a distinct reaction pathway, 

wherein a sterically hindered carboxylate ligand orchestrated an amine attack on a palladium 

anhydride to transform aliphatic amines into β-lactams. The reaction was well worked with a wide 

range of amines. Branching at the α- and β-carbon atoms on the non-reacting side of the amine was 

well tolerated to provide the β-lactams in good yields. A variety of functional groups, such as alkene, 

ester, arene, and oxetane moieties, could be accommodated by the reaction, which afforded the 

corresponding β-lactams in good yields. Among these, they noted that: i) A thioether motif neither 

deactivated the catalyst nor succumbed to oxidation; ii) The free NH β-lactam can be obtained 

through photochemical cleavage of an N-benzyl derivative; iii) The reaction could be performed on 

gram scale. 

 

Scheme 1.3 Pd-catalyzed C-H carbonylation of heteroarenes. 



Introduction 

5 

 

 

Scheme 1.4 Pd/Cu co-catalyzed oxidative double C-H carbonylation. 

 

Scheme 1.5 Pd-catalyzed carbonylation of methylene C-H bonds. 

1.1.2 C-H carbonylation with directing group 

  In 2012, Guan and co-workers developed a palladium-catalyzed C-H bond carbonylation of N-alkyl 

anilines for the synthesis of isatoic anhydrides (Scheme 1.6).
[25]

 A key intermediate was isolated and 

characterized through the mechanism experiment. This reaction tolerated a wide range of functional 

groups, such as methyl, methoxyl, fluoro, chloro, bromo, formyl aldehyde nitro, acetyl, and ester 

groups, which gave the corresponding substituted isatoic anhydrides in good to high yields. Generally, 

the electron-rich substrates showed more reactivity, which was consistent with an electrophilic 

palladation mechanism. Ortho-substituted anilines gave low yields of the corresponding isatoic 

anhydrides. The steric effect was observed in the transformation, which improved the regioselectivity 
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of the carbonylation of meta-substituted anilines. Only less sterically hindered products were 

obtained. Different alkyl substituents on the anilines were also investigated. N-ethyl, propyl, or 

cyclohexyl substituted anilines could be used and provided the corresponding carbonylation products 

in moderate to good yields. The mechanism was investigated. A stoichiometric reaction of Pd(OAc)2 

with N-methylaniline was conducted under a CO atmosphere in the absence of Cu(OAc)2, which 

delivered a palladium complex. 

 

Scheme 1.6 Pd-catalyzed carbonylation of N-methyl anilines for the synthesis of isatoic anhydrides. 

  Subsequently, Guan’s group and Lei’s group reported palladium-catalyzed oxidative C-H 

carbonylations of N-alkylanilines with alcohols for the synthesis of o-aminobenzoates under mild 

balloon pressure of CO (Scheme 1.7).
[26]

 Various aliphatic alcohols and phenol were tolerated in the 

reaction to afford the o-aminobenzoates in good yields. This reaction was sensitive to electronic 

features of the N-methylanilines. Both electron-donating and electron-withdrawing groups such as 

methyl, methoxyl, chloro, and bromo groups on phenyl rings were worked smoothly. However, 

N-methylanilines with electron-rich substrates were more reactive because of their slightly stronger 

nucleophilicity. However, the strong electron-donating methoxy group on the phenyl ring decreased 

the yield of the reactions because of the formation of an isatoic anhydride byproduct. 

 

Scheme 1.7 Pd-catalyzed carbonylation of N-methyl anilines and alcohols. 
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  In 2013, Lei and co-workers developed a straightforward approach for the synthesis of 

3-methyleneindolin-2-one derivatives by using commercial and simple tertiary anilines, olefins, and 

CO gas. (Scheme 1.8).
[27]

 Both electron-donating and electron-withdrawing substituents on the aryl 

ring of substituted styrenes were well tolerated under the conditions. The position of substituent on 

aryl ring had little influence. N,N-dimethylanilines bearing halogens and electron-withdrawing 

substituents afforded the corresponding 3-methyleneindolin-2-ones in moderate to good yields. 

Several experiments were carried out to study the reaction mechanism, indicating that the C-H 

cleavage might be involved in the rate-determining step. 

 

Scheme 1.8 Pd/Cu-catalyzed C-H carbonylation of tertiary anilines. 

  Recently, they reported a palladium-catalyzed intramolecular aerobic oxidative amine directed C-H 

carbonylation reaction of tertiary naphthalen-1-amines, which provided an efficient protocol towards 

the synthesis of biologically and synthetically useful heterocycles (Scheme 1.9).
[28]

 Substrates 

substituted with halogens including Cl and Br furnished the corresponding carbonylation products in 

moderate to good yields. However, substrates substituted with NO2, COOMe and other 

electron-withdrawing groups gave low yields of products in this protocol. Both electron-donating and 

electron-withdrawing substituents on the benzene ring of 4-phenylnaphthalen-1-amine derivatives 

were well tolerated under the conditions. Besides, this protocol could also be applied to 

N,N-dialkylnaphthalen-1-amines with different N-alkyl substituents such as Et, Bu, and Oct. The 

intermolecular KIE experiments were carried out, suggesting that C-H bond cleavage might be 

involved in the rate-determining step. 
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Scheme 1.9 Pd-catalyzed intramolecular aerobic oxidative amine directed C-H carbonylation. 

  Orito and co-workers developed a palladium-catalyzed carbonylation of secondary 

ω-phenylalkylamines that afforded a variety of five- or six-membered benzolactams (Scheme 1.10).
[29]

 

This reaction was carried out in a phosphine-free catalytic system using Pd(OAc)2, Cu(OAc)2 in an 

atmosphere of CO gas containing air. From the results, they also found that benzylic amines 

underwent carbonylation at a rate much faster than that of the corresponding phenethylamines. In 

addition, the rate of the five-membered ring formation was 11 times greater than that of the 

six-membered ring formation. Benzylic amines with electron-withdrawing groups or electron-donating 

groups could also undergo smoothly. 

 

Scheme 1.10 Pd-catalyzed carbonylation of amines. 
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  In 2010, Gaunt demonstrated amine directed palladium-catalyzed C-H carbonylations, which 

proceeded at room temperature and tolerated various functional groups (Scheme 1.11).
[30]

 The nature 

of the arene could also be varied with naphthalene, pyrrole and indole derived heteroarenes affording 

carbonylation products in good yields. Interestingly, straight chain amines required to use a more 

sterically hindered aryl group to suppress addition of the amine to BQ. This reaction could not work 

with arenes displaying strongly electron withdrawing groups. To further understand the mechanism, 

they prepared amine with the 4-methoxyphenyl group. They found that carbopalladation proceeded 

at room temperature providing a dimeric complex. When the palladacycle was subjected to a CO 

atmosphere in the presence of BQ, it underwent carbonylation to a synthetically versatile 

intermediate dihydro-2-quinolone. 

 

Scheme 1.11 Amine directed Pd-catalyzed C-H bond carbonylation. 

  Shi and co-workers developed a palladium catalyzed ortho-olefination of N,N-dimethylbenzylamines 

(Scheme 1.12).
[31]

 Notably, LiCl was found to promote this carbonylation reaction. Methanol, ethanol, 

and other long chain aliphatic alcohols were suitable in this reaction. However, steric hindered 

alcohols performed low efficiency. Other nucleophiles, such as phenol and amines, completely failed 

under the conditions. They also used different substituents on the phenyl ring of 

N,N-dimethylbenzylamines. Both electron-donating groups and electron-withdrawing groups were 

tolerated in this reaction. Further transformation to afford ortho-functionalization of substituted 

toluene in one pot was explored. Under reductive hydrogen atmosphere with Pd/C as catalyst, the 

N,N-dimethylaminomethyl group could be converted into a methyl group. Further studies to combine 

ortho-carbonylation and hydrogenation into one pot were conducted. 
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Scheme 1.12 Pd-catalyzed ortho-carbonylation of N,N-dimethylbenzylamines. 

  Recently, Zhu, Zhang, and Das reported palladium-catalyzed C-H carbonylations of biaryl-2-amine to 

form phenanthridinones, respectively (Scheme 1.13).
[32]

 In this reaction, unprotected aniline-nitrogen 

was used as a directing group to prepare free NH-lactams. The major challenge of using free aniline as 

a directing group in C-H aminocarbonylation reaction was its incompatibility with the oxidative 

reaction conditions and urea byproduct formation. The reaction conditions of Zhu’s group and Zhang’s 

group were similar. They both used palladium salt as the catalyst and Cu(TFA)2 as the oxidant under 

CO atmosphere. However, Das’s group used DMF as the CO source and O2 as the oxidant. 

 

Scheme 1.13 Pd-catalyzed C-H aminocarbonylation of unprotected anilines. 

  In 2010, Yu and co-workers developed a palladium-catalyzed amide directed C-H carbonylation of 

N-arylamides under CO atmosphere (Scheme 1.14).
[33]

 Substrates with a quaternary α-carbon atom 

gave good to excellent yields of the succinimide products. Products containing ether groups could also 

be obtained in good yields. The benzyl moiety proved to be a better protecting group than the TIPS 
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group for β-hydroxyl substrates, while TBS-protected substrates gave none of the desired product. 

Notably, this method was also effective for the carbonylation of methylene C-H bonds in cyclopropane 

substrates. To demonstrate the synthetic utility of this reaction, succinimide product was subjected to 

two different ring-opening conditions to obtain either 1,4-dicarboxylic acid or 1,4-dicarbonyl 

molecule. 

 

Scheme 1.14 Pd-catalyzed C-H carbonylation of N-arylamides. 

  Lloyd-Jones and Booker-Milburn reported a palladium-catalyzed C-H carbonylation of 

N-methoxybenzamides under 1 bar of CO, which provided a direct route to substituted phthalimides 

(Scheme 1.15).
[34]

 The reaction proved to be very sensitive to the solution phase CO concentration, 

increasing the CO pressure (2-4 bar) or diluting with N2 (1:1) resulted in reduced yields. Surprisingly, 

they found that the “reduced volume” Radleys tubes were found to be optimal, whereas reactions in a 

standard round-bottom flask under identical conditions resulted in consistently poor yields. 

 

Scheme 1.15 Pd-catalyzed C-H carbonylation of N-methoxybenzamides. 

  In 2016, Carretero and co-workers developed a palladium-catalyzed C-H carbonylative cyclization of 

N-(2-pyridyl)sulphonyl (N-SO2Py)-protected amines by using palladium catalyst and Mo(CO)6 as a CO 
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source (Scheme 1.16).
[35]

 This carbonylation protocol relied on the directing group N-SO2Py, which 

proved to be easily removed. This procedure also allowed late-stage modifications of more-complex, 

functional compounds such as dipeptides or tripeptides, thereby illustrating the capacity of the 

bidentate N-SO2Py directing group to override other inherent substrate coordinating elements, as well 

as broad functional group tolerance. In addition to providing an attractive solution to the difficulties in 

handling hazardous CO gas, the use of Mo(CO)6 as a solid CO source in substoichiometric amount 

(0.33 equiv.) ensured the palladium-catalytic activity. Indeed, significantly lower efficiency was 

observed when the reactions were carried out under 1 bar of CO, or in the presence of increased the 

amount of Mo(CO)6. A series of experimental and DFT mechanistic studies were carried out to further 

study the mechanism. 

 

Scheme 1.16 Pd-catalyzed carbonylative cyclization of amines. 

  As shown in Scheme 1.17, Driver and co-workers reported a palladium-catalyzed 

aminocarbonylation of aryl C-H bonds using nitroarenes as the nitrogen source and Mo(CO)6 as the CO 

source.
[36]

 This intermolecular C-H bond functionalization did not require any ligand. The electronic 

nature of the nitroarene impacted the success of the reaction with the highest yields when 

electron-deficient substituents were present on the nitroarene. However, increasing the steric 

environment around the nitro group had a detrimental effect on the reaction. Additionally, the 

mechanism experiments indicated that the palladacycle catalyst served to reduce the nitroarene to a 

nitrosoarene and activated the C-H bond. Besides, the C-H bond activation step was both the 

product-determining and the turnover-limiting step. 

  In 2014, our group described a palladium-catalyzed carbonylative [3+2+1] annulation of 

N-aryl-pyridine-2-amines with internal alkynes by C-H activation (Scheme 1.18).
[37]

 Mo(CO)6 was 

applied as a solid CO source and the reaction proceeded in an atom economic manner. Different kinds 

of internal alkynes were tested in our system. Alkynes substituted with electron-donating groups such 

as n-butyl or electron-withdrawing groups such as fluoro, bromo, acetyl, and trifluoromethyl were 

tolerated in our procedure with good yields. The substitutes on the N-arylpyrine-2-amine were 

detected as well. The N-aryl-pyridine-2-amines bearing electron-donating groups, such as methyl and 

methoxyl, worked well with synthetically useful yields as well as electron-deficient substrates. To gain 

some detail of the mechanism, the KIE experiment was conducted. The KIE was 1.0, indicating that the 

C-H activation step was reversible and might not be the rate-determining step for this procedure. 
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Scheme 1.17 Pd-catalyzed aryl C-H bond aminocarbonylation. 

 

 

Scheme 1.18 Pd-catalyzed carbonylative [3+2+1] annulation of N-aryl-pyridine-2-amines. 

  Recently, our group reported a palladium-catalyzed carbonylative cyclization of 

N-arylpyridin-2-amines via C-H activation using DMF as the CO surrogate (Scheme 1.19).
[38]

 In this 

reaction, both electron-donating and electron-withdrawing substituted N-arylpyridin-2-amines were 

transformed into carbonylation products in moderate to good yields. Benzene rings bearing halide, 

phenyl and benzyloxy groups at para-positions were well tolerated to give the corresponding products 

in good yields. The 
13

CO-labelling DMF experiment and other control experiments proved that the 

carbonyl group of DMF was the CO source in this methodology. Moreover, the KIE experiment 
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suggested that C-H activation step might not be involved in the rate-determining step under our 

conditions. 

 

Scheme 1.19 Pd-catalyzed carbonylative cyclization of arenes by C-H Activation. 

1.2 Ruthenium-catalyzed carbonylation of nitrogen-containing compounds via C-H activation 

1.2.1 C-H carbonylation without directing group 

  In 1992, Murai and co-workers reported Ru3(CO)12-catalyzed C-H carbonylation of pyridine (Scheme 

1.20).
[39]

 In this reaction, pyridine was also employed as a solvent and the reaction was conducted at 

150 
o
C under 10 bar of CO. Conversion of 1-hexene to the pyridyl ketone mixture was 65% after 16 

hours. Only ortho-substituted products were observed, making the reaction highly regioselective. The 

kinetics of the acylation reaction was examined in some detail. The reaction exhibited first-order rate 

kinetics with respect to pyridine and Ru3(CO)12 and was zero-order in CO pressure (3-10 bar) and olefin 

concentration. 

 

Scheme 1.20 Ru-catalyzed C-H carbonylation of pyridines. 

  In 1996, Murai and co-workers demonstrated Ru3(CO)12-catalyzed C-H carbonylation of imidazoles 

(Scheme 1.21).
[40]

 The reaction of 1,2-dimethylimidazole with 1-hexene under 20 bar of CO in toluene 

at 160 
o
C for 20 hours in the presence of Ru3(CO)12 gave the carbonylative products with a linear to 

branched ratio of 94:6. The coupling occurred highly regioselectively at the 4-position. No 
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5-heptanoylation isomer was detected. Different olefins such as alkyl, aryl, and trialkylsilyl substituted 

alkenes were utilized in this reaction. Surprisingly, they found that the linear to branched ratio was 

affected by the steric factor and that the reaction of electron deficient olefins such as acrylonitrile and 

ethyl acrylate did not proceed. 

 

Scheme 1.21 Ru-catalyzed C-H carbonylation of imidazoles. 

  Later on, they extended this Ru3(CO)12-catalyzed C-H carbonylation reaction.
[41]

 A wide range of 

olefins with various functional groups were utilized in the carbonylation reaction. Other 

five-membered N-heteroaromatic compounds, such as pyrazoles, oxazoles, and thiazoles, could also 

work well. The reactivity of the five-membered heterocycles corresponded to the pKa of the conjugate 

acid of these heterocycles. High pKa of the substrate gave the high reactivity. It indicated that the pKa 

values were related to the ability of the nitrogen atom in the substrates to coordinate to a ruthenium 

center. The coordination of the substrates to the ruthenium center in the catalyst complex was a 

necessary prerequisite for the carbonylation to proceed. 

  In 1998, they described Ru3(CO)12-catalyzed siteselective carbonylation at a C-H bond β to the 

nitrogen (Scheme 1.22).
[42]

 Imidazoles were used as the substrates with olefins under 5 bar of CO in 

toluene at 160 
o
C for 20 hours. Interestingly, the carbonylation occurred highly siteselectively at the 

4-position. Higher CO pressure suppressed the coordination of substrates to the ruthenium center, 

which was essential for the metal to cleave the C-H bond. The effects of substituents (R
1
 and R

2
) on 

the reaction were examined. The bulkiness of R
1
 appeared to be an important factor. 

 

Scheme 1.22 Ru-catalyzed siteselective carbonylation of imidazoles. 
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1.2.2 C-H carbonylation with directing group 

  Murai and Chatani developed ruthenium-catalyzed carbonylations at a C-H bond in a phenyl ring 

under CO (20 bar) and ethylene at 160 
o
C (Scheme 1.23).

[43]
 Carbonylation took place selectively at the 

ortho C-H bond in the phenyl ring using directing groups such as pyridine, oxazoline, oxazine, oxazole, 

pyrazole, and thiazoline. It was found that the siteselectivity was determined by steric factors. Olefins 

such as propene and trimethylvinylsilane in place of ethylene could be used in the carbonylation 

reaction, while other olefins, such as 1-hexene, tert-butylethylene, vinylcyclohexane, isoprene, 

1,5-hexadiene, cyclohexene, 1,5-cyclooctadiene, styrene, methyl acrylate, vinyl acetate, 

allyltrimethylsilane, and triethoxyvinylsilane did not afford the carbonylation products. The results of 

deuterium labelling experiments suggested that the catalysis involved reversible C-H bonds cleavage 

and that the rate-determining step was not the cleavage of the C-H bond. The results of kinetic study 

of the effects of CO pressure showed that the reaction rate accelerated with decreasing CO pressure. 

 

Scheme 1.23 Ru-catalyzed siteselective carbonylation of heterocycles. 

  In 2009, Chatani and co-workers described that aromatic amides having a pyridin-2-ylmethylamine 

moiety underwent ortho carbonylation of C-H bonds, leading to phthalimides using Ru3(CO)12 as the 

catalyst (Scheme 1.24).
[44]

 In this reaction, a wide variety of functional groups, including methoxy, 

amino, ester, ketone, cyano, chloro, bromo groups, could be substituted for aromatic amides in high 

yields. After they examined the regioselectivity of the carbonylation using meta-substituted aromatic 

amides, they found that electronic effects were not dominant factors. However, the steric nature of 

the substituents was a significant effect on the regioselectivity of the reaction. To further understand 

the reaction mechanism, 
1
H NMR experiments on a stoichiometric reaction were performed. A new 

ruthenium complex was formed as a single organometallic product. Unfortunately, no reaction 

occurred for the reaction in the presence of ruthenium complex as a catalyst under the standard 

reaction conditions without H2O, which indicated that the presence of H2O was required for the 

conversion of ruthenium complex into an active catalytic species. Thus, they suggested that ruthenium 

complex was not included in the main catalytic cycle. However, an active catalytic species was 

probably generated from ruthenium complex by reduction under water-gas-shift reaction conditions. 



Introduction 

17 

 

 

Scheme 1.24 Ru-catalyzed siteselective carbonylation at ortho C-H bonds in aromatic amides. 

  Subsequently, they reported a highly regioselective carbonylation reaction of unactivated C(sp
3
)-H 

bonds by Ru3(CO)12 (Scheme 1.25).
[45]

 In this reaction, the presence of the 2-pyridinylmethylamine 

moiety in the amide was crucial. The reaction showed a preference for C-H bonds of methyl groups as 

opposed to methylene C-H bonds. Five-membered-ring closure occurred preferentially over 

six-membered-ring formation in substrates containing multiple methyl substituents. The reaction 

tolerated a variety of functional groups such as OMe, Cl, CF3, CN, and Br under the conditions. An 

intramolecular competition experiment was carried out to further understand the mechanism, which 

indicated that the cleavage of the C-H bond was the rate-determining step. The stoichiometric 

reaction of an amide with Ru3(CO)12 gave a dinuclear ruthenium complex in which the 

2-pyridinylmethylamino moiety was coordinated to the ruthenium center in an N,N manner. 

 

Scheme 1.25 Ru-catalyzed cyclocarbonylation of aliphatic amides. 
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  Based on their previous reports, they described a ruthenium-catalyzed carbonylation of ortho C-H 

bonds in arylacetamides, which delivered six-membered-ring products (Scheme 1.26).
[46]

 They 

examined the effect of directing groups on the progress of the carbonylation of the C-H bond of 

phenylacetic amides. Directing groups amides with shorter and longer carbon chains did not give the 

corresponding carbonylation products. The results proved that coordination was a key step for the 

reaction to proceed. Moreover, this reaction tolerated a variety of functional groups such as OMe, Cl, 

CF3, CN, and Br. It was also applicable to the carbonylation of heteroaromatic rings, such as thiophene 

and indole. To gain insight into the reaction mechanism, a deuterium labelling experiment was carried 

out. No H/D exchange at ortho-position was detected in the recovered starting amide, indicating that 

the cleavage of the C-H bond was irreversible. Curiously, unexpected and significant amount of H/D 

exchange took place at 5-position of the product. 

 

Scheme 1.26 Ru-catalyzed cyclocarbonylation of arylacetamides. 

  Our group developed a general and selective ruthenium-catalyzed carbonylation with heteroarene 

bearing ortho-directing groups (Scheme 1.27).
[47]

 The carbonylation of 2-arylpyridines and related 

derivatives proceeded highly selective with water as the solvent. Using aryl iodides with either 

electron-donating or electron-withdrawing groups led to the formation of the corresponding 

benzophenone derivatives in moderate to good yields. However, aryl iodides with 

electron-withdrawing groups were less reactive than the ones with electron-donating groups. Aryl 

iodides substituted with alkyl groups in ortho-, meta-, or para-position were all effective. Directing 

groups such as pyrazole and pyrimidine could make this reaction work as well. Remarkably, 

stoichiometric amounts of organometallic reagents were avoided in this reaction. 

  A ruthenium-catalyzed carbonylation reaction of alkenes via C-H activation was reported by our 

group (Scheme 1.28).
[48]

 Styrenes bearing either electron-donating or electron-withdrawing groups 

gave the corresponding ketone derivatives in moderate to good yields. No general trend was observed 

if the styrene was substituted in ortho-, meta-, or para-position. Besides, we found that the use of an 

excess amount of the styrene derivative in some cases also led to olefin dimerization, especially for 
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styrenes substituted with electron-withdrawing groups. Next, we turned our attention to the variation 

of the heteroarene and the directing group. Heteroarene substituted with a strong donating group 

delivered the best result. This reaction could also bear directing groups such as pyrazole and 

pyrimidine. H/D exchange experiments were performed. The results confirmed the reversibility of the 

metalation step. 

 

Scheme 1.27 Ru-catalyzed carbonylative C-C coupling in water by directed C-H activation. 

 

 

Scheme 1.28 Ru-catalyzed carbonylation of alkenes. 
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1.3 Copper-catalyzed carbonylation of nitrogen-containing compounds via C-H activation 

1.3.1 C-H carbonylation with directing group 

  In 2015, Ge and co-workers developed a carbonylation of C(sp
2
)-H and C(sp

3
)-H bonds through 

nickel/copper synergistic catalysis under O2 with the assistance of a bidentate directing group. 

(Scheme 1.29).
[49]

 The C(sp
2
)-H activation was featured with high regioselectivity and good 

compatibility with a broad range of functional groups such as methoxyl, methyl, halogen (F, Cl, and Br), 

cyano, trifluoromethyl, and nitro groups. Additionally, substrates with electron-withdrawing groups on 

the phenyl ring gave lower yields compared with those with electron-donating groups. Unfortunately, 

heteroaromatic substrates failed to provide any desired products. The C(sp
3
)-H activation showed a 

predominant preference for the α-methyl groups over the α- methylene and β- or γ-methyl groups. 

Good yields were obtained with 2,2-disubstituted propanamides bearing either the linear or cyclic 

chains. Mechanistic studies suggested that this reaction was performed through nickel/copper 

synergistic catalysis with the nickel species initiating the C-H activation of an amide to generate a 

nucleophile and DMF providing an electrophile by the copper species. Interestingly, it was found that 

C-H bond cleavage of aromatic amides was a reversible step, while C-H bond cleavage of aliphatic 

amides was the rate-limiting step, indicating that C-H activation on sp
3
 carbons was a more 

challenging process compared with sp
2
 carbons. Remarkably, DMF was used as the CO source. 

 

Scheme 1.29 Carbonylation of C(sp
2
)-H and C(sp

3
)-H bonds via Cu/Ni synergistic catalysis. 

  Recently, they reported a copper-promoted siteselective carbonylation of C(sp
2
)-H and C(sp

3
)-H 

bonds using nitromethane as the CO source with the assistance of an 8-aminoquinolyl auxiliary 

(Scheme 1.30).
[50]

 The C(sp
2
)-H carbonylation featured high regioselectivity. A wide range of functional 

electron-donating groups and electron-withdrawing groups were well tolerated. The C(sp
3
)-H 

carbonylation showed high siteselectivity as well. KIE studies indicated that the C(sp
3
)-H bond 

breaking step was reversible, whereas the C(sp
2
)-H bond cleavage was an irreversible but not the 

rate-determining step. Control experiments suggested that the substrate underwent a 

dehydrogenative coupling reaction with nitromethane, followed by a Nef reaction to form the 

carbonylation product. 
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Scheme 1.30 Cu-promoted siteselective carbonylation of C(sp
2
)-H and C(sp

3
)-H bonds. 

1.4 Rhodium-catalyzed carbonylation of nitrogen-containing compounds via C-H activation 

1.4.1 C-H carbonylation without directing group 

  In 2011, Li and co-workers demonstrated a rhodium-catalyzed C-H carbonylation of indoles under 1 

bar of CO (Scheme 1.31).
[51]

 Various substituted indoles with linear or cyclic alcohols could afford the 

carbonylation products. Significant electronic effects of the substituents on the benzene ring of 

N-methyl indole toward reactivity were observed. Electron-deficient indoles gave better yields under 

the reaction conditions. Interestingly, substituents at the N-position of indole also significantly 

influenced the efficiency of the direct C-H carbonylation. The N-benzyl indole and its derivatives 

further substituted by electron-donating methyl groups at the 5-position or 6-position worked 

efficiently. However, only a trace amount of products could be observed when indole was 

N-substituted by strong electron-withdrawing groups such as Ts and Boc, indicating that the presence 

of Ts or Boc rendered the indole ring highly electron-deficient and retarded electrophilic metalation. 

Replacing indole with N-substituted pyrrole proceeded smoothly. Surprisingly, NH-free indole could 

also be regioselectively carboxylated at the C3 position instead of the NH position. 

 

Scheme 1.31 Rh-catalyzed direct carbonylation of indoles. 
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1.4.2 C-H carbonylation with directing group 

  In 2000, Murai and co-workers reported a rhodium-catalyzed C(sp
3
)-H carbonylation reaction 

(Scheme 1.32).
[52]

 They used cyclic amines as the substrates in conjunction with a rhodium complex 

and 2-propanol providing saturated ketones. No other regioisomeric products were observed. It was 

noteworthy that the nature of the substituents on the pyridine ring had a significant effect on the 

yields of products. Steric hindrance around the pyridine nitrogen and electron-deficient pyridine 

dramatically decreased the product yields. 

 

Scheme 1.32 Rh-catalyzed C(sp
3
)-H carbonylation of heterocycles. 

  In 2004, Takahashi described a rhodium-catalyzed C-H carbonylation of azobenzenes (Scheme 

1.33).
[53]

 This reaction was in the presence of nitrobenzene as a hydrogen acceptor and gave four-ring 

heterocyclic products in good yields. They examined the reactivity of azobenzene derivatives bearing 

electron-donating and electron-withdrawing groups at meta-position or para-position relative to the 

azo group. The results indicated that the substituents gave a little electronic influence on the reactivity 

of azobenzene towards the carbonylation. However, decreasing the electron density on the phenyl 

ring would depress the C-H activation at ortho-position. In addition, the steric factor gave a strong 

effect on the carbonylation. 

 

Scheme 1.33 Rh-catalyzed cyclocarbonylation of azobenzenes. 

  Guan and co-workers reported a rhodium-catalyzed oxidative carbonylation of arenes and 

heteroarenes with carbon monoxide and alcohols (Scheme 1.34).
[54]

 Oxone was utilized as an 

inexpensive oxidant in this reaction. This reaction showed high regioselectivity and tolerated many 

good functional groups such as ester, trifluoromethyl, halogen and ether groups. Up to 96% yield of 

ortho-substituted aryl or heteroaryl carboxylic esters were obtained. They also found that 

electron-rich arenes showed more reactivity and gave slightly higher yields than electron-deficient 

arenes. Different directing groups, such as pyrazole, pyrimidine, and quinoline, could also work well 

under the conditions and generate the carbonylation products in moderate to good yields. Various 
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alcohols were tested and worked well in this carbonylation reaction. Notably, both steric hindrance 

and boiling point of alcohols played important roles in the transformation. 

 

Scheme 1.34 Rh-catalyzed carbonylation of heteroarenes. 

  In 2011, Rovis and co-workers reported a rhodium-catalyzed oxidative carbonylation of benzamides 

with carbon monoxide (Scheme 1.35).
[55]

 Various amides bearing alkyl groups at the nitrogen atom 

proceeded smoothly to deliver phthalimides in excellent yields. Substrates bearing p-methoxy and 

p-phenyl substituents were efficient. Amides with electron-withdrawing groups provided phthalimides 

in low yields. Substitution at the meta-position led to 3-substituted phthalimides as single 

regioisomers. Amides with ortho-substituted groups such as methoxy, methyl, phenyl and fluoro 

afforded phthalimides in minimal yields.  

 

Scheme 1.35 Rh-catalyzed C-H carbonylation of benzamides. 
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  Jiao and co-workers developed a rhodium-catalyzed carbonylation of simple anilines with carbon 

monoxide and alkynes (Scheme 1.36).
[56]

 A variety of N-methylanilines bearing electron-donating 

groups, such as OMe, NHAc, Me, t-Bu, proceeded well under the conditions. N-methylanilines with 

weak electron-withdrawing groups such as Ph and Cl could also perform well. However, strong 

electron-withdrawing groups, such as F, COOMe, CN, and NO2, were relatively sluggish and provided 

moderate yields. It was noteworthy that tetrahydroquinoline, tetrahydro-1H-benzo[b]azepine, and 

dihydrodibenzooxazepines performed smoothly to give moderate to good yields. Moreover, many 

aliphatic and aromatic internal alkynes were employed in this procedure as well, which gave the 

corresponding products in moderate to good yields. Besides, several isotope-labelling experiments 

were conducted. An intermolecular KIE of KH/KD = 1.25 was determined for the annulation reaction, 

which suggested that C-H bond cleavage was not involved in the rate-determining step of the catalytic 

cycle. 

 

Scheme 1.36 Rh-catalyzed C-H carbonylation of anilines. 

  Recently, they reported an efficient rhodium-catalyzed C-H cyclization of simple anilines, alkynes, 

and carbon monoxide (Scheme 1.37).
[57]

 Compared to their previous paper, there were three 

advantages in this procedure: i) A wide range of anilines were employed in this carbonylation protocol; 

ii) O2 was utilized as the environmentally friendly oxidant for this reaction; iii) This reaction provided a 

three component cyclization approach to N-heterocycles with CO, which was used as a prominent C1 

synthon in organic synthesis. In general, both electron-donating and electron-withdrawing 

substituents of anilines were well tolerated under the conditions. Primary anilines and secondary 

anilines containing electron-donating or electron-withdrawing groups reacted smoothly. Control 

experiments showed that no desired product was observed in the absence or presence of CO, which 

indicated that the formation of formylated aniline was not involved in this process. In addition, they 

conducted a DFT investigation, suggesting that Cu catalyst played a pivotal role in the transformation. 

CO insertion and alkyne insertion in the Rh(III) species were the key processes in this reaction. 
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Scheme 1.37 Rh-catalyzed cyclization of anilines. 

1.5 Cobalt-catalyzed carbonylation of nitrogen-containing compounds via C-H activation 

1.5.1 C-H carbonylation with directing group 

  In 1955, Murahashi reported a cobalt carbonylation to synthesize phthalimidines (Scheme 1.38).
[58]

 

In this reaction, diphenylmethanimine was the substrate, using dicobalt octacarbonyl as the catalyst 

under 100-200 bar of CO at 220-230 
o
C for 5-6 hours, affording 2-phenylphthalimidine in 80% yield. 

 

Scheme 1.38 Co-catalyzed carbonylation to synthesize phthalimidines. 

  In 2014, Daugulis and co-workers demonstrated a cobalt-catalyzed C-H carbonylation of 

aminoquinoline benzamides (Scheme 1.39).
[59]

 Reactions proceeded at room temperature in 

trifluoroethanol solvent, using oxygen from air as an oxidant. Halogen, nitro, ether, cyano, and ester 

functional groups were tolerated well. Carbonylation of aminoquinoline p-toluoylamide could also be 

carried out on 5 mmol scale, giving carbonylation product in 91% yield. It indicated that scale-up of 

the reaction was feasible. The directing group could be removed by treatment with ammonia, 

affording a high yield of a phthalimide derivative. Two control experiments were performed to 

determine the source of the oxidant. First, p-toluoylamide of aminoquinoline was carbonylated 

without opening of the reaction vial to air. CO was delivered from a balloon equipped with a needle. 
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The NMR yield of product was 83%. Second, the reaction was carried out in a CO-filled Schlenk flask 

with exclusion of oxygen. The NMR yield of the product was 20%. This result indicated that oxygen 

was delivered to the reaction via slow diffusion of air through the surface of the balloon. 

 

Scheme 1.39 Co-catalyzed carbonylation of aminoquinoline benzamides. 

  Recently, they developed a method for cobalt-catalyzed, aminoquinoline directed C(sp
2
)-H bond 

carbonylation of sulphonamides (Scheme 1.40).
[60]

 The reaction proceeded in a dichloroethane solvent, 

diisopropyl azodicarboxylate as a CO source, Mn(OAc)2 as a co-oxidant and potassium pivalate as a 

base. Both electron-rich and electron-poor substrates afforded corresponding products in moderate to 

good yields. The reaction tolerated many functional groups such as alkoxy, iodo, bromo, 

trifluoromethoxy, trifluoromethyl, chloro, fluoro, naphthyl, unsaturated ester, and amide groups. 

Nitro-substituted sulphonamides did not give any carbonylation product. 

 

Scheme 1.40 Co-catalyzed carbonylation of aryl sulphonamides. 
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  In 2016, Zhang and co-workers developed an approach for the C-H bond carbonylation of 

benzamides (Scheme 1.41).
[61]

 They used Co(OAc)2·4H2O as a catalyst and diisopropyl azodicarboxylate 

as a nontoxic carbonyl source. Aromatic amides with electron-donating (Me, OMe, t-Bu) or 

electron-withdrawing (acetyl, halide) groups at para-position showed good compatibility. For 

meta-substituted benzamides, it was found that the reactions occurred at both ortho-positions, but 

the less hindered ortho-position was favored. The KH/KD value of 1.39 suggested that C-H bond 

cleavage probably occurred in the rate-determining step. In addition, they found that radical 

scavengers, such as TEMPO and BHT, significantly suppressed the reaction, which indicated that a 

single electron transfer process might be involved in the reaction. 

 

Scheme 1.41 Co-catalyzed carbonylation of benzamides with DIAD. 

  Zhong and co-workers described a cobalt-catalyzed ortho C-H carbonylation of benzylamines with 

diethyl azodicarboxylate via C-H activation (Scheme 1.42).
[62]

 They used picolinamide as a traceless 

directing group, which accessed a variety of N-unprotected isoindolinones with excellent 

regioselectivity. Benzylamines containing electron-withdrawing groups proceeded in better yields than 

those with electron-donating counterparts. In addition, the substitution patterns of aryl moieties had 

a slight effect on this reaction. It was note of that this process exhibited excellent selectivity for 

meta-substituted substrates at 6-position. Additionally, this carbonylation strategy was also 

compatible with various aromatic or heteroaromatic substituted amines. Remarkably, diethyl 

azodicarboxylate was utilized as the environmentally benign carbonyl source. 
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Scheme 1.42 Co-catalyzed carbonylation of benzamides with DEAD. 

  Recently, Sundararaju, Gaunt, and Lei reported cobalt-catalyzed C-H carbonylative cyclizations of 

aliphatic amides, respectively (Scheme 1.43).
[63]

 Central to the success of this procedure was the 

stabilizing effect of the quinolinamide directing group. Notably, Ag salt was crucial to this reaction. 

Various substituted propanamides were selectively transformed into corresponding succinimides in 

good to high yields. 

 

Scheme 1.43 Co-catalyzed C-H carbonylative cyclization of aliphatic amides. 
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2. Objectives of this work 

  As described in the introduction, transition metal-catalyzed carbonylation reactions have attracted 

numerous attentions during the past several decades as they serve as a powerful synthesis toolkit for 

the chemists. Although many studies have been accomplished in this field, there are still so many 

parts to be discussed. The objectives of this work focus on different catalysts, various 

nitrogen-containing substrates, safe CO surrogates, and the applications of novel carbonylative 

methods. As we all know, palladium-catalyzed carbonylation reactions via C-H activation have been 

reported widely. However, other transition metal catalysts such as copper and ruthenium are very 

limited. Herein, palladium, ruthenium, and copper are selected as the catalysts which are highly 

efficient to construct various carbonyl compounds. In addition, nitrogen-containing compounds such 

as 2-substituted pyridines, ketimines, azoarenes, and indoles are used as the substrates which are 

important skeletons in natural products and pharmaceutical molecules. Series of nucleophiles such as 

alcohols and amines are discussed in this dissertation as well. In order to overcome the limitations of 

gaseous carbon monoxide in synthetic application, the development of CO surrogates to access safer 

and more operator friendly carbonylation reactions has been desirable. Molybdenum hexacarbonyl 

and hexaketocyclohexane are utilized as the solid CO sources which are cheap and easily handling in 

laboratory. Moreover, we have described many control experiments to further understand the 

transition metal-catalyzed carbonylation mechanisms such as the palladium, the ruthenium, and the 

copper catalytic cycle. 
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3. Summary of works 

  Following the objectives in this dissertation and based on the understanding of fundamental 

organometallic chemistry and transition metal‐catalyzed carbonylations, the development of different 

transition metal-catalyzed carbonylations of nitrogen-containing compounds via C-H activation is 

described in this dissertation. 

  Palladium-catalyzed oxidative carbonylation of aromatic C-H bonds with alcohols using 

molybdenum hexacarbonyl as the carbon monoxide source (Adv. Synth. Catal. 2016, 358, 2855-2859). 

In this paper, a mild and general procedure for palladium-catalyzed alkoxycarbonylation of arenes with 

Mo(CO)6 as the CO source was developed (Scheme 3.1). A variety of primary, secondary and tertiary 

alcohols could be applied as substrates under our reaction conditions and gave the corresponding 

esters in moderate to good yields. High regioselectivity as well as good functional group tolerance 

could be demonstrated. The desired carbonylation products were isolated in moderate to good yields. 

Nitrogen heterocycles, such as pyrazole and pyrimidine, served as efficient directing groups and 

generated the carbonylation products in good yields under the optimal conditions. Additionally, only 

0.4 equivalent of Mo(CO)6 as a solid and safe CO source was required for this new procedure. 

 

Scheme 3.1 Pd-catalyzed carbonylation of C-H bonds with alcohols. 
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  Palladium-catalyzed carbonylative synthesis of 3-methyleneisoindolin-1-ones from ketimines with 

hexacarbonylmolybdenum as the carbon monoxide source (ChemCatChem 2017, 9, 94-98). In this 

paper, we also used Mo(CO)6 instead of carbon monoxide as the CO source to synthesize 

3-methyleneisoindolin-1-ones (Scheme 3.2). Among the heterocyclic scaffolds, the 

3-methyleneisoindolin-1-one skeleton was one of the most important structures in nature products 

and pharmaceutical molecules. Traditionally, 3-methyleneisoindolin-1-ones were prepared from 

phthalimides. In this case, a new palladium-catalyzed carbonylative intramolecular cyclization of 

ketimines via C-H bond activation was developed. In the presence of a palladium catalyst and Mo(CO)6 

(0.3 equiv.), the desired substituted 3-methyleneisoindolin-1-ones were isolated in moderate to good 

yields. 

 

Scheme 3.2 Pd-catalyzed carbonylative synthesis of 3-methyleneisoindolin-1-ones. 

 

  Palladium-catalyzed carbonylative cyclization of azoarenes (ChemCatChem 2017, 9, 3637-3640). In 

this paper, a palladium-catalyzed carbonylative synthesis of substituted 2-arylindazolones from 

symmetrical and unsymmetrical azoarenes was developed (Scheme 3.3). With Mo(CO)6 (0.8 equiv.) as 

a solid CO source, moderate to good yields of the desired products were obtained with high 

regioselectivity through C-H bond activation. Readily available aniline could also be applied, and a 

good yield of the target product was obtained. Notably, the reaction tolerated a variety of functional 

groups, including fluoro, bromo, methoxy, phenoxy, and trifluoromethyl groups. 
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Scheme 3.3 Pd-catalyzed carbonylative cyclization of azoarenes. 

 

  3‑Acylindoles synthesis: ruthenium-catalyzed carbonylative coupling of indoles and aryl iodides 

(Org. Lett. 2017, 19, 4680-4683). In this paper, we used ruthenium as the catalyst which was attractive 

due to their relative low cost and high reaction selectivity. We developed an interesting procedure for 

the synthesis of 3-acylindoles (Scheme 3.4). Through ruthenium-catalyzed carbonylative C-H 

functionalization with Mo(CO)6 as the solid CO source, moderate to good yields of the desired 

products could be prepared with good functional group tolerance. Using iodoarenes with either 

electron-donating or electron-withdrawing groups led to the formation of the corresponding 

carbonylation products in moderate to good yields. Substrates tolerated various functional groups 

such as Bn, OMe, CF3, Cl, F, and COOMe. Iodoarenes substituted with functional groups at 

meta-position could give higher yields than that at para-position. N-Substituted indoles could be 

readily carbonylated with iodoarenes to provide moderate to good yields of the corresponding 

carbonylation products. The methyl group at 2-position of indoles played a crucial role in the 

carbonylative C-H activation reaction. 
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Scheme 3.4 Ru-catalyzed carbonylative coupling of indoles and aryl iodides. 

 

  Copper-catalyzed double carbonylation of indoles using hexaketocyclohexane as the carbon 

monoxide source (Chem. Commun. 2018, 54, 4798-4801). In this paper, copper was used as the 

catalyst. The CO source used in this reaction was C6O6∙8H2O which was formed by oligomerization of 

carbon monoxide through the formation of molybdenum carbonyls. The use of C6O6∙8H2O as an 

inexpensive and environmental friendly CO source made this reaction attractive in organic synthesis. 

We developed a new copper-catalyzed double carbonylation of indoles and alcohols with C6O6∙8H2O 

as a solid and safe CO source (Scheme 3.5). In the presence of 1 equivalent of C6O6∙8H2O, various 

alcohols were carbonylated in moderate to good yields. Primary and secondary alcohols worked well 

under our reaction conditions and gave the double carbonylation products in moderate to good yields. 

Both aliphatic alcohols and aromatic alcohols were applicable as reaction partners. A series of 

functional groups, such as OMe, Ph, CF3, Cl, and Br were compatible under our conditions, which gave 

the desired double carbonylation products in good isolated yields. However, no product was detected 

when COOMe group substituted at 2-position of indole. 
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Scheme 3.5 Cu-catalyzed double carbonylation of indoles. 
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