

Traditio et Innovatio

Über die Chemie des [Me₃Si]⁺ - Ions

Dissertation

zur

Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Rostock

vorgelegt von René Labbow, geb. am 23.03.1989 in Rostock Rostock, den 22.12.2017 Die vorliegende Arbeit wurde in der Zeit von Juni 2014 bis Dezember 2017 am Institut für Chemie der Universität Rostock am Lehrstuhl für Anorganische Chemie in der Arbeitsgruppe von Prof. Dr. Axel Schulz angefertigt.

- 1. Gutachter: Prof. Dr. Axel Schulz, Universität Rostock
- 2. Gutachter: Prof. Dr. Thomas Müller, Carl von Ossietzky Universität Oldenburg

Eingereicht am: 16. Januar 2018 Datum der Verteidigung: 29. Mai 2018

ERKLÄRUNG

Ich versichere hiermit an Eides statt, dass ich die vorliegende Arbeit selbstständig angefertigt und ohne fremde Hilfe verfasst habe. Dazu habe ich keine außer den von mir angegebenen Hilfsmitteln und Quellen verwendet und die den benutzten Werken inhaltlich und wörtlich entnommenen Stellen habe ich als solche kenntlich gemacht.

Rostock, den 22.12.2017

René Labbow

Danksagung

Mein besonderer Dank gilt Herrn Professor Dr. Axel Schulz für das in mich gesetzte Vertrauen, das Interesse an meinem Thema sowie die wissenschaftliche Betreuung. Ich danke für die zahlreichen Hilfestellungen beim Schreiben und Ausarbeiten von Publikationen in den letzten Jahren.

Ebenfalls zu sehr großem Dank bin ich Herrn Dr. Alexander Villinger verpflichtet. Zunächst möchte ich mich für die Messung und Lösung zahlreicher Einkristallstrukturen bedanken, ferner auch für die mir vermittelten überragenden praktischen Fähigkeiten und Fertigkeiten. Auch danke ich für die zahlreichen wissenschaftlichen und lehrreichen Diskussionen.

Auch Dr. Fabian Reiß möchte ich herzlichst für die Betreuung danken. Die erbrachten Hilfestellungen stellen eine wesentliche Grundlage für diese Arbeit dar. Ich danke besonders für alle Tipps und Tricks, die den Laboralltag erleichtert haben, und den wissenschaftlichen Austausch über beide Straßenseiten hinweg.

Herrn Dr. Ronald Wustrack, Frau Dr. Anne-Kristin Rölke, Frau Regina Brosin sowie Herrn M.Sc. Lukas Chojetzki danke ich für die gemeinsame und durchaus kurzweilige Zeit in den Grundpraktika.

Bei Frau Isabel Schicht sowie Herrn Dr. Christian Hering-Junghans und Herrn Dr. Alexander Hinz bedanke ich mich ebenfalls für die Übernahme und Durchführung von Einkristallstrukturmessungen.

Herrn Dr. Jonas Bresien danke ich für den Aufbau und die Wartung des hiesigen Computersystems. Neben dem vermittelten technischen Know-How danke ich für alle Hinweise bezüglich der diversen quantenchemischen Rechnungen. Herrn Dr. Jens Krüger (Universität Tübingen) danke ich für die Unterstützung im Umgang mit der Plattform Molecular Simulation Grid (Mosgrid).

Ferner möchte ich Frau M.Sc. Julia Rothe, Herrn M.Sc. Philip Stoer, Herrn M.Sc. Tobias Täufer für die freundliche, unterstützende und hilfsbereite Atmosphäre im Labor danken.

Dem Arbeitskreis um Prof. Dr. Martin Köckerling mit M.Sc. Niels Giltzau, B.Sc. Florian Schröder, DC Daniel Weiß, M.Sc. Jonas Jablonski und M.Sc. Eric Sperlich danke ich für die zahllosen Gesprächsrunden und die gelegentlichen Chemikalienspenden.

Ich danke allen Praktikanten, die mich auf meinem Weg begleitet haben und sehr engagiert und motiviert ihre Synthesen unter meiner Aufsicht gekocht haben. Besonders bedanken möchte ich mich hierbei bei M.Sc. Kevin Bläsing, B.Sc. Paul Felgenhauer, B.Sc. Steffen Maurer, B.Sc. Henrik Müller und M.Sc. Svenja Walker.

Weiterhin danke ich den analytischen und technischen Abteilungen des Leibniz-Instituts für Katalyse e.V., sowie denen der Universität Rostock. Im speziellen möchte ich Frau Brigitte Goronzi, Frau Alice Voß, Frau Heike Borgwaldt und Herrn Dr. Dirk Michalik für die Messung zahlreicher NMR-Spektren danken. Weiterhin danke ich Frau Angela Weihs für die Aufnahme von IR-Spektren sowie DSC-Messungen. Auch möchte ich Frau Petra Duncker, Herrn Thorsten Rathsack und Herrn M.Sc. Sören Arlt für die Messung von zahllosen Elementaranalysen danken. Frau Dr. Christine Fischer und Frau Sigrun Rossmeisl danke ich für die Aufnahme von Massenspektren. Herrn Dipl.-Ing. Thomas Kröger-Badge und Herrn Dipl. Ing Harald Grabow danke ich für die Hilfe und die Reparatur aller elektrischen Geräte. Den Herren Roland Weihs und Patrick Quade danke ich für die Reparaturen und Neubauten aller speziellen Glasgeräte. Ferner möchte ich den Herren Peter Kumm und Martin Riedel für die Wartung, die Anfertigung und den Bau aller mechanischen Geräte und Errungenschaften, die den Laboralltag leichter machen, danken. Ebenso danke ich Frau Nadja Kohlmann und Frau Kerstin Bohn für die Unterstützung und Hilfe bei allen Problemen und Schwierigkeiten im und um den Laboralltag herum.

Ich danke auch Herrn Dr. Alexander Hepp (Universität Münster) für die Messung von diversen ¹⁰B und ¹¹B NMR-Spektren.

Den Herren Prof. Dr. Ludger Wessjohann (Universität Halle) sowie Dr. Marco Dessoy (Universität Campinas) für die unterstützenden Hinweise zur Synthese der Phosphat-Derivate.

Zum Schluss danke ich meiner Familie, die mir stets zur Seite stand und mich in meinem Leben stets unterstützt und gefördert hat.

Zusammenfassung

Im Rahmen dieser Arbeit wurde eine Reihe von Trityl-Verbindungen als Präkursoren für die Darstellung entsprechender [Me₃Si]⁺-Salze untersucht. Trotz der Vielzahl der vollständig charakterisierten Verbindungen eignen sich nur ausgewählte Vertreter für den Einsatz als [Me₃Si]⁺-Transferreagenz. Besonders das [CHB₁₁Cl₁₁]⁻-Ion stabilisierte Salz eignet sich für die weitere Verwendung. In einer systematischen Studie konnte ein Zusammenhang zwischen verschiedenartig halogenierten *closo*-Carborat-Derivaten, ihren ¹³C-NMR-Resonanzen, NICS-Werten und Gasphasen-Protonen- bzw. [Me₃Si]⁺-Affinitäten gefunden werden.

Die synthetisierten $[Me_3Si]^+$ -Präkursoren konnten erfolgreich für die Synthese von persilylierten Sulfat-, Phosphat- und Sulfid-Ionen genutzt werden. Ferner konnte das Verhalten der neutralen silylierten Spezies gegenüber starken Basen untersucht werden. Es gelang erstmalig mono- bzw. bissilylierte Anionen, wie z.B. $[O_3SOSiMe_3]^-$ oder $[O_2P(OSiMe_3)_2]^-$, darzustellen. Die Chemie entspricht somit weitestgehend der der protonierten Mineralsäuren.

Bisher schwer zugängliche Wasserstoffsäuren wie H-NSO und H-PCO konnten auf eine neue und einfache Weise synthetisiert und charakterisiert werden. Bestehende Lücken in der Literatur zur Folgechemie und das Fehlen an fundierten quantenchemischen Berechnungen bezüglich dieser Säuren konnten durch diese Arbeit geschlossen werden.

Summary

Within the scope of this work, a series of new trityl compounds was investigated as precursors for the synthesis of corresponding $[Me_3Si]^+$ salts. Despite the multitude of fully characterized compounds, only selected compounds qualify for the use as $[Me_3Si]^+$ transfer reagents. Particularly the $[CHB_{11}Cl_{11}]^-$ stabilized salt is suited for further use. In a systematic study a new coherence between various halogenated *closo*-carborates and their ¹³C NMR shifts, NICS values and gas phase proton / $[Me_3Si]^+$ affinities could be found.

The synthesized $[Me_3Si]^+$ precursors were successfully used for the preparation of persilvlated sulfate, phosphate and sulfide cations. It was possible to investigate the behavior against strong bases and therefore generate mono- / bissilvlated anionic species, like $[O_3SOSiMe_3]^-$ and $[O_2P(OSiMe_3)_2]^-$ for the first time. Thus, this chemistry largely corresponds to that of the protonated acids.

Hydrogen acids hitherto difficult to access, such as H-NSO and H-PCO, could be synthesized and characterized with a new and easy synthetic procedure. This examination allowed to close the gaps in existing literature on follow-up chemistry and well-founded quantum chemical calculations concerning these acids.

Inhalt

AbkürzungsverzeichnisXII
Vom SI-System abweichende EinheitenXIV
1 Zielsetzung
2 Einleitung
2.1 Ein Vergleich von Trimethylsilylium-Ionen und Protonen
2.2 Bekannte Trimethylsilyl-Verbindungen und ihre Protonen-Analoga
3 Ergebnisse und Diskussion
3.1 Synthese und Charakterisierung von Triphenylmethylium-Verbindungen 11
3.2 Silylierte und protonierte Carba- <i>closo</i> -dodecaborate
3.3 Synthese und Charakterisierung der silylierten Schwefelsäure und ihrer Derivate
3.4 Synthese und Charakterisierung der silylierten Schwefelwasserstoffsäure und ihrer Derivate
3.5 Synthese und Charakterisierung des labilen Thionylimids und seiner Derivate
3.6 Synthese und Charakterisierung der silylierten Phosphorsäure und ihrer Derivate
3.7 Synthese und Charakterisierung der silylierten schwefligen Säure und ihrer Derivate 53
3.8 Synthese und Charakterisierung von H-PCO*
4 Zusammenfassung und Ausblick
5 Anhang
5.1 Arbeitstechnik
5.2 Analysemethoden
5.3 Anmerkungen
5.3.1 Quantenchemische Rechnungen 70
5.3.2 NBO-Analyse
5.3.3 Strukturverfeinerung der Einkristallstrukturen 181
5.3.4 Start- und Referenzmaterialien
5.4 Darstellung der Verbindungen
5.4.1 Synthese und Charakterisierung von [Ph ₃ C][BF ₄] (1) 186
5.4.2 Synthese und Charakterisierung von [Ph ₃ C][AlCl ₄] (3) 188
5.4.3 Synthese und Charakterisierung von [Ph ₃ C][GaCl ₄] (4) 189
5.4.4 Synthese und Charakterisierung von [Ph ₃ C][PF ₆] (5) 190
5.4.5 Synthese und Charakterisierung von [Ph ₃ C][AsF ₆] (6) 192
5.4.6 Synthese und Charakterisierung von [Ph ₃ C][SbF ₆] (7) 193
5.4.7 Charakterisierung von [Ph ₃ C][SbCl ₆] (8) 194
5.4.8 Synthese und Charakterisierung von [Ph ₃ C][CHB ₁₁ H ₅ Cl ₆] (9) 195

5.4.9 Synthese und Charakterisierung von [Ph ₃ C][CHB ₁₁ Cl ₁₁] (10)	
5.4.10 Synthese und Charakterisierung von (11·CH ₂ Cl ₂)	
5.4.11 Synthese und Charakterisierung von (11·CH ₃ CN)	
5.4.12 Synthese und Charakterisierung von 11	
5.4.14 Synthese und Charakterisierung von [Ph ₃ C][OS(O) ₂ CF ₃] (12)	
5.4.13 Synthese und Charakterisierung von Ph ₃ COC(O)CF ₃ (13)	
5.4.15 Synthese und Charakterisierung von Ph ₃ CN ₃ (14)	
5.4.16 Synthese und Charakterisierung von (Me ₃ SiO) ₂ SO ₂ (19)	
5.4.17 Synthese und Charakterisierung von [Me ₃ SiOPMe ₃][(Me ₃ SiO)SO ₃] (20)	
5.4.18 Synthese und Charakterisierung von $[(Me_3SiO)_3SO][B(C_6F_5)_4]$ (21)	
5.4.19 Synthese und Charakterisierung von [Me ₃ SiOPMe ₃] ₂ [S ₂ O ₇] (22)	
5.4.20 Synthese und Charakterisierung von (Me ₃ Si) ₂ S (21)	
5.4.21 Synthese und Charakterisierung von [K@18-Krone-6][SSiMe3] (24)	
5.4.22 Synthese und Charakterisierung von $[(Me_3SiO)_3SO][B(C_6F_5)_4]$ (25)	
5.4.23 Synthese und Charakterisierung von H-NSO (26)	
5.4.24 Synthese und Charakterisierung von K[NSO] (27)	
5.4.25 Synthese und Charakterisierung von (F5C6)3BN(H)SO (28)	
5.4.26 Synthese und Charakterisierung von Me ₃ SiNSO (29)	
5.4.27 Synthese und Charakterisierung von Me ₃ SiOSNB(C ₆ F ₅) ₃ (30)	
5.4.28 Synthese und Charakterisierung von Cl ₃ GaN(H)SO (32)	
5.4.29 Synthese und Charakterisierung von Me ₃ SiN(GaCl ₃)SO (31)	
5.4.30 Synthese und Charakterisierung von (Me ₃ SiO) ₃ PO (33)	
5.4.31 Synthese und Charakterisierung von [(Me ₃ SiO) ₄ P][B(C ₆ F ₅) ₄] (34)	
5.4.32 Synthese und Charakterisierung von [K@18-Krone-6][O2(POSiMe5)2] (35	5)229
5.4.33 Syntheserouten zur Darstellung von (Me ₃ SiO) ₂ SO (36)	
5.4.34 Synthese und Charakterisierung von Na[O ₂ SOSiMe ₃] (37)	
5.5 Daten zu den Röntgenstrukturanalysen	
5.6 Ausgewählte Atomabstände und Winkel der Verbindungen	
5.6 NMR-Spektren	
5.6 IR- und Raman-Spektren	
6 Abbildungsverzeichnis	XVI
7 Schemataverzeichnis	XXII
8 Tabellenverzeichnis	XXIV
9 Literaturverzeichnis	XXVII

Abkürzungsverzeichnis

Abb.	Abbildung	Mes	Mesityl
ATR	Attenuated Total Reflection	MHz	Megahertz
	(abgeschwächte Totalreflexion)		
В	Base	n	normal
ber.	berechnet	<i>n-</i> BuLi	<i>n</i> -Butyllithium
		NBO	Natürliches Bindungsorbital
δ	Chemische Verschiebung	NMR	Nuclear Magnetic Resonance
	(NMR)		(Kernspinresonanzspektroskopie)
dia	dimagnetisch	NRT	Natürliche Resonanztheorie
DFT	Dichtefunktionaltheorie		
DMSO	Dimethylsulfoxid	0	ortho
DSC	Differential Scanning	OTf	Triflat
	Calometry (Dynamische		
	Differenzkalorimetrie)		
FA	Flementaranalyse	n	nara
	Elektronenlokalisations-	P nara	para
	funktion	para	paramagnetisen
	Tunktion	Ph	Phenyl
gef.	gefunden	nnm	parts per million
8	Services	PP	
номо	Highest occupied molecular	q	Quartett (NMR)
	orbital (Höchstes besetztes		
	Molekülorbital)		
i	iso	S	strong (IR), Singulett (NMR)
· ICP-	Inductively counled plasma	Sdp.	Siedepunkt
OES	optical emission spectrometry	~~ k .	~~~~Person
	(ontische		
	Emissionssnektrometrie mittels		
	Emissionsspectrometre mittels		

		Zer	Zersetzung(spunkt)
NMR	(Festkörper-NMR)		
MAS	Magic angle spinning NMR		
111	Multiplett (NMR)	** **	weenselwirkung
m	modium (IR) moto (NMR)	WW/	(Schwachkoordinierendes Anion)
		WCA	Weakly coordinating anion
	besetzte Molekülorbital)		
	orbital (Niedrigste nicht-		
LUMO	Lowest unoccupied molecular	W	weak (IR)
Lsm.	Lösungsmittel		
LS	Lewis-Säure	vdW	van der Waals
LB	Lewis-Base		
		TMS	Trimethylsilyl
kov	kovalenz-	theo.	theoretisch
		THF	Tetrahydrofuran
J	Kopplungskonstante	Tab.	Tabelle
	·	Т	Trimethylsilyl
	koordinate)		
	(Intrinsische Reaktions-		
IRC	Intrinsic reaction coordinate	····· P ·	
IR	Infrarot	Smp.	Schmelzpunkt

Größe	Symbol	Bezeichnung	Umrechnung in SI- Einheit
Frequenz	MHz	Megahertz	$1 \text{ MHz} = 10^6 \text{ s}^{-1}$
	Hz	Hertz	$1 \text{ Hz} = 1 \text{ s}^{-1}$
Länge	Å	Ångström	$1 \text{ Å} = 10^{-10} \text{ m}$
Leistung	mW	Milliwatt	$1 \text{ mW} = 10^{-3} \text{ kg} \cdot \text{m}^2 \cdot \text{s}^{-3}$
Temperatur	°C	Grad Celsius	$x \circ C = (x + 273.15) K$
Volumen	mL	Milliliter	$1 \text{ mL} = 1 \text{ cm}^3 = 10^{-6} \text{ m}^3$
Wärmemenge	kJ	Kilojoule	$1 \text{ kJ} = 10^3 \text{ m}^2 \text{ kg} \cdot \text{s}^{-2}$
	kcal	Kilokalorie	1 kcal = 4.184 kJ
Wellenzahl	cm^{-1}	reziproke Zentimeter	$1 \text{ cm}^{-1} = 100 \text{ m}^{-1}$
Zeit	d	Tag	1 d = 86400 s
	h	Stunde	1 h = 3600 s
	min	Minute	$1 \min = 60 \mathrm{s}$

Vom SI-System abweichende Einheiten

1 Zielsetzung

Im Zuge dieser Arbeit sollten in Anlehnung zu bereits bekannten Onium-Verbindungen, wie Halonium-^[1,2] bzw. Pseudohalonium-Ionen,^[3] neue homoleptisch trimethylsilylierte Kationen synthetisiert werden. Dabei sollten vor allem typische Mineralsäuren wie Schwefelsäure oder Phosphorsäure im Fokus stehen. Neben der Generierung von kationischen Derivaten sollte auch die klassische Säure-Base-Chemie der protonierten Vertreter auf die silylierten übertragen werden.

Zusätzlich zu diesen klassischen Säuren, sollte auch ein neuer und einfacher Zugang zu den höchstlabilen Pseudohalogenwasserstoffsäuren H-NSO und H-PCO gefunden werden. Zur Charakterisierung der Säuren sollten hierbei neben magentresonanzspektroskopischen Untersuchungen in der flüssigen Phase auch Analysen der Säuren im Festkörper, mittels Röntgendiffraktometrie erfolgen.

Für die Stabilisation solcher Systeme bedurfte es unter anderem äußerst robuster schwachkoordinierender Anionen, wie dem *closo*-Dodecacarborat-Ion. Quantenchemische Untersuchungen an diesen Käfig-Systemen sollten zukünftige Synthesen vereinfachen und Vorhersagen über die Stabilität und den möglichen Einsatz von protonierten und silylierten Ionenpaaren als H⁺/[Me₃Si]⁺-Präkursoren geben können.

Die Untersuchung des physikalischen, chemischen Verhaltens sowie der Struktur aller Verbindungen sollte durch schwingungsspektroskopische Methoden (IR- und Raman-Spektroskopie) und multinukleare Kernresonanzspektroskopie (⁷⁵As, ³¹P, ²⁹Si, ¹⁹F, ¹⁷O, ¹⁵N, ¹⁴N, ¹³C, ¹¹B, ¹⁰B, ¹H) in Lösung zum einen, zum anderen mit Hilfe der Röntgendiffraktometrie an geeigneten Einkristallen erfolgen. Anhand dieser Daten sollten die Bindungsverhältnisse der synthetisierten Verbindungen aufgeklärt und charakterisiert werden. Dadurch sollte sowohl der Zusammenhang zwischen Struktur und chemischer Bindung als auch die Ladungsverteilung und Reaktivität erklärt werden. Mithilfe von Strukturdaten aus DFT-Analysen sowie Ladungsverteilungen aus NBO bzw. NLMO-Rechnungen sollten diese quantenchemische Daten zusätzlich zu den experimentellen Daten einen tiefgreifenden und umfassenden Überblick in die Konnektivität und Reaktivität der Verbindungen geben. Zusätzlich angefertigte NRT-Rechnungen sollten genutzt werden, um das Gewicht der verschiedenen Lewis-Formeln im Resonanzschema zu ermitteln.

2 Einleitung

2.1 Ein Vergleich von Trimethylsilylium-Ionen und Protonen

Die Chemie der Trimethylsilylium-Ionen [Me₃Si]⁺ und die der Protonen H⁺ scheint erst auf den zweiten Blick recht ähnlich zu sein. Offensichtlich weisen beide Teilchen mit einfachen anorganischen Gegenionen wie Halogeniden stark unterschiedliche physikalische Eigenschaften auf (Tabelle 1). Charakteristika wie Schmelz- und Siedepunkte sowie die Dichte weisen teils drastische Unterschiede auf. Während die Schmelzpunkte der silylierten Spezies im Schnitt 30 °C über denen der Säuren liegen, sind die Unterschiede in den Siedepunkten noch deutlicher. So siedet HCl bereits bei -85 °C, während für Trimethylsilylchlorid erst bei einer Temperatur von 58 °C der Fall ist. Dies geht gleichzeitig einher mit niedrigeren Dichten für die sterisch größeren Silyl-Spezies. Unter der Annahme, dass beide Spezies ein ähnliches chemisches Verhalten aufweisen, zeigt sich also, dass der Umgang mit den Silyl-Spezies um ein Vielfaches einfacher ist. So sind präparativ aufwendige Aufbauten mit Gasflaschen und Druckbehältern nicht nötig. Auch lassen sich stöchiometrische Verhältnisse mit wägbaren Substanzen deutlich leichter einhalten.

Tabelle 1: Vergleich der Dichten, der Schmelz- und Siedepunkte von Me₃Si-X und H-X (X = F, Cl, Br, I).

	H-F	Me ₃ Si-F	H-Cl	Me ₃ Si-Cl	H-Br	Me ₃ Si-Br	H-I	Me ₃ Si-I
Smp. [°C]	-83	-74	-115	-58	-87	-43	-51	-53
Sdp. [°C]	20	17	-85	58	-66	80	-35	107
$\rho \left[g \cdot cm^{-3}\right]$	0.96 ^[4]	0.72 ^[5]	1.20 ^[4]	0.85 ^[5]	2.15 ^[4]	1.18 ^[5]	2.80 ^[4]	1.47 ^[6]

Beide Teilchen (H⁺ / [Me₃Si]⁺) sind als isolierte Moleküle in der Gasphase hinreichend analysiert und mit diversen Methoden, u.a. als Chlor-Derivat (HCl, Me₃SiCl) mittels UV-Vis-,^[7,8] Raman-,^[9,10] Photoelektron-,^[11,12] oder Mikrowellenspektroskopie^[13,14] bereits charakterisiert worden. Ein Wechsel des Aggregatzustandes hin zu einem kondensierten System zeigt ebenso einige übereinstimmende Phänomene. So dauerte es bis in die 2000er Jahre, ehe eine strukturelle Aufklärung eines solvat- bzw. donorfreien $[R_3Si]^+$ -Kations erfolgen konnte. Die Zusammenarbeit der beiden amerikanischen Arbeitsgruppen um Joseph Lambert und Christopher Reed führte 2002 zur Synthese des $[Mes_3Si][CHB_{11}Me_5Cl_6]\cdot C_6H_6$ (Mes = Mesityl, 2,4,6-Trimethylphenyl). Ausgehend von einer Röntgenstrukturanalyse sowie der stark tieffeldverschobenen ²⁹Si-Resonanz im NMR-Spektrum (δ (²⁹Si)_{exp}. = 225 ppm) konnte der Silylium-Charakter der Verbindung bestätigt werden (Abbildung 1).^[15]

Abbildung 1. Original Ortep-Darstellung des [Mes₃Si]-Kations.^[15]

Die sterisch sehr anspruchsvollen organischen Mesityl-Reste schützen das kationische Silizium-Zentrum vor einem nukleophilen Angriff eines Lösungsmittelmoleküls oder Anions. Die Verringerung des sterischen Anspruchs auf drei Methyl-Gruppen hingegen führt zum unweigerlichen Verlust des freien Silylium-Ionencharakters im Fall von $[Me_3Si]^+$. Alle literaturbekannten Versuche, ein Salz der Form $[Me_3Si][WCA]$ mit ähnlich großer ²⁹Si-NMR-Tieffeldverschiebung bzw. einem planaren Silizium-Zentrum (\measuredangle C-Si-C = 120°) zu generieren und strukturell zu charakterisieren, schlugen fehl. Im Jahr 2006 gelang der Arbeitsgruppe um Reed zumindest der strukturelle Nachweis eines Trimethylsilan stabilisierten Trimethylsilylium-Ions $[Me_3Si]^+$ handelt (vgl. Tabelle 2, \bigstar C-Si-C = 115.76°-117.19°, $\delta(^{29}Si) = 82.2, 85.4$).^[16] Die Suche nach einem nicht nur durch quantenchemische Daten^[17] charakterisierten, nackten Kation dauert dementsprechend noch bis heute an.^[18,19]

	$\delta_{exp.}(^{29}\text{Si})$ [ppm]	$\delta_{\text{ber.}}(^{29}\text{Si}) \text{[ppm]}^{[a]*}$	\sum (\measuredangle C-Si-C) [°] ^[a,b]
$[OTf]^-$	44.3 ^[20]	48.3	339.3
$[ClO_4]^-$	46.6 ^[21]	47.3	339.5
$[B(C_6F_5)_4]^{-[c]}$	[22]	74.4	341.0
			$(341.1)^{122}$
$[CHB_{11}F_{11}]^{-}$	[23,24]	137.1	352.0
			$(354.4)^{[25,24]}$
$[CHB_{11}Cl_{11}]^{-[d]}$	85.4 / 82.2 ^[16]	101.3	348.2
			$(350.1 / 349.9)^{[10]}$
$[Me_3Si]^+$	-	386.5	360

Tabelle 2: ²⁹Si-NMR-Verschiebungen und Summe der C-Si-C-Winkel.

^[a] Berechnet: pbe1pbe/aug-cc-pwCVDZ; ^[b] (*experimentelle Werte*); ^[c] Toluol-Solvat; ^[d] TMS-H-Solvat.

In Tabelle 2 sind einige typische isolierbare Anionen-Verbindungen mit ihren ²⁹Si-NMR-Verschiebungen und den dazugehörigen Strukturdaten zusammengefasst. Mit weiteren bekannten WCAs wie $[BF_4]^-$, $[B(CN)_4]^-$, $[PF_6]^-$, $[SbF_6]^-$ oder $[Al(OC(CF_3)_3)_4]^-$ ist das Trimethylsilylium-Ion nicht in der Lage, stabile Salze in der festen Phase zu bilden. Hier überwiegt der stark elektronenziehende Charakter des leeren p_z-Orbitals des Silizium-Atoms, welches bereitwillig mit jeder Art Donor eine bindende Wechselwirkung eingeht. Es folgt die Bildung von thermodynamisch begünstigteren Produkten wie Me₃Si-F, Me₃Si-CN oder Me₃Si-OC(CF₃)₃. Es stellt sich somit die Frage wie ein freies Trimethylsilylium-Ion zu charakterisieren ist. In der Festphase lässt sich dies definitionsgemäß anhand der Winkel am zentralen Silizium-Atom bestimmen. Ausgehend von einer Röntgenstruktur sollten sie idealerweise alle Winkel einen Wert von 120° besitzen, sodass sich alle Schweratome in einer Ebene befinden. Dies bedeutet gleichermaßen, dass keine Pyramidalisierung am Silizium-Zentrum erfolgt.^[25] Wie oben erwähnt, ist eine solche [Me₃Si]⁺-Struktur bis dato unbekannt.

^{*} Sämtliche quantenchemische DFT-Berechnungen in dieser Arbeit sind mit der Methode pbe1pbe und dem Basissatz aug-cc-pwCVDZ gerechnet. Weiterführende Informationen befinden sich im Kapitel 5.3.1.

In der flüssigen Phase lässt sich dieses auf eine ebenso einfache Art und Weise überprüfen. Wechselwirkungen mit Gegenionen bzw. Solvenz-Molekülen (Abbildung 2) führen zum Verlust der ursprünglichen Planarität, gleichwohl eine Hyperkoordination des Silizium-Atoms diesem vorbeugen könnte. Dennoch führt die Wechselwirkung des Solvenz bzw. Anions zu einem Elektronendichteübertrag in das "leere" p_Z-Orbital. Dies wird ersichtlich durch einen drastischen Abfall der ²⁹Si-NMR-Verschiebung (vgl. Tabelle 2). Ottosson, Kraka und Cremer zeigten, dass selbst sehr schwache Donoren wie Alkane oder flüssiges Helium zu einer Interaktion mit dem Silizium-Zentrum neigen und die berechneten Gasphasen-Resonanz des Kerns von 387 ppm deutlich ins Hochfeld verschieben.^[25]

Abbildung 2. X = Solvenz, Gegenion; (*links*) Pyramidalisierung durch Wechselwirkungen mit einem X, (*mitte*) idealisiertes planares $[Me_3Si]^+$ -Kation, (*rechts*) Interaktion zweier X mit leerem p_Z-Orbital.

Ein Blick auf das deutlich kleinere Proton zeigt, dass in dem Fall von H⁺-Ionen eine ebenso große Elektrophilie besteht. Während man wässrige Lösungen von formalen Verbindungen wie H[PF₆] oder auch H[BF₄] noch käuflich erwerben kann, sind solvatfreie Festkörperstrukturen äußerst selten bzw. unbekannt.^[26,27] Erst ein äußerst starker Donor wie H₂O ermöglicht die Stabilisierung des H⁺ als stabiles und isolierbares Oxonium-Molekül. Dabei sind bereits diverse Solvate dieser Verbindung ſ ([H₇O₃][CHB₁₁Br₁₁],^[29] [H₃O][BF₄],^[28] so z.B. strukturell charakterisiert, [H₉O₄][CHB₁₁H₅Br₆]^[30] oder das klassische Zundel-Ion [H₅O₂][SbF₆].^[31] Die Synthese eines solvatfreien H⁺-Ions gelang der amerikanischen Gruppe um C. A. Reed, wie bereits erwähnt, erstmalig in den 2000er Jahren. Dabei wird das Proton lediglich durch ein perchloriertes Carborat-Anion als H[CHB₁₁Cl₁₁] stabilisiert.^[32] Nach derzeitigem Stand der Wissenschaft stellt diese Verbindung die stärkste isolierbare Protonensäure der Welt dar.^[33,34] Diese Aussage ist gleich bedeutend mit dem Fakt, dass es sich bei der Stoffklasse der Carborate um äußerst schwachkoordinierende Anionen handelt. Um einen Eindruck für diese Eigenschaft zu bekommen, eignet sich die Gasphasen ProtonenAffinität.^[35] Sie ist in Schema 1 als die negative Enthalpieänderung definiert, die in der Gasphase bei der Bildung eines Salzes aus seinen Ionen frei wird. Auf gleiche Art und Weise ist auch die TMS-Affinität eines Salzes definiert (Schema 1).

$$A^{+} + Y^{-} \longrightarrow A - Y + \triangle H^{\circ}_{298K, gas}$$
(1)

Schema 1. Gasphasen Protonen-/ TMS-Affinität. A = H, [Me₃Si]; Y = Anion.

In Tabelle 3 sind einige Verbindungen und ihre Proton- bzw. TMS-Affinitäten aufgelistet. Es wird deutlich, dass beide denselben Trends folgen. Je größer das korrespondierende Gegen-Molekül ist, je besser es die Ladung delokalisieren kann, je niedriger es geladen ist und je weniger Donor-Atome (i.d.R. Atome mit freien Elektronenpaaren) es enthält, desto kleiner ist die jeweilige Affinität. Ebenso offensichtlich ist der Fakt, dass die TMS-Affinität mindestens um den Faktor 2 kleiner ist. Dies ist durch die Möglichkeit der Ladungsdelokalisation über die Methylgruppen zu erklären. Sie sorgt für eine intramolekulare Stabilisation des Silylium-Ions. Das Proton hingegen stellt lediglich eine isolierte Kugelladung dar, welches unter anderem durch Coulomb-Wechselwirkungen mit Anionen im Festkörper bzw. in der flüssigen Phase stabilisiert werden kann. Das theoretische Ziel eines de facto isolierten bzw. freien H⁺- oder [Me₃Si]⁺-Ions wäre also dann erreicht, wenn

m ($_{g}$) $0 kcal \cdot mol^{-1}$

entspricht. In der Praxis werden nun also schwachkoordinierende Anionen gesucht, die möglichst kleine H⁺- / TMS⁺-Affinitäten besitzen und somit geringe Wechselwirkungen (große Kationen-Anionen-Abstände) mit den korrespondierenden Gegenionen aufweisen (s. Tabelle 3).

[Y]	$\Delta H_{\mathrm{H}^{+}} [\mathrm{kcal} \cdot \mathrm{mol}^{-1}]$	$\Delta H_{\mathrm{Me}_{3}\mathrm{Si}^{+}} [\mathrm{kcal} \cdot \mathrm{mol}^{-1}]$
[PO ₄] ⁻	719.6	584.9
$[SO_4]^-$	449.1	289.7
$[ASO_4]^-$	312.6	156.8
$[ClO_4]^-$	301.2	143.9
$[CF_3SO_3]^-$	301.2	145.1
$[CHB_{11}H_5Me_6]^-$	268.5	97.8
$\left[CHB_{11}H_5I_6\right]^-$	257.7	97.5
$[CHB_{11}H_5Cl_6]^-$	253.2	98.4
$\left[\mathrm{CHB}_{11}\mathrm{I}_{11}\right]^-$	250.5	90.4
$[CHB_{11}Cl_{11}]^{-}$	240.9	88.8
$[CHB_{11}H_5(CF_3)_6]^-$	222.9	71.5
A_2SO_4	170.8	55.9

Tabelle 3: Protonen-/ TMS-Affinitäten ausgewählter Verbindungen [Y]. $A = H^{+}$, $[Me_3Si]^{+}$ für homoleptische Verbindungen.

Es wird deutlich, dass Protonen und Trimethylsilylium-Ionen ähnliche Trends hinsichtlich ihrer thermodynamischen Eigenschaften aufweisen. So bleibt die Frage, ob ihre chemische Reaktivität auch Analogien aufweist.

Die charakteristischste Reaktion, die man aus der Chemie der Protonen kennt, ist sicherlich die der Neutralisationsreaktion mit korrespondierenden Basen. So führt die Reaktion von Fluorwasserstoff und Natriumhydroxid zur Bildung von Natriumfluorid und Wasser (Schema 2). Die gleiche Reaktion mit dem entsprechenden Silvlderivat führt in einer analogen Metathesereaktion zur Bildung von Trimethylsilanol und Natriumfluorid.^[36] Problematisch gestaltet sich hierbei die außerordentliche pH-Empfindlichkeit des Silanols, welches in Gegenwart von überschüssigen H⁺ bzw. OH⁻ leicht zur Kondensation neigt und unter Wasserabspaltung Hexamethyldisiloxan bildet.^[37] H_3O^+ , Die klassische Brønstedt-Säure die gleichermaßen als Lewis-Säure

(Elektronenpaarakzeptor) fungiert, zeigt also wie das $[Me_3Si]^+$ -Ion ein ähnliches Verhalten gegenüber Basen (Schema 2).^[38] Dabei binden $[Me_3Si]^+$ bzw. H⁺ stets an das stärkere Nukleophil (vgl. Schema 1). Das stärkere Nukleophil ist durch eine größere Protonen- bzw. $[Me_3Si]^+$ -Affinität gekennzeichnet (vgl. Tabelle 3).

 $HF + NaOH \longrightarrow NaF + HOH$ $Me_{3}SiF + NaOH \longrightarrow NaF + Me_{3}SiOH$

Schema 2. Klassische Neutralisationsreaktion und analoge Silyl-Metathese-Reaktion.

Eine weitere Gemeinsamkeit besteht in dimeren Neutral-Verbindungen, also Wasserstoff H_2 und Disilan (Me₃Si)₂, welche sich wiederum leicht durch den Einfluss von Alkalimetallen, wie Li oder K, in ihre anionischen Derivate, Metallhydride und Trimethylsilanide, zerlegen lassen.^[39–43]

Zusammenfassend zeigt sich also, dass es trotz einiger physikalischer Unterschiede zwischen H^+ und $[Me_3Si]^+$ -Verbindungen eine überraschend große Ähnlichkeit hinsichtlich Reaktivität und thermodynamischer Werte gibt. Daher kann man $[Me_3Si]^+$ durch u "große Proton" beze chnen. Dieses gilt es, im Folgenden an ausgewählten Fallbeispielen zu untersuchen und aufzuzeigen.

2.2 Bekannte Trimethylsilyl-Verbindungen und ihre Protonen-Analoga

Das Verständnis über die Chemie anorganischer Säuren stellt die Grundlage für die moderne Chemie dar. Viele industrielle Prozesse kommen ohne den Einsatz einfacher Brønstedtscher Mineralsäuren wie HF, HCl, H₂S, HNO₃, H₂SO₄, H₃PO₄ nicht aus.^[44] Während Halogenwasserstoff-Säuren und Oxosäuren der Chalkogene bzw. Pniktogene meist im Megatonnen-Maßstab hergestellt und verbraucht werden, sind Säuren von Pseudohalogenen wie H-NCO, H-NCS oder H-PCO Labor-Raritäten. Daher sind sie nur von akademischen Interesse.^[45] Neben den klassischen Neutralverbindungen sind auch exotischere Verbindungen wie [H₂F][Sb₂F₁₁] strukturell bekannt. Die Supersäure wird aus der schwachen Brønstedt-Säure HF und der starken Lewis-Säure SbF5 gebildet.^[46,47] Dabei entsteht ein Dihydrogenfluoronium-Ion, welches die Acidität des im wässrigen Milieu stärksten Protonierungsmittel $[H_3O]^+$ um mehr als 10^{16} übertrifft. Sie ist die erste strukturell charakterisierte Supersäure, obwohl ihre Eigenschaften bereits seit 1927 bekannt sind.^[48,49] Die Hammettsche Acidität gibt das Maß der Säurestärke von supersauren Verbindungen an und ist nicht an das Autoprotolyse-Gleichgewicht des Wassers gekoppelt.^[50,51] In Abbildung 3 sind einige Beispiele supersaurer Spezies mit den dazugehörigen Hammett-Faktoren dargestellt. Carboransäuren sind Feststoffe, daher ist eine Einteilung nach Hammett nicht möglich. Jedoch weiß man, dass sie in der Lage sind Benzol zu protonieren und müssen dementsprechend saurer als protoniertes Benzol sein.^[33,52–54]

Abbildung 3. Hammett-Skala einiger supersaurer Spezies. Original-Abbildung entnommen aus Referenz [33].

Die Chemie der entsprechenden Trimethylsilyl-Verbindungen begann erst weitaus später. Die erste bekannte Synthese einer Organosilizium-Verbindung, dem Tetraethylsilizium, ist auf das Jahr 1863 zurückzudatieren und den beiden amerikanischen Chemikern Charles Friedel sowie Jason M. Crafts zuzuordnen.^[55] Erst die von Richard Müller und Eugene G. Rochow parallel entwickelten Darstellungs-Großverfahren von Organosilizium-Verbindungen R₃Si-X (R = Alkyl, Aryl, X = Halogen) ermöglichten die Entwicklung der Silizium-Chemie.^[56,57] Schema 3 gibt eine Übersicht über alle im Festkörper strukturell bekannten, homoleptischen Trimethylsilylium-Ionen. Neben den dargestellten Verbindungen existiert auch noch die Struktur des bissilylierten Triflat-Ions [(Me₃SiO)₂-S(O)CF₃]⁺.^[58]

Im Kontrast hierzu ist die Zahl literaturbekannter kleiner Moleküle, die homoleptisch protonierte Ionen bilden und strukturell charakterisiert sind, äußerst gering. Neben der Struktur eines Phosphonium-Salzes^[59] existieren nur noch eine Vielzahl an Strukturen mit dem Ammonium $[NH_4]^+$ -Kation.^[60–64] Viele kationische Spezies kleiner Moleküle mit Hauptgruppenelementen der zweiten und dritten Periode wie $[H(H)NCO]^+$,^[65] $[H-I-H]^+$,^[66] $[H-NNN-H]^+$,^[67] $[SiH_5]^+$,^[68] $[H-B-H]^+$ ^[69] und $[H(H)NS]^+$ ^[70] sind ausschließlich durch quantenchemische Rechnungen in der Literatur bekannt. Ferner existieren einige wenige massenspektroskopische Aufnahmen homoleptisch protonierter Ionen wie $[H-NC-H]^+$,^[71] $[H-N(O)OH]^{+[72]}$ und $[H-SO_2]^+$.^[73]

Schema 3. Unterschiedliche Koordinationsmodi von kleinen homoleptischen Trimethylsilyl-Ionen; ^[a] [(Me₃Si)₃Si(H)Me₂]⁺.

Homoleptische Trimethylsilyl-Kationen, $T = Me_3Si$.

А	В	С	D	Е
n=1 T[CHB ₁₁ F ₁₁] T[Et-CB ₁₁ F ₁₁] ^[23,24] [T-NCC] ^{+ [3]} [T-C ^{Aromat}] ^{+[22]}	[T-NCO-T] ⁺	[T ₂ -NNC-T] ⁺	[T-CN-T] ⁺	$[T_2$ -NNN] ⁺
n=2 [T-H-T] ⁺ [T-X-T] ^{+[a][1,2,16]}	[T-NCS-T] ⁺	$[T_2$ -NCN-T] ⁺		
n=3 $[T_3-S]^+$	$[(TO)_2 - S(O)CF_3]^{+[58]}$			
n=4 $[T_4-N]^{+[b][74]}$ $[T_4-P]^{+}$ $[T_4-As]^{+[75,76]}$				

^[a] X = Halogen; ^[b] Kation = $[(Me_3Si)_3N(SiMe_2H)]^+$.

3 Ergebnisse und Diskussion

3.1 Synthese und Charakterisierung von Triphenylmethylium-Verbindungen

Zur Darstellung eines [Me₃Si]⁺-Ion übertragenden Salzes benötigt man einen passenden Präkursor. Für die Synthese solcher Salze hat sich der in der Literatur bekannte Bartlett-Condon-Schneider-Hydrid-Transfer eines Silans auf ein korrespondierendes Trityl-Salz (auch Triphenylmethylium) [Ph₃C][X] als der optimale Weg herausgestellt (Schema **4**).^[77] In der Literatur sind eine Vielzahl solcher Reaktionen zur Generierung von Silylium-Salzen mit verschiedensten schwachkoordinierenden Anionen bekannt.^[74,78–86] Die Chemie der Trityl-Salze ist bereits mehr als 130 Jahre alt. Erstmalig erwähnt wird das Trityl-Salz des Malonats von Henderson im Jahr 1887.^[87] Trityl-Salze sind heutzutage an einer Vielzahl katalytischer Reaktionen wie Diels-Alder-Reaktionen,^[88] Michael-Reaktionen^[89] oder Polymerisation von Olefinen beteiligt.^[90–94]

$$Me_{3}Si-H + [Ph_{3}C][Y] \longrightarrow Ph_{3}C-H + [Me_{3}Si][Y]$$

$$2 Me_{3}Si-H + [Ph_{3}C][Y] \longrightarrow Ph_{3}C-H + [(Me_{3}Si)_{2}H][Z]$$

Schema 4. Bartlett-Condon-Schneider-Hydridtransfer, Y = Carborate, Z = Carborate, Borate.

Die Darstellung der Trityl-Präkursoren wiederum gelingt auf drei unterschiedlichen Synthesewegen (Schema 5).^[95] Durch die einfache Salz-Metathese-Reaktion mit Silber-(1) bzw. Natriumsalzen (3) oder die Chlorid-Abstraktion mittels starker Lewis-Säuren (2) können eine Vielzahl an Trityl-Salzen isoliert und charakterisiert werden.

$$Ph_{3}C-X + Ag[Y] \xrightarrow{} [Ph_{3}C][Y] + AgX \qquad (1)$$

RT, Lsm.

$$Ph_{3}C-CI + ECI_{3} \longrightarrow [Ph_{3}C][ECI_{4}]$$
(2)
-80°C - RT,
Lsm.
$$Ph_{3}C-CI + NaN_{3} \longrightarrow Ph_{3}C-N_{3} + NaCI$$
(3)

Schema 5. Darstellung von [Ph₃C][Y] Verbindungen; E = B, Al, Ga; X = Cl, Br; Y = BF₄ (1), BCl₄ (2), AlCl₄ (3), GaCl₄ (4), PF₆ (5), AsF₆ (6), SbF₆ (7), SbCl₆ (8), CHB₁₁H₅Cl₆ (9), CHB₁₁Cl₁₁ (10), CHB₁₁H₅Br₆ (11), CF₃SO₃ (12), CF₃COO (13), N₃ (14).

Sämtliche Verbindungen sind mit Ausnahme von **8** und **14** hierbei erstmalig von uns als Einkristalle für die Röntgenstrukturanalyse isoliert worden. Neben strukturellen Gemeinsamkeiten wie gleichen Raumgruppen ($P2_1/c$) und ähnlichen Zellparametern (s. Kapitel 5.5) zeigen die Salze auch in Lösung ähnliche Eigenschaften. So weist das zentrale Kohlenstoffatom C1 (Abbildung 4) aller Trityl-Salze eine ¹³C-NMR-Resonanz zwischen 211.3 und 213.1 ppm auf. Kovalente Triphenylmethyl-Verbindungen verlieren hingegen ihren Salz-Charakter, was mit einer Hochfeld-Verschiebung der Resonanz des zentralen Kohlenstoffs einhergeht, so z.B. $\delta(^{13}C) = 13$: 95.5 ppm, **14**: 78.2 ppm oder auch **Ph₃C-H** (**15**): 57.5. Dieser Trend ist wie in der Einleitung beschrieben ebenso für Ionen der Form [R₃Si]⁺ zu beobachten (vgl. $\delta_{ber}(^{29}Si)$ [Me₃Si]⁺ = 360, Me₃Si- -17 ppm).

[Y]	Smp. [°C]	$\delta(^{13}C)$ [ppm]	Raumgruppe	d(C1…Anion) [Å]
$[BCl_4]^-(2)$	188	211.3	Pbca	3.440
$[AlCl_4]^-(3)$	169	211.3	$P2_{1}/c$	3.755 / 3.658
$[GaCl_4]^-(4)$	174	211.3	$P2_{1}/c$	3.975 / 3.642
$[\mathrm{PF}_6]^-(5)$	230	213.1	$P2_{1}/n$	3.080
$[\mathrm{AsF}_6]^-(6)$	222	211.5	$P2_{1}/n$	3.070
$[SbF_6]^-(7)$	213	211.5	$P2_{1}/c$	3.058
$[CHB_{11}H_5Cl_6]^-(9)$	230	213.0	$P2_{1}/c^{[a]}$	3.728 / 3.394 ^[b]
$[CHB_{11}Cl_{11}]^{-}(10)$	207	213.3	$P2_{1}/c^{[c]}$	3.576 / 3.477 ^[d]
$[CHB_{11}H_5Br_6]^{-1}$	240	211.3	$Pna2_1^{[e]}$	$3.477 / 3.633^{[f]}$
(11) $[CF_3SO_3]^-(12)$	118	211.4	$P2_{1}/c$	2.992
$\left[\mathrm{CF}_{3}\mathrm{COO}\right]^{-}(13)$	127	95.5	$P2_{1}/c$	1.510
$[N_3]^-$ (14)	65	78.2	$\overline{1}$	1.514 / 1.521
H (15)	93	57.5	— [g]	_[h]
OH (16)	162	82.4	- [96]	_[i]
Cl (17)	114	82.2	- [97]	1.874 / 1.847 /
Br (18)	156	80.3	- [98]	1.843 _[j]

Tabelle 4: Übersicht über einige physikalische und spektroskopische Eigenschaften von $[Ph_3C][Y]$ -Verbindungen.

^[a] Kristallisiert solvatfrei und als CH₃CN-Solvat, ^[b] Solvatfrei / CH₃CN-Solvat, ^[c] Kristallisiert solvatfrei und als Toluol-Solvat, ^[d] Solvatfrei / CH₃CN-Solvat, ^[e] kristallisiert als CH₂Cl₂ und CH₃CN-Solvat, ^[f] CH₂Cl₂ / CH₃CN-Solvat, ^[g] kristallisiert als Toluol- und Benzol-Solvat, ^[h] nicht frei verfeinert, ^[i] keine Angabe.

Abbildung 4. ORTEP-Darstellung der Molekülstruktur von 7 (*links*) und **10** (*rechts*) im Kristall. Ellipsoide bei 50 % Wahrscheinlichkeit (173 K). Farbcode: Bor – braun, Chlor – grün, Kohlenstoff – grau, Antimon – braun, Fluor – blau, Wasserstoff – weiß.

Neben den ¹³C-NMR-Verschiebungen in Lösung gibt auch der Anionen-C1-Abstand im Festkörper darüber Aufschluss, ob es sich um eine salzartige Struktur oder eine kovalente Molekülverbindung handelt. So beträgt der kürzeste Abstand zwischen dem zentralen Kohlenstoffatom (C1) des Trityl-Kations und dem Anion im Fall von 7 d(C1-X) = 3.06 Å und 10 d(C1-X) = 3.58 Å (s. Tabelle 4, Abbildung 4). Beide Abstände liegen deutlich außerhalb der Summe Kovalenzradien ($\sum r_{kov}$ (C-F) = 1.36 Å,^[99] $\sum r_{kov}$ (C-Cl) = 1.76 Å,^[99] $\sum r_{vdW}$ (C-F) = 3.17 Å,^[100] $\sum r_{vdW}$ (C-Cl) = 3.45 Å^[100]). Im Gegensatz dazu sind die entsprechenden Bindungen in den Strukturen 13, 14 und Ph₃C-Cl eindeutig kovalenter Natur (vgl. d(C1-X) 13 = 1.51 Å, 14 = 1.51-1.52 Å, Ph₃C-Cl = 1.84-1.87 Å,^[98] $\sum r_{kov}$ (C-O) = 1.47 Å,^[99] $\sum r_{kov}$ (C-N) = 1.43 Å,^[99] Abbildung 25).

Abbildung 5. ORTEP-Darstellung der Molekülstruktur von **13** (*links*) und **14** (*rechts*) im Kristall. Ellipsoide bei 50 % Wahrscheinlichkeit bei (173 K). Fehlordnungen nicht dargestellt. Farbcode: Kohlenstoff – grau, Stickstoff – blau, Sauerstoff – rot, Fluor – blau, Wasserstoff – weiß.

Aus den Abbildung 4 und Abbildung 5 wird außerdem deutlich, dass das Tritylium-Ion, insofern es sich um eine salzartige Verbindung handelt, ein planares Kation darstellt (7 $d_x^* = 0.015$ Å und 10 $d_x = 0.004$ Å). In den Verbindungen 13 ($d_x = 0.442$ Å) sowie 14 ($d_x = 0.451 / 0.457$ Å) ist das zentrale Kohlenstoffatom C1 tetraedrisch koordiniert.^[95] Dabei sitzt die positive Ladung nicht ausschließlich am Kohlenstoff C1 (+0.22 *e*) sondern wird auch über alle Wasserstoffatome delokalisiert (ø[q(H)] = +0.28 *e*). Alle weiteren Ring-Kohlenstoffatome hingegen tragen eine negative Partialladung (-0.12 - -0.24 *e*). Der Plot des elektrostatischen Potentials auf die Elektronendichte zeigt sehr schön die Ladungsdichte-Delokalisation im Trityl-Kation (Abbildung 6).

Abbildung 6. Abbildung des elektrostatischen Potentials auf die Elektronendichte. Blaue Bereiche sind Orte positiver Ladung, rote Bereiche Orte mit negativem Ladungsschwerpunkt.

Nicht alle der hier synthetisierten Trityl-Salze eignen sich für die anschließende Synthese eines Silylium-Salzes. Trityl-Salze der einfach zugänglichen, schwachkoordinierenden Anionen wie [Al(OCR(CF₃)₂)₄]⁻ (R = H, CF₃),^[101,102] [BF₄]⁻, [B(CN)₄]⁻,^[103] [SbF₆]⁻ oder das Triflat [CF₃SO₃]⁻ zeigen mit dem Trityl-Ion nur schwache Wechselwirkungen. Diese zeigen sich, wie bereits erwähnt, anhand der diskutierten Parameter in den Festkörperstrukturen und stark Tieffeld-verschobenen ¹³C-NMR-Resonanzen des C1-Atoms. Die Umsetzung mit Me₃Si-H führt in den meisten Fällen zum Abbau des Anions und zur Bildung kovalenter Me₃Si-Verbindungen. Das [BF(CN)₃]⁻ zum Beispiel bildet im Festkörper ein Addukt Me₃Si-NC-B(F)(CN)₂ (vgl. d(Si-N) = 1.7 Å $\sum r_{kov}(Si-N) =$ 1.80 Å).^[99]

 d_x – Abstand zwischen dem Mittelpunkt der Fläche, welche die drei *ipso*-C-Atome der Phenylringe aufspannen zum zentralen Kohlenstoffatom C1 (Abbildung 4).

Das vor allem in der organischen Chemie als Silylierungsmittel^[104–107] eingesetzte Trimethylsilyl-triflat Me₃Si-OTf, ist eine kovalente Neutralverbindung (vgl. d(Si-O) = 1.747 Å^[108] $\sum r_{kov}$ (Si-O) = 1.77 Å^[99]). Im weiteren Verlauf wird typischerweise das [Ph₃C][B(C₆F₅)₄]^[1,2] und das [Ph₃C][CHB₁₁Cl₁₁]^[95] für die entsprechenden Synthese der [Me₃Si]⁺-Salze eingesetzt. Diese bilden entweder Silan-Addukte der Form [(Me₃Si)₂H][Y] oder solvatfreie Salze der Form [Me₃Si][Z] (Y = [B(C₆F₅)₄]^{-[109]}, [CHB₁₁Cl₁₁]^{-[16]}, Z = [CHB₁₁F₁₁]^{-,[23,24]}).

3.2 Silylierte und protonierte Carba-closo-dodecaborate

Bereits seit mehr als 100 Jahren wird die Chemie der closo-Borate und Carba-closo-Borate untersucht. Alfred Stock gehörte mit seinen Forschungsergebnissen zu den Pionieren auf diesem Gebiet.^[110] 1976 wurde William N. Lipscom schließlich mit dem Nobelpreis für seine Arbeiten im Bereich der Stereochemie der Boran-Käfige geehrt.^[111] Als ursprüngliche Labor-Kuriosität betitelt, entwickelte sich die Chemie dieser Verbindungsklasse in den letzten Jahrzehnten sehr stark weiter. Heute bilden sie unverzichtbare Bausteine moderner Forschung und werden aufgrund ihrer schwachen Basizität, ihrer geringen Nukleophilie als auch ihrer (elektro)-chemischen und thermischen Robustheit vielseitig eingesetzt.^[112-114] Da die Trityl-Salze dieser schwachkoordinierenden Anionen auch für die Synthese der Trimethylsilylium-Verbindungen [Me₃Si][Carborat] / [(Me₃Si)₂H][Carborat] benötigt werden, rückten die Käfig-Strukturen auch in unseren Fokus. Die Synthese und vollständige Charakterisierung ausgehend vom nido-Borat [B₁₁H₁₄]⁻ hin zu verschiedenen Salzen des closo-Carborats [A][CHB₁₁H₁₁] (A = Me₃NH, Cs) und des perchlorierten closo-Carborats $[A][CHB_{11}Cl_{11}]$ (A = Cs, Ag, Ph₃C) konnte bereits in einer früheren Arbeit gezeigt werden.^[115] Im Folgenden werden nun Zusammenhänge zwischen messbaren physikalischen Eigenschaften und theoretischen, quantenchemisch berechneten Aspekten aufgezeigt. Gasphasen-DFT-Rechnungen verschiedener halogenierter closo-Carborate $([A][CHB_{11}H_{11-n}X_n]; n = 6, 11; X = H, F, Cl, Br, I; A = H, Me_3Si)$ liefern zunächst die Grundlage für den Vergleich der elektronischen Situation, der NICS-Werte,^[116] der ¹³C-NMR-Verschiebungen, der Gasphasen-Protonen / [Me₃Si]⁺-Affinitäten und der natürlichen Partialladungen^[117-119] (Tabelle 6, Tabelle 7). Die Minimumstrukturen der Anionen sowie die der protonierten und silvlierten Spezies, werden bestimmt (s. Kapitel 5.3.1). Die Anionen weisen alle C_{5v}-Punktsymmetrie auf. Insofern das Anion eine Bindung zu einem [Me₃Si]⁺-Ion besitzt, sind drei unterschiedliche Strukturisomere möglich. Die TMS-Gruppe kann in ortho-, meta- oder para-Position am Borat-Käfig koordinieren (s. Abbildung 7). Dabei ist stets der Angriff am para-Halogenatom begünstigt, wenngleich ein Angriff an der *ortho*-Ebene um lediglich 1.7 - 5.1 kcal·mol⁻¹ weniger begünstigt ist (Tabelle 5, vgl. o-, m-, p-Substitution Abbildung 7).

	meta	ortho	para
[Carborat]	$\Delta H^{ extsf{ heta}}_{ extsf{ heta}98 extsf{ heta}, extsf{ heta}s}$	$\Delta H^{ heta}_{ ext{ 298 K,gas}}$	$\Delta H^{ extsf{ heta}}_{ extsf{ heta}98 extsf{ heta}K, extsf{ heta}s}$
	$[\text{kcal} \cdot \text{mol}^{-1}]$	$[\text{kcal} \cdot \text{mol}^{-1}]$	$[\text{kcal} \cdot \text{mol}^{-1}]$
$[CHB_{11}H_{11}]^-$	10.26	2.69	0.00
$[CHB_{11}H_5F_6]^-$	19.02	5.05	0.00
$\left[CHB_{11}F_{11}\right] ^{-}$	10.09	2.06	0.00
$[CHB_{11}H_5Cl_6]^-$	17.48	3.04	0.00
$\left[CHB_{11}Cl_{11}\right]^{-}$	9.16	1.72	0.00
$[CHB_{11}H_5Br_6]^-$	18.21	2.19	0.00
$\left[CHB_{11}Br_{11}\right]^{-}$	6.75	1.74	0.00
$[CHB_{11}H_5I_6]^-$	19.56	1.28	0.00
$\left[CHB_{11}I_{11}\right]^{-}$	7.89	1.86	0.00

Tabelle 5: Strukturisomere und Energieunterschiede von [Me₃Si][Carborat]-Derivaten.

Für die Protonierung des Carborat-Ions werden insgesamt 13 verschiedene Isomere gefunden. Dabei gibt es Isomere, die zwei Substituenten an einem Boratom tragen können (Abbildung 7, Isomer 1, Anhang Tabelle 13). Weiterhin kann das Proton zwischen zwei Halogenen oberhalb der Bor-Borbindungsebene liegen (Abbildung 7, Isomer 2). Ebenso ist eine Dreifach-Koordination zwischen drei Halogenen möglich (Abbildung 7, Isomer 3). Mit Ausnahme des vollständig mit Wasserstoff-Atomen substituierten Derivats [CHB₁₁H₁₁]⁻ besitzen alle halogenierten Carborat-Derivate ihre Minimumstruktur in Isomer 2. Die Änderung der zweibindigen Konnektivität vom para-Halogen (Isomer 2) zu einem weiteren Halogen an der ortho-Ebene (Isomer 4) führt nur zu sehr kleinen Energieunterschieden $\Delta H_{298 \text{ K}, \text{ gas}} = 0.3 - 1.7 \text{ kcal} \cdot \text{mol}^{-1}$ (Isomer 4, s. Anhang Abbildung 31-Abbildung 43). Auf der anderen Seite ist beispielsweise eine Koordination zwischen zwei Halogenen entlang der *meta*-Ebene deutlich ungünstiger $\Delta H_{298 \text{ K, gas}}$ = 0.6 - 28.8 kcal·mol⁻¹ (Tabelle 13). Für das H[CHB₁₁H₁₁] spiegelt Isomer 1 die Minimumstruktur wieder. Dabei erfolgt eine Side-on-Koordination des Protonenpaares am B1-Atom (d(H-H) = 0.846 Å, d(B-H) = 1.354 Å) Eine Dreifachkoordination, wie in Isomer 3 dargestellt, ist mit 5.5 kcal·mol⁻¹ energetisch deutlich weniger für das H[CHB₁₁H₁₁] begünstigt.

Abbildung 7. Drei ausgewählte Strukturisomere mit drei unterschiedlichen Protonen-Konnektivitätsmustern von H[CHB₁₁H_{11-n}X_n] (n = 6, 11; X, Y = H, F, Cl, Br, I), grün – *para*– Boratom, rot – *meta*–Boratome und blau – *ortho*–Boratome.

Mithilfe der optimierten Strukturen ist es nun möglich, weiterführende DFT-Rechnungen durchzuführen. Diese Rechnungen umfassen NMR-Verschiebungen und NBO-Ladungen. Es können auch gezielt die Protonen- und TMS-Affinitäten berechnet werden.

Anion	$\delta_{\rm ber}(^{13}{ m C})$	$\delta_{\exp}(^{13}\mathrm{C})$	<i>q</i> (C) [<i>e</i>]	NICS
$\left[CHB_{11}H_{11}\right]^{-}$	52.8	51.4	-0.812	-27.7
$\left[CHB_{11}H_5F_6\right]^-$	7.8	-	-0.779	-34.8
$\left[CHB_{11}F_{11}\right]^{-}$	19.9	-	-0.936	-33.3
$[CHB_{11}H_5Cl_6]^-$	32.2	32.8 ^[95]	-0.801	-32.2
$\left[CHB_{11}Cl_{11}\right]^{-}$	51.3	47.4 ^[115]	-0.947	-34.4
$[CHB_{11}H_5Br_6]^-$	37.6	41.5 ^[120]	-0.806	-30.6
$\left[CHB_{11}Br_{11}\right]^{-}$	54.4	54.1 ^[121]	-0.978	-32.0
$\left[CHB_{11}H_{5}I_{6}\right]^{-}$	49.6	55.8 ^[122]	-0.816	-28.0
$[CHB_{11}I_{11}]^{-}$	59.6	55.5 ^[121]	-1.028	-28.5

Tabelle 6: Übersicht über einige spektroskopische und quantenchemische Eigenschaften von *closo*-Carboraten.

Alle berechneten ¹³C-NMR-Verschiebungen liegen zwischen 7.8 ppm $[CHB_{11}H_5F_6]^-$ und 59.6 ppm $[CHB_{11}I_{11}]^-$. Durchschnittlich weichen die berechneten ¹³C-NMR-Verschiebungen um 2.9 ppm von den tatsächlich beobachteten Werten ab. Ferner wird

deutlich, dass die Verschiebungen mit zunehmender Anzahl und Masse des Halogens größer werden. So sind alle ¹³C-NMR-Verschiebungen der perhalogenierten Derivate größer als die der sechsfach halogenierten Derivate (Tabelle 6). Weiterhin nimmt die NMR-Verschiebung mit der Größe und Masse des Halogens der Hauptgruppe von oben nach unten ebenfalls zu. Interessanterweise steht die aus NBO-Rechnungen bestimmte Partialladung q(C) nicht direkt im Zusammenhang mit der elektronischen Situation am Kohlenstoff und dem Trend, dass elektronenarme, entschirmte Kerne zu hohen Frequenzen und elektronreiche, abgeschirmte Kerne zu niedrigeren Frequenzen verschoben werden. Zu beobachten ist, dass im Fall der fluorierten Carborate, das sechsfach halogenierte Derivat eine deutliche Tieffeld-Verschiebung (δ (¹³C) = 7.8 ppm) und gleichzeitig eine positivere Ladung am Kohlenstoff (-.77 e) aufweist als das vollständig mit Wasserstoffatomen substituierte Derivat [CHB₁₁H₁₁]⁻ (vgl. [CHB₁₁H₁₁]⁻: $\delta(^{13}C) = 52.8$, q(C - .1 e). Auf der anderen Seite besitzt das perfluorierte Derivat [CHB₁₁F₁₁]⁻, im Vergleich zum sechsfach fluorierten Derivat, eine ins Hochfeld verschobene ¹³C-NMR-Verschiebung (19.9 ppm) und eine deutlich negativere Ladung (-. 6 e). Dieser Trend ist für Halogenalkane ebenfalls zu beobachten.^[123] Eine Erklärung für das beobachtete Phänomen könnte aus der Überlagerung der Beiträge des paramagnetischen und des diamagnetischen Teils der Abschirmungskonstanten hervorgerufen werden (Schema 6).

$$\sigma_i = \sigma_i^{\text{dia}} + \sigma_i^{\text{para}} + \sum_{i \neq j} \sigma_j$$

Schema 6. Abschirmungskonstante σ eines Kernes *i* innerhalb eines diamagnetischen Moleküls.^[124] $\sum \sigma_j$ – Summe der Abschirmungskonstanten aller Nachbaratome. Besonders durch die Schweratome Brom und Iod wird ein großer diamagnetischer Abschirmungsbeitrag hervorgerufen (Schweratomeffekt). Dies könnte dazu führen, dass die ¹³C-NMR-Resonanzen der schweren perhalogenierten Derivate im Vergleich zur Stammverbindung [CHB₁₁H₁₁]⁻ ins Tieffeld verschoben werden (vgl. δ (¹³C) = [CHB₁₁H₁₁]⁻ = 52.8, [CHB₁₁Br₁₁]⁻ = 54.4, [CHB₁₁I₁₁]⁻ = 59.6). Die leichteren Derivate hingegen werden ins Hochfeld verschoben (δ (¹³C)= [CHB₁₁F₁₁]⁻ = 19.9, [CHB₁₁Cl₁₁]⁻ = 51.3). Der paramagnetische Teil verursacht in der Regel mit steigender Elektronegativität der Sub t tuenten (F C Br I e nen zunehmenden E ektronenzug (-I-Effekt), also eine Entschirmung des Kohlenstoffs und somit auch positivere Partialladungen *q*(C) (vgl. *q*(C): [CHB₁₁F₁₁]⁻ - . 6 *e*, [CHB₁₁Cl₁₁]⁻ - . 47 *e*, [CHB₁₁I₁₁]⁻ - 1. *e*). Die
unterschiedlichen Substituenten wirken sich unterschiedlich stark auf die NMRrelevanten Parameter aus. Dabei ist vor allem die Überlappung der $p\pi(B - p\pi($ ogen – Orbitale entscheidend. Je besser die Überlappung ist (F, Cl, Br, I – fällt mit der Periode), desto mehr Elektronendichte kann auf das Käfig-Gerüst übertragen werden.

Abbildung 8. HOMOs links: $[CHB_{11}F_{11}]^{-}$, rechts: $[CHB_{11}Br_{11}]^{-}$.

Anhand der HOMOs der Carborate lässt sich sehr schön dieser Trend verdeutlichen (Abbildung 8). Während das HOMO für das [CHB₁₁F₁₁]⁻ noch eine intakte Wechselwirkung entlang der B-F-Bindungsachse zeigen, ist das HOMO für die schweren Halogene wie [CHB₁₁Br₁₁]⁻ bereits über dem Käfiggerüst delokalisiert. Der Hauptgruppe folgend kommt es also zu einer verstärkten Entschirmung (größere ¹³C-NMR-Verschiebungen) des Kohlenstoffatoms. Dieser Effekt ist in der Literatur bereits in umgekehrter Reihenfolge beschrieben. Er ist besonders stark für das antipodale Bor-Atom in closo-Boraten (bei unterschiedlichen gegenüberliegenden Substituenten) ausgeprägt und wird daher auch als Antipodal-Effekt bezeichnet.^[125,126] 1973 gelang der Arbeitsgruppe um Siedle erstmals der analytische Nachweis dieses Effektes an unterschiedlich substituierten Decahydrodecaboraten.^[127,128] Genau wie Knoth zuvor vermutete, führen apikal-apikale Wechselwirkungen des Borgerüsts zu teils drastischen Unterschieden der dazugehörigen Abschirmungskonstante.^[129] Es wirkt eine starke Entschirmung des ¹¹B-NMR-Kerns entlang der z-Bindungsachse bedingt durch die Überlappung von besetzten und unbesetzten px- und py- Molekülorbitalen am Boratom B1. Dies führt zu einem verstärkten paramagentischen Teil im NMR-Tensor, der sich durch die elektronischen Eigenschaften des antipodalen Substituenten steuern lässt.

Je elektronegativer der Substituent aus der ersten Periode ist, desto stärker wird das antipodale Boratom abgeschirmt und ins Hochfeld verschoben.^[130] Aus Tabelle 6 wird ersichtlich, je elektronegativer der Substituent am antipodalen Bor-Atom B1 ist, desto stärker wird der gegenüberliegende Kohlenstoff geschirmt und somit ins Hochfeld verschoben. Neben dem Einfluss der unterschiedlichen Substituenten können auch die NICS-Werte einen Einfluss auf die ¹³C-NMR-Verschiebung haben. Paul Ragué von Schleyer, der Begründer der NICS-Wert-Theorie, nutzte sie als Maß für die Aromatizität von Molekülen. Er fand bereits bei früheren Untersuchungen an unsubstituierten Monobzw. Di-Carba-closo-Boraten eine Art dreidimensionale Aromatizität.^[131] So kann ebenso im Fall der untersuchten halogenierten Carborate mit NICS- erten zw ch en -7.7 $[CHB_{11}H_{11}]^{-}$ und -4.6 $[C B_{11}H_5F_6]^{-}$ von dreidimensionaler Aromatizität ausgegangen werden (Tabelle 6).^[116,132,133] Der Einfluss der Aromatizität verbirgt sich im Abschirmungsteil aller Nachbaratome (Schema 6). So könnten, durch sie bedingt, Ringstromeffekte und Anisotropieeffekte zum Tragen kommen und zur Ausbildung des starken ¹³C-Resonanzgefälles innerhalb der Halogen-Hauptgruppe führen.^[134–136] Nicht nur die NMR-Verschiebung und die Partialladungen folgen einem Trend. Mit einem Blick auf die Protonen- und [Me₃Si]⁺-Affinität der Carborate lassen sich auch hier ähnliche Tendenzen erkennen.

Anion	$\delta_{\rm ber}(^{29}{ m Si})$	[kcal·mol ^{−1}]	e S [kcal∙mol ⁻¹]
$[CHB_{11}H_{11}]^-$	62.5	269.8	109.8
$[CHB_{11}H_5F_6]^-$	124.6	241.6	105.4
$[CHB_{11}F_{11}]^{-}$	135.4	226.4	94.7
$\left[CHB_{11}H_5Cl_6\right]^-$	98.9	252.4	98.4
$\left[CHB_{11}Cl_{11}\right]^{-}$	106.6	240.9	88.8
$[CHB_{11}H_5Br_6]^-$	94.4	255.4	97.9
$\left[CHB_{11}Br_{11}\right]^{-}$	98.7	245.7	89.3
$\left[CHB_{11}H_{5}I_{6}\right]^{-}$	83.4	257.7	97.5
$[CHB_{11}I_{11}]^{-}$	86.4	250.5	90.4

Tabelle 7: Übersicht über $\delta(^{29}Si)$ und Gibbs-Enthalpien für die Protonierung und Silylierung halogenierter Carborate.

Schema 7. H⁺- und [Me₃Si]⁺-Affinität, A = H, [Me₃Si] von Carborat-Ionen.

Die Reaktion eines Moleküls ([Carborat]]) mit einem Proton führt zur Bildung eines H[Carborat]-Komplexes. Der negative Beitrag der Enthalpie, wird als Protonenaffinität definiert.^[35] Eine erste Untersuchung, die verschiedene Moleküle und ihre Protonenaffinitäten vergleicht, wurde 1984 von S. G. Lias und J. F. Liebman veröffentlicht.^[137] Da es sich beim Trimethylsilylium-Ion [Me₃Si]⁺ ebenfalls um ein äußerst reaktives Teilchen handelt und es als großes Lewis-saures Pendant zum Proton angesehen werden kann, liegt es nahe, die TMS-Affinität in Analogie zur Protonen-Affinität zu definieren. In Tabelle 10 sind einige Affinitäten von verschieden substituierten Carboraten zu finden. Die Protonen-Affinitäten sind annähernd um einen Faktor 3 größer als die dazugehörigen TMS-Affinitäten. Dies ist verständlich, da das [Me₃Si]⁺-Ion in der Lage ist, sich durch intramolekulare Wechselwirkungen zu stabilisieren. Das Proton hingegen stellt eine kugelförmige Ladung dar, das nur durch attraktive Coulomb-Wechselwirkungen mit dem Anion stabilisiert werden kann. Die Protonen-Affinität steigt mit abnehmender Elektronegativität des Halogens. H[CHB₁₁F₁₁] stellt somit die stärkste Säure und das korrespondierende Anion [CHB₁₁F₁₁]⁻ die schwächste Base dar (vgl. Literatur - ¹³C-NMR-Verschiebungen von Mesityloxid und v(NH) von Tri(octyl)ammonium-Salzen).^[33,109,138] Die unsymmetrisch substituierten Carborate besitzen immer eine größere Protonen-Affinität als ihre perhalogenierten Derivate. Die Bildung eines negativen Ladungsschwerpunktes durch die elektronenziehenden Halogene an der ortho-Ebene könnte die Proton-Anion-Wechselwirkung insgesamt verstärken.

Die $[Me_3Si]^+$ -Affinitäten folgen nicht exakt demselben Trend, wie die H⁺-Affinitäten. Die größte TMS-Affinität besitzen die fluorierten Derivate ($H_{298 \text{ K,gas}}$ $[CHB_{11}H_5F_6]^- = 105.4 \text{ kcal} \cdot \text{mol}^{-1}$, $[CHB_{11}F_{11}]^- = 94.7 \text{ kcal} \cdot \text{mol}^{-1}$). Derweil stellt $[Me_3Si][CHB_{11}Cl_{11}]$ das beste Transferreagenz dar ($H_{298 \text{ K,gas}} = 88.8 \text{ kcal} \cdot \text{mol}^{-1}$) dar. Die Affinitäten nehmen zu den schweren Halogenen hin wieder zu. Die unsymmetrisch substituierten Carborate besitzen ebenso immer eine größere TMS-Affinität als ihre perhalogenierten Derivate. Anhand der Daten aus Tabelle 8 wird deutlich, warum dies so sein könnte.

Anion	<i>d</i> (X-Si) [Å]	q(B1) [<i>e</i>]	q(X1)[e]	$q(Me_3Si)[e]$
$\left[CHB_{11}H_{11}\right]^{-}$	1.633	-0.132	-0.043	0.705
$[CHB_{11}H_5F_6]^-$	1.826	0.273	-0.502	0.821
$\left[CHB_{11}F_{11}\right]^{-}$	1.850	0.281	-0.499	0.831
$\left[CHB_{11}H_5Cl_6\right]^-$	2.265	0.010	0.002	0.605
$[CHB_{11}Cl_{11}]^{-}$	2.280	0.027	0.007	0.622
$\left[CHB_{11}H_5Br_6\right]^-$	2.406	-0.003	0.163	0.536
$\left[CHB_{11}Br_{11}\right]^{-}$	2.419	-0.059	0.169	0.550
$\left[CHB_{11}H_{5}I_{6}\right]^{-}$	2.609	-0.189	0.395	0.428
$\left[CHB_{11}I_{11}\right]^{-}$	2.617	-0.164	0.407	0.438

Tabelle 8: Abstand (*d*) zwischen Halogen und Silizium-Zentrum, Partialladung (*q*) des Halogens, der TMS-Gruppe und des *antipodalen* Bor-Atoms.

Zunächst einmal sind die Partialladungen der Halogene, welche eine Bindung mit der [Me₃Si]-Gruppe bilden, für die fluorierten Carborate deutlich negativer als die der schwereren Halogene. Das elektronenarme Silizium-Zentrum bindet dementsprechend stärker an das Anion, was auch durch die kurzen Si-F-Abstände unterstützt wird (d(Si-F) = 1.826 – 1.850 Å). Die hierdurch hervorgerufene große TMS-Affinität nimmt zu den schweren Halogenen hin ab. Die Silizium-Halogen-Abstände werden größer und die Partialladungen des gebundenen Halogens nehmen positive Werte an (vgl. Tabelle 8). Gleichzeitig wird die Ladungsdichte der [Me₃Si]-Gruppe verringert. Eine heterolytische Bindungsspaltung in zwei geladene Ionen wird somit der Periode folgend erleichtert, die TMS-Affinitäten sinken dementsprechend. Die beiden chlorierten Carborate [CHB₁₁H₅Cl₆]⁻ und [CHB₁₁Cl₁₁]⁻ stellen die besten TMS-Transferreagenzien dar. Die gebundenen Halogene besitzen in ihren Fällen sehr kleine Partialladungen (0.01 e / 0.03 e) und die weiterhin positiv geladene TMS-Gruppe ($q(Me_3Si) = 0.61 e / 0.62 e$) kann somit einfach heterolytisch vom Bor-Käfiggerüst abgespalten werden.

3.3 Synthese und Charakterisierung der silylierten Schwefelsäure und ihrer Derivate

Bereits strukturell bekannte homoleptische Silylonium-Verbindungen existieren von einem guten Dutzend Verbindungen (s. Schema 3). Ausgehend von der protonierten Schwefelsäure und ihren Derivaten soll die klassische Säure-Base-Chemie auch auf ihr schweres, silyliertes Homolog übertragen werden. Die typischen Reaktionen, die dabei untersucht werden, sind zum einen die Anionenbildung mit stärkeren Basen und zum anderen die Kationenbildung mit stärkeren Säuren (Schema 8).

 $A_2SO_4 + B \longrightarrow [AB]^+ + [ASO_4]^ A_2SO_4 + [A][Y] \longrightarrow [A_3SO_4]^+ + [Y]^-$

Schema 8. Säure-Base-Chemie der Schwefelsäure und der silylierten Schwefelsäure, A = H, [Me₃Si], B = Base, Y = schwachkoordinierendes Anion.

Die einfache Umsetzung von Schwefelsäure mit Kaliumhydroxid führt zur Bildung des strukturell bekannten Kaliumhydrogensulfats.^[139] Ferner stellt Schwefelsäure das Vergleichssystem für Supersäuren dar. Alle Säuren, die 100%ige Schwefelsäure zu protonieren vermögen, werden als Supersäure bezeichnet.^[51,140–142] So gelang es der Arbeitsgruppe um Rolf Minkwitz im Jahr 2002, die Struktur von [H₃SO₄][SbF₆] aufzuklären.^[143,144] Interessanterweise gelang die Darstellung von [H₃SO₄][SbF₆] ausgehend von der silylierten Schwefelsäure (Me₃SiO)₂SO₂ (**19**) mit der Supersäure HF/SbF₅. In Anlehnung an diese Ergebnisse knüpft sich nun die Synthese der homoleptischen Silyl-Derivate an.

Ausgehend von einer optimierten literaturbekannten Synthese gelang es uns, **19** als Reinststoff in 33 %iger Ausbeute zu isolieren.^[5] Die Lösung der Einkristallstrukturanalyse zeigt eindeutige Gemeinsamkeiten zu der von Kemnitz publizierten Struktur der Schwefelsäure.^[145] Während Schwefelsäure bedingt durch Wasserstoffbrückenbindungen eine kettenartigen Schichtstruktur aufweist und in der Raumgruppe C2/c kristallisiert, zeigt **19**, ebenfalls C2/c monoklin, ein analoges Strukturmotiv (Abbildung 9).

Abbildung 9 (*Links*) Schichtstruktur von H_2SO_4 -Molekülen aus Referenz [145], (*Mitte*) Monomere Grundeinheit mit intermolekularen Wechselwirkungen, T = [Me₃Si], (*Rechts*) ORTEP-Darstellung der Molekülstruktur von (**19**) im Kristall. Fehlordnungen nicht dargestellt. Ellipsoide bei 50 % Wahrscheinlichkeit (123 K). Farbcode: Sauerstoff – rot, Schwefel – gelb, Kohlenstoff – grau, Silizium – rosa, Wasserstoff – weiß.

Wasserstoffatome lassen sich aufgrund der geringen Elektronendichte in Kernnähe nur schlecht durch Röntgenbeugungsmethoden detektieren. Dennoch geben verkürzte Abstände zwischen korrespondierenden Schweratomen Auskunft über die Lage der Protonen, wie im Fall von der Röntgenstruktur von Kemnitz (d(O-H) = 1.998 - 2.671 Å). Auch im Beispiel von 19 sind die Protonen nur mit einem geometrischen Modell in das Strukturmodel eingefügt. Die kürzesten intermolekularen Abstände finden sich zwischen den Sauerstoffatomen und Wasserstoffatomen der Methylgruppen 2.633-2.715 Å (vgl. $\sum r_{vdW}(O-H) = 2.62$ Å).^[100] Die Wechselwirkungen sind äußerst schwach, liegen dennoch im Rahmen von van der Waals-Wechselwirkungen. Ebenso können Packungseffekte die Grundlage für die Schichtstruktur bilden. Neben den zwei unterschiedlichen S-O-Abständen (d(S-OR) = 1.47-1.54 Å, d(S-O) = 1.42-1.47 Å $\sum r_{kov}$ (S-O) = 1.70 Å, $\sum r_{kov}(S=O) = 1.46 \text{ Å}^{[99]}$ weist die Struktur keine weiteren Besonderheiten auf. Neben strukturellen Gemeinsamkeiten lassen sich ebenso einige spektroskopische Gemeinsamkeiten finden. Der Schmelzpunkt von H₂SO₄ beträgt 10.3 °C der von 19 nur 48 °C. Die S-OH- und S-O-Schwingungen liegen trotz unterschiedlicher Reste nur maximal 70 cm⁻¹ auseinander (vgl. H₂SO₄: v(S-OH) = 909 cm⁻¹, v(S-O) = 1149 cm⁻¹, 19: $v(S-OH) = 980 \text{ cm}^{-1}, v(S-O) = 1185 \text{ cm}^{-1}, \text{ s. Anhang Abbildung 123}$. Neben der Schwingungsspektroskopie weist auch die NMR-Spektroskopie einige Gemeinsamkeiten zwischen beiden Substanzen auf. Besonders die ¹⁷O-NMR-Spektren der protonierten und der silvlierten Spezies (19) zeigen ein ähnliches Muster. Freie Sulfat-Ionen weisen in Lösung jeweils ein Signal zwischen 167 ppm (K₂SO₄) und 169 ppm

([DMAP-SiMe₃]₂[SO₄] auf (s. Tabelle 16). Die Alkylierung mit Methylgruppen führt zur Bildung zweier unterschiedlicher Signale, wie sie z.B. in Dimethylsulfat Me₂SO₄ (δ (¹⁷O) = 103 / 144 ppm, S-OC / S-O) zu finden sind. Auch **19** zeigt ein ebensolches Verhalten (δ (¹⁷O) = 153 / 175 ppm, S-OSi / S-O). Für Schwefelsäure ergibt sich durch den schnellen Protonenaustausch in Lösung nur ein Signal bei 152 ppm. Ein Festkörper-NMR (MASNMR) würde aber auch hier vermutlich zwei unterschiedliche Sauerstoffresonanzen aufzeigen, wie es Berechnungen vermuten lassen (δ_{ber} (¹⁷O) = 203 / 219 ppm, S-OH / S-O).

Die Reaktion von H_2SO_4 mit Basen führt zur entsprechenden Bildung von monoprotonierten Hydrogensulfat-Anionen. Ebenso ist dieser Effekt bei der Reaktion von **19** mit dem als organische Base fungierenden Trimethylphosphinoxid OPMe₃ zu beobachten (**20**, Abbildung 10).

Abbildung 10. (*Links*) ORTEP-Darstellung der Molekülstruktur von (**20**) im Kristall. Fehlordnungen nicht dargestellt. Ellipsoide bei 50 % Wahrscheinlichkeit (123 K). Farbcode: Phosphor – orange, Schwefel – gelb, Kohlenstoff – grau, Silizium – pink, Wasserstoff – weiß, (*Rechts*) NBO-Partialladungen.

Der Verlust einer Me₃Si-Gruppe und die damit verbundene Anionenbildung führt im Vergleich zur Neutralverbindung **19** zur Verkürzung der unkoordinierten S-O-Bindungen, während die koordinierte S-OR-Bindung verlängert wird (d(S-OR) = 1.59 Å, d(S=O) = 1.40-1.44 Å $\sum r_{kov}$ (S- 1.7 Å $\sum r_{kov}$ (S=O) = 1.46 Å^[99], vgl. **19** s.o.). Es findet sich eine Anordnung von Anionen und Kationen im Kristallgitter, in der jeweils der negative und positive Ladungsschwerpunkt zu einander ausgerichtet sind. Dies führt dazu, dass es zur Bildung von Kationen- und Anionensträngen kommt. Eine anionische SO₃-Einheit ist dabei stets auf das Phosphonium-Ende des Kations gerichtet. Mithilfe der NBO-Ladungen von Kation (1.4 *e* Me₃P-Gruppe / 0.7 *e* Me₃Si-Gruppe und An on (-.5 e SO₃-Gruppe, s. Abbildung 11) lässt sich diese Strangbildung sehr gut verdeutlichen. Dabei entstehen Stränge die nach außen hin nur Me₃Si-Resten tragen. Im inneren dieser Stränge

wechseln sich stets zwei aufeinanderfolgende kationische PMe₃-Reste mit zwei aufeinanderfolgenden anionischen SO₄-Resten ab.

Abbildung 11. Ball-and-Stick-Darstellung der Elementarzelle von 20. Wasserstoffatome nicht dargestellt.

Neben der Bildung eines monosilylierten Anions (Schema 9, Gl. 1) gelang auch die Abstraktion von zwei [Me₃Si]-Gruppen mithilfe der starken organischen Base Kalium *tert*-Butanolat K[OCMe₃] (Schema 9, Gl. 2). Die Metathese-Reaktion führte zur Bildung von Kaliumsulfat, welches mithilfe von ICP-OES und Raman-Spektroskopie auf seine Reinheit überprüft wurde. Gleichzeitig sind in den Kernresonanzspektren Signale für die Bildung von Me₃SiOCMe₃ zu detektieren (s. Anhang Abbildungen 109-111).

$$(Me_3SiO)_2SO_2 + OPMe_3 \longrightarrow [Me_3SiO-PMe_3][O_3SOSiMe_3]$$
(1)
(20)

$$(Me_3SiO)_2SO_2 + 2 K[OCMe_3] \longrightarrow K_2SO_4 + 2 Me_3SiO-CMe_3$$
(2)

 $(Me_{3}SiO)_{2}SO_{2} + [(Me_{3}Si)_{2}H][B(C_{6}F_{5})_{4}] \longrightarrow [(Me_{3}SiO)_{3}SO][B(C_{6}F_{5})_{4}] + Me_{3}SiH$ (3) (21)

Schema 9. Reaktionen mit silylierter Schwefelsäure.

Die Reaktivität und Eigenschaften des protonierten bzw. silylierten Sulfat-Ions in Gegenwart von Basen zeigen somit ein sehr ähnliches Verhalten. Es bleibt die Frage, ob es möglich ist, mittels eines starken Silylierungsmittels das homoleptische Tris(siloxy)sulfinium-Ion [(Me₃SiO)₃SO]⁺ zu generieren. Zu diesem Zweck wird ausgehend von $[(Me_3Si)_2H][B(C_6F_5)_4]$ das *in-situ* gebildete $[Me_3Si\cdots Toluo1][B(C_6F_5)_4]$ mit 19 umgesetzt (Schema 9, Gl. 3). Dabei kommt es auch zur vollständigen Lösung des Silyl-Toluol-Adduktes und zur Ausbildung des für das Borat-Iion typischen zweiphasigen Systems. Da es aus einem solchen System nicht mehr möglich ist, Einkristalle zu isolieren, wurde der Einsatz des polareren 1,2-Dichlorbenzol als Lösungsmittel gewählt. Auch hier kommt es zur vollständigen Lösung des Silyl-Aren-Adduktes. Es kann jedoch aus der Reaktionslösung nur 1,2-Dichlorbenzol auskristallisiert werden. Mithilfe der ²⁹Si-NMR-Spektroskopie kann dennoch eindeutig die Bildung des [(Me₃SiO)₃SO][B(C₆F₅)₄] (**21**), zumindest in der flüssigen Phase, nachgewiesen werden (Abbildung 12).

Abbildung 12. ²⁹Si-INEPT-NMR-Spektren von unten nach oben **20**, **19**, **21**, δ (²⁹Si) = 28.01, 33.58, 55.10 ppm.

Die beobachtete starke Hochfeld-NMR-Verschiebung der Silizium-Kerne spricht für die Bildung eines kationischen Systems (vgl. $\delta_{ber}(^{29}Si) = 69.2$ ppm). Die ¹¹B sowie ¹⁹F NMR-Spektren weisen auf ein intaktes Borat-Ion hin, sodass davon ausgegangen werden kann, dass das Sulfinium-Ion als stabiles und somit möglicherweise im Festkörper isolierbares Kation angesehen werden kann. Die Kristallisation und der damit verbundene strukturelle Nachweis könnten mithilfe des [CHB₁₁Cl₁₁]⁻-Anions gelingen.

Neben diesen beiden klassischen Säure-Base-Reaktionen, die die protonierte und silylierte Schwefelsäure gemeinsam haben, kann eine weitere Eigenschaft der sehr starken Säure H₂SO₄ für das schwere silylierte Analog gefunden werden. Schwefelsäure neigt neben ihrer Autoprotolyse auch zur Selbstkondensation (Schema 10). Das bedeutet, sie ist formal in der Lage, sich selbst zu entwässern und dabei das Pyrosulfat-Ion $[S_2O_7]^{2-7}$ zu bilden.

2 H₂SO₄
$$\leftarrow$$
 [H₃SO₄]⁺ + [HSO₄]⁻ >99.9%
2 H₂SO₄ \leftarrow [H₃O]⁺ + [HS₂O₇]⁻ <0.01%
Kondensation

Schema 10. Autoprotolyse und Kondensations-Reaktion von Schwefelsäure.^[146]

Die Kondensationsreaktionsreaktion kann erfolgreich auf **19** übertragen werden (Schema **11**).

$$2 \text{ OPMe}_3 + 2(\text{Me}_3\text{SiO})_2\text{SO}_2 \longrightarrow [\text{Me}_3\text{SiOPMe}_3]_2[\text{S}_2\text{O}_7] + (\text{Me}_3\text{Si})_2\text{O}_2 \text{Toluol}$$

Schema 11. Darstellung [Me₃SiOPMe₃][S₂O₇].

Die Synthese führte zur Isolation des Kondensationsproduktes $[S_2O_7]^-$ (Schema 11). Dabei wirkt ein Überschuss an Trimethylphosphinoxid vermutlich als Katalysator. Es bildet sich erneut das Trimethylsiloxytrimethylphosphonium und das Pyrosulfat als korrespondierendes Anion (**22**). Jedoch konnte die Synthese des Kondensationsproduktes bisher noch nicht reproduziert werden.

Abbildung 13. ORTEP-Darstellung der Molekülstruktur von (**22**) im Kristall. Ellipsoide bei 50 % Wahrscheinlichkeit. Farbcode (123 K). Sauerstoff – rot, Schwefel – gelb, Kohlenstoff – grau, Silizium – pink, Phosphor – orange, Wasserstoff – weiß.

3.4 Synthese und Charakterisierung der silylierten Schwefelwasserstoffsäure und ihrer Derivate

Ausgehend von den Ergebnissen der protonierten und silvlierten Schwefelsäure und ihren Derivaten soll die klassische Säure-Base-Chemie auch auf die Schwefelwasserstoffsäure übertragen werden. Die typischen Reaktionen, die dabei untersucht werden sollen, sind ebenfalls die Anionenbildung mit stärkeren Basen und die Kationenbildung mit stärkeren Säuren (Schema 12).

> $A_2S + B \longrightarrow [AB]^+ + [AS]^ A_2S + [A][Y] \longrightarrow [A_3S]^+ + [Y]^-$

Schema 12. Säure-Base-Chemie der Schwefelwasserstoffsäure und des silylierten Sulfids, A = H, [Me₃Si], B = Base, Y = schwachkoordinierendes Anion.

Die einfache Umsetzung von Schwefelwasserstoff mit Natriumethanolat führt zur Bildung des strukturell bekannten Natriumhydrogensulfids.^[147] Ferner handelt es sich bei Schwefelwasserstoff um ein hochtoxisches Gas, d be -6 °C bereits siedet und schwer zu handhaben ist. Dennoch existiert eine Tieftemperatur-Röntgenstruktur für H₂S.^[148] Der strukturelle Beweis der bereits 1967 von G. Olah prognostizierten Sulfonium-Salze [H₃S]⁺ fehlt bis heute.^[149–152] Das aus der Reaktion von HF, H₂S und AsF₅ isolierbare Produkt ist thermodynamisch sehr instabil und zersetzt sich bereits bei Temperaturen oberh b von -1 °C.^[152] Dennoch sind zum Beispiel halogenierte Sulfonium-Derivate, wie das [Br₃S][SbF₆] von Passmore, strukturell bekannt.^[153] Ausgehend von diesen Ergebnissen die Sulfids erfolgt zunächst Synthese des silylierten (23).Bis(trimethylsilyl)sulfid, auch Hexamethyldisilathian, kann aus elementarem Schwefel, Lithium und Trimethylsilylchlorid bei 0 °C gewonnen werden (Schema 13). Eine anschließende Destillation bei 74 °C (47 mbar) liefert eine farblose Flüssigkeit in 83 % iger Ausbeute. Die Struktur von 23 konnte bereits durch die Arbeitsgruppe um S. Dehnen aufgeklärt werden.^[154]

Schema 13. Darstellung von $S(SiMe_3)_2$ (23), [K@18-Krone-6][SSiMe_3] (24) und [(Me_3Si)_3S][B(C_6F_5)_4] (25).

Der Einsatz einer starken Base wie Kalium *tert*-Butanolat liefert das monosilylierte Sulfid-Anion (24) (Schema 13, Abbildung 14). Der Schmelzpunkt von 24 ist mit 215 °C nur halb so groß, wie der von rein anorganischen Metallsalzen (vgl. Smp. NaSH = 350 °C, KSH = 450-510 °C).^[155,156] Ein Vergleich mit der von Sundermeyer publizierten organischen Verbindung [Me₄N][SSiMe₃] (Smp. = 184 °C) zeigt, dass auch in diesem Fall das Kronenether-Salz 24 thermisch stabiler ist.^[157]

Abbildung 14. ORTEP-Darstellung der Molekülstruktur von (**24**) im Kristall. Fehlordnungen nicht dargestellt. Ellipsoide bei 50 % Wahrscheinlichkeit (123 K). Farbcode: Sauerstoff – rot, Kalium – dunkelgrün, Kohlenstoff – grau, Silizium – pink, Schwefel – gelb, Wasserstoff – weiß.

Die Umsetzung von **23** mit einem starken Silylierungsreagenz wie $[(Me_3Si)_2H][B(C_6F_5)_4]$ in aromatischen Lösungsmitteln soll zur Bildung des homoleptisch silylierten Sulfonium Salzes (**25**) führen. Jedoch kann trotz einer Vielzahl an unterschiedlichen Methoden zur Kristallisation keine einwandfreie Einkristallstruktur ermittelt werden. Aus dem Datensatz eines verzwillingten Kristalls war es möglich, ein Konnektivitätsbild der Struktur zu ermitteln (s. Anhang Abbildung 44). Eine vollständige Einkristallstrukturanalyse ist mit einem anderen Anion, dem $[CHB_{11}H_5Cl_6]^-$ bereits möglich gewesen.^[115] Beide Salze weisen einen erstaunlich hohen Zersetzungspunkt von 160 °C auf (vgl. T_{zer}([H₃S][AsF₆ -1 °C). Als auffälliges Merkmal dieser Strukturen erweist sich der nicht-planare Charakter des Sulfonium Ions.

Abbildung 15. $[(Me_3Si)_3S]^+$ im NBO-Bild. (links) freies Elektronenpaar am Schwefel, (*rechts*) σ^* -Orbital entlang der S-Si-Bindungsachse.

In der NBO-Darstellung von $[(Me_3Si)_3S]^+$ ist eindeutig zu erkennen, dass das Ion keine trigonal-planare Struktur einnehmen kann (Abbildung 15). Das freie Elektronenpaar hat einen weitaus größeren Platzbedarf als die Me_3Si-Reste und sorgt für eine Abwinkelung dieser. Die Winkel aus der Röntgenstruktur des $[(Me_3Si)_3S][CHB_{11}H_5Cl_6]$ \measuredangle (Si-S-Si) 107.15(3)-109.84(4)°. Ein Vergleich mit der neutralen Verbindung **23** zeigt, dass der räumliche Anspruch des Elektronenpaares starr zu sein scheint und nicht durch einen weiteren Me_3Si Substituenten beeinflusst wird (\measuredangle (Si-S-Si) 108.6(2)°).^[154]

Abbildung **16.** Darstellung der ELF von (links) **23** und (rechts) von $[(Me_3Si)_3S]^*$. Zweidimensionaler Profilschnitt durch die Si-S-Si-Ebene (links) und die die Si-S-Bindungsachse (rechts).

Die ELF (Elektronenlokalisationsfunktion) beider Verbindungen unterstützt das wie bereits in der NBO-Darstellung deutlich gewordene gewinkelte Strukturmotiv (Abbildung **16**). Ein Blick auf die NBO-Partialladungen zeigt, dass der Schwefel das negative Ladungszentrum der Verbindungen darstellt (q(S) **23** – .65 e, [(Me₃Si)₃S]⁺ – .53 e). Das bedeutet gleichzeitig, dass das Zentralatom bei der Kationenbildung zum [(Me₃Si)₃S]⁺-Ion mehr als 15 % seiner Ladungsdichte in die (Me₃Si)-Substituenten überträgt.

Der ²⁹Si-NMR-Kern eignet sich ebenso für die Unterscheidung der Ladungs- und somit Strukturverhältnisse wie für **19** und seiner Derivate. Das anionische **24** hat die kleinste positive Ladungsdichte ($\sum q(Si) = 1.47 \ e$) und somit auch die größte Hochfeld-Verschiebung ($\delta(^{29}S) = -$. Mit der Zunahme der positiven Ladungsdichte ($\sum q(Si) / \delta(^{29}Si)$ **23** = 1.59 e / 14.6 ppm, **25** = 1.66 e / 38.1 ppm) verschieben sich die ²⁹Si-NMR-Resonanzen weiter in Richtung Tieffeld.

Abbildung 17. ²⁹Si-INEPT-NMR-Spektren von unten nach oben **25**, **23**, **24**, δ (²⁹Si) = -0.86, 14.61, 38.14 ppm.

Zusammenfassend kann gezeigt werden, dass sich das Hexamethyldisilathian (23) in den chemischen Eigenschaften der Säure-Base-Chemie dem des Schwefelwassersstoffs sehr ähnelt. Während die Reaktion mit starken Basen Metallsalze mit einem Sulfid-Anion liefert, ist es ebenso möglich mit stärkeren Säuren homoleptisch substituierte, kationische Derivate zu erhalten. Alle Verbindungen können hierbei vollständig beschrieben und strukturell charakterisiert werden.

3.5 Synthese und Charakterisierung des labilen Thionylimids und seiner Derivate

Tertiäre und quartäre Systeme, die die Elemente N, S und O enthalten, bilden wichtige Bausteine in der biologischen, organischen und anorganischen Forschung.^[158] Das nur durch theoretische Betrachtungen^[159-163] und IR- sowie Mikrowellen-Spektroskopie^{[164-} ^{176]} charakterisierte Thionylimid, H-NSO (**26**), stellt einen äußerst labilen Vertreter dieser Verbindungsklasse dar. Es handelt sich um ein farbloses Gas, welches im flüssigen Zutnd beret be -7 °C zu polymerisieren beginnt.^[177,178] Die erstmalige Darstellung von 26 gelang Ephraim und Piotrowski 1911 aus Ammoniak und Thionylchlorid.^[179] Aufgrund der thermischen Unbeständigkeit werden niedrige Drücke und Temperaturen Synthese von **26** benötigt.^[177] Unter Anwendung eines anderen für die Syntheseansatzes^[180] gelingt es uns erstmalig bei der Umsetzung von K[NSO] (27) mit einer Fettsäure, 26 direkt zu erzeugen. Das Gas kann in Toluol-[D₈] überführt werden und kann so als stabile verdünnte Lösung analysiert werden (Schema 14).^[181,182] Weiterhin ist es ebenfalls möglich auf diese Art und Weise mit der Lewis-Säure B(C₆F₅)₃ erstmalig Kristalle für eine Röntgeneinkristallstrukturanalyse eines 26-Adduktes zu isolieren ((28), Abbildung 18).

$$(Me_{3}Si)_{3}N + SOCl_{2} \longrightarrow Me_{3}Si-NSO + 2 Me_{3}SiCl$$

$$Me_{3}Si-NSO + K[OCMe_{3}] \longrightarrow K[NSO] + Me_{3}SiOCMe_{3}$$

$$(27)$$

$$K[NSO] + Me(CH_{2})_{16}COOH \longrightarrow pur, \Delta + K[O_{2}C(CH_{2})_{16}Me]$$

$$H-NSO + B(C_{6}F_{5})_{3} \longrightarrow CH_{2}Cl_{2}, -196^{\circ}C \uparrow + (F_{5}C_{6})_{3}B \longrightarrow NSO$$

$$(28)$$

Schema 14. Darstellung von Me₃Si-NSO, 27, 26 und 28.

Für die Synthese von **26** wird zunächst Me₃Si-NSO (**29**) als NSO-Präkursor benötigt. Dieses kann, ausgehend von Tris(trimethylsilyl)amin (Me₃Si)₃N und Thionylchlorid SOCl₂, als farblose, bei 105-107 °C siedende, in 66 %iger Ausbeute isolierbare Flüssigkeit gewonnen werden. In einem nächsten Schritt wird durch eine klassische Salzmetathese-Reaktion der Me₃Si-Rest mittels einer starken organischen Base gegen ein Kalium-Ion ausgetauscht (Schema 14).^[183,184] **27** ist ein farbloses, bei 197 °C schmelzendes, in Gegenwart von Wasser pyrophores Salz.^[185,186] Es ist äußerst schlecht in organischen Lösungsmitteln löslich, weshalb quantitativ 18-Krone-6 zur Solvatation des Salzes für die NMR-spektroskopischen Untersuchungen benötigt wird.

Abbildung 18. ORTEP-Darstellung der monomeren Molekülstruktur von (*links*) **28** und (*rechts*) Me₃Si-OSN-B(C₆F₅)₃ (**30**). Fehlordnungen sowie Fluoratome nicht dargestellt. Ellipsoide bei 50 % Wahrscheinlichkeit (173 K). Farbcode: Bor – braun, Sauerstoff – rot, Kohlenstoff – grau, Schwefel – gelb, Stickstoff – blau, Silizium – pink, Wasserstoff – weiß.

Die Generierung der äußerst labilen H-NSO wird ebenfalls in einer Salzmetathese-Reaktion, ausgehend von **27** und Stearinsäure als Protonenquelle, im Hochvakuum durchgeführt. Diese Herangehensweise ist bereits für die Synthese von Stickstoffwasser HN₃ bekannt.^[180] Dabei werden die hochschmelzende Fettsäure und **27** fein gemörsert und in einem Kolben im Hochvakuum langsam auf Schmelztemperatur (70 °C) der Stearinsäure erhitzt. Das dabei entstehende Gas **26** wird auf eine gefrorene Lösung (-1 6 °C) aus CH₂Cl₂ und B(C₆F₅)₃ kondensiert. Langsames Auftauen der Lösung und anschließende Kristallisation bei 5 °C liefert **28** in 15 %iger Ausbeute. Die Bildung dieses im Festkörper *trans N*-gebundenen Lewis-Säure/Lewis-Base-Adduktes legt die Möglichkeit nahe, dass in Lösung eine freie Rotation entlang der NS-Bindungsachse möglich sein könnte. In der Tat finden sich im ¹H-NMR-Spektrum von **28** zwei verschiedene Spezies. Eine temperaturabhängige NMR-Aufnahme ermöglicht es, das Verhältnis zwischen den beiden Isomeren zu bestimmen (Abbildung 19). Ausgehend von diesen Ergebnissen ist es möglich, eine Energiedifferenz von 0.58 kcal·mol⁻¹ zwischen den beiden Isomeren zu bestimmen. Dieser Wert entspricht in guter Näherung dem

theoretisch berechneten Wert von 2.1 kcal·mol⁻¹ in der Gasphase für das *N*-gebundene *cis-/trans*-Isomerenpaar.^[181,182]

Abbildung 19. Temperaturabhängige ¹H-NMR-Spektren von **28**. Durch * gekennzeichnete Signale bei 2 und 7 ppm entsprechen Toluol-[D₈].

In der Struktur von **28** fällt besonders der kurze SO-Abstand auf (vgl. d(S-O) = 1.427(2) Å $\sum r_{kov}$ (S 1.46 Å $\sum r_{kov}$ (S= 1.5 Å^[99], Abbildung 18). Auf der anderen Seite ist die N-S-Bindung relativ lang (d(N-S) 1.5 (Å $\sum r_{kov}$ (N-S) = 1.73 Å $\sum r_{kov}$ (N=S) = 1.49 Å^[99]). Ein Vergleich mit der durch Mikrowellenspektroskopie ermittelten Struktur von **26** zeigt, dass die sterisch anspruchsvolle Lewis-Säure B(C₆F₅)₃ auch zu einer Verkleinerung des NSO-Winkels beiträgt (vgl. **26**: d(N-S) = 1.5123 Å, d(S-O) = 1.4513 Å,^[99] \measuredangle (NSO) = 120.41°,^[187] **28**: \measuredangle (NSO) = 114.3°, Tabelle 9).

Anhand Verbindung **29** soll nun gezeigt werden, ob diese Art der Isomerie auch mit dem schweren, silylierten NSO-Analog zu beobachten ist. In einer einfachen Reaktion mit der Lewis-Säure B(C₆F₅)₃ und dem als Lewis-Base fungierenden **29** kann in 14 %iger Ausbeute **30** als farbloses Derivat isoliert werden. Eine Röntgeneinkristalluntersuchung führt zu dem Ergebnis, dass die Me₃Si-Gruppe eine 1,3-Umlagerung zum Sauerstoff vollzogen hat und die Lewis-Säure am Stickstoff in *trans*-Position gebunden ist (Abbildung 18). Im ¹H-NMR-Spektrum (δ (¹ – .1 sowie im ¹¹B-NMR-Spektrum

 $(\delta(^{11}B - 6.5 \text{ nd jewe} \text{ nur e ne Spez e zu detekt eren was für die Existenz nur eines Isomers in der flüssigen Phase spricht (s. Kapitel 5.4.27). Die quantenchemische Berechnung aller unterschiedlichen Isomere legt nahe, dass es sich auch bei der Struktur von$ **30**um die globale Minimums-Gasphasen-Struktur handelt. Die Untersuchung zeigt, dass das Isomer B lediglich 0.4 kcal·mol⁻¹ ungünstiger ist (Abbildung 20). Ferner liegen noch fünf weitere Isomere im Bereich von bis zu 6.1 kcal·mol⁻¹ (Spezies C-G). Die Isomere, in denen die Substituenten am Sauerstoff gebunden sind bzw. jene Spezies bei denen die Me₃Si-Gruppe am Schwefel lokalisiert ist, sind energetisch deutlich weniger favorisiert (Spezies H-L 20 - 65 kcal·mol⁻¹).

Beim Blick auf die Struktur von **30** fällt neben den unterschiedlichen Bindunsgmodi zu **28** auch eine veränderte Situation in den Bindungslängen auf. Nun liegt ein längerer S-O-Abstand im Molekül vor (vgl. d(S-O) = 1.556(Å $\sum r_{kov} (S-O) = 1.70$ Å $\sum r_{kov} (S=O) =$ 1.46 Å,^[99] Abbildung 18, Tabelle 9). Auf der anderen Seite ist die N-S-Bindung etwas verkürzt (d(N-S) = 1.445(Å $\sum r_{kov} (N=S) = 1.49$ Å $\sum r_{kov} (N=S) = 1.37$ Å^[99]). Ebenso wie im Fall von **28** erzeugt die zusätzliche Valenz der Lewis-Säure ein stärkeres Abwinkeln der NSO-Einheit (vgl. **29**: $\measuredangle(NSO) = 122.1^\circ$),^[188] **30**: $\measuredangle(NSO) = 117.1^\circ$).

-NSO	<i>d</i> (N-S) [Å]	<i>d</i> (O-S) [Å]	≰(NSO) [°]
26 ^[187]	1.512	1.451	120.4
27 ^[185]	1.442	1.442	123.7
28	1.530	1.427	114.3
29 ^[188]	1.508	1.444	122.0
30	1.445	1.556	117.1
31	1.540	1.439	114.6

Tabelle 9: Ausgewählte Bindungslängen (*d*) und –winkel (∡) einiger NSO-Spezies.

Abbildung 20. Relative Energien [kcal·mol⁻¹] aller Struktur- und Konformationsisomere von **30**.

Um die Untersuchungen zu erweitern, wurde die sterisch weniger anspruchsvolle Lewis-Säure GaCl₃ eingesetzt. Die Synthese 2) liefert in 23 %iger Ausbeute das *N*,*N*-gebundene NSO-Addukt **31** (Schema 15, Abbildung 21). Ausgehend von der Synthese 1) für die Darstellung des Thionylimid-Addukts, können leider keine Kristalle für die Röntgenstrukturanalyse von HNSO·GaCl₃ (**32**) gewonnen werden. Dennoch zeigen das ¹H- sowie ¹⁴N-NMR-Spektrum jeweils nur ein Signal (δ (¹H) = 8.32, δ (¹⁴N -11. Abbildung 22).

$$Me_{3}Si-NSO + GaCl_{3} \xrightarrow{CH_{2}Cl_{2}, -80^{\circ}C} Me_{3}Si-NSO \qquad (1)$$

$$GaCl_{3} \qquad (31)$$

$$H-NSO + GaCl_{3} \xrightarrow{CH_{2}Cl_{2}, -196^{\circ}C} \qquad Cl_{3}Ga \xrightarrow{OSN-H} \qquad (2)$$

$$(32)$$

Schema 15. Darstellung von HNSO←GaCl₃ (32) und OS(Me₃Si)N←GaCl₃ (31).

Die Strukturparameter von **31** ähneln denen des ebenfalls *N*,*N*-gebundenen Isomers **28**. Das bedeutet die NS-Bindung ist etwas länger und die SO-Bindung dafür etwas verkürzt (vgl. d(S-O) = 1.439(2) Å, d(N-S) = 1.54 (Å $\sum r_{kov}$ (S=O) = 1.46 Å $\sum r_{kov}$ (S= 1. 5 Å $\sum r_{kov}$ (N-S) = 1.7 Å $\sum r_{kov}$ (N=S) = 1.49 Å,^[99] Abbildung 21, Tabelle 9).

Abbildung 21. (*links*) ORTEP-Darstellung der Molekülstruktur von **31**. Ellipsoide bei 50 % Wahrscheinlichkeit (173 K). Farbcode: Gallium – hellblau, Chlor – grün, Kohlenstoff – grau, Schwefel – gelb, Silizium – pink, Schwefel – gelb, Stickstoff – dunkelblau, Wasserstoff – weiß. (*rechts*) ELF von **31**, zweidimensionaler Profilschnitt durch die O-S-N-Si(Ga)-Ebene.

Die ELF von **31** zeigt eine stark polarisierte NS-Bindung und eine noch stärker polarisierte SO-Bindung. Das freie Elektronenpaar am Schwefel wird durch die GaCl₃-Einheit stark in Richtung der S-O-Bindung deformiert. Ferner wird deutlich, dass die Ladungsdichte der Donor-Akzeptor-Bindung (d(Ga-N . (1 Å $\sum r_{kov}$ (Ga-N) = 1.95 Å^[189]) deutlich am Stickstoff lokalisiert ist. Dies zeigt sich auch im relativ kleinen Ladungsübertrag von lediglich +0.16 *e*. Die ¹⁴N-NMR-Verschiebung von **31** (δ (¹⁴N) = -112.2) ist im Vergleich zu **32** deutlich ins Tieffeld verschoben (δ (¹⁴N – . Abbildung 22).

Abbildung 22. ¹⁴N-NMR-Spektren von oben nach unten: 32, 31, 29, 26 und [NSO]⁻.

Abbildung 22 zeigt sehr eindeutig, wie sensitiv der ¹⁴N-Kern auf elektronische und strukturelle Einflüsse der NSO-Einheit reagiert. Während das Signal für das isolierte Anion [NSO]⁻ die größte Tieffeld-Resonanz (δ (¹⁴N) = 140) und gleichzeitig auch das breiteste Signal ($v_{1/2} = 1050$ Hz) aufweist, sind die Signale der neutralen protonierten und silylierten Spezies **26** und **29** deutlich ins Hochfeld verschoben (δ (¹⁴N) **26** -74 **29** -44. Zugleich wird die Halbhöhenbreite der Signale deutlich durch die jetzt doppelte Valenz des N-Kerns verr ngert ($v_{1/2}$ **26** = 130 Hz, **29** = 60 Hz). Die erhöhte Symmetrie um den Quadrupol-Stickstoffkern fördert in beiden Fällen eine Verringerung der Halbhöhenbreite. Das Signal von **26** ist dennoch breiter, da in Lösung eine freie Rotation des Protons um die S-N-Bindungsachse eine höhere Aktivierungsbarriere aufweist ($_{g} (cis-HNSO - trans-HNSO) = 2.9 \text{ kcal·mol}^{-1}, E^{A} = 15.7 \text{ kcal·mol}^{-1}$). Die Rotation der Me₃Si-Gruppe zeigt in **29** eine niedrigere Aktivierungsbarriere. Dies führt zu einem schnelleren Austausch und einem schärferen Signal in der relativ langsamen ¹⁴N-NMR-Spektroskopie ($_{g} (cis-Me_{3}SiNSO - trans-Me_{3}SiNSO) =$ 3.0 kcal·mol⁻¹, E^A = 5.3 kcal·mol⁻¹). Die Einführung einer Elektronen-ziehenden Lewis-Säure, wie GaCl₃, führt zu unterschiedlichen Effekten im Hinblick auf die ¹⁴N-NMR-Resonanz (Abbildung 22). Die *N,N*-Koordination von Lewis-Säure und Me₃Si-Gruppe führt zum Elektronenzug aus dem S-O-Rückgrat von **31**. Die negative Ladungsdichte am Stickstoff wird durch die direkte Nachbarschaft der Lewis-Säure erhöht (vgl. q(N) **31** -1.6 *e*, **29** -1.17 *e*, Schema 16).

Schema 16. NBO-Partialladungen [e] von 32, 31, 29, 26.

Eine höhere negative Ladung am ¹⁴N-Kern führt zu einer weiteren Abschirmung des Kerns und somit zu einer Hochfeld-Verschiebung des Signals (vgl. δ (¹⁴N) **31** –11 **29** –44. Im Fall von **32** führt die Koordination des GaCl₃ am Sauerstoff zu einem Elektronenzug aus dem NS-Rückgrat und der ¹⁴N-Kern verliert Elektronendichte. Er wird

somit stärker entschirmt und ins Tieffeld verschoben (vgl. $q(N) / \delta(^{14}N)$ **32** – . e / -20 ppm, **26** – . e -74 ppm, Schema 16, Abbildung 22).

Das homoleptische Kation $[Me_3Si-NSO-SiMe_3]^+$ konnte bereits in einer früheren Arbeit ausgehend von **29** mit den Silylierungsmitteln $[Me_3Si][CHB_{11}H_5Cl_6]$ sowie $[Me_3Si][CHB_{11}Cl_{11}]$ synthetisiert werden.^[115] Dabei bildete sich das S-förmige $[R_1-NSO-R_2]^+$ Isomer, welches in der Gasphase auch die globale Minimumstruktur bildet.^[181,182] Dieses Strukturmotiv findet sich ebenso im Derivat **30** wieder. Beiden Strukturen gemein sind die kurzen N-S-Bindungen und gleichzeitig längeren S-O-Bindungen (s.o. und Strukturdiskussion Referenz [115]). Ihnen gegenüber stehen die in der Struktur von [R_1R_2 -NSO] gebundenen Derivate **28** und **31**. Hier finden sich die bereits beschriebenen längeren N-S- und kürzeren S-O-Bindungen wieder. Um einen zusammenfassenden Überblick zu erhalten, wurden neben dem bereits erwähnten Scan der Energiepotentialfläche, NBO und ELF-Rechnungen auch MO- sowie NRT aller Verbindungen angefertigt. Die Stammverbindungen [NSO]⁻, [H-NSO-H]⁺ und [H(H)NSO]⁺ sollen hierbei als Grundstrukturmotive dienen. Das MO-Bild im Fall von [NSO]⁻ zeigt hierbei sehr eindeutig die 4-Elektronen-3-Zentren-Bindung (Abbildung 23).

Abbildung 23. MO-Bild für die 4-Elektronen-3-Zentren-Bindung des [NSO].

Das tiefstliegende unbesetzte Molekülorbital LUMO (MO3) ist vollständig unbesetzt. Im Gegensatz dazu stellt das MO1, welches das tiefstliegende besetzte Molekülorbital ist (HOMO), den bindenden Charakter entlang N-S-Bindung sowie S-O-Bindung dar. In der Mitte befindet sich das MO2, welches den antibindenden Charakter entlang der S-O-Achse und bindenden Charakter entlang der NS-Bindung aufweist (Die Koeffizienten befinden sich in Referenz [181,182] Tabelle S18/S19). Eine Überlagerung der besetzten Molekülorbitale MO1 und MO2 verdeutlicht, dass es sich um eine schwache S-O- π -Bindung und eine starke N-S- π -Bindung handelt. Die Bindungsordnung von ungefähr 1 (S-O) und 2 (N-S) sowie die dominierende Lewis-Formeln (s. Schema 17) untermauern dieses Ergebnis.

Schema 17. Gewichtete Lewis-Formeln der Verbindungen [NSO]⁻, **26**, **29**, **28**, **31**, **30**. Eine BF₃-Gruppe repräsentiert die Lewis-Säure $B(C_6F_5)_3$ in den Fällen von **28** und **30**.^[181,182]

Diese generelle Beschreibung gilt dabei besonders für die Strukturen $[NSO]^-$ sowie R-NSO und R-NSO-LS (R = H, Me₃Si, LS = B(C₆F₅)₃). Das Bild ändert sich dahingehend, dass es zu einer doppelten Koordination des Stickstoffs kommt, wie in den Fällen von **28** und **31**. Hier wird deutlich, dass die Koeffizienten im MO1 des Sauerstoffs größer sind als die am Stickstoffatom. Daraus resultieren eine schwache N-S- und eine stärkere SO- π -Bindung. Das Ergebnis ist, dass die SO-Bindung kürzer und die N-S-Bindungen länger sind als in den einfach koordinierten Stickstoffverbindungen **26**, **29** und **28** (Tabelle 9). Die stärker dominierenden Lewis-Formeln R(LS)N-S=O (R = H, Me₃Si, LS = B(C₆F₅)₃, GaCl₃) zeigen erneut denselben Trend wie die NBO- und Strukturergebnisse (Schema 17). Zusammengefasst wird ein neuer und einfacher Syntheseweg für die Darstellung des äußerst labilen H-NSO vorgestellt. Ferner kann es erstmalig als Addukt isoliert und vollständig analytisch und strukturell beschrieben werden. Neben dem protonierten Derivat kann auch sein Trimethylsilyl-Analogon synthetisiert und ebenfalls verschiedene Lewis-Säure/Lewis-Base-Addukte vollständig charakterisiert werden.

.

3.6 Synthese und Charakterisierung der silylierten Phosphorsäure und ihrer Derivate

Es existiert lediglich eine strukturell bekannte homoleptische Silylphosphonium-Verbindung der Form $[(Me_3Si)_4P]^+$ (s. Schema 3). Ausgehend von der protonierten Phosphorsäure und ihren Derivaten wurde die klassische Säure-Base-Chemie auch auf ihr schweres silyliertes Analog übertragen. Die typischen Reaktionen, die dabei untersucht werden, sind zum einen die Anionenbildung mit stärkeren Basen und zum anderen die Kationenbildung mit stärkeren Säuren (Schema 18).

$$A_{3}PO_{4} + B \longrightarrow [AB]^{+} + [A_{2}PO_{4}]^{-}$$

$$A_{3}PO_{4} + 2B \longrightarrow [(AB)_{2}]^{+} + [APO_{4}]^{2}$$

$$A_{3}PO_{4} + 3B \longrightarrow [(AB)_{3}]^{+} + [PO_{4}]^{3-}$$

$$A_{3}PO_{4} + [A][Y] \longrightarrow [A_{4}PO_{4}]^{+} + [Y]^{-}$$

Schema 18. Säure-Base-Chemie der protonierten und silylierten Phosphorsäure, A = H, [Me₃Si], B = Base, Y = schwachkoordinierendes Anion.

Erstmalig in der Literatur erwähnt ist Tris(trimethylsilyl)phosphat (Me₃SiO)₃PO (**33**) 1956 in Publikationen von Muller *et al.* und Franck und Sponer.^[190,191] Jedoch wird die Synthe e ed g ch durch "herge t e t m L bor n % ger Re nhe t" be chr eben. Sekine und Mitarbeiter publizierten 1979 eine Synthese für **33** ausgehend von Tris(trimethylsilyloxy)phosphan und Methylphenylsulfoxid.^[192] Schickmann und Rösler patentierten die Darstellung unter Verwendung von Me₃SiCl und *ortho*-Phosphorsäure.^[193] Die japanische Arbeitsgruppe um Niida konnte ferner aufzeigen, dass eine selektive Darstellung eines gemischt protonierten / silylierten Phosphorsäure-Derivats nicht möglich ist.^[194] Es gelang uns, **33** in 96 %iger Ausbeute, ausgehend von KH₂PO₄ und Me₃SiCl, ohne den Einsatz des giftigen Formamids nach einer neueren Vorschrift von Wessjohann zu isolieren (Schema 19).^[195]

 $KH_2PO_4 + Me_3SiCl \longrightarrow OP(OSiMe_3) + 2 KCl + HCl$ *n*-Hexan, Rückfluß

Schema 19. Darstellung von 33.

Das ¹⁷O-NMR-Spektrum von **33** zeigt eine für Alkylverbindungen selten beschriebene ¹⁷O-³¹P-Kopplung. Sie liegt mit 150 Hz im typischen Bereich eines monovalenten Sauerstoffs gebunden an einen Phosphor(V)-Kern.^[196–198] Die chemische Verschiebung dieses Sauerstoffs beträgt 105 ppm, während die P-OSiMe₃-Gruppen ins Tieffeld verschoben bei 83 ppm detektiert werden. Im Vergleich dazu besitzt zum Beispiel das alkylierte Trimethylphosphat (MeO)₃PO ebenfalls zwei unterschiedliche ¹⁷O-NMR-Signale, wobei beide Resonanzen im Vergleich zu **33** ins Tieffeld verschoben sind $(\delta(^{17}O) = 74.5 / 23.3)$. Die ¹ $J(^{17}O-^{31}P)$ Kopplungskonstante beträgt 160 Hz und ist somit im Bereich derer von **33** und anderen sauerstoffhaltigen Phosphor(V)-Spezies.^[199]

Abbildung 24. ¹⁷O-NMR-Spektrum (67.80 MHz) von 33 in CD₂Cl₂.

Die zwei unterschiedlich valenten Sauerstoff-Spezies P-O und P-OSiMe₃ sind auch im Raman-Spektrum zu beobachten (Abbildung 133). Die v(P-O) Valenzschwingung ist bei 1255 cm⁻¹ zu detektieren, welche somit im Einklang mit der methylierten Spezies (MeO)₃PO v(P-O) = 1284 cm⁻¹ ist.^[200] Die Bande für die phasenverschobene P-OR Valenzschwingung von **33** (R = SiMe₃) erscheint bei 1075 cm⁻¹ und ist im Vergleich zur methylierten Spezies somit deutlich zu höheren Wellenzahlen verschoben (vgl. v(P-OMe) = 849 cm⁻¹).^[200] Ausgehend vom neutralen Derivat der silylierten Phosphorsäure kann durch den Umsatz mit dem Silylierungsmittel [(Me_3Si)₂H][B(C_6F_5)₄] in Toluol das homoleptisch silylierte Phosphorsäure-Derivat [(Me_3SiO)₄P][B(C_6F_5)₄] (**34**) gewonnen werden (Abbildung 25).

Abbildung 25. Links: ORTEP-Darstellung der Molekülstruktur von 34 im Kristall. Fehlordnungen nicht dargestellt. Ellipsoide bei 50 % Wahrscheinlichkeit (123 K). Farbcode: Bor – braun, Kohlenstoff – grau, Fluor – blau, Phosphor – orange, Sauerstoff – rot, Silizium – pink, Wasserstoff – weiß, *Rechts*: Darstellung Kalottenmodells vom Kation.

Das zentrale Phosphoratom ist tetraedrisch von vier Trimethylsiloxy-Resten umgeben. Die Phosphor-Sauerstoff-Bindungen liegen mit 1.509-1.534 Å im typischen Bereich einer PO-Doppe b ndung (vg. $\sum r_{kov}(P-1.7 \text{ Å } \sum r_{kov}(P=O) = 1.48 \text{ Å}, d_{ber}(P-O) = 1.55 \text{ Å}).^{[99]}$ Im Vergleich zur berechneten Gasphasenstruktur von **33** sind die Bindungen durch die Kationenbildung etwas verkürzt ($d_{ber}(P-O) = 1.59 \text{ Å}$). Das PO₄-Grundgerüst stellt eine starre Einheit dar. Die PO-Atomabständen in den Molekülen der Phosphorsäure bzw. dem Tetrahydroxyphosphonium-Kation weisen ähnliche Bindungslängen auf (vgl. H₃PO₄ $d(P-O) = 1.55 \text{ Å},^{[201]} [P(OH)_4]^+ d(P-O) = 1.53 \text{ Å}^{[202,203]}$). Das Kation [(Me₃SiO)₄P]⁺ bildet eine Art Kugel mit dem positiven Ladungsschwerpunkt am zentralen Phosphoratom (q(P) = 2.75 e, Abbildung 25). Der große Kationen-Anionen-Abstand verdeutlicht die nur schwachen attraktiven Wechselwirkungen aufgrund der kugelförmigen Gestalt der beiden Ionen (vgl. $d(Kation-Anion) = 3.09 \text{ Å } \sum r_{kov}(C-F) =$ 3.17 Å). Das ¹⁷O-NMR-Spektrum zeigt nun anstelle zweier Signale nur noch ein Signal ohne Kopplungsaufspaltung. Im Vergleich zur Ausgangsverbindung **33** ist das Signal leicht ins Hochfeld verschoben (δ (¹⁷O) **34** = 78.4, **33** = 83.1, Tabelle 17). Die Bande für die symmetrische und phasenverschobene (pv) P-OR-Valenzschwingung im Raman-Spektrum wird bei 1100 cm⁻¹ detektiert. Sie ist aufgrund der kürzeren PO-Bindungen und der stärkeren Polarisierung der Bindung im Vergleich zu **33** nochmals zu höheren Wellenzahlen verschoben (vgl. **33** v_{pv}(P-OR) = 1075 cm⁻¹).

Die Darstellung des homoleptisch silylierten Kations **34** gelingt, wie bereits erwähnt, mithilfe eines stärkeren Silylierungsmittels $[(Me_3Si)_2H][B(C_6F_5)_4]$. Die Synthese erfolgt in Analogie zur Darstellung des Tetrahydroxyphosphonium-Ions mithilfe der Supersäure HF/MF₅ (M = As, Sb).^[202,203] Ausgehend von diesen Ergebnissen sollen in Anlehnung an die klassische Säure-Base-Chemie die Darstellung der anionischen Spezies $[O_2P(OSiMe_3)_2]^-$ und $[O_3POSiMe_3]^-$ gelingen. Die Reaktion der neutralen Spezies **33** mit einer starken organischen Base (B) sollte das Ionenpaar bestehend aus dem silylierten Kation [B-SiMe₃]⁺ und das anionische Phosphat $[O_2P(OSiMe_3)_2]^-$ liefern (**35**, Schema **18**). Im Zuge dessen war es möglich, durch die Umsetzung von Kalium *tert*-Butanolat mit **33** das bisher unbekannte bissilylierte Phosphat-Anion zu generieren (Abbildung 26).

Abbildung 26. ORTEP-Darstellung der Molekülstruktur von **35** im Kristall. Fehlordnungen und einkristallisiertes DME nicht dargestellt. Ellipsoide bei 50 % Wahrscheinlichkeit (123 K). Farbcode: Kalium – grün, Kohlenstoff – grau, Phosphor – orange, Sauerstoff – rot, Silizium – pink, Wasserstoff – weiß.

35 ist ein farbloses Salz, das bei 121 °C schmilzt und sich zersetzt. Das ¹⁷O-NMR-Spektrum in CD₂Cl₂ zeigt weder Signale für den Kronenether noch für das Anion. Um Lösungsmitteleinflüsse auszuschließen wurde ein weiteres Spektrum in deuteriertem THF aufgenommen, doch bis auf das Lösungsmittel konnten auch hier keine weiteren Signale detektiert werden. Die Resonanzspektren der anderen Kerne hingegen weisen eindeutig auf die Bildung der anionischen Spezies hin. Die Resonanz der Siliziumkerne ist wie für die Anionen der anderen silylierten Mineralsäuren **19** und **23** (δ (²⁹Si) (Me₃SiO)₂SO₂ = 33.6, [O₃SOSiMe₃]⁻ = 28.0, (Me₃Si)₂S = 14.6, [SSiMe₃]⁻ -. Kapitel 3.2 und 3.3) typisch ebenso ins Hochfeld verschoben (vgl. δ (²⁹Si) **34** = 35.6, **33** = 20.4, **35** = 10.3 ppm).

Der Umsatz von zwei Äquivalenten Alkoholat und **33** führt zur Bildung einer hochviskosen Flüssigkeit. Das ³¹P-NMR-Spektrum der Reaktionslösung zeigt nur ein Signal, das für die Bildung der bissilylierten Spezies (**35**) spricht (δ (³¹P -1.7 **33** = -13.0, [P S e = 15.3, s. Anhang Tabelle 17). Die Bildung eines monosilylierten Dianions scheint somit nicht möglich zu sein. Ein Blick auf die Gasphasen-Struktur zeigt, dass sich ein stark gespannter Vierring bilden müsste (Abbildung 27). Für *ortho*-Phosphate hingen ist unter Einfluss von Wärme und Entwässerungsreagenzien die Kondensationsreaktion unter Bildung von *meta*- und Polyphosphaten typisch.^[204,205] Aufgrund der Tatsache das bei der Synthese des monosiylierten Dianions nur das Signal für **35** im ³¹P detektiert werden kann und das die Reaktionslösung hochviskos ist, könnte es zur Bildung von Polyphosphaten gekommen sein.

Abbildung 27. Optimierte Gasphasenstruktur von $[O_3POSiMe_3]^-$. Grau – Kohlenstoff, Grün – Silizium, Rot – Sauerstoff, Orange – Phosphor. $\measuredangle(OSiO) = 79^\circ, \measuredangle(OPO) = 89^\circ$.

3.7 Synthese und Charakterisierung der silylierten schwefligen Säure und ihrer Derivate

Schweflige Säure ist, anders als die anderen beiden schwefelhaltigen Säuren, weder jemals im Festkörper noch in der kondensierten Phase isoliert worden. In der Gasphase hingegen ist es ein vermeintlich stabiles Molekül.^[206,207] In wässriger Lösung liegen mehrere Gleichgewichte vor (Schema 20).^[208–210] Wenn in der Gasphase $SO_{2(g)}$ mit $H_2O_{(g)}$ reagiert, so ist die freie Gibbs-Enthalpie ($_g$) für diese Reaktion positiv und besitzt die Werte +8.5 kcal·mol⁻¹ für die Bildung der schwefligen Säure (OS(OH)₂)_(g) und +22 kcal·mol⁻¹ für die Bildung des Sulfonsäure-Tautomers (HSO₃H)_(g). Unter diesen gegebenen Bedingungen ist die Reaktion aus thermodynamischer Sicht somit nicht möglich. Versuche, schweflige Säure durch Einengen oder Temperaturerniedrigung zu isolieren, führen zur Kristallisation eines Clathrats $SO_2 \cdot 5.75 H_2O$. Quantenchemischen Berechnungen zufolge bildet das H_2SO_3 -Dimer ein thermodynamisches Minimum, das nicht zum direkten Zerfall in SO₂ und H₂O neigt.^[211]

Schema 20. Tautomeriegleichgewichte der schwefligen Säure.

Erdalkali- und Alkali(hydrogen)sulfite wie MgSO₃ und CsHSO₃ sind leicht zugänglich und strukturell bekannt.^[212,213] In der Literatur finden sich keine Hinweise auf die Darstellung der kationischen schwefligen Säure. Sie ist bisher lediglich als MS-Fragment beobachtet worden.^[214]

Die Synthese der bissilylierten Neutralverbindung $OS(OSiMe_3)_2$ (**36**) soll auf verschiedene Arten gelingen. Ein erster Versuch, SO_2 durch eine 0 °C gekühlte (Me₃Si)₂O-Lösung hindurch zu leiten, lieferte nicht den erhofften Silylether **36**

(Schema 21, Reaktion 1). Ein Blick auf die Thermodynamik dieser Reaktion in der Gasphase zeigt, dass aus quantenchemischer Sicht, ebenso wie für die schweflige Säure, die Gibbs-Enthalpien positiv sind ($_{g}$ **36** = +8.0 kcal·mol⁻¹, Me₃SiOS(O)OSiMe₃ = +28.2 kcal·mol⁻¹). Diverse in Schema 21 dargestellte Syntheserouten liefern in keinem Fall das gewünschte Produkt. Als Syntheseprodukte werden in der Regel quantitativ Edukte, Me₃SiCl, SO₂ oder (Me₃Si)₂O isoliert. Die unterschiedlichen Ansätze reichen dabei über Redox-Reaktionen, Salzmetathese-Reaktionen, Fällungsreaktionen und Reaktionen mit Lewis-Säuren sowie –Basen zur Stabilisierung des gewünschten Produkts bzw. zum Abfang unerwünschter Nebenprodukte (Schema 21).

Schema 21. Versuchte Darstellungen von **36**, getestete Lösungsmittel* = Toluol, CH_2CI_2 und THF, LS = Lewis-Säure.

Die Bildung des bissilylierten **36** scheint also ebenso schwer synthetisch umzusetzen zu sein wie die Synthese von H₂SO₃. In der Literatur findet sich lediglich ein Beispiel eines spektroskopisch untersuchten mono-trimethylsilylierten Sulfit-Anions dem [NH₄][O₂SOSiMe₃] von Bennett und Spicer.^[215–217] Dieses weist eine ungewöhnlich stark ins Tieffeld verschobene ²⁹Si-NMR-Resonanz von 37.9 ppm auf.^[215] GIAO-Rechnungen zufolge besitzt die anionische Spezies [O₂SOSiMe₃]⁻ eine NMR-Verschiebung von $\delta_{ber}(^{29}Si) = 0.3$ ppm. Das korrespondiere anionische Sulfonsäure-Tautomer besitzt eine noch weiter ins Tieffeld verschobene NMR-Resonanz von $\delta_{ber}(^{29}Si) = 1$. ppm (Tabelle 10).

Verbindung	$\delta_{\rm ber}(^{29}{ m Si})$
$\left[O_2 SOSiMe_3\right]^-(37)$	0.3
[Me ₃ SiSO ₃] ⁻	-10.9
OS(OSiMe ₃) ₂ (36)	30.3
Me ₃ SiS(O) ₂ (OSiMe ₃)	28.2 / 32.9
$[S(OSiMe_3)_3]^+$	59.6
$[Me_3SiS(O)(OSiMe_3)_2]^+$	69.1 / 62.6
HS(O) ₂ (OSiMe ₃)	41.4
OS(OH)(OSiMe ₃)	34.9
Me ₃ SiS(O) ₂ OH	32.7
H ₃ N·HS(O) ₂ (OSiMe ₃)	35.0
Me ₃ SiS(O) ₂ OH·NH ₃	25.2
Me ₃ SiOS(O)OH·NH ₃	28.8

Tabelle 10: $\delta_{ber}(^{29}Si)$ einiger ausgewählter trimethylsilylierter Sulfit-Verbindungen.

Aus Tabelle 10 geht hervor, dass das freie anionische, trimethylsilylierte Sulfit-Ion eine weitaus niedrigere ²⁹Si-NMR-Verschiebung als den von Bennett und Spicer publizierten Wert von $\delta(^{29}\text{Si}) = 37.9$ ppm besitzen müssen. Dem hingegen sind ihrer publizierten Verbindung eher neutrale protonierte Spezies sowie Lewis-Säure / Lewis-Base-Addukte mit Ammoniak im Bereich zwischen $\delta(^{29}\text{Si}) = 25.2$ und 41.4 ppm zuzuordnen. In einer anderen Herangehensweise ist es uns gelungen [THF·M][O₂SOSiMe₃] (M = Na, K) zu synthetisieren. In Anlehnung an die Chemie der Carbonate, soll mittels Durchleitung von gasförmigem SO₂ durch eine Lösung von Natrium/Kalium-trimethylsilanolat, das monosilylierte anionische Sulfit (**37**) gewonnen werden (Schema 22).^[218,219] Die ²⁹Si-NMR-Resonanz dieses Produktes liegt mit 9.1 ppm (THF-[D₈]), 14.8 ppm (CD₃OD) im zu erwartenden Bereich (vgl. $\delta_{ber}(^{29}\text{Si}) = 0.3$ ppm, Tabelle 10). **37** ist sehr schlecht in polaren protischen sowie aprotischen Lösungsmitteln wie THF, MeOH oder DMSO

löslich. Selbst der Zusatz von 15-Krone-5 als Lösungsvermittler führt zu keiner deutlichen Verbesserung dieser Eigenschaft.

$$\begin{array}{ccc} M[OSiMe_3] + SO_2 & & & & & \\ & & & & \\ & & & & \\ K[O_2SOSiMe_3] + Me_3SiCl & & & & \\ & & & & \\ \hline n-Hexan, Rückfluß & & & \\ & & & \\ & & & \\ \end{array}$$

Schema 22. Darstellung von 37 und 36, M = Na, K.

Die Darstellung von **36** ausgehend von **37** mithilfe von Me₃SiCl, ebenfalls in Anlehnung an die Carbonat-Chemie,^[218,219] führte nicht zur Isolation des gewünschten Produkts (Schema 22). Das ²⁹Si-NMR-Spektrum zeigt nach einstündigem Refluxieren in *n*-Hexan lediglich das Signal für das Zersetzungsprodukt Hexamethyldisiloxan O(SiMe₃)₂ bei 7.07 ppm. Unter der Annahme der leichten thermischen Zersetzlichkeit von **36** wurde der Versuch in einem polareren Lösungsmittel wie THF bei Raumtemperatur wiederholt. Als Reaktionsprodukte kann im ²⁹Si-NMR-Spektrum diesmal neben den Edukten und (Me₃Si)₂O nur noch eine weitere Spezies mit einer für das bissilylierte Sulfit erwarteten Verschiebung von 23 ppm nachgewiesen werden (vgl. δ_{ber} (²⁹Si) **37** = 30.3, s. Anhang Abbildungen 104-107).
3.8 Synthese und Charakterisierung von H-PCO*

Isocyansäure H-NCO^[220] gehört genauso wie ihre drei anderen Strukturisomere (Cyansäure H-OCN^[221], Fulminsäure H-CNO^[222,223] und Isofulminsäure H-ONC^[224,225]) Pseudohalogen-Wasserstoffsäuren. zu den Das schwere Homolog Oxymethylidinphosphan H-PCO (38) konnte bisher nur durch Gasentladungsexperimente in extrem verdünnten PH₃/CO-Mischungen nachgewiesen werden. Es existieren Mikrowellen^[226,227] und IR-Spektren^[228], die wie zahlreiche quantenchemische Publikationen^[229-234] die Existenz des ausschließlich Phosphor-gebundenen Isomers nahelegen. Die computergestützten Daten zeigen auf, dass 38 unter interstellaren Bedingungen eine stabile Verbindung darstellen könnte. Alle bisher experimentell ermittelten Daten stammen somit auch aus Experimenten, die bei sehr tiefen Temperaturen und niedrigen Drücken H-PCO generiert haben.^[227,228] Um diesen äußerst ungünstigen Umstand zu umgehen, haben wir dieselbe Herangehensweise wie für die Synthese des labilen Thionylimids (26) gewählt.^[181,182] Die Synthese erfolgt erneut in Analogie zu der Vorschrift von Günther, Meyer und Müller-Skjøld ausgehend von einer Fettsäure und einem 2-Phosphaethynolat Ion-Präkursor (Schema 23, vgl. Schema 14).^[180]

$$[Na \bullet Dioxan][PCO] + Me(CH_2)_{16}COOH \longrightarrow Na[O_2C(CH_2)_{16}Me] + Dioxan + HPCO$$

Schema 23. Synthese von 38.

Dass es sich bei der so entstanden Pseudohalogen-Wasserstoffsäure ausschließlich um das Phosphor-gebundene Isomer handelt, legen DFT-Rechnungen nahe. Die Energiedifferenz zwischen den beiden Isomeren H-PCO und PCO-H beträgt 23.1 kcal·mol⁻¹. Durch DFT-Rechnungen konnte die für die Umwandlung erforderliche Energie zur Überwindung der Aktivierungsbarriere von 67.9 kcal·mol⁻¹ und der dazugehörige Reaktionspfad durch IRC-Rechnungen ermittelt und bestätigt werden. Das ³¹P-NMR-Tieftemperatur-Spektrum unterm uert d e theoret chen Befunde. E w rd nur en S gn be – 16.7 ppm m t e ner ¹ $J(^{31}P^{-1}H)$ Kopplungskonstanten von 188 Hz detektiert.^[235] Ebenso lassen sich jeweils im ¹H-NMR-Spektrum ($\delta(^{1}H) = 0.25$ ppm, ¹ $J(^{1}H^{-31}P) = 188$ Hz) sowie im ¹³C {¹H}-NMR-Spektrum ($\delta(^{13}C\{^{1}H\}) = 201.4$ ppm, ¹ $J(^{13}C^{-31}P) = 102$ Hz) lediglich ein Signal finden. Alle experimentell gefundenen Werte stimmen sehr gut mit ihren berechneten überein und schließen erneut die Existenz des PCO-H-Isomers aus ($\delta_{ber}(^{31}P)$ **38** – , PCO-H = -273, $\delta_{ber}(^{13}C)$ **38** = 206, PCO-H = 234). Gleichzeitig kann aufgrund deutlicher NMR- Verschiebungs-Unterschiede die Existenz eines anionischen [PCO]⁻-Derivats ausgeschlossen werden (vgl. [K@18-Krone-6][PCO]^[236,237] δ (³¹P – 7 δ (¹³C) = 170 ppm, ¹J(¹³C-³¹P) = 62 Hz). In Dichlormethan oder Toluol gelöstes H-PCO stellen metastabile Lösungen dar, welche über acht Stunden bei –50 °C stabil sind. Bei Raumtemperatur zersetzen sich die **38**-Lösungen innerhalb einer halben Stunde. In THF hingegen ist das H-PCO so reaktiv, dass die Lösungen sich bereits bei tiefen Temperaturen neben P₂H₄ (δ (³¹P – 11 und P ₃ (δ (³¹P – 41 zu diversen Oligomeren zersetzen.^[235]

Unter dieser Voraussetzung ist es klar, dass lediglich Reaktionen mit adäquaten Reaktanten nur bei tiefen Temperaturen durchgeführt werden können. Jedoch kam es weder mit Acetonitril, Dimethylbutadien, Diphenylacetylen noch mit Metallkomplexen wie Cp*Ru(dppe)Cl oder dem Vaskas-Komplex (Ir(PPh₃)₂(CO)Cl) zu einer Reaktion. Das Erwärmen der Reaktionen führte ausschließlich zu den bereits beschriebenen Zersetzungsprodukten.

In Anbetracht der Tatsache, dass das ebenfalls labile H-NSO bereitwillig mit Lewis-Säuren, wie $B(C_6F_5)_3$ oder GaCl₃, (siehe oben) Addukte bildet, wurde versucht dieses Vorgehen auch auf H-PCO zu übertragen. Die Reaktionen liefern jedoch erneut nur Zersetzungsprodukte. Ein Blick auf die quantenchemisch berechneten Gasphasen-Strukturen zeigt ebenfalls, dass es keine stabilen Lewis-Säure / Lewis-Base-Addukte auf der Energiehyperfläche gibt (Schema 24).

Schema 24. Isomere von **38**·B(C_6F_5)₃ - Addukten mit dazugehörigen **B-P**- und **B-O**-Abständen [Å] und *relativen Energien* [kcal·mol⁻¹].[#]

[#] Berechnungen auf dem Niveau PBE1PBE/6-31++G(d,p) unter Berücksichtigung von empirischer Dispersion (gd3bj).

Die berechneten Phosphor-Bor bzw. Sauerstoff-Bor Abstände von Lewis-Säure / Lewis-Base-Addukten liegen allesamt weit außerhalb derer der Kovalenzradien für E nf chb ndungen (vg. $\sum r_{kov}(B-P) = 1.96$ Å, $[^{189]} \sum r_{kov}(B-O) = 1.50$ Å). $[^{99]}$ Bei allen untersuchten B(C₆F₅)₃-Isomeren handelt es sich somit um sehr schwach gebundene van der Waals Addukte. Ein genauerer Blick auf die Bindungs- und Ladungssituation von **38** zeigt, warum es so schwierig ist Lewis-Base / Lewis-Säure-Addukte zu bilden (Abbildung 28, Abbildung 29).

Abbildung 28. NBO-Darstellung von 38.

In Abbildung 28 sind die Molekülorbitale dargestellt, die womöglich den größten Einfluss bezüglich der Reaktivität auf H-PCO haben. Sowohl das LUMO als auch das LUMO+2 zeigen sehr eindeutig den antibindenden Charakter entlang der HP-C sowie der C-O-Bindung. Das ze gt h upt äch ch den π -Bindungsanteil entlang der P-C-Bindung. Ferner zeigt das HOMO-2 den starken s-Orbital Einfluss des freien Elektronenpaares am Phosphor-Atom.

Ein Blick auf die NBO-Ladungen zeigt ebenfalls, dass es sich bei H-PCO nur um ein sehr schwach polarisiertes Molekül handelt. Das Proton und der Phosphor besitzen Ladungen von $0.05 \ e$ und $0.03 \ e$. Auf der anderen Seite weist der Kohlenstoff eine Ladung von

0.37 e und der S uer toff e ne L dung von -.44 e auf (Abbildung 29). Dies führt dazu, dass es sich bei **38** weder um ein besonders gutes Nukleophil noch Elektrophil handelt.

Abbildung 29. **38** - Links: **Bindungswinkel**, (*Bindungslängen*) in [Å] und NBO-Ladungen in [*e*] der optimierten Gasphasen-Struktur. Rechts: ELF zweidimensionaler Profilschnitt durch die (H)-P-C-O-Ebene.

Die ELF von **38** zeigt all diese Phänomene noch einmal. Zum einen erkennt man sehr gut das freie Elektronenpaar am Phosphoratom und zum anderen die ausgeglichene Ladungsverteilung entlang der PCO-Achse. Mit Bindungsordnungen von 1.43 (C-O) und 1.36 (P-C) lassen sich auch sehr gut die berechneten Bindungslängen in der Gasphase in Einklang bringen (s. Abbildung 29 vg. $\sum r_{kov}$ (P C 1.67 Å $\sum r_{kov}$ (C=O) = 1.19 Å).^[99] Die Trägheit des HPCO-Moleküls mit Lewis-Säuren zu reagieren, wird noch einmal deutlich durch die Reaktion mit dem äußerst starken

Elektrophil $[Me_3Si]^+$. In einem ähnlichen Ansatz, wie in Schema 23 beschrieben, wurde versucht H-PCO auf eine Suspension aus $[Me_3Si\cdots$ Toluol] $[B(C_6F_5)_4]$ aufzukondensieren und das silylierte Molekül abzufangen. Bedingt durch die schlechte Löslichkeit des Silylierungsmittels als auch die quantenchemischen Daten zeigt sich auch hier, dass keine Reaktion stattfinden kann. In den NMR-Spektren der Reaktionslösung konnten nur Signale für Zersetzungsprodukte wie z.B. PH₃ detektiert werden.

Schema 25 (*Bindungslängen*) in [Å] und **relative Energien** in [kcal·mol⁻¹] für verschiedene [Me₃Si/H···PCO]⁺-Isomere.

Ein Blick auf die optimierten Gasphasen-Strukturen zeigt zunächst, dass das Isomer, welches eine *P*,*P*-Koordination der beiden Substituten besitzt, allen anderen Isomeren bevorzugt ist (Schema 25). Dennoch wird auch hier deutlich, dass die Bindung zwischen Lewis-Säure und Lewis-Base äußerst schwach ist. Die Si-P-Bindung ist mit 2.43 Å abermals weit länger als die Summe der Kovalenzradien für eine Si-P-Einfachbindung $(\sum r_{kov}(Si-P) = 2.27 \text{ Å})$. Der Ladungstransfer von H-PCO auf das Silylium-Ion beträgt in diesem Fall ed g ch – .51 *e*, was vermutlich zu wenig für eine Donor-Akzeptor-Bindung oder gar eine kovalente Bindungsbildung ist.

Zusammenfassend ist festzustellen, dass metastabile H-PCO-Lösungen durch eine relativ einfache Syntheseroute zugänglich sind, diese jedoch keine besonders gute Reaktivität aufweisen. Nichtsdestotrotz gelangen die erstmalige Synthese und der analytische Nachweis ebenjenes Synthesebausteins in der kondensierten Phase.

^{*} Dieses Kapitel ist in enger Zusammenarbeit mit der Arbeitsgruppe um Prof. Dr. José Goicoechea (Universität Oxford) entstanden. Dabei wurden sämtliche quantenchemische Rechnungen auf das in dieser Arbeit verwendete System (Basissatz/Methode) angepasst. Mein Anteil umfasst weiterhin die Syntheseversuche der Lewis-Säure / Lewis-Base-Addukte von H-PCO mit B(C_6F_5)₃ sowie [Me₃Si][CHB₁₁Cl₁₁].

4 Zusammenfassung und Ausblick

Ziel der Arbeit war es neue homoleptische Silylonium-Ionen zu synthetisieren und zu charakterisieren. Diese sollen mit ihren protonierten Derivaten verglichen werden. Zunächst wurden eine Reihe von verschiedenen Trityl-Salzen, welche erstmalig vollständig charakterisiert und analysiert wurden, synthetisiert. Nur wenige dieser Trityl-Salze eignen sich für die Synthese von [Me₃Si]⁺-Präkursoren. Die Trimethylsilylium-Salze der Carborate sind hervorragende Donoren der [Me₃Si]⁺-Gruppe. Im Zuge dessen konnten einige neue Zusammenhänge zwischen experimentellen und theoretischen Daten von verschiedenartig halogenierten Käfiganionen aufgezeigt werden.

Die erhaltenen $[Me_3Si]^+$ -Salze konnten für die erfolgreiche Silylierung des Sulfat- sowie Phosphat-Ions eingesetzt werden. Gleichzeitig konnten auch bisher unbekannte silylierte anionische Spezies wie das $[O_3SOSiMe_3]^-$ oder $[O_2P(OSiMe_3)_2]^-$ erhalten werden. Die Chemie der neutralen Spezies ähnelt somit sehr der Chemie protonierter Mineralsäuren. Dies zeigt sich auch im schwierigen Zugang zu den silylierten Derivaten der schwefligen Säure. Es konnte somit das klassische Konzept der Säure-Base-Chemie auf seine silylierten Vertreter übertragen werden. Das $[Me_3Si]^+$ -Ion kann als das große Lewis-saure Pendant zum H⁺-Ion angesehen werden. Dies zeigt sich besonders in der einfachen Abstraktion und Addition beider Spezies von den Säurerest-Ionen.

Ferner konnten neue Synthesewege für den einfachen Zugang zu sehr labilen Spezies wie H-NSO und H-PCO gezeigt werden. So gelang es erstmals auch mithilfe einer Lewis-Säure ein H-NSO-Addukt zu kristallisieren und kristallographisch zu untersuchen. Das NSO erweitert somit die Reihe der Verbindungen des klassischen Pseudohalogenkonzepts wie CN, N₃ oder auch NCS. H-PCO stellt hingegen eine zu schwache Base bzw. ein zu schwaches Nukleophil dar, sodass seine Reaktivität gegenüber Lewis-Säuren nicht erfolgreich untersucht werden konnte. Auch zahlreiche quantenchemische Analysen untermaueren diese Ergebnisse.

Ein Schwerpunkt für Folgearbeiten kann die Synthese der Kationen der persilylierten Kohlensäure sein. Ferner würden Untersuchungen zu den Derivaten der salpetrigen Säure und Salpetersäure das Spektrum der klassischen Mineralsäuren und ihrer silylierten Analoga vervollständigen.

5 Anhang

5.1 Arbeitstechnik

Sofern nicht anders angegeben, wurden alle Experimente, bei denen absolute Lösungsmittel verwendet wurden, unter Argon-Atmosphäre mit Hilfe der Schlenk-Technik durchgeführt. Alle Glasgeräte werden dafür dreimal mit einem Heißluftgebläse im Hochvakuum ausgeheizt und unter Argon-Atmosphäre abgekühlt. Das Ab- und Umfüllen Hydrolyse-empfindlicher Substanzen wird in einer Drybox unter Inertgasatmosphäre (Argon) durchgeführt. Lösungsmittel werden unter Argon-Atmosphäre destilliert und für die Versuche mit Einwegspritzen umgefüllt. Die Einwegspritzen werden zuvor dreimal mit Argon gespült.

Die verwendeten Lösungsmittel werden über den Chemikalienhandel erhalten und wenn nötig nach literaturbekannten Methoden gereinigt und getrocknet (Tabelle 11).^[238] Dichlormethan CH_2Cl_2 , wird analog zu einer Literaturvorschrift^[239] gereinigt und ebenso wie CD_2Cl_2 erst über Phosphorpentoxid (P₄O₁₀), dann über Calciumhydrid (CaH₂) getrocknet und destilliert. Tetrahydrofuran THF, Diglyme, Diethylether Et₂O, Dimethoxyethan DME und Toluol werden über Na/Benzophenon getrocknet und frisch destilliert. *n*-Hexan sowie *n*-Pentan werden über Na/Benzophenon/Tetraglyme getrocknet und frisch destilliert. 1,2-Dichlorbenzol und Chloroform werden über P₄O₁₀ getrocknet und frisch destilliert. Ethanol wird über Natrium frisch destilliert. Acetonitril wird über CaH₂ getrocknet und frisch destilliert. Ausgangsverbindungen werden entweder über den Chemikalienhandel erhalten oder nach bekannten Vorschriften aus der Literatur hergestellt.

Substanz	Herkunft	Reinigung
Me ₃ SiCl (99 %)	Merck	Über CaH ₂ destilliert
Me ₃ SiH	Synthetisiert ^[1,2]	Über CaH ₂ gelagert
$B(C_6F_5)_3$	Synthetisiert ^[1,2]	
Na[OSiMe ₃] 95 %	ABCR	Sublimiert im HV mit
		(S. 185)
Me ₃ SiSiMe ₃	Synthetisiert	

Tabelle 11: Eingesetzte Chemikalien, deren Herkunft und Reinigung.

Li[N(SiMe ₃) ₂]	Synthetisiert ^[240]	Sublimation (HV)
(Me ₃ Si) ₃ N	Synthetisiert ^[74]	
$[(Me_3Si)_2H][B(C_6F_5)_4]$	Synthetisiert ^[1,2]	
(Me ₃ SiO) ₃ PO	Synthetisiert ^[195]	(S. 226)
BCl ₃ (99.9 %)	Aldrich	
BCl ₃ / <i>n</i> -Hexan	Synthetisiert ^[1,2]	
Stearinsäure 99 %	VEB Apolda	Im HV für 2 h getrocknet
C ₆ BrF ₅ (99%)	Alfa Aeser	Destilliert
AlCl ₃ (subl, +98 %).	Riedel-de-Haën	Sublimiert (120°C, HV)
GaCl ₃ (99.999 %)	Aldrich	Sublimiert (RT, HV)
[Ph ₃ C][SbCl ₆] (99 %)	Alfa Aeser	(S. 194)
$NaN_3 \ge 99 \%$	Aldrich	
Ag[BF4] 99 %	Acros	
$Ag_2[SO_3]$	Synthetisiert	
Ag[AsF ₆] 99 %	Alfa Aeser	
Ag[SbF ₆] 98 %	ABCR	
Ag[PF ₆]	Synthetisiert	K[PF ₆] + Ag[NO ₃] in CH ₃ CN
$Ag[OS(O)_2CF_3]$	Synthetisiert ^[241]	
Ag[OC(O)CF ₃]	Synthetisiert ^[242]	
Ag[CHB ₁₁ H ₅ Br ₆]	Synthetisiert ^[243]	
Ag[CHB ₁₁ H ₅ Cl ₆]	Synthetisier ^[243]	
Ag[CHB ₁₁ Cl ₁₁]	Synthetisiert ^[115]	
K[PF ₆] 99 %	ABCR	
KH ₂ [PO ₄] (99-100 %)	VEB Laborchemie Apolda	
Li (<u>></u> 99 %)	Merck	Abgetupft mit Papier
S ₈	VEB Laborchemie Apolda	
H ₂ SO ₄ (95 %)	Chemsolute	
K[OCMe ₃] (>97 %)	Fluka	Sublimiert 220 °C (HV)
18-Krone-6 (99 %)	Fluka	Zweimal aus Acetonitril umkristallisiert anschließend zweimal aus THF

OPMe ₃ (98 %)	Riedel-de-Haen AG	Aus CH ₂ Cl ₂ umkristallisiert
(Me ₃ Si) ₂ S	Synthetisiert ^[244]	(S. 210)
(Me ₃ SiO) ₂ SO ₂	Synthetisiert ^[5]	(S. 203)
SOCl ₂ (+99.5%)	Acros	Destilliert
Me ₃ SiNSO	Synthetisiert ^[245]	(S. 219)
K[NSO]	Synthetisiert ^[186]	(S. 215)
SO ₂ Cl ₂ (z. Syn. 98%)	Merck	destilliert
CsOH·H ₂ O (98%, Cs ₂ CO ₃	Alfa Aeser	
<u><</u> 0.5%)		
NaOH (Plätzchen Ph. Eur.	VWR	
98.8%)		
KOH (Plätzchen z.A. min.	Th. Geyer	
85%)		
NaH (Öl-Dispersion 57-	Alfa Aeser	Extraktion mit <i>n</i> -Hexan
63%)		
Trimethylaminhydrochlorid	TCI	
(98%)		
NaBH ₄ (Pulver, 98%)	ABCR	
Ph ₃ CBr (98%)	Alfa Aeser	Aus Benzol/ 2 mL
		Acetylbromid
		umkristallisiert
Acetylbromid 98+ %	Alfa Aeser	
Ph ₃ CCl (purum., ≥97%)	Fluka	Aus <i>n</i> -Hexan/ 2 mL
		Acetylchlorid
		umkristallisiert
Natrium Stücke (99%)	Aldrich	
Benzophenon (GC, 99%)	Aldrich	
CaH_2 (extra pure, ca. 93%,	Acros	
0-2 mm Korngröße)		
Trifluormethansulfonsäure	Fluorochem	Destilliert
CsCl (99.5 %)	Fluka, Bio Chemica	
Na ₂ SO ₃	VK Labor- u.	
	Feinchemikalien	

P_4O_{10} (Pulver, $\ge 99\%$)	Carl Roth		
1,1,1,3,3,3-	Merck	Destilliert	
Hexamethyldisilazan			
Digylme (99%, stabl. mit	Alfa Aeser	Destilliert über	
100 ppm BHT)		Na/Benzophenon	
AgNO ₃	Altbestand		
$BF_3 \cdot OEt_2$	BASF	Destilliert	
1,2-Dichlorbenzol (zur	Merck	Destilliert über P ₄ O ₁₀	
Synthese ≥98%)		anschließend über CaH ₂	
		destilliert	
Kieselgur (geglüht,	Riedel-de-Haën		
gereinigt)			
Aceton-[D ₆] (99.9%)	Euriso-Top	Gelagert über Molsieben	
CD ₃ CN (99.8%)	Aldrich	Destilliert über CaH ₂	
Benzol-[D ₆] (99.9%)	Euriso-Top	Destilliert über Natrium	
DMSO-[D ₆] (99.9%)	Euriso-Top	Destilliert über CaH ₂	
Toluol-[D ₈] (99.9%)	Euriso-Top	Destilliert über Natrium	
$THF-[D_8]$	Euriso-Top	Destilliert über Natrium	
		und über Molsiebe (3 Å)	
		bei 5 °C gelagert	
CD ₂ Cl ₂ (99.9%)	Euriso-Top	Destilliert über P ₄ O ₁₀ ,	
		anschließend über CaH2	

5.2 Analysemethoden

Einkristallstrukturanalyse

Kristalle zur Einkristallröntgenstrukturanalyse wurden in Kel-F-Öl (Riedel-de-Haën) oder Fomblin YR-1800 (Alfa Aesar) bei Raumtemperatur selektiert. Alle Proben wurden während der Messung auf 173(2) K oder 153(2) K gekühlt. Die Daten wurden auf einem Bruker-Nonius Apex X8 CCD Diffraktometer, Bruker D8 Quest Diffraktometer oder einem Bruker Apex Kappa-II Diffraktometer mit monochromatischer (Graphit) Mo- α -Str h ung (λ .71 7 Å ufgenommen. D e Strukturen wurden durch d rekte ethoden (*SHELXS-2013*)^[246] bzw. (*SHELXS-2014*)^[247] gelöst und durch *full-matrix least squares* Prozeduren (*SHELXL-2013*)^[248] bzw. (*SHELXL-2014*)^[249] verfeinert. Semi-empirische Absorptionskorrekturen wurden angewendet (SADABS).^[250] Alle Nicht-Wasserstoff-Atome wurden anisotrop verfeinert, Wasserstoff-Atome wurden, insofern sie nicht frei verfeinert werden konnten, rechnerisch eingefügt.

NMR-Spektroskopie

 ${}^{75}\text{As}, {}^{31}\text{P-}, {}^{31}\text{P}\{{}^{1}\text{H}\}\text{-}, {}^{29}\text{Si}\{{}^{1}\text{H}\}\text{-}, {}^{29}\text{Si}\text{-INEPT-} {}^{19}\text{F-}, {}^{19}\text{F}\{{}^{1}\text{H}\}\text{-}, {}^{17}\text{O-}, {}^{1}\text{H}, {}^{15}\text{N-HMBC-}, {}^{14}\text{N}, {}^{16}\text{N-HMBC-}, {}^{14}\text{N}, {}^{16}\text{N-HMBC-}, {}^{14}\text{N}, {}^{16}\text{N-HMBC-}, {}^{16}\text{N-}, {}^{16}\text{N-},$ ${}^{14}N{}^{1}H{}^{-}, {}^{13}C{}^{1}H{}^{-}, {}^{11}B{}^{-}, {}^{11}B{}^{1}H{}^{+}, {}^{10}B{}^{-}{}^{10}B{}^{1}H{}^{+}, {}^{1}H{}^{11}B{}^{+}, {}^{1}H{}^{+}H{}^{+}H{}^{-}COSY{}, {}^{1}H{}^{+}H{}^{+}COSY{}, {}^{1}H{}^{+}H{}^{-}COSY{}, {}^{1}H{}^{+}H{}^{-}H{}$ HMBC, ¹H,¹³C HSQC-NMR-Spektren wurden auf einem Bruker AVANCE 250 Spektrometer (mit einem BBO Probenkopf), auf einem Bruker AVANCE 300 Spektrometer (mit einem BBFO Probenkopf), auf einem Bruker AVANCE 400 Spektrometer (mit einem BBO Probenkopf) oder auf einem Bruker AVANCE 500 Spektrometer (mit einem BBO Probenkopf) aufgenommen. Die NMR-Spektren wurden intern auf die verwendeten deuterierten Lösungsmittel oder protischen Verunreinigungen kalibriert. Kalibrierung der X-Kerne – ³¹P–NMR: extern 85 % H₃PO₄: 0 ppm, ²⁹Si–NMR: extern Me₄Si: 0 ppm, ¹⁹F–NMR: (CCl₃F) extern ppm, ¹H, ¹⁵N–HMBC–NMR: extern ¹/₃‰ CH₃NO₂ / Lösemittel: 0 ppm, ${}^{14}N{}^{1}H{-}NR$ extern ${}^{1}\!/_3$ ‰ C ${}_{3}NO_2$ / Lösemittel: 0 ppm, ¹³C{¹H}-NMR: DMSO-[D₆]: (*C*D₃) 39.5 ppm; CD₂Cl₂: 54.0 ppm; Aceton-[D₆]: (*C*D₃) 29.84 ppm; CD₃CN: (CD₃) 1.32 ppm; Toluol-[D₈]: (CD₃) 20.43 ppm; Benzol-[D₆]: 128.06 ppm, THF-[D₈]: (OCCD₂) 25.31 ppm, ¹¹B-NMR: extern BF₃·OEt₂: 0 ppm, ¹H–NMR: DMSO-[D₆]: (CD₂H) 2.5 ppm, CD₂Cl₂ (CDH): 5.32 ppm; Aceton-[D₆]: (CD₂H) 2.05 ppm; CD₃CN: (CD₂H) 1.94 ppm; Toluol-[D₈]: (CD₂H) 2.08 ppm; Benzol $[D_6]$ (CD₅*H*): 7.16 ppm, THF- $[D_8]$: (OCCD*H*) 1.72 ppm. Die δ (¹⁵N)-NMR-Resonanzen werden ntern uf d e "un f ed c e" kalibriert.^[251] Dabei entspricht Ξ [¹⁵N] = 10.136767 der Verschiebung von Nitromethan bei 0 ppm.^[252] Die Spektren werden als inverses 2D-NMR-Spektrum aufgenommen.

Die NMR-Messungen von $[(Me_3Si)_3S][B(C_6F_5)_4]$ in Toluol oder 1,2-DCB werden auf extern verwendete Lösungsmittel kalibriert. Die NMR-Messungen von Me₃SiNSO in 1,2-DCB werden auf extern verwendete Lösungsmittel, wie Toluol- $[D_8]$ kalibriert.

Dabei wird in das äußere Young-Hahn-NMR-Rohr ein inneres, kleineres Präzisionsglasrohr mit dem jeweiligen deuterierten Lösungsmittel gesteckt. Die Beschreibung der NMR-Spektren erfolgen wie folgt: (*Lösungsmittel* ext. ref. *deuteriertes Lösungsmittel*).

IR-Spektroskopie

Für die Aufnahmen der Spektren wurde ein Nicolet 380 FT-IR-Spektrometer mit einer Smart Orbit ATR-Einheit verwendet.

Raman-Spektroskopie

Für die Aufnahme der Spektren wurde entweder ein a) Bruker VERTEX 70 FT-IR mit RAM II FT-Raman-Modul ausgerüstet mit einem Nd:YAG-Laser (1064 nm) verwendet oder ein b) LabRAM HR 800 Horiba Jobin YVON, ausgestattet mit einem BX40 Mikroskop (Fokus 1 µm) oder einer Olympus Mplan 50xNA 0.70 Linse. Zur Anregung wurde ein Infrarotlaser (785 nm, 100 mW, luftgekühlter Diodenlaser), ein roter Laser (633 nm, 17 mW, HeNe-Laser), ein grüner Laser (532 nm, 50 mW, luftgekühlter, frequenzverdoppelter Nd: YAG-Festkörperlaser) oder ein blauer Laser (473 nm, 20 mW, luftgekühlter Solid State Laser) verwendet.

Elementaranalyse

Verwendet wurde ein Flash EA 1112 Analysator von Thermo Quest oder ein A vario MICRO cube (Elementar).

Schmelzpunkt

Die Schmelzpunkte sind nicht korrigiert (EZ-Melt, Stanford Research Systems). Heizrate 20°C/min (Klärpunkte werden angegeben).

DSC

DSC: 823e von Mettler-Toledo (Heizrate 5°C/min) wurde verwendet.

5.3 Anmerkungen

5.3.1 Quantenchemische Rechnungen

Sämtliche Rechnungen wurden mit dem Programm *Gaussian09*^[253] durchgeführt. Die Rechnungen wurden alle mit der DFT-Methode PBE1PBE^[254–256] durchgeführt. Ferner wurden folgende Basissätze verwendet: H – aug-cc-pvDZ^[257], B; C; N; O; F; P; Si; S; Cl – aug-cc-pwCVDZ,^[257,258] Ga – aug-cc-pVDZ^[259]. Ausnahmen bilden die B(C₆F₅)₃ Addukte von H-PCO/H-OCP. Diese wurden mit dem 6-31++G(d,p)-Basissatz gerechnet.^[260–267] Zusätzlich wurden hier Effekte der empirischen Dispersion berücksichtigt (gd3bj).^[268] Sämtliche Strukturen wurden vollständig optimiert und durch eine Frequenzanalyse als Minima bestätigt. Die natürliche Bindungsorbitalanalyse (NBO) wurde auf demselben Theorielevel durchgeführt.^[269–272] Die NBO-Analyse gibt Aufschluss über Ladungsverteilungen, Bindungspolarisation und Hybridisierung-Effekte innerhalb der Moleküle. Die Berechnung und Darstellung der Eleketronenlokalisations-Funktion (ELF) erfolgt mithilfe des Programms Multiwfn.^[273–275] Für die Darstellung der natürlich lokalisierten Molekülorbitale (NLMO) wurde das Programm Avogadro verwendet.^[276]

Berechnete chemische Verschiebungen und Kopplungskonstanten wurden durch die GIAO-Methode erhalten.^[277–281] D e berechneten b o uten Ver ch ebungen (σ_{iso}) wurden auf die absoluten Verschiebungen von (CH₃)₄Si, BF₃·OEt₂, H₂O und CH₃NO₂ in der Gasphase und 85 % H₃PO₄ referenz ert. σ_{Ref}^{1} 1.4711 ppm $\sigma_{Ref}^{11}B = 108.2832$ ppm, $\sigma_{Ref}^{13}C$ 1 . ppm $\sigma_{Ref}^{14}N = -1$. 1 ppm σ_{Ref}^{17} .76 7 ppm und $\sigma_{Ref}^{29}Si = 352.6934$ ppm – Verschiebungen dieser Kerne wurden anhand folgender Gleichung berechnet.

$$\delta_{ber}$$
. $\sigma_{Ref} - \sigma_{isc}$

Die berechneten absoluten Verschiebungen des ³¹P-NMR-Kerns ($\sigma_{ber,X}$) wurden auf die experimentell absolute Verschiebung von 85 % H₃PO₄ in der Gasphase ($\sigma_{Ref,1} = 328.35 \text{ ppm}$),^[282] und PH₃ als zweiten Standard referenziert.^[283] Unter Verwendung der oben erwähnten Methode und des Basissatzes ergibt sich für σ_{ber,PH_3} ein Referenzwert von +590.4521 ppm. Die chemische Verschiebung ($\delta_{ber,X}$) ermittelt sich wie folgt:

$$\delta_{\text{ber},X} = (\sigma_{\text{ref},1} - \sigma_{\text{ref},2}) - (\sigma_{\text{ber},X} - \sigma_{\text{ber},\text{PH}_3})$$
$$= \sigma_{\text{ber},\text{PH}_3} - \sigma_{\text{ber},X} - 266.1 \text{ ppm}$$

Es sei darauf hingewiesen, dass alle Berechnungen für isolierte Moleküle in der Gasphase durchgeführt wurden. Die berechneten Eigenschaften können sich zum Teil erheblich von denen in kondensierter Phase bzw. Lösung unterscheiden.

Alle Rechnungen wurden entweder mithilfe des Computerclusters MoSGrid^[284] oder auf dem Computercluster am ITMZ der Universität Rostock durchgeführt.

Im Folgenden sind die Z-Matrizen der optimierten Strukturen angeben. Es wird jeweils nur das energetisch günstigste Isomer betrachtet.

 $H[CHB_{11}H_{11}] - C_S$

 $E_{tot} = -319.0666525$

 $[CHB_{11}H_{11}]^{-} - C_{5v}$

E_{tot} -1.66

С	0.000000	0.000000	1.516739	Η	2.878950	0.114471	0.000000
Η	0.000000	0.000000	2.603520	В	-0.694858	-1.372510	0.000000
В	0.892843	1.228894	-0.769943	В	0.779727	-1.213168	0.915724
В	0.000000	1.509570	0.734806	В	-0.748609	-0.433721	-1.472161
В	1.435687	0.466483	0.734806	В	-0.748609	-0.433721	1.472161
В	-0.892843	1.228894	-0.769943	В	0.779727	-1.213168	-0.915724
В	1.444651	-0.469396	-0.769943	В	-1.708140	0.041734	0.000000
В	0.000000	0.000000	-1.701449	Η	1.338084	0.918901	2.387445
В	-1.435687	0.466483	0.734806	Η	-2.899847	0.018346	0.000000
В	0.887303	-1.221268	0.734806	Η	-1.180108	2.178439	1.474584
В	-1.444651	-0.469396	-0.769943	Η	-1.298070	-0.790880	-2.468049
В	0.000000	-1.518996	-0.769943	В	-0.748609	1.234382	0.894240
В	-0.887303	-1.221268	0.734806	Η	-1.298070	-0.790880	2.468049
Н	2.477414	-0.804961	-1.279256	С	0.692281	1.367208	0.000000
Η	1.473509	-2.028112	1.395953	Η	1.288103	-2.101238	1.526923
Н	0.000000	-2.604907	-1.279256	В	0.765254	0.477248	1.443539
Η	0.000000	0.000000	-2.901760	В	1.695980	-0.007773	0.000000
Η	-1.473509	-2.028112	1.395953	Η	1.288103	-2.101238	-1.526923
Н	-2.477414	-0.804961	-1.279256	В	-0.748609	1.234382	-0.894240
Н	-2.384188	0.774670	1.395953	Η	-1.654299	-2.327289	0.000000
Н	-1.531126	2.107414	-1.279256	Η	1.182606	2.336709	0.000000
Η	0.000000	2.506884	1.395953	В	0.765254	0.477248	-1.443539
Н	1.531126	2.107414	-1.279256	Η	1.338084	0.918901	-2.387445
Η	2.384188	0.774670	1.395953	Η	-1.180108	2.178439	-1.474584
				Η	-0.899662	-2.710585	0.000000

$[Me_3Si][CHB_{11}H_{11}] - C_1$

 $E_{tot} = -727.5280554$

С	-3.061385	-0.000019	-0.257676
Η	-4.125732	-0.000031	-0.475254
В	-1.083074	0.902649	1.406175
В	-2.401868	1.440056	0.355074
В	-2.605838	-0.000260	1.379889
В	-0.746203	1.460519	-0.268638
В	-1.082995	-0.903073	1.405902
В	0.000368	-0.000016	0.357528
В	-2.062139	0.891223	-1.302342
В	-2.401747	-1.440223	0.354609
В	-0.532533	0.000269	-1.308577
В	-0.746075	-1.460400	-0.269119
В	-2.062055	-0.890821	-1.302610
Η	0.191552	0.000443	-2.260326
Н	-0.157338	-2.475835	-0.485908
Н	-0.713233	-1.523255	2.356516
Н	-0.157471	2.476033	-0.485090
Η	-0.713321	1.522516	2.356999
Н	1.155737	0.000019	0.892921
Н	-2.533231	-1.473777	-2.227314
Н	-3.099676	-2.389151	0.525894
Н	-3.439087	-0.000458	2.230045
Η	-2.533372	1.474406	-2.226871
Н	-3.099848	2.388883	0.526705
Si	2.525382	0.000022	0.004247
С	3.540562	-0.000470	1.567273
Н	3.346354	-0.891641	2.177257
Η	4.607604	-0.000474	1.299720
Η	3.346486	0.890366	2.177785
С	2.667764	1.577147	-0.952679
Η	3.708445	1.671671	-1.298297
Н	2.006621	1.586908	-1.825489
Н	2.436329	2.446540	-0.326058
С	2.667667	-1.576626	-0.953490
Η	2.435765	-2.446275	-0.327396
Η	2.006786	-1.585738	-1.826505
Н	3.708434	-1.671261	-1.298801

$H[CHB_{11}H_5F_6] - C_1$

 $E_{tot} = -914.316303$

 $[CHB_{11}H_5F_6]^- - C_{5v}$ $E_{tot} = -913.9229306$

С	0.00000	0.00000	-2.17986	С	-0.874080	0.000000	2.030658
Η	0.00000	0.00000	-3.26509	Н	-1.306396	0.000000	3.026828
В	0.00000	1.52984	0.10317	В	0.407166	-1.475473	0.138451
В	0.88595	1.21941	-1.40527	В	0.546488	-0.900458	1.817323
В	-0.88595	1.21941	-1.40527	В	-1.022435	-1.444963	1.148423
В	1.45496	0.47275	0.10317	В	1.337259	0.000000	0.544347
В	-1.45496	0.47275	0.10317	В	-1.173184	-0.922807	-0.563625
В	0.00000	0.00000	1.05780	В	0.302829	0.000000	-0.843000
В	1.43350	-0.46577	-1.40527	В	0.546488	0.900458	1.817323
В	-1.43350	-0.46577	-1.40527	В	-1.973231	0.000000	0.728077
В	0.89922	-1.23766	0.10317	В	0.407167	1.475473	0.138451
В	-0.89922	-1.23766	0.10317	В	-1.173184	0.922807	-0.563625
В	0.00000	-1.50727	-1.40527	В	-1.022434	1.444964	1.148423
Н	0.00000	-2.51837	-2.03614	Н	-1.567632	2.391111	1.613879
Η	-2.39511	-0.77822	-2.03614	Η	-3.144728	0.000001	0.922333
Η	-1.48026	2.03740	-2.03614	Η	-1.567633	-2.391110	1.613879
Η	2.39511	-0.77822	-2.03614	Η	1.050309	1.496868	2.711079
Η	1.48026	2.03740	-2.03614	Η	1.050308	-1.496868	2.711079
F	-2.63760	0.85701	0.70804	F	-1.841297	-1.643077	-1.508470
F	0.00000	2.77334	0.70804	F	1.075034	-2.570669	-0.343825
F	-1.63013	-2.24368	0.70804	F	-1.841297	1.643077	-1.508470
F	1.63013	-2.24368	0.70804	F	1.075035	2.570669	-0.343825
F	2.63760	0.85701	0.70804	F	2.677969	0.000000	0.007195
F	0.00000	0.00000	2.43632	F	1.369193	0.000000	-1.968199
				Н	2.183880	0.000000	-1.345512

$[\mathrm{Me_3Si}][\mathrm{CHB_{11}H_5F_6}] - \mathrm{C_1}$

 $E_{tot} = -1322.8170817$

-3.163345	0.000405	-0.642302
-4.200485	0.000589	-0.962935
-0.549480	0.000851	-1.444655
-2.072378	-0.889122	-1.587369
-2.072368	0.891022	-1.586311
-0.860396	-1.466484	-0.431424
-0.860376	1.467009	-0.429686
-0.163182	-0.000175	0.281802
-2.571441	-1.439558	0.028979
-2.571406	1.439564	0.030684
-1.364874	-0.908234	1.216115
-1.364848	0.906827	1.217200
-2.876968	-0.000581	1.029354
0.438880	0.001503	-2.413250
-0.116393	-2.612557	-0.600803
1.247137	-0.000346	0.780408
-1.019137	-1.618614	2.337995
-1.019049	1.615851	2.339903
-0.116274	2.613186	-0.597770
-2.427043	-1.479400	-2.555529
-3.262832	-2.399300	0.139332
-2.427003	1.482466	-2.553769
-3.262790	2.399177	0.142175
-3.774891	-0.001025	1.807119
2.928980	-0.000008	0.068275
2.979731	1.571642	-0.889901
2.686207	2.429181	-0.272221
4.008603	1.738354	-1.242041
2.319634	1.524305	-1.763779
2.979026	-1.569756	-0.893086
4.008816	-1.738826	-1.241381
2.680565	-2.427650	-0.278249
2.322478	-1.518864	-1.769424
3.869341	-0.002008	1.657936
3.643287	-0.894244	2.255338
4.948192	-0.002988	1.445250
	$\begin{array}{c} -3.163345\\ -4.200485\\ -0.549480\\ -2.072378\\ -2.072368\\ -0.860396\\ -0.860376\\ -0.163182\\ -2.571406\\ -1.364874\\ -1.364874\\ -1.364874\\ -1.364874\\ -1.364874\\ -1.364874\\ -1.364874\\ -1.364874\\ -1.364874\\ -1.364874\\ -2.876968\\ 0.43880\\ -0.116393\\ 1.247137\\ -1.019137\\ -1.019049\\ -0.116274\\ -2.427043\\ -3.262832\\ -2.427003\\ -3.262832\\ -2.427003\\ -3.262832\\ -2.427003\\ -3.262790\\ -3.774891\\ 2.928980\\ 2.979731\\ 2.686207\\ 4.008603\\ 2.319634\\ 2.979026\\ 4.008816\\ 2.680565\\ 2.322478\\ 3.869341\\ 3.643287\\ 4.948192\\ \end{array}$	-3.163345 0.000405 -4.200485 0.000589 -0.549480 0.000851 -2.072378 -0.889122 -2.072368 0.891022 -0.860396 -1.466484 -0.860376 1.467009 -0.163182 -0.000175 -2.571441 -1.439558 -2.571446 1.439564 -1.364874 -0.908234 -1.364848 0.906827 -2.876968 -0.000581 0.438880 0.001503 -0.116393 -2.612557 1.247137 -0.000346 -1.019137 -1.618614 -1.019049 1.615851 -0.116274 2.613186 -2.427043 -1.479400 -3.262832 -2.399300 -2.427003 1.482466 -3.262790 2.399177 -3.774891 -0.001025 2.928980 -0.000008 2.979731 1.571642 2.686207 2.429181 4.008603 1.738354 2.319634 1.524305 2.979026 -1.569756 4.008816 -1.738826 2.680565 -2.427650 2.322478 -1.518864 3.869341 -0.00208 3.643287 -0.894244 4.948192 -0.002988

Н 3.645114 0.889840 2.256594

 $E_{tot} = -405.7226577$

 $[\mathbf{CHB}_{11}\mathbf{H}_{5}\mathbf{Cl}_{6}]^{-}-\mathbf{C}_{5v}$

E_{tot} -4 5. 1 6 1

С 0.000000 0.000000 -2.586677Η -1.490669-1.6427162.758886 Η 1.479833 2.036815 -2.443103В -0.000023-0.032394-0.509151Η -1.4798332.036815 -2.443103В -1.471605-0.3771470.437296 0.437156 Η 0.000000 0.000000 -3.672608В 1.470745 -0.380953Η 2.394419 -0.777994-2.443103В -0.9091131.318689 0.173284 Η -2.394419-0.777994-2.443103В -0.001718-1.3967700.590227 Η 0.000000 -2.517642-2.443103В 0.912520 1.316355 0.173169 В 0.000000 Η 1.526406 -0.307246-2.3932521.160860 2.364510 В 1.220289 -1.813142Cl 1.845312 2.456408 -0.8289200.886592 В -0.8865921.220289 -1.813142Η 0.003809 2.873244 2.108308 0.471685 Cl 2.951996 -1.017595В 1.451699 -0.307246-0.327930В 0.471685 -0.3072460.002369 1.789899 -1.451699 В 1.623686 В 0.000000 0.645676 Cl -1.8391172.460997 -0.8288390.000000 В 1.434536 -0.466109-1.813142С 0.000632 0.396100 2.603233 В -1.434536-0.466109-1.813142Cl -2.954501-1.010070-0.327725В 0.897199 -1.234889-0.307246В -1.4393870.760556 1.782940 В -0.897199-1.234889-0.307246В -0.898168-0.9202942.027053 В 0.000000 -1.508360-1.813142C1 -0.003942-3.003772-0.276599Cl 1.849619 -2.5457830.468483 В 1.441477 0.756848 1.782792 Cl -1.849619-2.5457830.468483 Cl -0.000932-0.618635-2.2730343.677937 C1 -2.9927470.972403 0.468483 Η 0.000886 0.555364 Cl 2.992747 0.972403 0.468483 В 0.896003 -0.9225832.027031 Cl 0.000000 3.146761 0.468483 Η 1.486738 -1.6465142.758801 Cl 0.000000 0.000000 2.433440 Η 2.396413 1.154748 2.364260 Η -0.003076-1.937307-1.707725

$[Me_3Si][CHB_{11}H_5Cl_6] - C_1$

 $E_{tot} = -814.1954535$

С	3.136349	0.000139	-1.337085
Н	4.090556	0.000195	-1.856132
В	1.732126	0.903957	0.831978
В	3.180394	-0.000554	0.357976
В	2.684851	1.438545	-0.561779
В	1.731835	-0.904978	0.831246
В	0.912860	1.463356	-0.675094
В	0.350468	-0.000019	0.162428
В	2.684384	-1.438747	-0.562944
В	1.880311	0.890032	-2.045637
В	0.912386	-1.462891	-0.676280
В	0.411811	0.000692	-1.610002
В	1.880023	-0.888774	-2.046360
Cl	1.608760	1.831817	2.354018
Cl	1.608170	-1.834030	2.352533
Cl	-1.161198	-0.000256	1.261336
Cl	-0.040797	-2.977343	-0.720037
Cl	-1.023478	0.001368	-2.690357
Cl	-0.039797	2.978172	-0.717656
С	-3.466674	-1.583803	-0.516589
С	-4.101477	-0.000815	2.066578
С	-3.466928	1.584615	-0.515076
Η	-2.865091	-1.610103	-1.430910
Η	-3.198734	-2.443761	0.108690
Η	-4.529022	-1.674585	-0.792191
Η	-3.854985	0.891707	2.654925
Η	-5.189360	-0.000857	1.899059
Η	-3.854800	-0.893782	2.654170
Η	-4.529680	1.676520	-0.788736
Η	-3.197177	2.443874	0.110386
Η	-2.866858	1.611123	-1.430382
Si	-3.259873	-0.000020	0.409293
Η	3.380724	-2.399825	-0.587391
Η	4.208653	-0.000960	0.950958
Η	2.034470	-1.478403	-3.065072
Η	3.381501	2.399416	-0.585450

Н 2.034946 1.480436 -3.063872

Br

Br

Br

3.140781

1.941109

-1.941109

1.020502

-2.671708

-2.671708

$[CHB_{11}H_5Br_6]^- - C_{5v}$

E_{tot} - 16.161 71

 $E_{tot} = -2816.5756061$

4.077192

0.627990

-0.132616

-0.369078

-0.055391

-0.055437

-0.369056

3.017201

2.332039

2.803731

2.105161

2.994199

2.803701

0.778280

2.197044

2.197047

-0.158477

-2.111351

0.867422

0.778283

0.627995

3.017203

2.332020

2.659642

-1.515362

С	0.000000	0.000000	-2.948339	Н	0.000095	0.347646
В	0.000000	0.000000	0.284482	В	-0.907456	1.329113
Η	0.000000	0.000000	-4.034481	Br	-0.000542	-3.120872
Br	0.000000	0.000000	2.235338	Br	-1.929829	2.651244
Η	-1.479107	2.035815	-2.807543	Br	-3.111645	-1.013369
Η	1.479107	2.035815	-2.807543	Br	3.111336	-1.014400
Η	2.393245	-0.777612	-2.807543	Br	1.930693	2.650653
Η	-2.393245	-0.777612	-2.807543	Н	1.486717	-1.786790
Η	0.000000	-2.516406	-2.807543	В	-0.896836	-1.017897
В	1.435277	-0.466350	-2.175601	Н	2.394913	1.031896
В	0.887050	1.220919	-2.175601	В	0.000270	1.712155
В	-0.887050	1.220919	-2.175601	С	0.000058	0.259027
В	-1.435277	-0.466350	-2.175601	Н	-2.394575	1.032646
В	0.000000	-1.509139	-2.175601	В	1.468582	-0.377494
В	1.449638	0.471016	-0.670362	В	-1.440337	0.673219
В	-1.449638	0.471016	-0.670362	В	1.440578	0.672773
В	0.895925	-1.233135	-0.670362	В	0.000055	0.029955
В	-0.895925	-1.233135	-0.670362	Br	-0.000093	-0.410241
В	0.000000	1.524239	-0.670362	В	-0.000211	-1.398864
Br	0.000000	3.302412	0.155726	В	-1.468643	-0.377040
Br	-3.140781	1.020502	0.155726	В	0.907889	1.328834

0.155726

0.155726

0.155726

Η

В

Η

Η

-1.487243

0.896558

0.000456

-0.000150

-1.786338

-1.018172

-1.942824

2.761154

$[\mathrm{Me_3Si}][\mathrm{CHB_{11}H_5Br_6}] - \mathrm{C_1}$

 $E_{tot} = -3225.0438249$

С	-2.068250	0.000238	2.789023
Η	-2.659378	0.000324	3.700587
В	-0.427586	-1.460496	1.147110
В	-0.625792	-0.888975	2.814424
В	-2.039598	-1.439307	1.893095
В	0.456250	0.000713	1.728506
В	-1.865360	-0.903468	0.214330
В	-0.331068	0.000017	0.138256
В	-0.626328	0.890355	2.813909
В	-2.914941	-0.000438	1.320664
В	-0.428486	1.461038	1.146260
В	-1.865901	0.902610	0.213812
В	-2.040475	1.439293	1.892269
Br	2.386354	0.001323	2.063008
Br	0.500643	3.123089	0.709988
Br	0.502685	-3.122130	0.711673
Br	-2.569635	-1.926388	-1.291557
Br	-2.570813	1.924235	-1.292659
Br	0.519310	-0.000519	-1.703379
Н	-2.641622	-2.398486	2.248211
Н	-0.278872	1.479306	3.783958
Н	-2.643080	2.398312	2.246828
Н	-4.101230	-0.000805	1.291311
Н	-0.277978	-1.477149	3.784816
Si	2.916299	0.000066	-1.908706
С	3.533199	1.584586	-1.183779
Н	4.610889	1.659130	-1.397925
Н	3.031162	2.447583	-1.637351
Н	3.389219	1.623014	-0.098880
С	2.919851	-0.000364	-3.771067
Н	3.967823	-0.000262	-4.108441
Н	2.437864	-0.893518	-4.187603
Н	2.437534	0.892422	-4.188003
С	3.533992	-1.583887	-1.183210
Н	3.031828	-2.447271	-1.635900
Н	4.611543	-1.658341	-1.398097

Н 3.390749 -1.621698 -0.098193

$H[CHB_{11}H_5I_6] - C_1$

 $E_{tot} = -2089.9975196$

 $[CHB_{11}H_5I_6]^- - C_5$

 E_{tot} – .5 6 5

С	0.000000	0.000000	-3.152211	Н	-0.000043	0.210669	4.299269
Η	2.390631	-0.775126	-3.017612	В	-0.906585	1.306916	0.885211
Η	1.475935	2.034098	-3.017612	Ι	0.001681	-3.354071	-0.038524
Η	0.000000	0.000000	-4.238651	Ι	-2.051819	2.828983	-0.145893
Η	0.001557	-2.513153	-3.017612	Ι	-3.325317	-1.073517	0.078411
Η	-1.478453	2.032268	-3.017612	Ι	3.326472	-1.070242	0.078411
Η	-2.389669	-0.778087	-3.017612	Ι	2.048937	2.831011	-0.146058
В	1.450727	0.471794	-0.875243	Н	1.484033	-1.881678	3.165615
В	1.435417	-0.465901	-2.381656	В	-0.894431	-1.092279	2.503818
В	0.886666	1.221191	-2.381656	Н	2.393334	0.939210	3.050113
В	0.897002	-1.233931	-0.875243	В	-0.000732	1.643343	2.375004
В	-0.000404	1.525516	-0.875243	С	-0.000007	0.161368	3.213534
В	0.000000	0.000000	0.083975	Н	-2.394068	0.936972	3.050194
В	0.000470	-1.509133	-2.381656	В	1.467152	-0.401138	0.971478
В	-0.887427	1.220638	-2.381656	В	-1.440513	0.600426	2.429630
В	-0.896349	-1.234406	-0.875243	В	1.440058	0.601818	2.429582
В	-1.450977	0.471027	-0.875243	В	-0.000029	0.039672	0.042638
В	-1.435126	-0.466795	-2.381656	Ι	0.000045	-0.263362	-2.138066
Ι	0.000000	3.519676	-0.000619	В	0.000743	-1.432214	1.023003
Ι	3.347411	1.087640	-0.000619	В	-1.466701	-0.402556	0.971540
Ι	2.068814	-2.847478	-0.000619	В	0.905376	1.307794	0.885159
Ι	-2.068814	-2.847478	-0.000619	Н	-1.482081	-1.883092	3.165684
Ι	-3.347411	1.087640	-0.000619	В	0.895632	-1.091397	2.503780
Ι	0.000000	0.000000	2.252957	Н	-0.001242	2.671736	2.966921
				Η	0.000269	-2.000515	-1.562087

$[\mathrm{Me_3Si}][\mathrm{CHB_{11}H_5I_6}] - \mathrm{C_1}$

 $E_{tot} = -2498.4616413$

С	1.120098	0.000147	-3.373531
Η	1.413006	0.000176	-4.420064
В	0.043080	-1.459272	-1.314019
В	-0.264648	-0.888562	-2.966083
В	1.359723	-1.440132	-2.508721
В	-0.972128	0.001437	-1.605722
В	1.693602	-0.903498	-0.853852
В	0.250636	-0.000038	-0.315193
В	-0.263087	0.891043	-2.965574
В	2.365305	-0.001275	-2.224405
В	0.045684	1.460284	-1.313187
В	1.695195	0.901317	-0.853365
В	1.362258	1.439507	-2.507911
Н	1.829333	-2.396717	-3.030991
Н	-0.879287	1.479563	-3.791627
Н	1.833554	2.395549	-3.029654
Н	3.505288	-0.002186	-2.553771
Н	-0.881848	-1.475541	-3.792485
Si	-2.488680	0.000043	2.808177
С	-3.291483	1.586311	2.289743
Н	-4.271230	1.653672	2.788428
Н	-2.688772	2.450156	2.595170
Н	-3.447810	1.632221	1.206565
С	-1.997759	-0.001891	4.609216
Н	-2.918352	-0.001801	5.213268
Н	-1.422852	-0.895516	4.882516
Н	-1.421687	0.890522	4.884027
С	-3.293593	-1.584189	2.286851
Н	-2.692062	-2.449472	2.590542
Н	-4.273384	-1.651177	2.785488
Н	-3.450082	-1.627778	1.203608
Ι	-0.798296	-3.321706	-0.581756
Ι	-3.135140	0.003245	-1.379986
Ι	-0.792391	3.323746	-0.579817
Ι	2.979088	2.050944	0.467489
Ι	2.975472	-2.056105	0.466394

I v0.043713 -0.000286 1.898637

 $H[CHB_{11}F_{11}] - C_1$

 $E_{tot} = -1410.3572916$

 $[CHB_{11}F_{11}]^{-} - C_{5v}$

 $E_{tot}\quad -14$. 6 1 1

C	0.000000	0.000000	-1.634920	H	-1.183610	-0.001076	-2.479035
Η	0.000000	0.000000	-2.723434	В	0.645342	1.489359	0.333310
В	0.000000	1.541486	0.644912	F	1.343038	-2.563087	0.805485
В	0.895276	1.232241	-0.860067	F	1.339439	2.565063	0.805206
В	-0.895276	1.232241	-0.860067	F	2.913892	0.001917	0.387633
В	1.466040	0.476345	0.644912	F	-1.523795	-1.645085	2.089355
В	-1.466040	0.476345	0.644912	F	-1.525851	1.643434	2.089088
В	0.000000	0.000000	1.573329	F	-1.489124	-2.519905	-1.146641
В	1.448587	-0.470674	-0.860067	В	0.727498	-0.916994	-1.352166
В	-1.448587	-0.470674	-0.860067	F	-3.115968	-0.002123	-0.353995
В	0.906062	-1.247088	0.644912	В	-0.836726	1.465918	-0.606910
В	-0.906062	-1.247088	0.644912	С	-0.714616	-0.000583	-1.494250
В	0.000000	-1.523134	-0.860067	F	1.223240	1.578006	-2.421085
F	-2.637222	0.856885	1.256328	В	-0.911431	-0.929835	1.111790
F	0.000000	2.772939	1.256328	В	0.726276	0.917779	-1.352354
F	-1.629893	-2.243355	1.256328	В	-1.780271	-0.001204	-0.141210
F	1.629893	-2.243355	1.256328	В	0.567628	0.000489	1.298850
F	2.637222	0.856885	1.256328	F	1.652925	0.001246	2.383941
F	0.000000	0.000000	2.948535	В	0.647312	-1.488434	0.333576
F	2.529153	-0.821772	-1.622808	В	1.572118	0.001084	-0.120131
F	1.563102	2.151426	-1.622808	В	-0.912678	0.928752	1.111606
F	-1.563102	2.151426	-1.622808	F	1.225345	-1.576796	-2.420749
F	-2.529153	-0.821772	-1.622808	В	-0.834767	-1.467142	-0.606642
F	0.000000	-2.659308	-1.622808	F	-1.492507	2.517797	-1.146901
				Η	2.464086	0.001512	1.753909

$[Me_3Si][CHB_{11}F_{11}] - C_1$

 $E_{tot} = -1818.8630311$

С	2.551783	0.000025	0.417474
Н	3.605332	0.000025	0.696689
В	0.242877	1.477395	0.298791
В	1.496510	0.901505	1.417662
В	1.937216	1.458374	-0.237739
В	-0.030203	0.000062	1.332223
В	0.686497	0.913821	-1.378594
В	-0.462447	-0.000026	-0.382745
В	1.496539	-0.901340	1.417760
В	2.207566	-0.000069	-1.261262
В	0.242889	-1.477376	0.298941
В	0.686492	-0.913978	-1.378516
В	1.937190	-1.458364	-0.237596
F	-0.499998	2.613000	0.489771
F	-0.980239	0.000196	2.328387
F	-1.877317	0.000012	-0.821527
F	-0.499954	-2.612956	0.490165
F	0.283839	-1.616061	-2.478900
F	0.283780	1.615809	-2.479022
F	1.983236	1.561654	2.498141
F	2.754108	2.531597	-0.378437
F	1.983215	-1.561406	2.498320
F	2.754041	-2.531646	-0.378171
F	3.227417	-0.000129	-2.154892
Si	-3.563472	0.000002	-0.060955
С	-3.579170	-1.571568	0.896772
Η	-4.602338	-1.746886	1.261935
Н	-3.289313	-2.427357	0.275030
Н	-2.910920	-1.520174	1.764090
С	-4.526435	-0.000105	-1.634528
Н	-5.601220	-0.000198	-1.401293
Н	-4.313316	0.892510	-2.235952
Н	-4.313170	-0.892723	-2.235893
С	-3.579255	1.571588	0.896730
Η	-4.602355	1.746780	1.262141
Н	-2.910788	1.520308	1.763880

Н -3.289632 2.427384 0.274899

$H[CHB_{11}Cl_{11}] - C_1$

 $E_{tot} = -477.9164516$

$[CHB_{11}Cl_{11}]^{-} - C_{5v}$

E_{tot} -477.5250851

С	0.000000	0.000000	-1.704566	Н	-0.079462	0.618597	-2.760587
Η	0.000000	0.000000	-2.792017	В	-1.393165	-0.730578	0.422088
В	0.000000	1.532859	0.591425	Cl	1.544112	2.410189	1.879742
В	0.894114	1.230642	-0.921654	Cl	-2.768192	-1.598210	1.129114
В	-0.894114	1.230642	-0.921654	Cl	-2.107241	1.938379	1.878750
В	1.457835	0.473679	0.591425	Cl	3.084160	-0.840203	1.129295
В	-1.457835	0.473679	0.591425	Cl	0.412169	-3.186521	0.925088
В	0.000000	0.000000	1.529793	Cl	2.684538	1.700559	-1.651778
В	1.446707	-0.470063	-0.921654	В	-0.220691	1.706850	-0.607765
В	-1.446707	-0.470063	-0.921654	Cl	2.027364	-1.747220	-2.357260
В	0.900992	-1.240109	0.591425	В	-0.772505	-1.091428	-1.212000
В	-0.900992	-1.240109	0.591425	С	-0.049483	0.382852	-1.697867
В	0.000000	-1.521157	-0.921654	Cl	-3.029942	0.960599	-1.650794
Cl	1.845425	-2.540010	1.360483	В	1.533205	-0.352571	0.422322
Cl	-1.845425	-2.540010	1.360483	В	-1.533290	0.499698	-0.844535
Cl	-2.985961	0.970198	1.360483	В	1.025149	-0.859624	-1.211340
Cl	2.985961	0.970198	1.360483	В	0.033934	-0.263544	1.378414
Cl	0.000000	3.139625	1.360483	Cl	0.125244	-0.967981	3.091257
Cl	0.000000	0.000000	3.311623	В	0.760465	1.237848	0.809712
Cl	2.878904	-0.935413	-1.862500	В	-1.050229	1.004446	0.809159
Cl	0.000000	-3.027059	-1.862500	В	0.199439	-1.541341	0.192594
Cl	-2.878904	-0.935413	-1.862500	Cl	-0.433959	3.353533	-1.195117
Cl	-1.779260	2.448942	-1.862500	В	1.355016	0.873561	-0.844757
Cl	1.779260	2.448942	-1.862500	Cl	-1.514738	-2.205429	-2.358119
				Η	0.289937	-2.233115	2.435311

$[\mathbf{Me_3Si}][\mathbf{CHB_{11}Cl_{11}}] - \mathbf{C_1}$

 $E_{tot} = -886.3921529$

		-	
С	-2.352782	-0.000043	0.608684
Н	-3.376424	-0.000073	0.979077
В	-0.627056	0.907505	-1.334408
В	-2.141715	0.000222	-1.090399
В	-1.784967	1.453583	-0.096593
В	-0.627111	-0.907065	-1.334701
В	-0.040404	1.466743	0.283501
В	0.629074	0.000042	-0.459626
В	-1.785052	-1.453477	-0.097060
В	-1.206063	0.898707	1.506111
В	-0.040490	-1.466859	0.283029
В	0.316927	-0.000226	1.283036
В	-1.206116	-0.899144	1.505820
Cl	-0.288872	1.832137	-2.810725
Cl	-0.288983	-1.831247	-2.811314
Cl	2.277171	0.000115	-1.323769
Cl	0.884661	-2.973281	0.468934
Cl	1.561266	-0.000479	2.560020
Cl	0.884815	2.973062	0.469895
Cl	-3.518014	0.000439	-2.192939
Cl	-2.806650	2.885985	-0.218572
Cl	-2.806819	-2.885789	-0.219496
Cl	-1.652051	-1.779393	2.968357
Cl	-1.651951	1.778513	2.968921
С	4.320415	-1.584591	0.751523
С	5.296551	-0.000483	-1.729457
С	4.321207	1.584968	0.750835
Η	3.610738	-1.597915	1.585022
Η	4.117541	-2.442127	0.099000
Η	5.338580	-1.693247	1.156759
Η	5.127716	0.892220	-2.344272
Η	6.353980	0.000113	-1.423466
Н	5.128382	-0.894012	-2.343247
Η	5.340235	1.694630	1.153620
Η	4.116110	2.442109	0.098485
Η	3.613406	1.598009	1.585924
Si	4.255322	-0.000002	-0.192021

 $E_{tot} = -4897.8059176$

E_{tot} -4 7.4 7 16

С	0.000000	0.000000	-1.746955	Η	-0.000394	0.470875	-2.835341
Η	0.000000	0.000000	-2.834360	В	0.909106	1.178161	0.704676
В	0.000171	1.531650	0.552959	Br	0.002167	-3.317390	1.090526
В	0.894273	1.230861	-0.961210	Br	1.925012	2.409130	1.796071
В	-0.894273	1.230861	-0.961210	Br	3.105366	-1.206786	1.196363
В	1.456739	0.473144	0.552959	Br	-3.103783	-1.210810	1.196453
В	-1.456633	0.473468	0.552959	Br	-1.928156	2.406516	1.796172
В	0.000000	0.000000	1.494403	Br	-1.866129	-2.229261	-2.366222
В	1.446964	-0.470147	-0.961210	В	0.906536	-1.040092	-1.191746
В	-1.446964	-0.470147	-0.961210	Br	-3.018772	1.302153	-1.837356
В	0.900143	-1.239231	0.552959	В	-0.001133	1.690987	-0.746080
В	-0.900420	-1.239031	0.552959	С	-0.000227	0.296750	-1.760749
В	0.000000	-1.521428	-0.961210	Br	3.017024	1.306172	-1.837356
Br	1.862377	2.563685	-1.982240	В	-1.472347	-0.515589	0.418511
Br	3.013715	-0.979003	-1.982240	В	1.454419	0.651265	-0.922110
Br	3.126302	1.016251	1.386250	В	-1.455321	0.649333	-0.922070
Br	-0.000432	3.287329	1.386250	В	0.000130	-0.181940	1.374941
Br	1.932593	-2.659251	1.386250	Br	0.000602	-0.778225	3.279918
Br	0.000000	0.000000	3.438532	В	0.000996	-1.527593	0.242593
Br	-3.126569	1.015430	1.386250	В	1.473018	-0.513658	0.418456
Br	-1.931894	-2.659759	1.386250	В	-0.910607	1.176958	0.704726
Br	-3.013590	-0.979387	-1.982240	Br	1.869086	-2.226794	-2.366197
Br	0.000202	-3.168742	-1.982240	В	-0.905187	-1.041278	-1.191737
Br	-1.862703	2.563448	-1.982240	Br	-0.002356	3.470758	-1.479556
				Н	0.001552	-2.275460	2.540453
$[Me_3Si][CHB_{11}Br_{11}] - C_1$

 $E_{tot} = -5306.2757301$

С	-2.035736	0.000244	0.809987
Η	-3.019169	0.000387	1.276453
В	-0.499355	0.905102	-1.290182
В	-1.985312	-0.000690	-0.902821
В	-1.535641	1.453418	0.051323
В	-0.499144	-0.906562	-1.289187
В	0.239235	1.465440	0.261724
В	0.841124	-0.000168	-0.542761
В	-1.535302	-1.453647	0.052923
В	-0.807201	0.899655	1.591959
В	0.239576	-1.465018	0.263338
В	0.689609	0.000800	1.224291
В	-0.806990	-0.898014	1.592946
С	4.829712	-1.586218	0.371545
С	5.661812	-0.001084	-2.154376
С	4.829852	1.587128	0.369679
Η	4.127165	-1.631720	1.210120
Η	4.654946	-2.447576	-0.284239
Н	5.854445	-1.657079	0.768857
Η	5.470451	0.892167	-2.761746
Η	6.731317	-0.001297	-1.892305
Η	5.469918	-0.894760	-2.760955
Η	5.854674	1.658499	0.766675
Η	4.654899	2.447716	-0.287063
Η	4.127491	1.633577	1.208356
Si	4.692019	-0.000087	-0.566287
Br	-2.653596	-3.022948	0.020710
Br	-1.138633	-1.863440	3.228907
Br	-0.308639	1.919488	-2.931468
Br	-3.590601	-0.001463	-1.968817
Br	-2.654298	3.022424	0.017369
Br	-1.139063	1.866808	3.226854
Br	1.253043	-3.115575	0.377263
Br	2.155273	0.001672	2.503725
Br	1.252300	3.116374	0.373825
Br	-0.308192	-1.922705	-2.929355

Br 2.531512 -0.000656 -1.655154

$H[CHB_{11}I_{11}] - C_1$

 $E_{tot} \,{=}\, -3565.7368215$

$[CHB_{11}I_{11}]^{-} - C_5$

 $E_{tot} - 565. 1754$

С	0.000000	0.000000	-1.772074	Н	0.000382	0.292164	-2.883177
Η	0.000000	0.000000	-2.859514	В	0.910138	1.215516	0.606725
В	0.000000	-1.532414	0.533141	Ι	-0.005512	-3.485102	1.275502
В	-0.895694	-1.233177	-0.984967	Ι	2.043477	2.661650	1.732810
В	0.896036	-1.232928	-0.984967	Ι	3.305430	-1.200650	1.324187
В	-1.457412	-0.473542	0.533141	Ι	-3.309082	-1.190309	1.324343
В	1.457412	-0.473542	0.533141	Ι	-2.035072	2.668089	1.732831
В	0.000000	0.000000	1.475617	Ι	-1.984859	-2.523095	-2.355915
В	-1.449606	0.470783	-0.984967	В	0.903804	-1.114127	-1.143612
В	1.449475	0.471186	-0.984967	Ι	-3.204857	1.258880	-2.038904
В	-0.900730	1.239749	0.533141	В	0.002528	1.642924	-0.875579
В	0.900730	1.239749	0.533141	С	0.000264	0.187350	-1.800068
В	-0.000212	1.524137	-0.984967	Ι	3.208715	1.248877	-2.039031
Ι	3.320220	-1.076901	1.451466	В	-1.472065	-0.488007	0.435157
Ι	1.978611	-2.722344	-2.113866	В	1.457483	0.589151	-0.983379
Ι	0.001811	-3.490497	1.451466	В	-1.455669	0.593716	-0.983314
Ι	-1.977678	-2.723021	-2.113866	В	-0.000118	-0.096428	1.377319
Ι	-3.319101	-1.080345	1.451466	Ι	-0.000685	-0.514775	3.534975
Ι	-3.200883	1.039424	-2.113866	В	-0.002335	-1.517418	0.322694
Ι	-2.053128	2.822807	1.451466	В	1.470571	-0.492604	0.435096
Ι	-0.000576	3.365421	-2.113866	В	-0.906320	1.218349	0.606765
Ι	2.050198	2.824936	1.451466	Ι	1.976783	-2.529376	-2.355958
Ι	3.200527	1.040520	-2.113866	В	-0.907314	-1.111277	-1.143586
Ι	0.000000	0.000000	3.640485	Ι	0.005632	3.580050	-1.803083
				Η	-0.003910	-2.249901	2.829150

$[\mathbf{Me_3Si}][\mathbf{CHB_{11}I_{11}}] - \mathbf{C_1}$

 $E_{tot} = -3974.2012331$

С	-1.818655	0.034435	1.064608
Η	-2.729028	0.053485	1.660185
В	-0.591106	0.824812	-1.277325
В	-2.000382	-0.069407	-0.636494
В	-1.448709	1.446564	0.159475
В	-0.559319	-0.982688	-1.171427
В	0.341458	1.483739	0.123589
В	0.858933	-0.021643	-0.670740
В	-1.397122	-1.460133	0.330490
В	-0.507638	0.992477	1.618989
В	0.393122	-1.439336	0.296108
В	0.942322	0.085459	1.099859
В	-0.476068	-0.805280	1.725423
С	5.288070	-1.555597	-0.214001
С	5.782173	-0.154885	-2.921260
С	5.284261	1.612982	-0.431928
Н	4.717572	-1.547450	0.720588
Η	5.026027	-2.458357	-0.779001
Н	6.361230	-1.601033	0.030311
Н	5.523034	0.695191	-3.564637
Η	6.875372	-0.148900	-2.788955
Η	5.517326	-1.086790	-3.436153
Η	6.349346	1.683249	-0.160493
Η	5.052416	2.428900	-1.127348
Η	4.684659	1.742096	0.475510
Si	5.002009	-0.034152	-1.229813
Ι	-0.642870	2.182028	3.406280
Ι	-2.600916	-3.226569	0.558999
Ι	-0.574327	-1.778215	3.641174
Ι	-3.932934	-0.158390	-1.574324
Ι	-2.712954	3.186087	0.178905
Ι	-0.671143	1.847829	-3.178066
Ι	1.446341	3.334528	-0.010155
Ι	-0.601846	-2.226303	-2.937711
Ι	1.558807	-3.255761	0.380793
Ι	2.745243	0.189651	2.290558

I 2.545115 -0.079352 -2.129788

 $\left[\text{Me}_3\text{SiOPMe}_3\right]^+ - \text{C}_1$

E₀ -44.7

 $OPMe_3 - C_{3V}$

E₀ -5 6. 65 5

Р	0.000000	0.000000	0.179924
0	0.000000	0.000000	1.679308
С	0.000000	1.657643	-0.552771
Η	0.889077	2.198241	-0.205887
Η	0.000000	1.619647	-1.649373
Η	-0.889077	2.198241	-0.205887
С	-1.435561	-0.828821	-0.552771
Η	-1.402656	-0.809824	-1.649373
Η	-1.459194	-1.869084	-0.205887
Η	-2.348271	-0.329157	-0.205887
С	1.435561	-0.828821	-0.552771
Η	1.402656	-0.809824	-1.649373
Η	2.348271	-0.329157	-0.205887
Η	1.459194	-1.869084	-0.205887

Р	-1.505407	-0.000427	-0.076835
0	-0.041157	0.004893	-0.628076
С	-1.941613	1.604736	0.582528
Η	-1.807871	2.367656	-0.193693
Η	-2.990509	1.597541	0.905260
Η	-1.303189	1.844821	1.440763
С	-1.723461	-1.231193	1.205021
Η	-2.776432	-1.252950	1.513323
Η	-1.439358	-2.218906	0.822989
Η	-1.104604	-0.985132	2.076162
С	-2.576750	-0.384295	-1.452450
Η	-2.442055	0.367399	-2.239374
Η	-2.321104	-1.373207	-1.851200
Η	-3.623372	-0.382945	-1.123344
Si	1.623180	0.002318	-0.038756
С	1.964200	-1.729952	0.536240
Η	3.022559	-1.817198	0.821356
Η	1.371789	-2.012691	1.416437
Η	1.780357	-2.462894	-0.260371
С	2.586767	0.488329	-1.539901
Η	3.660885	0.504415	-1.307667
Η	2.435154	-0.225332	-2.360124
Η	2.308178	1.488639	-1.895741
С	1.713520	1.246425	1.341374
Η	2.754581	1.319672	1.687647
Η	1.412578	2.250590	1.014616
Η	1.112267	0.961027	2.215794

 $(Me_3Si)_2S - C_2$

E₀ -1 16.15 5

$$[Me_3SiS]^- - C_{3V}$$

 $E_0 - 7.15 \ 66$

S	0.000000	0.000000	1.255929
Si	0.000000	1.746397	-0.024911
Si	0.000000	-1.746397	-0.024911
С	0.493195	-3.142893	1.122781
Η	-0.202295	-3.220861	1.969159
Η	0.485066	-4.104261	0.589031
Η	1.501192	-2.985431	1.528340
С	-1.715838	-2.068301	-0.708631
Η	-1.729802	-3.008537	-1.279712
Η	-2.446377	-2.154255	0.106501
Η	-2.049355	-1.263671	-1.375780
С	1.239414	-1.604761	-1.425953
Η	0.965256	-0.826874	-2.150281
Η	2.243967	-1.380237	-1.044705
Η	1.288421	-2.559260	-1.970422
С	-1.239414	1.604761	-1.425953
Η	-0.965256	0.826874	-2.150281
Η	-2.243967	1.380237	-1.044705
Η	-1.288421	2.559260	-1.970422
С	1.715838	2.068301	-0.708631
Η	1.729802	3.008537	-1.279712
Η	2.446377	2.154255	0.106501
Η	2.049355	1.263671	-1.375780
С	-0.493195	3.142893	1.122781
Η	0.202295	3.220861	1.969159
Η	-0.485066	4.104261	0.589031
Н	-1.501192	2.985431	1.528340

S	0.000000	0.000000	1.872972
Si	0.000000	0.000000	-0.186570
С	0.000000	1.742166	-0.964131
Η	0.885901	2.304249	-0.633510
Η	0.000000	.711652	-2.066716
Η	-0.885901	2.304249	-0.633510
С	1.508760	-0.871083	-0.964131
Η	1.552588	-1.919338	-0.633510
Η	1.482334	-0.855826	-2.066716
Η	2.438489	-0.384912	-0.633510
С	-1.508760	-0.871083	-0.964131
Η	-1.482334	-0.855826	-2.066716
Η	-1.552588	-1.919338	-0.633510
Η	-2.438489	-0.384912	-0.633510

 $\left[(\mathrm{Me}_3\mathrm{Si})_3\mathrm{S}\right]^+-\mathrm{C}_3$

E₀ -16 4. 66 6 4

S	0.000000	0.000000	0.737738
Si	0.000000	2.146688	-0.003995
Si	-1.859087	-1.073344	-0.003995
Si	1.859087	-1.073344	-0.003995
С	1.503755	-2.882005	0.249983
Н	0.727891	-3.270378	-0.419552
Н	2.430269	-3.432656	0.028775
Н	1.229629	-3.107399	1.287927
С	3.198333	-0.484182	1.143006
Н	4.112688	-1.056796	0.926751
Н	3.438063	0.577421	1.018785
Η	2.934832	-0.663978	2.192986
С	2.154753	-0.646885	-1.792470
Η	3.013050	-1.236654	-2.147614
Η	1.297029	-0.898509	-2.428088
Η	2.406241	0.410148	-1.941760
С	-1.179853	3.011928	1.143006
Н	-0.892394	2.873628	2.192986
Η	-1.141132	4.090090	0.926751
Н	-2.219093	2.688739	1.018785
С	1.744012	2.743293	0.249983
Н	1.757633	3.821003	0.028775
Н	2.076272	2.618589	1.287927
Η	2.468285	2.265561	-0.419552
С	-0.517158	2.189514	-1.792470
Η	0.129617	1.572515	-2.428088
Η	-1.558319	1.878792	-1.941760
Η	-0.435551	3.227705	-2.147614
С	-1.637596	-1.542629	-1.792470
Η	-2.577499	-1.991050	-2.147614
Η	-1.426646	-0.674006	-2.428088
Η	-0.847922	-2.288940	-1.941760
С	-2.018480	-2.527747	1.143006
Η	-1.218970	-3.266161	1.018785
Н	-2.042438	-2.209650	2.192986
Н	-2.971556	-3.033294	0.926751
С	-3.247767	0.138712	0.249983
Η	-4.187902	-0.388347	0.028775
Η	-3.305901	0.488810	1.287927
Η	-3.196176	1.004817	-0.419552

100

 $(Me_3SiO)_2SO_2 - C_2$

E₀ -1516. 4465

 $[Me_3SiOSO_3]^- - C_1$

E₀ -11 7. 5514

S	0.000000	0.000000	1.075359
0	-0.406052	1.184668	1.790367
0	0.406052	-1.184668	1.790367
0	1.163589	0.367792	0.078228
0	-1.163589	-0.367792	0.078228
Si	-1.543143	-1.992553	-0.440102
Si	1.543143	1.992553	-0.440102
С	2.290284	2.910799	0.992191
Η	2.625787	3.907402	0.671354
Η	1.558932	3.034183	1.800005
Η	3.160843	2.373836	1.391631
С	-2.290284	-2.910799	0.992191
Η	-2.625787	-3.907402	0.671354
Η	-1.558932	-3.034183	1.800005
Η	-3.160843	-2.373836	1.391631
С	0.000000	-2.795681	-1.098614
Η	-0.240442	-3.783705	-1.516283
Η	0.451872	-2.192387	-1.896846
Η	0.742974	-2.930181	-0.303290
С	2.787450	1.654794	-1.783204
Η	3.169717	2.598678	-2.196530
Η	3.642990	1.086234	-1.395545
Η	2.340895	1.082538	-2.606942
С	-2.787450	-1.654794	-1.783204
Η	-3.169717	-2.598678	-2.196530
Η	-3.642990	-1.086234	-1.395545
Η	-2.340895	-1.082538	-2.606942
С	0.000000	2.795681	-1.098614
Η	0.240442	3.783705	-1.516283
Η	-0.451872	2.192387	-1.896846
Η	-0.742974	2.930181	-0.303290

S	-1.580411	-0.006164	-0.049728
0	-2.342666	-1.088016	-0.668205
0	-1.163562	-0.261032	1.344389
0	-2.101858	1.340160	-0.285573
0	-0.130244	-0.026449	-0.882865
Si	1.323004	-0.000776	-0.040146
С	1.658508	-1.595840	0.884411
Η	2.666070	-1.589967	1.327659
Η	0.913447	-1.726132	1.678276
Η	1.588455	-2.455861	0.203453
С	1.486953	1.482659	1.090366
Η	2.505178	1.555090	1.501954
Η	1.268964	2.407645	0.538795
Η	0.766573	1.401776	1.913215
С	2.589534	0.153751	-1.426651
Η	3.616882	0.162020	-1.032437
Η	2.501322	-0.687283	-2.128820
Η	2.434306	1.081497	-1.995143

$\left[(\mathrm{Me}_{3}\mathrm{SiO})_{3}\mathrm{SO}\right]^{+}-\mathrm{C}_{1}$

 $E_0 -1 5.61 6775$

S	-0.031946	0.013587	-0.713187
Ο	1.014488	-0.933403	-0.137988
0	-0.589704	-0.382309	-1.966949
Ο	0.681704	1.347987	-0.819534
0	-1.073770	0.150491	0.399918
Si	-2.819645	0.609473	0.185570
Si	1.975668	2.137688	0.171400
С	3.551474	1.306628	-0.329950
Η	4.399386	1.810586	0.155760
Η	3.574271	0.251577	-0.031909
Η	3.706275	1.368863	-1.414778
С	-3.647079	-0.893597	-0.508410
Η	-4.724766	-0.700869	-0.609312
Η	-3.259417	-1.143823	-1.503576
Η	-3.530410	-1.762676	0.152116
С	-2.835151	2.079453	-0.940307
Η	-3.865107	2.455536	-1.023053
Η	-2.217309	2.899209	-0.551765
Η	-2.494168	1.826541	-1.951965
С	1.816557	3.880824	-0.421326
Η	2.585644	4.504525	0.056130
Η	1.961418	3.946252	-1.507263
Η	0.837387	4.309740	-0.173635
С	-3.264821	0.981074	1.942438
Η	-4.331716	1.238559	2.004144
Η	-3.095688	0.114186	2.593931
Η	-2.694190	1.831452	2.336674
С	1.508339	1.888745	1.948564
Η	2.229803	2.424178	2.582452
Η	0.512867	2.293868	2.169844
Η	1.531530	0.832717	2.245140
Si	0.925921	-2.717140	0.199188
С	0.153680	-2.828582	1.879420
Η	0.124949	-3.879541	2.200669
Η	0.727439	-2.268642	2.628863
Н	-0.878132	-2.455162	1.878852
С	2.725164	-3.140358	0.151976
Н	2.858032	-4.209235	0.371004

Η	3.156458	-2.947799	-0.838660
Η	3.295352	-2.576277	0.901195
С	-0.081585	-3.484293	-1.149523
Η	-1.137180	-3.188665	-1.108128
Η	0.309277	-3.236804	-2.144060
Η	-0.039295	-4.577471	-1.034757

$$[SO_4]^{2-} - T_d$$

E₀ -6 .641 1

$$[SO_3]^{2-} - C_{3V}$$

E₀ -6 .4 7 4

S	0.000000	0.000000	0.000000
0	0.874485	0.874485	0.874485
0	-0.874485	-0.874485	0.874485
0	-0.874485	0.874485	-0.874485
0	0.874485	-0.874485	-0.874485

S	0.000000	0.000000	0.337868
0	0.000000	1.448145	-0.225245
0	1.254130	-0.724073	-0.225245
0	-1.254130	-0.724073	-0.225245

 $[(Me_3Si)SO_3]^- - C_1$

 E_0 -1 . 6193021

 $[(Me_3SiO)SO_2]^- - C_1$

E₀ -1 .64 51 7

S	-1.840350	0.056856	-0.457895	S	-1.209951	0.000507	0.001030
0	-1.494776	1.238227	0.405061	Ο	-1.594489	-0.538741	-1.329839
0	-2.432368	-1.061672	0.326872	Ο	-1.595761	1.422334	0.198829
0	-0.217112	-0.578862	-0.837769	Ο	-1.596648	-0.882278	1.132716
Si	1.119871	-0.050860	0.002166	Si	0.987666	-0.000349	0.000029
С	1.575851	1.733956	-0.380361	С	1.584090	-1.767887	-0.241179
Η	2.514483	2.024310	0.116552	Η	1.195713	-2.164953	-1.188641
Η	1.704998	1.876612	-1.463314	Η	2.682783	-1.835973	-0.253982
Η	0.767835	2.394204	-0.041552	Η	1.201305	-2.403304	0.568714
С	2.530034	-1.140540	-0.628865	С	1.591148	0.675121	1.648908
Η	3.489202	-0.870137	-0.160501	Η	2.690194	0.698532	1.708105
Η	2.329866	-2.199319	-0.410815	Η	1.209196	1.694310	1.795963
Η	2.643098	-1.040192	-1.718094	Η	1.207988	0.053513	2.469301
С	0.994160	-0.285744	1.860404	С	1.584554	1.091158	-1.410911
Η	0.733553	-1.326826	2.097375	Η	1.205019	2.112931	-1.276169
Η	1.942645	-0.039837	2.363159	Н	2.683232	1.127883	-1.469975
Η	0.195506	0.355932	2.252813	Η	1.192896	0.712973	-2.364760

E₀ -1441.6

 $[(Me_3SiO)S(O_2)SiMe_3] - C_1$

E₀ -1441.6 71661

S	0.014667	-1.131957	-0.660302	S	-0.429602	-0.853180	0.002195
0	-0.068859	-1.561527	0.747775	0	-0.049967	-1.161907	1.382829
0	0.946229	0.217561	-0.685592	0	0.685180	0.141230	-0.603454
0	-1.367442	-0.407819	-1.055767	0	-0.595397	-1.959210	-0.931534
Si	2.509248	0.281037	0.041233	Si	-2.249837	0.441099	-0.034663
Si	-2.503874	0.302877	0.051166	С	-3.574276	-0.681718	0.640105
С	3.385677	-1.340184	-0.255905	Н	-3.331466	-1.008037	1.659366
Η	4.414282	-1.289356	0.128634	Н	-4.539215	-0.155725	0.668823
Η	2.879688	-2.169724	0.255567	Н	-3.688139	-1.573054	0.010107
Η	3.440646	-1.576515	-1.327142	С	-2.495013	0.900701	-1.822938
С	2.323668	0.632837	1.860627	Н	-3.408410	1.500633	-1.943306
Н	3.308226	0.727540	2.340296	Н	-1.646628	1.487189	-2.197421
Η	1.774971	1.569104	2.028825	Н	-2.590313	-0.000595	-2.441665
Η	1.774558	-0.180149	2.352424	С	-1.861113	1.887904	1.074503
С	3.333985	1.689516	-0.857874	Н	-1.023681	2.473765	0.675294
Η	2.765055	2.621029	-0.737294	Н	-2.733313	2.552108	1.156295
Η	4.346483	1.860322	-0.465607	Н	-1.595663	1.544819	2.082495
Η	3.416948	1.478996	-1.932241	Si	2.323802	0.241475	-0.031524
С	-3.390406	-1.065111	0.950836	С	2.335546	1.116775	1.612833
Η	-4.176470	-0.652008	1.599132	Н	1.782121	0.536107	2.360783
Η	-3.866559	-1.758162	0.244376	Н	3.367633	1.246812	1.968475
Η	-2.690101	-1.634784	1.574003	Н	1.880086	2.113483	1.537484
С	-3.639223	1.215243	-1.111843	С	3.123996	1.274667	-1.361159
Η	-4.456455	1.697088	-0.556436	Н	4.181939	1.454403	-1.122816
Η	-3.096516	1.995597	-1.661430	Н	3.077653	0.771040	-2.335595
Η	-4.087106	0.531457	-1.845029	Н	2.631347	2.251434	-1.457290
С	-1.637575	1.466945	1.219122	С	3.056816	-1.465143	0.063220
Η	-1.047082	2.210750	0.669091	Н	2.567128	-2.058639	0.845105
Н	-2.379183	2.003065	1.828759	Н	2.942700	-1.995901	-0.891049
Η	-0.967459	0.921062	1.894188	Н	4.130077	-1.405023	0.294278

 $[(Me_3SiO)_2S(O)SiMe_3]^+ - C_1$

E₀ -1 5 .4 14455

E₀ -1 5 .46 6 7

S	0.077565	-0.072262	-0.854703	S	-0.105548	0.470628	-0.343736
0	-0.825063	1.181574	-0.934586	0	-0.811740	-0.585082	0.557432
0	1.355701	0.479548	-0.138308	Ο	1.340730	0.524013	0.198597
0	-0.537404	-0.961914	0.286796	0	-0.194420	0.131047	-1.749758
Si	2.881812	-0.435067	0.095270	Si	-0.918418	2.560217	0.176179
Si	-1.837572	-2.172743	0.062873	С	-2.643160	2.489320	-0.497454
Si	-1.051992	2.617233	0.137076	Н	-3.271200	1.773124	0.045142
С	-1.816959	-2.653300	-1.731329	Н	-3.100150	3.483403	-0.382430
Η	-2.574964	-3.431681	-1.899916	Н	-2.653692	2.241016	-1.565944
Η	-2.066914	-1.814023	-2.394363	С	0.254440	3.633062	-0.776452
Η	-0.849510	-3.068502	-2.043107	Н	-0.049123	4.683053	-0.651765
С	-3.395677	-1.302374	0.564326	Н	1.283867	3.536594	-0.410929
Η	-4.250170	-1.988247	0.477803	Н	0.231662	3.405215	-1.849631
Η	-3.351427	-0.961178	1.606619	С	-0.778271	2.629096	2.022560
Η	-3.600057	-0.438613	-0.081860	Н	0.263427	2.545157	2.355443
С	-1.321489	-3.522072	1.219651	Н	-1.164653	3.598255	2.371381
Η	-1.204218	-3.146400	2.244467	Н	-1.371038	1.841241	2.503711
Η	-2.089805	-4.307711	1.241486	Si	2.764317	-0.578393	0.085208
Η	-0.378041	-3.988925	0.908666	С	2.514188	-1.831130	1.429505
С	2.846042	-1.823615	-1.140069	Н	1.643666	-2.472265	1.243201
Η	2.026646	-2.529990	-0.949711	Н	3.397439	-2.482684	1.492015
Η	2.769602	-1.461905	-2.173757	Н	2.387022	-1.349054	2.407174
Η	3.782884	-2.393623	-1.062640	С	4.138276	0.613747	0.427828
С	2.824886	-1.012596	1.854352	Н	5.098355	0.078365	0.433389
Η	3.749692	-1.552810	2.101542	Н	4.198017	1.392352	-0.343414
Η	2.739150	-0.167872	2.550066	Н	4.022889	1.096541	1.406671
Η	1.981781	-1.693052	2.029515	С	2.795691	-1.290649	-1.624024
С	4.169872	0.849013	-0.241464	Н	1.949769	-1.961299	-1.815744
Η	4.069451	1.704241	0.439555	Н	2.793516	-0.505403	-2.390125
Η	5.170704	0.421259	-0.087772	Н	3.719457	-1.875014	-1.745468
Η	4.118329	1.217472	-1.273906	Si	-1.844768	-1.982966	0.084236
С	0.328642	3.775488	-0.292453	С	-2.236214	-2.669659	1.758585
Η	1.307369	3.373107	-0.004503	Н	-2.883828	-3.551716	1.653977
Η	0.342743	3.997980	-1.367216	Н	-1.329085	-2.984105	2.290320
Η	0.186582	4.726606	0.240513	Н	-2.767622	-1.939304	2.381968

С	-2.715070	3.195249	-0.435170	С	-0.825052	-3.113304	-0.973701
Η	-3.499209	2.458180	-0.219520	Н	-1.418046	-4.010483	-1.203370
Η	-2.983038	4.127011	0.083117	Н	-0.554228	-2.640858	-1.925737
Η	-2.718764	3.401740	-1.513112	Н	0.087425	-3.450505	-0.465697
С	-1.030038	2.025934	1.895450	С	-3.318922	-1.295260	-0.805901
Η	-1.796999	1.262491	2.075120	Н	-3.901372	-0.613313	-0.173561
Η	-0.054262	1.618566	2.185972	Н	-3.038079	-0.777705	-1.731719
Η	-1.247187	2.876108	2.558148	Н	-3.983865	-2.125826	-1.083643

Abbildung 30: Relative Energien [kcal·mol⁻¹] der Struktur- und Konformationsisomere von **32**.

H-N(GaCl₃)SO – C_S E₀ = -3833.393749 **H-NSO-GaCl₃ – C**₁ $E_0 = -3833.392194$

S	-0.055777	-2.471809	0.000000	S	2.375406	-0.908922	0.000000
0	0.709751	-3.710917	0.000000	Ο	1.518641	0.329752	0.000000
Ν	0.779126	-1.174235	0.000000	Ν	1.737138	-2.267886	0.000000
Η	1.798992	-1.276036	0.000000	Η	0.710437	-2.338955	0.000000
Ga	-0.060000	0.762977	0.000000	Ga	-0.547457	0.411137	0.000000
Cl	0.779126	1.510829	1.840464	Cl	-0.903037	-0.748144	1.799318
Cl	0.779126	1.510829	-1.840464	Cl	-0.903037	-0.748144	-1.799318
Cl	-2.156985	0.218322	0.000000	Cl	-0.903037	2.518267	0.000000

H-NS(GaCl₃)O – C_S $E_0 = -3833.367020$

 $Cl_3Ga-NSO-H - C_S$ $E_0 = -3833.369523$

S	0.141934	2.326123	0.000000	S	0.095125	-2.168771	0.000000
0	-0.649455	3.746161	0.000000	Ο	-1.117031	-2.987710	0.000000
Ν	-0.786009	1.182066	0.000000	Ν	1.478269	-2.785893	0.000000
Н	-1.613778	3.603743	0.000000	Η	1.513114	-3.811627	0.000000
Ga	0.010065	-0.755211	0.000000	Ga	-0.048610	0.958166	0.000000
Cl	2.144284	-0.288920	0.000000	Cl	2.061129	1.222780	0.000000
Cl	-0.786009	-1.492420	1.861252	Cl	-1.117031	0.924250	1.842295
Cl	-0.786009	-1.492420	-1.861252	Cl	-1.117031	0.924250	-1.842295

 $H-OS(GaCl_3)N-C_S$

 $E_0 = -3833.338506$

 $Cl_3Ga-O(H)SN - C_1$

 $E_0 = -3833.362753$

0.886635

0.749901

1.109458

1.109458 -1.859883

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

1.859883

-0.106196 -2.098523

-1.088774 -3.170941

-0.087314

-1.088774

-1.088774

2.063777

2.024475 -1.737450

1.492115 -2.555646

S	-2.518301	0.366603	-0.400369	S
0	-0.901112	-0.211902	-1.110573	Ο
Ν	-3.587476	-0.604038	-0.465779	Ν
Η	-0.986185	-1.140718	-1.387931	Н
Ga	0.747382	-0.001776	0.086034	Ga
Cl	1.900210	1.548477	-0.843656	C1
Cl	1.422928	-2.048473	-0.022168	Cl
Cl	-0.356586	0.573737	1.881813	Cl

 $[(HO)_2PO_2]^- - C_1$

E_{tot} -643.259191

 $[PO_4]^{3-} - T_D$

E_{tot} -641.5 464

Р	0.000000	0.000000	0.000000
0	0.924306	0.924306	0.924306
0	-0.924306	-0.924306	0.924306
0	-0.924306	0.924306	-0.924306

-0.000495	0.106897	0.14035
0.004487	-0.909687	1.25944
-1.290167	-0.301760	-0.84191
-0.007620	1.590870	0.29331
1.292778	-0.289572	-0.84223

Р	-0.000495	0.106897	0.140356
0	0.004487	-0.909687	1.259443
0	-1.290167	-0.301760	-0.841917
0	-0.007620	1.590870	0.293313
0	1.292778	-0.289572	-0.842239
Η	-1.564933	-1.168825	-0.527305
Н	1.576543	-1.153444	-0.526829

 $[(Me_3SiO)_2PO_2]^- - C_1$

Р	-0.000049	-1.040900	-0.000025
Ο	0.769482	-1.742205	1.081260
Ο	-0.769899	-1.741875	-1.081292
0	-1.035704	0.034550	0.721313
Ο	1.035627	0.034728	-0.721136
Si	2.520337	0.392716	-0.034258
Si	-2.520274	0.392792	0.034286
С	3.697225	-1.062578	-0.100335
Η	4.685804	-0.797227	0.304158
Η	3.269801	-1.883663	0.488964
Η	3.830474	-1.411841	-1.134081
С	2.359204	1.029659	1.719645
Η	3.332321	1.354778	2.117553
Η	1.664884	1.880313	1.762806
Η	1.956081	0.228595	2.351900
С	3.199035	1.770131	-1.125758
Η	2.543652	2.652252	-1.098559
Η	4.202583	2.081623	-0.799266
Η	3.269802	1.437992	-2.171280
С	-3.199167	1.769916	1.126031
Η	-2.543786	2.652048	1.099177
Η	-4.202663	2.081486	0.799454
Η	-3.270108	1.437500	2.171455
С	-3.697114	-1.062564	0.099724
Н	-4.685595	-0.797152	-0.304957
Η	-3.269524	-1.883502	-0.489672
Η	-3.830604	-1.412080	1.133351
С	-2.358774	1.030148	-1.719424
Η	-1.664360	1.880738	-1.762240
Η	-1.955612	0.229216	-2.351827
Η	-3.331793	1.355464	-2.117408

E_{tot} -1 51.11

Р	1.559412	0.000003	0.051087
0	0.485122	-0.000063	-1.167356
0	2.336580	-1.301523	0.157776
0	2.336541	1.301561	0.157673
0	0.273494	0.000027	1.135440
Si	-1.007425	0.000001	-0.029481
С	-1.674508	-1.599834	-0.861486
Н	-2.741212	-1.796526	-0.659795
Н	-1.499365	-1.571328	-1.947349
Η	-1.084410	-2.442047	-0.464739
С	-1.674534	1.599835	-0.861466
Η	-2.741257	1.796475	-0.659826
Η	-1.084489	2.442045	-0.464634
Н	-1.499327	1.571400	-1.947320
С	-2.355396	-0.000011	1.439806
Η	-2.236396	0.888682	2.085320
Н	-3.391672	-0.000025	1.050062
Н	-2.236373	-0.888695	2.085327

Р

0

(Me₃SiO)₃PO - C₁

E_{tot} -16.167

 $[(Me_{3}SiO)_{4}P]^{+} - C_{1}$

 $E_{tot} = -2278.0341376$

0	-0.942513	-1.080893	-0.729152	Ο	-0.865358	-0.738519	-1.052229
0	1.411880	-0.277194	-0.728399	Ο	-0.864457	0.739473	1.052314
0	0.000844	0.004450	1.431011	0	0.865298	1.052006	-0.739201
Si	-1.547798	2.512355	-0.071627	Si	1.802337	-2.442799	0.206911
Si	-1.407271	-2.594440	-0.071736	Si	-1.804005	-0.206180	-2.441733
Si	2.954352	0.081462	-0.071350	Si	-1.803271	0.207994	2.442042
С	4.108362	-0.182004	-1.510546	С	-3.049751	1.564414	2.642100
Η	3.867707	0.497811	-2.338576	Η	-3.707481	1.644352	1.766897
Η	5.151187	-0.000177	-1.214673	Η	-3.683419	1.369606	3.518397
Η	4.039158	-1.211794	-1.885973	Η	-2.561190	2.535430	2.796182
С	2.969962	1.851564	0.513726	С	-2.563168	-1.430700	2.003980
Η	2.671150	2.536867	-0.290648	Η	-3.193745	-1.362734	1.108151
Η	2.282817	1.987952	1.358660	Η	-1.805623	-2.207368	1.837355
Η	3.978113	2.137392	0.845518	Η	-3.202857	-1.767734	2.831771
С	3.300959	-1.102786	1.323232	С	-0.603953	0.098826	3.853935
Η	3.264159	-2.145081	0.979366	Η	-0.148100	1.074382	4.068242
Η	4.298062	-0.921469	1.748795	Η	-1.123511	-0.229039	4.765004
Η	2.555416	-0.974463	2.118640	Η	0.197626	-0.622106	3.648158
С	-0.713509	3.381909	1.347704	С	2.561212	-2.005262	-1.432403
Η	-0.463395	2.658505	2.134681	Η	1.803065	-1.838444	-2.208446
Н	0.212569	3.875091	1.023546	Н	3.192115	-1.109618	-1.365020
Η	-1.373766	4.148825	1.776342	Η	3.200348	-2.833280	-1.769908
С	-1.874973	3.664520	-1.499011	С	3.049601	-2.643264	1.562559
Η	-2.331867	3.129956	-2.342417	Η	2.561545	-2.796897	2.533900
Η	-2.557561	4.472237	-1.199283	Η	3.682723	-3.519907	1.367549
Η	-0.943392	4.125317	-1.853822	Η	3.707805	-1.768362	1.641928
С	-3.099888	1.638559	0.479892	С	0.602354	-3.854207	0.098827
Н	-3.537716	1.052575	-0.339216	Н	0.147225	-4.068270	1.074776
Η	-2.889232	0.960897	1.317328	Η	-0.199744	-3.648277	-0.621480
Η	-3.851620	2.367557	0.814079	Η	1.121365	-4.765484	-0.229336
С	-2.606622	-2.301202	1.322035	С	-0.605107	-0.099228	-3.854136
Н	-3.494058	-1.753269	0.977958	Н	-0.150762	-1.075542	-4.068209

Р

0

Н	-2.943208	-3.255685	1.750964	Н
Η	-2.123307	-1.715765	2.114790	Н
С	0.115430	-3.494332	0.518117	С
Η	0.860752	-3.579932	-0.283535	Н
Η	0.574611	-2.966491	1.364086	Н
Н	-0.142912	-4.509772	0.850570	Н
С	-2.209715	-3.463573	-1.511209	С
Н	-1.498574	-3.598656	-2.337000	Н
Η	-2.574928	-4.456258	-1.212305	Н
Η	-3.065869	-2.890043	-1.890761	Н
				Si

Н	-1.124542	0.229004	-4.765141
Η	0.197612	0.620608	-3.648963
С	-2.561441	1.433668	-2.003724
Η	-3.191704	1.366692	-1.107597
Η	-1.802747	2.209305	-1.837529
Η	-3.201033	1.771458	-2.831278
С	-3.052527	-1.560875	-2.640847
Η	-3.709942	-1.639578	-1.765291
Η	-3.686350	-1.365399	-3.516882
Η	-2.565477	-2.532657	-2.794873
Si	1.804950	2.440987	-0.207242
С	0.606752	3.853851	-0.098489
Η	1.126935	4.764470	0.229630
Η	0.151493	4.068560	-1.074234
Η	-0.195320	3.648720	0.622080
С	3.052141	2.640174	-1.563148
Η	3.709227	1.764467	-1.642872
Η	2.564104	2.794687	-2.534358
Η	3.686408	3.515967	-1.368023
С	2.563818	2.002094	1.431712
Η	3.193648	1.105733	1.363827
Η	3.204049	2.829275	1.769199
Η	1.805786	1.835926	2.208005

H-PCO – C_s $E_0 = -455.007837$

 $[PCO]^{-} - C_{\infty V}$ E₀ = -454.484655

0.000000

0.000000

0.000000

0.000000

С	0.000000	0.000000	-0.509950	С	0.000000	0.588948
0	0.000000	0.000000	-1.709955	Ο	0.044146	1.743372
Р	0.000000	0.000000	1.115956	Р	0.067392	-1.094070
				Η	-1.364046	-1.069617

H-OCP - Cs $E_0 = -454.971397$

С	0.000000	0.373934	0.000000
0	-0.043647	1.673961	0.000000
Р	-0.033325	-1.178816	0.000000
Η	0.849051	2.046952	0.000000

 $(C_6F_5)_3B(H)$ -OCP – C_1 $E_0 = -2660.833919$

 $(F_5C_6)_3B(H)$ -PCO – C₁ E₀ = -2660.865726

С	-1.485447	0.156920	2.999370	Р	-2.122715	-0.038743	4.412638
Р	0.195226	0.065136	2.597218	С	-0.884884	-0.164921	3.481966
В	0.087170	0.024540	0.342060	В	0.153836	0.034476	-0.425807
С	0.157272	1.596400	0.000595	С	-0.482826	1.458504	-0.488551
С	-0.881318	2.457865	0.365684	С	-1.738743	1.733688	0.066996
С	1.203105	2.213889	-0.689348	С	0.159957	2.541147	-1.100719
С	-0.893400	3.819144	0.108020	С	-2.316660	2.993997	0.036619
С	1.228330	3.575814	-0.976151	С	-0.397165	3.808720	-1.169003
С	0.176054	4.385173	-0.575309	С	-1.641332	4.034701	-0.590856
С	1.414250	-0.854522	0.075976	С	1.699502	-0.149718	-0.268119
С	1.476607	-1.914655	-0.828828	С	2.391419	-1.204407	-0.877848
С	2.613990	-0.579445	0.731202	С	2.484640	0.730329	0.490005
С	2.634472	-2.656328	-1.047868	С	3.761926	-1.379797	-0.758546
С	3.785789	-1.294063	0.555397	С	3.854026	0.572711	0.647197
С	3.794072	-2.347181	-0.352524	С	4.494886	-0.486008	0.013732
С	-1.292599	-0.718158	-0.042287	С	-0.771780	-1.232410	-0.546493
С	-1.739770	-1.859263	0.619324	С	-0.578790	-2.391761	0.205246
С	-2.071699	-0.339021	-1.135400	С	-1.849974	-1.276663	-1.435812
С	-2.881876	-2.566021	0.274976	С	-1.383544	-3.514360	0.116294
С	-3.220814	-1.019528	-1.523658	С	-2.669645	-2.388961	-1.576336
С	-3.629756	-2.140771	-0.815199	С	-2.436367	-3.512508	-0.793135
F	-1.947555	1.972553	1.026362	F	1.927472	1.758306	1.121991
F	-1.913041	4.577990	0.498605	F	4.555616	1.421010	1.388380
F	0.187837	5.683887	-0.840777	F	5.801104	-0.642920	0.145687
F	2.253211	4.102705	-1.637957	F	4.375798	-2.385840	-1.370215
F	2.249218	1.515131	-1.135923	F	1.742524	-2.086196	-1.639735
F	0.414310	-2.267444	-1.556807	F	0.424596	-2.453434	1.111686
F	2.635579	-3.655072	-1.924620	F	-1.160094	-4.578770	0.875577
F	4.901947	-3.047752	-0.551021	F	-3.213309	-4.575948	-0.907685
F	4.888943	-0.980801	1.227075	F	-3.669242	-2.387217	-2.447903
F	2.652721	0.440596	1.614830	F	-2.117086	-0.234126	-2.220515
F	-1.055007	-2.314987	1.689804	F	1.349440	2.377652	-1.680343
F	-3.256813	-3.636547	0.968431	F	0.241359	4.802228	-1.776075
F	-4.725202	-2.797467	-1.172314	F	-2.182836	5.240241	-0.638851
F	-3.923575	-0.609045	-2.574228	F	-3.501820	3.214338	0.591405
F	-1.725727	0.707272	-1.890460	F	-2.426769	0.773611	0.683141
0	-2.590356	0.092176	3.285818	0	0.158627	-0.212110	2.713873

Н 0.303440 1.446185 2.912049 Н 0.313855 -1.114476 2.383772

 $H-OCP-B(F_5C_6)_3 - C_1$ E₀ = -2660.834596

<u>-1</u>

H-PCO-B(F₅C₆)₃ – C₁ $E_0 = -2660.867135$

Р	2.777238	0.048629	3.550643	С	-1.063937	0.002953	3.643372
С	1.148003	0.040580	3.129185	Р	0.488233	-0.055579	3.739027
В	-0.216034	0.002993	-0.396609	В	0.094316	-0.015121	-0.441036
С	1.258904	0.485488	-0.607775	С	-1.136448	0.960824	-0.518313
С	1.777421	1.611417	0.040175	С	-2.339642	0.711162	0.140949
С	2.149071	-0.190217	-1.450139	С	-1.099999	2.154675	-1.245933
С	3.087318	2.037683	-0.115538	С	-3.422626	1.572180	0.126013
С	3.458254	0.221646	-1.650583	С	-2.172667	3.034668	-1.313071
С	3.929671	1.340339	-0.973154	С	-3.339308	2.745465	-0.615641
С	-0.522989	-1.532705	-0.341257	С	1.538788	0.574011	-0.356741
С	-1.671567	-2.084487	-0.917612	С	2.632517	-0.039989	-0.979681
С	0.334576	-2.441576	0.286570	С	1.823940	1.754773	0.340966
С	-1.953461	-3.442395	-0.888105	С	3.918741	0.474581	-0.925697
С	0.075587	-3.802036	0.355873	С	3.101537	2.285985	0.434439
С	-1.074377	-4.304154	-0.242599	С	4.152692	1.642773	-0.208966
С	-1.374677	1.043415	-0.251619	С	-0.140315	-1.560982	-0.460907
С	-2.478992	0.817040	0.579580	С	0.666018	-2.449020	0.263367
С	-1.375221	2.263294	-0.938728	С	-1.172480	-2.149719	-1.202208
С	-3.506256	1.735860	0.735851	С	0.459376	-3.820635	0.270616
С	-2.395498	3.195521	-0.822726	С	-1.394767	-3.517942	-1.235507
С	-3.464683	2.929362	0.024623	С	-0.574099	-4.356351	-0.489461
F	1.451574	-2.014630	0.884760	F	-2.489183	-0.410595	0.880385
F	0.910562	-4.624342	0.980422	F	-4.523326	1.286069	0.813648
F	-1.332260	-5.601174	-0.196105	F	-4.364200	3.579208	-0.656576
F	-3.048355	-3.923483	-1.465285	F	-2.091090	4.147419	-2.030061
F	-2.544452	-1.303792	-1.555239	F	-0.011395	2.487252	-1.936975
F	-2.570951	-0.305225	1.290230	F	2.464256	-1.155428	-1.690063
F	-4.525122	1.486372	1.550505	F	4.922342	-0.132779	-1.547841
F	-4.442241	3.811563	0.153999	F	5.375179	2.142319	-0.140257
F	-2.360729	4.332754	-1.508085	F	3.328213	3.398126	1.122424
F	-0.381292	2.568426	-1.773328	F	0.856523	2.409432	0.981102
F	1.747913	-1.264967	-2.130453	F	1.667522	-1.993549	1.012228
F	4.261366	-0.439567	-2.476169	F	1.237394	-4.622499	0.986424
F	5.180229	1.738263	-1.142060	F	-0.777344	-5.662915	-0.502678
F	3.542505	3.094399	0.547780	F	-2.376882	-4.031237	-1.967343
F	1.017591	2.308879	0.887633	F	-1.984941	-1.394592	-1.943833
Н	2.517012	1.254871	4.264083	0	-2.354402	0.065637	3.619972

O 0.042629 -0.039377 2.788720 H -2.681386 -0.148338 2.729142

Р	-0.908439	1.304496	-0.100912
Si	0.985805	-0.212853	0.001311
С	0.936247	-1.029756	-1.664746
Н	1.837882	-1.654206	-1.763517
Н	0.071635	-1.695024	-1.787568
Н	0.949276	-0.304845	-2.488406
С	2.319821	1.062161	0.221142
Η	2.226455	1.613664	1.165409
Η	3.284781	0.531749	0.248638
Н	2.361917	1.776659	-0.610636
С	0.744192	-1.347839	1.449695
Н	1.639247	-1.983688	1.536948
Η	0.639562	-0.802348	2.396030
Η	-0.115461	-2.019047	1.326476
С	-2.113839	0.050685	0.022448
0	-2.911108	-0.753235	0.000975
Η	-1.099639	1.563966	1.292916

						$n H^{+} + [A]^{(-} \rightarrow [H_n A]^{(-)}$			$n [Me_3Si]^+ + [A]^{(-)} \rightarrow [(Me_3Si)_nA]^{(-)}$			
	$\delta^{13}C$	$\delta^{13}C$	$\delta^{13}C$	qC [e]	$\delta^{29} Si^{[a]}$	NICS ^[b]	G_{298K}	298 K	E tot	G_{298K}	298 K	E tot
	exp.	Der.	(exp-ber)					kcal·mol ¹]			[kcal·mol ⁻¹]	
$\left[CHB_{11}H_{11}\right]^{-}$	51.4	52.8	-1.4	-0.812	62.5	-27.7	-272.3	-269.8	-276.2	-97.1	-109.8	-112.7
$\left[CHB_{11}H_5F_6\right]^-$	_ ^[c]	7.8	-	-0.779	124.6	-34.8	-234.9	-241.6	-246.7	-93.1	-105.4	-107.9
$\left[CHB_{11}F_{11}\right]^{-}$	_[c]	19.9	-	-0.936	135.4	-33.3	-227.5	-226.4	-232.7	-82.1	-94.7	-97.0
$[CHB_{11}H_5Cl_6]^-$	32.8 ^[95]	32.2	0.6	-0.801	98.9	-32.2	-253.2	-252.4	-257.1	-85.1	-98.4	-100.7
$\left[CHB_{11}Cl_{11}\right]^{-}$	47.4	51.3	-3.9	-0.947	106.6	-34.4	-241.0	-240.9	-245.4	-74.8	-88.8	-90.9
$[CHB_{11}H_5Br_6]^-$	41.5 ^[120]	37.6	3.9	-0.806	94.4	-30.6	-256.2	-255.4	-259.4	-84.5	-97.9	-100.2
$[CHB_{11}Br_{11}]^{-}$	54.1 ^[121]	54.4	-0.3	-0.978	98.7	-32.0	-245.6	-245.7	-249.5	-75.4	-89.3	-91.3
$[CHB_{11}H_5I_6]^-$	55.8 ^[122]	49.6	6.2	-0.816	83.4	-28.0	-258.5	-257.7	-261.4	-84.6	-97.5	-99.6
$[CHB_{11}I_{11}]^{-}$	55.5 ^[121]	59.6	-4.1	-1.028	86.4	-28.5	-251.5	-250.5	-254.0	-77.3	-90.4	-92.4

Tabelle 12: Ausgewählte NMR-Verschiebungen, Gasphasen und [Me₃Si]⁺-Affinitäten von Carba-*closo*-boraten.

^[a] Mit der GIAO-NMR-Methode berechnet; ^[b] Im Zentrum des Käfigs berechnet, ORTEP^[285] wurde für die Positionierung des Zentroids verwendet; ^[c] Keine experimentellen Daten vorhanden.

	$[H_nA]^{(-)}$						$[(Me_3Si)_nA]^{(-)}$					
	q(B) [<i>e</i>]	q(H) [<i>e</i>]	d(X-H) [Å]	q(X) [<i>e</i>]	$Q_{LT}[e]$	q(B) [<i>e</i>]	q(Me ₃ Si) [<i>e</i>]	d(X-Si) [Å]	q(X) [<i>e</i>]	$Q_{LT}[e]$		
$\left[\mathrm{CHB}_{11}\mathrm{H}_{11}\right]^{-}(\underline{2})$	-0.138	0.301	0.846	0.30	-0.70	-0.132	0.705	1.633	-0.043	-0.30		
$[CHB_{11}H_5F_6]^-$	0.269 0.369	0.632	1.025 1.440	-0.42 -0.49	-0.37	0.273	0.821	1.826	-0.502	-0.18		
$[CHB_{11}F_{11}]^{-}$	0.268 0.301	0.634	1.027 1.438	$-0.41 \\ -0.47$	-0.37	0.281	0.831	1.850	-0.499	-0.17		
$[CHB_{11}H_5Cl_6]^-$ (4)	0.011 -0.006	0.28	1.739 1.458	-0.011 0.121	-0.72	0.010	0.605	2.265	0.002	-0.39		
$[CHB_{11}Cl_{11}]^{-}(3)$	0.007 -0.019	0.285	1.461 1.738	0.133 0.016	-0.71	0.027	0.622	2.280	0.007	-0.37		
$[CHB_{11}H_5Br_6]^-$	$-0.098 \\ -0.077$	0.17	1.644 1.817	0.263 0.154	-0.83	-0.003	0.536	2.406	0.163	-0.46		
$[CHB_{11}Br_{11}]^-$	$-0.089 \\ -0.044$	0.172	1.670 1.785	0.263 0.2	-0.83	-0.059	0.550	2.419	0.169	-0.45		
$\left[CHB_{11}H_{5}I_{6}\right]^{-}$	$-0.244 \\ -0.135$	0.040	1.830 2.038	0.496 0.334	-0.96	-0.189	0.428	2.609	0.395	-0.57		
[CHB ₁₁ I ₁₁] ⁻	-0.177 -0.219	0.037	1.873 1.985	0.484 0.411	-0.96	-0.164	0.438	2.617	0.407	-0.56		

 Tabelle 13: Zusammenfassung NBO-Ergebnisse für Carba-closo-borate.

Protonierungs- seite	G [kc ·mo $^{-1}$]												
Anion	1 ^[a]	2 ^[a]	3 ^[a]	4 ^[a]	5 ^[a]	6 ^[a]	7 ^[a]	8 ^[a]	9 ^[a]	10 ^[a]	11 ^[a]	12 ^[a]	13 ^[a]
$[CHB_{11}H_{11}]^{-}$	0 ^[b]						5.48	10.53	10.58		42.10 ^[c]		
	_												
$[CHB_{11}H_5F_6]^-$			0	$0.32^{[c]}$		0.56	2.23	6.81					
$[CHB_{11}F_{11}]^{-}$			0	$0.67^{[c]}$	6.12	9.70	5.90	10.71	8.83		23.97	17.03 ^[c]	
$[CHB_{11}H_5Cl_6]^-$			0	1.41		20.34	4.04 ^[c]						11.49 ^[c]
$[CHB_{11}Cl_{11}]^{-}$			0	0.80	5.42	8.17				45.99		18.59 ^[c]	
$[CHB_{11}H_5Br_6]^-$		25.41 ^[c]	0	1.67		25.41							11.87 ^[c]
$[CHB_{11}Br_{11}]^{-}$			0	1.00	4.93	7.47				49.76			
$[CHB_{11}H_5I_6]^-$		26.05	0	1.39		28.77							9.25
$[CHB_{11}I_{11}]^{-}$			0	0.91	4.05	6.10						13.34 ^[c]	

 Tabelle 14:
 Energieunterschiede zwischen verschiedenen Protonierungsseiten für Carba-closo-borate.

^[a] Graphische Darstellung der protonierten Anionen s. ff. S.; ^[b] Tiefstliegendstes Isomer als **0** gekennzeichnet; ^[c] NIMAG \geq **1**.

Abbildung 31. Isomer 1.

Abbildung 35. Isomer 4.

Abbildung 32. Isomer 2.

Abbildung 34. Isomer 5.

Abbildung 33. Isomer 3.

Abbildung 36. Isomer 6.

Abbildung 37. Isomer 7.

Abbildung 40. Isomer 10.

Abbildung 38. Isomer 8.

Abbildung 41. Isomer 11.

Abbildung 39. Isomer 9.

Abbildung 42. Isomer 12.

Abbildung 43. Isomer 13.

Tabelle 15: Silylierte Konstitutions-Isomere von $[SO_3]^{2^-}$.

	G [kc \cdot mol ⁻¹] ^[a]	G [kcal·mol ⁻¹] ^[b]
[SO ₃] ⁻	-	-
[Me ₃ Si-SO ₃] ⁻	-274.93	
[Me ₃ SiO-SO ₂] ⁻	-294.51	19.57
[Me ₃ Si-S(O)(OSiMe ₃)]	-130.79	
[(Me ₃ SiO) ₂ -SO]	-150.95	20.16
$[Me_3Si-S(O)(OSiMe_3)_2]^+$		
$\left[(\mathrm{Me_3SiO})_3\text{-}\mathrm{S}\right]^+$	-48.67	20.60

^[a] Die Reaktion von [Me₃Si]⁺ mit dem jeweils thermodynamisch favorisierten Isomer; ^[b] Energiedifferenz zwischen beiden Isomeren.

Tabelle 16: Ausgewählte berechnete und *beobachtete* ¹⁷O-NMR-Verschiebungen von verschiedenen Schwefel-Sauerstoff Verbindungen.

	δ(¹⁷ O) [ppm]	$\delta_{\rm ber}(^{17}{ m O})$ [ppm]
$[SO_4]^-$	-	215.8
$K_2[SO_4]$	167.1	
[HSQ4]	160.0	222.7 (SO)
[11504]	[KHSO ₄]	210.8 (OH)
H_2SO_4	151.88	218.5 (SO) 202.5 (OH)
[NH ₄] ₂ [SO ₄]	168.3	
$[SO_3]^-$		317.3
Na ₂ [SO ₃]	210.4	
$[SO_{2}OH)]^{-}$		300.1 (SO)
[502(011)]		267.6 (OH)
$[HSO_3]^-$		247.1
OS(OH) ₂		251.9 (SO)
		227.8 (OH)
HSO ₂ (OH)		237.6 (SO) 207.8 (OH)
		207.8 (011)
	152.6 (OSi)	215.6 (OSi)
$(Me_3S_1O)_2SO_2$	174.5 (OS)	232.2 (OS)
[DMAP-T] ₂ [SO ₄]	169.0	
[DMAP-T][TO-SO ₂]	167.8	219.9 (OSi)
	10,10	234.3 (OS)
A g[O ₂ SCE ₂]	158.0	216.2
Ag[035013]	150.7	210.2
$K_2[S_2O_7]$	$160.2^{[a]}$	332.5 (SOS)
$Na_2[S_2O_3]$	227.4	302.9
K.[S.O.]	176.4 (SO ₂)	275.4 (SO ₂)
K2[32U5]	165.5 (SO ₃)	212.5 (SO ₃)

^[a] Zersetzung.

	δ [¹⁷ O]	δ [²⁹ Si]	δ [³¹ P]
[PO ₄] ⁻	134.9	-	54.5
$[H_2PO_4]^-$ -	127.5 88.3 ^[a]		$14.7 \\ -0.1^{[a]}$
[Me ₃ SiOPO ₃] ⁻	136.1 (PO) 216.0 (SiO) 193.9 (SiO)	-102.5	15.3
[(Me ₃ SiO) ₂ PO ₂] ⁻	162.5 (PO) 141.9 (SiO) [^c]	6.5 10.3 ^[b]	3.5 - <i>13.0</i> ^[b]
(Me ₃ SiO) ₃ PO	163.0 (PO) 105.3 (PO) ^[b] [218 Hz / 150 Hz] ^[d] 132.6 (SiO) 83.1 (SiO) ^[b]	28.4 20.4 ^[b]	-4.4 -25.8 ^[b]
$\left[(\mathrm{Me}_{3}\mathrm{SiO})_{4}\mathrm{P}\right]^{+}$	129.8 78.4 ^[b]	47.3 35.6 ^[b]	-13.0 -35.9 ^[b]

Tabelle 17: Experimentelle und berechnete NMR-Verschiebungen undKopplungskonstanten.

^[a] *experimentelle Werte*, in D₂O gemessen; ^[b] in CD₂Cl₂ gemessen; ^[c] kein Signal beobachtet; ^[d] $^{1}J(^{17}O-^{31}P)$.

5.3.2 NBO-Analyse

Tabelle 18: NBO-Analyse von [CHB₁₁H₁₁]⁻.

Atom		No	Natural Charge	Core	Valence	Rydberg	Total
С		1	-0.81212	1.99915	4.77490	0.03807	6.81212
Η		2	0.31129	0.00000	0.68071	0.00800	0.68871
В		3	-0.17792	1.99850	3.13289	0.04653	5.17792
В		4	0.00802	1.99835	2.94734	0.04629	4.99198
В		5	0.00786	1.99835	2.94664	0.04715	4.99214
В		6	-0.17792	1.99850	3.13289	0.04653	5.17792
В		7	-0.17897	1.99850	3.13346	0.04701	5.17897
В		8	-0.16060	1.99856	3.11662	0.04542	5.16060
В		9	0.00786	1.99835	2.94664	0.04715	4.99214
В		10	0.00906	1.99835	2.94612	0.04647	4.99094
В		11	-0.17897	1.99850	3.13346	0.04701	5.17897
В		12	-0.17919	1.99850	3.13401	0.04668	5.17919
В		13	0.00906	1.99835	2.94612	0.04647	4.99094
Н		14	0.05169	0.00000	0.94258	0.00573	0.94831
Η		15	0.04107	0.00000	0.95325	0.00568	0.95893
Η		16	0.05190	0.00000	0.94229	0.00581	0.94810
Η		17	0.04820	0.00000	0.94545	0.00636	0.95180
Н		18	0.04107	0.00000	0.95325	0.00568	0.95893
Η		19	0.05169	0.00000	0.94258	0.00573	0.94831
Η		20	0.04135	0.00000	0.95296	0.00569	0.95865
Н		21	0.05137	0.00000	0.94296	0.00567	0.94863
Н		22	0.04146	0.00000	0.95276	0.00578	0.95854
Н		23	0.05137	0.00000	0.94296	0.00567	0.94863
Н		24	0.04135	0.00000	0.95296	0.00569	0.95865
	* Total *		-1.00000	23.98195	49.39577	0.62228	74.00000

Tabelle 19: NBO-Analyse von H[CHB₁₁H₁₁].

Ator	n	No	Natural Charge	Core	Valence	Rydberg	Total
 Н			0.07271	0.00000	0.91970	0.00759	0.92729
В		2	-0.29824	1.99766	3.25485	0.04573	5.29824
В		3	-0.13759	1.99848	3.09247	0.04665	5.13759
В		4	-0.15436	1.99846	3.10722	0.04868	5.15436
В		5	-0.15436	1.99846	3.10722	0.04868	5.15436
В		6	-0.13759	1.99848	3.09247	0.04665	5.13759
В		7	-0.13099	1.99849	3.08804	0.04446	5.13099
Н		8	0.07210	0.00000	0.92100	0.00690	0.92790
Н		9	0.07983	0.00000	0.91238	0.00779	0.92017
Н		10	0.07184	0.00000	0.92122	0.00694	0.92816
Н		11	0.08235	0.00000	0.91053	0.00712	0.91765
В		12	0.02446	1.99838	2.92805	0.04910	4.97554
Н		13	0.08235	0.00000	0.91053	0.00712	0.91765
С		14	-0.81039	1.99916	4.76466	0.04658	6.81039
Н		15	0.07979	0.00000	0.91314	0.00707	0.92021
В		16	0.02422	1.99838	2.92835	0.04905	4.97578
В		17	0.02231	1.99839	2.93157	0.04773	4.97769
Н		18	0.07979	0.00000	0.91314	0.00707	0.92021
В		19	0.02446	1.99838	2.92805	0.04910	4.97554
Η		20	0.30116	0.00000	0.69099	0.00785	0.69884
Н		21	0.33835	0.00000	0.65379	0.00786	0.66165
В		22	0.02422	1.99838	2.92835	0.04905	4.97578
Н		23	0.07210	0.00000	0.92100	0.00690	0.92790
Н		24	0.07184	0.00000	0.92122	0.00694	0.92816
Η		25	0.29962	0.00000	0.69218	0.00820	0.70038
	* Total *		0.00000	23.98109	49.35210	0.66681	74.00000

Tabelle 20: NBO-Analyse von $[Me_3Si][CHB_{11}H_{11}]$.

Atom	No	Natural Charge	Core	Valence	Rydberg	Total
C	1	-0.80752	1.99915	4.76550	0.04287	6.80752
Н	2	0.33513	0.00000	0.65685	0.00802	0.66487
В	3	-0.16262	1.99843	3.11325	0.05093	5.16262
В	4	0.02574	1.99837	2.92743	0.04846	4.97426
В	5	0.02528	1.99838	2.92817	0.04817	4.97472
В	6	-0.18012	1.99843	3.12855	0.05314	5.18012
В	7	-0.16260	1.99843	3.11323	0.05093	5.16260
В	8	-0.13165	1.99793	3.07273	0.06099	5.13165
В	9	0.02390	1.99837	2.92870	0.04903	4.97610
В	10	0.02573	1.99837	2.92743	0.04846	4.97427
В	11	-0.18703	1.99845	3.13982	0.04876	5.18703
В	12	-0.18008	1.99843	3.12851	0.05314	5.18008
В	13	0.02386	1.99837	2.92874	0.04903	4.97614
Н	14	0.06187	0.00000	0.93071	0.00742	0.93813
Н	15	0.06968	0.00000	0.92225	0.00808	0.93032
Н	16	0.07584	0.00000	0.91735	0.00681	0.92416
Н	17	0.06969	0.00000	0.92224	0.00808	0.93031
Н	18	0.07585	0.00000	0.91734	0.00681	0.92415
Н	19	-0.04305	0.00000	1.02667	0.01638	1.04305
Н	20	0.06729	0.00000	0.92611	0.00660	0.93271
Н	21	0.06748	0.00000	0.92585	0.00667	0.93252
Н	22	0.06756	0.00000	0.92580	0.00664	0.93244
Н	23	0.06729	0.00000	0.92611	0.00660	0.93271
Н	24	0.06748	0.00000	0.92585	0.00667	0.93252
Si	25	1.80681	9.99761	2.14433	0.05125	12.19319
С	26	-1.20018	1.99935	5.18301	0.01782	7.20018
Н	27	0.27462	0.00000	0.72165	0.00374	0.72538
Н	28	0.27367	0.00000	0.72384	0.00248	0.72633
Н	29	0.27461	0.00000	0.72165	0.00374	0.72539
С	30	-1.20476	1.99935	5.18548	0.01993	7.20476
Н	31	0.27624	0.00000	0.72132	0.00244	0.72376
Н	32	0.28520	0.00000	0.70873	0.00607	0.71480
Н	33	0.28104	0.00000	0.71464	0.00432	0.71896
С	34	-1.20475	1.99935	5.18547	0.01993	7.20475
Н	35	0.28105	0.00000	0.71463	0.00432	0.71895
Н	36	0.28520	0.00000	0.70873	0.00607	0.71480
Н	37	0.27625	0.00000	0.72132	0.00244	0.72375
* Tota] *	0.00000	39.97679	73.17999	0.84322	114.00000

Tabelle 21: NBO-Analyse von $[CHB_{11}H_5F_6]^-$.

Atom		No	Natural Charge	Core	Valence	Rydberg	Total
С		1	-0.77930	1.99918	4.74314	0.03697	6.77930
Η		2	0.32567	0.00000	0.66670	0.00762	0.67433
В		3	0.43751	1.99708	2.50112	0.06429	4.56249
В		4	-0.07283	1.99835	3.02680	0.04767	5.07283
В		5	-0.07283	1.99835	3.02680	0.04767	5.07283
В		6	0.43705	1.99708	2.49991	0.06596	4.56295
В		7	0.43705	1.99708	2.49991	0.06596	4.56295
В		8	0.39633	1.99711	2.54719	0.05937	4.60367
В		9	-0.07396	1.99836	3.02733	0.04827	5.07396
В		10	-0.07396	1.99836	3.02733	0.04827	5.07396
В		11	0.43848	1.99708	2.49946	0.06498	4.56152
В		12	0.43848	1.99708	2.49946	0.06498	4.56152
В		13	-0.07400	1.99836	3.02801	0.04764	5.07400
Н		14	0.06641	0.00000	0.92788	0.00570	0.93359
Η		15	0.06633	0.00000	0.92803	0.00564	0.93367
Η		16	0.06617	0.00000	0.92818	0.00565	0.93383
Η		17	0.06633	0.00000	0.92803	0.00564	0.93367
Η		18	0.06617	0.00000	0.92818	0.00565	0.93383
F		19	-0.51686	1.99994	7.50222	0.01470	9.51686
F		20	-0.51669	1.99994	7.50214	0.01461	9.51669
F		21	-0.51720	1.99994	7.50227	0.01498	9.51720
F		22	-0.51720	1.99994	7.50227	0.01498	9.51720
F		23	-0.51686	1.99994	7.50222	0.01470	9.51686
F		24	-0.51032	1.99994	7.49576	0.01462	9.51032
	* Total *		-1.00000	35.97309	85.24036	0.78656	122.00000

Tabelle 22: NBO-Analyse von $H[CHB_{11}H_5F_6]$.

Atom	1	No	Natural Charge	Core	Valence	Rydberg	Total
С		1	-0.78846	1.99919	4.74307	0.04619	6.78846
Η		2	0.35087	0.00000	0.64150	0.00762	0.64913
В		3	0.45315	1.99697	2.48319	0.06670	4.54685
В		4	-0.04664	1.99835	3.00040	0.04789	5.04664
В		5	-0.06283	1.99837	3.01491	0.04955	5.06283
В		6	0.36933	1.99662	2.57710	0.05695	4.63067
В		7	0.47931	1.99711	2.45983	0.06376	4.52069
В		8	0.26940	1.99632	2.67392	0.06037	4.73060
В		9	-0.04664	1.99835	3.00040	0.04789	5.04664
В		10	-0.07054	1.99839	3.02382	0.04832	5.07054
В		11	0.45315	1.99697	2.48319	0.06670	4.54685
В		12	0.47931	1.99711	2.45983	0.06376	4.52069
В		13	-0.06283	1.99837	3.01491	0.04955	5.06283
Н		14	0.09506	0.00000	0.89834	0.00661	0.90494
Н		15	0.09752	0.00000	0.89524	0.00724	0.90248
Н		16	0.09506	0.00000	0.89834	0.00661	0.90494
Н		17	0.09397	0.00000	0.89955	0.00649	0.90603
Н		18	0.09397	0.00000	0.89955	0.00649	0.90603
F		19	-0.49053	1.99994	7.47433	0.01626	9.49053
F		20	-0.49732	1.99994	7.48142	0.01596	9.49732
F		21	-0.49053	1.99994	7.47433	0.01626	9.49053
F		22	-0.49732	1.99994	7.48142	0.01596	9.49732
F		23	-0.49159	1.99993	7.47678	0.01488	9.49159
F		24	-0.41660	1.99993	7.39974	0.01693	9.41660
Η		25	0.63175	0.00000	0.35995	0.00831	0.36825
	* Total *		0.00000	35.97172	85.21504	0.81324	122.00000

Tabelle 23: NBO-Analyse von $[Me_3Si][CHB_{11}H_5F_6]$.

Atom		No	Natural Charge	Core	Valence	Rydberg	Total
С		1	-0.77998	1.99918	4.73646	0.04433	6.77998
Н		2	0.34529	0.00000	0.64718	0.00753	0.65471
В		3	0.43300	1.99697	2.50445	0.06559	4.56700
В		4	-0.06406	1.99836	3.01697	0.04873	5.06406
В		5	-0.06407	1.99836	3.01697	0.04873	5.06407
В		6	0.44642	1.99701	2.48955	0.06702	4.55358
В		7	0.44646	1.99701	2.48954	0.06699	4.55354
В		8	0.27349	1.99654	2.65430	0.07567	4.72651
В		9	-0.06289	1.99836	3.01598	0.04855	5.06289
В		10	-0.06291	1.99836	3.01600	0.04855	5.06291
В		11	0.45933	1.99706	2.47966	0.06395	4.54067
В		12	0.45935	1.99706	2.47964	0.06396	4.54065
В		13	-0.06389	1.99837	3.01667	0.04885	5.06389
F		14	-0.51298	1.99994	7.49796	0.01509	9.51298
F		15	-0.50768	1.99994	7.49175	0.01600	9.50768
F		16	-0.50247	1.99992	7.47713	0.02542	9.50247
F		17	-0.50056	1.99994	7.48558	0.01504	9.50056
F		18	-0.50056	1.99994	7.48558	0.01504	9.50056
F		19	-0.50767	1.99994	7.49174	0.01600	9.50767
Н		20	0.08891	0.00000	0.90474	0.00635	0.91109
Н		21	0.08916	0.00000	0.90446	0.00638	0.91084
Н		22	0.08891	0.00000	0.90474	0.00635	0.91109
Н		23	0.08916	0.00000	0.90447	0.00638	0.91084
Н		24	0.08908	0.00000	0.90457	0.00636	0.91092
Si		25	1.99134	9.99707	1.96162	0.04998	12.00866
С		26	-1.24231	1.99934	5.22183	0.02114	7.24231
Н		27	0.28710	0.00000	0.70854	0.00436	0.71290
Н		28	0.27618	0.00000	0.72155	0.00226	0.72382
Н		29	0.29322	0.00000	0.69997	0.00681	0.70678
С		30	-1.24239	1.99934	5.22193	0.02113	7.24239
Н		31	0.27618	0.00000	0.72156	0.00226	0.72382
Н		32	0.28723	0.00000	0.70840	0.00437	0.71277
Н		33	0.29322	0.00000	0.70000	0.00679	0.70678
С		34	-1.23256	1.99936	5.21501	0.01819	7.23256
Н		35	0.27983	0.00000	0.71661	0.00356	0.72017
Н		36	0.27435	0.00000	0.72304	0.00260	0.72565
Н		37	0.27981	0.00000	0.71664	0.00356	0.72019
:	* Total *		0.00000	51.96737	109.05277	0.97986	162.00000

Tabelle 24: NBO-Analyse von [CHB₁₁H₅Cl₆]⁻.

Atom	l	No	Natural Charge	Core	Valence	Rydberg	Total
С		1	-0.80123	1.99915	4.76146	0.04062	6.80123
Н		2	0.07503	0.00000	0.91768	0.00729	0.92497
Н		3	0.07503	0.00000	0.91768	0.00729	0.92497
Н		4	0.33089	0.00000	0.66098	0.00814	0.66911
Н		5	0.07523	0.00000	0.91745	0.00732	0.92477
Н		6	0.07523	0.00000	0.91745	0.00732	0.92477
Н		7	0.07530	0.00000	0.91726	0.00743	0.92470
В		8	0.00345	1.99686	2.91056	0.08913	4.99655
В		9	-0.00798	1.99812	2.95146	0.05840	5.00798
В		10	-0.00798	1.99812	2.95146	0.05840	5.00798
В		11	0.00272	1.99686	2.90991	0.09050	4.99728
В		12	0.00272	1.99686	2.90991	0.09050	4.99728
В		13	-0.00415	1.99676	2.91608	0.09131	5.00415
В		14	-0.00896	1.99812	2.95177	0.05907	5.00896
В		15	-0.00896	1.99812	2.95177	0.05907	5.00896
В		16	0.00381	1.99686	2.91047	0.08886	4.99619
В		17	0.00381	1.99686	2.91047	0.08886	4.99619
В		18	-0.00890	1.99812	2.95232	0.05846	5.00890
Cl		19	-0.14872	10.00000	7.13090	0.01781	17.14872
Cl		20	-0.14872	10.00000	7.13090	0.01781	17.14872
Cl		21	-0.14856	10.00000	7.13080	0.01776	17.14856
Cl		22	-0.14856	10.00000	7.13080	0.01776	17.14856
Cl		23	-0.14853	10.00000	7.13080	0.01773	17.14853
C1		24	-0.13198	10.00000	7.11398	0.01800	17.13198
	* Total *		-1.00000	83.9708	85.00434	1.02487	170.00000

Tabelle 25: NBO-Analyse von $H[CHB_{11}H_5CI_6]$.

At	om	No	Natural Charge	Core	Valence	Rydberg	Total
Н		1	0.09592	0.00000	0.89644	0.00764	0.90408
В		2	-0.02181	1.99645	2.93890	0.08647	5.02181
В		3	0.00067	1.99682	2.90815	0.09435	4.99933
В		4	0.00069	1.99682	2.90813	0.09436	4.99931
В		5	0.00353	1.99689	2.91066	0.08893	4.99647
В		6	-0.00773	1.99669	2.92869	0.08235	5.00773
В		7	0.00354	1.99689	2.91065	0.08891	4.99646
Н		8	0.09648	0.00000	0.89567	0.00785	0.90352
Cl		9	-0.10560	10.00000	7.08597	0.01963	17.10560
Н		10	0.09608	0.00000	0.89564	0.00828	0.90392
Cl		11	-0.11331	10.00000	7.09321	0.02010	17.11331
В		12	0.00363	1.99817	2.94056	0.05764	4.99637
Cl		13	-0.10561	10.00000	7.08597	0.01963	17.10561
С		14	-0.80136	1.99916	4.75921	0.04298	6.80136
Cl		15	-0.11332	10.00000	7.09322	0.02010	17.11332
В		16	-0.00121	1.99814	2.94359	0.05949	5.00121
В		17	0.00057	1.99811	2.94265	0.05866	4.99943
Cl		18	-0.00574	10.00000	6.97983	0.02591	17.00574
В		19	-0.00127	1.99814	2.94364	0.05949	5.00127
Cl		20	0.15620	10.00000	6.81023	0.03356	16.84380
Н		21	0.35068	0.00000	0.64083	0.00849	0.64932
В		22	0.00060	1.99811	2.94262	0.05867	4.99940
Н		23	0.09591	0.00000	0.89645	0.00764	0.90409
Н		24	0.09648	0.00000	0.89567	0.00785	0.90352
Η		25	0.27596	0.00000	0.70912	0.01492	0.72404
	* Total *	=	0.00000	83.97040	84.95571	1.07389	170.00000

Tabelle 26: NBO-Analyse von [Me_3Si][CHB₁₁H₅Cl₆].

Atom	No	Natural Charge	Core	Valence	Rydberg	Total
С	1	-0.80359	1.99915	4.75263	0.05181	6.80359
Н	2	0.34857	0.00000	0.64403	0.00740	0.65143
В	3	0.00256	1.99688	2.90979	0.09077	4.99744
В	4	-0.00042	1.99812	2.94402	0.05829	5.00042
В	5	-0.00039	1.99812	2.94470	0.05757	5.00039
В	6	0.00256	1.99688	2.90980	0.09076	4.99744
В	7	-0.00152	1.99685	2.91296	0.09171	5.00152
В	8	-0.00458	1.99648	2.91473	0.09336	5.00458
В	9	-0.00039	1.99812	2.94470	0.05757	5.00039
В	10	-0.00160	1.99814	2.94497	0.05849	5.00160
В	11	-0.00152	1.99685	2.91296	0.09171	5.00152
В	12	-0.00063	1.99684	2.91627	0.08751	5.00063
В	13	-0.00161	1.99814	2.94497	0.05850	5.00161
Cl	14	-0.11858	10.00000	7.09925	0.01933	17.11858
Cl	15	-0.11858	10.00000	7.09925	0.01933	17.11858
Cl	16	0.02153	10.00000	6.94733	0.03114	16.97847
Cl	17	-0.12832	10.00000	7.10928	0.01905	17.12832
Cl	18	-0.13457	10.00000	7.11596	0.01861	17.13457
Cl	19	-0.12832	10.00000	7.10927	0.01905	17.12832
С	20	-1.22706	1.99932	5.20534	0.02240	7.22706
С	21	-1.22062	1.99936	5.20189	0.01937	7.22062
С	22	-1.22706	1.99932	5.20534	0.02240	7.22706
Н	23	0.29234	0.00000	0.70083	0.00682	0.70766
Н	24	0.28230	0.00000	0.71335	0.00434	0.71770
Н	25	0.27387	0.00000	0.72347	0.00267	0.72613
Н	26	0.27667	0.00000	0.71948	0.00385	0.72333
Н	27	0.27601	0.00000	0.72108	0.00290	0.72399
Н	28	0.27667	0.00000	0.71948	0.00385	0.72333
Н	29	0.27386	0.00000	0.72347	0.00267	0.72614
Н	30	0.28234	0.00000	0.71332	0.00434	0.71766
Н	31	0.29233	0.00000	0.70086	0.00681	0.70767
Si	32	1.75346	9.99759	2.19174	0.05722	12.24654
Н	33	0.09327	0.00000	0.89885	0.00788	0.90673
Н	34	0.09308	0.00000	0.89898	0.00794	0.90692
Н	35	0.09233	0.00000	0.89959	0.00808	0.90767
Н	36	0.09327	0.00000	0.89885	0.00788	0.90673
Н	37	0.09233	0.00000	0.89959	0.00808	0.90767
* Total *		0.00000	99.96616	108.81240	1.22144	210.00000

Tabelle 27: NBO-Analyse von [CHB₁₁H₅Br₆]⁻.

Atom		No	Natural Charge	Core	Valence	Rydberg	Total
С		1	-0.80579	1.99914	4.76504	0.04161	6.80579
Н		2	0.07760	0.00000	0.91473	0.00767	0.92240
Н		3	0.07760	0.00000	0.91473	0.00767	0.92240
Н		4	0.33246	0.00000	0.65921	0.00833	0.66754
Н		5	0.07779	0.00000	0.91450	0.00771	0.92221
Н		6	0.07779	0.00000	0.91450	0.00771	0.92221
Н		7	0.07786	0.00000	0.91431	0.00782	0.92214
В		8	-0.07018	1.99667	2.98355	0.08996	5.07018
В		9	-0.00942	1.99806	2.95114	0.06022	5.00942
В		10	-0.00942	1.99806	2.95114	0.06022	5.00942
В		11	-0.07080	1.99667	2.98334	0.09078	5.07080
В		12	-0.07080	1.99667	2.98334	0.09078	5.07080
В		13	-0.09176	1.99655	3.00115	0.09406	5.09176
В		14	-0.01027	1.99806	2.95137	0.06084	5.01027
В		15	-0.01027	1.99806	2.95137	0.06084	5.01027
В		16	-0.07000	1.99667	2.98416	0.08917	5.07000
В		17	-0.07000	1.99667	2.98416	0.08917	5.07000
В		18	-0.01013	1.99806	2.95185	0.06022	5.01013
Br		19	-0.07385	27.99906	7.06409	0.01070	35.07385
Br		20	-0.07389	27.99906	7.06407	0.01076	35.07389
Br		21	-0.07389	27.99906	7.06407	0.01076	35.07389
Br		22	-0.07402	27.99906	7.06417	0.01078	35.07402
Br		23	-0.07402	27.99906	7.06417	0.01078	35.07402
Br		24	-0.05261	27.99904	7.04301	0.01056	35.05261
	* Total *		-1.00000	191.96372	85.03718	0.99911	278.00000

Tabelle 28: NBO-Analyse von $H[CHB_{11}H_5Br_6]$.

1 uuuuu 1 opuluuon	Natural	Popu	lation
--------------------	---------	------	--------

Atom	1	No	Natural Charge	Core	Valence	Rydberg	Total
Н		1	0.35053	0.00000	0.64075	0.00872	0.64947
В		2	-0.07814	1.99670	2.99116	0.09029	5.07814
Br		3	0.15393	27.99886	6.82985	0.01736	34.84607
Br		4	-0.02635	27.99905	7.01545	0.01185	35.02635
Br		5	-0.03381	27.99905	7.02237	0.01238	35.03381
Br		6	-0.03381	27.99905	7.02237	0.01238	35.03381
Br		7	-0.02635	27.99905	7.01545	0.01185	35.02635
Η		8	0.09579	0.00000	0.89630	0.00791	0.90421
В		9	-0.00402	1.99805	2.94564	0.06032	5.00402
Н		10	0.09648	0.00000	0.89541	0.00811	0.90352
В		11	0.00145	1.99810	2.94077	0.05968	4.99855
С		12	-0.80430	1.99915	4.76242	0.04273	6.80430
Η		13	0.09648	0.00000	0.89541	0.00811	0.90352
В		14	-0.07830	1.99665	2.98613	0.09552	5.07830
В		15	-0.00204	1.99808	2.94274	0.06122	5.00204
В		16	-0.00203	1.99808	2.94273	0.06122	5.00203
В		17	-0.09780	1.99636	3.01427	0.08717	5.09780
Br		18	0.26292	27.99871	6.71713	0.02125	34.73708
В		19	-0.07663	1.99654	2.99761	0.08248	5.07663
В		20	-0.07831	1.99665	2.98614	0.09552	5.07831
В		21	-0.07816	1.99670	2.99118	0.09029	5.07816
Η		22	0.09579	0.00000	0.89630	0.00791	0.90421
В		23	-0.00404	1.99805	2.94566	0.06032	5.00404
Η		24	0.09631	0.00000	0.89527	0.00842	0.90369
Η		25	0.17442	0.00000	0.81097	0.01461	0.82558
	* Total *		0.00000	191.96291	84.99948	1.03761	278.00000

Tabelle 29: NBO-Analyse von [Me_3Si][$CHB_{11}H_5Br_6$].

Aton	1	No	Natural Charge	Core	Valence	Rydberg	Total
C			-0.80925	1.99914	4.75750	0.05261	6.80925
H		2	0.34913	0.00000	0.64334	0.00753	0.65087
В		3	-0.07835	1.99668	2.98922	0.09245	5.07835
В		4	-0.00284	1.99808	2.94445	0.06031	5.00284
В		5	-0.00166	1.99806	2.94408	0.05952	5.00166
В		6	-0.07336	1.99667	2.98755	0.08914	5.07336
В		7	-0.07665	1.99670	2.98942	0.09053	5.07665
В		8	-0.07587	1.99634	2.98603	0.09351	5.07587
В		9	-0.00283	1.99808	2.94444	0.06031	5.00283
В		10	-0.00231	1.99806	2.94605	0.05820	5.00231
В		11	-0.07838	1.99668	2.98925	0.09245	5.07838
В		12	-0.07666	1.99670	2.98943	0.09054	5.07666
В		13	-0.00165	1.99806	2.94407	0.05952	5.00165
Br		14	-0.05604	27.99904	7.04503	0.01197	35.05604
Br		15	-0.04998	27.99906	7.03910	0.01182	35.04998
Br		16	-0.04998	27.99906	7.03911	0.01182	35.04998
Br		17	-0.03964	27.99905	7.02883	0.01176	35.03964
Br		18	-0.03964	27.99905	7.02883	0.01176	35.03964
Br		19	0.16297	27.99866	6.81566	0.02271	34.83703
Η		20	0.09383	0.00000	0.89806	0.00811	0.90617
Η		21	0.09277	0.00000	0.89891	0.00832	0.90723
Н		22	0.09383	0.00000	0.89806	0.00811	0.90617
Н		23	0.09415	0.00000	0.89694	0.00891	0.90585
Η		24	0.09277	0.00000	0.89891	0.00832	0.90723
Si		25	1.68971	9.99766	2.25368	0.05894	12.31029
С		26	-1.22574	1.99933	5.20456	0.02186	7.22574
Н		27	0.27277	0.00000	0.72429	0.00295	0.72723
Н		28	0.27996	0.00000	0.71569	0.00435	0.72004
Н		29	0.29252	0.00000	0.70131	0.00617	0.70748
С		30	-1.21888	1.99936	5.20010	0.01942	7.21888
Н		31	0.27608	0.00000	0.72092	0.00300	0.72392
Н		32	0.27487	0.00000	0.72123	0.00390	0.72513
Н		33	0.27486	0.00000	0.72123	0.00390	0.72514
С		34	-1.22574	1.99933	5.20456	0.02186	7.22574
Η		35	0.27997	0.00000	0.71567	0.00435	0.72003
Η		36	0.27276	0.00000	0.72430	0.00295	0.72724
Н		37	0.29251	0.00000	0.70132	0.00617	0.70749
	* Total *		0.00000	207.95883	108.85111	1.19006	122.00000

Tabelle 30: NBO-Analyse von $[CHB_{11}H_5I_6]^-$.

Atom	No	Natural Charge	Core	Valence	Rydberg	Total
С	 1	-0.81550	1.99912	4.77353	0.04285	6.81550
Н	2	0.07987	0.00000	0.91210	0.00802	0.92013
Н	3	0.07973	0.00000	0.91234	0.00793	0.92027
Н	4	0.33492	0.00000	0.65664	0.00844	0.66508
Н	5	0.07976	0.00000	0.91195	0.00829	0.92024
Н	6	0.07973	0.00000	0.91234	0.00793	0.92027
Н	7	0.07987	0.00000	0.91210	0.00802	0.92013
В	8	-0.22032	1.99678	3.12156	0.10198	5.22032
В	9	-0.00820	1.99802	2.94733	0.06286	5.00820
В	10	-0.02099	1.99803	2.95371	0.06926	5.02099
В	11	-0.20238	1.99677	3.11554	0.09007	5.20238
В	12	-0.13013	1.99679	3.03370	0.09964	5.13013
В	13	-0.24791	1.99667	3.14321	0.10804	5.24791
В	14	-0.00891	1.99801	2.94784	0.06306	5.00891
В	15	-0.02099	1.99803	2.95371	0.06925	5.02099
В	16	-0.20238	1.99677	3.11554	0.09007	5.20238
В	17	-0.22032	1.99678	3.12156	0.10198	5.22032
В	18	-0.00821	1.99802	2.94733	0.06286	5.00821
Ι	19	0.05482	45.99767	6.93569	0.01182	52.94518
Ι	20	0.05851	45.99764	6.93507	0.00878	52.94149
Ι	21	0.05856	45.99764	6.93508	0.00871	52.94144
Ι	22	0.05856	45.99764	6.93508	0.00871	52.94144
Ι	23	0.05851	45.99764	6.93507	0.00878	52.94149
Ι	24	0.08341	45.99760	6.91063	0.00836	52.91659
		-1.00000	299.95562		1.06573	122.00000

Tabelle 31: NBO-Analyse von $H[CHB_{11}H_5I_6]$.

• .		NT	Natural	G	X 7 1		T (1
Atom	1 	No	Charge	Core	Valence	Rydberg	Total
Н		1	0.35096	0.00000	0.64032	0.00872	0.64904
В		2	-0.21765	1.99679	3.12882	0.09204	5.21765
Ι		3	0.33382	45.99697	6.65444	0.01476	52.66618
Ι		4	0.11029	45.99762	6.88287	0.00922	52.88971
Ι		5	0.10421	45.99763	6.88845	0.00971	52.89579
Ι		6	0.10422	45.99763	6.88844	0.00971	52.89578
Ι		7	0.11030	45.99762	6.88286	0.00922	52.88970
Н		8	0.09445	0.00000	0.89751	0.00804	0.90555
В		9	-0.01844	1.99803	2.95106	0.06935	5.01844
Н		10	0.09529	0.00000	0.89651	0.00820	0.90471
В		11	0.00108	1.99805	2.93866	0.06222	4.99892
С		12	-0.81065	1.99914	4.76814	0.04338	6.81065
Н		13	0.09529	0.00000	0.89651	0.00820	0.90471
В		14	-0.23221	1.99678	3.12876	0.10668	5.23221
В		15	0.00006	1.99804	2.93917	0.06274	4.99994
В		16	0.00007	1.99804	2.93916	0.06274	4.99993
В		17	-0.24402	1.99655	3.14960	0.09788	5.24402
Ι		18	0.49628	45.99650	6.49006	0.01715	52.50372
В		19	-0.13522	1.99672	3.04432	0.09418	5.13522
В		20	-0.23221	1.99678	3.12877	0.10667	5.23221
В		21	-0.21766	1.99679	3.12883	0.09205	5.21766
Н		22	0.09445	0.00000	0.89751	0.00804	0.90555
В		23	-0.01845	1.99803	2.95108	0.06934	5.01845
Η		24	0.09528	0.00000	0.89614	0.00857	0.90472
Η		25	0.04047	0.00000	0.94367	0.01586	0.95953
	* Total *		0.00000	299.95369	84.95165	1.09467	386.00000

Tabelle 32: NBO-Analyse von [Me_3Si][CHB₁₁H₅I₆].

Atom		No	Natural Charge	Core	Valence	Rydberg	Total
С		1	-0.81359	1.99913	4.76613	0.04833	6.81359
Н		2	0.34946	0.00000	0.64227	0.00827	0.65054
В		3	-0.23380	1.99679	3.13147	0.10554	5.23380
В		4	-0.01174	1.99805	2.94633	0.06737	5.01174
В		5	-0.00029	1.99802	2.94066	0.06161	5.00029
В		6	-0.15345	1.99680	3.05894	0.09770	5.15345
В		7	-0.22068	1.99681	3.12956	0.09432	5.22068
В		8	-0.18854	1.99651	3.08421	0.10782	5.18854
В		9	-0.01173	1.99805	2.94631	0.06737	5.01173
В		10	-0.00263	1.99801	2.94368	0.06093	5.00263
В		11	-0.23376	1.99679	3.13142	0.10554	5.23376
В		12	-0.22071	1.99681	3.12959	0.09432	5.22071
В		13	-0.00029	1.99802	2.94067	0.06161	5.00029
Η		14	0.09341	0.00000	0.89841	0.00817	0.90659
Η		15	0.09218	0.00000	0.89948	0.00834	0.90782
Η		16	0.09341	0.00000	0.89841	0.00817	0.90659
Н		17	0.09370	0.00000	0.89734	0.00896	0.90630
Η		18	0.09218	0.00000	0.89948	0.00834	0.90782
Si		19	1.59220	9.99776	2.35004	0.06000	12.40780
С		20	-1.22292	1.99934	5.20094	0.02265	7.22292
Н		21	0.27126	0.00000	0.72545	0.00329	0.72874
Н		22	0.27733	0.00000	0.71801	0.00466	0.72267
Н		23	0.29048	0.00000	0.70349	0.00604	0.70952
С		24	-1.21604	1.99937	5.19666	0.02002	7.21604
Н		25	0.27580	0.00000	0.72095	0.00325	0.72420
Н		26	0.27206	0.00000	0.72379	0.00415	0.72794
Н		27	0.27204	0.00000	0.72382	0.00415	0.72796
С		28	-1.22295	1.99934	5.20097	0.02264	7.22295
Н		29	0.27736	0.00000	0.71798	0.00466	0.72264
Н		30	0.27127	0.00000	0.72545	0.00329	0.72873
Н		31	0.29047	0.00000	0.70349	0.00604	0.70953
Ι		32	0.08752	45.99762	6.90526	0.00960	52.91248
Ι		33	0.08012	45.99756	6.90998	0.01234	52.91988
Ι		34	0.08756	45.99762	6.90523	0.00960	52.91244
Ι		35	0.09902	45.99762	6.89412	0.00925	52.90098
Ι		36	0.09901	45.99762	6.89413	0.00925	52.90099
Ι		37	0.39529	45.99646	6.58582	0.02243	52.60471
	* Total *		0.00000	315.95006	======================================		426.00000

Tabelle 33: NBO-Analyse von [CHB₁₁F₁₁]⁻.

Atom	No	Natural Charge	Core	Valence	Rydberg	Total
С	1	-0.93593	1.99909	4.89336	0.04348	6.93593
Н	2	0.35176	0.00000	0.64013	0.00811	0.64824
В	3	0.37645	1.99715	2.56333	0.06308	4.62355
В	4	0.56408	1.99716	2.37465	0.06410	4.43592
В	5	0.56408	1.99716	2.37465	0.06410	4.43592
В	6	0.37645	1.99715	2.56199	0.06442	4.62355
В	7	0.37645	1.99715	2.56199	0.06442	4.62355
В	8	0.38992	1.99728	2.55490	0.05791	4.61008
В	9	0.56180	1.99716	2.37581	0.06523	4.43820
В	10	0.56180	1.99716	2.37581	0.06523	4.43820
В	11	0.37829	1.99715	2.56122	0.06334	4.62171
В	12	0.37829	1.99715	2.56122	0.06334	4.62171
В	13	0.56206	1.99716	2.37748	0.06331	4.43794
F	14	-0.50199	1.99994	7.48711	0.01494	9.50199
F	15	-0.50183	1.99994	7.48703	0.01487	9.50183
F	16	-0.50234	1.99994	7.48717	0.01523	9.50234
F	17	-0.50234	1.99994	7.48717	0.01523	9.50234
F	18	-0.50199	1.99994	7.48711	0.01494	9.50199
F	19	-0.50154	1.99994	7.48623	0.01538	9.50154
F	20	-0.49854	1.99994	7.48369	0.01491	9.49854
F	21	-0.49899	1.99994	7.48374	0.01531	9.49899
F	22	-0.49899	1.99994	7.48374	0.01531	9.49899
F	23	-0.49854	1.99994	7.48369	0.01491	9.49854
F	24	-0.49838	1.99994	7.48362	0.01482	9.49838
* ′	 Гоtal *	-1.00000	45.96726	115.11681	0.91593	162.00000

Tabelle 34: NBO-Analyse von H[CHB₁₁F₁₁].

Natural Population	Natural	Popu	lation
--------------------	---------	------	--------

			Nat	ural Populat	ion		
			Natural				
Ator	n	No	Charge	Core	Valence	Rydberg	Total
Н		1	0.37835	0.00000	0.61377	0.00788	0.62165
В		2	0.38634	1.99706	2.55138	0.06523	4.61366
F		3	-0.48375	1.99994	7.46766	0.01615	9.48375
F		4	-0.48374	1.99994	7.46765	0.01615	9.48374
F		5	-0.47862	1.99993	7.46358	0.01511	9.47862
F		6	-0.47708	1.99994	7.46058	0.01656	9.47708
F		7	-0.47708	1.99994	7.46058	0.01656	9.47708
F		8	-0.47314	1.99993	7.45701	0.01620	9.47314
В		9	0.60308	1.99727	2.33677	0.06288	4.39692
F		10	-0.47272	1.99993	7.45647	0.01632	9.47272
В		11	0.58305	1.99729	2.35491	0.06475	4.41695
С		12	-0.96036	1.99912	4.90576	0.05548	6.96036
F		13	-0.47302	1.99993	7.45659	0.01650	9.47302
В		14	0.41648	1.99718	2.52247	0.06388	4.58352
В		15	0.60310	1.99727	2.33676	0.06288	4.39690
В		16	0.57645	1.99732	2.36594	0.06029	4.42355
В		17	0.26755	1.99652	2.67476	0.06117	4.73245
F		18	-0.40953	1.99993	7.39165	0.01796	9.40953
В		19	0.38634	1.99706	2.55138	0.06522	4.61366
В		20	0.30116	1.99669	2.64709	0.05506	4.69884
В		21	0.41647	1.99718	2.52248	0.06388	4.58353
F		22	-0.47303	1.99993	7.45659	0.01650	9.47303
В		23	0.58305	1.99729	2.35491	0.06476	4.41695
F		24	-0.47314	1.99993	7.45700	0.01620	9.47314
Η		25	0.63380	0.00000	0.35827	0.00792	0.36620
	* Total *		0.00000	45.96651	115.09200	0.94148	162.00000

Tabelle 35: NBO-Analyse von [Me₃Si][CHB₁₁F₁₁].

Atom	No	Natural Charge	Core	Valence	Rydberg	Total
С	1	-0.94477	1.99910	4.89477	0.05090	6.94477
H	2	0.37172	0.00000	0.62021	0.00807	0.62828
В	3	0.38143	1.99709	2.55538	0.06611	4.61857
В	4	0.58015	1.99724	2.35843	0.06418	4.41985
В	5	0.58015	1.99725	2.35996	0.06264	4.41985
В	6	0.36719	1.99705	2.57150	0.06426	4.63281
В	7	0.39546	1.99714	2.54434	0.06306	4.60454
В	8	0.28086	1.99675	2.64837	0.07403	4.71914
В	9	0.58018	1.99724	2.35840	0.06418	4.41982
В	10	0.57860	1.99726	2.36040	0.06374	4.42140
В	11	0.38142	1.99709	2.55538	0.06611	4.61858
В	12	0.39548	1.99714	2.54431	0.06306	4.60452
В	13	0.58009	1.99725	2.36001	0.06264	4.41991
F	14	-0.49420	1.99994	7.47818	0.01608	9.49420
F	15	-0.49918	1.99994	7.48396	0.01528	9.49918
F	16	-0.49916	1.99992	7.47284	0.02640	9.49916
F	17	-0.49420	1.99994	7.47818	0.01608	9.49420
F	18	-0.48749	1.99994	7.47223	0.01532	9.48749
F	19	-0.48750	1.99994	7.47223	0.01532	9.48750
F	20	-0.47998	1.99993	7.46415	0.01590	9.47998
F	21	-0.47903	1.99993	7.46342	0.01567	9.47903
F	22	-0.47998	1.99993	7.46415	0.01590	9.47998
F	23	-0.47903	1.99993	7.46342	0.01567	9.47903
F	24	-0.47893	1.99993	7.46345	0.01554	9.47893
Si	25	1.98918	9.99707	1.96402	0.04974	12.01082
С	26	-1.24509	1.99934	5.22427	0.02149	7.24509
Н	27	0.28025	0.00000	0.71743	0.00232	0.71975
Н	28	0.28897	0.00000	0.70649	0.00454	0.71103
Н	29	0.29321	0.00000	0.70009	0.00670	0.70679
С	30	-1.23528	1.99936	5.21743	0.01849	7.23528
Н	31	0.27785	0.00000	0.71949	0.00266	0.72215
Н	32	0.28213	0.00000	0.71420	0.00367	0.71787
Н	33	0.28213	0.00000	0.71420	0.00367	0.71787
С	34	-1.24509	1.99934	5.22426	0.02149	7.24509
Н	35	0.28025	0.00000	0.71743	0.00232	0.71975
Н	36	0.29321	0.00000	0.70009	0.00670	0.70679
Н	37	0.28897	0.00000	0.70649	0.00454	0.71103
* Total *		0.00000	61.96199	138.93354	1.10447	202.00000

Tabelle 36: NBO-Analyse von [CHB₁₁Cl₁₁]⁻.

Natural Population

Atom	No	Natural Charge	Core	Valence	Rydberg	Total
С	1	-0.94745	1.99890	4.89093	0.05762	6.94745
Н	2	0.36704	0.00000	0.62129	0.01166	0.63296
В	3	-0.02225	1.99661	2.92837	0.09726	5.02225
В	4	0.17024	1.99656	2.73401	0.09919	4.82976
В	5	0.17024	1.99656	2.73401	0.09919	4.82976
В	6	-0.02250	1.99661	2.92747	0.09842	5.02250
В	7	-0.02250	1.99661	2.92747	0.09842	5.02250
В	8	0.00860	1.99679	2.90182	0.09278	4.99140
В	9	0.16915	1.99656	2.73372	0.10057	4.83085
В	10	0.16915	1.99656	2.73373	0.10057	4.83085
В	11	-0.02104	1.99661	2.92776	0.09667	5.02104
В	12	-0.02104	1.99661	2.92776	0.09667	5.02104
В	13	0.16949	1.99656	2.73502	0.09893	4.83051
Cl	14	-0.11125	10.00000	7.09281	0.01844	17.11125
Cl	15	-0.11125	10.00000	7.09281	0.01844	17.11125
Cl	16	-0.11115	10.00000	7.09270	0.01845	17.11115
Cl	17	-0.11115	10.00000	7.09270	0.01845	17.11115
Cl	18	-0.11116	10.00000	7.09271	0.01844	17.11116
Cl	19	-0.11076	10.00000	7.09210	0.01866	17.11076
Cl	20	-0.10003	10.00000	7.08066	0.01937	17.10003
Cl	21	-0.10004	10.00000	7.08064	0.01940	17.10004
Cl	22	-0.10003	10.00000	7.08066	0.01937	17.10003
Cl	23	-0.10015	10.00000	7.08077	0.01939	17.10015
Cl	24	-0.10015	10.00000	7.08077	0.01939	17.10015
* Tot	al *	-1.00000	133.96155	114.68271	1.35574	250.00000

Tabelle 37: NBO-Analyse von H[CHB₁₁Cl₁₁].

Atom	1	No	Natural Charge	Core	Valence	Rydberg	Total
 Н			0.38154	0.00000	0.60739	0.01107	0.61846
В		2	-0.02380	1.99658	2.92554	0.10168	5.02380
Cl		3	-0.07555	10.00000	7.05532	0.02023	17.07555
Cl		4	-0.08349	10.00000	7.06266	0.02083	17.08349
Cl		5	-0.07559	10.00000	7.05536	0.02024	17.07559
Cl		6	-0.08339	10.00000	7.06248	0.02090	17.08339
Cl		7	0.02019	10.00000	6.95272	0.02709	16.97981
Cl		8	-0.05716	10.00000	7.03604	0.02111	17.05716
В		9	0.16811	1.99671	2.73658	0.09861	4.83189
Cl		10	-0.05968	10.00000	7.03851	0.02117	17.05968
В		11	0.16915	1.99665	2.73518	0.09902	4.83085
С		12	-0.94909	1.99893	4.88790	0.06227	6.94909
Cl		13	-0.05695	10.00000	7.03577	0.02118	17.05695
В		14	-0.02441	1.99658	2.92564	0.10220	5.02441
В		15	0.16678	1.99668	2.73666	0.09988	4.83322
В		16	0.17010	1.99665	2.73510	0.09815	4.82990
В		17	-0.00826	1.99646	2.92196	0.08984	5.00826
Cl		18	0.16971	10.00000	6.79619	0.03410	16.83029
В		19	-0.02129	1.99664	2.92727	0.09738	5.02129
В		20	-0.02115	1.99664	2.92776	0.09675	5.02115
В		21	-0.03467	1.99645	2.94685	0.09137	5.03467
Cl		22	-0.05583	10.00000	7.03448	0.02134	17.05583
В		23	0.16686	1.99668	2.73662	0.09983	4.83314
Cl		24	-0.05971	10.00000	7.03858	0.02114	17.05971
Η		25	0.27758	0.00000	0.70701	0.01541	0.72242
	* Total *		0.00000	133.96164	114.62557	1.41280	250.00000

Tabelle 38: NBO-Analyse von [Me₃Si][CHB₁₁Cl₁₁].

Atom	1	No	Natural Charge	Core	Valence	Rydberg	Total
С		1	-0.95302	1.99891	4.88522	0.06889	6.95302
Η		2	0.38021	0.00000	0.60945	0.01034	0.61979
В		3	-0.02334	1.99663	2.92778	0.09893	5.02334
В		4	0.16859	1.99663	2.73613	0.09865	4.83141
В		5	0.16882	1.99662	2.73654	0.09802	4.83118
В		6	-0.02334	1.99663	2.92778	0.09893	5.02334
В		7	-0.02772	1.99660	2.93121	0.09991	5.02772
В		8	0.01186	1.99651	2.89578	0.09585	4.98814
В		9	0.16882	1.99662	2.73653	0.09802	4.83118
В		10	0.17071	1.99664	2.73299	0.09967	4.82929
В		11	-0.02772	1.99660	2.93121	0.09991	5.02772
В		12	-0.03026	1.99659	2.93727	0.09640	5.03026
В		13	0.17071	1.99664	2.73299	0.09966	4.82929
Cl		14	-0.08800	10.00000	7.06793	0.02007	17.08800
Cl		15	-0.08800	10.00000	7.06793	0.02007	17.08800
Cl		16	0.02729	10.00000	6.94196	0.03075	16.97271
Cl		17	-0.09789	10.00000	7.07808	0.01981	17.09789
Cl		18	-0.10439	10.00000	7.08485	0.01954	17.10439
Cl		19	-0.09789	10.00000	7.07808	0.01981	17.09789
Cl		20	-0.06451	10.00000	7.04381	0.02069	17.06451
Cl		21	-0.06477	10.00000	7.04400	0.02077	17.06477
Cl		22	-0.06478	10.00000	7.04400	0.02077	17.06478
Cl		23	-0.06659	10.00000	7.04564	0.02095	17.06659
Cl		24	-0.06658	10.00000	7.04564	0.02095	17.06658
С		25	-1.22870	1.99932	5.20685	0.02253	7.22870
С		26	-1.22343	1.99935	5.20450	0.01958	7.22343
С		27	-1.22870	1.99932	5.20685	0.02253	7.22870
Н		28	0.29179	0.00000	0.70141	0.00680	0.70821
Н		29	0.28386	0.00000	0.71177	0.00437	0.71614
Н		30	0.27709	0.00000	0.72019	0.00272	0.72291
Н		31	0.27845	0.00000	0.71763	0.00392	0.72155
Н		32	0.27893	0.00000	0.71813	0.00294	0.72107
Н		33	0.27844	0.00000	0.71764	0.00392	0.72156
Н		34	0.27708	0.00000	0.72020	0.00272	0.72292
Η		35	0.28390	0.00000	0.71172	0.00437	0.71610
Н		36	0.29179	0.00000	0.70143	0.00678	0.70821
Si		37	1.76131	9.99757	2.18518	0.05594	12.23869
	* Total *		0.00000	149.95718	138.48633	1.55649	290.00000

Tabelle 39: NBO-Analyse von [CHB₁₁Br₁₁]⁻.

Atom	No	Natural Charge	Core	Valence	Rydberg	Total
С	1	-0.97794	1.99887	4.91780	0.06126	6.97794
Н	2	0.37090	0.00000	0.61701	0.01209	0.62910
В	3	-0.03635	1.99641	2.93286	0.10709	5.03635
В	4	0.07733	1.99631	2.81685	0.10950	4.92267
В	5	0.07734	1.99631	2.81685	0.10950	4.92266
В	6	-0.12451	1.99639	3.01933	0.10879	5.12451
В	7	-0.12451	1.99639	3.01933	0.10879	5.12451
В	8	-0.08713	1.99658	2.98519	0.10536	5.08713
В	9	0.09165	1.99631	2.80990	0.10214	4.90835
В	10	0.09165	1.99631	2.80990	0.10214	4.90835
В	11	-0.10693	1.99639	3.01275	0.09779	5.10693
В	12	-0.10693	1.99639	3.01275	0.09779	5.10693
В	13	0.09050	1.99631	2.81102	0.10217	4.90950
Br	14	-0.01399	27.99895	7.00346	0.01158	35.01399
Br	15	-0.01399	27.99895	7.00331	0.01173	35.01399
Br	16	-0.02670	27.99903	7.01679	0.01089	35.02670
Br	17	-0.03161	27.99903	7.01702	0.01556	35.03161
Br	18	-0.02682	27.99903	7.01683	0.01096	35.02682
Br	19	-0.02640	27.99902	7.01656	0.01082	35.02640
Br	20	-0.02670	27.99903	7.01679	0.01089	35.02670
Br	21	-0.02682	27.99903	7.01683	0.01096	35.02682
Br	22	-0.01399	27.99895	7.00331	0.01173	35.01399
Br	23	-0.01407	27.99895	7.00327	0.01185	35.01407
Br	24	-0.01399	27.99895	7.00346	0.01158	35.01399
* Total	*	-1.00000	331.94786	114.69917	1.35294	448.00000

Tabelle 40: NBO-Analyse von H[CHB₁₁Br₁₁].

Natural Population	1
--------------------	---

Atom	1	No	Natural Charge	Core	Valence	Rydberg	Total
Н		1	0.38206	0.00000	0.60635	0.01159	0.61794
В		2	-0.11200	1.99641	3.01701	0.09859	5.11200
Br		3	0.19960	27.99881	6.77895	0.02264	34.80040
Br		4	0.01143	27.99902	6.97745	0.01210	34.98857
Br		5	0.00377	27.99902	6.98457	0.01264	34.99623
Br		6	0.00377	27.99902	6.98457	0.01264	34.99623
Br		7	0.01143	27.99902	6.97746	0.01210	34.98857
Br		8	0.02758	27.99894	6.96082	0.01265	34.97242
В		9	0.07006	1.99638	2.82296	0.11060	4.92994
Br		10	0.03244	27.99893	6.95589	0.01275	34.96756
В		11	0.08493	1.99644	2.81653	0.10211	4.91507
С		12	-0.97751	1.99889	4.91522	0.06340	6.97751
Br		13	0.03243	27.99893	6.95589	0.01275	34.96757
В		14	-0.13009	1.99637	3.01980	0.11392	5.13009
В		15	0.08370	1.99641	2.81726	0.10262	4.91630
В		16	0.08372	1.99641	2.81724	0.10262	4.91628
В		17	-0.08863	1.99636	2.99614	0.09613	5.08863
Br		18	0.26345	27.99873	6.71686	0.02096	34.73655
В		19	-0.04394	1.99626	2.94786	0.09982	5.04394
В		20	-0.13011	1.99637	3.01981	0.11393	5.13011
В		21	-0.11202	1.99641	3.01703	0.09858	5.11202
Br		22	0.02759	27.99894	6.96081	0.01265	34.97241
В		23	0.07006	1.99638	2.82296	0.11061	4.92994
Br		24	0.03447	27.99892	6.95364	0.01298	34.96553
Η		25	0.17182	0.00000	0.81134	0.01683	0.82818
	* Total *		0.00000	35.97309	85.24036	0.78656	448.00000

Tabelle 41: NBO-Analyse von $[Me_3Si][CHB_{11}Br_{11}]$.

Aton	1	No	Natural Charge	Core	Valence	Rydberg	Total
			0.00010	1 00000	4.01257	0.07574	(00010
C II		1	-0.98819	1.99888	4.9135/	0.07574	6.98819
П		2	0.38232	0.00000	0.00/21	0.01028	0.01/48
D D		3 4	-0.11318	1.99040	5.01/02 2.81507	0.10117	3.11318
D D		4	0.08318	1.9903/	2.81397	0.10247	4.91462
D D		5	0.08/3/	1.99030	2.81341	0.10003	4.91243
D D		07	-0.11318	1.99040	3.01/02	0.10113	5 12570
D		/	-0.12370	1.99039	3.02208	0.10724	5.12370
D D		0	0.02757	1.99034	2.90094	0.10194	3.03922
B		9 10	0.08/3/	1.99030	2.81341	0.10065	4.91243
B		10	0.07907	1.99038	2.81004	0.10831	4.92093
B		11	-0.125/0	1.99639	3.02208	0.10724	5.12570
B		12	-0.06542	1.99639	2.96557	0.10346	5.06542
В		13	0.07906	1.99638	2.81603	0.10853	4.92094
C		14	-1.226/2	1.99932	5.20479	0.02261	7.22672
C		15	-1.22165	1.99936	5.20275	0.01954	7.22165
C		16	-1.226/2	1.99932	5.20479	0.02261	/.226/2
H		17	0.29146	0.00000	0.70165	0.00688	0.70854
H		18	0.28049	0.00000	0.71510	0.00440	0.71951
H		19	0.27529	0.00000	0.72175	0.00297	0.72471
H		20	0.27623	0.00000	0.71981	0.00396	0.72377
H		21	0.27852	0.00000	0.71840	0.00308	0.72148
H		22	0.27623	0.00000	0.71981	0.00396	0.72377
H		23	0.27529	0.00000	0.72175	0.00297	0.72471
H		24	0.28049	0.00000	0.71510	0.00440	0.71951
H		25	0.29146	0.00000	0.70166	0.00688	0.70854
S ₁		26	1.69918	9.99763	2.24528	0.05/90	12.30082
Br		27	0.02533	27.99893	6.96313	0.01262	34.97467
Br		28	0.02321	27.99893	6.96528	0.01258	34.97679
Br		29	-0.00133	27.99902	6.99008	0.01223	35.00133
Br		30	0.02563	27.99893	6.96274	0.01271	34.97437
Br		31	0.02533	27.99893	6.96313	0.01262	34.97467
Br		32	0.02321	27.99893	6.96528	0.01258	34.97679
Br		33	-0.01187	27.99903	7.00063	0.01221	35.01187
Br		34	-0.02110	27.99901	7.00638	0.01571	35.02110
Br		35	-0.01187	27.99903	7.00063	0.01221	35.01187
Br		36	-0.00133	27.99902	6.99008	0.01223	35.00133
Br		37	0.16885	27.99866	6.80953	0.02296	34.83115
	* Total *		0.00000	347.94308	138.51506	1.54186	488.00000

Tabelle 42: NBO-Analyse von $[CHB_{11}I_{11}]^{-}$.

Atom		No	Natural Charge	Core	Valence	Rydberg	Total
С		1	-1.02734	1.99888	4.95270	0.07576	7.02734
Н		2	0.37194	0.00000	0.61390	0.01416	0.62806
В		3	-0.22012	1.99653	3.11144	0.11215	5.22012
В		4	-0.05396	1.99637	2.94793	0.10966	5.05396
В		5	-0.05396	1.99637	2.94793	0.10965	5.05396
В		6	-0.27315	1.99652	3.16155	0.11507	5.27315
В		7	-0.27314	1.99652	3.16154	0.11508	5.27314
В		8	-0.18445	1.99669	3.07339	0.11437	5.18445
В		9	-0.05899	1.99637	2.94948	0.11313	5.05899
В		10	-0.05899	1.99637	2.94948	0.11313	5.05899
В		11	-0.27247	1.99652	3.16253	0.11341	5.27247
В		12	-0.27246	1.99652	3.16253	0.11342	5.27246
В		13	0.01231	1.99638	2.88506	0.10625	4.98769
Ι		14	0.11838	45.99760	6.87514	0.00888	52.88162
Ι		15	0.13260	45.99738	6.86077	0.00926	52.86740
Ι		16	0.11643	45.99762	6.87529	0.01066	52.88357
Ι		17	0.13260	45.99738	6.86077	0.00926	52.86740
Ι		18	0.11838	45.99760	6.87514	0.00889	52.88162
Ι		19	0.13253	45.99738	6.86077	0.00932	52.86747
Ι		20	0.11838	45.99760	6.87517	0.00885	52.88162
Ι		21	0.12918	45.99741	6.86110	0.01231	52.87082
Ι		22	0.11838	45.99760	6.87517	0.00885	52.88162
Ι		23	0.13253	45.99738	6.86077	0.00932	52.86747
Ι		24	0.11539	45.99760	6.87757	0.00944	52.88461
	* Total *		-1.00000	529.93256	114.63715	1.43029	646.00000

Tabelle 43: NBO-Analyse von H[CHB₁₁I₁₁]⁻.

Atom	l	No	Natural Charge	Core	Valence	Rydberg	Total
н		1	0.37965	0.00000	0.60682	0.01353	0.62035
В		2	-0.28269	1.99655	3.17136	0.11479	5.28269
Ι		3	0.41124	45.99684	6.57598	0.01593	52.58876
Ι		4	0.15782	45.99759	6.83514	0.00945	52.84218
Ι		5	0.15062	45.99761	6.84164	0.01013	52.84938
Ι		6	0.15061	45.99761	6.84165	0.01013	52.84939
Ι		7	0.15782	45.99759	6.83514	0.00945	52.84218
Ι		8	0.17568	45.99737	6.81720	0.00975	52.82432
В		9	-0.06601	1.99642	2.95880	0.11079	5.06601
Ι		10	0.18217	45.99734	6.81079	0.00970	52.81783
В		11	0.00109	1.99649	2.89481	0.10761	4.99891
С		12	-1.02529	1.99890	4.95000	0.07639	7.02529
Ι		13	0.18216	45.99734	6.81080	0.00970	52.81784
В		14	-0.28085	1.99651	3.16344	0.12089	5.28085
В		15	-0.07271	1.99646	2.96238	0.11387	5.07271
В		16	-0.07274	1.99646	2.96241	0.11387	5.07274
В		17	-0.17730	1.99656	3.07360	0.10714	5.17730
Ι		18	0.48351	45.99663	6.50260	0.01727	52.51649
В		19	-0.21930	1.99643	3.11743	0.10543	5.21930
В		20	-0.28085	1.99651	3.16345	0.12089	5.28085
В		21	-0.28270	1.99655	3.17135	0.11480	5.28270
Ι		22	0.17568	45.99737	6.81720	0.00975	52.82432
В		23	-0.06597	1.99642	2.95877	0.11078	5.06597
Ι		24	0.18135	45.99736	6.80857	0.01273	52.81865
Η		25	0.03701	0.00000	0.94581	0.01717	0.96299
	* Total *		0.00000	529.93091	114.59714	1.47194	646.00000

Tabelle 44: NBO-Analyse von [Me₃Si][CHB₁₁I₁₁].

|--|

Atom		No	Natural Charge	Core	Valence	Rydberg	Total
C		1	-1.03952	1.99888	4.94781	0.09282	7.03952
Н		2	0.38209	0.00000	0.60658	0.01133	0.61791
В		3	-0.27961	1.99654	3.16669	0.11639	5.27961
В		4	-0.00058	1.99643	2.89561	0.10854	5.00058
В		5	-0.06802	1.99642	2.95914	0.11246	5.06802
В		6	-0.27717	1.99654	3.16597	0.11467	5.27717
В		7	-0.27518	1.99652	3.16511	0.11355	5.27518
В		8	-0.16394	1.99650	3.05977	0.10767	5.16394
В		9	-0.06875	1.99642	2.95993	0.11240	5.06875
В		10	-0.05652	1.99645	2.95049	0.10958	5.05652
В		11	-0.27359	1.99651	3.16414	0.11294	5.27359
В		12	-0.22790	1.99653	3.12887	0.10250	5.22790
В		13	-0.05941	1.99644	2.95074	0.11223	5.05941
С		14	-1.22283	1.99933	5.20075	0.02275	7.22283
С		15	-1.21804	1.99936	5.19872	0.01996	7.21804
С		16	-1.22298	1.99933	5.20044	0.02321	7.22298
Η		17	0.28996	0.00000	0.70394	0.00610	0.71004
Η		18	0.27802	0.00000	0.71729	0.00469	0.72198
Η		19	0.27273	0.00000	0.72406	0.00322	0.72727
Η		20	0.27284	0.00000	0.72297	0.00419	0.72716
Η		21	0.27745	0.00000	0.71930	0.00324	0.72255
Η		22	0.27325	0.00000	0.72257	0.00418	0.72675
Η		23	0.27283	0.00000	0.72396	0.00321	0.72717
Η		24	0.27696	0.00000	0.71836	0.00467	0.72304
Η		25	0.29011	0.00000	0.70382	0.00607	0.70989
Si		26	1.59803	9.99773	2.34405	0.06019	12.40197
Ι		27	0.17407	45.99734	6.81932	0.00926	52.82593
Ι		28	0.17572	45.99734	6.81728	0.00965	52.82428
Ι		29	0.17358	45.99734	6.81942	0.00965	52.82642
Ι		30	0.17233	45.99738	6.81740	0.01289	52.82767
Ι		31	0.17580	45.99735	6.81725	0.00961	52.82420
Ι		32	0.14709	45.99759	6.84555	0.00977	52.85291
Ι		33	0.13535	45.99760	6.85701	0.01005	52.86465
Ι		34	0.14670	45.99759	6.84603	0.00969	52.85330
Ι		35	0.13432	45.99759	6.85802	0.01006	52.86568
Ι		36	0.12823	45.99753	6.86174	0.01251	52.87177
Ι		37	0.40658	45.99647	6.57503	0.02191	52.59342
	* Total *	=	0.00000	545.92705	138.45515	1.61780	686.00000

Tabelle 45: NBO-Analyse von [Me₃SiOSO₃]⁻.

Ator	m	No	Natural Charge	Core	Valence	Rydberg	Total
S		1	2.58890	9.99888	3.16916	0.24305	13.41110
0		2	-1.00442	1.99981	6.97154	0.03306	9.00442
0		3	-1.03917	1.99982	7.00393	0.03541	9.03917
0		4	-1.00995	1.99981	6.97621	0.03392	9.00995
0		5	-1.12011	1.99979	7.08328	0.03704	9.12011
Si		6	1.96830	9.99791	1.97984	0.05394	12.03170
С		7	-1.21391	1.99939	5.19538	0.01914	7.21391
Н		8	0.23166	0.00000	0.76599	0.00235	0.76834
Н		9	0.27733	0.00000	0.71881	0.00387	0.72267
Н		10	0.24736	0.00000	0.74985	0.00279	0.75264
С		11	-1.21575	1.99939	5.19732	0.01904	7.21575
Н		12	0.23152	0.00000	0.76616	0.00232	0.76848
Н		13	0.25267	0.00000	0.74425	0.00308	0.74733
Н		14	0.27692	0.00000	0.71909	0.00399	0.72308
С		15	-1.19938	1.99942	5.18302	0.01694	7.19938
Н		16	0.23334	0.00000	0.76419	0.00247	0.76666
Н		17	0.24708	0.00000	0.75002	0.00290	0.75292
Н		18	0.24760	0.00000	0.74948	0.00292	0.75240
	* Total *		-1.000000	33.99423	55.48753	0.51824	90.00000

Tabelle 46: NBO-Analyse von 19.

			Natural				
Ato	m	No	Charge	Core	Valence	Rydberg	Total
S		1	2.63583	9.99861	3.12579	0.23977	13.36417
0		2	-0.93569	1.99980	6.89725	0.03863	8.93569
0		3	-0.93569	1.99980	6.89725	0.03863	8.93569
0		4	-1.05969	1.99978	7.02711	0.03280	9.05969
0		5	-1.05969	1.99978	7.02711	0.03280	9.05969
Si		6	1.94377	9.99777	2.00875	0.04971	12.05623
Si		7	1.94377	9.99777	2.00875	0.04971	12.05623
С		8	-1.22076	1.99938	5.20228	0.01909	7.22076
Н		9	0.25859	0.00000	0.73887	0.00253	0.74141
Н		10	0.27956	0.00000	0.71677	0.00367	0.72044
Н		11	0.26383	0.00000	0.73309	0.00308	0.73617
С		12	-1.22076	1.99938	5.20228	0.01909	7.22076
Н		13	0.25859	0.00000	0.73887	0.00253	0.74141
Н		14	0.27956	0.00000	0.71677	0.00367	0.72044
Н		15	0.26383	0.00000	0.73309	0.00308	0.73617
С		16	-1.22148	1.99939	5.20277	0.01932	7.22148
Н		17	0.26017	0.00000	0.73725	0.00259	0.73983
Н		18	0.26106	0.00000	0.73540	0.00354	0.73894
Н		19	0.27790	0.00000	0.71822	0.00388	0.72210
С		20	-1.20925	1.99939	5.19195	0.01791	7.20925
Н		21	0.25915	0.00000	0.73818	0.00267	0.74085
Н		22	0.26450	0.00000	0.73236	0.00313	0.73550
Н		23	0.26042	0.00000	0.73634	0.00324	0.73958
С		24	-1.20925	1.99939	5.19195	0.01791	7.20925
Н		25	0.25915	0.00000	0.73818	0.00267	0.74085
Н		26	0.26450	0.00000	0.73236	0.00313	0.73550
Н		27	0.26042	0.00000	0.73634	0.00324	0.73958
С		28	-1.22148	1.99939	5.20277	0.01932	7.22148
Н		29	0.26017	0.00000	0.73725	0.00259	0.73983
Η		30	0.26106	0.00000	0.73540	0.00354	0.73894
Η		31	0.27790	0.00000	0.71822	0.00388	0.72210
	* Total *		0	49.98964	79.35899	0.65138	130.00000

Tabelle 47: NBO-Analyse von [(Me₃SiO)₃SO]⁺.

Atom	No	Natural Charge	Core	Valence	Rydberg	Total
			0.00045	.		12 2000 4
S		2.70006	9.99845	3.06865	0.23284	13.29994
0	2	-1.017/2	1.99977	6.98844	0.02951	9.017/2
0	3	-0.87690	1.99979	6.83314	0.04397	8.87690
0	4	-1.00946	1.99975	6.98009	0.02962	9.00946
0	5	-1.01829	1.99977	6.98561	0.03291	9.01829
S1	6	1.92913	9.99764	2.02522	0.04800	12.07087
S1	7	1.93364	9.99762	2.02194	0.04680	12.06636
C	8	-1.22427	1.99937	5.20488	0.02002	7.22427
H	9	0.28034	0.00000	0.71682	0.00284	0.71966
H	10	0.26862	0.00000	0.72708	0.00430	0.73138
Н	11	0.27796	0.00000	0.71857	0.00346	0.72204
С	12	-1.22815	1.99937	5.20883	0.01995	7.22815
Η	13	0.28246	0.00000	0.71463	0.00291	0.71754
Η	14	0.27992	0.00000	0.71618	0.00391	0.72008
Н	15	0.26749	0.00000	0.72877	0.00374	0.73251
С	16	-1.23198	1.99937	5.21295	0.01966	7.23198
Η	17	0.28373	0.00000	0.71345	0.00282	0.71627
Η	18	0.26856	0.00000	0.72728	0.00416	0.73144
Η	19	0.28071	0.00000	0.71512	0.00416	0.71929
С	20	-1.22005	1.99937	5.20140	0.01928	7.22005
Η	21	0.27962	0.00000	0.71738	0.00300	0.72038
Н	22	0.27932	0.00000	0.71728	0.00340	0.72068
Н	23	0.27181	0.00000	0.72459	0.00361	0.72819
С	24	-1.21943	1.99937	5.20018	0.01988	7.21943
Н	25	0.28072	0.00000	0.71633	0.00296	0.71928
Н	26	0.27302	0.00000	0.72345	0.00354	0.72698
Н	27	0.27079	0.00000	0.72557	0.00363	0.72921
С	28	-1.22494	1.99938	5.20539	0.02017	7.22494
Н	29	0.28261	0.00000	0.71441	0.00298	0.71739
Н	30	0.26915	0.00000	0.72677	0.00408	0.73085
Н	31	0.26715	0.00000	0.72865	0.00420	0.73285
Si	32	1.93024	9.99762	2.02511	0.04703	12.06976
С	33	-1.22120	1.99937	5.20190	0.01993	7.22120
Н	34	0.28135	0.00000	0.71579	0.00286	0.71865
Н	35	0.27139	0.00000	0.72485	0.00376	0.72861
Н	36	0.26629	0.00000	0.72958	0.00413	0.73371
С	37	-1.22072	1.99937	5.20171	0.01964	7.22072
Н	38	0.28179	0.00000	0.71529	0.00292	0.71821
H	39	0.27667	0.00000	0.71983	0.00350	0.72333
H	40	0.27124	0.00000	0.72514	0.00362	0.72876
C	41	-1.22896	1.99938	5.21001	0.01957	7.22896
Ĥ	42	0.27114	0.00000	0.72432	0.00454	0.72886

H H		43 44	0.28270 0.28241	0.00000 0.00000	0.71335 0.71477	0.00395 0.00282	0.71730 0.71759
	* Total *		1.00000	65.98477	103.23067	0.78456	170.00000
Tabelle 48: NBO-Analyse von [Me₃SiS]⁻.

Atom	1	No	Natural Charge	Core	Valence	Rydberg	Total
S		1	-1.00522	9.99931	6.97345	0.03246	17.00522
Si		2	1.47015	9.99843	2.46105	0.07036	12.52985
С		3	-1.18386	1.99943	5.16606	0.01837	7.18386
Н		4	0.23789	0.00000	0.75885	0.00327	0.76211
Н		5	0.21984	0.00000	0.77730	0.00286	0.78016
Н		6	0.23789	0.00000	0.75885	0.00327	0.76211
С		7	-1.18430	1.99943	5.16628	0.01858	7.18430
Н		8	0.23801	0.00000	0.75880	0.00319	0.76199
Н		9	0.21986	0.00000	0.77729	0.00285	0.78014
Н		10	0.23809	0.00000	0.75874	0.00317	0.76191
С		11	-1.18430	1.99943	5.16628	0.01858	7.18430
Η		12	0.21986	0.00000	0.77729	0.00285	0.78014
Н		13	0.23801	0.00000	0.75880	0.00319	0.76199
Η		14	0.23809	0.00000	0.75874	0.00317	0.76191
	* Total *		-1.000000	25.99604	31.81777	0.18619	58.00000

Tabelle 49: NBO-Analyse von 23.

			Natural				
Ato	m	No	Charge	Core	Valence	Rydberg	Total
S		1	-0.65293	9.99904	6.59908	0.05482	16.65293
Si		2	1.58661	9.99814	2.36697	0.04828	12.41339
Si		3	1.58661	9.99814	2.36697	0.04828	12.41339
С		4	-1.18441	1.99939	5.1649	0.02013	7.18441
Н		5	0.25971	0.00000	0.73722	0.00307	0.74029
Н		6	0.25355	0.00000	0.74355	0.0029	0.74645
Н		7	0.25957	0.00000	0.73709	0.00334	0.74043
С		8	-1.19075	1.99938	5.1691	0.02226	7.19075
Н		9	0.25332	0.00000	0.74378	0.0029	0.74668
Н		10	0.25977	0.00000	0.73656	0.00367	0.74023
Н		11	0.25331	0.00000	0.74239	0.0043	0.74669
С		12	-1.19088	1.99938	5.17033	0.02117	7.19088
Н		13	0.24934	0.00000	0.74722	0.00344	0.75066
Н		14	0.25927	0.00000	0.73705	0.00368	0.74073
Н		15	0.25805	0.00000	0.73888	0.00307	0.74195
С		16	-1.19088	1.99938	5.17033	0.02117	7.19088
Η		17	0.24934	0.00000	0.74722	0.00344	0.75066
Н		18	0.25927	0.00000	0.73705	0.00368	0.74073
Н		19	0.25805	0.00000	0.73888	0.00307	0.74195
С		20	-1.19075	1.99938	5.1691	0.02226	7.19075
Η		21	0.25332	0.00000	0.74378	0.0029	0.74668
Н		22	0.25977	0.00000	0.73656	0.00367	0.74023
Η		23	0.25331	0.00000	0.74239	0.0043	0.74669
С		24	-1.18441	1.99939	5.1649	0.02013	7.18441
Н		25	0.25971	0.00000	0.73722	0.00307	0.74029
Н		26	0.25355	0.00000	0.74355	0.0029	0.74645
Н		27	0.25957	0.00000	0.73709	0.00334	0.74043
	* Total *		0	41.99161	55.66913	0.33926	98.00000

Tabelle 50: NBO-Analyse von [(Me₃Si)₃S]⁺.

Ato	m	No	Natural Charge	Core	Valence	Rydberg	Total
S		1	-0.53088	9.99892	6.47725	0.05471	16.53088
Si		2	1.65983	9.99791	2.29559	0.04666	12.34017
Si		3	1.65983	9.99791	2.29559	0.04666	12.34017
Si		4	1.65983	9.99791	2.29559	0.04666	12.34017
С		5	-1.20209	1.99935	5.18173	0.02101	7.20209
Н		6	0.26142	0.00000	0.73454	0.00404	0.73858
Н		7	0.28522	0.00000	0.71110	0.00367	0.71478
Н		8	0.27346	0.00000	0.72252	0.00403	0.72654
С		9	-1.20192	1.99935	5.18059	0.02198	7.20192
Н		10	0.28116	0.00000	0.71537	0.00347	0.71884
Н		11	0.26748	0.00000	0.72760	0.00491	0.73252
Н		12	0.27611	0.00000	0.71987	0.00402	0.72389
С		13	-1.20425	1.99935	5.18259	0.02232	7.20425
Н		14	0.28424	0.00000	0.71223	0.00354	0.71576
Н		15	0.26641	0.00000	0.72890	0.00470	0.73359
Н		16	0.26322	0.00000	0.73262	0.00415	0.73678
С		17	-1.20192	1.99935	5.18059	0.02198	7.20192
Н		18	0.27611	0.00000	0.71987	0.00402	0.72389
Н		19	0.28116	0.00000	0.71537	0.00347	0.71884
Н		20	0.26748	0.00000	0.72760	0.00491	0.73252
С		21	-1.20209	1.99935	5.18173	0.02101	7.20209
Н		22	0.28522	0.00000	0.71110	0.00367	0.71478
Н		23	0.27346	0.00000	0.72252	0.00403	0.72654
Н		24	0.26142	0.00000	0.73454	0.00404	0.73858
С		25	-1.20425	1.99935	5.18259	0.02232	7.20425
Η		26	0.26641	0.00000	0.72890	0.00470	0.73359
Η		27	0.26322	0.00000	0.73262	0.00415	0.73678
Η		28	0.28424	0.00000	0.71223	0.00354	0.71576
С		29	-1.20425	1.99935	5.18259	0.02232	7.20425
Н		30	0.28424	0.00000	0.71223	0.00354	0.71576
Н		31	0.26641	0.00000	0.72890	0.00470	0.73359
Н		32	0.26322	0.00000	0.73262	0.00415	0.73678
С		33	-1.20192	1.99935	5.18059	0.02198	7.20192
Η		34	0.26748	0.00000	0.72760	0.00491	0.73252
Н		35	0.27611	0.00000	0.71987	0.00402	0.72389
Н		36	0.28116	0.00000	0.71537	0.00347	0.71884
С		37	-1.20209	1.99935	5.18173	0.02101	7.20209
Η		38	0.28522	0.00000	0.71110	0.00367	0.71478
Η		39	0.27346	0.00000	0.72252	0.00403	0.72654
Η		40	0.26142	0.00000	0.73454	0.00404	0.73858
	* Total *		1.00000	57.98680	79.51300	0.50020	138.00000

Tabelle 51: NBO-Analyse von [PO₄]³⁻.

Atom	No	Natural Charge	Core	Valence	Rydberg	Total
Р	1	2.49621	9.99947	2.34673	0.15758	12.50379
0	2	-1.37405	1.99987	7.34783	0.02635	9.37405
0	3	-1.37405	1.99987	7.34783	0.02635	9.37405
Ο	4	-1.37405	1.99987	7.34783	0.02635	9.37405
0	5	-1.37405	1.99987	7.34783	0.02635	9.37405
======================================	======= 1 *	-3.00000	17.99897	31.73804	0.26300	50.00000

Natural Population

Tabelle 52: NBO-Analyse von [H₂PO₄]⁻.

Ato	m	No	Natural Charge	Core	Valence	Rydberg	Total
Р		1	2.52371	9.99915	2.34220	0.13494	12.47629
0		2	-1.22319	1.99986	7.18591	0.03742	9.22319
0		3	-1.05769	1.99985	7.02894	0.02890	9.05769
0		4	-1.17447	1.99985	7.13559	0.03903	9.17447
0		5	-1.05771	1.99986	7.02896	0.02889	9.05771
Н		6	0.49466	0.00000	0.49900	0.00634	0.50534
Η		7	0.49468	0.00000	0.49898	0.00634	0.50532
	* Total *		-1.00000	17.99857	31.71957	0.28187	50.00000

Tabelle 53: NBO-Analyse von [Me₃SiOPO₃]²⁻.

Aton	n	No	Natural Charge	Core	Valence	Rydberg	Total
Р		1	2.54965	9.99804	2.32111	0.13120	12.45035
0		2	-1.22985	1.99987	7.18927	0.04071	9.22985
0		3	-1.22952	1.99985	7.19876	0.03091	9.22952
0		4	-1.22952	1.99985	7.19876	0.03091	9.22952
0		5	-1.21610	1.99986	7.17126	0.04498	9.21610
Si		6	1.97291	9.99779	1.96036	0.06893	12.02709
С		7	-1.19194	1.99938	5.17237	0.02019	7.19194
Η		8	0.19954	0.00000	0.79711	0.00335	0.80046
Η		9	0.22903	0.00000	0.76736	0.00361	0.77097
Н		10	0.24246	0.00000	0.75462	0.00293	0.75754
С		11	-1.19194	1.99938	5.17237	0.02019	7.19194
Η		12	0.19955	0.00000	0.79710	0.00335	0.80045
Η		13	0.24246	0.00000	0.75462	0.00293	0.75754
Η		14	0.22903	0.00000	0.76736	0.00361	0.77097
С		15	-1.18511	1.99943	5.16326	0.02241	7.18511
Н		16	0.21089	0.00000	0.78515	0.00395	0.78911
Η		17	0.18757	0.00000	0.80901	0.00342	0.81243
Н		18	0.21089	0.00000	0.78515	0.00395	0.78911
	* Total *		-2.00000	33.99346	55.56500	0.44154	90.0000

Tabelle 54: NBO-Analyse von [(Me₃SiO)₂PO₂]⁻.

Ato	m	No	Natural Charge	Core	Valence	Rydberg	Total
Р		1	2.57976	9.99830	2.28980	0.13213	12.42024
0		2	-1.17682	1.99985	7.14030	0.03667	9.17682
0		3	-1.17684	1.99985	7.14032	0.03667	9.17684
0		4	-1.20533	1.99981	7.17115	0.03438	9.20533
0		5	-1.20530	1.99981	7.17112	0.03438	9.20530
Si		6	1.97530	9.99790	1.97253	0.05427	12.02470
Si		7	1.97530	9.99790	1.97252	0.05427	12.02470
С		8	-1.21649	1.99939	5.19898	0.01812	7.21649
Η		9	0.23226	0.00000	0.76541	0.00233	0.76774
Н		10	0.28358	0.00000	0.71245	0.00396	0.71642
Н		11	0.24505	0.00000	0.75227	0.00268	0.75495
С		12	-1.21651	1.99939	5.19836	0.01876	7.21651
Η		13	0.23227	0.00000	0.76540	0.00233	0.76773
Н		14	0.24819	0.00000	0.74867	0.00314	0.75181
Н		15	0.28150	0.00000	0.71457	0.00393	0.71850
С		16	-1.19917	1.99941	5.18298	0.01677	7.19917
Н		17	0.24533	0.00000	0.75186	0.00281	0.75467
Η		18	0.23412	0.00000	0.76337	0.00251	0.76588
Η		19	0.24684	0.00000	0.75041	0.00274	0.75316
С		20	-1.19917	1.99941	5.18298	0.01677	7.19917
Η		21	0.24533	0.00000	0.75186	0.00281	0.75467
Н		22	0.23412	0.00000	0.76337	0.00251	0.76588
Η		23	0.24684	0.00000	0.75041	0.00274	0.75316
С		24	-1.21650	1.99939	5.19898	0.01813	7.21650
Н		25	0.23225	0.00000	0.76542	0.00233	0.76775
Н		26	0.28360	0.00000	0.71243	0.00397	0.71640
Н		27	0.24504	0.00000	0.75228	0.00268	0.75496
С		28	-1.21652	1.99939	5.19837	0.01876	7.21652
Н		29	0.24819	0.00000	0.74867	0.00314	0.75181
Н		30	0.28150	0.00000	0.71457	0.00393	0.71850
Η		31	0.23227	0.00000	0.76541	0.00233	0.76773
	* Total *		-1.00000	49.98981	79.46725	0.54294	130.0000

Tabelle 55: NBO-Analyse von 33.

Atom	No	Natural Charge	Core	Valence	Rydberg	Total
D		2 6/1033	0 00700	2 22383	0 1289/	12 35067
\mathbf{O}	2	-1.17042	1 99979	7 14015	0.03049	9 17042
0	2	-1.17042	1 99979	7.14013	0.03045	9 17061
0	3 4	-1.17122	1 99979	7.14048	0.03033	9 17122
0	5	-1.13315	1 99984	7 08925	0.04406	9 13315
Si	6	1.95966	9.99777	1.99374	0.04883	12.04034
Si	7	1.95913	9.99777	1.99373	0.04936	12.04087
Si	8	1.95966	9.99777	1.99368	0.04889	12.04034
C	9	-1.20734	1.99940	5.19084	0.01710	7.20734
Ĥ	10	0.26092	0.00000	0.73603	0.00305	0.73908
H	11	0.25572	0.00000	0.74165	0.00263	0.74428
H	12	0.25995	0.00000	0.73706	0.00299	0.74005
C	13	-1.21860	1.99940	5.20055	0.01865	7.21860
H	14	0.25878	0.00000	0.73769	0.00353	0.74122
Н	15	0.26802	0.00000	0.72726	0.00472	0.73198
Н	16	0.25795	0.00000	0.73950	0.00254	0.74205
C	17	-1.21821	1.99939	5.20063	0.01818	7.21821
Н	18	0.25701	0.00000	0.73961	0.00337	0.74299
Н	19	0.25627	0.00000	0.74118	0.00255	0.74373
Н	20	0.27557	0.00000	0.72065	0.00379	0.72443
С	21	-1.21838	1.99939	5.20029	0.01870	7.21838
Н	22	0.27645	0.00000	0.71973	0.00383	0.72355
Н	23	0.25658	0.00000	0.73995	0.00347	0.74342
Н	24	0.25609	0.00000	0.74134	0.00258	0.74391
С	25	-1.20713	1.99940	5.19029	0.01743	7.20713
Н	26	0.26089	0.00000	0.73603	0.00307	0.73911
Н	27	0.25547	0.00000	0.74183	0.00270	0.74453
Н	28	0.25978	0.00000	0.73717	0.00305	0.74022
С	29	-1.21824	1.99940	5.20012	0.01872	7.21824
Н	30	0.25861	0.00000	0.73786	0.00353	0.74139
Н	31	0.26728	0.00000	0.72792	0.00480	0.73272
Н	32	0.25796	0.00000	0.73942	0.00262	0.74204
С	33	-1.21799	1.99939	5.20033	0.01827	7.21799
Н	34	0.25678	0.00000	0.73977	0.00345	0.74322
Η	35	0.25632	0.00000	0.74113	0.00255	0.74368
Η	36	0.27560	0.00000	0.72060	0.00380	0.72440
С	37	-1.21858	1.99940	5.20065	0.01853	7.21858
Η	38	0.25871	0.00000	0.73777	0.00353	0.74129
Η	39	0.26807	0.00000	0.72723	0.00471	0.73193
Н	40	0.25812	0.00000	0.73931	0.00258	0.74188
С	41	-1.20729	1.99940	5.19028	0.01761	7.20729
Η	42	0.26101	0.00000	0.73595	0.00304	0.73899
Н	43	0.25554	0.00000	0.74181	0.00265	0.74446

Н	44	0.25992	0.00000	0.73705	0.00303	0.74008
* Total *		0.00000	65.98499	103.35207	0.66295	170.0000

Tabelle 56: NBO-Analyse von [(Me₃SiO)₄P]⁺.

Atom	No	Natural Charge	Core	Valence	Rydberg	Total
Р	1	2.75481	9.99772	2.12096	0.12652	12.24519
0	2	-1.15659	1.99977	7.12818	0.02864	9.15659
0	3	-1.15663	1.99977	7.12813	0.02874	9.15663
0	4	-1.15663	1.99977	7.12813	0.02873	9.15663
0	5	-1.15657	1.99977	7.12816	0.02864	9.15657
Si	6	1.94554	9.99767	2.01032	0.04648	12.05446
Si	7	1.94546	9.99767	2.01041	0.04647	12.05454
Si	8	1.94545	9.99767	2.01041	0.04647	12.05455
С	9	-1.21373	1.99938	5.19600	0.01835	7.21373
Н	10	0.26583	0.00000	0.73062	0.00355	0.73417
Η	11	0.27530	0.00000	0.72168	0.00302	0.72470
Η	12	0.26950	0.00000	0.72703	0.00347	0.73050
С	13	-1.21982	1.99939	5.20120	0.01923	7.21982
Η	14	0.26313	0.00000	0.73270	0.00417	0.73687
Н	15	0.26302	0.00000	0.73228	0.00470	0.73698
Н	16	0.27826	0.00000	0.71880	0.00294	0.72174
С	17	-1.21782	1.99939	5.19971	0.01873	7.21782
Н	18	0.26625	0.00000	0.73024	0.00351	0.73375
Н	19	0.27594	0.00000	0.72113	0.00293	0.72406
Н	20	0.26659	0.00000	0.72947	0.00393	0.73341
С	21	-1.22010	1.99939	5.20113	0.01958	7.22010
Н	22	0.26314	0.00000	0.73221	0.00465	0.73686
Н	23	0.26318	0.00000	0.73265	0.00418	0.73682
Н	24	0.27831	0.00000	0.71877	0.00292	0.72169
С	25	-1.21382	1.99938	5.19606	0.01838	7.21382
Н	26	0.26959	0.00000	0.72698	0.00344	0.73041
Н	27	0.27531	0.00000	0.72164	0.00305	0.72469
H	28	0.26581	0.00000	0.73062	0.00357	0.73419
С	29	-1.21777	1.99939	5.19983	0.01856	7.21777
H	30	0.26623	0.00000	0.73026	0.00351	0.73377
Н	31	0.26660	0.00000	0.72950	0.00391	0.73340
Н	32	0.27588	0.00000	0.72117	0.00295	0.72412
C	33	-1.21783	1.99939	5.19972	0.01873	7.21783
H	34	0.26625	0.00000	0.73024	0.00351	0.73375
Н	35	0.27594	0.00000	0.72113	0.00293	0.72406
Н	36	0.26660	0.00000	0 72947	0.00393	0 73340
C	37	-1.21982	1 99939	5 20120	0.01923	7 21982
н	38	0.26313	0.00000	0 73270	0.00417	0.73687
H	39	0.26302	0.00000	0.73278	0.00470	0.73698
Н	40	0.20302	0.00000	0 71879	0 00294	0 72174
C	41	-1 21373	1 99938	5 19600	0.01834	7 2177
с Н	 ⊿ว	0.26582	0 00000	0 73063	0.01354	0 73/18
Н	-т-2 ДЗ	0.20502	0.00000	0.72168	0.00330	0.75470
11	-+J	0.27550	0.00000	0.72100	0.00302	0.12410

	* Total *		1_00000	 81 98006	127 23834	0 78160	210 0000
Н		57	0.26314	0.00000	0.73221	0.00465	0.73686
Η		56	0.27831	0.00000	0.71877	0.00292	0.72169
Η		55	0.26317	0.00000	0.73265	0.00418	0.73683
С		54	-1.22010	1.99939	5.20113	0.01958	7.22010
Η		53	0.27531	0.00000	0.72164	0.00305	0.72469
Η		52	0.26959	0.00000	0.72697	0.00344	0.73041
Н		51	0.26581	0.00000	0.73062	0.00357	0.73419
С		50	-1.21382	1.99938	5.19606	0.01838	7.21382
Η		49	0.26659	0.00000	0.72950	0.00391	0.73341
Η		48	0.26624	0.00000	0.73025	0.00351	0.73376
Η		47	0.27588	0.00000	0.72117	0.00295	0.72412
С		46	-1.21777	1.99939	5.19982	0.01856	7.21777
Si		45	1.94554	9.99767	2.01032	0.04647	12.05446
Η		44	0.26951	0.00000	0.72703	0.00347	0.73049

Tabelle 57: NBO-Analyse von [Me₃SiOSO₂]⁻.

Ato	m	No	Natural Charge	Core	Valence	Rydherg	Total
					• arenee		
S		1	1.68837	9.99908	4.10825	0.20429	14.31163
0		2	-1.05062	1.99986	7.01160	0.03917	9.05062
0		3	-1.02398	1.99985	6.98472	0.03941	9.02398
0		4	-1.14765	1.99982	7.11399	0.03384	9.14765
Si		5	1.95353	9.99795	1.98996	0.05855	12.04647
С		6	-1.21345	1.99941	5.19507	0.01896	7.21345
Η		7	0.22814	0.00000	0.76940	0.00245	0.77186
Н		8	0.23902	0.00000	0.75807	0.00291	0.76098
Η		9	0.27365	0.00000	0.72214	0.00421	0.72635
С		10	-1.19515	1.99943	5.17868	0.01703	7.19515
Η		11	0.22923	0.00000	0.76816	0.00261	0.77077
Η		12	0.24416	0.00000	0.75294	0.00290	0.75584
Η		13	0.24144	0.00000	0.75577	0.00280	0.75856
С		14	-1.21630	1.99940	5.19722	0.01968	7.21630
Η		15	0.24899	0.00000	0.74771	0.00330	0.75101
Η		16	0.22604	0.00000	0.77156	0.00240	0.77396
Η		17	0.27456	0.00000	0.72041	0.00503	0.72544
	* Total *		-1.000000	31.99480	49.54565	0.45955	82.00000

Tabelle 58: NBO-Analyse von 36.

Ato	m	No	Natural Charge	Core	Valence	Rvdberg	Total
			8-				
S		1	1.81898	9.99883	4.02906	0.15313	14.18102
0		2	-0.96917	1.99985	6.92228	0.04705	8.96917
0		3	-1.07694	1.99981	7.04318	0.03394	9.07694
0		4	-1.06054	1.99981	7.03043	0.03029	9.06054
Si		5	1.93492	9.99781	2.01575	0.05152	12.06508
Si		6	1.93728	9.99775	2.01476	0.05022	12.06272
С		7	-1.22448	1.99940	5.20582	0.01926	7.22448
Η		8	0.26069	0.00000	0.73664	0.00267	0.73931
Η		9	0.26814	0.00000	0.72758	0.00428	0.73186
Η		10	0.26014	0.00000	0.73600	0.00386	0.73986
С		11	-1.21774	1.99939	5.19924	0.01910	7.21774
Η		12	0.25618	0.00000	0.74121	0.00261	0.74382
Η		13	0.25820	0.00000	0.73833	0.00347	0.74180
Η		14	0.27331	0.00000	0.72294	0.00375	0.72669
С		15	-1.20717	1.99940	5.19006	0.01770	7.20717
Н		16	0.26118	0.00000	0.73573	0.00309	0.73882
Η		17	0.25666	0.00000	0.74068	0.00266	0.74334
Η		18	0.26164	0.00000	0.73526	0.00310	0.73836
С		19	-1.21889	1.99939	5.20006	0.01944	7.21889
Н		20	0.25551	0.00000	0.74186	0.00263	0.74449
Н		21	0.25950	0.00000	0.73727	0.00323	0.74050
Н		22	0.27546	0.00000	0.72077	0.00378	0.72454
С		23	-1.20813	1.99940	5.18989	0.01884	7.20813
Η		24	0.25570	0.00000	0.74154	0.00277	0.74430
Η		25	0.26117	0.00000	0.73566	0.00317	0.73883
Н		26	0.26160	0.00000	0.73530	0.00309	0.73840
С		27	-1.21896	1.99939	5.19939	0.02018	7.21896
Η		28	0.26086	0.00000	0.73540	0.00374	0.73914
Η		29	0.25664	0.00000	0.74069	0.00267	0.74336
Η		30	0.26826	0.00000	0.72633	0.00540	0.73174
	* Total *		0	47.99024	73.46913	0.54064	122.00000

Tabelle 59: NBO-Analyse von [(Me₃SiO)₃S]⁺.

Atom	No	Natural Charge	Core	Valence	Rydberg	Total
S	1	1.91359	9.99864	3.95148	0.13629	14.08641
0	2	-1.00989	1.99981	6.98161	0.02847	9.00989
0	3	-1.02301	1.99980	6.98804	0.03516	9.02301
0	4	-1.02760	1.99980	6.99133	0.03647	9.02760
Si	5	1.92780	9.99768	2.02755	0.04697	12.07220
Si	6	1.92474	9.99769	2.03088	0.04669	12.07526
Si	7	1.92418	9.99760	2.02934	0.04888	12.07582
С	8	-1.23299	1.99939	5.21336	0.02024	7.23299
Н	9	0.28504	0.00000	0.71183	0.00313	0.71496
Н	10	0.26946	0.00000	0.72619	0.00435	0.73054
Н	11	0.26877	0.00000	0.72687	0.00436	0.73123
С	12	-1.22130	1.99938	5.20192	0.02000	7.22130
Н	13	0.28027	0.00000	0.71669	0.00303	0.71973
Н	14	0.26975	0.00000	0.72669	0.00356	0.73025
Н	15	0.26505	0.00000	0.73076	0.00419	0.73495
С	16	-1.21861	1.99938	5.20027	0.01896	7.21861
Н	17	0.27431	0.00000	0.72221	0.00349	0.72569
Н	18	0.27952	0.00000	0.71740	0.00308	0.72048
Н	19	0.26863	0.00000	0.72765	0.00372	0.73137
С	20	-1.23300	1.99939	5.21451	0.01910	7.23300
Н	21	0.26007	0.00000	0.73495	0.00498	0.73993
Н	22	0.27288	0.00000	0.72258	0.00454	0.72712
Н	23	0.28620	0.00000	0.71069	0.00311	0.71380
С	24	-1.22160	1.99938	5.20157	0.02065	7.22160
Н	25	0.27816	0.00000	0.71890	0.00294	0.72184
Н	26	0.27248	0.00000	0.72392	0.00360	0.72752
Н	27	0.26856	0.00000	0.72749	0.00395	0.73144
С	28	-1.21983	1.99938	5.20152	0.01893	7.21983
Н	29	0.27306	0.00000	0.72340	0.00355	0.72694
Н	30	0.27952	0.00000	0.71745	0.00303	0.72048
Н	31	0.27376	0.00000	0.72272	0.00351	0.72624
С	32	-1.22221	1.99938	5.20342	0.01941	7.22221
Н	33	0.26860	0.00000	0.72733	0.00407	0.73140
Н	34	0.27451	0.00000	0.72202	0.00348	0.72549
Н	35	0.27798	0.00000	0.71907	0.00295	0.72202
С	36	-1.21896	1.99938	5.19963	0.01995	7.21896
Н	37	0.26808	0.00000	0.72827	0.00365	0.73192
Н	38	0.27785	0.00000	0.71913	0.00302	0.72215
Н	39	0.27607	0.00000	0.72058	0.00335	0.72393
С	40	-1.22396	1.99938	5.20375	0.02084	7.22396
Н	41	0.26580	0.00000	0.72960	0.00460	0.73420
Н	42	0.26863	0.00000	0.72694	0.00443	0.73137

Н	43	0.27966	0.00000	0.71736	0.00298	0.72034
* Total *		1.00000	63.98545	97.35888	0.65567	162.00000

Tabelle 60: NBO-Analyse von [PCO]⁻.

Natural Population

Atom	No	Natural Charge	Core	Valence	Rydberg	Total
С	1	0.12447	1.99949	3.82815	0.04789	5.87553
0	2	-0.67470	1.99977	6.62004	0.05490	8.67470
Р	3	-0.44977	9.99806	5.41839	0.03332	15.44997
* Total *		-1.00000	13.99732	15.86658	0.13611	30.00000

Tabelle 61: NBO-Analyse von 38.

Natural Population

Atom	No	Natural Charge	Core	Valence	Rydberg	Total
С	1	0.36889	1.99955	3.58907	0.04249	5.63111
0	2	-0.44439	1.99975	6.39595	0.04870	8.44439
Р	3	0.02873	9.99811	4.92359	0.04957	14.97127
Н	4	0.04678	0.00000	0.94999	0.00323	0.95322
* Total *		0.00000	13.99741	15.85860	0.14399	30.00000

Tabelle 62: NBO-Analyse von H-OCP.

Atom	No	Natural Charge	Core	Valence	Rydberg	Total
С	1	-0.15964	1.99926	4.12774	0.03264	6.15964
0	2	-0.67948	1.99971	6.63727	0.04250	8.67948
Р	3	0.32106	9.99753	4.64798	0.03343	14.67894
Н	4	0.51807	0.00000	0.47211	0.00982	0.48193
	* Total *	0.00000	13.99650	15.88511	0.11839	30.00000

Tabelle 63: NBO-Analyse von [Me₃Si-P(H)CO]⁺.

Ato	m	No	Natural Charge	Core	Valence	Rydberg	Total
Р		1	0.18199	9.99797	4.76289	0.05716	14.81801
Si		2	1.57778	9.99779	2.38184	0.04259	12.42222
С		3	-1.21523	1.99935	5.19194	0.02394	7.21523
Η		4	0.29453	0.00000	0.70191	0.00356	0.70547
Η		5	0.27440	0.00000	0.72104	0.00455	0.72560
Η		6	0.28208	0.00000	0.71397	0.00396	0.71792
С		7	-1.21069	1.99935	5.18782	0.02353	7.21069
Η		8	0.27934	0.00000	0.71682	0.00384	0.72066
Η		9	0.29535	0.00000	0.70112	0.00353	0.70465
Η		10	0.28170	0.00000	0.71451	0.00379	0.71830
С		11	-1.21345	1.99935	5.19004	0.02407	7.21345
Η		12	0.29399	0.00000	0.70250	0.00351	0.70601
Η		13	0.27930	0.00000	0.71666	0.00403	0.72070
Η		14	0.27273	0.00000	0.72208	0.00519	0.72727
С		15	0.53041	1.99952	3.42586	0.04422	5.46959
0		16	-0.29865	1.99974	6.25515	0.04376	8.29865
	* Total *		1.00000	29.99306	39.70604	0.30090	70.00000

5.3.3 Strukturverfeinerung der Einkristallstrukturen

Fehlgeordnete Gruppen oder Moleküle werden wenn möglich in verschiedene Lagen aufgespalten. Die Besetzungswahrscheinlichkeit jeder Lage wird frei verfeinert. Dies betrifft die monokline Struktur [Ph₃C][OS(O)₂CF₃] (**12**), in der ein Phenylring fehlgeordnet ist und in zwei Lagen aufgespalten wird (Besetzungswahrscheinlichkeit: 0.62(3)/0.38(3)).

Weiterhin betrifft es das CH_2Cl_2 Molekül in der orthorhombischen Struktur [Ph₃C][CHB₁₁H₅Br₆] · CH₂Cl₂ (**11**·CH₂Cl₂) welches fehlgeordnet ist (Besetzungswahrscheinlichkeit: 0.915(7)/0.085(7)).

Ebenso ist die CF₃ – Gruppe in Ph₃COC(O)CF₃ (**13**) fehlgeordnet und wird in zwei Lagen aufgespalten (Besetzungswahrscheinlichkeit: 0.584(12)/0.416(12)).

Die H2O-Atome in $[Ph_3C][CHB_{11}Cl_{11}]$ (10) ebenso in $[Ph_3C][CHB_{11}Cl_{11}] \cdot 2 C_7H_8$ (10·2·C₇H₈) konnten frei verfeinert werden.

In der orthorhombischen Struktur [K@18-Krone-6][SSiMe₃] (**24**) sind zwei Fehlordnungen zu finden. Zum einen gibt es für die Methylgruppe am Si1A zwei Lagen (Besetzungswahrscheinlichkeit: 0.720(4) / 0.143(4)) und noch eine gesamte zweite [Me₃Si]-Lage (Besetzungswahrscheinlichkeit: 0.862(3) / 0.138(3)).

In der orthorhombischen Struktur [Me₃POSiMe₃][O₃SOSiMe₃] (**20**) sind zum einen zwei Lagen der Methylgruppen an P2 fehlgeordnet (Besetzungswahrscheinlichkeit: 0.719(15) / 0.281(15)), ferner ist der SO4 Tetraeder an S2 in zwei Lagen aufgespalten (Besetzungswahrscheinlichkeit: 0.675(7) / 0.325(7)) und es existieren drei Lagen des Kations S1A (Besetzungswahrscheinlichkeit: 0.6769(18) / 0.2306(19) / 0.0925(17)).

In der monoklinen Struktur (Me₃SiO)₂SO₂ (**19**) sind die SO₄ Tetraeder der drei Moleküle der asymmetrischen Einheit fehlgeordnet (Besetzungswahrscheinlichkeit: S1 - 0.75(5) / 0.25(5), S2 - 0.80(2) / 0.20(2), S3 - 0.754(12) / 0.246(12)).

In der monoklinen Struktur (F_5C_6)₃B \rightarrow N(H)SO (28) wird eine Fehlordnung einer Pentafluorophenyl-Gruppe gefunden (Besetzungswahrscheinlichkeit: 0.890(8) / 0.110(8)). In der triklinen Struktur [P(OSiMe₃)₄][B(C₆F₅)₄]·2.5 Toluol (34·2.5 Toluol) ist das Kation dreifach fehlgeordnet (Besetzungswahrscheinlichkeit: 0.852(3) / 0.096(2) / 0.051(2)), ferner ist jedes der drei Toluol-Moleküle über zwei Lagen fehlgeordnet (Besetzungswahrscheinlichkeit: *ipso*-C37 0.718(17) / 0.282(17), *ipso*-C44 0.54(4) / 0.46(4), *ipso*-C51 0.422(6) / 0.078(6)). In der triklinen Struktur [P(OSiMe₃)₄][B(C₆F₅)₄] (**34**) ist ein Teil des Kations fehlgeordnet und in zwei Lagen aufgespalten (Besetzungswahrscheinlichkeit: 0.9019(17)/ 0.0981(17)). Weiterhin werden in der triklininen Struktur [K@18-Krone-6][O₂P(OSiMe₃)₂] (**35**) zwei Fehlordnungen beobachtet. Zum einen ist ein Anion über zwei Lagen aufgespalten (Besetzungswahrscheinlichkeit: 0.738(6) / 0.262(6)) und zum anderen ist ein Solvenzmolekül DME über zwei Lagen aufgespalten (Besetzungswahrscheinlichkeit: 0.682(4) / 0.318(4)).

5.3.4.1 Triphenylmethan – Ph₃C-H (15)

C₁₉H₁₆ (244.33 g/mol): **Smp.** 93°C. ¹H **NMR** (25°C, CD₂Cl₂, 500.13 MHz): δ = 5.54 (s, 1H, *H*CPh₃), 7.13 (d, 6H, *o*-CH, ${}^{4}J({}^{1}\text{H}-{}^{1}\text{H}) = 7.95$ Hz), 7.21 (tt, 3H, *p*-CH, ${}^{1}J({}^{1}\text{H}-{}^{13}\text{C}) =$ 160 Hz, ${}^{4}J({}^{1}H-{}^{1}H) = 7.43$ Hz, ${}^{3}J({}^{1}H-{}^{1}H) = 1.4$ Hz), 7.29 (tt, 6H, m-CH, ${}^{1}J({}^{1}H-{}^{13}C) =$ $160 \text{ Hz}, {}^{4}J({}^{1}\text{H}-{}^{1}\text{H}) = 7.44 \text{ Hz}, {}^{3}J({}^{1}\text{H}-{}^{1}\text{H}) = 1.5 \text{ Hz}.$ ${}^{13}\text{C}\{{}^{1}\text{H}\} \text{ NMR} (25^{\circ}\text{C}, \text{CD}_{2}\text{Cl}_{2}, \text{CD}_{2}\text{Cl}$ 125.77 MHz): $\delta = 57.5$ (s, HCPh₃), 126.9 (s, *p*-CH), 128.9 (s, *m*-CH), 130.0 (s, *o*-CH), 144.6 (s, *ipso-C*). **IR** (ATR, 32 Scans, 25°C, cm⁻¹): 3079 (w), 3060 (w), 3041 (w), 3022 (w), 2954 (w), 2914 (w), 2848 (w), 1955 (w), 1905 (w), 1888 (w), 1832 (w), 1814 (w), 1766 (w), 1706 (w), 1677 (w), 1637 (w), 1596 (m), 1552 (w), 1519 (w), 1492 (m), 1444 (m), 1390 (w), 1334 (w), 1313 (w), 1297 (w), 1280 (w), 1247 (w), 1178 (w), 1155 (w), 1128 (w), 1078 (m), 1029 (m), 1002 (w), 989 (w), 972 (w), 918 (w), 860 (w), 852 (w), 835 (w), 821 (w), 756 (m), 732 (s), 696 (s), 657 (m), 619 (m), 603 (s). Raman (632 nm, 3 mW, 5 s, 6 Akk., 25°C, cm⁻¹): 3194 (1), 3159 (1), 3078 (1), 3055 (3), 3042 (2), 2999 (1), 2890 (1), 1597 (1), 1582 (1), 1451 (1), 1299 (1), 1248 (1), 1179 (1), 1165 (2), 1148 (1), 1028 (4), 1001 (10), 917 (1), 859 (1), 845 (1), 818 (1), 755 (1), 732 (1), 658 (1), 618 (1), 603 (1), 290 (1), 271 (1), 242 (1), 231 (3). (s. auch A. L. Smith / W. R. McWhinnie und R. C. Poller) [286,287]

5.3.4.2 Schwefelsäure – H_2SO_4 (konz.)

95% H₂O₄S: ¹⁷O-NMR (25 °C, pur, ext. ref. D₂O, 67.83 MHz): $\delta = 17.66$ ([^+_x , $v_{1/2} = 450$ Hz), 151.88 (SO₄ $v_{1/2} = 750$ Hz). Raman (473 nm, 6 mW, 10 s, 10 Akk., 25 °C, cm⁻¹): 3532-2632 (sehr breit), 1371 (1), 1149 (4), 1043 (3), 909 (10), 553 (4), 413 (2), 391 (2).

C₃H₉OP (92.08 g/mol): **Smp**. 142 °C. ¹**H-NMR** (25 °C, CD₂Cl₂, 300.13 MHz): $\delta = 1.36$ (d, PCH₃, ¹*J*(¹H-¹³C) = 127.2 Hz, ²*J*(¹H-³¹P) = 13.0 Hz). ¹³C{¹H}-NMR (25 °C, CD₂Cl₂, 75.47 MHz): $\delta = 18.31$ (d, PCH₃, ²*J*(¹³C-³¹P) = 69.5 Hz). ¹⁷O-NMR (25 °C, CD₂Cl₂, 67.82 MHz): $\delta = 64.57$ (d, *OPC*, ¹*J*(¹⁷O-³¹P) = 150 Hz, $v_{1/2} = 35$ Hz). ³¹P{¹H}-NMR (25 °C, CD₂Cl₂, 121.51 MHz): $\delta = 36.23$ (s, *P*CH). **Raman** (473 nm, 5 mW, 10 s, 10 Akk., 25 °C, cm⁻¹): 2981 (9), 2911 (10), 2802 (1), 2573 (1), 2555 (1), 1451 (1), 1432 (1), 1408 (1), 1310 (1), 1287 (1), 1145 (2), 947 (1), 934 (1), 874 (1), 859 (1), 738 (2), 664 (6), 357 (1), 316 (1), 246 (1).

(IR-Spektrum in G. Bauer, H Mikosch^[288] oder J. Goubeau, W. Bereger zu finden.)^[289]

5.3.4.4 Kalium Dihydrogenphosphat - KH₂[PO₄]

H₂KO₄P (136.09 g/mol). **Smp.** <260 °C (Zer.) Bildung von K_{5-n}H_nP₃O₁₀ · H₂O. ¹H-NMR (25 °C, D₂O, 300.13 MHz): $\delta = 4.71$ (s, ¹*J*(¹H-¹⁷O) = 81 Hz). ¹⁷O-NMR (25 °C, D₂O, 67.80 MHz): $\delta = 88.3$ (PO/POH, $v_{1/2} = 275$ Hz).. ³¹P{¹H}-NMR (25 °C, D₂O, 121.51 MHz): $\delta = -$. ($v_{1/2} = 7$ Hz). IR (ATR, 64 Scans, 25 °C, cm⁻¹): 1280 (m), 1072 (m), 864 (s), 530 (s). Raman (633 nm, 10 mW, 20 s, 20 Akk., 25 °C, cm⁻¹): 914 (10), 529 (1), 475 (1), 390 (3), 355 (2).

5.3.4.4 Dinatrium Sulfit – Na₂[SO₃]

Na₂O₃S (126.04 g/mol): ¹⁷O NMR (25 °C, D₂O, 67.83 MHz): 210.4 v1/2 = 180 Hz. IR (ATR, 64 Scans, 25 °C, cm⁻¹): 1135 (w), 958 (s), 630 (m). Raman (532 nm, 23 mW, 5 s, 20 Akk., 25 °C, cm⁻¹): 985 (10), 946 (4), 635 (1), 493 (1), 180 (1), 138 (1), 87 (1).

5.3.4.5 Natrium Trimethylsilanolat – Na[OSiMe₃]

Natrium Trimethylsilanolat Na[OSiMe₃] (25 g, 0.22 mol) werden im dynamischen Hochvakuum sublimiert. Dabei wird der Kolben mit zwei Heißluftgebläsen (je 2300 W, 650 C) erhitzt. Es verbleibt ein dunkelgrauer pyrophorer Rückstand im Sublimationsgefäß. Während des Erhitzens steigt der Druck, aufgrund der Bildung von thermischen Zersetzungsprodukten, an. Die Sublimation liefert 5.6-12.5 g (50-111 mmol, 23-51 %) farbloses Natrium Trimethylsilanolat.

C₃H₉NaOSi (112.18 g/mol): **Smp**. >240 °C (Zer.). **EA** ber. (gef.), %: C, 32.12 (32.20); H, 8.09 (8.45). ¹**H**-**NMR** (25 °C, THF-[D₈], 300.13 MHz): δ − .17 (, 9H, SiCH₃, ¹*J*(¹H-¹³C) = 114.7 Hz, ²*J*(¹H-²⁹Si) = 6.1 Hz). ¹³C{¹H}-**NMR** (25 °C, THF-[D₈], 75.47 MHz): δ = 5.08 (s, SiCH₃, ¹*J*(¹³C-²⁹Si) = 53.9 Hz). ¹⁷O-NMR (25 °C, THF-[D₈], 67.83 MHz): *nicht beobachtet*. ²⁹Si INEPT-NMR (25 °C, THF-[D₈], 59.52 MHz) δ −1 .46 (dec, *Si*CH₃, ²*J*(²⁹Si-¹H) = 6.1 Hz). IR (ATR, 8 Scans, 25 °C, cm⁻¹): 2941 (m), 2887 (w), 2827 (w), 1537 (w), 1434 (w), 1255 (m), 1240 (m), 1010 (w), 975 (s), 954 (m), 883 (w), 815 (s), 730 (s), 659 (m), 613 (w), 549 (w). **Raman** (473 nm, 5 mW, 10 s, 30 Akk., 25 °C, cm⁻¹): 3105 (1), 2943 (9), 2894 (10), 1428 (1), 1404 (1), 1251 81), 1236 (1), 1012 (1), 964 (1), 951 (1), 819 (1), 730 (1), 657 (2), 602 (8), 382 (1), 353 (1), 268 (1), 214 (1).

5.4 Darstellung der Verbindungen

5.4.1 Synthese und Charakterisierung von $[Ph_3C][BF_4]$ (1)

$$Ph_3CCI + Ag[BF_4] \longrightarrow [Ph_3C][BF_4] + AgCI CH_2CI_2, Rt$$

Silber Tetrafluoridoborat Ag[BF₄] (140 mg, 0.72 mmol) und Tritylchlorid Ph₃CCl (200 mg, 0.72 mmol) werden zusammen in 6 mL CH₂Cl₂ gelöst. Dies führt zum sofortigen Ausfall eines farblosen Niederschlages und die Lösung verfärbt sich orange. Die Reaktionslösung wird für 5 Minuten im Dunklen gerührt. Anschließend wird der Niederschlag abfiltriert (G4) und die Lösung auf ~2 mL eingeengt. Einkristalle für die Röntgenstrukturanalyse können durch Gasdiffusion mithilfe von *n*-Hexan gewonnen werden. Der Überstand der Lösung wird mittels Spritze entfernt und die gelben Kristalle solange mit *n*-Hexan gewaschen, bis der Überstand farblos ist. Die Kristalle werden im Hochvakuum bei 60 °C getrocknet. Es werden 163 mg (0.34 mmol, 69 %) Triphenylmethylium Tetrafluoridoborat [Ph₃C][BF₄] erhalten.

C₁₉H₁₅BF₄ (330.13 g/mol): **Smp**. 209°C (Zer.). **EA** ber. (gef.), %: C, 69.13 (69.65); H, 4.58 (4.75). ¹H-NMR (25°C, CD₃CN, 300.13 MHz): $\delta = 7.72$ (d, 6H, *o*-CH, ³*J*(¹H-¹H) = 8.29 Hz), 7.88 (t, 6H, *m*-CH, ³*J*(¹H-¹H) = 7.86 Hz), 8.29 (t, 3H, *p*-CH, ³*J*(¹H-¹H) = 7.53 Hz). ¹¹B-NMR (25°C, CD₃CN, 96.29 MHz): $\delta = -1.18$ (s, ¹*J*(¹¹B-¹⁹F) = 79.4 Hz). ¹³C{¹H}-NMR (25°C, CD₃CN, 75.47 MHz): $\delta = 131.16$ (s, *m*-CH, ¹*J*(¹³C-¹³C) = 54.1 Hz), 141.25 (s, *ipso*-C), 144.10 (s, *p*-CH), 144.15 (s, *o*-CH, *partielle Überlagerung der Signale für o- und p*-CH], 213.08 (s, CPh₃). ¹⁹F{¹H}-NMR (25°C, CD₃CN, 282.38 MHz): $\delta = -151.79$ (s, ¹*J*(¹⁹F-¹¹B) = 79.4 Hz). **IR** (ATR, 32 Scans, 25°C, cm⁻¹): 3095 (w), 3070 (w), 1645 (w), 1621 (w), 1610 (w), 1579 (s), 1564 (m), 1511 (w), 1483 (m), 1448 (m), 1353 (s), 1336 (m), 1311 (m), 1294 (m), 1191 (m), 1168 (m), 1132 (w), 1091 (m), 1047 (s), 1035 (s), 995 (m), 977 (m), 948 (m), 914 (m), 871 (w), 844 (m), 808 (m), 765 (s), 698 (s), 659 (m), 640 (w), 621 (m), 609 (s), 557 (w), 538 (w). **Raman** (784 nm, 65 mW, 6 s, 30 Akk., 25°C, cm⁻¹): 3064 (1), 2939 (1), 1597 (5), 1587 (8), 1485 (1), 1357 (3), 1312 (1), 1296 (1), 1198 (1), 1187 (3), 1161 (1), 1036 (2), 1001 (5), 987 (1), 951 (1), 915 (2), 844 (1), 773 (1), 766 (1), 712 (1), 624 (3), 611 (1), 471 (2), 435 (1), 407 (3), 324 (1), 290 (10), 240 (2), 193 (1). **MS** (CI⁺, m/z (%)): 243 (100) [Ph₃C]⁺, 167 (3) [Ph₂CH]⁺.

$$Ph_3CCI + AICI_3 \longrightarrow [Ph_3C][AICI_4]$$

 CH_2CI_2, Rt

Zu einer gerührten Suspension aus Aluminiumtrichlorid AlCl₃ (134 mg, 1 mmol) in 3 mL CH₂Cl₂, wird eine Lösung aus 6 mL CH₂Cl₂ und 278 mg Tritylchlorid Ph₃CCl (1 mmol), mithilfe einer Spritze gegeben. Die Reaktionslösung wird für weitere 30 Minuten gerührt. Anschließend wird die Reaktionslösung filtriert (G4) und das Lösungsmittel bis auf \sim 2 mL und beginnender Kristallisation entfernt. Über Nacht können aus dieser Lösung Kristalle für die Einkristallstrukturanalyse gewonnen werden. Der Überstand wird mit einer Spritze entfernt und die Kristalle solange mit *n*-Hexan gewaschen bis der Überstand farblos ist. Die Kristalle werden im Hochvakuum bei 60 °C getrocknet. Es werden 324 mg (0.79 mmol, 79 %) Triphenylmethylium Tetrachloridoaluminat [Ph₃C][AlCl₄] erhalten.

C₁₉H₁₅AlCl₄ (412.12 g/mol): **Smp.** 169°C (Zer.). **EA** ber. (gef.), %: C, 55.37 (55.17); H, 3.67 (3.90). ¹**H-NMR** (25°C, CD₂Cl₂, 300.13 MHz): $\delta = 7.70$ (dd, 6H, *o*-CH, ³*J*(¹H-¹H) = 8.52 Hz, ⁴*J*(¹H-¹H) = 1.5 Hz), 7.91 (tt, 6H, *m*-CH, ³*J*(¹H-¹H) = 7.94 Hz, ⁴*J*(¹H-¹H) = 1.5 Hz), 8.29 (tt, 3H, *p*-CH, ³*J*(¹H-¹H) = 7.50 Hz, ⁴*J*(¹H-¹H) = 1.4 Hz). ¹³C{¹H}-**NMR** (25°C, CD₂Cl₂, 75.48 MHz): $\delta = 131.18$ (s, *m*-CH, ¹*J*(¹³C-¹³C) = 54.4 Hz), 140.48 (s, *ipso*-C, ¹*J*(¹³C-¹³C) = 54.8 Hz), 143.36 (s, *o*-CH, ¹*J*(¹³C-¹³C) = 55.4 Hz), 144.02 (s, *p*-CH, ¹*J*(¹³C-¹³C) = 54.4 Hz), 211.31 (s, CPh₃). **IR** (ATR, 32 Scans, 25°C, cm⁻¹): 3064 (w), 2838 (w), 2713 (w), 2590 (w), 1579 (s), 1508 (w), 1481 (m), 1448 (m), 1407 (w), 1353 (s), 1292 (s), 1184 (m), 1162 (m), 1126 (m) 1116 (w), 1099 (m), 1083 (m), 1027 (m), 1004 (w), 995 (m), 979 (m), 954 (w), 948 (w), 914 (m), 892 (w), 844 (m), 833 (m), 806 (m), 763 (m), 763 (m), 746 (m), 698 (s), 657 (m), 621 (s), 607 (s). **MS** (CI⁺, m/z (%)): 243 (100) [Ph₃C]⁺, 167 (61) [Ph₂CH]⁺. Ph₃CCl + GaCl₃ CH₂Cl₂ / [Ph₃C][GaCl₄] *n*-Pentan, Rt

Zu einer gerührten Lösung aus 35 mL *n*-Pentan und 1.67 g Tritylchlorid Ph₃CCl (6 mmol) wird tropfenweise eine Lösung aus 10 mL *n*-Pentan und 0.88 g Galliumtrichlorid GaCl₃ (5 mmol) gegeben. Die entstehende gelbe Suspension wird eine Stunde lang nachgerührt. Das Lösungsmittel wird mit einer Spritze entfernt und der gelbe Rückstand wird in 7 mL CH₂Cl₂ gelöst. Durch langsame Zugabe von n-Pentan (10 mL) entsteht erneut ein feiner gelber, mikrokristalliner Niederschlag. Der Überstand wird erneut mit einer Spritze entfernt und die Vorgehensweise noch ein weiteres Mal wiederholt. Anschließend wird das Produkt im Hochvakuum getrocknet und es wird 1.96 g feines, gelbes, mikrokristallines Triphenylmethylium Tetrachloridogallat [Ph₃C][GaCl₄] (4.32 mmol, 86 %)) erhalten.

Kristalle für die Einkristallstrukturanalytik können durch langsames Abkühlen einer warmen (40 °C) gesättigten CH₂Cl₂-Lösung des Trityl Gallats gewonnen werden.

C₁₉H₁₅Cl₄Ga (454.86 g/mol): **Smp.** 174°C (Zer.). **EA** ber. (gef.), %: C, 50.17 (50.13); H, 3.32 (3.76). ¹**H-NMR** (25°C, CD₂Cl₂, 500.13 MHz): δ = 7.70 (dd, 6H, *o*-C*H*, ³*J*(¹H-¹H) = 7.79 Hz, ⁴*J*(¹H-¹H) = 1.4 Hz), 7.91 (tt, 6H, *m*-C*H*, ³*J*(¹H-¹H) = 8.42 Hz, ⁴*J*(¹H-¹H) = 1.4 Hz), 8.29 (tt, 3H, *p*-C*H*, ³*J*(¹H-¹H) = 7.57 Hz, ⁴*J*(¹H-¹H) = 1.4 Hz). ¹³C{¹H}-**NMR** (25°C, CD₂Cl₂, 75.47 MHz): δ = 131.20 (s, *m*-CH), 140.51 (s, *ipso*-C), 143.39 (s, *o*-CH), 144.03 (s, *p*-CH) 211.34 (s, CPh₃). **IR** (ATR, 32 Scans, 25°C, cm⁻¹): 3065 (w), 1579 (s), 1481 (m), 1448 (m), 1353 (s), 1293 (3), 1408 (w), 1184 (m), 1164 (m), 1127 (w), 1118 (w), 1100 (w), 1086 (w), 1029 (w), 1007 (w), 994 (m), 980 (m), 954 (w), 949 (w), 915 (w), 845 (m), 833 (m), 807 (m), 764 (m), 699 (s), 665 (m), 659 (w), 621 (s), 609 (s). **Raman** (1064 nm, 100 mW, 500 Akk., 25°C, cm⁻¹): = 3073 (1), 1620 (1), 1596 (5), 1584 (10), 1483 (2), 1452 (1), 1357 (4), 1332 (1), 1310 (1), 1297 (1), 1185 (2), 1166 (1), 1028 (2), 997 (3), 955 (1), 916 (2), 845 (1), 835 (1), 772 (1), 709 (1), 687 (1), 623 (2), 610 (1), 468 (1), 427 (1), 404 (2), 380 (1), 367 (1), 345 (1), 325 (1), 287 (2), 237 (1), 152 (1), 138 (1). **MS** (CI⁺, m/z (%)): 243 (100) [Ph₃C]⁺, 167 (9) [Ph₂CH]⁺.

$$Ph_3CCI + Ag[PF_6] \longrightarrow [Ph_3C][PF_6] + AgCI CH_3CN, Rt$$

Zu einer gerührten Suspension von 16.54 g Tritylchlorid (59.33 mmol)) in 50 mL Acetonitril, wird eine Lösung aus 100 mL Acetonitril und 15 g Silber Hexafluoridophosphat Ag[PF₆] (59.33 mmol) mithilfe eines Tropftrichters gegeben. Die Reaktionslösung verfärbt sich orange und es entsteht ein farbloser Niederschlag. Nach weiteren 30 Minuten rühren wird der der Niederschlag abfiltriert (G4). Nachdem das Lösungsmittel im Hochvakuum entfernt wurde, wird der verbleibende orange Rückstand in 60 mL CH₂Cl₂ gelöst. Nichtlösliche Bestandteile werden erneut abfiltriert. Das Lösungsmittel wird im Hochvakuum entfernt. Der gebildete feine Niederschlag wird dreimal mit *n*-Hexan gewaschen. Durch Trocknung des Niederschlages im Hochvakuum werden 20.51 g Triphenylmethylium Hexafluoridophosphat [Ph₃C][PF₆] (52.82 mmol, 89 %) erhalten. Kristalle für die Einkristallstrukturanalytik können durch das langsame Herunterkühlen einer gesättigten Acetonitril-Lösung des Trityl Hexafluoridophosphats gewonnen werden.

C₁₉H₁₅F₆P (388.29 g/mol): **Smp**. 230°C (Zer.). **EA** ber. (gef.), %: C, 58.77 (58.86); H, 3.89 (3.92). ¹H-NMR (25°C, CD₃CN, 300.13 MHz): $\delta = 7.72$ (d, 6H, *o*-CH, ³J(¹H-¹H) = 7.9 Hz), 7.88 (t, 6H, *m*-CH, ³J(¹H-¹H) = 7.7 Hz), 8.29 (t, 3H, *p*-CH, ³J(¹H-¹H) = 7.9 Hz). ¹³C{¹H}-NMR (25°C, CD₃CN, 75.47 MHz): $\delta = 129.2$ (s, m-CH), 131.2 (s, *ipso*-C), 141.3 (s, *o*-CH), 144.2 (s, *p*-CH), 213.1 (s, CPh₃). ¹⁹F{¹H}-NMR (25°C, CD₃CN, 282.38 MHz): $\delta = -72.8$ (d, PF_6 , ¹J(¹⁹F-³¹P) = 707 Hz). ³¹P{¹H}-NMR (25°C, CD₃CN, 282.38 MHz): $\delta = -144.6$ (sept, PF_6 , ¹J(³¹P-¹⁹F) = 707 Hz). **IR** (ATR, 16 Scans, 25°C, cm⁻¹): 3052 (w), 1621 (w), 1610 (w), 1581 (m), 1562 (w), 1510 (w), 1484 (m), 1450 (m), 1407 (w), 1355 (s), 1309 (m), 1294 (m), 1276 (m), 1240 (m), 1191 (m), 1164 (w), 1130 (w), 1101 (w), 1054 (w), 1031 (w), 997 (m), 981 (m), 609 (m), 555 (s). **Raman** (784 nm, 6.5 mW, 10 s, 10 Akk., 25°C, cm⁻¹): 3036 (1), 2915 (1), 1626 (1), 1597 (4), 1587 (9), 1485 (1), 1357 (3), 1317 (1), 1295 (1), 1188 (3), 1162 (2), 1031 (2), 1000 (5), 985 (1), 952 (1), 916 (3), 845 (1), 772 (1), 744 (1), 711 (1), 623 (4), 610 (1), 468 (3), 406 (4), 285

(10), 235 (2), 188 (1), 135 (4). **MS** (CI⁺, m/z (%)): 243 (100) $[Ph_3C]^+$, 185 (69) $[Ph_2CF]^+$, 167 (3) $[Ph_2CH]^+$.

$$Ph_3CCI + Ag[AsF_6] \longrightarrow [Ph_3C][AsF_6] + AgCI CH_2CI_2, Rt$$

148 mg Silber Hexafluoridoarsenat Ag[AsF₆] (0.5 mmol) und 139 mg Tritylchlorid Ph₃CCl (0.5 mmol) werden zusammen in 8 mL CH₂Cl₂ gelöst. Dies führt zum Ausfall eines Niederschlages und die Reaktionslösung verfärbt sich orange. Die Reaktionslösung wird weite für 5 Minuten gerührt. Anschließend wird die Reaktionslösung filtriert und das Lösungsmittel des Filtrats bis auf ~2 mL im Vakuum entfernt. Kristalle für die Einkristallstrukturanalyse können durch Dampfdiffusion mit *n*-Hexan gewonnen werden. Der Überstand wird mit einer Spritze entfernt und die Kristalle solange mit *n*-Hexan gewaschen bis der Überstand farblos ist. Die Kristalle werden im Hochvakuum bei 60 °C getrocknet. Es werden 115 mg (0.27 mmol, 53 %) rot/oranges Triphenylmethylium Hexafluoridoarsenat [Ph₃C][AsF₆] erhalten.

C₁₉H₁₅F₆As (432.23 g/mol): Smp. 222°C. EA ber. (gef.), %: C, 52.80 (52.71); H, 3.50 (3.61). ¹**H-NMR** (25°C, CD₂Cl₂, 300.13 MHz): $\delta = 7.69$ (dd, 6H, *o*-CH, ³J(¹H-¹H) = 8.44 Hz, ${}^{4}J({}^{1}H-{}^{1}H) = 1.5$ Hz), 7.90 (tt, 6H, m-CH, ${}^{3}J({}^{1}H-{}^{1}H) = 7.86$ Hz, ${}^{4}J({}^{1}H-{}^{1}H) =$ 1.6 Hz), 8.28 (tt, 3H, p-CH, ${}^{3}J({}^{1}H-{}^{1}H) = 7.53$ Hz, ${}^{4}J({}^{1}H-{}^{1}H) = 1.5$ Hz). ${}^{13}C{}^{1}H{}-NMR$ $(25^{\circ}C, CD_2Cl_2, 75.47 \text{ MHz}): \delta = 131.16 \text{ (s, } m-CH, \ ^1J(\ ^{13}C-\ ^{13}C) = 54.7 \text{ Hz}), 140.53 \text{ (s,}$ *ipso-C*), 143.33 (s, *o-CH*, ${}^{1}J({}^{13}C-{}^{13}C) = 55.3$ Hz), 144.05 (s, *p-CH*, ${}^{1}J({}^{13}C-{}^{13}C) =$ 52.7 Hz), 211.48 (s, CPh₃). ¹⁹F{¹H}-NMR (25°C, CD₂Cl₂, 282.38 MHz): $\delta = -66.18$ $({}^{1}J({}^{19}F-{}^{75}As) = 940 \text{ Hz}).$ ⁷⁵As-NMR (25°C, CD₂Cl₂, 85.64 MHz): $\delta = 0.106$ (sept, AsF_{6} , ${}^{1}J({}^{75}\text{As}{}^{-19}\text{F}) = 940 \text{ Hz}$). IR (ATR, 32 Scans, 25°C, cm⁻¹): 3095 (w), 1621 (w), 1575 (w), 1506 (w), 1479 (m), 1448 (m), 1353 (s), 1305 (m), 1292 (m), 1186 (m), 1164 (m), 1130 (w), 1101 (w), 1089 (w), 1025 (w), 993 (m), 979 (m), 948 (w), 914 (w), 854 (w), 838 (m), 810 (m), 767 (m), 682 (s), 622 (s), 607 (s), 572 (m), 466 (m), 428 (w). Raman (784 nm, 24 mW, 15 s, 10 Akk., 25°C, cm⁻¹): 1594 (1), 1578 (4), 1483 (1), 1448 (1), 1357 (1), 1352 (1), 1332 (1), 1315 (1), 1290 (1), 1182 (2), 1168 (1), 1024 (3), 997 (6), 992 (2), 915 (1), 843 (1), 810 (1), 774 (1), 767 (1), 708 (2), 678 (5), 620 (3), 607 (2), 572 (2), 468 (2), 429 (1), 403 (3), 365 (1), 322 (1), 286 (5), 239 (2), 231 (3), 147 (10), 123 (1), 106 (8). **MS** (CI⁺, m/z (%)): 243 (100) [Ph₃C]⁺.

$$Ph_3CCI + Ag[SbF_6] \longrightarrow [Ph_3C][SbF_6] + AgCI CH_2CI_2, Rt$$

172 mg Silber Hexafluoridoantimonat Ag[SbF₆] (0.5 mmol) und 139 mg Tritylchlorid Ph₃CCl (0.5 mmol) werden zusammen in 5 mL CH₂Cl₂ gelöst. Dies führt zum Ausfall eines Niederschlages und die Reaktionslösung verfärbt sich gelb/orange. Die Reaktionslösung wird weite für 5 Minuten gerührt. Anschließend wird die Reaktionslösung filtriert und das Lösungsmittel des Filtrats bis auf ~2 mL im Vakuum entfernt. Kristalle für die Einkristallstrukturanalyse können durch Dampfdiffusion mit *n*-Hexan gewonnen werden. Der Überstand wird mit einer Spritze entfernt und die Kristalle solange mit *n*-Hexan gewaschen bis der Überstand farblos ist. Die Kristalle werden im Hochvakuum bei 60 °C getrocknet. Es werden 138 mg (0.29 mmol, 58 %) tief gelbes Triphenylmethylium Hexafluoridoarsenat [Ph₃C][SbF₆] erhalten.

C₁₉H₁₅F₆Sb (479.07 g/mol): Smp. 213°C (Zer.). EA ber. (gef.), %: C, 47.63 (47.63); H, 3.16 (3.10). ¹**H-NMR** (25°C, CD₃CN, 300.13 MHz): $\delta = 7.72$ (d, 6H, *o*-CH, ³*J*(¹H-¹H) = 8.1 Hz), 7.88 (t, 6H, *m*-CH, ${}^{3}J({}^{1}H-{}^{1}H) = 7.76$ Hz), 8.29 (t, 3H, *p*-CH, ${}^{3}J({}^{1}H-{}^{1}H) =$ 7.54 Hz). ¹³C{¹H}-NMR (25°C, CD₂Cl₂, 75.47 MHz): $\delta = 131.2$ (s, *m*-CH, ¹*J*(¹³C-¹³C) = 54.7 Hz), 140.6 (s, *ipso-C*), 143.4 (s, *o-C*H, ${}^{1}J({}^{13}C-{}^{13}C) = 54.9$ Hz), 144.1 (s, *p-C*H), 211.52 (s, CPh₃). ¹⁹F{¹H}-NMR (25°C, CD₂Cl₂, 282.38 MHz): $\delta = -124.1 (^{1}J(^{19}F^{-121}Sb))$ = 1950 Hz, ${}^{1}J({}^{19}\text{F}-{}^{123}\text{Sb}) = 1060$ Hz). **IR** (ATR, 32 Scans, 25°C, cm⁻¹): 1619 (w), 1608 (w), 1581 (m), 1562 (w), 1510 (w), 1483 (m), 1450 (m), 1413 (w), 1394 (w), 1353 (m), 1305 (w), 1294 (m), 1186 (m), 1160 (w), 1130 (w), 1101 (w), 1101 (w), 1079 (w), 1029 (w), 1008 (w), 995 (m), 981 (w), 973 (w), 954 (w), 943 (w), 914 (w), 846 (w), 837 (m), 806 (m), 771 (m), 765 (m), 700 (m), 663 (m), 648 (s), 621 (m), 607 (m), 574 (m), 567 (m). Raman (784 nm, 65 mW, 5 s, 10 Akk., 25°C, cm⁻¹): 1483 (1), 1354 (4), 1294 (1), 1199 (1), 1184 (4), 1170 (1), 1164 (1), 1027 (3), 1008 (1), 999 (6), 942 (1), 916 (2), 837 (1), 775 (1), 763 (1), 711 (3), 656 (1), 644 (3), 622 (7), 610 (2), 469 (4), 427 (1), 403 (9), 389 (1), 322 (1), 288 (10), 284 (9), 237 (3), 220 (1), 146 (4). MS (CI⁺, m/z (%)): 243 $(100) [Ph_3C]^+, 167 (32) [Ph_2CH]^+.$

5.4.7 Charakterisierung von $[Ph_3C][SbCl_6]$ (8)

237 mg Triphenylmethylium Hexachloridoantimonat [Ph₃C][SbCl₆] (0.41 mmol) wird in 5 mL CH₂Cl₂ gelöst. Die Reaktionslösung wird für weitere 10 Minuten gerührt und anschließend filtriert (G4). Das Lösungsmittel des Filtrats wird bis auf ~2 mL entfernt. Durch Lagerung der Lösung über Nacht bei -40 °C können Einkristalle erhalten werden. Der Überstand wird mit einer Spritze entfernt und die Kristalle solange mit *n*-Hexan gewaschen bis der Überstand farblos ist. Die Kristalle werden im Hochvakuum bei 60 °C getrocknet. Es werden 134 mg (0.23 mmol, 57 %) tief gelbes Triphenylmethylium Hexachloridoantimonat [Ph₃C][SbCl₆] erhalten.

C₁₉H₁₅Cl₆Sb (577.80 g/mol): **Smp.** 212°C (Zer.). **EA** ber. (gef.), %: C, 39.50 (39.49); H, 2.62 (2.93). ¹**H**-NMR (25°C, CD₂Cl₂, 250.13 MHz): δ = 7.70 (dd, 6H, *o*-C*H*, ³*J*(¹H-¹H) = 8.57 Hz, ⁴*J*(¹H-¹H) = 1.4 Hz), 7.92 (tt, 6H, *m*-C*H*, ³*J*(¹H-¹H) = 7.91 Hz), 8.29 (tt, 3H, *p*-C*H*, ³*J*(¹H-¹H) = 7.54 Hz, ⁴*J*(¹H-¹H) = 1.3 Hz). ¹³C{¹H}-NMR (25°C, CD₂Cl₂, 62.90 MHz): δ = 131.26 (s, *m*-CH), 140.52 (s, *ipso*-C), 143.40 (s, *o*-CH), 144.10 (s, *p*-CH) 211.32 (s, CPh₃). **IR** (ATR, 32 Scans, 25°C, cm⁻¹): 3062 (w), 1619 (w), 1606 (w) 1575 (m), 1560 (w), 1481 (m), 1448 (m), 1409 (w), 1353 (s), 1305 (m), 1292 (s), 1191 (m), 1182 (m), 1164 (m), 1128 (m), 1101 (m) 1085 (m), 1064 (m), 1025 (m), 1006 (w), 995 (m), 977 (m), 950 (m), 914 (m), 838 (m), 806 (m), 769 (s), 698 (s), 657 (m), 621 (m), 607 (s). **Raman** (532 nm, 12 mW, 60 s, 10 Akk., 25°C, cm⁻¹): 1590 (5), 1578 (10), 1555 (2), 1479 (1), 1447 (1), 1350 (1), 1179 (3), 1162 (2), 1020 (3), 992 (2), 949 (1), 911 (4), 766 (1), 704 (1), 618 (4), 463 (1), 425 (1), 399 (1), 281 (6). **MS** (CI⁺, m/z (%)): 243 (100) [Ph₃C]⁺.

5.4.8 Synthese und Charakterisierung von $[Ph_3C][CHB_{11}H_5Cl_6]$ (9)

 $\begin{array}{c} \text{Ag[CHB}_{11}\text{H}_5\text{Cl}_6] \textbf{+} \text{Ph}_3\text{CBr} & \longrightarrow & [\text{Ph}_3\text{C}][\text{CHB}_{11}\text{H}_5\text{Cl}_6] \textbf{\cdot} \text{CH}_3\text{CN} + \text{AgBr} \\ & \text{Toluol, CH}_3\text{CN} \\ & \text{Rt} \end{array}$

siehe Referenz^[115]

5.4.9 Synthese und Charakterisierung von $[Ph_3C][CHB_{11}Cl_{11}]$ (10)

 $\begin{array}{c} Ag[CHB_{11}CI_{11}] + Ph_{3}CBr & \longrightarrow & [Ph_{3}C][CHB_{11}CI_{11}] + AgBr \\ \hline Toulol \ / \ CH_{3}CN, \ Rt \end{array}$

siehe Referenz^[115]

Ag[CHB₁₁H₅Br₆] + Ph₃CBr \rightarrow [Ph₃C][CHB₁₁H₅Br₆] · CH₂Cl₂ + AgBr 1) Toluol / CH₃CN, Rt 2) CH₂Cl₂

Triphenylmethylium closo-6,7,8,9,10,11-Hexabromopentahydroundecacarborat [Ph₃C][CHB₁₁H₅Br₆] wird in Anlehnung an eine modifizierte Literaturvorschrift hergestellt.^[290] Zu einer gerührten Lösung aus 2.17 g Silber closo-6,7,8,9,10,11-Hexabromopentahydroundecacarborat Ag[CHB₁₁H₅Br₆] (3 mmol) in 20 mL Toluol und 60 mL Acetonitril wird mit einer Spritze eine Lösung aus 1 g Tritylbromid Ph₃CBr (3.1 mmol) in 20 mL Toluol gegeben. Die entstehende orange Suspension wird für eine weitere Stunde gerührt. Das Lösungsmittel wird vollständig im Vakuum entfernt und der Rückstand in 40 mL CH₂Cl₂ aufgenommen. Nach der Filtration (G4) der Reaktionslösung, wird die klare orange Lösung mit 40 mL *n*-Hexan versetzt. Der gelbe Überstand des feinen orangen mikrokristallinen Niederschlages wird mit einer Spritze entfernt. Die Kristalle werden im Hochvakuum getrocknet. Es werden 2.77 g (2.93 mmol, 98 %) Triphenylmethylium closo-6,7,8,9,10,11-Hexabromopentahydroundecacarborat [Ph₃C][CHB₁₁H₅Br₆] als CH₂Cl₂-Solvat erhalten. Durch Lagerung einer gesättigten Lösung über Nacht bei 5 °C können Einkristalle erhalten werden

C₂₀H₂₁B₁₁Br₆·CH₂Cl₂ (944.66 g/mol): ¹H-NMR (25°C, C₆D₆, 300.13 MHz): δ = 0.6-1.9 (m, 6H, BH/CH), 4.27 (s, CH₂Cl₂, ¹J(¹H-¹³C) = 178 Hz), 6.90 (dd, 6H, *o*-CH, ³J(¹H-¹H) = 8.0 Hz, ⁴J(¹H-¹H) = 1.2 Hz), 7.10 (dd, 6H, *m*-CH, ³J(¹H-¹H) = 8.0 Hz, ³J(¹H-¹H) = 7.5 Hz), 7.30 (dd, 3H, *p*-CH, ³J(¹H-¹H) = 7.5 Hz, ⁴J(¹H-¹H) = 1.2 Hz). ¹¹B-NMR (25°C, C₆D₆, 96.29 MHz): δ = -19.7 (d, 5B, B²⁻⁶H, ¹J(¹H-¹¹B) = 150 Hz), -9.00 (s, 5B, B⁷⁻¹¹Br), -0.92 (s, 1B, B¹²Br). **IR** (ATR, 32 Scans, 25°C, cm⁻¹): 3053 (w), 2601 (m), 1579 (s), 1480 (m), 1447 (m), 1352 (s), 1292 (m), 1263 (m, δ (H-C- _{CH₂Cl₂})), 1183 (m), 1167 (m), 1127 (m), 1099 (w), 1084 (w), 1027 (w), 993 (m), 978 (m), 950 (m), 932 (m), 915 (m), 879 (w), 858 (m), 840 (m), 805 (m), 767 (m), 749 (w), 734 (m, *v*(C-C _{CH₂Cl₂})), 698 (s), 665 (w), 658 (w), 633 (m), 622 (m), 607 (m), 564 (w), 537 (w).

$$\label{eq:charge} \begin{split} \mbox{[Ph}_3C][CHB_{11}H_5Br_6] \cdot CH_2Cl_2 & \longrightarrow \\ \mbox{Toluol / CH}_3CN, Rt \end{split} \\ \end{split}$$

4.91 g Triphenylmethylium closo-6,7,8,9,10,11-Hexabromoundecacarborat-Dichloromethan-Solvat [Ph₃C][CHB₁₁H₅Br₆]·CH₂Cl₂ (5.20 mmol) werden in einer Lösung aus 10 mL Toluol und 40 ml Acetonitril gelöst. Es entsteht eine orange-rote Lösung. Das Lösungsmittel wird im Vakuum vollständig entfernt. Der Rückstand wird erneut in einer warmen Lösung aus 10 mL Toluol und 20 ml Acetonitril gelöst. Langsames Abkühlen der Lösung führt zur Bildung von orangen Kristallen. Der Überstand wird mit einer Spritze entfernt und die Kristalle werden im Hochvakuum bei getrocknet. Eine zweite Fraktion kann durch langsames Abkühlen des Überstandes auf -40 °C gewonnen werden. Es werden 3.81 g (4.23 mmol, 81 %) Triphenylmethylium closo-6,7,8,9,10,11-Hexabromopentahydroundecacarborat [Ph₃C][CHB₁₁H₅Br₆] als CH₃CN-Solvat erhalten.

C₂₀H₂₁B₁₁Br₆·CH₃CN (900.78 g/mol): **Smp**. 239°C (Zer.). **EA** ber. (gef.), %: C, 29.33 (29.65); H, 2.69 (2.62); N, 1.55 (1.49). **IR** (ATR, 32 Scans, 25°C, cm⁻¹): 3047 (w), 2929 (w), 2617 (w), 2599 (m), 2250 (w, v(C-N_{*CH*₃*CN*)), 1580 (s), 1481 (m), 1447 (m), 1353 (s), 1292 (m), 1184 (m), 1169 (m), 1161 (m), 1124 (w), 1101 (w), 1085 (w), 1063 (w), 1026 (w), 993 (m), 951 (m), 932 (m), 916 (m), 859 (m), 847 (m), 838 (m), 806 (m), 766 (m), 749 (w), 718 (m), 700 (s), 689 (m), 659 (w), 632 (m), 622 (m), 607 (m), 563 (w), 537 (w). **Raman** (1064 nm, 33 mW, 500 Akk., 25°C, cm⁻¹): 3068 (1), 3055 (1), 2929 (1), 2621 (1), 2601 (1), 1596 (4), 1582 (10), 1509 (1), 1483 (2), 1357 (4), 1311 (1), 1297 (1), 1185 (2), 1162 (1), 1025 (2), 996 (2), 954 (1), 917 (1), 848 (1), 790 (1), 774 (1), 750 (1), 711 (1), 690 (1), 662 (1), 623 (2), 470 (1), 427 (1), 404 (2), 336 (1), 314 (1), 289 (2), 250 (1), 233 (1), 201 (1), 146 (1).}

5.4.12 Synthese und Charakterisierung von 11

$$[Ph_{3}C][CHB_{11}H_{5}Br_{6}] \cdot CH_{3}CN \longrightarrow [Ph_{3}C][CHB_{11}H_{5}Br_{6}] + CH_{3}CN$$
pur, Δ

4.91 g fein gepulvertes Acetonitril-Solvat vom Triphenylmethylium *closo*-6,7,8,9,10,11-Hexabromopentahydroundecacarborat [Ph₃C][CHB₁₁H₅Br₆]·CH₃CN (5.2 mmol) werden langsam im Hochvakuum auf 120 °C für 12 h erhitzt. Dieser Vorgang führt zur quantitativen Bildung des orangen Triphenylmethylium *closo*-6,7,8,9,10,11-Hexabromopentahydroundecacarborat [Ph₃C][CHB₁₁H₅Br₆].

C₂₀H₂₁B₁₁Br₆ (859.73 g/mol): **Smp**. 240°C (Zer). **EA** ber. (gef.), %: C, 27.94 (27.26); H, 2.46 (2.30). ¹**H-NMR** (25°C, CD₂Cl₂, 300.13 MHz): $\delta = 2.30$ (q, 5H, B*H*, ¹*J*(¹H-¹¹B) = 165 Hz), 2.55 (s, 1H, C*H*), (C*H*_{aryl}, *nicht beobachtet*). ¹¹**B-NMR** (25°C, CD₂Cl₂, 96.29 MHz): $\delta = -20.2$ (d, 5B, B^{2-6} H, ¹*J*(¹H-¹¹B) = 165.4 Hz), -9.86 (s, 5B, B^{7-11} Br), -1.70 (s, 1B, B^{12} Br). ¹³C{¹H}-**NMR** (25°C, CD₂Cl₂, 75.47 MHz): $\delta = 41.8$ (s, CH_{Anion}), 131.3 (s, *m*-CH), 140.5 (s, *ipso*-CH), 143.4 (s, *o*-CH), 144.2 (s, *p*-CH), 211.3 (s, CPh₃). **IR** (ATR, 32 Scans, 25°C, cm⁻¹): 3045 (w), 2597 (m), 1580 (s), 1480 (m), 1447 (m), 1353 (s), 1291 (s), 1184 (m), 1167 (m), 1125 (w), 1098 (w), 1083 (w), 1075 (w), 1025 (w), 1002 (m), 994 (m), 978 (m), 950 (m), 932 (m), 914 (m), 879 (w), 857 (s), 838 (m), 805 (m), 767 (s), 745 (m), 725 (w), 700 (s), 686 (m), 658 (w), 632 (m), 621 (s), 607 (s), 562 (w), 535 (w).

5.4.14 Synthese und Charakterisierung von $[Ph_3C][OS(O)_2CF_3]$ (12).

$$Ph_{3}CCI + Ag[OS(O)_{2}CF_{3}] \longrightarrow [Ph_{3}C][OS(O)_{2}CF_{3}] + AgCI CH_{2}CI_{2} Rt$$

Zu einer gerührten Lösung von 775 mg Tritylchlorid Ph₃CCl (2.78 mmol) in 10 mL CH₂Cl₂ werden 718 mg Silber Triflat Ag[OS(O)₂CF₃] (2.79 mmol) als Feststoff hinzugefügt. Dies führt zum sofortigen Ausfall eines Niederschlages und die Lösung verfärbt sich gelb. Die Reaktionslösung wird für weitere 30 Minuten gerührt. Nachdem der Niederschlag (G4) abfiltriert ist, wird das Lösungsmittel im Vakuum zurückkondensiert und der Niederschlag erneut gewaschen. Nach erneuter Filtration wird das Lösungsmittel bis auf ~4 mL entfernt. Um einige braune Verunreinigungen zu entfernen werden 15 ml n-Hexan zur Reaktionslösung wird dreimal wiederholt, bis der Überstand nur noch schwach gelb ist. Der Vorgang wird dreimal wiederholt, bis der Überstand nur noch schwach gelb ist. Der verbleibende Rückstand wird im Hochvakuum getrocknet. Es werden 883 mg (2.25 mmol, 81 %) tief gelbes mikrokristallines Triphenylmethylium Triflat [Ph₃C][OS(O)₂CF₃] erhalten. Kristalle für die Einkristallstrukturanalytik können durch Lagerung einer gesättigten CH₂Cl₂-Lösung über Nacht bei –40 °C gewonnen werden.

C₂₀H₁₅F₃O₃S (392.39 g/mol): **Smp**. 118°C (Zer.). **EA** ber. (gef.), %: C, 61.22 (61.14); H, 3.85 (3.58). ¹**H-NMR** (25°C, CD₂Cl₂, 300.13 MHz): $\delta = 7.70$ (dd, 6H, *o*-CH, ³*J*(¹H-¹H) = 8.33 Hz, ⁴*J*(¹H-¹H) = 1.3 Hz), 7.91 (tt, 6H, *m*-CH, ³*J*(¹H-¹H) = 7.91 Hz, ⁴*J*(¹H-¹H) = 1.5 Hz), 8.29 (tt, 3H, *p*-CH, ³*J*(¹H-¹H) = 7.56 Hz, ⁴*J*(¹H-¹H) = 1.3 Hz). ¹³C{¹H}-**NMR** (25°C, CD₂Cl₂, 75.47 MHz): $\delta = 121.32$ (s, CF₃, ¹*J*(¹³C-¹⁹F) = 321.9 Hz), 131.12 (s, *m*-CH, ¹*J*(¹³C-¹³C) = 54.7 Hz), 140.49 (s, *ipso*-C, ¹*J*(¹³C-¹³C) = 51.6 Hz), 143.33 (s, *o*-CH, ¹*J*(¹³C-¹³C) = 55.4 Hz), 143.99 (s, *p*-CH, ¹*J*(¹³C-¹³C) = 54.4 Hz), 211.41 (s, CPh₃). ¹⁹F{¹H}-**NMR** (25°C, CD₂Cl₂, 282.38 MHz): $\delta = -78.81$ (s, ¹*J*(¹⁹F-¹³C) = 321.9 Hz). **IR** (ATR, 8 Scans, 25°C, cm⁻¹): 3064 (w), 3022 (w), 1619 (w), 1579 (s), 1481 (m), 1450 (m), 1353 (s), 1292 (s), 1259 (s), 1220 (s), 1182 (s), 1153 (s), 1139 (s), 1025 (s), 995 (s), 975 (m), 948 (m), 916 (m), 837 (m), 806 (m), 767 (s), 734 (m), 694 (s), 659 (m), 632 (s), 621 (s), 607 (s), 570 (s). **Raman** (784 nm, 65 mW, 15 s, 4 Akk., 25°C, cm⁻¹): 3133 (1), 3081 (1), 1597 (6), 1585 (10), 1485 (2), 1360 (5), 1187 (4), 1030 (3), 1001 (4), 919 (2), 624 (4), 472 (3), 405 (5), 287 (6), 243 (3). **MS** (CI⁺, m/z (%)): 243 (100), 167 (100) [Ph₂CH]⁺.
5.4.13 Synthese und Charakterisierung von Ph₃COC(O)CF₃ (13)

$$Ph_3CCI + Ag[OC(O)CF_3] \longrightarrow Ph_3COC(O)CF_3 + AgCI CH_2CI_2, Rt$$

110 mg Silber Trifluoracetat (0.5 mmol) und 139 mg Tritylchlorid Ph₃CCl (0.5 mmol) werden zusammen in 8 ml CH₂Cl₂ gelöst. Es bildet sich sofort ein farbloser Niederschlag und die Lösung verfärbt sich gelb. Die Reaktionslösung wird für weitere 5 Minuten gerührt. Nach anschließender Filtration (G4) wird das Lösungsmittel des klaren Filtrats bis auf ~2 mL und einsetzendend Kristallisation entfernt. Langsames Abkühlen einer heißen Lösung (60 °C) führt zur Bildung von Kristallen für die Einkristallstrukturanalytik. Der Überstand wird mit einer Spritze entfernt und die Kristalle solange mit n-Hexan gewaschen bis der Überstand farblos ist. Die Kristalle werden im Hochvakuum bei 60 °C getrocknet. Es werden 117 mg (0.33 mmol, 65 %) blass gelbes Triphenylmethyltrifluoracetat Ph₃COC(O)CF₃ erhalten.

C₂₁H₁₅F₃O₂ (356.34 g/mol): **Smp**. 127°C. **EA** ber. (gef.), %: C, 70.78 (71.13); H, 4.24 (4.28). ¹**H-NMR** (25°C, CD₂Cl₂, 500.13 MHz): δ = 7.30-7.40 (m, 15H, *o,m,p*-C*H*) [s. S74^[95]]. ¹³C{¹**H**}-**NMR** (25°C, CD₂Cl₂, 125.77 MHz): δ = 95.47 (s, CPh₃), 115.10 (q, CF₃, ¹*J*(¹³C-¹⁹F) = 287 Hz), 129.2 (s, CH), 131.2 (s, CH), 128.8 (s, CH), (*partielle Überlagerung der Signale von o-*, *m- und p*-CH) 141.8 (s, *ipso-C*), 155.37 (q, C(O)CF₃, ²*J*(¹³C-¹⁹F) = 42 Hz). ¹⁹F{¹**H**}-**NMR** (25°C, CD₂Cl₂, 282.38 MHz): δ = -75.93 (s, CF₃, ¹*J*(¹⁹F-¹³C) = 287 Hz, ²*J*(¹⁹F-¹³C) = 42 Hz). **IR** (ATR, 16 Scans, 25°C, cm⁻¹): 3540 (w), 3465 (w), 3062 (w), 3035 (w), 1963 (w), 1820 (w), 1780 (m), 1739 (w), 1596 (w), 1583 (w), 1544 (w), 1490 (m), 1444 (m), 1388 (w), 1359 (m), 1328 (w), 1225 (w), 1220 (m), 1211 (m), 1187 (m), 1139 (s), 1083 (m), 1031 (m), 1010 (m), 1002 (m), 956 (m), 943 (w), 931 (m), 918 (m), 902 (m), 885 (m), 838 (m), 754 (s), 738 (m), 696 (s), 632 (s), 617 (m), 584 (m), 555 (m), 530 (m). **Raman** (632 nm, 12 mW, 5 s, 10 Akk., 25°C, cm⁻¹): 3063 (2), 1599 (1), 1582 (1), 1189 (1), 1153 (2), 1034 (4), 1000 (10), 956 (3), 849 (1), 723 (2), 702 (2), 658 (1), 618 (2), 495 (2), 278 (1), 266 (1), 249 (1), 211 (1), 189 (1). **MS** (C1⁺, m/z (%)): 243 (100) [Ph₃C]⁺, 165 (13) [Ph₂C – H]⁺.

5.4.15 Synthese und Charakterisierung von Ph₃CN₃ (14)

Ph₃CCl + NaN₃ → Ph₃CN₃ + NaCl CH₃CN, Rückfluß Toluol

265 mg Natrium Azid NaN₃ (4.08 mmol) und 982 mg Tritylchlorid Ph₃CCl (3.52 mmol) werden zusammen in 20 mL Acetonitril vorgelegt. Die Suspension wird für 12 h unter Rückfluß erhitzt. Die Ursprünglich farblose Suspension verfärbt sich blass gelb. Nach der Filtration (G4) wird der Rückstand nochmal mit 20 mL Toluol extrahiert. Die vereinigten Lösungsmittelphasen werden im Vakuum auf ein Minimum eingeengt und anschließend mit 5 mL *n*-Hexan überschichtet. Die Lagerung der Reaktionslösung im Kühlschrank bei 5 °C für 3 Tage führt zur Bildung von Einkristallen. Der Überstand wird mit einer Spritze entnommen und erneut mit 2 mL *n*-Hexan überschichtet und im Kühlschrank zur Kristallisation gebracht. Der erneute Überstand wird mit einer Spritze entfernt und die vereinigten kristallinen Phasen werden im Hochvakuum getrocknet. Es werden 764 mg (2.75 mmol, 78 %) Triphenylmethylazid Ph₃CN₃ erhalten.

C₁₉H₁₅N₃ (285.34 g/mol): **Smp**. 65°C. **EA** ber. (gef.), %: C, 79.98 (79.80); H, 5.30 (5.22); N, 14.73 (14.58). ¹**H-NMR** (25°C, CD₃CN, 300.13 MHz): δ = 7.27-7.45 (m, 15H, *o,m,p*-CH). ¹³C{¹**H**}-**NMR** (25°C, CD₃CN, 75.47 MHz): δ = 78.2 (s, CPh₃), 128.9 (s, *p*-CH), 129.2 (s, *m*-CH), 129.4 (s, *o*-CH), 144.0 (s, *ipso*-C). ¹⁴N{¹**H**}-**NMR** (25°C, DMSO-D₆, 36.14 MHz): δ = -135 (N_β, *v*1/2 = 100 Hz), -163 (N_γ, *v*1/2 = 460 Hz). **IR** (ATR, 32 Scans, 25°C, cm⁻¹): 3332 (w), 3085 (w), 3062 (w), 3033 (w), 3022 (w), 2811 (w), 2645 (w), 2491 (w), 2105 (m), 2092 (s), 1594 (w), 1581 (w), 1552 (w), 1486 (m), 1444 (m), 1394 (w), 1342 (w), 1326 (w), 1313 (w), 1286 (w), 1253 (m), 12313 (m), 1199 (m), 1184 (m), 1166 (m), 1151 (m), 1114 (w), 1081 (w), 1031 (m), 1000 (m), 975 (w), 948 (w), 941 (m), 916 (w), 896 (m), 842 (w), 769 (m), 761 (m), 752 (s), 717 (m), 696 (s), 667 (s), 628 (s), 617 (m), 557 (m). **Raman** (784 nm, 65 mW, 20 s, 5 Akk., 25°C, cm⁻¹): 3066 (1), 1599 (1), 1583 (1), 1445 (1), 1185 (1), 1168 (1), 1155 (1), 1080 (1), 1024 (2), 1000 (10), 937 (1), 893 (1), 842 (1), 759 (1), 717 (1), 702 (4), 666 (1), 637 (1), 616 (2), 589 (1), 453 (1), 404 (1), 277 (2), 234 (2). **MS** (CT⁺, m/z (%)): 285 (8) [Ph₃CN₃]⁺ 243 (100) [Ph₃C]⁺, 180 (20) [Ph₂CN]⁺.

5.4.16 Synthese und Charakterisierung von (Me₃SiO)₂SO₂ (19)

$$Me_{3}SiCI + H_{2}SO_{4} \longrightarrow (Me_{3}SiO)_{2}SO_{2} + 2 HCI$$
pur, Rückfluß

Zu einer gerührten Lösung Trimethylsilylchlorid Me₃SiCl (32.5 g, 0.3 mol) wird tropfenweise konzentrierte Schwefelsäure H₂SO₄ (95 %, 14 g) über einen Zeitraum von 15 Minuten gegeben. Der entstehende Chlorwasserstoff HCl wird durch ein Natriumhydroxid-Bad NaOH geleitet und neutralisiert. Zu Beginn der Reaktion kühlt das leicht trübe Reaktionsgemisch zunächst ab. Nach erfolgter vollständiger Zugabe klärt sich die Reaktionslösung allerdings wieder auf. Nach einer weiteren Stunde rühren bei Raumtemperatur wird keine weitere HCl-Entwicklung mehr wahrgenommen. Die Reaktionslösung wird im dynamischen Vakuum bei 110 °C destilliert. Es wird 10.4 g, 0.05 mol, 33 %) farbloses Bis(trimethylsilyl)sulfat (Me₃SiO)₂SO₂ erhalten. Kristalle für die Einkristallstrukturanalyse können über Nacht im Kühlschrank bei 5 °C aus einer gesättigten *n*-Pentan-Lösung erhalten werden.

C₆H₁₈O₄SSi₃ (214.36 g/mol): Smp. 48 °C. EA ber. (gef.), %: C, 33.62 (33.72); H, 8.46 (8.26); S, 14.96 (15.31). ¹**H-NMR** (25 °C, Toluol-[D₈], 300.13 MHz): $\delta = 0.18$ (s, SiCH₃, ${}^{1}J({}^{1}H-{}^{13}C) = 120.7 \text{ Hz}, {}^{2}J({}^{1}H-{}^{29}Si) = 7.1 \text{ Hz}). {}^{1}H-NMR (25 \circ C, C_{6}D_{6}, 300.13 \text{ MHz}): \delta =$ 0.18 (s, SiCH₃, ${}^{1}J({}^{1}H-{}^{13}C) = 120.5 \text{ Hz}, {}^{2}J({}^{1}H-{}^{29}Si) = 7.0 \text{ Hz}). {}^{1}H-NMR$ (25 °C, DMSO-[D₆], 300.13 MHz): $\delta = 0.25$ (s, SiCH₃, ¹J(¹H-¹³C) = 120.1 Hz, ²J(¹H-²⁹Si) = 7.0 Hz). ¹H-**NMR** (25 °C, CD₂Cl₂, 300.13 MHz): $\delta = 0.35$ (s, SiCH₃, ¹J(¹H-¹³C) = 120.5 Hz, ²J(¹H-²⁹Si) = 6.7 Hz). ¹H-NMR (25 °C, 1,2-DCB, ext. ref. Toluol-[D₈], 300.13 MHz): $\delta = 0.22$ (s, SiCH₃, ${}^{1}J({}^{1}H-{}^{13}C) = 120.7 \text{ Hz}$), 6.85 (m, $m-H^{[1,2-DCB]}$), 7.11 (m, $o-H^{[1,2-DCB]}$). ${}^{13}C{}^{1}H{}$ -**NMR** (25 °C, Toluol-[D₈], 75.48 MHz): $\delta = -0.36$ (s, SiCH₃, ¹J(¹³C-²⁹Si) = 60.2 Hz). ¹³C{¹H} NMR (25 °C, C₆D₆, 75.48 MHz): $\delta = -0.30$ (s, SiCH₃). ¹³C{¹H}-NMR (25 °C, DMSO-[D₆], 75.48 MHz): $\delta = 0.31$ (s, SiCH₃, ¹J(¹³C-²⁹Si) = 59.3 Hz). ¹³C{¹H}-NMR $(25 \text{ °C}, \text{CD}_2\text{Cl}_2, 75.48 \text{ MHz}): \delta = 0.16 \text{ (s, SiC}H_3, {}^{1}J({}^{13}\text{C}-{}^{29}\text{Si}) = 60.0 \text{ Hz}). {}^{13}\text{C}{}^{1}\text{H}-\text{NMR}$ (25 °C, 1,2-DCB, ext. ref. Toluol-[D₈], 75.48 MHz): $\delta = -0.31$ (s, SiCH₃, ¹J(¹³C-²⁹Si) = 60.1 Hz), 127.86 (*m*-CH^[1,2-DCB]), 130.53 (*o*-CH^[1,2-DCB]), 132.49 (*ipso*-CCl^[1,2-DCB]). ¹⁷O-**NMR** (25 °C, Toluol-[D₈], 67.83 MHz): $\delta = 152.61$ (b, 20, *O*SiMe₃, $v_{1/2} = 180$ Hz), 174.49 (b, 20, OS, $v_{1/2} = 75$ Hz). ²⁹Si INEPT-NMR (25 °C, Toluol-[D₈], 59.52 MHz) δ = 31.84 (dec, *Si*CH₃, ²*J*(²⁹Si-¹H) = 7.1 Hz). ²⁹Si INEPT-NMR (25 °C, C₆D₆, 59.52 MHz) δ = 31.93 (dec, *Si*CH₃, ²*J*(²⁹Si-¹H) = 7.0 Hz). ²⁹Si INEPT-NMR (25 °C, DMSO-[D₆], 59.52 MHz) δ = 28.51 (dec, *Si*CH₃, ²*J*(²⁹Si-¹H) = 7.0 Hz). ²⁹Si INEPT-NMR (25 °C, CD₂Cl₂, 59.52 MHz) δ = 33.58 (dec, *Si*CH₃, ²*J*(²⁹Si-¹H) = 6.7 Hz). ²⁹Si INEPT-NMR (25 °C, 1,2-DCB, 59.52 MHz) δ = 32.55 (dec, *Si*CH₃, ²*J*(²⁹Si-¹H) = 7.2 Hz). IR (ATR, 8 Scans, 25 °C, cm⁻¹): 2968 (w), 2908 (w), 1465 (w), 1415 (w), 1351 (m), 1257 (m), 1187 (m), 1054 (w), 948 (s), 817 (s), 763 (s), 700 (m), 619 (m), 578 (m), 559 (m). Raman (473 nm, 6 mW, 30 s, 10 Akk., 25 °C, cm⁻¹, 300 s Photobleach): 2978 (6), 2908 (10), 1420 (1), 1388 (1), 1350 (1), 1255 (1), 1185 (2), 980 (1), 857 (1), 770 (1), 705 (1), 664 (1), 614 (6), 531 (1), 364 (1), 252 (1), 233 (1), 195 (2). MS (CI⁺, m/z (%)): 243 (8) [(Me₃SiO)₂SO₂ + H]⁺, 229 (20) [Me₃Si-SO₄-SiMe₂H + H]⁺, 171 (100) [Me₃Si-SO₃H₂]⁺, 123 (77) [HSiSO₃]⁺, 99 (77) [H₃SO₄]⁺, 91 (17) [Me₃SiOH₂]⁺, 79 (14) [MeSO₂]⁺, 69 (17) [(CH₂)₃Si]⁺, 61 (23) [MeSiOH₂]⁺.

Trimethylphosphinoxid OPMe₃ (36 mg, 0.4 mmol) und Bis(trimethylsilyl)sulfat (Me₃SiO)₂SO₂ (96 mg, 0.4 mmol) werden gemeinsam in 3 mL Toluol suspendiert. Leichtes Erwärmen der Suspension führt zur Bildung einer klaren, farblosen Lösung. Aus dieser Lösung können über Nacht im Kühlschrank bei 5 °C Einkristalle erhalten werden. Der Überstand wird mit einer Spritze abgenommen und das Produkt für 0.5 h bei 40 °C im Vakuum getrocknet. Es entstehen 103 mg (0.31 mmol, 77 %) farbloses Trimethylsiloxytrimethylphosphonium Trimethylsilylsulfat.

C₉H₂₇O₅PSSi₂ (334.52 g/mol): Smp. 120 °C. EA ber. (gef.), %: C, 32.31 (31.89); H, 8.14 (8.06); S, 9.59 (9.33). ¹H-NMR (25 °C, CD₂Cl₂, 300.13 MHz): $\delta = 0.05$ (s, SiCH₃, ¹J(¹H- 13 C) = 119 Hz, $^{2}J(^{1}$ H- 29 Si) = 6.8 Hz), 0.33 (s, SiCH₃, $^{1}J(^{1}$ H- 13 C) = 120 Hz, $^{2}J(^{1}$ H- 29 Si) = 7 Hz), 1.86 (d, PCH₃, ${}^{1}J({}^{1}H-{}^{13}C) = 130$ Hz, ${}^{2}J({}^{1}H-{}^{31}P) = 13.6$ Hz). ¹H-NMR (25 °C, CD₂Cl₂, 500.13 MHz): $\delta = 0.06$ (s, SiCH₃, ¹J(¹H-¹³C) = 118 Hz, ²J(¹H-²⁹Si) = 6.7 Hz), 0.36 (s, SiCH₃, ${}^{1}J({}^{1}\text{H}-{}^{13}\text{C}) = 121 \text{ Hz}, {}^{2}J({}^{1}\text{H}-{}^{29}\text{Si}) = 7 \text{ Hz}), 1.66 \text{ (d, PCH₃, }{}^{1}J({}^{1}\text{H}-{}^{13}\text{C}) = 121 \text{ Hz}, {}^{2}J({}^{1}\text{H}-{}^{29}\text{Si}) = 7 \text{ Hz}), 1.66 \text{ (d, PCH₃, }{}^{1}J({}^{1}\text{H}-{}^{13}\text{C}) = 121 \text{ Hz}, {}^{2}J({}^{1}\text{H}-{}^{29}\text{Si}) = 7 \text{ Hz}), 1.66 \text{ (d, PCH₃, }{}^{1}J({}^{1}\text{H}-{}^{13}\text{C}) = 121 \text{ Hz}, {}^{2}J({}^{1}\text{H}-{}^{29}\text{Si}) = 7 \text{ Hz}), 1.66 \text{ (d, PCH₃, }{}^{1}J({}^{1}\text{H}-{}^{13}\text{C}) = 121 \text{ Hz}, {}^{2}J({}^{1}\text{H}-{}^{29}\text{Si}) = 7 \text{ Hz}), 1.66 \text{ (d, PCH₃, }{}^{1}J({}^{1}\text{H}-{}^{13}\text{C}) = 121 \text{ Hz}, {}^{2}J({}^{1}\text{H}-{}^{29}\text{Si}) = 7 \text{ Hz}), 1.66 \text{ (d, PCH₃, }{}^{1}J({}^{1}\text{H}-{}^{13}\text{C}) = 121 \text{ Hz}, {}^{2}J({}^{1}\text{H}-{}^{29}\text{Si}) = 7 \text{ Hz}), 1.66 \text{ (d, PCH₃, }{}^{1}J({}^{1}\text{H}-{}^{13}\text{C}) = 121 \text{ Hz}, {}^{2}J({}^{1}\text{H}-{}^{29}\text{Si}) = 7 \text{ Hz}), 1.66 \text{ (d, PCH₃, }{}^{1}J({}^{1}\text{H}-{}^{13}\text{C}) = 121 \text{ Hz}, {}^{2}J({}^{1}\text{H}-{}^{29}\text{Si}) = 7 \text{ Hz}), 1.66 \text{ (d, PCH₃, }{}^{1}J({}^{1}\text{H}-{}^{13}\text{C}) = 121 \text{ Hz}, {}^{2}J({}^{1}\text{H}-{}^{29}\text{Si}) = 7 \text{ Hz}), 1.66 \text{ (d, PCH₃, }{}^{1}J({}^{1}\text{H}-{}^{13}\text{C}) = 121 \text{ Hz}, {}^{2}J({}^{1}\text{H}-{}^{29}\text{Si}) = 7 \text{ Hz}), 1.66 \text{ (d, PCH₃, }{}^{1}J({}^{1}\text{H}-{}^{13}\text{C}) = 121 \text{ Hz}, {}^{2}J({}^{1}\text{H}-{}^{29}\text{Si}) = 7 \text{ Hz}), 1.66 \text{ (d, PCH₃, }{}^{1}J({}^{1}\text{H}-{}^{13}\text{C}) = 121 \text{ Hz}, {}^{2}J({}^{1}\text{H}-{}^{29}\text{Si}) = 7 \text{ Hz}), 1.66 \text{ (d, PCH₃, }{}^{1}J({}^{1}\text{H}-{}^{13}\text{C}) = 121 \text{ Hz}, {}^{2}J({}^{1}\text{H}-{}^{29}\text{Si}) = 7 \text{ Hz}), 1.66 \text{ (d, PCH₃, }{}^{1}J({}^{1}\text{H}-{}^{13}\text{C}) = 121 \text{ Hz}, 1.66 \text{ Hz}), 1.66 \text{ (d, PCH₃, }{}^{1}J({}^{1}\text{H}-{}^{13}\text{C}) = 121 \text{ Hz}, 1.66 \text{ Hz}), 1.66 \text{ Hz}) = 121 \text{ Hz}, 1.66 \text{ Hz}), 1.66 \text{ Hz$ 129 Hz, ${}^{2}J({}^{1}\text{H}-{}^{31}\text{P}) = 13.2$ Hz). ${}^{1}\text{H-NMR}$ (- °C, CD₂Cl₂, 500.13 MHz): $\delta = 0.03$ (s, $SiCH_3$, ${}^{1}J({}^{1}H-{}^{13}C) = 118$ Hz, ${}^{2}J({}^{1}H-{}^{29}Si) = 6.6$ Hz), 0.30 (s, $SiCH_3$, ${}^{1}J({}^{1}H-{}^{13}C) = 120$ Hz, ${}^{2}J({}^{1}\text{H}-{}^{29}\text{Si}) = 6.6 \text{ Hz}, 1.85 \text{ (d, PCH}_{3}, {}^{1}J({}^{1}\text{H}-{}^{13}\text{C}) = 130 \text{ Hz}, {}^{2}J({}^{1}\text{H}-{}^{31}\text{P}) = 13.5 \text{ Hz}.$ ¹³C{¹H}-NMR (25 °C, CD₂Cl₂, 75.47 MHz): $\delta = 0.63$ (s, SiCH₃, ¹J(¹³C-²⁹Si) = 60.1 Hz), 16.65 (d, PCH_{3} , ${}^{1}J({}^{13}C-{}^{31}P) = 69.1$ Hz). ²⁹Si INEPT-NMR (25 °C, $CD_{2}Cl_{2}$, 59.63 MHz): $\delta = 28.01$ (nicht aufgelöstes Signal). ³¹P-NMR (25 °C, CD₂Cl₂, 121.49 MHz) $\delta = 63.82$ (s, *P*CH₃). ¹⁷O-NMR (25 °C, CD₂Cl₂, 67.83 MHz): 169 (br, $v_{1/2} = 900$ Hz). IR (ATR, 16 Scans, 25 °C, cm⁻¹): 3004 (w), 2923 (w), 1421 (w), 1317 (w), 1299 (m), 1243 (m), 1139 (m), 1054 (m), 1002 (s), 958 (s), 914 (m), 867 (s), 769 (m), 671 (m), 640 (w), 617 (m), 599 (m), 586 (m), 570 (s). **Raman** (473 nm, 5 mW, 10 s, 30 Akk., 25 °C, cm⁻¹): 2981 (5), 2911 (10), 1419 (1), 1255 (1), 1053 (3), 857 (1), 776 (1), 702 (2), 642 (1), 619 (2), 523 (1), 376 (1), 266 (1), 246 (1), 195 (1). **MS** (CI^+ , m/z (%)): 93 (100) [Me₃POH]⁺, $165(1) [M]^+$.

5.4.18 Synthese und Charakterisierung von $[(Me_3SiO)_3SO][B(C_6F_5)_4]$ (21)

$$[(Me_3Si)_2H][B(C_6F_5)_4] + (Me_3SiO)_2SO_2 \longrightarrow [(Me_3SiO)_3SO][B(C_6F_5)_4] + Me_3SiH Toluol / Toluol-[D_8]$$

Trimethylsilylium-Trimethylsilan Tetrakis(pentafluorophenyl)borat $[(Me_3Si)_2H][B(C_6F_5)_4]$ (246 mg, 0.3 mmol) wird in 5 mL Toluol suspendiert. Die Lösung wird dreimal entgast. Bis(trimethylsilyl)sulfat (Me_3SiO)_2SO_2 (73 mg, 0.3 mmol) wird in 5 mL gelöst. Die Lösung wird über eine Spritze zur Borat-Lösung hinzugegeben. Die Reaktionslösung wird kurz auf 60 °C erwärmt, was zur Bildung des typischen zweiphasigen Systems führt. Die klare und farblose obere Toluol-Phase wird mit einer Spritze entfernt. Die viskose und ebenfalls farblose untere Phase wird in ein NMR-Rohr mit Toluol-[D₈] überführt.*

Verschiedene Kristallisationsversuche von $[(Me_3SiO)_3SO)][B(C_6F_5)_4]$ schlugen bei unterschiedlich gewählten Temperaturen (5 °C bzw. -20 °C) fehl. Auch die Zugabe unpolarer Lösungsmittel wie n-Hexan führte nicht zur Bildung eines festen Salzes. Versuche das komplette Lösungsmittel aus der unteren Phase zu entfernen schlugen ebenso fehl. Das Erwärmen der unteren Phase auf 60 °C im Vakuum führte zur Zersetzung des Produktes. Dies zeigte sich an der Bildung eines schwarzen unlöslichen Rückstandes.

¹**H-NMR** (25 °C, Toluol-[D₈], 300.13 MHz): $\delta = 0.08$ (s, SiCH₃, ¹J(¹H-¹³C) = 121.8 Hz, ²J(¹H-²⁹Si) = 6.7 Hz). ¹¹**B-NMR** (25 °C, Toluol-[D₈], 96.29 MHz): $\delta = -16.16$ (b, $B(C_6F_5)_4 \quad v_{1/2} = 20$ Hz). ¹³C{¹H}-**NMR** (25 °C, Toluol-[D₈], 75.48 MHz): $\delta = -1.10$ (s, SiCH₃, ¹J(¹³C-²⁹Si) = 59.9 Hz), *ipso-C* (nicht beobachtetes Signal), 137.12 (dm, *m-C*F, ¹J(¹³C-¹⁹F) = 246 Hz), 138.79 (dm, *p-C*F, ¹J(¹³C-¹⁹F) = 246 Hz), 149.25 (dm, *o-C*F, ¹J(¹³C-¹⁹F) = 241 Hz). ¹⁹F{¹H}-**NMR** (25 °C, Toluol-[D₈], 282.38 MHz): $\delta = -166.95$ (t, 6F, *m-CF*, ¹J(¹⁹F-¹³C) = 245 Hz, -163.18 (t, 3F, *p-CF*, ¹J(¹⁹F-¹³C) = 246 Hz), -131.88 (b, 6F, *o-CF*, ¹J(¹⁹F-¹³C) = 242 Hz). ¹⁷O-**NMR** (25 °C, Toluol-[D₈], 67.83 MHz): $\delta = 157.99$ (b, $OSiMe_3 = v_{1/2} = 900$ Hz). ²⁹Si INEPT-NMR (25 °C, Toluol-[D₈], 59.52 MHz) $\delta = 55.10$ (dec, $SiCH_3$, ²J(²⁹Si-¹H) = 6.7 Hz).

Trimethylsilylium-Trimethylsilan Tetrakis(pentafluorophenyl)borat $[(Me_3Si)_2H][B(C_6F_5)_4]$ (83 mg, 0.1 mmol) und Bis(trimethylsilyl)sulfat (Me_3SiO)_2SO_2 (23 mg, 0.1 mmol) werden in 0.5 mL 1,2-DCB* in einem Young-Hahn-NMR-Rohr suspendiert. Es wird ein weiteres kleineres NMR-Präzisionsrohr mit Toluol-[D₈] in das größere eingeführt.

*Die Bildung einer klareren bzw. homogeneren Lösung durch Erwärmen der Lösung auf 60 °C führt zur unweigerlichen Zersetzung des Produktes. Dies kann erneut an der Bildung eines schwarzen Niederschlages erkannt werden.

¹**H-NMR** (25 °C, 1,2-DCB, ext. ref. Toluol-[D₈], 300.13 MHz): δ – . 6 (– . (b v _{1/2} = 7 Hz), 0.18 (s, S(SiCH₃)₂, ¹J(¹H-¹³C) = 119.8 Hz), 6.73 (m, *o*-CH^[1,2-DCB]), 7.04 (m, *o*-CH^[1,2-DCB]). ¹¹**B-NMR** (25 °C, 1,2-DCB, 96.29 MHz): δ = -16.14 (b, B(C₆F₅)₄, v _{1/2} = 22 Hz). ¹³C{¹H}-NMR (25 °C, 1,2-DCB, ext. ref. Toluol-[D₈], 75.48 MHz): δ = -.7 (b v_{1/2} = 6 Hz), -0.71 (s, S(SiCH₃)₂, ¹J(¹³C-²⁹Si) = 60.4 Hz), -0.01 (s), 118.28 (b, *ipso*-C^F), 127.77 (s, *m*-CH^[1,2-DCB]), 130.54 (s, *o*-CH^[1,2-DCB]), 132.62 (s, *ipso*-C^{CI[1,2-DCB]}), 136.54 (dm, *m*-CF, ¹J(¹³C-¹⁹F) = 246 Hz), 138.65 (dm, *p*-CF, ¹J(¹³C-¹⁹F) = 245 Hz), 148.93 (dm, *o*-CF, ¹J(¹³C-¹⁹F) = 241 Hz). ¹⁷O-NMR (25 °C, 1,2-DCB, 67.83 MHz): δ = 158.52 (b, OSiMe₃). ¹⁹F{¹H}-NMR (25 °C, 1,2-DCB, 282.38 MHz): δ = -.166.45 (t, 6F, *m*-CF, ¹J(¹⁹F-¹³C) = 247 z -.16.67 (t F *p*-CF, ¹J(¹⁹F-¹³C) = 246 Hz), -.131.70 (b, 6F, *o*-CF, ¹J(¹⁹F-¹³C) = 243 Hz). ²⁹Si INEPT-NMR (25 °C, 1,2-DCB, 59.52 MHz) δ = 48.28 (dec, *Si*CH₃, ²J(²⁹Si-¹H) = 6.9 Hz).

5.4.19 Synthese und Charakterisierung von $[Me_3SiOPMe_3]_2[S_2O_7]$ (22)

$$2 \text{ OPMe}_3 + 2 (\text{Me}_3 \text{SiO})_2 \text{SO}_2 \longrightarrow [\text{Me}_3 \text{SiOPMe}_3]_2 [\text{S}_2 \text{O}_7] + (\text{Me}_3 \text{Si})_2 \text{O}_2 \text{Toluol}$$

C₁₂H₃₆O₉P₂S₂Si₂ (506.66 g/mol): **Smp**. 70 °C, >180 °C (dec.). **EA** ber. (gef.), %: C, 28.45 (26.40); H, 7.16 (7.03); S, 12.66 (12.92). ¹H NMR (25 °C, CD₂Cl₂, 300.13 MHz): $\delta = 0.05$ (s, SiCH₃, ¹J(¹H-¹³C) = 119 Hz, ²J(¹H-²⁹Si) = 6.9 Hz), 1.46 (d, PCH₃, ¹J(¹H-¹³C) = 128 Hz, ²J(¹H-³¹P) = 13.3 Hz). ¹³C{¹H} NMR (25 °C, CD₂Cl₂, 75.47 MHz): $\delta = 0.31$ (s, SiCH₃), 16.36 (d, PCH₃, ¹J(¹³C-³¹P) = 69 Hz). ²⁹Si INEPT NMR (25 °C, CD₂Cl₂, 59.63 MHz): $\delta = 22.54$ (*unresolved*). ³¹P NMR (25 °C, CD₂Cl₂, 121.49 MHz) $\delta = 54.64$ (s, PCH₃). IR (ATR, 16 Scans, 25 °C, cm⁻¹): 2998 (w), 2958 (w), 2917 (w), 1429 (w), 1342 (w), 1317 (m), 1301 (m), 1240 (s), 1135 (m), 1101 (m), 1056 (m), 1031 (m), 1002 (s), 960 (s), 914 (m), 842 (s), 761 (s), 748 (s), 727 (s), 671 (m), 640 (m), 621 (m), 599 (m), 586 (m), 565 (s). Raman (473 nm, 5 mW, 10 s, 30 Akk., 25 °C, cm⁻¹): 2997 (5), 2963 (3), 2920 (10), 1408 (1), 1077 (3), 775 (1), 726 (1), 701 (2), 671 (1), 639 (1), 622 (1), 512 (1), 309 (1), 245 (1), 219 (1), 200 (1).

5.4.20 Synthese und Charakterisierung von $(Me_3Si)_2S(21)$

$$S_{8} \xrightarrow[]{1) Li} S_{8} \xrightarrow[]{2) (CH_{3})_{3}SiCl} S(Si(CH_{3})_{3})_{2}$$

Fein gemörserter Schwefel S₈ (2 g, 62 mmol) werden in 40 mL THF suspendiert und auf 0 °C herunter gekühlt. Ebenso fein gepulvertes Lithium Li (0.9 g, 125 mmol) wird zu dieser Suspension hinzugefügt. Der Kolben wird mit einem Rückflußkühler mit Druckausgleichsventil und Tropftrichter versehen. Trimethylsilylchlorid Me₃SiCl (13.6 g, 125 mmol) wird tropfenweise, in einem Temperaturbereich zwischen 0 °C und 5 °C, über einen Zeitraum von 2.5 h, zur gerührten Suspension hinzugegeben. Die Reaktionslösung verfärbt sich währenddessen rötlich braun. Anschließend wird das THF durch thermische Destillation entfernt. Das Rohprodukt wird durch fraktionierte Destillation im Vakuum (47 mbar) bei einer Temperatur von 74 °C erhalten. Es werden 9.2 g (52 mmol, 83 %) farbloses Hexamethyldisilathian (Me₃Si)₂S erhalten.

C₆H₁₈SSi₂ (178.44 g/mol): **Sp**. 74 °C (47 mbar). ¹**H-NMR** (25 °C, CD₂Cl₂, 300.13 MHz): $\delta = 0.34$ (s, 18H, SiCH₃, ²J(¹H-²⁹Si) = 6.8 Hz, ¹J(¹H-¹³C) = 120.6 Hz). ¹**H-NMR** (25 °C, 1,2-DCB, ext. ref. Aceton-[D₆], 300.13 MHz): $\delta = 0.37$ (s, SiCH₃, ¹J(¹H-¹³C) = 120 Hz). ¹**H-NMR** (25 °C, THF-[D₈], 300.13 MHz): $\delta = 0.32$ (s, SiCH₃, ¹J(¹H-²⁹Si) = 6.9 Hz, ¹J(¹H-¹³C) = 120 Hz). ¹³C{¹H}-NMR (25 °C, CD₂Cl₂, 75.47 MHz): $\delta = 4.46$ (s, SiCH₃, ¹J(¹³C-²⁹Si) = 54 Hz). ¹³C{¹H}-NMR (25 °C, THF-[D₈], 75.47 MHz): $\delta = 4.44$ (s, SiCH₃, ¹J(¹³C-²⁹Si) = 54 Hz). ²⁹Si INEPT-NMR (25 °C, CD₂Cl₂, 59.62 MHz): $\delta = 14.61$ (dec, SiCH₃, ²J(²⁹Si-¹H) = 6.9 Hz). ²⁹Si INEPT-NMR (25 °C, THF-[D₈], 59.62 MHz): $\delta = 14.61$ (dec, SiCH₃, ²J(²⁹Si-¹H) = 6.9 Hz). ²⁹Si INEPT-NMR (25 °C, THF-[D₈], 59.62 MHz): $\delta = 14.61$ (dec, SiCH₃, ²J(²⁹Si-¹H) = 6.9 Hz). ²⁹Si INEPT-NMR (25 °C, THF-[D₈], 59.62 MHz): $\delta = 14.61$ (dec, SiCH₃, ²J(²⁹Si-¹H) = 6.9 Hz). ²⁹Si INEPT-NMR (25 °C, THF-[D₈], 59.62 MHz): $\delta = 14.61$ (dec, SiCH₃, ²J(²⁹Si-¹H) = 6.9 Hz). ²⁹Si INEPT-NMR (25 °C, THF-[D₈], 59.62 MHz): $\delta = 14.61$ (dec, SiCH₃, ²J(²⁹Si-¹H) = 6.9 Hz). ²⁹Si INEPT-NMR (25 °C, THF-[D₈], 59.62 MHz): $\delta = 14.61$ (dec, SiCH₃, ²J(²⁹Si-¹H) = 6.9 Hz). ²⁹Si INEPT-NMR (25 °C, THF-[D₈], 59.62 MHz): $\delta = 14.03$ (dec, SiCH₃, ¹J(¹H-²⁹Si) = 6.9 Hz) IR (ATR, 8 Scans, 25 °C, cm⁻¹): 2956 (w), 2898 (w), 1448 (w), 1403 (w), 1321 (w), 1247 (s), 1062 (w), 925 (w), 835 (s), 815 (s), 752 (m), 690 (m), 624 (s). Raman (632 nm, 12 mW, 20 s, 10 Akk., 25 °C, cm⁻¹): 2960 (3), 2899 (8), 1448 (1), 1411 (1), 1263 (1), 1250 (1), 863 (1), 844 (1), 754 (1), 693 (1), 638 (9), 487 (1), 438 (10), 240 (2), 220 (2), 181 (3), 164 (2). $K[OCMe_3] + 18-Krone-6 + S(SiMe_3)_2 \longrightarrow [K \cdot 18-Krone-6][SSiMe_3] + Me_3SiOCMe_3$ THF

18-Krone-6 (100 mg, 0.4 mmol) und Kalium *tert*-Butanolat K[OCMe₃] (42 mg, 0.4 mmol) werden in 5 mL THF gelöst. Zur klaren Reaktionslösung wird Hexamethyldisilathian (Me₃Si)₂S (68 mg, 0.4 mmol) mithilfe einer μ L-Spritze gegeben. Das Lösungsmittel wird soweit eingeengt, bis die Kristallisation einsetzt. Einkristalle für die Röntgenstrukturanalyse können aus einer warmen Lösung welche in einem Wasserbad langsam abkühlt erhalten werden. Die Kristalle werden dreimal mit jeweils einer kleinen Menge *n*-Pentan gewaschen. Die isolierten Kristalle werden im Hochvakuum bei 50 °C getrocknet. Es werden 130 mg (0.32 mmol, 80 %) farblose Kristalle von [K@18-r one–6 [SS e₃] erhalten.

C₁₅H₃₃KO₆SSi (408.67 g/mol): **Smp**. 215 °C. **EA** ber. (gef.), %: C, 44.08 (43.48); H, 8.14 (7.53); S, 7.85 (7.43). ¹H-NMR (25°C, [D₈]-THF, 300.13 MHz): $\delta = 0.02$ (s, 9H, SiCH₃, ¹J(¹H-¹³C) = 116.4 Hz, ²J(¹H-²⁹Si) = 6.4 Hz), 3.65 (s, 24H, CH₂^[18-Krone-6], ¹J(¹H-¹³C) = 141.2 Hz). ¹³C{¹H}-NMR (25°C, THF-[D₈], 75.47 MHz): $\delta = 9.39$ (s, SiCH₃), 71.01 (s, CH₂^[18-Krone-6]). ²⁹Si INEPT-NMR (25°C, THF-[D₈], 59.63 MHz): $\delta = -0.86$ (dec, *Si*CH₃). IR (ATR, 16 Scans, 25°C, cm⁻¹): 2937 (w), 2894 (w), 2871 (w), 2823 (w), 1631 (w), 1475 (w), 1457 (w), 1436 (w), 1365 (w), 1348 (m), 1303 (w), 1282 (w), 1236 (m), 1228 (m), 1137 (m), 1097 (s), 983 (w), 962 (s), 873 (w), 837 (m), 815 (s), 738 (m), 661 (m), 640 (s), 590 (w), 528 (m). **Raman** (473 nm, 5 mW, 20 s, 10 Akk., 25°C, cm⁻¹): 2960 (9), 2943 (9), 2900 (9), 2877 (10), 2809 (2), 2722 (1), 1472 (3), 1449 (1), 1408 (1), 1364 (1), 1270 (3), 1234 (2), 1134 (1), 1108 (1), 1079 (2), 1029 (1), 912 (3), 870 (3), 829 (2), 806 (1), 746 (1), 659 (1), 642 (1), 548 (1), 508 (7), 363 (1), 306 (1), 278 (1), 242 (1), 197 (2). **ESI**⁺ (M_{ber.}, (M_{gef.})): 302.12045 (303.12059) [K@18- r one-6⁺. **ESI**⁻ (M_{ber.}, (M_{gef.})): 105.01997 (105.02049) [Me₃SiS]⁻.

5.4.22 Synthese und Charakterisierung von $[(Me_3SiO)_3SO][B(C_6F_5)_4]$ (25)

$$[(Me_3Si)_2H][B(C_6F_5)_4] + S(SiMe_3)_2 \longrightarrow [(Me_3Si)_3S][B(C_6F_5)_4] + Me_3SiH$$

Toluol
-80°C \rightarrow Rt

Trimethylsilylium-Trimethylsilan Tetrakis(pentafluorophenyl)borat $[(Me_3Si)_2H][B(C_6F_5)_4]$ (659 mg, 0.8 mmol) wird in 0.6 mL Toluol suspendiert. Die Lösung wird dreimal entgast. Hexamethyldisilathian $(Me_3Si)_2S$ (142 mg, 0.8 mmol) wird bei einer Temperatur von -80 °C zu dieser Suspension hinzugegeben. Nachdem die Lösung auf Raumtemperatur erwärmt wurde, entsteht das typische zweiphasige System, welches im Vakuum eingeengt wird. Kristalle für die Einkristallstrukturanalyse können aus dieser Lösung über Nacht gewonnen werden. Der Überstand wird mittels Spritze entfernt und die farblosen Kristalle werden mit ein Wenig kaltem Toluol gewaschen. Anschließend wird das Produkt im Vakuum bei 50 °C getrocknet. Es werden 340 mg (0.37 mmol, 46 %) von Tris(trimethylsilyl)sulfonium Tetrakis(pentafluorophenyl)borat [(Me_3Si)_3S][B(C_6F_5)_4] erhalten.

C₃₃H₂₇BF₂₀SSi₃ (930.67 g/mol): **Smp**. 158 °C (dec.). **EA** ber. (gef.), %: C, 42.59 (42.24); H, 2.92 (2.18). ¹**H**-**NMR** (25 °C, 1,2-DCB, ext. ref. Aceton-[D₆], 300.13 MHz): δ −1. (s, 27H, SiCH₃, ²J(¹H-²⁹Si) = 6.5, ¹J(¹H-¹³C) = 123 Hz), 5.52 (m, 2H, *o*-CH), 5.78 (m, 2H, *m*-CH). ¹**H NMR** (25 °C, Toluol, ext. ref. CD₂Cl₂, 300.13 MHz): δ = 0.01 (s, 27H, SiCH₃, ¹J(¹H-¹³C) = 123.1 Hz), 1.97 (s, 3H, CH₃, ¹J(¹H-¹³C) = 126.3 Hz), 6.73-6.93 (m, 5H, CH-Ph). ¹¹**B**-**NMR** (25 °C, 1,2-DCB, 96.29 Hz): δ −17.57 (s, *B*(C₆F₅)₄ *v*_{1/2} = 23 Hz). ¹¹**B**-**NMR** (25 °C, Toluol, 96.29 Hz): δ −16.41 (*B*(C₆F₅)₄ *v*_{1/2} = 25 Hz). ¹³C{¹H}-**NMR** (25 °C, 1,2-DCB, ext. ref. Aceton-[D₆], 75.47 MHz): δ = −2.09 (s, SiCH₃), 124.16 (b, *ipso*-C^F), 127.09 (s, *m*-CH), 129.82 (s, *o*-CH), 131.88 (s, *ipso*-C^C), 135.88 (dm, *m*-CF, ¹J(¹³C-¹⁹F) = 245 Hz), 137.84 (dm, *p*-CF, ¹J(¹³C-¹⁹F) = 245 Hz), 148.18 (dm, *o*-CF, ¹J(¹³C-¹⁹F) = 258 Hz). ¹³C{¹H}-**NMR** (25 °C, Toluol, ext. ref. CD₂Cl₂, 75.47 MHz): δ = 2.02 (s, SiCH₃, ¹J(¹³C-²⁹Si) = 58 Hz), 20.99 (s, CH₃), 125.13 (b, *ipso*-C^F), 125.53 (s, *p*-CH), 128.48 (s, *m*-CH), 129.29 (s, *o*-CH), 136.85 (dm, *m*-CF, ¹J(¹³C-¹⁹F) = 245 Hz), 148.97 (dm, *o*-CF, ¹J(¹³C-¹⁹F) = 241 Hz). ¹⁹F{¹H}-**NMR** (25 °C, 1,2-DCB, 282.38 MHz): δ = -167.38 (t, *m*-CF, ¹*J*(¹⁹F-¹³C 45 z -16.6 (t *p*-CF, ¹*J*(¹⁹F-¹³C) = 245 Hz), -132.99 (d, *o*-CF, ¹*J*(¹⁹F-¹³C) = 258 Hz). ¹⁹F{¹H}-NMR (25 °C, Toluol, 282.38 MHz): δ -167.7 (t *m*-CF, ¹*J*(¹⁹F-¹³C) 45 z -16.5 (t *p*-CF, ¹*J*(¹⁹F-¹³C) = 246 Hz), -132.08 (d, *o*-CF, ¹*J*(¹⁹F-¹³C) = 245 Hz). ²⁹Si-INEPT NMR (25 °C, 1,2-DCB, 59.63 MHz): δ = 38.14 (dec, *Si*CH₃, ²*J*(²⁹Si-¹H) = 6.5 Hz). ²⁹Si{¹H}-NMR (25 °C, Toluol, 59.63 MHz): δ = 39.29 (s, *Si*CH₃). **Raman** (764 nm, 33 mW, 80 s, 3 Akk., 7200 s Photobleach, 25 °C, cm⁻¹): 2972 (1), 2912 (2), 1644 (1), 1417 (1), 1375 (1), 1269 (1), 821 (2), 768 (1), 756 (1), 698 (1), 683 (1), 634 (7), 583 (10), 575 (2), 490 (5), 473 (4), 447 (5), 421 (4), 393 (4), 356 (2), 283 (1), 275 (1), 245 (2), 240 (2). **MS** (CI⁺, m/z (%)): 73 (1) [Me₃Si]⁺, 91 (3) [Me₃SiF - H]⁺, 149 (16) [Me₃SiSSiMe]⁺, 163 (100) [Me₃SiSSiMe₂]⁺, 221 (7) [(Me₃Si)₂SSiMe]⁺, 237 (15) [(Me₃Si)₂SSiMe₂]⁺, 512 (10) [B(C₆F₅)₃]⁺. **MS** (ESΓ, ber.. m/z, (gef. m/z)): [B(C₆F₅)₄]⁻ 678.97791 (678.98935). Sulfinylimid H-NSO wird wie in Kapitel 3.5 (S. ff. 37) beschrieben hergestellt. In ein Young-Hahn-NMR-Rohr wird zunächst Toluol- $[D_8]$ vorgelegt und entgast. Das bei der Synthese entstehende Sulfinylimid-G wrd drekt be -1.6 °C in ein Young-Hahn-NMR-Rohr kondensiert.

HNOS (63.08 g/mol): ¹H-NMR (-70 °C, Toluol-[D₈], 500.13 MHz): δ .54 ($v_{1/2} = 13 \text{ Hz}$) ¹H-NMR (25 °C, Toluol-[D₈], 500.13 MHz): $\delta = 9.86$ (t, ¹J(¹H-¹⁴N) = 65 Hz). ¹⁴N{¹H}-NMR (-70 °C, Toluol-[D₈], 36.13 MHz): $\delta = -7$. ($v_{1/2} = 130 \text{ Hz}$). ¹⁴N{¹H}-NMR (25 °C, Toluol-[D₈], 36.14 MHz): $\delta = -7$. ($v_{1/2} = 390 \text{ Hz}$).

5.4.24 Synthese und Charakterisierung von K[NSO] (27)

$$\begin{array}{rrrr} \mbox{K[OCMe_3] + Me_3SiNSO} & \longrightarrow & \mbox{K[NSO] + Me_3SiOCMe_3} \\ & \mbox{THF, Rückfluß} \end{array}$$

Zu einer gerührten Lösung von 1.5 g Kalium *tert*-Butanolat K[OCMe₃] in 20 mL THF werden über einen Zeitraum von 15 Minuten 1.81 g *N*-Trimethylsilylsulfinylimin Me₃SiNSO (13.4 mmol, ~1.8 mL) hinzu getropft. Die Lösung wird für 2 h unter Rückfluß erhitzt. Nachdem die Reaktionslösung über Nacht gerührt wird die gelbe Lösung abfiltriert. Der verbleibende Niederschlag wird zweimal mit 5 mL THF gewaschen. Der Rückstand wird im Vakuum bei 60 °C getrocknet. Es werden 313 mg beiges mikrokristallines Kalium Thiazat (3.1 mmol, 23 %) erhalten.

KNOS (101.17 g/mol): **Smp**. 197 °C. **EA** ber. (gef.), %: N, 13.84 (13.23); S, 31.69 (32.49). ¹**H**-NMR (25 °C, Toluol-[D₈], 300.13 MHz): $\delta = 3.47$ (br, $CH_2^{[18-Krone-6]}$, $v_{1/2} = 28$ Hz). ¹**H**-NMR (25 °C, THF-[D₈], 500.13 MHz): $\delta = 3.58$ (b, $CH_2^{[18-Krone-6]}$, (*Überlappung mit dem Lösungsmittelsignal*). ¹³C{¹**H**} **NMR** (25 °C, Toluol-[D₈], 75.47 MHz): $\delta = 71.1$ (s, $CH_2^{[18-Krone-6]}$). ¹³C{¹**H**} **NMR** (25 °C, THF-[D₈], 125.77 MHz): $\delta = 71.3$ (s, $CH_2^{[18-Krone-6]}$). ¹⁴N{¹**H**}-NMR (25 °C, THF-[D₈], 36.13 MHz): $\delta = 140$ (br, $v_{1/2} = 1050$ Hz). ¹⁷O-NMR (25 °C, Toluol-[D₈], 67.83 MHz): $\delta = 1.49$ (b, $OCH_2^{[18-Krone-6]}$, $v_{1/2} = 1150$ Hz), (NSO nicht beobachtet). **IR** (ATR, 8 Scans, 25 °C, cm⁻¹): 1268 (m), 983 (s). **Raman** (632 nm, 3 mW, 15 s, 10 Akk., 25 °C, cm⁻¹, 180 s Photobleach): 1267 (7), 986 (10), 513 (3).

In einem weiteren NMR-Experiment werden äquimolare Mengen an Kalium Thiazat K[NSO], Tris(pentafluorophenyl)boran $B(C_6F_5)_3$ und 18-Krone-6 zusammen in eine Toluol-[D₈]-Lösung eingewogen.

¹**H-NMR** (25 °C, Toluol-[D₈], 300.13 MHz): $\delta = 3.11$ (s, 16H, $CH_2^{[18\text{-Krone-6}]}$, ¹ $J(^1\text{H-}^{13}\text{C}) = 140$ Hz). ¹¹**B-NMR** (25 °C, Toluol-[D₈], 96.29 MHz): $\delta = -10.2$ (br, X-B(C₆F₅)₃ $v_{1/2} = -10.2$ (br, X-B(C₆F₅

80 Hz). ¹³C{¹H}-NMR (25 °C, Toluol-[D₈], 75.47 MHz): $\delta = 70.1$ (s, $CH_2^{[18-Krone-6]}$), 123.7 (br, *ipso-C*^[X-B(C_6^{-}F_3)]), 137.3 (dm, *m*- $CF^{[X-B(C_6^{-}F_3)]}$, ¹J(¹³C-¹⁹F) = 247 Hz), 139.0 (dm, *p*- $CF^{[X-B(C_6^{-}F_3)]}$, ¹J(¹³C-¹⁹F) = 246 Hz), 149.0 (dm, *o*- $CF^{[X-B(C_6^{-}F_3)]}$, ¹J(¹³C-¹⁹F) = 244 Hz). ¹⁹F{¹H}-NMR (25 °C, Toluol-[D₈], 282.38 MHz): $\delta = -166.5$ (m, 6F, *m*- $CF^{[X-B(C_6^{-}F_3)]}$), -162.2 (t, 3F, *p*- $CF^{[X-B(C_6^{-}F_3)]}$), -132.6 (d, 6F, *o*- $CF^{[X-B(C_6^{-}F_3)]}$).

Das Tris(pentafluorophenyl)boran $B(C_6F_5)_3$ wird vermutlich über den Stickstoff des Thiazat-Ions koordinieren (s. Supporting Referenz [181,182]).

5.4.25 Synthese und Charakterisierung von $(F_5C_6)_3BN(H)SO(28)$

$$K[NSO] + CH_{3}(CH_{2})_{16}COOH \longrightarrow HNSO + K[OOC(CH_{2})_{16}CH_{3}]$$

$$HNSO + B(C_{6}F_{5})_{3} \longrightarrow (F_{5}C_{6})_{3}B \longrightarrow (F_{5}C$$

205 mg Tris(pentafluorophenyl)boran B(C₆F₅)₃ (0.4 mmol) werden in 10 mL CH₂Cl₂ gelöst und anschließend entgast. In einem zweiten Reaktionskolben werden 43 mg Kalium Thiazat K[NSO] (0.4 mmol) und 115 mg, Stearinsäure CH₃(CH₂)₁₆COOH (0.4 mmol) zusammen vorgelegt. Beide Reaktionsgefäße werden über eine Brücke verbunden und unter Hochvakuum gesetzt. Das Gemenge K[NSO] / CH₃(CH₂)₁₆COOH wird langsam in einem Ölbad auf 70 °C erhitzt. Insofern die Temperatur erreicht ist wird das rot-braune zähflüssige Gemisch bis auf 120 C erhitzt und für eine halbe Stunde bei dieser Temperatur gehalten. Das entstehende Gas wird kontinuierlich im zweiten Reaktionskolben mit dem Boran bei –196 °C ausgefroren. Die gelbliche Reaktionslösung wird langsam auf Raumtemperatur gebracht und für eine weitere Stunde gerührt. Nach der Filtration der Reaktionslösung wird das Lösungsmittel des Filtrats bis auf ~1 mL im Vakuum entfernt. Über Nacht können aus dieser Lösung Kristalle für die Einkristallstrukturanalyse im Kühlschrank (5 °C) gewonnen werden. Durch selektive Sortierung der Kristalle können so 35 mg *N*,*N*-Tris(pentafluorophenyl)borat Sulfinylamin-Addukt (F₅C₆)₃BN(H)SO (0.06 mmol, 15%) erhalten werden.

C₁₈HBF₁₅NOS (575.06 g/mol). **Smp.** 111 °C (Zer.) ¹H-NMR (30 °C, Toluol-[D₈], 500.13 MHz): $\delta = 10.44$ (b), 10.57 (b, *partielle Überlappung beider Signale*). ¹H-NMR (-30 °C, Toluol-[D₈], 500.13 MHz): δ . (b v_{1/2} = 30 z 1.1 (br v_{1/2} = 25 Hz). ¹¹B-NMR (30 °C, Toluol-[D₈], 96.29 MHz)*: $\delta = 56.9$ (b, $B(C_6F_5)_3$ v_{1/2} = 1500 Hz), -10.1 (b, $XB(C_6F_5)_3$ v_{1/2} = 120 Hz). ¹³C{¹H}-NMR (30 °C, Toluol-[D₈], 75.47 MHz): $\delta = 115.1$ (br, *ipso-C*₆F₅), 137.7 (dm, *m-C*F, ¹*J*(¹³C-¹⁹F) = 250 Hz), 141.1 (dm, *p-C*F, ¹*J*(¹³C-¹⁹F) = 250 Hz), 148.3 (dm, *o-C*F, ¹*J*(¹³C-¹⁹F) = 240 Hz). ¹⁹F{¹H}-NMR (30 °C, Toluol-[D₈], 282.38 MHz): δ -16 . (br 6F *m-CF*, B(C₆F₅)₃, v_{1/2} = 85 Hz), -143.1 (b, 3F, *p-CF*, B(C₆F₅)₃ v_{1/2} 65 z -1 . (m 6F *o-CF*, B(C₆F₅)₃ v_{1/2} = 115 Hz). ¹H, ¹⁵N HMBC-NMR (-30 °C, Toluol-[D₈], 50.69 MHz) δ = -95.1 (br, ¹*J*(¹⁵N-1 75 z -1 6. (b ¹*J*(¹⁵N-¹H) = 70 Hz). Raman (785 nm, 65 mW, 30 s, 100 Akk., 25 °C, cm⁻¹): 3407-3201 (1), 1653 (1), 1382 (1), 1362 (1), 1309 (1), 1236 (1), 982 (1), 892 (1), 855 (1), 807 (10), 772 (2), 746 (7), 637 (1), 584 (1), 575 (1), 536 (1), 498 (1), 467 (1), 446 (1), 393 (1), 355 (2), 335 (5), 307 (7), 262 (1), 209 (1).

* Für Gasphasen-NMR-Berechnungen siehe Supporting Referenz [181,182].

$$N(SiMe_3)_3 + SOCl_2 \longrightarrow Me_3SiNSO + 2 Me_3SiCl_CH_2Cl_2, Rt$$

37.21 g Tris(trimethylsilyl)amin (Me₃Si)₃N (0.16 mol) werden in 40 mL CH₂Cl₂ gelöst. Zu dieser gerührten Lösung werden tropfenweise 20 g Sulfinychlorid SOCl₂ (0.17 mmol) hinzugefügt. Die Reaktionslösung erwärmt sich dabei ein Wenig. Die orange Lösung wird über Nacht nachegrührt. Anschließend wird mithilfe einer Vigreux-Kolonne (12 cm) fraktioniert destilliert. Das Rohprodukt hat dabei einen Siedepunkt von 95 °C. Dieses wird ein weiteres Mal bei 105-107 °C destilliert. Anschließend wird noch zwei weitere Mal das Rohprodukt im Vakuum bei -50 °C umkondensiert. Es werden 14.25 g farbloses (0.11 mol, 66 %) *N*-Trimethylsilylsulfinylimin Me₃SiNSO erhalten.

C₃H₉NOSSi (135.26 g/mol): Smp. erstarrt nicht oberhalb von -80 °C. Sp. 105-107 °C. EA ber. (gef.), %: C, 26.64 (26.58); H, 6.71 (6.72); N, 10.36 (10.25). ¹H-NMR (25 °C, CD₂Cl₂, 300.13 MHz): $\delta = 0.35$ (s, 9H, SiCH₃, ${}^{1}J({}^{1}H-{}^{13}C) = 120$ Hz, ${}^{2}J({}^{1}H-{}^{29}Si) = 7.1$ Hz). ¹**H-NMR** (25 °C, Toluol-[D₈], 300.13 MHz): $\delta = 0.13$ (s, 9H, SiCH₃, ¹J(¹H-¹³C) = 120 Hz, ${}^{2}J({}^{1}\text{H}-{}^{29}\text{Si}) = 7.1$ Hz). ¹H-NMR (25 °C, 1,2-DCB, ext. ref. Toluol-[D₈], 300.13 MHz): $\delta = 0.16$ (s, 9H, SiCH₃, ¹J(¹H-¹³C) = 119 Hz), 6.80 (m, m-CH^[1,2-DCB]), 7.09 (m, o- $CH^{[1,2-DCB]}$). ¹³C{¹H}-NMR (25 °C, CD₂Cl₂, 75.47 MHz): $\delta = 1.0$ (s, SiCH₃, ¹J(¹³C-²⁹Si) = 58 Hz). ¹³C{¹H}-NMR (25 °C, Toluol-[D₈], 75.47 MHz): $\delta = 0.4$ (s, SiCH₃, ¹J(¹³C-²⁹Si) = 58 Hz). ¹³C{¹H}-NMR (25 °C, 1,2-DCB, ext. ref. Toluol-[D₈], 75.47 MHz): δ = 0.5 (s, $SiCH_3$, ${}^{1}J({}^{13}C-{}^{29}Si) = 58$ Hz), 127.8 (s, *m*-CH^[1,2DCB]), 130.5 (s, *o*-CH^[1,2-DCB]), 132.6 (s, *ipso-C*^{Cl[1,2-DCB]}). ¹⁴N{¹H}-NMR (25 °C, CD₂Cl₂, 36.13 MHz): $\delta = -44$ ($v_{1/2} = 60$ Hz). ¹⁷O-NMR (25 °C, Toluol-[D₈], 67.83 MHz): $\delta = 476$ ($v_{1/2} = 40$ Hz). ²⁹Si INEPT-NMR (25 °C, CD₂Cl₂, 59.62 MHz): $\delta = 7.2$ (dec, SiCH₃, ²J(²⁹Si-¹H) = 7.1 Hz). ²⁹Si INEPT-**NMR** (25 °C, Toluol-[D₈], 59.62 MHz): $\delta = 5.9$ (dec, SiCH₃, ²J(²⁹Si-¹H) = 7.1 Hz). ²⁹Si **INEPT-NMR** (25 °C, 1,2-DCB, ref. ext. Toluol-[D₈], 59.62 MHz): $\delta = 6.2$ (dec, SiCH₃, ${}^{2}J({}^{29}\text{Si}^{-1}\text{H}) = 7.0 \text{ Hz}$). IR (ATR, 8 Scans, 25 °C, cm⁻¹): 3145 (w), 3052 (w), 2964 (w), 2902 (w), 1411 (w), 1290 (s), 1251 (s), 1124 (m), 838 (s), 761 (s), 700 (w), 642 (m), 568

(m). **Raman** (785 nm, 65 mW, 60 s, 6 Akk., 25 °C, cm⁻¹): 2971 (1), 2908 (6), 2790 (1), 1421 (1), 1304 (1), 1267 (1), 1132 (10), 856 (1), 769 (1), 708 (1), 650 (5), 621 (1), 581 (2), 518 (1), 500 (1), 366 (1), 239 (2), 195 (3), 158 (2), 100 (5), 96 (5), 83 (6). **MS** (CI⁺, m/z (%)): 63 (37) [HNSO]⁺, 69 (100), 73 (5) [SiMe₃]⁺, 91 (35) [HSiNSO]⁺, 135 (11) [Me₃SiNSO]⁺, 136 (13) [Me₃SiNSO-H]⁺.

5.4.27 Synthese und Charakterisierung von $Me_3SiOSNB(C_6F_5)_3$ (30)

Zu einer gerührten Lösung aus 102 mg Tris(pentafluorophenyl)boran B(C₆F₅)₃ (0.2 mmol) in 2 mL CH₂Cl₂ werden 27 mg *N*-Trimethylsilylsulfinylimin Me₃SiNSO (0.2 mmol, ~27 μ L) mithilfe einer μ L-Spritze gegeben. Dies führt zu einer sofortigen Farbveränderung der Reaktionslösung zu gelb. Über Nacht können aus dieser Lösung Kristalle für die Einkristallstrukturanalyse im Kühlschrank (5 °C) gewonnen werden. Der Überstand wird mit einer Spritze entnommen und die Kristalle werden mit ein wenig kaltem *n*-Hexan gewaschen. Die Kristalle werden im Hochvakuum bei 40 °C getrocknet. Es werden 35 mg farbloses (0.05 mmol, 79 %) *N*-Tris(pentafluorophenyl)borat-Sulfinylimin-*O*-Trimethylsilylether Me₃SiOSNB(C₆F₅)₃ erhalten.

C₂₁H₉BF₁₅NOSSi (647.24 g/mol): Smp. 131 °C (Zer.). EA ber. (gef.), %: C, 38.97 (38.98); H, 1.40 (1.47); N, 2.16 (2.22). ¹H-NMR (25 °C, Toluol-[D₈], 300.13 MHz): $\delta =$ -0.31 (s, 9H, CH₃, ¹J(¹H-¹³C) = 121.3 Hz, ²J(¹H-²⁹Si) = 6.9 Hz. ¹¹B-NMR (25 °C, Toluol-[D₈], 96.29 MHz): $\delta = -6.5$ (b, NB(C₆F₅)₃ $v_{1/2} = 180$ Hz). ¹³C{¹H}-NMR (25 °C, Toluol-[D₈], 75.47 MHz): δ – .5 (S CH₃, ¹J(¹³C-²⁹Si) = 59 Hz). 117.9 (br, *ipso-* $C_{6}F_{5}$, 137.7 (dm, *m*-CF, ¹ $J(^{13}C^{-19}F) = 245$ Hz), 140.7 (dm, *p*-CF, ¹ $J(^{13}C^{-19}F) = 231$ Hz), 148.6 (dm, *o*-*C*F, ${}^{1}J({}^{13}C-{}^{19}F) = 245 \text{ Hz}$). ${}^{19}F\{{}^{1}H\}-NMR$ (25 °C, Toluol-[D₈], 282.38 MHz): $\delta = -163.7$ (m, 6F, *m*-CF, ${}^{1}J({}^{19}F-{}^{13}C) = 245$ Hz, ${}^{3}J({}^{19}F-{}^{19}F) = 23$ Hz), -157.0 (t, 3F, p-CF, ${}^{1}J({}^{19}F-{}^{13}C) = 245$ Hz, ${}^{3}J({}^{19}F-{}^{19}F) = 23$ Hz), -133.0 (d, 6F, o-CF, ${}^{1}J({}^{19}F^{-13}C) = 241 \text{ Hz}, {}^{3}J({}^{19}F^{-19}F) = 23 \text{ Hz}). {}^{29}Si \text{ INEPT-NMR} (25 °C, Toluol-[D_8],$ 59.62 MHz): $\delta = 42.2$ (dec, SiCH₃, ²J(²⁹Si-¹H) = 6.9 Hz). IR (ATR, 8 Scans, 25 °C, cm⁻¹)*: 3367 (w), 3292 (w), 2960 (w), 2914 (w), 1646 (m), 1602 (w), 1517 (s), 1456 (s), 1394 (m), 1376 (m), 1338 (m), 1284 (m), 1263 (m), 1101 (s), 1022 (m), 966 (s), 919 (m), 891 (m), 848 (s), 823 (m), 784 (m), 771(m), 738 (m), 730 (m), 682 (m), 655 (m), 619 (m), 611 (m), 576 (m). Raman (632 nm, 6 mW, 20 s, 10 Akk., 25 °C, cm⁻¹): 2979 (1), 2970 (1), 2910 (3), 2538 (1), 1645 (3), 1518 (1), 1472 (1), 1415 (1), 1386 (4), 1376 (2), 1369 (2), 1338 (5), 1306 (1), 1285 (2), 1100 (1), 1090 (1), 979 (1), 957 (3), 938 (6), 929 (4),

875 (1), 864 (1), 825 (2), 790 (1), 769 (1), 764 (1), 746 (1), 735 (1), 727 (1), 700 (1), 675 (2), 646 (2), 630 (1), 621 (2), 607 (1), 596 (4), 580 (10), 574 (4), 490 (9), 484 (5), 445 (5), 426 (7), 392 (6), 377 (1), 366 (1), 354 (1), 344 (1), 338 (1), 215 (1), 283 (1), 275 (1), 262 (2), 235 (1), 227 (1), 200 (1), 178 (1), 154 (3), 141 (1), 128 (1), 122 (1). **MS** (CI^+ , m/z (%)): 136 (1) [Me₃SiNSOH]⁺, 512 (100) [B(C₆F₅)₃]⁺, 647 (1) [Me₃Si-OSN-B(C₆F₅)₃]⁺.

* Rasch einsetzende Hydrolyse während des Messens. Ebenso sorgen längeres
Stehenlassen bei Rautemperatur und Luftfeuchtigkeit für eine schnelle Zersetzung von
30.

5.4.28 Synthese und Charakterisierung von Cl₃GaN(H)SO (32)

KNSO +
$$CH_3(CH_2)_{16}COOH$$

pur, Δ
HNSO + $GaCl_3$
Toluol, -196°C \rightarrow Rt
H

70 mg Gallium(III)chlorid GaCl₃ (0.4 mmol) werden in 10 mL CH₂Cl₂ gelöst und anschließend entgast. In einem zweiten Reaktionskolben werden 80 mg Kalium Thiazat K[NSO] (0.8 mmol) und 228 mg, Stearinsäure CH₃(CH₂)₁₆COOH (0.8 mmol) zusammen vorgelegt. Beide Reaktionsgefäße werden über eine Brücke verbunden und unter Hochvakuum gesetzt. Das Gemenge K[NSO] / CH₃(CH₂)₁₆COOH wird langsam in einem Ölbad auf 70 °C erhitzt. Insofern die Temperatur erreicht ist wird das rot-braune zähflüssige Gemisch bis auf 120 C erhitzt und für eine halbe Stunde bei dieser Temperatur gehalten. Das entstehende Gas wird kontinuierlich im zweiten Re kt on ko ben m t dem Bor n be -1.6 °C ausgefroren. Nach der Filtration der Reaktionslösung wird das Lösungsmittel des Filtrats bis auf ~2 mL im Vakuum entfernt. Der Versuch Kristalle für die Einkristallstrukturanalyse zu gewinnen scheiterte. Auch ein zweiter Reaktionsansatz mit dem Wechsel des Lösungsmittels auf Toluol brachte kein Erfolg. Das Lösungsmittel wird im Hochvakuum entfernt und das mikrokristalline Rohprodukt für weite 15 Minuten getrocknet. Ein NMR-Spektrum von dem Rohprodukt wird angefertigt.

HCl₃GaNOS (239.16 g/mol): ¹H-NMR (25°C, Toluol-[D₈], 300.13 MHz): $\delta = 8.32$ (b, $v_{1/2} = 50$ Hz). ¹⁴N{¹H}-NMR (25 °C, Toluol-[D₈], 36.13 MHz): $\delta = -11$. ($v_{1/2} = 330$ Hz).

Zu einer kalten ($-80 \,^{\circ}$ C) gerührten Lösung aus 53 mg Gallium(III)chlorid GaCl₃ (0.3 mmol) in 4 mL CH₂Cl₂ werden 41 mg *N*-Trimethylsilylsulfinylimin Me₃SiNSO (0.3 mmol) gegeben. Die Reaktionslösung wird für weitere 30 Minuten bei dieser Temperatur gerührt und anschließend wird das Lösungsmittel im Vakuum bis auf ~2 mL entfernt. Über Nacht können aus dieser Lösung Kristalle für die Einkristallstrukturanalyse im Tiefkühlschrank ($-80 \,^{\circ}$ C) gewonnen werden. Der Überstand wird mit einer Spritze entnommen und die Kristalle werden mit ein wenig kaltem *n*-Hexan gewaschen. Es werden 43 mg farbloses *N*,*N*-(Trimethylsilyl-Trichlorogallat-Sulfinylamin Me₃SiN(GaCl₃)SO (0.14 mmol, 23 %) erhalten. Das Produkt sollte unter Argon bei einer Temper tur von wen ger $-4 \,^{\circ}$ C gelagert werden.

C₃H₉Cl₃GaNOSSi (311.34 g/mol): **Smp**. 50 °C (Zer.). **EA** ber. (gef.)*, %: C, 11.57 (9.40); H, 2.91 (2.45), N 4.50 (4.45), S 10.30 (7.11). ¹H-NMR (25 °C, CD₂Cl₂, 300.13 MHz): $\delta = 0.59$ (s, 9H, CH₃, ¹J(¹H-¹³C) = 122 Hz, ²J(¹H-²⁹Si) = 7.1 Hz). ¹³C{¹H}-NMR (25 °C, CD₂Cl₂, 75.47 MHz): $\delta = 0.7$ (s, CH₃, ¹J(¹³C-²⁹Si) = 58.5 Hz). ¹⁴N{¹H}-NMR (25 °C, CD₂Cl₂, 36.13 MHz): $\delta = -$. ($v_{1/2} = 356$ Hz). ²⁹Si-INEPT (25 °C, CD₂Cl₂, 59.62 MHz): $\delta = 26.0$ (NS*i*CH₃). IR (ATR, 8 Scans, 25 °C, cm⁻¹)*: 3238 (m), 2958 (w), 2904 (w), 1606 (w), 1409 (s), 1328 (m), 1257 (m), 1241 (s), 1145 (w), 1058 (m), 950 (m), 904 (m), 838 (s), 767 (s), 721 (s), 632 (m), 570 (m). Raman (473 nm, 3 mW, 20 s, 10 Akk., 600 s Photobleach, 25 °C, cm⁻¹): 2991 (3), 2967 (4), 2906 (7), 1418 (1), 1255 (1), 1240 (2), 1055 (10), 862 (1), 773 (1), 718 (1), 633 (4), 436 (1), 393 (3), 353 (9), 255 (3), 230 (3), 187 (4), 162 (4). MS (CI⁺, m/z (%)): 91 (46) [Me₃SiOH₂]⁺, 311 (3) [Me₃Si(Cl₃Ga)NSO]⁺.

* Für Me₃SiN(GaCl₃)SO berechnet. Trotz größter Sorgfalt und einem schnellen Messprozess werden die die Proben rasch durch einsetzende Hydrolyseprozesse zersetzt.
Ebenso sorgen längeres Stehenlassen bei Rautemperatur und der Einfluß von Luftfeuchtigkeit für eine schnelle Zersetzung von 31. 5.4.30 Synthese und Charakterisierung von (Me₃SiO)₃PO (33)

$$\mathsf{KH}_2\mathsf{PO}_4 + 3 \operatorname{Me}_3\mathsf{SiCl} \longrightarrow (\operatorname{Me}_3\mathsf{SiO})_3\mathsf{PO} + \mathsf{KCl} + 2 \operatorname{HCl}$$

n-Hexan, Rückfluß

* In einem 250 ml Dreihalskolben mit Tropftrichter, Rückflußkühler und Druckausgleichsventil werden 9 g (66 mmol) Kalium Dihydrogenphosphat KH₂PO₄ in 100 mL *n*-Hexan suspendiert. Zur gerührten Reaktionslösung werden 43 g (396 mmol) Trimethylsilylchlorid Me₃SiCl innerhalb einer halben Stunde hinzu getropft. Die Reaktionslösung wird 9 h unter Rückfluß erhitzt. Entstehender Chlorwasserstoff wird durch eine NaOH-Lösung hindurch geleitet und neutralisiert. Die Reaktionslösung wird filtriert und das Lösungsmittel thermisch abdestilliert. Anschließend wird das Rohprodukt im Hochvakuum bei 70 °C noch einmal umkondensiert. Es entstehen 19.9 g (63 mmol, 96 %) einer farblosen Flüssigkeit Tris(trimethylsilyl)phosphat (Me₃SiO)₃PO.

*Nach einer optimierten Synthesevorschrift von [195].

C₉H₂₇O₄PSi₃ (314.54 g/mol): ¹**H-NMR** (25 °C, CD₂Cl₂, 300.13 MHz): $\delta = 0.20$ (s, ¹*J*(¹H-¹³C) = 119 Hz, ²*J*(¹H-²⁹Si) = 7.0 Hz). ¹**H-NMR** (25 °C, DMSO-[D₆], 300.13 MHz): $\delta = 0.22$ (s, ¹*J*(¹H-¹³C) = 119 Hz, ²*J*(¹H-²⁹Si) = 7.3 Hz). ¹³C{¹H}-NMR (25 °C, CD₂Cl₂, 75.47 MHz): $\delta = 0.93$ (d, ¹*J*(¹³C-²⁹Si) = 60.4 Hz, ²*J*(¹³C-³¹P) = 1.5 Hz). ¹³C{¹H}-NMR (25 °C, DMSO-[D₆], 75.47 MHz): $\delta = 0.24$ (d, ¹*J*(¹³C-²⁹Si) = 60.2 Hz). ¹⁷O-NMR (25 °C, CD₂Cl₂, 67.80 MHz): $\delta = 83.1$ (POSi, $v_{1/2} = 315$ Hz), 105.32 (d, PO, ¹*J*(¹⁷O-³¹P) = 150 Hz, $v_{1/2} = 100$ Hz). ²⁹Si INEPT-NMR (25 °C, CD₂Cl₂, 59.63 MHz): $\delta = 20.39$ (m). ²⁹Si INEPT-NMR (25 °C, DMSO-[D₆], 59.63 MHz): $\delta = 20.40$ (m). ³¹P{¹H}-NMR (25 °C, CD₂Cl₂, 121.51 MHz): $\delta = -25.81$ (s). ³¹P{¹H}-NMR (25 °C, DMSO-[D₆], 121.51 MHz): $\delta = -25.78$ (s). IR (ATR, 8 Scans, 25 °C, cm⁻¹): 2962 (w), 2902 (w), 1457 (w), 1419 (w), 1276 (m), 1249 (s), 1004 (s), 835 (s), 757 (s), 696 (m)m 607 (m). Raman (633 nm, 5 mW, 10 s, 20 Akk., 25 °C, cm⁻¹): 3115 (1), 2967 (3), 2904 (10), 2493 (1), 1416 (1), 1279 (1), 1255 (1), 1075 (1), 850 (1), 762 (1), 697 (1), 652 (2), 615 (4), 592 (2), 452 (1), 349 (1), 259 (1), 245 (1), 216 (1), 186 (2), 170 (2).

5.4.31 Synthese und Charakterisierung von $[(Me_3SiO)_4P][B(C_6F_5)_4]$ (34)

$$[(Me_{3}Si)_{2}H][B(C_{6}F_{5})_{4}] + (Me_{3}SiO)_{3}PO \longrightarrow [(Me_{3}SiO)_{4}P][B(C_{6}F_{5})_{4}] + Me_{3}SiH Toluol$$

Trimethylsilylium-Trimethylsilan Tetrakis(pentafluorophenyl)borat $[(Me_3Si)_2H][B(C_6F_5)_4]$ (180 mg, 0.22 mmol) wird in 4 mL Toluol suspendiert. Die Lösung wird dreimal entgast. 69 mg Tristrimethylsilylphosphat OP(OSiMe_3)_3 (0.22 mmol) werden zur gerührten Suspension mithilfe einer µL-Spritze gegeben. Die Lösung wird eine Stunde in ein Ultraschallbad gegeben, um eine klare Lösung zu erhalten. Einkristalle für die Röntgenstrukturanalyse können über Nacht durch Lagern der Lösung bei -20 °C gewonnen werden. Der Überstand wird mit einer Spritze entfernt und die farblosen Kristalle mit kaltem *n*-Pentan bei -40 °C gewaschen. Anschließend wird das Produkt bei -20 °C im Hochvakuum getrocknet. Es werden 185 mg (0.17 mmol, 83 %) Tetrakis(trimethylsiloxy)phosphonium Tetrakis(pentafluorophenyl)borat [(Me_3SiO)_4P][B(C_6F_5)_4]* erhalten.

* $[(Me_3SiO)_4P][B(C_6F_5)_4]$ sollte bei Temperaturen unterhalb von -40 °C unter einer Schutzgasatmosphäre gelagert werden, andernfalls setzt eine rasche Zersetzung der Probe ein.

C₃₆H₃₆BF₂₀O₄PSi (1066.76 g/mol): **Smp**. <76°C (Zer.). **EA** ber. (gef.), %: C, 40.53 (40.47); H, 3.40 (3.58). ¹**H-NMR** (25°C, CD₂Cl₂, 300.13 MHz): $\delta = 0.41$ (s, SiCH₃, ¹*J*(¹H-¹³C) = 120.5 Hz, ²*J*(¹H-²⁹Si) = 6.9 Hz). ¹¹**B-NMR** (25°C, CD₂Cl₂, 96.29 MHz): $\delta = -16.56$ (s). ¹³C{¹H}-**NMR** (25°C, CD₂Cl₂, 75.47 MHz): $\delta = 0.77$ (d, SiCH₃, ¹*J*(¹³C-²⁹Si) = 60.8 Hz, ³*J*(¹³C-³¹P) = 1.7 Hz), (*ipso*-C^F nicht beobachte), 136.81 (dm, *m*-C^F, ¹*J*(¹³C-¹⁹F) = 246 Hz), 138.59 (dm, *p*-C^F, ¹*J*(¹³C-¹⁹F) = 243 Hz), 148.74 (dm, *o*-C^F, ¹*J*(¹³C-¹⁹F) = 238 Hz). ¹⁷O-NMR (25°C, CD₂Cl₂, 67.80 MHz): δ 7.4 (b v_{1/2} = 160 Hz). ¹⁹F{¹H}-**NMR** (25°C, CD₂Cl₂, 282.40 MHz): δ -167.65 (m, *m*-CF, ¹*J*(¹⁹F-¹³C) = 246 Hz), -163.84 (t, *p*-CF, ¹*J*(¹⁹F-¹³C) = 245 Hz), -133.08 (s, *o*-CF, ¹*J*(¹⁹F-¹³C) = 241 Hz). ²⁹Si INEPT-NMR (25°C, CD₂Cl₂, 59.63 MHz): δ = 35.61 (ddec, POS*i*CH₃, ²*J*(²⁹Si-¹H) = 6.9 Hz, ¹*J*(²⁹Si-³¹P) = 1.6 Hz). ³¹P{¹H}-**NMR** (25°C, CD₂Cl₂, 121.49 MHz): δ = 35.92 (s).

IR (ATR, 8 Scans, 25°C, cm⁻¹)*: 3668 (v_{H_2O}), 2969 (w), 2910 (w), 1643 (m, $vC-C_{Toluol}$), 1598 (w), 1556 (w), 1511 (m), 1459 (s), 1415 (w), 1382 (w), 1375 (w), 1367 (w), 1261 (m), 1116 (s), 1081 (s), 1029 (w), 975 (s), 908 (w), 852 (s), 827 (s), 765 (s), 756 (s), 725 (m), 707 (m), 682 (m), 659 (m), 609 (m), 603 (m), 572 (m). Raman (743 nm, 43 mW, 60 s, 10 Akk., 25°C, cm⁻¹): 2973 (1), 2907 (1), 1643 (1), $vC-C_{Toluol}$), 1418 (1), 1377 (1), 1263 (1), 1100 (1), 859 (1), 820 (2), 767 (1), 700 (1), 642 (1), 583 (10), 575 (2), 492 (6), 475 (6), 448 (7), 423 (6), 390 (4), 357 (2), 345 (1), 277 (1), 243 (3), 159 (5). ESI⁺ m/z ber. (gef.)): 387.14283 (387.144) [(Me_3SiO_4)_4P]⁺. ESI⁻ (m/z ber. (gef.)): 678.97737 (678.9831) [B(C₆F₅)₄]⁻.

* Es setzt eine rasche Hydrolyse ein. Längeres stehenlassen der Probe bei Raumtemperatur und unter Luft(Feuchtigkeit) führt zur Zersetzung von **34**.

18-Krone-6 + K[OCMe₃] + (Me₃SiO)₃PO
$$\longrightarrow$$
 [K@18-Krone-5][O₂P(OSiMe₃)₂] + Me₃SiOCMe₃ DME

Zu einer klaren gelben Lösung aus Kalium *tert*-Butanolat K[OC(CH₃)₃] (0.52 g, 4.63 mmol) und 1,4,7,10,13,16-Hexaoxa-*cyclo*-octadecan (18-Krone-6, 1.2 g, 4.63 mmol) in 20 mL DME werden 1.46 g Tris(trimethylsilyl)phosphat (4.63 mmol) mittels einer Spritze gegeben. Die Lösung entfärbt sich sofort. Nachdem die Reaktionslösung für weitere 10 Minuten rührt, wird sie filtriert (G4). Die Hälfte des Lösungsmittels wird im Vakuum entfernt. Einkristalle für die Röntgenstrukturanalyse können über Nacht durch Lagern der Lösung be – °C gewonnen werden. Der Überstand wird mit einer Spritze entfernt und die farblosen Kristalle mit *n*-Pentan gewaschen. Anschließend werden die Kristalle für 15 Minuten im Hochvakuum bei 60 °C getrocknet. Es werden 2.1 g, farbloses [K@18-Krone-6][O₂(POSiMe₅)₂] (3.9 mmol, 85 %) erhalten.

C₁₈H₄₂KO₁₀PSi₂ (544.76 g/mol): **Smp.** 121 °C (Zer). **EA** ber. (gef.), %: C, 39.69 (38.98); H, 7.77 (7.47). ¹**H-NMR** (25 °C, CD₂Cl₂, 300.13 MHz): $\delta = 0.16$ (s, 18H, SiCH₃, ¹*J*(¹H-¹³C) = 116.2 Hz, ²*J*(¹H-²⁹Si) = 6.8 Hz), 3.62 (s, 24H, OCH₂, ¹*J*(¹H-¹³C) = 141.4 Hz). ¹³C{¹H}-NMR (25 °C, CD₂Cl₂, 75.47 MHz): $\delta = 1.40$ (s, SiCH₃, ¹*J*(¹³C-²⁹Si) = 60 Hz), 70.6 (s, OCH₂). ¹⁷O NMR (25 °C, CD₂Cl₂, 67.83 MHz): $\delta = nicht$ beobachtet. ²⁹Si **INEPT-NMR** (25 °C, CD₂Cl₂, 59.62 MHz): $\delta = 10.28$ (nicht aufgelöstes Signal). ³¹P{¹H}-NMR (25 °C, CD₂Cl₂, 121.51 MHz): $\delta = -1.1$ (*PO*(Si)). **IR** (ATR, 16 Scans, 25 °C, cm⁻¹): 2954 (w), 2885 (m), 2829 (w), 1471 (w), 1454 (w), 1417 (w), 1349 (m), 1284 (w), 1243 (m), 1218 (m), 1103 (s), 1089 (s), 1010 (m), 962 (s), 939 (s), 865 (m), 835 (s), 756 (m), 686 (m), 599 (m), 532 (m). **Raman** (632 nm, 10 mW, 10 s, 20 Akk., 25 °C, cm⁻¹): 2961 (5), 2899 (10), 2846 (4), 2809 (2), 2732 (1), 2702 (1), 1477 (2), 1457 (1), 1412 (1), 1365 (1), 1289 (1), 1273 (2), 1246 (1), 1149 (2), 1141 (2), 1112 (1), 1094 (4), 1072 (1), 952 (1), 873 (5), 832 (2), 812 (1), 758 (1), 692 (1), 669 (1), 616 (9), 598 (3), 548 (1), 380 (1), 364 (1), 326 (1), 281 (3), 253 (1). 202 (1). **MS** (ESI⁻, m/z ber. (gef.)): 241.04867 (241.04905). (ESI⁺, m/z ber. (gef.)): 303.12045 (303.1197). 5.4.33.1 Redoxreaktion von Hexamethyldisilan mit Bis(trimethylsilyl)sulfat

 $Me_{3}SiSiMe_{3} + (Me_{3}SiO)_{2}SO_{2} \longrightarrow (Me_{3}SiO)_{2}SO + (Me_{3}Si)_{2}O$ pur, Δ

Zu 0.23 g Bis(trimethylsilyl)sulfat (Me₃SiO)₂SO₂ (1 mmol) werden 0.14 g Hexamethyldisilan Me₃SiSiMe₃ (1 mmol) mit einer Spritze gegeben. Die Reaktionslösung wird entgast und anschließend für 12 h bei 130 °C unter Rückfluß erhitzt.

Das NMR-Spektrum der Reaktionslösung zeigt nur Signale für Bis(trimethylsilyl)sulfat, Hexamethyldisilan und Hexamethydisiloxan.

5.4.33.2 Reaktion von Trimethylsilan mit Trimethylsilylchlorosulphonat und Triethylamin

$$N(C_2H_5)_3 + Me_3SiO + Me_3SiOS(O_2)CI$$
 (Me_3SiO)₂SO + (C₂H₅)₃N • HCl Toluol

Es werden 0.20 g Trimethylsilylchlorosulphonat (1.1 mmol) und 0.11 g Triethylamin $N(C_2H_5)_3$ (1.1 mmol) in 2 mL Toluol gelöst. Die Reaktionslösung wird entgast. Bei –196 °C werden 80 mg Trimethylsilan Me₃SiH (1.1 mmol) auf die gefrorene Lösung kondensiert. Die Reaktionslösung wird über Nacht langsam aufgetaut. Es wird ein NMR-Spektrum nach 24 h aufgenommen.

Das NMR-Spektrum der Reaktionslösung zeigt nur Signale für Trimethylsilan, Trimethylsilylchlorosulphonat, Trimethylsilylchlorid und Hexamethydisiloxan. Nach drei Tagen bei Raumtemperatur sind in der Reaktionslösung Kristalle gewachsen. Eine Einkristallstrukturuntersuchung ergab, dass es sich um Triethylaminhydrochlorid $(C_2H_5)N$ ·HCl handelt.

5.4.33.3 Reaktion von Hexamethyldisiloxan mit Thionylchlorid

$$SOCI_2$$
 + $(Me_3Si)_2O$ \longrightarrow $(Me_3SiO)_2SO$ + 2 HCl
75% H_2SO_4

Zu einer gerührten Lösung von 15 mL Hexamethyldisiloxan (Me₃Si)₂O und 5 mL 75 %ige Schwefelsäure H₂SO₄ wird eine Lösung aus 7 mL Hexamethyldisiloxan (Me₃Si)₂O und 20 mL Thionylchlorid SOCl₂ über einen Zeitraum von einer 1 h gegeben. Die Reaktionslösung erwärmt sich leicht und eine Gasentwicklung ist zu beobachten. Nach einer weiteren Stunde rühren wird das zweiphasige System dekantiert. Die obere Phase wird mit Magnesiumsulfat MgSO₄ getrocknet.* Ein NMR-Spektrum dieser Lösung wird angefertigt. **

* Nach einer modifizierten Literaturvorschrift von K Rühlmann^[291] in der Diplomarbeit von Herrn Dr. J. Harloff gefunden.^[292]

** Das NMR-Spektrum der Reaktionslösung zeigt nur Signale für Bis(trimethylsilyl)sulfat und Hexamethydisiloxan. 5.4.33.4 Reaktion von Hexamethyldisilathian und Bis(trimethylsilyl)sulfat

$$(Me_3SiO)_2SO_2 + (Me_3Si)_2S \longrightarrow (Me_3SiO)_2SO + (Me_3Si)_2SO$$

 p -Xylol, \triangle

Es werden 0.242 g Bis(trimethylsilyl)sulfat (Me₃SiO)₂SO₂ (1 mmol) und 0.178 g Hexamethyldisilathian (Me₃Si)₂S (1 mmol) in 10 mL *p*-Xylol gelöst. Die Reaktionslösung wird entgast und im Anschluss für 150 h bei 140 °C unter Rückfluß erhitzt.*

* Das NMR-Spektrum der Lösung zeigt nur ein Signal für Hexamethydisiloxan.

5.4.33.5 Reaktion von Natrium Trimethylsilanolat und Thionylchlorid

Na[OSiMe₃] + SOCl₂ (Me₃SiO)₂SO + 2 NaCl Lm*

Es werden 0.5 g Natrium-trimethylsilanolat (4.5 mmol) in 20 mL Diethylether gelöst und die Lösung auf -80 °C gekühlt. Es wird 0.265 g Thionylchlorid SOCl₂ (2.2 mmol) über eine Spritze und über einen Zeitraum von 15 Minuten zur Lösung hinzugegeben. Die Reaktionslösung wird über Nacht langsam auf Raumtemperatur gebracht.

* Das NMR-Spektrum der Reaktionslösung zeigt nur ein Signal für Hexamethydisiloxan.

* Toluol, CH₂Cl₂ und THF führen zum selben Ergebnis.

5.4.33.6 Reaktion Natrium Trimethylsilanolat, Thionylchlorid und einer Lewis-Säure

0.1 g Gallium(III)-chlorid GaCl₃ (0.58 mmol) wird in 4 mL Toluol gelöst. Es werden 70 mg Thionylchlorid SOCl₂ (0.58 mmol) mit einer Spritze zur gerührten Lösung hinzugegeben. Eine weitere Lösung aus 0.13 g Natrium-Triemthylsilanolat Na[OSiMe₃] (1.15 mmol) in 6 mL Toluol wird über einen Zeitraum von 15 Minuten zur Reaktionslösung hinzugetropft.*

* Das NMR-Spektrum der Reaktionslösung zeigt nur ein Signal für Hexamethydisiloxan.

* Die Verwendung der Lewis-Säure $B(C_6F_5)_3$ und des Lösungsmittels CH_2Cl_2 führt zum selben Resultat.

5.4.33.7 Reaktion von Trimethylsilanol mit Thionylchlorid und einer Lewis-Base

$$2 N(C_2H_5)_3 + 2 Me_3SiOH + SOCI_2 \longrightarrow (Me_3SiO)_2SO + 2 (H_5C_2)_3N \cdot HCI Et_2O$$

0.56 g Trimethylsilanol Me₃SiOH (6.2 mmol) werden in 10 mL Diethylether gelöst. Zu dieser Lösung werden 1.23 g Triethylamin $N(C_2H_5)_3$ hinzugefügt. Zur gerührten Reaktionslösung werden 0.37 g Thionylchlorid SOCl2 (0.31 mmol) in 1 mL Et2O über einen Zeitraum von 15 Minuten getropft. Es wird ein farbloser Niederschlag beobachtet, welcher sich rasch dunkler verfärbt.*

* Das NMR-Spektrum der Reaktionslösung zeigt nur Signale für Hexamethydisiloxan und Trimethylsilylchlorid. 5.4.33.8 Reaktion von Silbersulfit und Trimethylsilylchlorid

$$Ag_2SO_3 + 2 Me_3SiCl \longrightarrow (Me_3SiO)_2SO + 2 AgCl$$

n-Pentan

2 g Silbersulfit Ag₂SO₃ (6.8 mmol) werden in 10 mL n-Pentan Suspendiert und auf −20 °C gekühlt. Zur gerührten Suspension werden 1.5 g Trimethylsilylchlorid Me₃SiCl (13.8 mmol) über 5 Minuten hinzugefügt. Die Reaktionslösung wird über Nacht kräftig gerührt. Der Niederschlag wird abfiltriert und das Lösungsmittel thermisch abdestilliert.*

* Das NMR-Spektrum der Reaktionslösung zeigt nur ein Signal für Hexamethydisiloxan.

5.4.34 Synthese und Charakterisierung von Na[O₂SOSiMe₃] (37)

$$Na[OSi(CH_3)_3] + SO_2 \longrightarrow Na[O_2SOSi(CH_3)_3]$$

THF

Natrium Trimethylsilanolat Na[OSiMe₃] (2 g, 17.8 mol) wird in 60 mL THF unter Rühren gelöst. In einem weiteren Kolben werden 40 g Natriumsulfit Na₂SO₃ in 60 mL dest. Wasser gelöst und das Gemisch auf 0 °C gekühlt. Unter Rühren wird langsam konz. H₂SO₄ zu dieser Suspension hinzugegeben. Das frisch entwickelte SO₂ wird durch eine Waschflasche mit Schwefelsäure hindurch geleitet, bevor es durch ein Einleitrohr durch die Reaktionslösung geleitet wird. Die anfänglich leicht trübe Lösung, klart zunächst auf erstarrt aber zusehends zu einer festen Masse. Im Hochvakuum wird das Lösungsmittel entfernt. Es werden 1 g beiges Natrium Trimethylsilylsulfit Na[O₂SOSiMe₃] (0.17 mmol, 83 %) erhalten.

C₃H₉NaO₃SSi (112.18 g/mol): **mp**. >240 °C (dec.). ¹H-NMR (25 °C, THF-D₈, 300.13 MHz): δ − .17 (S CH₃, ¹J(¹H-¹³C) = 114.7 Hz, ²J(¹H-²⁹Si) = 6.1 Hz). ¹³C{¹H}-NMR (25 °C, THF-D₈, 75.47 MHz): δ = 5.08 (s, SiCH₃, ¹J(¹³C-²⁹Si) = 53.9 Hz). ¹⁷O-NMR (25 °C, THF-D₈, 67.83 MHz): *nicht beobachtet*. ²⁹Si INEPT-NMR (25 °C, THF-D₈, 59.52 MHz) δ = −12.46 (dec, SiCH₃, ²J(²⁹Si-¹H) = 6.1 Hz). IR (ATR, 16 Scans, 25 °C, cm⁻¹): 2958 (w), 1253 (m), 1195 (m), 1166 (s), 1072 (m), 1056 (s), 964 (s), 891 (m), 838 (m), 752 (m), 657 (s), 561 (s). Raman (632 nm, 10 mW, 20 s, 10 Akk., 25 °C, cm⁻¹): 3105 (1), 2943 (9), 2894 (10), 1428 (1), 1404 (1), 1251 81), 1236 (1), 1012 (1), 964 (1), 951 (1), 819 (1), 730 (1), 657 (2), 602 (8), 382 (1), 353 (1), 268 (1), 214 (1).

5.5 Daten zu den Röntgenstrukturanalysen

	2	3	4
Chem. Formel	$C_{19}H_{15}BCl_4$	C ₁₉ H ₁₅ AlCl ₄	$C_{19}H_{15}Cl_4Ga$
M [g mol ⁻¹]	395.92	412.09	454.83
Farbe	gelb	gelb	orange
Kristallsystem	orthorhombisch	monoklin	monoklin
Raumgruppe	Pbca	$P2_{1}/c$	$P2_{1}/c$
<i>a</i> [Å]	15.1777(7)	18.3399(5)	18.3614(11)
<i>b</i> [Å]	13.7442(5)	14.4874(4)	14.4970(9)
<i>c</i> [Å]	17.7550(7)	15.4168(4)	15.3862(8)
α [°]	90	90	90
β [°]	90	102.730(2)	102.604(1)
γ [°]	90	90	90
V[Å ³]	3703.8(3)	3995.52(19)	3996.9(4)
Ζ	8	8	8
$\rho_{\rm ber}$. [g cm ⁻³]	1.420	1.370	1.512
$\mu [\mathrm{mm}^{-1}]$	0.64	0.63	1.91
λ _{οα} [Å]	0.71073	0.71073	0.71073
<i>T</i> [K]	173	173	173
Gesammelte Reflexe	57156	69248	47446
Unabhängige Reflexe	6403	10587	12472
Reflexe mit $I > 2\sigma(I)$	4448	6480	9063
R _{int.}	0.061	0.066	0.032
<i>F</i> (000)	1616	1680	1824
$R_1 \left(\mathbf{R} \left[F^2 > \ \mathbf{\sigma}(F^2) \right] \right)$	0.041	0.042	0.034
$wR_2(F^2)$	0.099	0.096	0.086
GooF	1.003	1.006	1.018
Parameter	217	433	433
CCDC	1411641	1411642	1411643

Tabelle 64: Daten zu den Röntgenkristallstrukturanalysen der Verbindungen (2),(3) und (4).
	5	6	7
Chem. Formel	$C_{19}H_{15}F_6P$	$C_{19}H_{15}AsF_6$	$C_{19}H_{15}F_6Sb$
M [g mol ⁻¹]	388.28	432.23	479.06
Farbe	orange	gelb	gelb
Kristallsystem	monoklin	monoklin	monoklin
Raumgruppe	$P2_{1}/n$	$P2_{1}/n$	$P2_{1}/c$
<i>a</i> [Å]	9.8773(5)	9.9122(3)	8.5402(6)
<i>b</i> [Å]	8.6783(4)	8.7114(3)	12.8290(9)
<i>c</i> [Å]	19.2866(9)	19.6044(7)	16.0775(11)
α [°]	90	90	90
β [°]	90.452(9)	91.469(2)	93.679
γ [°]	90	90	90
V[Å ³]	1653.16(14)	1692.27(1)	1757.9(2)
Ζ	4	4	4
$ ho_{\rm ber}$. [g cm ⁻³]	1.560	1.697	1.810
$\mu \ [\mathrm{mm}^{-1}]$	0.23	2.07	1.63
λ _{οα} [Å]	0.71073	0.71073	0.71073
<i>T</i> [K]	173	173	173
Gesammelte Reflexe	22836	27230	31074
Unabhängige Reflexe	4818	6112	6354
Reflexe mit $I > 2\sigma(I)$	2980	4065	4759
R _{int.}	0.057	0.056	0.046
<i>F</i> (000)	792	864	936
$R_1 (\mathbf{R} [F^2 > \sigma(F^2)])$	0.048	0.038	0.028
$wR_2(F^2)$	0.114	0.087	0.064
GooF	1.009	1.033	1.018
Parameter	235	235	235
CCDC	1411644	1411645	1411646

Tabelle 65: Daten zu den Röntgenkristallstrukturanalysen der Verbindungen (5),(6) und (7).

	9	9-CH ₃ CN	10
Chem. Formel	$C_{20}H_{21}B_{11}Cl_6$	$C_{22}H_{24}B_{11}Cl_6N$	$C_{20}H_{16}BCl_{11}$
M [g mol ⁻¹]	592.98	634.03	765.19
Farbe	gelb	gelb	gelb
Kristallsystem	monoklin	monoklin	monoklin
Raumgruppe	$P2_1/c$	$P2_{1}/c$	$P2_{1}/c$
<i>a</i> [Å]	9.7294(3)	15.0043(5)	14.6907(5)
<i>b</i> [Å]	21.1862(7)	9.2406(3)	12.9696(4)
<i>c</i> [Å]	13.7313(4)	22.7560(8)	17.1114(5)
α [°]	90	90	90
β [°]	91.244(1)	100.944(2)	90.341(2)
γ [°]	90	90	90
V[Å ³]	2829.75(15)	3097.71(18)	3260.22(18)
Ζ	4	4	4
$ ho_{ m ber}$. [g cm ⁻³]	1.392	1.360	1.559
$\mu \ [\mathrm{mm}^{-1}]$	0.62	0.57	0.95
λ _{οα} [Å]	0.71073	0.71073	0.71073
<i>T</i> [K]	173	173	173
Gesammelte Reflexe	27901	47637	55749
Unabhängige Reflexe	7308	9012	11302
Reflexe mit $I > 2\sigma(I)$	5116	6006	6960
R _{int.}	0.045	0.076	0.053
<i>F</i> (000)	1192	1280	1512
$R_1 (R [F^2 > \sigma(F^2)])$	0.050	0.044	0.041
$wR_2(F^2)$	0.131	0.102	0.100
GooF	1.045	1.018	1.005
Parameter	338	362	383
CCDC	1411647	1411648	1411649

Tabelle 66: Daten zu den Röntgenkristallstrukturanalysen der (9), (9·CH₃CN) und (10).

	$10.2 \cdot C_7 H_8$	11·CH ₂ Cl ₂	11·CH ₃ CN
Chem. Formel	$C_{34}H_{32}B_{11}Cl_{11} \\$	$C_{21}H_{23}B_{11}Br_6Cl_2 \\$	$C_{22}H_{24}B_{11}Br_6N$
M [g mol ⁻¹]	949.46	944.66	900.79
Farbe	gelb	orange	orange
Kristallsystem	monoklin	orthorhombisch	orthorhombisch
Raumgruppe	$P2_{1}/c$	$Pna2_1$	$Pna2_1$
<i>a</i> [Å]	9.3344(4)	16.4393(5)	16.1215(7)
<i>b</i> [Å]	21.0342(9)	9.2308(3)	9.1353(4)
<i>c</i> [Å]	22.4360(12)	21.2484(6)	21.4531(10)
α [°]	90	90	90
β [°]	91.276(2)	90	90
γ [°]	90	90	90
V[Å ³]	4404.0(4)	3224.40(17)	3159.5(2)
Ζ	4	4	4
$\rho_{\rm ber}$. [g cm ⁻³]	1.432	1.946	1.894
$\mu \ [\mathrm{mm}^{-1}]$	0.72	7.65	7.64
λ _{οα} [Å]	0.71073	0.71073	0.71073
<i>T</i> [K]	173	173	173
Gesammelte Reflexe	56210	34478	17072
Unabhängige Reflexe	10638	8541	6385
Reflexe mit $I > 2\sigma(I)$	6543	7305	5683
R _{int.}	0.095	0.040	0.035
<i>F</i> (000)	1912	1792	1712
$R_1 \left(\mathbf{R} \left[F^2 > \ \mathbf{\sigma}(F^2) \right] \right)$	0.045	0.029	0.027
$wR_2(F^2)$	0.098	0.057	0.056
GooF	1.018	1.003	1.002
Parameter	540	371	362
CCDC	1411650	1411651	1411652

Tabelle 67: Daten zu den Röntgenkristallstrukturanalysen der Verbindungen $(10\cdot 2\cdot C_7H_8)$, $(11\cdot CH_2Cl_2)$ und $(11\cdot CH_3CN)$.

	12	13	14
Chem. Formel	$C_{20}H_{15}F_{3}O_{3}S$	$C_{21}H_{15}F_{3}O_{2}$	$C_{19}H_{15}N_3$
M [g mol ⁻¹]	392.38	356.33	285.34
Farbe	gelb	farblos	farblos
Kristallsystem	monoklin	monoklin	triklin
Raumgruppe	$P2_{1}/n$	$P2_{1}/c$	PĪ
<i>a</i> [Å]	8.3226(3)	10.2560(4)	8.8275(16)
<i>b</i> [Å]	14.1510(5)	18.9306(6)	11.3271(19)
<i>c</i> [Å]	15.4632(5)	9.0611(3)	15.3093(16)
α [°]	90	90	78.008(4)
β[°]	94.477(1)	100.141(2)	88.320(5)
γ [°]	90	90	84.921(4)
V[Å ³]	1815.59(11)	1731.75(10)	1491.4(4)
Ζ	4	4	4
$\rho_{\rm ber}$. [g cm ⁻³]	1.435	1.367	1.271
$\mu \; [\mathrm{mm}^{-1}]$	0.23	0.11	0.08
λ _{οα} [Å]	0.71073	0.71073	0.71073
<i>T</i> [K]	173	173	173
Gesammelte Reflexe	30643	24814	29403
Unabhängige Reflexe	6551	5060	8658
Reflexe mit $I > 2\sigma(I)$	5367	2858	5966
R _{int.}	0.032	0.062	0.053
<i>F</i> (000)	808	736	600
$R_1 (R [F^2 > \sigma(F^2)])$	0.040	0.052	0.048
wR_2 (F^2)	0.116	0.125	0.121
GooF	1.033	1.013	1.036
Parameter	299	266	397
CCDC	1411654	1411653	1411655

Tabelle 68: Daten zu den Röntgenkristallstrukturanalysen der Verbindungen(12), (13) und (14).

	15·C ₆ H ₆	15·C ₇ H ₈	19
Chem. Formel	$C_{25}H_{22}$	$C_{26}H_{24}$	$C_6H_{18}O_4SSi_2$
M [g mol ⁻¹]	322.42	336.45	242.44
Farbe	farblos	farblos	farblos
Kristallsystem	trigonal	trigonal	monoklin
Raumgruppe	R3:H	R3̄:H	C2/c
<i>a</i> [Å]	10.8338(4)	11.1045(16)	21.003(2)
<i>b</i> [Å]	10.8338(4)	11.1045(16)	20.985(2)
<i>c</i> [Å]	27.1437(11)	27.063(3)	12.7728(12)
α [°]	90	90	90
β[°]	90	90	112.884(3)
γ [°]	120	120	90
V[Å ³]	2759.1(2)	2890.0(9)	5186.9(9)
Ζ	6	6	16
$ ho_{\mathrm{ber}}$. [g cm ⁻³]	1.164	1.160	1.242
$\mu \text{ [mm}^{-1}\text{]}$	0.07	0.07	0.42
λ _{οα} [Å]	0.71073	0.71073	0.71073
<i>T</i> [K]	173	173	123
Gesammelte Reflexe	12548	7148	44838
Unabhängige Reflexe	1602	996	9347
Reflexe mit $I > 2\sigma(I)$	1262	685	6395
R _{int.}	0.045	0.037	0.053
<i>F</i> (000)	1032	1032	2080
$R_1 (R [F^2 > \sigma(F^2)])$	0.049	0.051	0.060
$wR_2(F^2)$	0.131	0.139	0.123
GooF	1.066	1.034	1.078
Parameter	84	110	275
CCDC	1411656	1411657	

Tabelle 69: Daten zu den Röntgenkristallstrukturanalysen der Verbindungen $(15 \cdot C_6 H_6)$, $(15 \cdot C_7 H_8)$ und (19).

	20	22	24
Chem. Formel	$C_9H_{27}O_5PSSi_2$	$C_{12}H_{36}O_9P_2S_2Si_2\\$	C ₁₅ H ₃₃ KO ₆ SSi
M [g mol ⁻¹]	334.51	506.65	408.66
Farbe	farblos	farblos	farblos
Kristallsystem	orthorhombisch	monoklin	orthorhombisch
Raumgruppe	Pbca	Pc	P2 ₁ 2 ₁ 2 ₁
a [Å]	13.1325(8)	11.6573(11)	8.3604(5)
<i>b</i> [Å]	18.5688(12)	8.1454(8)	14.4338(12)
<i>c</i> [Å]	29.7972(17)	13.7199(12)	18.3651(14)
α [°]	90	90	90
β [°]	90	104.544(5)	90
γ [°]	90	90	90
V[Å ³]	7266.2(8)	1261.0(2)	2216.2(3)
Ζ	16	2	4
ρ_{ber} . [g cm ⁻³]	1.223	1.334	1.225
$\mu \text{ [mm]}^1$]	0.41	0.47	0.41
λ _{οα} [Å]	0.71073	0.71073	0.71073
<i>T</i> [K]	123	123	123
Gesammelte Reflexe	110692	20834	21825
Unabhängige Reflexe	12572	7551	5889
Reflexe mit $I > 2\sigma(I)$	8551	5656	4764
R _{int.}	0.069	0.037	0.078
<i>F</i> (000)	2880	540	880
$R_1 (R [F^2 > \sigma(F^2)])$	0.050	0.044	0.042
$wR_2(F^2)$	0.124	0.108	0.077
GooF	1.074	1.020	1.024
Parameter	522	257	286
CCDC			

Tabelle 70: Daten zu den Röntgenkristallstrukturanalysen der Verbindungen(20), (22) und (24).

	28	α-30	β-30
Chem. Formel	C ₁₈ HBF ₁₅ NOS	$C_{21}H_9BF_{15}NOSSi$	C ₂₁ H ₉ BF ₁₅ NOSSi
M [g mol ⁻¹]	575.07	647.25	647.25
Farbe	farblos	farblos	farblos
Kristallsystem	monoklin	triklin	monoklin
Raumgruppe	$P2_{1}/c$	1	$P2_{1}/n$
<i>a</i> [Å]	15.7772(7)	9.1496(3)	14.0082(5)
<i>b</i> [Å]	14.5861(7)	10.8727(4)	10.6941(4)
<i>c</i> [Å]	8.4181(4)	12.2147(4)	16.0568(7)
α [°]	90	82.055(2)	90
β [°]	95.225(3)	88.565(2)	91.416(2)
γ [°]	90	83.973(2)	90
V[Å ³]	1929.19(16)	1196.74(2)	2404.66(16)
Ζ	4	2	4
$\rho_{\rm ber}$. [g cm ⁻³]	1.980	1.796	1.788
$\mu \text{ [mm]}^1$]	0.33	0.32	0.32
λ _{οα} [Å]	0.71073	0.71073	0.71073
<i>T</i> [K]	173	173	123
Gesammelte Reflexe	28925	30053	38330
Unabhängige Reflexe	5618	6296	8048
Reflexe mit $I > 2\sigma(I)$	3058	4660	4983
R _{int.}	0.071	0.029	0.063
<i>F</i> (000)	1120	640	1280
$R_1 (R [F^2 > \sigma(F^2)])$	0.050	0.036	0.043
$wR_2 (F^2)$	0.127	0.086	0.101
GooF	1.008	1.020	1.008
Parameter	372	373	373
CCDC	1469613	149615	149616

Tabelle 71: Daten zu den Röntgenkristallstrukturanalysen der Verbindungen (28), (α -30) und (β -30).

	28	34	$34 \cdot 2.5 \cdot C_7 H_8$
Chem. Formel	C ₃ H ₉ Cl ₃ GaNOSSi	$C_{36}H_{36}BF_{20}PO_6Si_4$	$\begin{array}{c} C_{36}H_{36}BF_{20}O_4PSi_4 \\ \cdot \\ 2.5\ C_7H_8 \end{array}$
M [g mol ⁻¹]	311.33	1066.79	1297.12
Farbe	farblos	farblos	farblos
Kristallsystem	monoklin	triklin	triklin
Raumgruppe	$P2_{1}/c$	$P\overline{1}$	P _i
<i>a</i> [Å]	8.4933(3)	12.8253(6)	13.2811(6)
<i>b</i> [Å]	11.7873(4)	14.1922(7)	14.1949(6)
<i>c</i> [Å]	11.4541(4)	15.0246(7)	17.3040(6)
α [°]	90	112.456(1)	91.548(2)
β [°]	91.901	105.496(2)	104.559(2)
γ [°]	90	103.055(2)	104.040(2)
V[Å ³]	1146.07(7)	2264.39(1)	3049.7(2)
Ζ	4	2	2
$\rho_{\rm ber}$. [g cm ⁻³]	1.804	1.225	1.413
$\mu \ [\mathrm{mm}^{-1}]$	3.34	0.29	0.23
λ _{οα} [Å]	0.71073	0.71073	0.71073
<i>T</i> [K]	173	123	123
Gesammelte Reflexe	23693	139804	91757
Unabhängige Reflexe	4140	16339	10727
Reflexe mit $I > 2\sigma(I)$	3477	12757	6771
R _{int.}	0.043	0.041	0.163
<i>F</i> (000)	616	1080	1330
$R_1 \left(\mathbf{R} \left[F^2 > \sigma(F^2) \right] \right)$	0.024	0.045	0.061
$wR_2(F^2)$	0.056	0.119	0.149
GooF	1.028	1.058	1.084
Parameter	103	653	1355
CCDC	1469614		

Tabelle 72: Daten zu den Röntgenkristallstrukturanalysen der Verbindungen(28), (34) und $(34 \cdot C_7 H_8)$.

	35	22	22
Chem. Formel	$C_{18}H_{42}KO_{10}PSi_2 \cdot 0.75(C_4H_{10}O_2)$		
M [g mol ⁻¹]	612.35		
Farbe	farblos		
Kristallsystem	Triklin		
Raumgruppe	1		
a [Å]	13.1409(10)		
<i>b</i> [Å]	15.2740(11)		
<i>c</i> [Å]	17.2277(12)		
α [°]	74.399(2)		
β [°]	83.771(3)		
γ [°]	79.867(3)		
V[Å ³]	3271.7(4)		
Ζ	4		
$ ho_{\mathrm{ber}}$. [g cm ⁻³]	1.243		
$\mu [\mathrm{mm}^{-1}]$	0.33		
λ _{οα} [Å]	0.71073		
<i>T</i> [K]	123		
Gesammelte Reflexe	156098		
Unabhängige Reflexe	20779		
Reflexe mit $I > 2\sigma(I)$	14546		
R _{int.}	0.070		
<i>F</i> (000)	1318		
$R_1 (\mathbf{R} [F^2 > \sigma(F^2)])$	0.050		
$wR_2(F^2)$	0.106		
GooF	1.038		
Parameter	826		
CCDC			

Tabelle 73: Daten zu den Röntgenkristallstrukturanalysen der Verbindungen(35), (22) und $(30 \cdot C_7 H_8)$.

5.6 Ausgewählte Atomabstände und Winkel der Verbindungen

Schema 26. Nummerierungsschema von 2.

 Tabelle 74: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von

 2.

C1-C2	1.443(2)	Cl4-B1-Cl1	108.8(2)
C1-C8	1.431(2)	Cl4-B1-Cl3	109.9(2)
C1-C14	1.454(2)	C2-C1-C8-C9	152.5(2)
B1-Cl1	1.851(2)	C2-C1-C8-C13	-27.5(2)
B1-Cl2	1.840(2)	C2-C1-C14-C15	-40.3(2)
B1-Cl3	1.857(2)	C2-C1-C14-C19	140.9(2)
B1-Cl4	1.848(2)	C8-C1-C2-C3	-35.0(2)
C2-C1-C14	119.3(2)	C8-C1-C2-C7	144.7(2)
C8-C1-C2	121.3(2)	C8-C1-C14-C15	139.1(2)
C8-C1-C14	119.6(2)	C8-C1-C14-C19	-39.8(2)
Cl1-B1-Cl3	109.61(9)	C14-C1-C2-C3	144.4(2)
Cl2-B1-Cl1	109.2(2)	C14-C1-C2-C7	-36.0(2)
Cl2-B1-Cl3	109.8(2)	C14-C1-C8-C9	-26.9(2)
Cl2-B1-Cl4	109.65(9)	C14-C1-C8-C13	153.3(2)

Schema 27. Nummerierungsschema von 3.

 Tabelle 75: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von

 3.

A11-C11	2.1436(8)	C17-A12-C16	108.61(4)
A11-C12	2.1289(9)	C18-A12-C15	107.48(4)
A11-C13	2.1277(9)	C18-A12-C16	108.59(4)
A11-C14	2.1371(8)	C18-A12-C17	111.22(4)
A12-C15	2.131(2)	C2-C1-C8-C9	-36.0(3)
A12-C16	2.1361(9)	C2-C1-C8-C13	143.5(2)
A12-C17	2.1300(9)	C2-C1-C14-C15	151.5(2)
A12-C18	2.1253(9)	C2-C1-C14-C19	-29.4(3)
C1-C2	1.440(3)	C8-C1-C2-C3	149.3(2)
C1-C8	1.449(3)	C8-C1-C2-C7	-31.8(3)
C1-C14	1.445(3)	C8-C1-C14-C15	-29.2(3)
C20-C21	1.448(3)	C8-C1-C14-C19	149.9(2)
C20-C27	1.443(3)	C14-C1-C2-C3	-31.5(3)
C20-C33	1.443(3)	C14-C1-C2-C7	147.5(2)
C2-C1-C8	119.5(2)	C14-C1-C8-C9	144.8(2)

C2-C1-C14	120.7(2)	C14-C1-C8-C13	-35.7(3)
C14-C1-C8	119.9(2)	C21-C20-C27-C28	-34.9(3)
C27-C20-C21	120.0(2)	C21-C20-C27-C32	146.0(2)
C33-C20-C21	121.0(2)	C21-C20-C33-C34	148.8(2)
С33-С20-С27	119.2(2)	C21-C20-C33-C38	-31.0(3)
Cl2-Al1-Cl1	108.48(4)	C27-C20-C21-C22	149.1(2)
Cl2-Al1-Cl4	109.45(4)	C27-C20-C21-C26	-31.0(3)
Cl3-Al1-Cl1	110.52(4)	C27-C20-C33-C34	-31.0(3)
Cl3-Al1-Cl2	111.49(4)	C27-C20-C33-C38	149.2(2)
Cl3-Al1-Cl4	108.56(4)	C33-C20-C21-C22	-30.7(3)
Cl4-Al1-Cl1	108.28(3)	C33-C20-C21-C26	149.2(2)
C15-A12-C16	109.84(4)	C33-C20-C27-C28	145.0(2)
C17-A12-C15	111.05(4)	C33-C20-C27-C32	-34.1(3)

Schema 28. Nummerierungsschema von 4.

Tabelle 76: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von4.

C1-C2	1.438(3)	Cl7-Ga2-Cl6	108.54(2)
C1-C8	1.448(3)	C18-Ga2-C15	107.19(3)
C1-C14	1.445(3)	C18-Ga2-C16	108.59(3)
C20-C21	1.448(2)	C18-Ga2-C17	111.51(3)
C20-C27	1.441(3)	C2-C1-C8-C9	-35.4(3)
C20-C33	1.438(2)	C2-C1-C8-C13	143.5(2)
Ga1-Cl1	2.1851(5)	C2-C1-C14-C15	151.5(2)
Ga1-Cl2	2.1694(6)	C2-C1-C14-C19	-29.8(3)
Ga1-Cl3	2.1677(6)	C8-C1-C2-C3	149.3(2)
Ga1-Cl4	2.1776(5)	C8-C1-C2-C7	-32.0(3)
Ga2-Cl5	2.1716(7)	C8-C1-C14-C15	-29.0(3)
Ga2-Cl6	2.1771(6)	C8-C1-C14-C19	149.7(2)
Ga2-Cl7	2.1683(6)	C14-C1-C2-C3	-31.2(3)
Ga2-Cl8	2.1652(6)	C14-C1-C2-C7	147.6(2)
C2-C1-C8	119.47(2)	C14-C1-C8-C9	145.1(2)

C2-C1-C14	120.68(2)	C14-C1-C8-C13	-36.1(3)
C14-C1-C8	119.88(2)	C21-C20-C27-C28	-34.9(3)
C27-C20-C21	119.95(2)	C21-C20C27-C32	146.2(2)
C33-C20-C21	120.84(2)	C21-C20-C33-C34	148.9(2)
С33-С20-С27	119.23(2)	C21-C20-C33-C38	-31.3(3)
Cl2-Ga1-Cl1	108.27(2)	C27-C20-C21-C22	149.6(2)
Cl2-Ga1-Cl4	109.55(2)	C27-C20-C21-C26	-30.8(3)
Cl3-Ga1-Cl1	110.61(2)	C27-C20-C33-C34	-31.0(3)
Cl3-Ga1-Cl2	111.77(2)	C27-C20-C33-C38	148.9(2)
Cl3-Ga1-Cl4	108.50(2)	C33-C20-C21-C22	-30.2(3)
Cl4-Ga1-Cl1	108.07(2)	C33-C20-C21-C26	149.5(2)
Cl5-Ga2-Cl6	109.94(3)	С33-С20-С27-С28	144.9(2)
C17-Ga2-C15	111.03(3)	C33-C20-C27-C32	-34.1(3)

Schema 29. Nummerierungsschema von 5.

 Tabelle 77: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von

 5.

C1-C2	1.452(2)	F4-P1-F1	179.86(9)
C1-C8	1.439(3)	F5-P1-F1	89.57(7)
C1-C14	1.450(2)	F5-P1-F4	90.29(7)
P1-F1	1.599(2)	F6-P1-F1	90.19(7)
P1-F2	1.588(2)	F6-P1-F3	179.62(9)
P1-F3	1.594(2)	F6-P1-F4	89.77(7)
P1-F4	1.594(2)	F6-P1-F5	90.30(8)
P1-F5	1.594(2)	C2-C1-C8-C9	156.9(2)
P1-F6	1.588(2)	C2-C1-C8-C13	-23.3(3)
C8-C1-C2	121.6(2)	C2-C1-C14-C15	-40.4(2)
C8-C1-C14	120.5(2)	C2-C1-C14-C19	138.3(2)
C14-C1-C2	118.0(2)	C8-C1-C2-C3	146.9(2)
F2-P1-F1	90.32(7)	C8-C1-C2-C7	-32.1(3)
F2-P1-F3	89.79(8)	C8-C1-C14-C15	141.9(2)
F2-P1-F4	89.81(7)	C8-C1-C14-C19	-39.5(3)
F2-P1-F5	179.15(9)	C14-C1-C2-C3	-30.9(3)

F2-P1-F6	90.54(9)	C14-C1-C2-C7	150.2(2)
F3-P1-F1	89.97(7)	C14-C1-C8-C9	-25.5(3)
F3-P1-F4	90.06(7)	C14-C1-C8-C13	154.4(2)
F3-P1-F5	89.37(8)		

Schema 30. Nummerierungsschema von 6.

Tabelle 78: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von6.

C1-C2	1.442(2)	F4-As1-F6	90.50(6)
C1-C8	1.447(2)	F5-As1-F1	90.48(7)
C1-C14	1.445(2)	F5-As1-F2	179.44(7)
As1-F1	1.707(2)	F5-As1-F3	90.19(6)
As1-F2	1.712(2)	F5-As1-F4	90.39(7)
As1-F3	1.722(2)	F5-As1-F6	89.55(6)
As1-F4	1.710(2)	F6-As1-F3	179.69(6)
As1-F5	1.706(2)	C2-C1-C8-C9	25.3(2)
As1-F6	1.718(2)	C2-C1-C8-C13	-154.7(2)
C2-C1-C8	120.0(2)	C2-C1-C14-C15	-153.1(2)
C2-C1-C14	118.5(2)	C2-C1-C14-C19	24.6(2)
C14-C1-C8	121.6(2)	C8-C1-C2-C3	-142.1(2)
F1-As1-F2	89.89(7)	C8-C1-C2-C7	37.2(2)
F1-As1-F3	90.06(6)	C8-C1-C14-C15	24.9(2)
F1-As1-F4	179.09(7)	C8-C1-C14-C19	-157.6(2)
F1-As1-F6	89.77(6)	C14-C1-C2-C3	35.9(2)
F2-As1-F3	90.22(6)	C14-C1-C2-C7	-144.9(2)
F2-As1-F6	90.04(6)	C14-C1-C8-C9	-156.4(2)

F4-As1-F2	89.24(7)	C14-C1-C8-C13	23.7(2)
F4-As1-F3	89.67(6)		

Schema 31. Nummerierungsschema von 7.

 Tabelle 79: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von

 7.

C1-C2	1.452(2)	F5-Sb1-F2	179.14(6)
C1-C8	1.446(2)	F5-Sb1-F3	89.63(7)
C1-C14	1.437(2)	F5-Sb1-F4	89.98(7)
Sb1-F1	1.877(2)	F5-Sb1-F6	91.13(7)
Sb1-F2	1.858(2)	F6-Sb1-F1	90.16(5)
Sb1-F3	1.875(2)	F6-Sb1-F3	179.21(6)
Sb1-F4	1.873(2)	F6-Sb1-F4	89.42(5)
Sb1-F5	1.855(2)	C2-C1-C8-C9	36.4(2)
Sb1-F6	1.871(2)	C2-C1-C8-C13	-146. (
C8-C1-C2	119.1(2)	C2-C1-C14-C15	-14.(
C14-C1-C2	120.2(2)	C2-C1-C14-C19	31.4(2)
C14-C1-C8	120.9(2)	C8-C1-C2-C3	-141.6(
F2-Sb1-F1	89.78(7)	C8-C1-C2-C7	39.6(2)
F2-Sb1-F3	89.52(7)	C8-C1-C14-C15	31.9(3)
F2-Sb1-F4	90.13(7)	C8-C1-C14-C19	-147.0(2)
F2-Sb1-F6	89.72(7)	C14-C1-C2-C3	40.1(2)
F3-Sb1-F1	89.61(5)	C14-C1-C2-C7	-1 .(
F4-Sb1-F1	179.57(5)	C14-C1-C8-C13	35.2(2)

F4-Sb1-F3	90.81(6)	C14-C1-C8-C9	-141.7(
F5-Sb1-F1	90.12(7)		

Schema 32. Nummerierungsschema von 11 · CH₂Cl₂.

Tabelle 80: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von**11**·CH₂Cl₂.

C1-C2	1.438(6)	C2-C1-C14-C19	30.2(6)
C1-C8	1.439(6)	C8-C1-C2-C3	-152.7(4)
C1-C14	1.442(6)	C8-C1-C2-C7	31.1(6)
C2-C1-C8	121.5(4)	C8-C1-C14-C15	31.4(6)
C2-C1-C14	120.3(4)	C8-C1-C14-C19	-148.6(4)
C8-C1-C14	118.2(4)	C14-C1-C2-C3	28.6(6)
C2-C1-C8-C9	37.2(6)	C14-C1-C2-C7	-147.7(4)
C2-C1-C8-C13	-142.4(4)	C14-C1-C8-C9	-144.0(4)
C2-C1-C14-C15	-149.8(4)	C14-C1-C8-C13	36.4(6)

Schema 33. Nummerierungsschema von 11·CH₃CN.

Tabelle 81: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von
11·CH₃CN.	

C1-C2	1.437(6)	C2-C1-C14-C19	30.3(7)
C1-C8	1.439(7)	C8-C1-C2-C3	-150.5(5)
C1-C14	1.442(7)	C8-C1-C2-C7	30.1(7)
C2-C1-C8	119.6(4)	C8-C1-C14-C15	32.3(7)
C2-C1-C14	119.8(4)	C8-C1-C14-C19	-151.9(5)
C8-C1-C14	120.6(4)	C14-C1-C2-C3	27.4(7)
C2-C1-C8-C9	35.6(7)	C14-C1-C2-C7	-152.0(5)
C2-C1-C8-C13	-142.7(5)	C14-C1-C8-C9	-142.2(5)
C2-C1-C14-C15	-145.6(5)	C14-C1-C8-C13	39.5(7)

Schema 34. Nummerierungsschema von 12.

Tabelle 82: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von**12**.

C1-C2	1.441(2)	O1-S1-C20-F2	-54.5(2)
C1-C8A	1.458(5)	O1-S1-C20-F3	-175.69(9)
C1-C8B	1.44(2)	O2-S1-C20-F1	-56.0(2)
C1-C14	1.446(2)	O2-S1-C20-F2	-175.18(9)
F1-C20	1.333(2)	O2-S1-C20-F3	63.6(2)
F2-C20	1.330(2)	O3-S1-C20-F1	-175.60(9)
F3-C20	1.328(2)	O3-S1-C20-F2	65.2(2)
S1-C20	1.823(2)	O3-S1-C20-F3	-56.1(2)
S1-O1	1.440(2)	C2-C1-C8A-C9A	29(2)
S1-O2	1.4369(9)	C2-C1-C8A-C13A	-150.2(8)
S1-O3	1.4353(9)	C2-C1-C8B-C9B	31(2)
C2-C1-C8A	117.7(4)	C2-C1-C8B-C13B	-149(2)
C2-C1-C14	119.11(9)	C2-C1-C14-C15	-143.0(2)
C14-C1-C8A	123.2(4)	C2-C1-C14-C19	36.0(2)
C8B-C1-C2	125.1(5)	C8A-C1-C2-C3	-146.3(5)
C8B-C1-C14	115.7(5)	C8A-C1-C2-C7	34.3(5)
F1-C20-S1	111.73(8)	C8B-C1-C2-C3	-149.5(8)

F2-C20-F1	106.6(2)	C8B-C1-C2-C7	31.1(8)
F2-C20-S1	111.60(8)	C8A-C1-C14-C15	37.1(5)
F3-C20-F1	106.9(2)	C8A-C1-C14-C19	-144.1(5)
F3-C20-F2	108.3(2)	C8B-C1-C14-C15	40.0(7)
F3-C20-S1	111.57(8)	C8B-C1-C14-C19	-141.2(7)
O1-S1-C20	103.00(6)	C14-C1-C2-C3	33.8(2)
O2-S1-C20	103.47(6)	C14-C1-C2-C7	-145.8(2)
O2-S1-O1	115.61(6)	С14-С1-С8А-С9А	-151.7(7)
O3-S1-C20	102.66(6)	C14-C1-C8A-C13A	30(2)
O3-S1-O1	114.86(6)	C14-C1-C8B-C9B	-154(2)
O3-S1-O2	114.71(6)	C14-C1-C8B-C13B	29(2)
O1-S1-C20-F1	64.8(2)		

Schema 35. Nummerierungsschema von 13.

Tabelle 83: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von**13**.

C1-C2	1.529(2)	F3A-21A-F2A	105(2)
C1-C8	1.531(2)	F3B-C21B-C20	113(2)
C1-C14	1.524(2)	F3B-C21B-F2B	104(2)
C21A-C20	1.527(8)	O1-C1-C2	107.0(2)
C21A-F1A	1.26(3)	O1-C1-C8	102.6(2)
C21A-F2A	1.34(2)	O1-C1-C14	108.5(2)
C21A-F3A	1.29(2)	O1-C20-C21A	108.8(7)
C21B-C20	1.54(2)	O1-C20-C21B	107.8(9)
C21B-F1B	1.25(2)	O2-C20-O1	130.8(2)
C21B-F2B	1.34(2)	O2-C20-C21A	120.5(7)
C21B-F3B	1.28(2)	O2-C20-C21B	121.4(9)
O1-C1	1.510(2)	C1-O1-C20-C21A	-177.1(7
O1-C20	1.312(2)	C1-O1-C20-C21B	-174(
O2-C20	1.197(2)	C1-O1-C20-O2	4.1(2)

C2-C1-C8	112.4(2)	C2-C1-C8-C9	(
C14-C1-C2	116.0(2)	C2-C1-C8-C13	88.3(2)
C14-C1-C8	109.8(2)	C2-C1-C14-C15	162.1(2)
C20-O1-C1	122.6(2)	C2-C1-C14-C19	()
F1A-C21A-C20	113(2)	C8-C1-C2-C3	7.4(2)
F1A-C21A-F2A	108(2)	C8-C1-C2-C7	-175. (
F1A-C21A-F3A	110(2)	C8-C1-C14-C15	-6.5(
F1B-C21B-C20	111(2)	C8-C1-C14-C19	106.4(2)
F1B-C21B-F2B	107(2)	C14-C1-C2-C3	134.7(2)
F1B-C21B-F3B	110(2)	C14-C1-C2-C7	-47.7(2)
F2A-C21A-C20	110(2)	C14-C1-C8-C9	140.8(2)
F2B-C21B-C20	114(2)	C14-C1-C8-C13	-4.(
F3A-C21A-C20	114(2)		

Schema 36. Nummerierungsschema von 14.

Tabelle 84: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von**14**.

C1-C2	1.535(2)	C8-C1-C14-C19	10.2(2)
C1-C8	1.533(2)	C14-C1-C2-C3	150.4(2)
C1-C14	1.544(2)	C14-C1-C2-C7	-34.3(2)
C20-C21	1.535(2)	C14-C1-C8-C9	-80.8(2)
C20-C27	1.541(2)	C14-C1-C8-C13	96.6(2)
C20-C33	1.530(2)	C21-C20-C27-C28	-29.9(2)
N1-C1	1.514(2)	C21-C20-C27-C32	153.4(2)
N1-N2	1.227(2)	C21-C20-C33-C34	124.1(2)
N2-N3	1.132(2)	C21-C20-C33-C38	-58.4(2)
N4-C20	1.521(2)	C33-C20-C21-C22	155.4(2)
N4-N5	1.231(2)	C33-C20-C21-C26	-29.0(2)
N5-N6	1.132(2)	С33-С20-С27-С28	96.0(2)
C2-C1-C14	112.8(2)	С33-С20-С27-С32	-80.9(2)
C8-C1-C2	111.02(9)	C27-C20-C21-C22	-79.1(2)
C8-C1-C14	111.6(2)	C27-C20-C21-C26	96.6(2)
C21-C20-C27	110.33(9)	C27-C20-C33-C34	-0.7(2)
C33-C20-C21	112.4(2)	C27-C20-C33-C38	176.79(2)

С33-С20-С27	111.9(2)	N1-C1-C2-C3	30.1(2)
N1-C1-C2	109.9(2)	N1-C1-C2-C7	-154.6(2)
N1-C1-C8	103.40(9)	N1-C1-C8-C9	35.0(2)
N1-C1-C14	107.87(9)	N1-C1-C8-C13	-147.9(2)
N2-N1-C1	116.6(2)	N1-C1-C14-C15	73.9(2)
N3-N2-N1	172.6(2)	N1-C1-C14-C19	-102.8(2)
N4-C20-C21	104.7(2)	N2-N1-C1-C2	58.3(2)
N4-C20-C27	107.9(2)	N2-N1-C1-C8	176.9(2)
N4-C20-C33	109.52(9)	N2-N1-C1-C14	-65.0(2)
N5-N4-C20	115.6(2)	N4-C20-C21-C22	36.7(2)
N6-N5-N4	174.3(2)	N4-C20-C21-C26	-147.8(2)
C2-C1-C8-C9	152.8(2)	N4-C20-C27-C28	-143.6(2)
C2-C1-C8-C13	-30.1(2)	N4-C20-C27-C32	39.7(2)
C2-C1-C14-C15	-47.7(2)	N4-C20-C33-C34	-120.2(2)
C2-C1-C14-C19	135.9(2)	N4-C20-C33-C38	57.4(2)
C8-C1-C2-C3	-83.8(2)	N5-N4-C20-C21	147.3(2)
C8-C1-C2-C7	91.8(2)	N5-N4-C20-C27	-95.4(2)
C8-C1-C14-C15	-173.3(2)	N5-N4-C20-C33	26.7(2)

Schema 37. Nummerierungsschema von 15. Toluol.

Tabelle 85: Ausgewählte Bindungslängen [Å], -winke	I [°] und Diederwinkel [°] von
15 Toluol.	

C1-C2	1.529(2)	C2 ⁱⁱ -C1-C2	112.6(2)
C1-C2 ⁱ	1.529(2)	C2 ⁱ -C1-C2-C3	95.1(2)
C1-C2 ⁱⁱ	1.529(2)	C2 ⁱⁱ -C1-C2-C3	4(
C2 ⁱ -C1-C2 ⁱⁱ	112.6(2)	C2 ⁱ -C1-C2-C7	- 5. (
C2 ⁱ -C1-C2	112.6(2)	C2 ⁱⁱ -C1-C2-C7	145.6(2)

Symmetriecode: (i) -y+1, x-y+2, z; (ii) -x+y-1, -x+1, z; (iii) -x+y+1, -x+1, z; (iv) -y+1, x-y, z.

Tabelle 86: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von $15 \cdot C_6 H_6$.

C1A-C2A	1.527(2)	C2B-C1B-C2B ⁱⁱ	113.6(6)
C1A-C2A ⁱ	1.527(2)	C2B ⁱⁱ -C1B-C2B ⁱ	113.6(6)
C1A-C2A ⁱⁱ	1.527(2)	C9 ⁱⁱⁱ -C8-C9	120.4(2)
C1B-C2B	1.510(8)	C8 ^{iv} -C9-C8	119.7(2)
C1B-C2B ⁱ	1.510(8)	C2A ⁱ -C1A-C2A-C7A	- 5. (
C1B-C2B ⁱⁱ	1.510(8)	C2A ⁱⁱ -C1A-C2A-C7A	144.6(2)
C8-C9	1.381(3)	C2A ⁱ -C1A-C2A-C3A	94.5(2)
C8-C9 ⁱⁱⁱ	1.373(3)	C2A ⁱⁱ -C1A-C2A-C3A	- 5. (
C9-C8 ^{iv}	1.373(3)	C2B ⁱⁱ -C1B-C2B-C3B	-77(

C2A ⁱ -C1A-C2A	112.91(7)	C2B ⁱ -C1B-C2B-C3B	151.7(9)
C2A ⁱ -C1A-C2A ⁱⁱ	112.90(7)	C2B ⁱⁱ -C1B-C2B-C7B	100.9(9)
C2A ⁱⁱ -C1A-C2A	112.90(7)	C2B ⁱ -C1B-C2B-C7B	- 1(
C2B-C1B-C2B ⁱ	113.6(6)		

Symmetriecode: (i) -y+1, x-y+2, z; (ii) -x+y-1, -x+1, z; (iii) -x+y+1, -x+1, z; (iv) -y+1, x-y, z

Schema 39. Nummerierungsschema von 19.

Tabelle 87: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von**19**.

S1-O1A	1.49(2)	O6A-S2-O5A	109.8(2)
S1-O2A	1.541(7)	O6A-S2-O5A ⁱ	107.7(2)
S1-O3A	1.47(2)	O6A ⁱ -S2-O5A ⁱ	109.8(2)
S1-O4A	1.399(9)	O6A-S2-O6A ⁱ	121.4(4)
S1-O1B	1.65(2)	O6B-S2-O5B	110.7(6)
S1-O2B	1.50(2)	O6B-S2-O5B ⁱ	99(2)
S1-O3B	1.27(2)	O6B ⁱ -S2-O5B	99(2)
S1-O4B	1.50(2)	06B ⁱ -S2-O6B	111(2)
S2-O5A	1.540(4)	S2-O5A-Si3	129.9(3)
S2-O5A ⁱ	1.539(4)	S2-O5B-Si3	138(2)
S2-O5B	1.48(2)	O7A-S3-O7A ⁱ	95.4(4)
S2-O5B ⁱ	1.48(2)	O7B-S3-O7B ⁱ	132.3(2)
S2-O6A	1.426(3)	O7B-S3-O8B	109.3(5)

S2-O6A ⁱ	1.426(3)	O7B-S3-O8B ⁱ	96.7(8)
S2-O6B ⁱ	1.46(2)	O7B ⁱ -S3-O8B	96.7(8)
S3-08A	1.415(3)	O7B ⁱ -S3-O8B ⁱ	109.4(5)
S3-O8A ⁱ	1.415(3)	08A-S3-O7A	109.8(2)
S3-O8B	1.48(2)	O8A ⁱ -S3-O7A	108.1(2)
S3-O8B ⁱ	1.48(2)	O8A-S3-O7A ⁱ	108.1(2)
S3-07A	1.544(3)	O8A ⁱ -S3-O7A ⁱ	109.8(2)
S3-O7A ⁱ	1.544(3)	O8A ⁱ -S3-O8A	122.5(4)
S3-O7B	1.48(2)	O8B-S3-O8B ⁱ	113(2)
S3-O7B ⁱ	1.48(2)	S3-O7A-Si4	130.3(3)
Si1-O1A	1.713(8)	S3-O7B-Si4	136.4(9)
Si1-O1B	1.77(3)	01A-S1-02A-Si2	83.5(9)
Si2-O2A	1.738(7)	O1B-S1-O2B-Si2	103(2)
Si2-O2B	1.69(2)	O2A-S1-O1A-Si1	73(2)
Si3-O5A	1.735(4)	O2B-S1-O1B-Si1	74(2)
Si3-O5B	1.72(2)	O3A-S1-O1A-Si1	-38(2)
Si4-O7A	1.731(3)	O3A-S1-O2A-Si2	-163(2)
Si4-O7B	1.73(2)	O3B-S1-O1B-Si1	-48(3)
01A-S1-02A	103.7(5)	O3B-S1-O2B-Si2	-142(3)
03A-S1-01A	109.7(5)	O4A-S1-O1A-Si1	-170(2)
O3A-S1-O2A	103.3(8)	O4A-S1-O2A-Si2	-35(2)
04A-S1-O1A	110.2(8)	O4B-S1-O1B-Si1	-177(2)
04A-S1-O2A	110.7(5)	O4B-S1-O2B-Si2	4(3)
04A-S1-O3A	118.1(6)	O5A ⁱ -S2-O5A-Si3	-82.1(4)
O2B-S1-O1B	95(1)	O5B ⁱ -S2-O5B-Si3	-51(2)
O2B-S1-O4B	108(2)	O6A-S2-O5A-Si3	30.0(6)
O3B-S1-O1B	110(2)	O6A ⁱ -S2-O5A-Si3	164.1(3)
O3B-S1-O2B	118(2)	O6B-S2-O5B-Si3	69(2)
O3B-S1-O4B	124(2)	07A-S3-O7B-Si4	-73(2)
O4B-S1-O1B	98(2)	O7A ⁱ -S3-O7A-Si4	-86.8(4)

S1-O1A-Si1	137.0(9)	O7B ⁱ -S3-O7B-Si4	-47(2)
S1-O2A-Si2	129.7(7)	08A-S3-O7A-Si4	24.6(5)
S1-O1B-Si1	121(2)	O8A-S3-O7B-Si4	75(2)
S1-O2B-Si2	138(2)	08B-S3-O7A-Si4	18.4(9)
O5A ⁱ -S2-O5A	98.1(5)	O8B-S3-O7B-Si4	73(2)
O5B-S2-O5B ⁱ	128(2)	O8B ⁱ -S3-O7B-Si4	-171(2)

Schema 40. Nummerierungsschema von 20.

Tabelle 88: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von**20**.

O1A-S1A	1.588(4)	O3A-S1A-O1A	107.5(2)
O1B-S1B	1.582(8)	O3A-S1A-O2A	110.6(5)
O1C-S1C	1.576(8)	O3A-S1A-O4A	113.3(3)
O6A-S2A	1.587(3)	O3B-S1B-O1B	108.5(6)
O6B-S2B	1.588(6)	O3C-S1C-O1C	108(2)
S1A-O2A	1.431(3)	O4A-S1A-O1A	104.2(3)
S1A-O3A	1.422(6)	O4B-S1B-O1B	104.0(7)
S1A-O4A	1.437(5)	O4B-S1B-O3B	111.7(8)
S1B-O2B	1.436(7)	O4C-S1C-O1C	106.4(9)
S1B-O3B	1.44(2)	O4C-S1C-O3C	110(2)
S1B-O4B	1.438(9)	07A-S2A-O6A	104.0(3)
S1C-O2C	1.436(8)	O7B-S2B-O6B	102.1(6)
S1C-O3C	1.45(2)	08A-S2A-O6A	106.1(3)

S1C-04C	1.440(9)	08A-S2A-O7A	112.5(3)
S2A-O7A	1.443(3)	08B-S2B-O6B	105.2(6)
S2A-08A	1.443(4)	08B-S2B-07B	115.0(6)
S2A-09A	1.440(4)	O8B-S2B-O9B	113.5(9)
S2B-O7B	1.446(6)	09A-S2A-O6A	106.4(3)
S2B-O8B	1.415(6)	O9A-S2A-O7A	112.4(4)
S2B-O9B	1.446(7)	O9A-S2A-O8A	114.4(4)
Si1A-O1A	1.683(2)	O9B-S2B-O6B	105.5(8)
Si1B-O1B	1.677(5)	O9B-S2B-O7B	114.0(8)
Si1C-O1C	1.670(7)	P1-O5-Si2	150.5(2)
Si2-O5	1.677(2)	P2-O10-Si4	142.3(2)
Si3A-O6A	1.684(4)	Si1A-O1A-S1A-O2A	136.8(4)
Si3B-O6B	1.675(6)	Si1A-O1A-S1A-O3A	18.7(4)
Si4-O10	1.686(2)	Si1A-O1A-S1A-O4A	-1 1. (4
P1-O5	1.548(2)	Si1B-O1B-S1B-O2B	-1 .5(
P2-O10	1.555(2)	Si1B-O1B-S1B-O3B	(
S1A-O1A-Si1A	127.5(2)	Si1B-O1B-S1B-O4B	90.3(9)
S1B-O1B-Si1B	131.2(5)	Si1C-01C-S1C-02C	-1 7(
S2A-O6A-Si3A	126.7(4)	Si1C-O1C-S1C-O3C	142(2)
S2B-O6B-Si3B	126.0(8)	Si1C-O1C-S1C-O4C	24(2)
S1C-O1C-Si1C	137.0(9)	Si3A-O6A-S2A-O7A	142.0(4)
02A-S1A-O1A	105.5(4)	Si3A-O6A-S2A-O8A	-99.1(4)
02A-S1A-O4A	114.9(4)	Si3A-O6A-S2A-O9A	23.1(6)
O2B-S1B-O1B	111.2(8)	Si3B-O6B-S2B-O7B	145(2)
O2B-S1B-O3B	100.5(9)	Si3B-O6B-S2B-O8B	-96(2)
O2B-S1B-O4B	120.6(9)	Si3B-O6B-S2B-O9B	25(2)
O2C-S1C-O1C	117(2)		
O2C-S1C-O3C	102(2)		
O2C-S1C-O4C	116(2)		
Schema 41. Nummerierungsschema von 22.

Tabelle 89: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von**22**.

O2-P2	1.542(3)	O5-S1-O6	106.0(2)
O2-Si2	1.675(3)	O7-S2-O6	108.2(2)
P1-O1	1.542(3)	O7-S2-O8	114.8(2)
S1-O3	1.446(3)	O7-S2-O9	115.2(2)
S1-O4	1.429(3)	08-S2-O6	104.3(2)
S1-O5	1.418(3)	08-S2-O9	112.5(2)
S1-O6	1.666(3)	O9-S2-O6	100.2(2)
S2-O6	1.639(3)	P1-O1-Si1	152.4(2)
S2-O7	1.422(3)	P2-O2-Si2	154.7(2)
S2-O8	1.437(3)	S2-O6-S1	123.2(2)
S2-O9	1.447(3)	O3-S1-O6-S2	152.4(2)
Si1-O1	1.681(3)	O4-S1-O6-S2	7(
O3-S1-O6	99.7(2)	O5-S1-O6-S2	32.9(3)
O4-S1-O3	115.0(2)	O7-S2-O6-S1	44.1(3)
O4-S1-O6	103.6(2)	O8-S2-O6-S1	-7 .5(
O5-S1-O3	115.0(2)	O9-S2-O6-S1	165.0(2)
O5-S1-O4	116.0(2)		

Schema 42. Nummerierungsschema von 24.

Tabelle 90: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°]	von
24.	

K1-O1	2.893(2)	Si1A-C2A	K1-O1
K1-O2	2.825(2)	Si1A-C3A	K1-O2
К1-ОЗ	2.922(2)	Si1A-C1C	K1-O3
K1-O4	2.772(2)	Si1A-C2C	K1-O4
K1-O5	2.947(2)	Si1A-C3C	K1-O5
K1-O6	2.830(2)	Si1B-C1B	K1-O6
S1-Si1A	2.064(3)	Si1B-C2B	S1-Si1A
S1-Si1B	2.03(2)	Si1B-C3B	S1-Si1B
S1-K1	3.1259(9)	Si1A-S1-K1	S1-K1
Si1A-C1A	1.861(8)	Si1B-S1-K1	Si1A-C1A

Abbildung 44. Ball-and-Stick-Darstellung von $[(Me_3Si)_3S][B(C_6F_5)_4]$ (25).

Schema 43. Nummerierungsschema von 28.

Tabelle 91: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von**28**.

B1-C1	1.631(4)	N1-B1-C13A	107.6(2)
B1-C7	1.639(4)	N1-B1-C7	108.4(2)
B1-C13A	1.635(4)	01-S1-N1	114.3(2)
B1-C13B	1.62(2)	S1-N1-B1	126.7(2)
N1-B1	1.624(3)	S1-N1-H1	119(2)
N1-H1	0.87(3)	O1-S1-N1-B1	-175.7(2)
O1-S1	1.427(2)	S1-N1-B1-C1	109.0(2)
S1-N1	1.530(2)	S1-N1-B1-C7	-12.2(3)
B1-N1-H1	115(2)	S1-N1-B1-C13A	-127.8(2)
C13B-B1-N1	111.5(7)	S1-N1-B1-C13B	-128.6(7)

NI-BI-CI 102.3(2)

Schema 44. Nummerierungsschema von α-30.

Tabelle 92: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von α -**30**.

N1-B1	1.598(2)	C16-B1-C10	113.1(2)
S1-N1	1.445(2)	N1-B1-C4	103.7(2)
S1-O1	1.556(2)	N1-B1-C10	102.3(2)
Si1-O1	1.742(2)	N1-B1-C16	109.8(2)
Si1-C1	1.835(2)	N1-S1-O1	117.08(8)
Si1-C2	1.836(2)	O1-Si1-C1	107.14(8)
Si1-C3	1.838(2)	O1-Si1-C2	105.91(9)
C1-Si1-C2	112.2(2)	O1-Si1-C3	102.11(9)
C1-Si1-C3	114.8(2)	S1-N1-B1	150.6(2)
C2-Si1-C3	113.7(2)	S1-O1-Si1	129.82(8)
C4-B1-C10	114(2)	O1-S1-N1-B1	-1.1(3)

C16-B1-C4	113.2(2)	N1-S1-O1-Si1	164.88(9)
-----------	----------	--------------	-----------

ſ

Schema 45. Nummerierungsschema von β -30.

Tabelle 93: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von β -30.

B1-N1	1.576(2)	C16-B1-C4	114.4(2)
S1-N1	1.453(2)	N1-B1-C4	100.0(2)
S1-O1	1.543(2)	N1-B1-C10	108.5(2)
Si1-O1	1.751(2)	N1-B1-C16	111.6(2)
Si1-C1	1.841(2)	N1-S1-O1	116.32(8)
Si1-C2	1.826(2)	O1-Si1-C1	104.26(9)
Si1-C3	1.829(2)	O1-Si1-C2	107.37(9)
C2-Si1-C1	112.2(2)	O1-Si1-C3	100.33(9)
C2-Si1-C3	115.9(2)	S1-N1-B1	145.3(2)
C3-Si1-C1	115.2(2)	S1-O1-Si1	132.75(9)
C10-B1-C4	115.1(2)	O1-S1-N1-B1	10.3(2)

C10-B1-C16	107.4(2)	N1-S1-O1-Si1	-149.7(2)
------------	----------	--------------	-----------

Schema 46. Nummerierungsschema von 31.

 Tabelle 94: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von

 31.

Gal-Cl1	2.1624(4)	S1-N1-Ga1	114.24(6)
Ga1-Cl2	2.1550(4)	S1-N1-Si1	122.93(6)
Ga1-Cl3	2.1354(4)	Sil-Nl-Gal	122.44(6)
N1-Ga1	2.004(2)	N1-Ga1-Cl1	105.37(3)
N1-S1	1.540(2)	N1-Ga1-Cl2	106.13(3)
N1-Si1	1.862(2)	N1-Ga1-Cl3	109.10(3)
O1-S1	1.439(2)	Cl2-Ga1-Cl1	110.73(2)
Si1-C1	1.843(2)	Cl3-Ga1-Cl1	112.59(2)
Si1-C2	1.843(2)	Cl3-Ga1-Cl2	112.47(2)
Si1-C3	1.846(2)	S1-N1-Si1-C1	166.05(8)
C1-Si1-C3	112.32(8)	S1-N1-Si1-C2	47.1(2)
C2-Si1-C1	110.90(8)	S1-N1-Si1-C3	-75.33(9)
C2-Si1-C3	115.45(8)	Si1-N1-S1-O1	-0.2(2)
C1-Si1-N1	106.87(6)	Ga1-N1-S1-O1	-173.06(6)
C2-Si1-N1	107.30(6)	Gal-N1-Sil-Cl	-21.58(9)
C3-Si1-N1	103.22(6)	Gal-N1-Si1-C2	-140.59(8)
01-S1-N1	114.59(6)	Ga1-N1-Si1-C3	97.04(8)

Schema 47. Nummerierungsschema von 34.

 Tabelle 95: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von

 2.

O1A-Si1A	1.716(4)	O1A-P1A-O3A	107.9(3)
O1B-Si1B	1.71(3)	O3B-P1B-O1B	116(2)
O1C-Si1C	1.71(3)	O3C-P1C-O1C	116(3)
O2A-Si2A	1.702(5)	O1A-P1A-O4A	111.5(3)
O2B-Si2B	1.73(4)	O1B-P1B-O4B	95(2)
O2C-Si2C	1.73(4)	O1C-P1C-O4C	96(2)
O3A-Si3A	1.692(6)	O2A-P1A-O3A	110.9(3)
O3B-Si3B	1.94(4)	O3B-P1B-O2B	119(2)
O3C-Si3C	1.94(4)	O3C-P1C-O2C	119(2)
O4A-Si4A	1.721(5)	O4A-P1A-O2A	109.3(3)
O4B-Si4B	1.88(4)	O2B-P1B-O4B	109(2)
O4C-Si4C	1.89(4)	O2C-P1C-O4C	109(2)
P1A-O1A	1.512(5)	O4A-P1A-O3A	107.4(3)
P1B-O1B	1.52(4)	O3B-P1B-O4B	109(2)
P1C-O1C	1.51(4)	O3C-P1C-O4C	108(2)
P1A-O2A	1.513(5)	P1A-O1A-Si1A	138.2(3)
P1B-O2B	1.51(4)	P1B-O1B-Si1B	140(2)
P1C-O2C	1.51(4)	P1C-O1C-Si1C	143(3)
P1A-O3A	1.548(5)	P1A-O2A-Si2A	140.9(3)
P1B-O3B	1.37(3)	P1B-O2B-Si2B	151(2)
P1C-O3C	1.38(4)	P1C-O2C-Si2C	155 (3)
P1A-O4A	1.512(5)	P1A-O3A-Si3A	137.4(3)
P1B-O4B	1.57(3)	P1B-O3B-Si3B	125(2)
P1C-O4C	1.58(3)	P1C-O3C-Si3C	124(2)
OIA-PIA-O2A	109.8(3)	P1A-O4A-Si4A	136.0(3)
O2B-P1B-O1B	106(2)	P1B-O4B-Si4B	137(2)
O2C-P1C-O1C	108(3)	P1C-O4C-Si4C	134(2)

Schema 48. Nummerierungsschema von 34.

 Tabelle 96: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von

 34.

P1-O1A	1.519(2)	O2B-P1-O3B	115.6(7)
P1-O1B	1.63(2)	O2B-P1-O4	119.6(5)
P1-O2A	1.534(2)	O3A-P1-O1A	110.36(8)
P1-O2B	1.42(2)	O3A-P1-O2A	109.18(7)

P1-O3A	1.509(2)	O3A-P1-O4	111.28(8)
P1-O3B	1.52(2)	O3B-P1-O1B	102.8(7)
P1-O4	1.521(2)	O3B-P1-O4	98.5(5)
O1A-Si1A	1.713(2)	O4-P1-O1B	110.5(4)
O1B-Si1B	1.717(8)	O4-P1-O2A	107.94(7)
O2A-Si2A	1.719(2)	P1-O1A-Si1A	139.89(9)
O2B-Si2B	1.715(8)	P1-O1B-Si1B	142.2(8)
O3A-Si3A	1.707(2)	P1-O2A-Si2A	138.45(9)
O3B-Si3B	1.688(8)	P1-O2B-Si2B	144.3(9)
O4-Si4	1.721(1)	P1-O3A-Si3A	150.7(2)
01A-P1-O2A	110.43(8)	P1-O3B-Si3B	149(2)
O1A-P1-O4	107.61(7)	P1-O4-Si4	138.22(8)
O2B-P1-O1B	108.5(6)		

Schema 49. Nummerierungsschema von 35.

 Tabelle 97: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von

 35.

K1-O1	2.96(2)	O17A-P2A-O18A	117.4(3)
K1-O2	2.826(2)	O17B-P2B-O18B	117.7(8)
K1-O3	2.938(2)	O17A-P2A-O19A	109.4(3)
K1-O4	2.851(2)	O17B-P2B-O19B	108.9(8)
K1-O5	2.975(2)	O17A-P2A-O20A	108.5(3)
K1-O6	2.834(2)	O17B-P2B-O20B	108.3(8)
K1-O7	3.016(2)	O18A-P2A-O19A	109.8(2)
K1-O8	2.669(2)	O18B-P2B-O19B	109.3(6)
K2-O11	2.972(2)	O18A-P2A-O20A	110.2(2)
K2-O12	2.843(2)	O18B-P2B-O20B	109.8(5)
K2-O13	3.044(2)	O19A-P2A-O20A	100.2(2)
K2-O14	2.837(2)	O20B-P2B-O19B	101.6(4)
K2-O15	2.898(2)	P1-O9-Si1	135.79(9)
K2-O16	2.829(2)	P1-O10-Si2	131.60(8)
K2-O17A	2.796(7)	P2A-O20A-Si3A	132.2(2)
K2-O17B	2.82(2)	P2B-O20B-Si3B	131.8(5)
K2-O18A	2.783(5)	P2A-O19A-Si4A	136.4(2)
K2-O18B	2.71(2)	P2B-O19B-Si4B	133.7(5)
P1-O7	1.483(2)	07-P1-09-Si1	15.8(2)
P1-O8	1.481(2)	07-P1-O10-Si2	1.4(2)
P1-O9	1.588(2)	08-P1-09-Si1	-115.4(2)
P1-O10	1.6(2)	08-P1-O10-Si2	131.9(2)
P2A-017A	1.481(3)	O9-P1-O10-Si2	-115.9(2)
P2A-O18A	1.483(3)	O10-P1-O9-Si1	132.4(2)
P2A-O19A	1.597(3)	O17A-P2A-O19A-Si4A	-92.6(4)
P2A-O20A	1.602(2)	O17B-P2B-O19B-Si4B	-53(2)
P2B-017B	1.480(7)	O17B-P2B-O20B-Si3B	-160(2)
P2B-O18B	1.481(7)	O18A-P2A-O19A-Si4A	137.1(4)
P2B-O20B	1.593(6)	O18B-P2B-O19B-Si4B	177.3(7)
P2B-O19B	1.600(6)	O18B-P2B-O20B-Si3B	-30(2)

O19A-Si4A	1.645(3)	O19B-P2B-O20B-Si3B	85.9(8)
O19B-Si4B	1.632(6)	O20A-P2A-O19A-Si4A	21.3(4)
O20A-Si3A	1.640(3)	O20B-P2B-O19B-Si4B	61.3(8)
O20B-Si3B	1.641(7)		
Si1-O9	1.64(2)		
Si2-O10	1.648(2)		
O7-P1-O9	111.30(8)		
O7-P1-O10	110.56(8)		
O9-P1-O10	99.61(8)		
O8-P1-O7	118.17(8)		
O8-P1-O9	107.85(9)		
O8-P1-O10	107.69(9)		

5.6 NMR-Spektren

- 157.9922

304

Abbildung 60. ²⁹Si INEPT-NMR-Spektrum (59.62 MHz) von 21 in Toluol-[D₈].

Abbildung 62. ¹H-NMR-Spektrum (300.13 MHz) von **21** in 1,2-DCB. Extern auf Toluol-[D₈] referenziert. Vergrößerter Signalbereich der Alkylgruppen.

Abbildung 63. ¹¹B-NMR-Spektrum (96.29 MHz) von 21 in 1,2-DCB.

Abbildung 65. ¹³C{¹H}-NMR-Spektrum (75.48 MHz) von **21** in 1,2-DCB. Extern auf Toluol-[D₈] referenziert. Vergrößerter Signalbereich der Alkylgruppen.

Abbildung 66. ¹³C{¹H}-NMR-Spektrum (75.48 MHz) von **21** in 1,2-DCB. Extern auf Toluol-[D₈] referenziert. Vergrößerter Signalbereich der Alkylgruppen.

Abbildung 67. ¹⁷O-NMR-Spektrum (67.83 MHz) von 21 in 1,2-DCB.

Abbildung 69. ²⁹Si INEPT-NMR-Spektrum (59.62 MHz) von 21 in 1,2-DCB.

- 78.3519

5.6 IR- und Raman-Spektren

Abbildung 124. IR- (rot) und Raman- (grün) Spektrum von 20.

Abbildung 125. IR- (rot) und Raman- (grün) Spektrum von 23.

Abbildung 126. IR- (rot) und Raman- (grün) Spektrum von 24.

Abbildung 127. Raman-Spektrum von 25.

Abbildung 128. IR- (rot) und Raman- (grün) Spektrum von 33.

Abbildung 129. IR- (rot) und Raman- (grün) Spektrum von **34**. Der Stern markiert die Valenzschwingung von Wasser v(H₂O), welche durch die rasche Hydrolyse der Probe entsteht.

Abbildung 130. IR- (rot) und Raman- (grün) Spektrum von 35.

Abbildung 131. IR- (rot) und Raman- (grün) Spektrum von 37.

Abbildung 133. IR- (rot) und Raman- (grün) Spektrum von K₂SO₄.

Abbildung 136. Raman-Spektrum von OPMe₃.

Abbildung 137. IR- (rot) und Raman- (grün) Spektrum von KH₂[PO₄].

6 Abbildungsverzeichnis

Abbildung 1. Original Ortep-Darstellung des [Mes ₃ Si]-Kations. ^[15]
Abbildung 2. X = Solvenz, Gegenion; (links) Pyramidalisierung durch Wechselwirkungen mit
einem X, (<i>mitte</i>) idealisiertes planares [Me₃Si]⁺-Kation, (<i>rechts</i>) Interaktion zweier X mit
leerem p _z -Orbital5
Abbildung 3. Hammett-Skala einiger supersaurer Spezies. Original-Abbildung entnommen aus
Referenz [33]
Abbildung 4. ORTEP-Darstellung der Molekülstruktur von 7 (links) und 10 (rechts) im Kristall.
Ellipsoide bei 50 % Wahrscheinlichkeit (173 K). Farbcode: Bor – braun, Chlor – grün,
Kohlenstoff – grau, Antimon – braun, Fluor – blau, Wasserstoff – weiß
Abbildung 5. ORTEP-Darstellung der Molekülstruktur von 13 (links) und 14 (rechts) im Kristall.
Ellipsoide bei 50 % Wahrscheinlichkeit bei (173 K). Fehlordnungen nicht dargestellt.
Farbcode: Kohlenstoff – grau, Stickstoff – blau, Sauerstoff – rot, Fluor – blau, Wasserstoff –
weiß
Abbildung 6. Abbildung des elektrostatischen Potentials auf die Elektronendichte. Blaue
Bereiche sind Orte positiver Ladung, rote Bereiche Orte mit negativem
Ladungsschwerpunkt
Abbildung 7. Drei ausgewählte Strukturisomere mit drei unterschiedlichen Protonen-
Konnektivitätsmustern von H[CHB ₁₁ H _{11-n} X _n] (n = 6, 11; X, Y = H, F, Cl, Br, I), grün – <i>para</i> –
Boratom, rot – <i>met</i> a–Boratome und blau – <i>ortho</i> –Boratome
Abbildung 8. HOMOs links: [CHB ₁₁ F ₁₁] ⁻ , rechts: [CHB ₁₁ Br ₁₁] ⁻
Abbildung 9 (Links) Schichtstruktur von H ₂ SO ₄ -Molekülen aus Referenz [145], (Mitte) Monomere
Grundeinheit mit intermolekularen Wechselwirkungen, T = [Me ₃ Si], (<i>Rechts</i>) ORTEP-
Darstellung der Molekülstruktur von (19) im Kristall. Fehlordnungen nicht dargestellt.
Ellipsoide bei 50 % Wahrscheinlichkeit (123 K). Farbcode: Sauerstoff – rot, Schwefel – gelb,
Kohlenstoff – grau, Silizium – rosa, Wasserstoff – weiß
Abbildung 10. (Links) ORTEP-Darstellung der Molekülstruktur von (20) im Kristall.
Fehlordnungen nicht dargestellt. Ellipsoide bei 50 % Wahrscheinlichkeit (123 K). Farbcode:
Phosphor – orange, Schwefel – gelb, Kohlenstoff – grau, Silizium – pink, Wasserstoff – weiß,
(<i>Recht</i> s) NBO-Partialladungen27
Abbildung 11. Ball-and-Stick-Darstellung der Elementarzelle von 20. Wasserstoffatome nicht
dargestellt
Abbildung 12. ²⁹ Si-INEPT-NMR-Spektren von unten nach oben 20 , 19 , 21 , δ (²⁹ Si) = 28.01,
33.58, 55.10 ppm
Abbildung 13. ORTEP-Darstellung der Molekülstruktur von (22) im Kristall. Ellipsoide bei 50 %
Wahrscheinlichkeit. Farbcode (123 K). Sauerstoff – rot, Schwefel – gelb, Kohlenstoff – grau,
Silizium – pink, Phosphor – orange, Wasserstoff – weiß

Abbildung 14. ORTEP-Darstellung der Molekülstruktur von (24) im Kristall. Fehlordnungen nicht dargestellt. Ellipsoide bei 50 % Wahrscheinlichkeit (123 K). Farbcode: Sauerstoff – rot, Kalium – dunkelgrün, Kohlenstoff – grau, Silizium – pink, Schwefel – gelb, Wasserstoff – weiß.

Abbildung 20. Relative Energien [kcal·mol⁻¹] aller Struktur- und Konformationsisomere von 30.41

 Abbildung 21. (links) ORTEP-Darstellung der Molekülstruktur von 31. Ellipsoide bei 50 % Wahrscheinlichkeit (173 K). Farbcode: Gallium – hellblau, Chlor – grün, Kohlenstoff – grau, Schwefel – gelb, Silizium – pink, Schwefel – gelb, Stickstoff – dunkelblau, Wasserstoff – weiß. (rechts) ELF von 31, zweidimensionaler Profilschnitt durch die O-S-N-Si(Ga)-Ebene.42

Abbildung 22.¹⁴N-NMR-Spektren von oben nach unten: 32, 31, 29, 26 und [NSO]⁻......43

Abbildung 23. MO-Bild für die 4-Elektronen-3-Zentren-Bindung des [NSO]⁻......45

Abbildung 26. ORTEP-Darstellung der Molekülstruktur von 35 im Kristall. Fehlordnungen und einkristallisiertes DME nicht dargestellt. Ellipsoide bei 50 % Wahrscheinlichkeit (123 K).
 Farbcode: Kalium – grün, Kohlenstoff – grau, Phosphor – orange, Sauerstoff – rot, Silizium – pink, Wasserstoff – weiß.

Abbildung 27. Optimierte Gasphasenstruktur von [O₃POSiMe₃]⁻. Grau – Kohlenstoff, Grün – Silizium, Rot – Sauerstoff, Orange – Phosphor. ∡(OSiO) = 79°, ∡(OPO) = 89°......52

Abbildung 30: Relative Energien [kcal·mol ⁻¹] der Struktur- und Konformationsisomere w	on 32 .
	110
Abbildung 30. Isomer 1	128
Abbildung 31. Isomer 2.	128
Abbildung 32. Isomer 3	128
Abbildung 33. Isomer 5	128
Abbildung 34. Isomer 4	128
Abbildung 35. Isomer 6	128
Abbildung 36. Isomer 7.	129
Abbildung 37. Isomer 8	129
Abbildung 38. Isomer 9.	129
Abbildung 39. Isomer 10.	129
Abbildung 40. Isomer 11	129
Abbildung 41. Isomer 12.	129
Abbildung 42. Isomer 13	130
Abbildung 44. Ball-and-Stick-Darstellung von $[(Me_3Si)_3S][B(C_6F_5)_4]$ (25)	275
Abbildung 45. ¹ H-NMR-Spektrum (300.13 MHz) von 19 in Toluol-[D ₈]	291
Abbildung 46. ${}^{13}C{}^{1}H$ -NMR-Spektrum (75.47 MHz) von 19 in Toluol-[D ₈]	292
Abbildung 47. ¹⁷ O-NMR-Spektrum (67.83 MHz) von 19 in Toluol-[D ₈]	293
Abbildung 48. ²⁹ Si INEPT-NMR-Spektrum (59.63 MHz) von 19 in Toluol-[D ₈]	294
Abbildung 49. ¹ H-NMR-Spektrum (300.13 MHz) von 20 in CD ₂ Cl ₂ bei 25 °C	295
Abbildung 50. ¹ H-NMR-Spektrum (500.13 MHz) von 20 in CD ₂ Cl ₂ bei 25 °C	296
Abbildung 51. ¹ H-NMR-Spektrum (500.13 MHz) von 20 in CD_2CI_2 ei – 0 °	297
Abbildung 52. ¹³ C{ ¹ H}-NMR-Spektrum (75.47 MHz) von 20 in CD ₂ Cl ₂	298
Abbildung 53. ¹⁷ O-NMR-Spektrum (67.83 MHz) von 20 in CD ₂ Cl ₂	299
Abbildung 54. ²⁹ Si INEPT-NMR-Spektrum (59.63 MHz) von 20 in CD ₂ Cl ₂	300
Abbildung 55. ¹ H-NMR-Spektrum (300.13 MHz) von 21 in Toluol-[D ₈]	301
Abbildung 56. ¹¹ B-NMR-Spektrum (96.29 MHz) von 21 in Toluol-[D ₈]	302
Abbildung 57. $^{13}C{^1H}$ -NMR-Spektrum (75.48 MHz) von 21 in Toluol-[D ₈]	303
Abbildung 58. ¹⁷ O-NMR-Spektrum (67.83 MHz) von 21 in Toluol-[D ₈]	304
Abbildung 59. ¹⁹ F{ ¹ H}-NMR-Spektrum (282.38 MHz) von 21 in Toluol-[D ₈]	305
Abbildung 60. ²⁹ Si INEPT-NMR-Spektrum (59.62 MHz) von 21 in Toluol-[D ₈]	306
Abbildung 61. 1 H-NMR-Spektrum (300.13 MHz) von 21 in 1,2-DCB. Extern auf Toluol-[D ₈]	
referenziert	307
Abbildung 62. 1 H-NMR-Spektrum (300.13 MHz) von 21 in 1,2-DCB. Extern auf Toluol-[D ₈]	
referenziert. Vergrößerter Signalbereich der Alkylgruppen	308
Abbildung 63. ¹¹ B-NMR-Spektrum (96.29 MHz) von 21 in 1,2-DCB	309
Abbildung 64. ¹³ C{ ¹ H}-NMR-Spektrum (75.48 MHz) von 21 in 1,2-DCB. Extern auf Toluol-[D ₈]
referenziert	310

Abbildung 65. ¹³ C{ ¹ H}-NMR-Spektrum (75.48 MHz) von 21 in 1,2-DCB. Extern auf Toluol-	-[D ₈]
referenziert. Vergrößerter Signalbereich der Alkylgruppen	311
Abbildung 66. ¹³ C{ ¹ H}-NMR-Spektrum (75.48 MHz) von 21 in 1,2-DCB. Extern auf Toluol-	·[D ₈]
referenziert. Vergrößerter Signalbereich der Alkylgruppen	312
Abbildung 67. ¹⁷ O-NMR-Spektrum (67.83 MHz) von 21 in 1,2-DCB	313
Abbildung 68. ¹⁹ F{ ¹ H}-NMR-Spektrum (282.38 MHz) von 21 in 1,2-DCB	314
Abbildung 69. ²⁹ Si INEPT-NMR-Spektrum (59.62 MHz) von 21 in 1,2-DCB	315
Abbildung 70. ¹ H-NMR-Spektrum (300.13 MHz) von 23 in THF-[D ₈]	316
Abbildung 71. ¹³ C{ ¹ H}-NMR-Spektrum (75.47 MHz) von 23 in THF-[D ₈]	317
Abbildung 72. ²⁹ Si INEPT-NMR-Spektrum (59.63 MHz) von 23 in THF-[D ₈]	318
Abbildung 73. ¹ H-NMR-Spektrum (300.13 MHz) von 24 in THF-[D ₈]	319
Abbildung 74. ¹³ C{ ¹ H}-NMR-Spektrum (75.47 MHz) von 24 in THF-[D ₈]	320
Abbildung 75. ²⁹ Si INEPT-NMR-Spektrum (59.63 MHz) von 24 in THF-[D ₈]	321
Abbildung 76. ¹ H-NMR-Spektrum (300.13 MHz) von 25 in Toluol. Extern auf CD ₂ Cl ₂ refere	enziert.
Spektrum direkt aus der Reaktionslösung heraus aufgenommen	322
Abbildung 77. ¹¹ B-NMR-Spektrum (96.29 MHz) von 25 in Toluol	323
Abbildung 78. ¹³ C{ ¹ H}-NMR-Spektrum (75.47 MHz) von 25 in Toluol	324
Abbildung 79. ¹⁹ F{ ¹ H}-NMR-Spektrum (282.38 MHz) von 25 in Toluol	325
Abbildung 80. ²⁹ Si{ ¹ H}-IG-NMR-Spektrum (59.63 MHz) von 25 in Toluol	326
Abbildung 81. ¹ H-NMR-Spektrum (300.13 MHz) von 25 in 1,2-DCB. Extern auf Aceton-[D	6]
referenziert	327
Abbildung 82. ¹¹ B-NMR-Spektrum (96.29 MHz) von 25 in 1,2-DCB	328
Abbildung 83. ¹³ C{ ¹ H}-NMR-Spektrum (75.47 MHz) von 25 in 1,2-DCB. Extern auf Acetor	ı-[D ₆]
referenziert	329
Abbildung 84. ¹⁹ F{ ¹ H}-NMR-Spektrum (282.38 MHz) von 25 in 1,2-DCB	330
Abbildung 85. ²⁹ Si INEPT-NMR-Spektrum (59.63 MHz) von 25 in 1,2-DCB	331
Abbildung 86. ¹ H-NMR-Spektrum (300.13 MHz) von 33 in CD ₂ Cl ₂	332
Abbildung 87. ¹³ C{ ¹ H}-NMR-Spektrum (75.47 MHz) von 33 in CD ₂ Cl ₂	333
Abbildung 88. ¹⁷ O-NMR-Spektrum (67.80 MHz) von 33 in CD ₂ Cl ₂	334
Abbildung 89. ¹⁷ O-NMR-Spektrum (67.80 MHz) von 33 in CD ₂ Cl ₂ , vergrößerter	
Signalausschnitt	335
Abbildung 90. ²⁹ Si INEPT-NMR-Spektrum (59.63 MHz) von 33 in CD ₂ Cl ₂	336
Abbildung 91. 31P{1H}-NMR-Spektrum (121.51 MHz) von 33 in CD ₂ Cl ₂	337
Abbildung 92. ¹ H-NMR-Spektrum (300.13 MHz) von 34 in CD ₂ Cl ₂	338
Abbildung 93. ¹¹ B-NMR-Spektrum (96.29 MHz) von 34 in CD ₂ Cl ₂	339
Abbildung 94. ¹³ C{1H}-NMR-Spektrum (75.47 MHz) von 34 in CD ₂ Cl ₂	340
Abbildung 95. ¹⁷ O-NMR-Spektrum (67.80 MHz) von 34 in CD ₂ Cl ₂	341
Abbildung 96. ¹⁹ F-NMR-Spektrum (282.24 MHz) von 34 in CD ₂ Cl ₂	342
Abbildung 97. ²⁹ Si INEPT-NMR-Spektrum (59.63 MHz) von 34 in CD ₂ Cl ₂	343
Abbildung 98. ³¹ P{ ¹ H} NMR-Spektrum (121.49 MHz) von 34 in CD ₂ Cl ₂	344

Abbildung 99. ¹ H NMR-Spektrum (300.13 MHz) von 35 in CD ₂ Cl ₂	.345
Abbildung 100. ¹³ C{ ¹ H}-NMR-Spektrum (75.47 MHz) von 35 in CD ₂ Cl ₂	346
Abbildung 101. ²⁹ Si INEPT-NMR-Spektrum (59.62 MHz) von 35 in CD ₂ Cl ₂	347
Abbildung 102. ²⁹ Si INEPT-NMR-Spektrum (59.62 MHz) von 35 in CD ₂ Cl ₂ . vergrößerter	
Signalausschnitt	.348
Abbildung 103. ³¹ P{ ¹ H}-NMR-Spektrum (121.51 MHz) von 35 in CD ₂ Cl ₂	349
Abbildung 104. ¹ H-NMR-Spektrum (300.13 MHz) von 37 in THF-[D ₈]	.350
Abbildung 105. ¹ H-NMR-Spektrum (300.13 MHz) von 37 in THF-[D ₈], vergrößerter	
Signalausschnitt	.351
Abbildung 106. ²⁹ Si INEPT-NMR-Spektrum (59.63 MHz) von 37 in THF-[D ₈]	352
Abbildung 107. ²⁹ Si INEPT-NMR-Spektrum (59.63 MHz) von 37 in THF-[D ₈], vergrößerter	
Signalausschnitt	.353
Abbildung 108. ¹⁷ O-NMR-Spektrum (67.83 MHz) von K ₂ SO ₄ in D ₂ O	354
Abbildung 109. ¹ H-NMR-Spektrum (300.13 MHz) von Me3SiOCMe3/DME in CD ₂ Cl ₂	.355
Abbildung 110. ¹³ C{ ¹ H}-NMR-Spektrum (75.47 MHz) von Me3SiOCMe3/DME in CD ₂ Cl ₂	356
Abbildung 111. ²⁹ Si INEPT-NMR-Spektrum (59.63 MHz) von Me ₃ SiOCMe3/DME in CD2Cl2.	
	.357
Abbildung 112. ¹⁷ O-NMR-Spektrum (67.83 MHz) von reiner 95 %-iger H ₂ SO ₄ , ohne	
Lösungsmittel	.358
Abbildung 113. ¹⁷ O-NMR-Spektrum (67.83 MHz) von Na₂[SO₃]359	
Abbildung 114. ¹ H-NMR-Spektrum (300.13 MHz) von K[OC(CH ₃) ₃] in THF-[D ₈]	360
Abbildung 115. ¹³ C{ ¹ H}-NMR-Spektrum (75.48 MHz) von K[OC(CH ₃)₃] in THF-[D ₈]	.361
Abbildung 116. ¹ H-NMR-Spektrum (300.13 MHz) von OPMe ₃ in CD ₂ Cl ₂	362
Abbildung 117. ¹³ C{ ¹ H}-NMR-Spektrum (75.47 MHz) von OPMe ₃ in CD ₂ Cl ₂	.363
Abbildung 118. ¹⁷ O-NMR-Spektrum (67.82 MHz) von OPMe ₃ in CD ₂ Cl ₂	.364
Abbildung 119. ³¹ P{ ¹ H}-Spektrum (121.51 MHz) von OPMe ₃ in CD ₂ Cl ₂	365
Abbildung 120. ¹ H-NMR-Spektrrum (300.13 MHz) von KH ₂ [PO ₄] in D ₂ O	.366
Abbildung 121. ¹⁷ O-NMR-Spektrum (67.82 MHz) von KH ₂ [PO ₄] in D ₂ O	367
Abbildung 122. ³¹ P-NMR-Spektrum (121.49 MHz) von KH ₂ [PO ₄] in D ₂ O	.368
Abbildung 123. IR- (rot) und Raman- (grün) Spektrum von 19	370
Abbildung 124. IR- (rot) und Raman- (grün) Spektrum von 20	371
Abbildung 125. IR- (rot) und Raman- (grün) Spektrum von 23	372
Abbildung 126. IR- (rot) und Raman- (grün) Spektrum von 24.	373
Abbildung 127. Raman-Spektrum von 25	374
Abbildung 128. IR- (rot) und Raman- (grün) Spektrum von 33	375
Abbildung 129. IR- (rot) und Raman- (grün) Spektrum von 34	376
Abbildung 130. IR- (rot) und Raman- (grün) Spektrum von 35	377
Abbildung 131. IR- (rot) und Raman- (grün) Spektrum von 37	378
Abbildung 132. Raman-Spektrum von H₂SO₄	.379
Abbildung 133. IR- (rot) und Raman- (grün) Spektrum von K ₂ SO ₄	.380

Abbildung 134. IR- (rot) und Raman- (grün) Spektrum von Na2[SO3]	
Abbildung 135. IR- (rot) und Raman- (grün) Spektrum von K[OCMe]
Abbildung 136. Raman-Spektrum von OPMe ₃	
Abbildung 137. IR- (rot) und Raman- (grün) Spektrum von KH ₂ [PO ₄]	

7 Schemataverzeichnis

Schema 1. Gasphasen Protonen-/ TMS-Affinität. A = H, [Me ₃ Si]; Y = Anion 6
Schema 2. Klassische Neutralisationsreaktion und analoge Silyl-Metathese-Reaktion
Schema 3. Unterschiedliche Koordinationsmodi von kleinen homoleptischen Trimethylsilyl-Ionen;
^[a] $[(Me_3Si)_3Si(H)Me_2]^+$
Schema 4. Bartlett-Condon-Schneider-Hydridtransfer, Y = Carborate, Z = Carborate, Borate 11
Schema 5. Darstellung von [Ph ₃ C][Y] Verbindungen; $E = B$, Al, Ga; $X = CI$, Br; $Y = BF_4$ (1), BCI_4
(2), $AICI_4$ (3), $GaCI_4$ (4), PF_6 (5), AsF_6 (6), SbF_6 (7), $SbCI_6$ (8), $CHB_{11}H_5CI_6$ (9), $CHB_{11}CI_{11}$
(10), $CHB_{11}H_5Br_6$ (11), CF_3SO_3 (12), CF_3COO (13), N_3 (14) 11
Schema 6. Abschirmungskonstante σ eines Kernes <i>i</i> innerhalb eines diamagnetischen
Moleküls. ^[124] $\sum \sigma_j$ – Summe der Abschirmungskonstanten aller Nachbaratome
Schema 7. H^+ und $[Me_3Si]^+$ -Affinität, A = H, $[Me_3Si]$ von Carborat-Ionen
Schema 8. Säure-Base-Chemie der Schwefelsäure und der silylierten Schwefelsäure, A = H,
$[Me_3Si]$, B = Base, Y = schwachkoordinierendes Anion
Schema 9. Reaktionen mit silylierter Schwefelsäure
Schema 10. Autoprotolyse und Kondensations-Reaktion von Schwefelsäure. ^[146]
Schema 11. Darstellung [Me ₃ SiOPMe ₃][S ₂ O ₇]
Schema 12. Säure-Base-Chemie der Schwefelwasserstoffsäure und des silylierten Sulfids, A =
H, [Me ₃ Si], B = Base, Y = schwachkoordinierendes Anion
Schema 13. Darstellung von $S(SiMe_3)_2$ (23), [K@18-Krone-6][SSiMe_3] (24) und
$[(Me_3Si)_3S][B(C_6F_5)_4]$ (25)
Schema 14. Darstellung von Me ₃ Si-NSO, 27, 26 und 28
Schema 15. Darstellung von HNSO←GaCl ₃ (32) und OS(Me ₃ Si)N←GaCl ₃ (31) 42
Schema 16. NBO-Partialladungen von 32, 31, 29, 26
Schema 17. Gewichtete Lewis-Formeln der Verbindungen [NSO] ⁻ , 26, 29, 28, 31, 30. Eine BF ₃ -
Gruppe repräsentiert die Lewis-Säure B(C_6F_5) ₃ in den Fällen von 28 und 30 . ^[181,182]
Schema 18. Säure-Base-Chemie der protonierten und silylierten Phosphorsäure, A = H, [Me ₃ Si],
B = Base, Y = schwachkoordinierendes Anion
Schema 19. Darstellung von 33
Schema 20. Tautomeriegleichgewichte der schwefligen Säure
Schema 21. Versuchte Darstellungen von 36, getestete Lösungsmittel* = Toluol, CH_2Cl_2 und
THF, LS = Lewis-Säure
Schema 22. Darstellung von AAAP und 36, M = Na, K
Schema 23. Synthese von 38
Schema 24. Isomere von $38 \cdot B(C_6F_5)_3$ - Addukten mit dazugehörigen B-P- und B-O-Abständen [Å]
und relativen Energien [kcal·mol ⁻¹]. [#] 58
Schema 25 (Bindungslängen) in [Å] und relative Energien in [kcal·mol-1] für verschiedene
[Me₃Si/H…PCO] ⁺ -Isomere61
Schema 26. Nummerierungsschema von 2

Schema 27. Nummerierungsschema von 3	247
Schema 28. Nummerierungsschema von 4	249
Schema 29. Nummerierungsschema von 5	251
Schema 30. Nummerierungsschema von 6	253
Schema 31. Nummerierungsschema von 7	255
Schema 32. Nummerierungsschema von 11·CH ₂ Cl ₂	257
Schema 33. Nummerierungsschema von 11·CH ₃ CN	258
Schema 34. Nummerierungsschema von 12	259
Schema 35. Nummerierungsschema von 13	261
Schema 36. Nummerierungsschema von 14	
Schema 37. Nummerierungsschema von 15. Toluol	265
Schema 38. Nummerierungsschema von $15 \cdot C_6 H_6$	
Schema 39. Nummerierungsschema von 19	
Schema 40. Nummerierungsschema von 20	271
Schema 41. Nummerierungsschema von 22	273
Schema 42. Nummerierungsschema von 24	274
Schema 43. Nummerierungsschema von 28	276
Schema 44. Nummerierungsschema von α-30.	278
Schema 45. Nummerierungsschema von β -30	
Schema 46. Nummerierungsschema von 31	
Schema 47. Nummerierungsschema von 34.	
Schema 48. Nummerierungsschema von 34	
Schema 49. Nummerierungsschema von 35	

8 Tabellenverzeichnis

Tabelle 1 : Vergleich der Dichten, der Schmelz- und Siedepunkte von Me ₃ Si-X und H-X (X = $ $	F, Cl,
Br, I)	2
Tabelle 2: ²⁹ Si-NMR-Verschiebungen und Summe der C-Si-C-Winkel.	4
Tabelle 3: Protonen-/ TMS-Affinitäten ausgewählter Verbindungen [Y]. A = H ⁺ , [Me ₃ Si]]⁺ für
homoleptische Verbindungen	7
Tabelle 4: Übersicht über einige physikalische und spektroskopische Eigenschaften	von
[Ph ₃ C][Y]-Verbindungen	13
Tabelle 5: Strukturisomere und Energieunterschiede von [Me ₃ Si][Carborat]-Derivaten	18
Tabelle 6: Übersicht über einige spektroskopische und quantenchemische Eigenschaften	ı von
<i>closo</i> -Carboraten	19
Tabelle 7: Übersicht über δ (²⁹ Si) und Gibbs-Enthalpien für die Protonierung und Silylie halogenierter Carborate	erung 22
Tabelle 8: Abstand (<i>d</i>) zwischen Halogen und Silizium-Zentrum. Partialladung (<i>a</i>) des Halog	aens.
der TMS-Gruppe und des <i>antipodalen</i> Bor-Atoms	
Tabelle 9: Ausgewählte Bindungslängen (d) und –winkel (\measuredangle) einiger NSO-Spezies	40
Tabelle 10: δ_{her} ⁽²⁹ Si) einiger ausgewählter trimethylsilvlierter Sulfit-Verbindungen	55
<i>Tabelle 11:</i> Eingesetzte Chemikalien, deren Herkunft und Reinigung.	63
Tabelle 12 : Ausgewählte NMR-Verschiebungen, Gasphasen und [Me ₃ Si] ⁺ -Affinitäten von C	arba-
closo-boraten	125
Tabelle 13: Zusammenfassung NBO-Ergebnisse für Carba-closo-borate	126
Tabelle 14: Energieunterschiede zwischen verschiedenen Protonierungsseiten für Carba-c	loso-
borate.	127
Tabelle 15: Silylierte Konstitutions-Isomere von [SO ₃] ²⁻	131
Tabelle 16: Ausgewählte berechnete und beobachtete 17 O-NMR-Verschiebungen	von
verschiedenen Schwefel-Sauerstoff Verbindungen.	. 132
Tabelle 17: Experimentelle und berechnete NMR-Verschiebungen und Kopplungskonstanten	ı. 133
Tabelle 18: NBO-Analyse von [CHB ₁₁ H ₁₁] ⁻	. 134
Tabelle 19: NBO-Analyse von H[CHB ₁₁ H ₁₁].	. 135
Tabelle 20: NBO-Analyse von [Me ₃ Si][CHB ₁₁ H ₁₁]	. 136
Tabelle 21: NBO-Analyse von [CHB₁₁H₅F₀] [¯]	. 137
Tabelle 22: NBO-Analyse von H[CHB₁₁H₅F₀]	. 138
Tabelle 23: NBO-Analyse von [Me₃Si][CHB₁₁H₅F₀]	. 139
Tabelle 24: NBO-Analyse von [CHB₁₁H₅Cl₀] [−]	. 140
Tabelle 25: NBO-Analyse von H[CHB₁₁H₅Cl₀]	. 141
Tabelle 26: NBO-Analyse von [Me₃Si][CHB₁₁H₅Cl₀].	. 142
Tabelle 27: NBO-Analyse von [CHB₁₁H₅Br₀] [¯]	. 143
Tabelle 28: NBO-Analyse von H[CHB ₁₁ H₅Br ₆].	. 144
Tabelle 29: NBO-Analyse von [Me₃Si][CHB₁₁H₅Br₀]	. 145

Tabelle 30: NBO-Analyse von [CHB ₁₁ H ₅ I ₆] ⁻	146
Tabelle 31: NBO-Analyse von H[CHB₁₁H₅I₅]	147
Tabelle 32: NBO-Analyse von [Me₃Si][CHB₁₁H₅I₅]	148
Tabelle 33: NBO-Analyse von [CHB ₁₁ F ₁₁] ⁻ .	149
Tabelle 34: NBO-Analyse von H[CHB ₁₁ F ₁₁].	150
Tabelle 35: NBO-Analyse von [Me₃Si][CHB₁₁F₁₁]	151
Tabelle 36: NBO-Analyse von [CHB ₁₁ Cl ₁₁] ⁻	152
Tabelle 37: NBO-Analyse von H[CHB ₁₁ CI ₁₁]	153
Tabelle 38: NBO-Analyse von [Me₃Si][CHB₁₁Cl₁₁].	154
Tabelle 39: NBO-Analyse von [CHB ₁₁ Br ₁₁] ⁻	155
Tabelle 40: NBO-Analyse von H[CHB ₁₁ Br ₁₁].	156
Tabelle 41: NBO-Analyse von [Me₃Si][CHB₁₁Br₁1]	157
Tabelle 42: NBO-Analyse von [CHB ₁₁ I ₁₁]	158
Tabelle 43: NBO-Analyse von H[CHB ₁₁ I ₁₁] ⁻	159
Tabelle 44: NBO-Analyse von [Me₃Si][CHB₁₁I₁]	
Tabelle 45: NBO-Analyse von [Me₃SiOSO₃] [¯]	161
Tabelle 46: NBO-Analyse von 19	162
Tabelle 47: NBO-Analyse von [(Me₃SiO)₃SO] ⁺	
Tabelle 48: NBO-Analyse von [Me₃SiS] [¯]	165
Tabelle 49: NBO-Analyse von 23.	
Tabelle 50∶ NBO-Analyse von [(Me₃Si)₃S] ⁺	167
Tabelle 51: NBO-Analyse von [PO4] ³⁻	168
Tabelle 52: NBO-Analyse von [H ₂ PO ₄] ⁻	168
Tabelle 53: NBO-Analyse von [Me ₃ SiOPO ₃] ²⁻ .	
Tabelle 54: NBO-Analyse von [(Me ₃ SiO) ₂ PO ₂] ⁻	170
Tabelle 55: NBO-Analyse von 33	171
Tabelle 56: NBO-Analyse von [(Me₃SiO)₄P] ⁺	173
Tabelle 57: NBO-Analyse von [Me ₃ SiOSO ₂] ⁻	175
Tabelle 58: NBO-Analyse von 36	176
Tabelle 59∶ NBO-Analyse von [(Me₃SiO)₃S] ⁺	177
Tabelle 60: NBO-Analyse von [PCO] ⁻	179
Tabelle 61: NBO-Analyse von 38	179
Tabelle 62: NBO-Analyse von H-OCP.	179
Tabelle 63: NBO-Analyse von [Me₃Si-P(H)CO] ⁺	
Tabelle 64: Daten zu den Röntgenkristallstrukturanalysen der Verbindungen (2), (3)) und (4)236
Tabelle 65: Daten zu den Röntgenkristallstrukturanalysen der Verbindungen (5), (6)) und (7) 237
Tabelle 66: Daten zu den Röntgenkristallstrukturanalysen der (9), $(9 \cdot CH_3 CN)$ und (*	IO)238
Tabelle 67: Daten zu den Röntgenkristallstrukturanalysen der Verbindunger	ı (10·2·C ₇ H ₈),
(11·CH ₂ Cl ₂) und (11·CH ₃ CN).	239

Tabelle 68: Daten zu den Röntgenkristallstrukturanalysen der Verbindungen (12), (13) und (14). 240
Tabelle 69: Daten zu den Röntgenkristallstrukturanalysen der Verbindungen (15·C ₆ H ₆), (15·C ₇ H ₈) und (19).
Tabelle 70: Daten zu den Röntgenkristallstrukturanalysen der Verbindungen (20), (22) und (24).
Tabelle 71: Daten zu den Röntgenkristallstrukturanalysen der Verbindungen (28), (α-30) und (β-30).
Tabelle 72: Daten zu den Röntgenkristallstrukturanalysen der Verbindungen (28), (34) und(34·C7H8).244
Tabelle 73: Daten zu den Röntgenkristallstrukturanalysen der Verbindungen (35), (22) und(30·C7H8).
Tabelle 74: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von 2
Tabelle 76: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von 4
Tabelle 77: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von 5
Tabelle 79: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von 7
Tabelle 81 : Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von 11 ·CH ₃ CN. 258 Tabelle 82 : Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von 12
Tabelle 83: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von 13
Tabelle 84: Ausgewählte Bindungslängen [Å], -winkel [] und Diederwinkel [] von 14
Tabelle 86: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von 15·C ₆ H ₆ 266 Tabelle 87: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von 19
Tabelle 88: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von 20
Tabelle 90: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von 24
Tabelle 91 : Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von α -30
Tabelle 93: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von β-30
Tabelle 95: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von 2
Tabelle 97: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von 35

9 Literaturverzeichnis

- [1] M. Lehmann, A. Schulz, A. Villinger, *Angew. Chem.* **2009**, *121*, 7580–7583.
- [2] M. Lehmann, A. Schulz, A. Villinger, *Angew. Chem. Int. Ed.* **2009**, *48*, 7444–7447.
- [3] A. Schulz, A. Villinger, *Chem. Eur. J.* **2010**, *16*, 7276–7281.
- [4] J. H. Simons, J. W. Bouknight, J. Am. Chem. Soc. 1932, 54, 129–135.
- [5] M. G. Voronkov, V. K. Roman, E. A. Maletina, *Synthesis* **1982**, *1982*, 277–280.
- [6] B. O. Pray, L. H. Sommer, G. M. Goldberg, G. T. Kerr, P. A. Di Giorgio, F. C. Whitmore, J. Am. Chem. Soc. 1948, 70, 433–434.
- [7] K. Miqueu, J.-M. Sotiropoulos, G. Pfister-Guillouzo, V. D. Romanenko, *New J. Chem.* **2001**, *25*, 930–938.
- [8] J. B. Nee, M. Suto, L. C. Lee, J. Chem. Phys. 1986, 85, 719–724.
- [9] P. Daure, Trans. Faraday Soc. 1929, 25, 825–828.
- [10] T. Shimanouchi, I. Tsuchiya, Y. Mikawa, J. Chem. Phys. 1950, 18, 1306–1306.
- [11] C. E. Brion, S. T. Hood, I. H. Suzuki, E. Weigold, G. R. J. Williams, J. Electron Spectros. Relat. Phenomena 1980, 21, 71–91.
- [12] T. F. Block, M. Biernbaum, R. West, J. Organomet. Chem. 1977, 131, 199–205.
- [13] T. K. McCubbin, J. Chem. Phys. 1952, 20, 668–671.
- [14] J. R. Durig, R. O. Carter, Y. S. Li, J. Mol. Spectrosc. 1972, 44, 18-31.
- [15] K.-C. Kim, C. A. Reed, D. W. Elliott, L. J. Mueller, F. Tham, L. Lin, J. B. Lambert, *Science* 2002, 297, 825–827.
- [16] S. P. Hoffmann, T. Kato, F. S. Tham, C. A. Reed, Chem. Commun. 2006, 767–769.
- [17] T. Müller, Y. Zhao, J. B. Lambert, *Organometallics* **1998**, *17*, 278–280.
- [18] P. von Ragué Schleyer, P. Buzek, T. Müller, Y. Apeloig, H.-U. Siehl, *Angew. Chem.* **1993**, *105*, 1558–1561.
- [19] P. von Ragué Schleyer, P. Buzek, T. Müller, Y. Apeloig, H.-U. Siehl, Angew. Chem. Int. Ed. 1993, 32, 1471–1473.
- [20] A. R. Bassindale, T. Stout, J. Organomet. Chem. 1982, 238, C41–C45.
- [21] M. Arshadi, D. Johnels, U. Edlund, C.-H. Ottosson, D. Cremer, J. Am. Chem. Soc. 1996, 118, 5120–5131.
- [22] M. F. Ibad, P. Langer, A. Schulz, A. Villinger, J. Am. Chem. Soc. 2011, 133, 21016–21027.

- [23] T. Küppers, E. Bernhardt, R. Eujen, H. Willner, C. W. Lehmann, Angew. Chem. 2007, 119, 6462–6465.
- [24] T. Küppers, E. Bernhardt, R. Eujen, H. Willner, C. W. Lehmann, *Angew. Chem. Int. Ed.* **2007**, *46*, 6346–6349.
- [25] C.-H. Ottosson, E. Kraka, D. Cremer, auli ng's Legacy Modem Modelling of the Chemical Bond, Elsevier Science B.V., Amsterdam - Lausanne - New York -Oxford - Shannon - Singapore - Tokyo, 1999.
- [26] S. A d rch "PF 6" http://www.sigmaaldrich.com/catalog/search?term=Hexafluorophosphoric+acid+s olution&interface=All&N=0&mode=match partialmax&lang=de®ion=DE&focus=product, (abgerufen am 23. November 2017).
- [27] A. Ae er "BF4" http www. f.com de c t og 1144 (abgerufen am 23. November 2017).
- [28] D. Mootz, M. Steffen, Z. anorg. allg. Chem. 1981, 482, 193–200.
- [29] C.-W. Tsang, Q.-C. Yang, T. C. W. Mak, Z.-W. Xie, *Chinese J. Chem.* **2010**, *20*, 1241–1248.
- [30] Z. Xie, R. Bau, C. A. Reed, *Inorg. Chem.* **1995**, *34*, 5403–5404.
- [31] R. Minkwitz, S. Schneider, A. Kornath, *Inorg. Chem.* 1998, 37, 4662–4665.
- [32] E. S. Stoyanov, S. P. Hoffmann, M. Juhasz, C. A. Reed, J. Am. Chem. Soc. 2006, 128, 3160–3161.
- [33] C. A. Reed, Chem. Commun. (Camb). 2005, 1669–1677.
- [34] C. A. Reed, *Chem. New Zeal.* **2011**, 174–179.
- [35] P. Muller, Pure Appl. Chem. 1994, 66, 1077–1184.
- [36] L. H. Sommer, E. W. Pietrusza, F. C. Whitmore, J. Am. Chem. Soc. 1946, 68, 2282–2284.
- [37] W. Rutz, D. Lange, H. Kelling, Z. anorg. allg. Chem. 1985, 528, 98–106.
- [38] G. N. Lewis, J. Am. Chem. Soc. 1916, 38, 762–785.
- [39] P. D. Lickiss, R. Lucas, J. Organomet. Chem. 1993, 444, 25–28.
- [40] D. E. Seitz, L. Ferreira, Synth. Commun. 1979, 9, 451–456.
- [41] R. J. P. Corriu, C. Guerin, J. Organomet. Chem. 1980, 168–169.
- [42] D. Liu, K. Lin, J. Chem. Phys. 1996, 105, 9121–9129.
- [43] P. J. Dagdigian, J. Chem. Phys. 1980, 73, 2049–2051.
- [44] O. Drammer, *Lexikon Der Angewandten Chemie*, Verlag Des Bibiliographisches Institut, Leipzig, **1882**.

XXVIII

- [45] L. Birckenbach, K. Kellermann, Chem. Ber. 1925, 58, 786–794.
- [46] D. Mootz, K. Bartmann, Angew. Chem. Int. Ed. 1988, 27, 391–392.
- [47] D. Mootz, K. Bartmann, Angew. Chem. 1988, 100, 424–425.
- [48] N. F. Hall, J. B. Conant, J. Am. Chem. Soc. 1927, 49, 3047–3061.
- [49] J. B. Conant, N. F. Hall, J. Am. Chem. Soc. 1927, 49, 3062–3070.
- [50] L. P. Hammett, A. J. Deyrup, J. Am. Chem. Soc. 1932, 54, 2721–2739.
- [51] R. J. Gillespie, T. E. Peel, E. A. Robinson, J. Am. Chem. Soc. 1971, 93, 5083– 5087.
- [52] C. A. Reed, K.-C. Kim, E. S. Stoyanov, D. Stasko, F. S. Tham, L. J. Mueller, P. D. W. Boyd, J. Am. Chem. Soc. 2003, 125, 1796–1804.
- [53] E. S. Stoyanov, S. P. Hoffmann, K.-C. Kim, F. S. Tham, C. A. Reed, J. Am. Chem. Soc. 2005, 127, 7664–7665.
- [54] C. A. Reed, *Science* **2000**, *289*, 101–104.
- [55] C. Friedel, J. M. Crafts, Ann. der Chemie und Pharm. 1863, 127, 28–32.
- [56] R. Müller, Verfahren Zur Herstellung von Kohlenstoff-Silicium-Halogenverbindungen, **1942**, DD5348.
- [57] E. G. Rochow, *Preparation of Organosilicon Halides*, **1941**, 2380995.
- [58] A. Schulz, J. Thomas, A. Villinger, *Chem. Commun. (Camb).* **2010**, *46*, 3696–3698.
- [59] R. G. Dickinson, J. Am. Chem. Soc. 1922, 44, 1489–1497.
- [60] J. L. Amorós, F. Arrese, M. Canut, Zeitschrift für Krist. 1962, 117, 92–107.
- [61] B. M. Gatehouse, P. Leverett, J. Chem. Soc. A Inorganic, Phys. Theor. 1969, 849– 854.
- [62] H. J. Prask, C. S. Choi, N. J. Chesser, G. J. Rosasco, J. Chem. Phys. 1988, 88, 5106–5122.
- [63] C. G. van Beek, J. Overeem, J. R. Ruble, B. M. Craven, *Can. J. Chem.* **1996**, *74*, 943–950.
- [64] D. Göbbels, G. Meyer, Z. anorg. allg. Chem. 2002, 628, 1799–1805.
- [65] C. E. C. A. Hop, J. L. Holmes, P. J. A. Ruttink, G. Schaftenaar, J. K. Terlouw, *Chem. Phys. Lett.* **1989**, *156*, 251–255.
- [66] M. N. Glukhovtsev, A. Pross, M. P. McGrath, L. Radom, J. Chem. Phys. 1995, 103, 1878–1885.
- [67] I. S. O. Pimienta, S. Elzey, J. A. Boatz, M. S. Gordon, J. Phys. Chem. A 2007, 111, 691–703.

- [68] C.-H. Hu, M. Shen, H. F. Schaefer, Chem. Phys. Lett. 1992, 190, 543–550.
- [69] J. B. Collins, P. von Ragué Schleyer, J. S. Binkley, J. A. Pople, L. Radom, J. Am. Chem. Soc. 1976, 98, 3436–3441.
- [70] P. Redondo, A. Largo, J. Mol. Struct. (Theochem) 1992, 253, 261–273.
- [71] P. C. Burgers, J. L. Holmes, J. K. Terlouw, J. Am. Chem. Soc. 1984, 106, 2762– 2764.
- [72] G. De Petris, A. Di Marzio, F. Grandinetti, J. Phys. Chem. 1991, 95, 9782–9787.
- [73] A. . Fr nk . S d ek . G. Ferr er F. Ture ek, J. Am. Chem. Soc. 1997, 119, 12343–12353.
- [74] R. Labbow, F. Reiß, A. Schulz, A. Villinger, Organometallics 2014, 33, 3223– 3226.
- [75] M. Driess, R. Barmeyer, C. Monsé, K. Merz, Angew. Chem. 2001, 113, 2366– 2369.
- [76] M. Driess, R. Barmeyer, C. Monsé, K. Merz, Angew. Chem. Int. Ed. 2001, 40, 2308–2310.
- [77] P. D. Bartlett, F. E. Condon, A. Schneider, J. Am. Chem. Soc. 1944, 66, 1531– 1539.
- [78] A. Schäfer, M. Reißmann, S. Jung, A. Schäfer, W. Saak, E. Brendler, T. Müller, *Organometallics* **2013**, *32*, 4713–4722.
- [79] J. B. Lambert, L. Kania, S. Zhang, *Chem. Rev.* **1995**, *95*, 1191–1201.
- [80] A. Schulz, A. Villinger, Angew. Chem. Int. Ed. 2012, 51, 4526–4528.
- [81] A. Schulz, A. Villinger, Angew. Chem. 2012, 124, 4602–4604.
- [82] A. Schäfer, M. Reissmann, A. Schäfer, W. Saak, D. Haase, T. Müller, *Angew. Chem. Int. Ed.* **2011**, *50*, 12636–12638.
- [83] A. Schäfer, M. Reißmann, A. Schäfer, W. Saak, D. Haase, T. Müller, *Angew. Chem.* **2011**, *123*, 12845–12848.
- [84] H. F. T. Klare, M. Oestreich, *Dalton Trans.* 2010, 39, 9176–9184.
- [85] J. B. Lambert, Y. Zhao, S. M. Zhang, J. Phys. Org. Chem. 2001, 14, 370–379.
- [86] J. B. Lambert, S. Zhang, S. M. Ciro, Organometallics 1994, 13, 2430–2443.
- [87] G. G. Henderson, J. Chem. Soc. Trans. 1887, 51, 224–228.
- [88] J. Bah, J. Franzén, Chem. Eur. J. 2014, 20, 1066–1072.
- [89] S. Kobayashi, M. Murakami, T. Mukaiyama, Chem. Lett. 1985, 953–956.
- [90] V. C. Williams, G. J. Irvine, W. E. Piers, Z. Li, S. Collins, W. Clegg, M. R. J. Elsegood, T. B. Marder, *Organometallics* 2000, 19, 1619–1621.

- [91] J. Chai, S. P. Lewis, S. Collins, T. J. J. Sciarone, L. D. Henderson, P. A. Chase, G. J. Irvine, W. E. Piers, M. R. J. Elsegood, W. Clegg, *Organometallics* 2007, 26, 5667–5679.
- [92] S. P. Lewis, N. J. Taylor, W. E. Piers, S. Collins, J. Am. Chem. Soc. 2003, 125, 14686–14687.
- [93] S. Garratt, A. Guerrero, D. L. Hughes, M. Bochmann, *Angew. Chem. Int. Ed.* **2004**, *43*, 2166–2169.
- [94] S. Garratt, A. Guerrero, D. L. Hughes, M. Bochmann, *Angew. Chem.* **2004**, *116*, 2218–2222.
- [95] A. Hinz, R. Labbow, F. Reiß, A. Schulz, K. Sievert, A. Villinger, *Struct. Chem.* 2015, 26, 1641–1650.
- [96] H. Serrano-González, K. D. M. Harris, C. C. Wilson, A. E. Aliev, S. J. Kitchin, B. M. Kariuki, M. Bach-Vergés, C. Glidewell, E. J. MacLean, W. W. Kagunya, J. Phys. Chem. B 1999, 103, 6215–6223.
- [97] A. Dunand, R. Gerdil, Acta Cryst. Sect. B 1982, 38, 570–575.
- [98] S.-N. Wang, C.-S. Lu, J. Am. Chem. Soc. 1944, 66, 1113–1114.
- [99] N. Wiberg, *Holleman, Wiberg; Lehruch Der Anorg. Chemie*, Walter De Gruyter, Berlin, New York, **2007**, Anhang V.
- [100] M. Mantina, A. C. Chamberlin, R. Valero, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. A 2009, 113, 5806–5812.
- [101] A. Kraft, N. Trapp, D. Himmel, H. Bçhrer, P. Schlüter, H. Scherer, I. Krossing, *Chem. Eur. J.* 2012, 18, 9371–9380.
- [102] I. Krossing, H. Brands, R. Feuerhake, S. Koenig, J. Fluor. Chem. 2001, 112, 83– 90.
- [103] M. Finze, E. Bernhardt, M. Berkei, H. Willner, J. Hung, R. M. Waymouth, *Organometallics* **2005**, *24*, 5103–5109.
- [104] G. Simchen, W. Kober, Synthesis 1976, 1976, 259-261.
- [105] H. Emde, G. Simchen, Synthesis 1977, 1977, 867–869.
- [106] R. Noyori, S. Murata, M. Suzuki, *Tetrahedron* 1981, 37, 3899–3910.
- [107] G. A. Olah, A. Husain, B. G. B. Gupta, G. F. Salem, S. C. Narang, J. Org. Chem. 1981, 46, 5212–5214.
- [108] M. E. Defonsi Lestard, M. E. Tuttolomondo, E. L. Varetti, D. A. Wann, H. E. Robertson, D. W. H. Rankin, A. Ben Altabef, J. Mol. Struct. 2010, 984, 376–382.
- [109] M. Nava, C. A. Reed, Organometallics 2011, 30, 4798–4800.
- [110] E. Wiberg, Chem. Ber. 1950, 83, XIX–LXXVI.
- [111] W. N. Lipscomb, Science 1977, 196, 1047–1055.

XXXI

- [112] D. Stasko, C. A. Reed, J. Am. Chem. Soc. 2002, 124, 1148–1149.
- [113] R. T. Boeré, J. Derendorf, C. Jenne, S. Kacprzak, M. Keßler, R. Riebau, S. Riedel, T. L. Roemmele, M. Rühle, H. Scherer, T. Vent-Schmidt, J. Warneke, S. Weber, *Chem. Eur. J.* 2014, 20, 4447–4459.
- [114] C. A. Reed, Acc. Chem. Res. 2010, 43, 121–128.
- [115] R. Labbow, Masterthesis Darstellung Und Charakterisierung Neuer Homoleptisch Silylierter Onium-Ionen, Universität Rostock, 2014.
- [116] M. Bühl, W. Thiel, H. Jiao, P. von Ragué Schleyer, M. Saunders, F. A. L. Anet, J. Am. Chem. Soc. 1994, 116, 6005–6006.
- [117] F. Weinhold, C. R. Landis, E. D. Glendening, Int. Rev. Phys. Chem. 2016, 35, 399– 440.
- [118] E. D. Glendening, C. R. Landis, F. Weinhold, J. Comput. Chem. 2013, 34, 1429– 1437.
- [119] A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 1988, 88, 899–926.
- [120] E. Calimano, T. D. Tilley, J. Am. Chem. Soc. 2009, 131, 11161-11173.
- [121] Z. Xie, C. Tsang, E. T.-P. Sze, Q. Yang, D. T. W. Chan, T. C. W. Mak, *Inorg. Chem.* 1998, 37, 6444–6451.
- [122] T. Klis, D. R. Powell, L. Wojtas, R. J. Wehmschulte, Organometallics 2011, 30, 2563–2570.
- [123] J. Mason, J. Chem. Soc. A Inorganic, Phys. Theor. 1971, 1038–1047.
- [124] A. Saika, C. P. Slichter, J. Chem. Phys. 1954, 22, 26-28.
- [125] S. e řmánek . P ešek V. Gregor B. Št br J. Chem. Soc., Chem. Commun. 1977, 561–563.
- [126] S. e řmánek D. n yk Z. v J. Chem. Soc., Chem. Commun. 1989, 1859– 1861.
- [127] A. R. Siedle, G. M. Bodner, Inorg. Chem. 1973, 12, 2091–2094.
- [128] A. R. Siedle, G. M. Bodner, A. R. Garber, D. C. Beer, L. J. Todd, *Inorg. Chem.* 1974, 13, 2321–2324.
- [129] W. H. Knoth, J. Am. Chem. Soc. 1966, 88, 935–939.
- [130] M. Bühl, P. von Ragué Schleyer, Z. v D. nyk S. e řmánek *Inorg. Chem.* 1991, 30, 3107–3111.
- [131] P. von Ragué Schleyer, K. Najafian, Inorg. Chem. 1998, 37, 3454–3470.
- [132] P. von Ragué Schleyer, C. Maerker, A. Dransfeld, H. Jiao, N. J. R. van Eikema Hommes, J. Am. Chem. Soc. 1996, 118, 6317–6318.
- [133] E. Beschreibung, n.d.

XXXII

- [134] J. A. Pople, J. Chem. Phys. 1956, 24, 1111–1112.
- [135] J. A. Pople, Proc. R. Soc. A Math. Phys. Eng. Sci. 1957, 239, 541–549.
- [136] H. M. McConnell, J. Chem. Phys. 1957, 27, 226-229.
- [137] S. G. Lias, J. F. Liebman, R. D. Levin, J. Phys. Chem. Ref. Data 1984, 13, 695– 808.
- [138] E. S. Stoyanov, K.-C. Kim, C. A. Reed, J. Am. Chem. Soc. 2006, 128, 8500-8508.
- [139] D. Swain, T. N. G. Row, Inorg. Chem. 2008, 47, 8613-8615.
- [140] J. C. D. Brand, J. Chem. Soc. 1950, 997–1003.
- [141] J. C. D. Brand, W. C. Horning, M. B. Thornley, J. Chem. Soc. 1952, 85, 1374– 1383.
- [142] M. J. Jorgenson, D. R. Hartter, J. Am. Chem. Soc. 1963, 85, 878-883.
- [143] R. Minkwitz, R. Seelbinder, R. Schöbel, Angew. Chem. Int. Ed. 2002, 41, 111–114.
- [144] R. Minkwitz, R. Seelbinder, R. Schöbel, Angew. Chem. 2002, 114, 119–121.
- [145] E. Kemnitz, C. Werner, S. Trojanov, Acta Cryst. Sect. C 1996, 52, 2665–2668.
- [146] R. J. Gillespie, E. A. Robinson, Adv. Inorg. Chem. Radiochem., Academic Press, London, England, 1959, 385–423.
- [147] W. Teichert, W. Klemm, Z. anorg. allg. Chem. 1939, 243, 86–98.
- [148] E. Sándor, S. O. Ogunade, Nature 1969, 224, 905–907.
- [149] G. A. h D. . ' Br en C. U. P ttm n J. Am. Chem. Soc. 1967, 89, 2996–3001.
- [150] K. O. Christe, Inorg. Chem. 1975, 14, 2230–2233.
- [151] R. Gut, Inorg. Nucl. Chem. Lett. 1976, 12, 149–152.
- [152] R. Minkwitz, V. Gerhard, Z. Naturforsch. B 1989, 44 B, 364-366.
- [153] J. Passmore, E. K. Richardson, T. K. Whidden, P. S. White, Can. J. Chem. 1980, 58, 851–857.
- [154] J. P. Eußner, S. Dehnen, Chem. Commun. 2014, 50, 11385–11388.
- [155] Instiut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherungen,
 "N tr umhydrogen u f d " http://gestis.itrust.de/nxt/gateway.dll/gestis_de/001320.xml?f=templates\$fn=defaul t.htm\$3.0, (abgerufen am 7. Dezember 2017).
- [156] Instiut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherungen,
 " umhydrogen u f d "
 http://gestis.itrust.de/nxt/gateway.dll/gestis_de/001320.xml?f=templates\$fn=defaul
 t.htm\$3.0, (abgerufen am 07. Dezember 2017).

- [157] L. H. Finger, B. Scheibe, J. Sundermeyer, Inorg. Chem. 2015, 54, 9568–9575.
- [158] T. Chivers, R. S. Laitinen, Chem. Soc. Rev. 2017, DOI 10.1039/C6CS00925E.
- [159] P. V Bharatam, Amita, D. Kaur, P. Senthil Kumar, Int. J. Quantum Chem. 2006, 106, 1237–1249.
- [160] C. Ehrhardt, R. Ahlrichs, Chem. Phys. 1986, 108, 417–428.
- [161] N. H. Morgon, H. V Linnert, J. M. Riveros, J. Phys. Chem. 1995, 99, 11667– 11672.
- [162] A. G. Turner, Inorganica Chim. Acta 1984, 84, 85–87.
- [163] M. Méndez, J. S. Francisco, D. A. Dixon, Chem. Eur. J. 2014, 20, 10231–10235.
- [164] J. P. Merrick, D. Moran, L. Radom, J. Phys. Chem. A 2007, 111, 11683–11700.
- [165] R. L. DeKock, M. S. Haddad, Inorg. Chem. 1977, 16, 216–217.
- [166] A. Haas, U. Fleischer, M. Mätschke, V. Staemmler, Z. anorg. allg. Chem. 1999, 625, 681–692.
- [167] D.-L. Joo, D. J. Clouthier, J. Chem. Phys. 1996, 104, 8852-8856.
- [168] M. Nonella, J. R. Huber, T.-K. Ha, J. Phys. Chem. 1987, 91, 5203–5209.
- [169] L. Puskar, E. G. Robertson, D. McNaughton, J. Mol. Spectrosc. 2006, 240, 244– 250.
- [170] H. Richert, Z. anorg. allg. Chem. 1961, 309, 171-180.
- [171] H. Tetsuo, K. Susumu, Nature 1964, 203, 1378–1379.
- [172] D. M. Byler, H. Susi, J. Mol. Struct. 1981, 77, 25-36.
- [173] R. P. Müller, M. Nonella, P. Russegger, J. R. Huber, Chem. Phys. 1984, 87, 351– 361.
- [174] A. Dal Borgo, G. Di Lonardo, F. Scappini, A. Trombetti, *Chem. Phys. Lett.* 1979, 63, 115–118.
- [175] N. Heineking, M. C. L. Gerry, J. Mol. Spectrosc. 1993, 158, 62-68.
- [176] J. Demaison, L. Margulès, J. E. Boggs, H. D. Rudolph, Struct. Chem. 2001, 12, 1– 13.
- [177] P. W. Schenk, Chem. Ber. 1942, 75, 94-99.
- [178] M. Becke-Goehring, R. Schwarz, W. Spiess, Z. anorg. allg. Chem. 1958, 293, 294– 301.
- [179] F. Ephraim, H. Piotrowski, Chem. Ber. 1911, 44, 379–386.
- [180] P. Günther, R. Meyer, F. Müller-Skjold, Z. Phys. Chem. A 1935, 175, 154–169.
- [181] R. Labbow, D. Michalik, F. Reiß, A. Schulz, A. Villinger, Angew. Chem. 2016,

XXXIV

128, 7811–7815.

- [182] R. Labbow, D. Michalik, F. Reiß, A. Schulz, A. Villinger, Angew. Chem. Int. Ed. 2016, 55, 7680–7684.
- [183] M. Herberhold, W. Ehrenreich, Angew. Chem. 1982, 94, 637–638.
- [184] M. Herberhold, W. Ehrenreich, Angew. Chem. Int. Ed. 1982, 21, 633-633.
- [185] S. Mann, M. Jansen, Z. anorg. allg. Chem. 1995, 621, 153–158.
- [186] D. A. Armitage, J. C. Brand, J. Chem. Soc. Chem. Commun. 1979, 1078–1079.
- [187] M. Carlotti, G. Di Lonardo, G. Galloni, A. Trombetti, J. Mol. Spectrosc. 1980, 84, 155–161.
- [188] K. I. Gobbato, C. O. Della Védova, H. Oberhammer, J. Mol. Struct. 1995, 350, 227–231.
- [189] P. Pyykkö, M. Atsumi, Chem. Eur. J. 2009, 15, 12770–12779.
- [190] N. Muller, P. C. Lauterbur, J. Goldenson, J. Am. Chem. Soc. 1956, 78, 3557-3561.
- [191] J. Franck, H. Sponer, J. Chem. Phys. 1956, 25, 172–172.
- [192] M. Sekine, H. Yamagata, T. Hata, Tetrahedron Lett. 1979, 20, 375–378.
- [193] H. Schickmann, H. Rösler, *DE4323183A1*, **1995**, DE4323183A1.
- [194] H. Niida, M. Takamashi, T. Uchino, T. Yoko, J. Ceram. Soc. Japan 2003, 111, 171–175.
- [195] L. A. Wessjohann, M. A. Dessoy, Polyhedron 2014, 70, 133–137.
- [196] H. Nöth, W. Storch, Chem. Ber. 1984, 117, 2140–2156.
- [197] S. Aygen, R. van Eldik, Organometallics 1987, 6, 1080–1084.
- [198] . . B łżewk J. Org. Chem. 2014, 79, 408–412.
- [199] M. Gruner, G. Großmann, R. Radeglia, T. Steiger, Z. Chem. 2010, 25, 449-449.
- [200] D. Köttgen, H. Stoll, R. Pantzer, J. Goubeau, Z. anorg. allg. Chem. 1974, 405, 275–285.
- [201] R. H. Blessing, Acta Cryst. Sect. B 1988, 44, 334–340.
- [202] R. Minkwitz, S. Schneider, Angew. Chem. Int. Ed. 1999, 38, 210-212.
- [203] R. Minkwitz, S. Schneider, Angew. Chem. 1999, 111, 229-231.
- [204] I. Grunze, E. Thilo, H. Grunze, Chem. Ber. 1960, 93, 2631–2638.
- [205] R. N. Bell, *Inorg. Synth. Vol. III* (Ed.: L.F. Audrieth), McGraw-Hill Book Company, New York, Toronto, London, **1950**, 99–103.
- [206] D. Sülzle, M. Verhoeven, J. K. Terlouw, H. Schwarz, Angew. Chem. Int. Ed. 1988,

XXXV

27, 1533–1534.

- [207] D. Sülzle, M. Verhoeven, J. K. Terlouw, H. Schwarz, *Angew. Chem.* **1988**, *100*, 1591–1592.
- [208] D. A. Horner, R. E. Connick, Inorg. Chem. 1986, 25, 2414–2417.
- [209] X. Yang, A. W. Castleman Jr., J. Phys. Chem. 1991, 95, 6182-6186.
- [210] Q. Zhong, S. M. Hurley, A. W. Castleman Jr., Int. J. Mass Spectrom. 1999, 185– 187, 905–911.
- [211] A. F. Voegele, C. S. Tautermann, T. Loerting, A. Hallbrucker, E. Mayer, K. R. Liedl, *Chem. Eur. J.* **2002**, *8*, 5644–5651.
- [212] L.-G. Johansson, O. Lindqvist, N.-G. Vannerberg, *Acta Cryst. Sect. B* **1980**, *36*, 2523–2526.
- [213] L. Andersen, O. Lindqvist, Acta Cryst. Sect. C 1984, 40, 584-586.
- [214] L. Carlsen, H. Egsgaard, J. Chem. Res. Synopses 1989, 180-181.
- [215] D. W. Bennett, L. D. Spicer, J. Am. Chem. Soc. 1981, 103, 5522-5526.
- [216] D. W. Bennett, L. D. Spicer, *Inorg. Chem.* 1982, 21, 410–413.
- [217] D. W. Bennett, L. D. Spicer, Inorg. Chem. 1982, 21, 3845–3847.
- [218] Y. Yamamoto, D. S. Tarbell, J. R. Fehlner, B. M. Pope, J. Org. Chem. 1973, 38, 2521–2525.
- [219] R. Minkwitz, S. Schneider, Z. Naturforsch. B 1998, 53 B, 849-852.
- [220] G. Fischer, J. Geith, T. M. Klapötke, B. Krumm, Z.Naturforsch. B 2002, 57 B, 19– 24.
- [221] M. E. Jacox, D. E. Milligan, J. Chem. Phys. 1964, 40, 2457–2460.
- [222] W. Beck, K. Feldl, Angew. Chem. 1966, 78, 746-746.
- [223] W. Beck, K. Feldl, Angew. Chem. Int. Ed. 1966, 5, 722-723.
- [224] G. Maier, J. H. Teles, B. A. Hess, L. J. Schaad, Angew. Chem. 1988, 100, 1014– 1015.
- [225] G. Maier, J. H. Teles, B. A. Hess, L. J. Schaad, Angew. Chem. Int. Ed. 1988, 27, 938–939.
- [226] C. Dimur, F. Pauzat, Y. Ellinger, G. Berthier, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2001, 57, 859–873.
- [227] S. Thorwirth, V. Lattanzi, M. C. McCarthy, J. Mol. Spectrosc. 2015, 310, 119–125.
- [228] Z. Mielke, L. Andrews, Chem. Phys. Lett. 1991, 181, 355-360.
- [229] M. T. Nguyen, P. Ruelle, J. Chem. Soc., Faraday Trans. 2 1984, 80, 1225–1234.

- [230] M. T. Nguyen, A. F. Hegarty, M. A. McGinn, P. Ruelle, J. Chem. Soc., Perkin Trans. 2 1985, 1991–1997.
- [231] H.-G. Fu, H.-T. Yu, Y.-J. Chi, Z.-S. Li, X.-R. Huang, C.-C. Sun, Chem. Phys. Lett. 2002, 361, 62–70.
- [232] X. Cheng, Y. Zhao, L. Li, X. Tao, J. Mol. Struct. (Theochem) 2004, 682, 137–143.
- [233] M. Lattelais, F. Pauzat, J. Pilmé, Y. Ellinger, Phys. Chem. Chem. Phys. 2008, 10, 2089–2097.
- [234] G. von Frantzius, A. Espinosa Ferao, R. Streubel, Chem. Sci. 2013, 4, 4309–4322.
- [235] A. Hinz, R. Labbow, C. Rennick, A. Schulz, J. M. Goicoechea, Angew. Chem. Int. Ed. 2017, 56, 3911–3915.
- [236] A. R. Jupp, J. M. Goicoechea, Angew. Chem. 2013, 125, 10248–10251.
- [237] A. R. Jupp, J. M. Goicoechea, Angew. Chem. Int. Ed. 2013, 52, 10064–10067.
- [238] K. Schwetlick, H. Becker, G. Domschke, E. Fanghänel, M. Fischer, K. Gewald, R. Mayer, D. Pavel, H. Schmidt, *Organikum-Organisch-Chemisches Grundpraktikum*, Johann Ambrosius Barth Verlag, Leipzig Berlin Heidelberg, 1996.
- [239] C. B. Fischer, S. Xu, H. Zipse, Chem. Eur. J. 2006, 12, 5779-5784.
- [240] E. H. Amonoo-Neizer, R. A. Shaw, D. O. Skovlin, B. C. Smith, *Inorg. Synth. Vol. VIII* (Ed.: H.F. Hlotzclaw Jr.), McGraw-Hill Book Company, New York, San Francisco, Toronto, London, Sydney, **1966**, 19–22.
- [241] G. M. Whitesides, F. D. Gutowski, J. Org. Chem. 1976, 41, 2882-2885.
- [242] A. Haas, J. Helmbrecht, U. Niemann, Handbuch Der Präparativen Anorg. Chemie Zweiter Band Hrsg. von Georg Brauer, Ferdinand Enke Verlag, Stuttgart, 1978, 1008.
- [243] C. A. Reed, Acc. Chem. Res. 2010, 43, 121–128.
- [244] T. J. Curphey, *Phosphorus Sulfur Silicon Relat. Elem.* 2001, 173, 123–142.
- [245] E. Parkes, J. D. Woollins, *Inorg. Synth. Vol. XXV* (Ed.: H.R. Allcock), John Wiley & Sons, New York, Chichester, Brisbane, Toronto, Singapore, **1989**, 48–49.
- [246] G. M. Sheldrick, *SHELXS-2013 Program for the Solution of Crystal Structures*, University of Göttingen, Germany, **2013**.
- [247] G. M. Sheldrick, SHELXS-2014 Progr. Solut. Cryst. Struct., University of Göttingen, Germany, 2014.
- [248] G. M. Sheldrick, *SHELXL-2013 Program for the Refinement of Crystal Structures*, University of Göttingen, Germany, **2013**.
- [249] G. M. Sheldrick, *SHELXL-2013 Program for the Refinement of Crystal Structures*, University of Göttingen, Germany, **2014**.

- [250] G. M. Sheldrick, *SADABS Version 2*, University of Göttingen, Germany, 2004.
- [251] R. K. Harris, B. J. Kimber, J. Magn. Reson. 1975, 17, 174–188.
- [252] R. K. Harris, E. D. Becker, S. M. Cabral de Menezes, P. Granger, R. E. Hoffman, K. W. Zilm, *Pure Appl. Chem.* **2008**, *80*, 59–84.
- [253] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, *Gaussian 09, Revision C.01*, Gaussian Inc., Wallingford CT, **2010**.
- [254] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865–3868.
- [255] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1997, 78, 1396.
- [256] C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158-6170.
- [257] T. H. Dunning Jr., J. Chem. Phys. 1989, 90, 1007–1023.
- [258] T. H. Dunning Jr., D. E. Woon, J. Chem. Phys. 1993, 98, 1358-1371.
- [259] A. K. Wilson, D. E. Woon, K. A. Peterson, T. H. Dunning Jr., J. Chem. Phys. 1999, 110, 7667–7676.
- [260] R. Ditchfield, W. J. Hehre, J. A. Pople, J. Chem. Phys. 1971, 54, 724–728.
- [261] W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys. 1972, 56, 2257-2261.
- [262] P. C. Hariharan, J. A. Pople, *Theor. Chim. Acta* 1973, 28, 213–222.
- [263] P. C. Hariharan, J. A. Pople, Mol. Phys. 1974, 27, 209-214.
- [264] M. S. Gordon, Chem. Phys. Lett. 1980, 76, 163–168.
- [265] M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, J. A. Pople, J. Chem. Phys. 1982, 77, 3654–3665.
- [266] T. Clark, J. Chandrasekhar, G. W. Spitznagel, P. von Ragué Schleyer, J. Comput. Chem. 1983, 4, 294–301.
- [267] A. E. Reed, R. B. Weinstock, F. Weinhold, J. Chem. Phys. 1985, 83, 735-746.
- [268] S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456–1465.

- [269] E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, F. Weinhold, NBO 5.9, Theoretical Chemistry Institute, University of Wisconsin, Madison (United States of America), 2011.
- [270] J. E. Carpenter, F. Weinhold, J. Mol. Struct. (Theochem) 1988, 169, 41-62.
- [271] J. E. Carpenter, F. Weinhold, *The Structure of Small Molecules and Ions*, Plenum Press, New York (United States of America), **1988**.
- [272] F. Weinhold, C. R. Landis, Valency and Bonding. A Natural Bond Orbital Donor-Acceptor Perspective, Cambridge University Press, Cambridge (United Kingdom), 2005.
- [273] T. Lu, F. Chen, Acta Chim. Sin. 2011, 69, 2393–2406.
- [274] T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580–592.
- [275] T. Lu, F. Chen, J. Mol. Graph. Model. 2012, 38, 314–323.
- [276] M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek, G. R. Hutchison, J. Cheminform. 2012, 4, 1–17.
- [277] F. London, J. Phys. le Radium 1937, 8, 397-409.
- [278] R. McWeeny, Phys. Rev. 1962, 126, 1028–1034.
- [279] R. Ditchfield, Mol. Phys. 1974, 27, 789-807.
- [280] K. Wolinski, J. F. Hinton, P. Pulay, J. Am. Chem. Soc. 1990, 112, 8251-8260.
- [281] J. R. Cheeseman, G. W. Trucks, T. A. Keith, M. J. Frisch, J. Chem. Phys. 1996, 104, 5497–5509.
- [282] C. J. Jameson, A. De Dios, A. Keith Jameson, Chem. Phys. Lett. 1990, 167, 575– 582.
- [283] C. van Wüllen, Phys. Chem. Chem. Phys. 2000, 2, 2137–2144.
- [284] J. Krüger, R. Grunzke, S. Gesing, S. Breuers, A. Brinkmann, L. De La Garza, O. Kohlbacher, M. Kruse, W. E. Nagel, L. Packschies, R. Müller-Pfefferkorn, P. Schäfer, C. Schärfe, T. Steinke, T. Schlemmer, K. D. Warzecha, A. Zink, S. Herres-Pawlis, J. Chem. Theory Comput. 2014, 10, 2232–2245.
- [285] M. N. Burnett, C. K. Johnson, ORTEP, Oak Ridge Therm. Ellipsoid Plot Progr. Cryst. Struct. Illus. 1996, Oak Ridge National Laboratory Report ORNL-6895.
- [286] A. L. Smith, Spectrochim. Acta Part A Mol. Spectrosc. 1968, 24, 695–706.
- [287] W. R. McWhinnie, R. C. Poller, Spectrochim. Acta 1966, 22, 501–507.
- [288] G. Bauer, H. Mikosch, J. Mol. Struct. 1986, 142, 21-24.
- [289] J. Goubeau, W. Bereger, Z. anorg. allg. Chem. 1960, 304, 147–153.
- [290] Z. Xie, T. Jelínek, R. Bau, C. A. Reed, J. Am. Chem. Soc. 1994, 116, 1907–1913.

- [291] U. Scheim, H. Grosse-Ruyken, K. Rühlmann, A. Porzel, *J. Organomet. Chem.* **1986**, *312*, 27–31.
- [292] J. Harloff, Diplomathesis Reaktionen von Trimethylsiloxysilanen Mit Alkalimetalltrimethylsilanolaten - Versuche Zur Darstellung von Pentakoordinierten Siloxysilikaten, Universität Rostock, **1997**.

0.00 EUR

Total Terms and Conditions

ROYAL SOCIETY OF CHEMISTRY LICENSE TERMS AND CONDITIONS

This Agreement between Mr. Rene Labbow ("You") and Royal Society of Chemistry ("Royal Society of Chemistry") consists of your license details and the terms and conditions provided by Royal Society of Chemistry and Copyright Clearance Center. License Number 4138260140335 License date Jun 29, 2017 Licensed Content Publisher Royal Society of Chemistry Licensed Content Publication Chemical Communications (Cambridge) Carborane acids. New "strong yet gentle" acids for organic Licensed Content Title and inorganic chemistry Licensed Content Author Christopher A. Reed Feb 25, 2005 Licensed Content Date 13 Licensed Content Issue Thesis/Dissertation Type of Use Requestor type academic/educational Portion figures/tables/images Number of 1 figures/tables/images Format print and electronic 10 **Distribution quantity** Will you be translating? no Order reference number Title of the thesis/dissertation Trimethylsilylium - Untersuchungen zur Reaktivität Expected completion date Oct 2017 Estimated size 300 Mr. Rene Labbow Albert-Einstein-Straße 3a **Requestor Location** Rostock, Mecklenburg-Vorpommern 18059 Germany Attn: Mr. Rene Labbow Billing Type Invoice Mr. Rene Labbow Albert-Einstein-Straße 3a **Billing Address** Rostock, Germany 18059 Attn: Mr. Rene Labbow Total 0.00 EUR

THE AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE LICENSE TERMS AND CONDITIONS

Jan 02, 2018

This Agreement between Mr. Rene Labbow ("You") and The American Association for the Advancement of Science ("The American Association for the Advancement of Science") consists of your license details and the terms and conditions provided by The American Association for the Advancement of Science and Copyright Clearance Center.	
License Number	4260640727149
License date	Jan 02, 2018
Licensed Content Publisher	The American Association for the Advancement of Science
Licensed Content Publication	Science
Licensed Content Title	Crystallographic Evidence for a Free Silylium Ion
Licensed Content Author	Kee-Chan Kim, Christopher A. Reed, Douglas W. Elliott, Leonard J. Mueller, Fook Tham, Lijun Lin, Joseph B. Lambert
Licensed Content Date	Aug 2, 2002
Licensed Content Volume	297
Licensed Content Issue	5582
Volume number	297
Issue number	5582
Type of Use	Thesis / Dissertation
Requestor type	Scientist/individual at a research institution
Format	Print and electronic
Portion	Figure
Number of figures/tables	1
Order reference number	
Title of your thesis / dissertation	Über die Chemie des [Me3Si]+ - Ions
Expected completion date	Jan 2018
Estimated size(pages)	420
Requestor Location	Mr. Rene Labbow Albert-Einstein-Straße 3a Rostock, Mecklenburg-Vorpommern 18059 Germany Attn: Mr. Rene Labbow
Billing Type	Invoice
Billing Address	Mr. Rene Labbow Albert-Einstein-Straße 3a Rostock, Germany 18059 Attn: Mr. Rene Labbow
Total	0.00 EUR

XLII

"Reproduced with permission of the International Union of Crystallography".

https://journals.iucr.org/

Licensed Content Publisher	International Union of Crystallography
Licensed Content Publication	Acta Crystallographica Section C
Licensed Content Title	Reinvestigation of Crystalline Sulfuric Acid and Oxonium Hydrogensulfate
Licensed Content Author	Erhard Kemnitz, C. Werner, S. Trojanov
Licensed Content Date	May 22, 1996
Volume number	C52
Type of Use	Thesis / Dissertation

JOHN WILEY AND SONS LICENSE TERMS AND CONDITIONS

This Agreement between Mr. Rene Labbow ("You") and John Wiley and Sons ("John Wiley and Sons") consists of your license details and the terms and conditions provided by John Wiley and Sons and Copyright Clearance Center.

License Number	4260650654206
License date	Jan 02, 2018
Licensed Content Publisher	John Wiley and Sons
Licensed Content Publication	Angewandte Chemie International Edition
Licensed Content Title	Isolation of Labile Pseudohalogen NSO Species
Licensed Content Author	René Labbow,Dirk Michalik,Fabian Reiß,Axel Schulz,Alexander Villinger
Licensed Content Date	Apr 13, 2016
Licensed Content Pages	5
Type of use	Dissertation/Thesis
Requestor type	Author of this Wiley article
Format	Print and electronic
Portion	Figure/table
Number of figures/tables	1
Original Wiley figure/table number(s)	Figure 4
Will you be translating?	No
Title of your thesis / dissertation	Über die Chemie des [Me3Si]+ - Ions
Expected completion date	Jan 2018
Expected size (number of pages)	420
	Mr. Rene Labbow Albert-Einstein-Straße 3a
Requestor Location	
-	Rostock, Mecklenburg-Vorpommern 18059 Germany Attn: Mr. Rene Labbow
Publisher Tax ID	EU826007151
Billing Type	Invoice
	Mr. Rene Labbow Albert-Einstein-Straße 3a
Billing Address	
	Rostock, Germany 18059 Attn: Mr. Rene Labbow

0.00 EUR

Total Terms and Conditions

Lebenslauf

Persönliche Daten

Name/Anschrift:	René Labbow
	Kieler Straße 22
	18057 Rostock
Geburtsdatum:	23.03.1989
Geburtsort:	Rostock
Familienstand:	ledig
Staatsangehörigkeit:	Deutsch
Bildungsweg	
06/2014 —	Wissenschaftlicher Mitarbeiter in der AG
	Prof. A. Schulz an der Universität Rostock
	Beginn Promotionsstudium
04/2012 – 05/2014	Chemie - Studium an der Universität Rostock
	Abschluss: Master of Science (1.7)
10/2008 – 02/2012	Chemie - Studium an der Universität Rostock
	Abschluss: Bachelor of Science (2.9)
08/1999 – 07/2008	Erasmus-Gymnasium, Rostock
	Allgemeine Hochschulreife (2.0)
08/1995 – 07/1999	Grundschule Schmarl, Rostock

Rostock, den 22. Dezember 2017

René Labbow

_