
 

Establishment of a novel in vitro implant infection model -  

Effects of electrical stimulation on staphylococci using 

alternating current 

 

 

Dissertation  

zur  

Erlangung des akademischen Grades  

doctor rerum naturalium (Dr. rer. nat.)  

 

am Institut für Biowissenschaften 

der Mathematisch-Naturwissenschaftlichen Fakultät  

der Universität Rostock 

 

 

 

 

 

 

 

vorgelegt von: 

Thomas Josef Dauben  

aus Rostock  

 

Rostock, 2017 

 

 

zef007
Schreibmaschinentext
urn:nbn:de:gbv:28-diss2018-0031-8



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gutachter: 

1. Gutachter:  

Prof. Dr. rer. nat. Bernd Kreikemeyer, 

Institut für Medizinische Mikrobiologie, Virologie und Hygiene, 

Universitätsmedizin Rostock 

 

2. Gutachter: 

Prof. Dr. rer. nat. Hubert Bahl, 

Institut für Biowissenschaften, Universität Rostock 

 

3. Gutachter: 

Prof. Dr. med. Rainer Bader 

Forschungslabor für Biomechanik und Implantattechnologie, 

Universitätsmedizin Rostock 

 

 

Datum der Einreichung: 27. Juni 2017 

Datum der Verteidigung: 12. Januar 2018 



  I 

 

List of Abbreviations ................................................................................................ IV 

List of Figures ............................................................................................................ V 

List of Tables .......................................................................................................... VIII 

1 Introduction ......................................................................................................... 1 

1.1 Electrical stimulation in clinical practice ......................................................... 1 

1.1.1 Effects of electrical stimulation on bone cells .......................................... 1 

1.1.2 Complications and revision causes ........................................................... 2 

1.2 Electrical stimulation of bacteria ..................................................................... 3 

1.2.1 Staphylococcus aureus ............................................................................. 4 

1.2.2 Staphylococcus epidermidis ..................................................................... 5 

1.2.3 Biofilm formation .................................................................................... 6 

1.2.4 Interactions with bone .............................................................................. 8 

1.3 Aim of the work .............................................................................................. 9 

1.4 Interdisciplinary aspect and integration in WELISA ........................................ 9 

2 Materials and Methods ...................................................................................... 11 

2.1 Chemicals, Enzymes & Kits .......................................................................... 11 

2.2 Laboratory Equipment .................................................................................. 13 

2.3 Construction of the stimulation system.......................................................... 14 

2.3.1 Basic idea and purpose of construction .................................................. 14 

2.3.2 Construction of the stimulation chamber ................................................ 15 

2.3.3 Simulation and validation of electric field distribution ........................... 17 

2.4 Bacteria ........................................................................................................ 19 

2.4.1 Bacterial Strains..................................................................................... 19 

2.4.2 Cultivation and preservation .................................................................. 19 

2.4.3 Growth experiments............................................................................... 20 

2.4.4 Biofilm formation on solid materials ...................................................... 22 

2.4.5 Scanning electron microscopy................................................................ 23 

2.4.6 Electrical stimulation protocol ............................................................... 24 



  II 

 

2.4.6.1 Determination of CFU/ml from the supernatant .............................. 24 

2.4.6.2 Antibiotic resistance ....................................................................... 25 

2.4.6.3 Determination of CFU/ml from the electrode surface ...................... 25 

2.4.6.4 Quantification of biofilm mass ........................................................ 26 

2.4.6.5 pH measurement ............................................................................. 26 

2.4.6.6 Quantification of biofilm mass following electrical stimulation ...... 26 

2.4.6.7 Determination of biofilm composition ............................................ 27 

2.4.6.8 Determination of ATP concentration............................................... 28 

2.4.6.9 Fluorescence activated cell-sorting / FACS analyses ....................... 28 

2.5  Cells and cell lines ........................................................................................ 29 

2.5.1 Cell culture and preservation.................................................................. 29 

2.5.2 Adherence and internalization assay ...................................................... 30 

2.5.3 Cytokine ELISA .................................................................................... 31 

2.6 Co-culture under electrical stimulation .............................................................. 32 

2.7 Statistical analysis ............................................................................................. 33 

3 Results ................................................................................................................ 34 

3.1 Numeric simulation of electric potential and field distribution in the stimulation 

system ..................................................................................................................... 34 

3.2 Growth of S. epidermidis and S. aureus in complex and cell culture media ... 35 

3.3 Biofilm mass production of S. epidermidis on solid materials ....................... 38 

3.3.1 Determination of CFU/ml from supernatants.......................................... 38 

3.3.2 Determination of CFU/ml recovered from biofilms ................................ 39 

3.3.3 Quantification of biofilm mass ............................................................... 40 

3.4 Scanning electron microscopy imaging of biofilms of S. epidermidis ............ 41 

3.5 Electrical stimulation of S. epidermidis and S. aureus ................................... 43 

3.5.1 Determination of CFU/ml from the supernatant ..................................... 43 

3.5.2 Determination of CFU/ml recovered from electrode surfaces ................. 45 

3.5.3 Biofilm mass quantification ................................................................... 46 



  III 

 

3.5.4 pH measurements .................................................................................. 48 

3.5.5 Antibiotic resistance .............................................................................. 49 

3.5.6 Biofilm mass production following electrical stimulation ....................... 50 

3.5.7 Biofilm Composition ............................................................................. 51 

3.5.8 Determination of ATP concentration in supernatants and lysates ........... 53 

3.5.9 Determination of live and dead bacteria by FACS analyses .................... 54 

3.6 Co-culture of staphylococci and bone cells ................................................... 55 

3.6.1 Adherence and internalization of staphylococci to and into bone cells .... 55 

3.6.2 Cytokine production following infection of bone cells with staphylococci . 

  .............................................................................................................. 57 

3.6.3 SEM imaging of MG63 cells and hOB infected with S. epidermidis....... 60 

3.6.4 Co-culture of S. epidermidis and MG63 cells under electrical stimulation .. 

  .............................................................................................................. 60 

4 Discussion ........................................................................................................... 63 

4.1 Numerical simulation and choice of material ................................................ 63 

4.2 Effects of electrical stimulation on bacteria ................................................... 65 

4.3 Influences of AC stimulation on biofilm composition ................................... 66 

4.4 Interactions of S. epidermidis with cells ........................................................ 67 

4.5 Limitations and Outlook ............................................................................... 69 

5 Summary ............................................................................................................ 71 

6 References .......................................................................................................... IX 

7 Appendix ...................................................................................................... XVIII 

Acknowledgements ............................................................................................. XXIII 

Selbstständigkeitserklärung .........................................................................................  

 

 



  IV 

 

List of Abbreviations 

AC     alternating current 

Aqua dest.    destilled / deionized water 

Adh.     adherence 

ATP     adenosine triphosphate 

CFU     colony forming units  

DC     direct current 

DMEM    Dulbecco’s Modified Eagle Medium 

DMSO     dimethyl sulfoxide 

DNA     deoxyribonucleic acid 

E. coli     Escherichia coli 

EDTA      ethylenediaminetetraacetic acid 

ELISA     enzyme-linked immunosorbent assay 

EthD-III    ethidium homodimer III 

FACS     fluorescence activated cell sorting 

FCS     fetal calf serum 

HEPES 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic 

acid 

hOB     human osteoblasts 

Int.     internalization  

IL-6     interleukin-6 

IL-12     interleukin-12 

magn.     magnification 

MCP-1    monocyte chemoattractant protein 1 

MEM     Minimal Essential Medium  

MG63     osteosarcoma cell line  

MIC     minimal inhibitory concentration [µg/ml] 

MOI     multiplicity of infection 

µ     specific growth rate [h-1] 

OD     optical density 

P. aeruginosa    Pseudomonas aeruginosa 

PBS     phosphate buffered saline 

PI     propidium iodide 



  V 

 

Prot. K     proteinase K 

RLU     relative luminescence units 

ROI     region of interest 

rpm     rotations per minute 

SDS     sodiumdodecylsulfate 

SEM     scanning electron microscopy 

S. aureus    Staphylococcus aureus 

S. epidermidis    Staphylococcus epidermidis 

Ti6Al4V    titanium-6 aluminium-4 vanadium alloy 

TNF-α     tumor necrosis factor α 

TO     thiazolorange 

TSB     tryptic soy broth 

td     doubling time [h] 

VRMS     voltage root mean squared / effective voltage 

v/v     volume per volume 

w/v     weight per volume 

 

 

List of Figures 

Figure 1: Distribution of organisms causing surgical site infection in patients undergoing 

knee and hip arthroplasty .............................................................................................. 3 

Figure 2: Representative SEM image of S. epidermidis. ................................................ 6 

Figure 3: General steps of biofilm formation. ................................................................ 7 

Figure 4: Confocal images of Ti6Al4V electrode surfaces including roughness 

measurements. ............................................................................................................ 16 

Figure 5: Technical drawing and realization of the stimulation system. ....................... 17 

Figure 6: Representative validation setup of the stimulation chamber. ......................... 19 

Figure 7: Simulations of potential and field distributions inside the stimulation system.

 ................................................................................................................................... 34 

Figure 8: Representative growth curves of S. epiderimidis in different media.. ............ 36 

Figure 9: Representative growth curves of S. aureus in different media.. ..................... 37 



  VI 

 

Figure 10: Determination of planktonic CFU/ml of S. epidermidis. ............................. 38 

Figure 11: Determination of biofilm-bound CFU/ml of S. epidermidis. ....................... 39 

Figure 12: Quantification of S. epidermidis formed biofilms. ...................................... 40 

Figure 13: Representative SEM images of S. epidermidis cultivated in TSB. ............... 41 

Figure 14: Representative SEM images of S. epidermidis cultivated in DMEM. .......... 42 

Figure 15: Representative SEM images of S. epidermidis cultivated in MEM. ............ 42 

Figure 16: Determination of planktonic S. epidermidis and S. aureus following electrical 

stimulation. ................................................................................................................. 44 

Figure 17: Determination of electrode-bound S. epidermidis and S. aureus following 

electrical stimulation. .................................................................................................. 45 

Figure 18: Quantification of biofilms formed by S. epidermidis and S. aureus following 

electrical stimulation. .................................................................................................. 47 

Figure 19: pH of supernatants of S. epidermidis and S. aureus samples following electrical 

stimulation. ................................................................................................................. 48 

Figure 20: Quantification of general biofilm formation of S. epidermidis and S. aureus 

following electrical stimulation. .................................................................................. 50 

Figure 21: Determination of composition of S. epidermidis and S. aureus formed biofilms.

 ................................................................................................................................... 51 

Figure 22: Determination of extracellular DNA in S. epidermidis and S. aureus formed 

biofilms.. .................................................................................................................... 51 

Figure 23: Determination of ATP amounts following electrical stimulation of S. aureus 

in TSB. ....................................................................................................................... 53 

Figure 24: Population distributions of viable and damaged S. aureus following electrical 

stimulation. ................................................................................................................. 54 

Figure 25: Adherence and internalization of S. epidermidis on and into hOB and MG63 

cells.  .......................................................................................................................... 56 

Figure 26: Adherence and internalization of S. aureus on and into MG63 cells. .......... 56 

Figure 27: Interleukin-6 secretion of hOB and MG63 cells infected with S. epidermidis.  

. .................................................................................................................................. 57 



  VII 

 

Figure 28: MCP-1 secretion of hOB and MG63 cells infected with S. epidermidis. ..... 58 

Figure 29: Interleukin-6 and MCP-1 secretion of MG63 cells infected with S. aureus. 59 

Figure 30: Representative SEM images of MG63 cells infected with S. epidermidis.... 60 

Figure 31: Representative SEM images of hOB infected with S. epidermidis. ............. 60 

Figure 32: Determination of CFU/ml of S. epidermidis during co-culture and electrical 

stimulation. ................................................................................................................. 61 

Figure 33: Cell count of viable MG63 cells following coculture with S. epidermidis under 

electrical stimulation and pH measurements. ............................................................... 62 

Figure 34: Determination of planktonic S. epidermidis and S. aureus following electrical 

stimulation in TSB with 104 CFU/ml inoculum. ..................................................... XVIII 

Figure 35: Determination of electrode-bound S. epidermidis and S. aureus following 

electrical stimulation in TSB with 104 CFU/ml inoculum. ...................................... XVIII 

Figure 36: Quantification of biofilms formed by S. epidermidis and S. aureus following 

electrical stimulation in TSB with 104 CFU/ml inoculum. ........................................ XIX 

Figure 37: pH of supernatants of S. epidermidis and S. aureus samples following electrical 

stimulation in TSB with 104 CFU/ml inoculum.. ...................................................... XIX 

Figure 38: Minimal inhibitory concentrations of gentamicin following electrical 

stimulation of S. epidermidis and S. aureus in TSB with 106 CFU/ml inoculum.. ...... XX 

Figure 39: Minimal inhibitory concentrations of levofloxacin following electrical 

stimulation of S. epidermidis and S. aureus in TSB with 106 CFU/ml inoculum.. ...... XX 

Figure 40: Minimal inhibitory concentrations of gentamicin following electrical 

stimulation of S. epidermidis and S. aureus in TSB with 104 CFU/ml inoculum. ...... XXI 

Figure 41: Minimal inhibitory concentrations of levofloxacin following electrical 

stimulation of S. epidermidis and S. aureus in TSB with 104 CFU/ml inoculum. ...... XXI 

Figure 42: Minimal inhibitory concentrations of gentamicin following electrical 

stimulation of S. epidermidis and S. aureus in DMEM with 104 CFU/ml inoculum.. XXII 

Figure 43: Minimal inhibitory concentrations of levofloxacin following electrical 

stimulation of S. epidermidis and S. aureus in DMEM with 104 CFU/ml inoculum.. XXII 

 



  VIII 

 

List of Tables 

Table 1: Chemicals and enzymes ................................................................................ 11 

Table 2: Utilized kits ................................................................................................... 12 

Table 3: Laboratory equipment and consumables ........................................................ 13 

Table 4: Electric properties of materials and medium used for numerical simulation ... 18 

Table 5: Bacterial strains ............................................................................................. 19 

Table 6: Cells and cell lines ........................................................................................ 29 

Table 7: Measured and simulated electric potential of the measurement pattern of the 

stimulation system in the ROI ..................................................................................... 34 

Table 8 Calculated growth rates and doubling times for S. epidermidis ....................... 36 

Table 9: Calculated growth rates and doubling times for S. aureus. ............................. 37 

Table 10: Parameter settings for electrical stimulation of S. epidermidis and S. aureus 43 

 

 

 



Introduction   1 

 

1 Introduction 

1.1 Electrical stimulation in clinical practice 

Electrical stimulation (ES) is widely applied in different clinical contexts and gained 

importance in treatment of various diseases and disabilities. Today, various types of 

electrical stimulation for different tissues are common in clinical use. Deep brain 

stimulation for treatment of Parkinson’s Disease as well as cochlear implants or cardiac 

pacemaker represent prominent examples (Perlmutter and Mink 2006, Zeng and Fay 

2013, Bradshaw et al. 2014). Furthermore, therapies combine conventional treatment 

strategies with ES to approach cutaneous wound-healing complications, paralyzed muscle 

or muscle atrophy in immobilized patients. Furthermore, ES is applied in pain relief 

therapy and in treatment of optic neuropathy as well as retina degeneration. (Rushton 

2002, Zanotti et al. 2003, Kern et al. 2005, Kloth 2005, Schatz et al. 2011). Another field 

of application lies within the orthopedic field. Here, electrical stimulating implants or 

devices are used as supportive therapy in treatment of bone fractures or to improve bone 

and tissue regeneration (Latham and Lau 2011, Griffin and Bayat 2011, Dolbow et al. 

2014).  

 

1.1.1 Effects of electrical stimulation on bone cells 

Improved fracture healing and, in this case especially, an accelerated bone remodeling 

after insertion of an implant can be achieved by application of electric or electromagnetic 

fields (Kraus 1992, Meng et al. 2013). Electrical stimulation has shown to be effective in 

treatment of infected non-unions, as well as failed arthrodesis and osteoporosis. 

Furthermore, positive effects in treatment of osteonecrosis could be shown (Griffin and 

Bayat 2011). According to Onibere and Khanna, applications of ES can be grouped into 

three basic categories. First, invasive bone stimulators or devices, which function by 

providing direct current via implantable devices. These devices are connected to a 

generator, which is implanted into the fascia of the lower leg. Second, semi-invasive bone 

stimulators or devices, involving application of direct current through a Teflon coated 

stainless cathode, which is inserted percutaneously into the site of the defect. A self-

adherent anode is placed on the surface of the skin and is attached to a power pack.  
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Third, non-invasive bone stimulators or devices, which function by either capacitive and 

inductive coupling. Capacitive stimulators consist of a power source unit and two 

electrode disks, which are attached directly to the skin on each non-union. They produce 

internal electrical fields at a frequency of 60 kilohertz (KHz) with an ideal operating 

current level between 5 and 10 milliamperes (mA). Inductive coupling, however, uses 

pulsed electromagnetic fields (PEMF) producing an inductive coupled electromagnetic 

field at the site of the non-union. This system consists of two external coils placed parallel 

to each other over the non-union site. The generated fields expand outwards at right angle 

from the coil bases and thereby penetrate the bone (Onibere and Khanna 2008). Electrical 

stimulation is a minimally invasive possibility for delayed fracture healing compared with 

revisions of joints, bones or implant devices (Onibere and Khanna 2008, Kuzyk and 

Schemitsch 2009). In previous studies, upregulation of different growth factors, e.g. 

BMPs (bone morphogenetic-proteinases) and TGF-β (tissue growth factor β) in 

osteoblasts under electrical stimulation were shown. Furthermore, influence on different 

receptors such as PTH (parathyroid hormone) could be shown (Onibere and Khanna 

2008). Electrical stimulation could also be associated with increased cutaneous perfusion 

supporting wound healing (Thakral et al. 2013). 

 

1.1.2 Complications and revision causes 

Steady progress in the enhancement of stability and compatibility of orthopedic implants 

has been made over the last decades. Nevertheless, malfunction, aseptic loosening, but 

also implant-associated infections impede the clinical success in this field. The number 

of patients with implant-associated infections or so-called prosthetic joint infections (PJI) 

is increasing (Tande and Patel 2014).  

A successful treatment of PJI is difficult due to the lifelong risk of bacterial infections on 

the implant surface (Zimmerli et al. 2004). PJI can lead to implant loosening and 

destruction of peri-implant bone tissue followed by complicated treatment and high 

revision rates of the implants. PJI after total joint arthroplasty occur less frequently than 

aseptic loosening but cause dramatic complications often combined with substantial bone 

loss (Steckelberg and Osmon 2000).  

Successful treatment of PJI is a significant problem resulting in high recurrent infection 

rates and failure of antibiotics. This is due to biofilm formation of bacteria on the implant 

surface and persistence in the host cells.  
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Both processes decrease the susceptibility of the bacteria towards antimicrobial 

substances (Costerton et al. 1994, Shi and Zhang 2012). In most cases, revision surgery 

is the only option to eradicate the infection (Klouche et al. 2010, Kurtz et al. 2012). 

A list of microorganisms leading to PJI is shown in Figure 1. Staphylococcus aureus and 

coagulase-negative staphylococci are the most frequently occurring pathogens associated 

with PJI following joint replacement or bone fracture treatment (Saadatian-Elahi et al. 

2008, Harrasser et al. 2012, Lamagni 2014). Another fact worth mentioning is the 

increasing number of bacteria which are resistant to commonly used antibiotics. The 

number of available antibiotics against e.g. methicillin-resistant S. aureus or other 

multiresistant bacterial species is limited. Additionally, treatment with reserve antibiotics 

often includes various side effects, higher treatment costs and the possibility for resistance 

development in treated bacterial strains. 

 

 

Figure 1: Distribution of organisms (the top 10 ranking organisms are identified to genus/species level) causing surgical 

site infection in patients undergoing knee and hip arthroplasty (Lamagni 2014) 

 

1.2 Electrical stimulation of bacteria 

Electrical stimulation is not only applied on different cell types, it was also used in the 

last decades to investigate effects on different bacterial species. Different electrical 

stimulation methods are applied in research, e.g. high-voltage pulsed current (HVPC), 

direct current (DC) but also alternating current (AC) (Giladi et al. 2008, Asadi and 

Torkaman 2014).  
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Several studies showed that electric and electromagnetic stimulation have influence and 

reduction potential of bacterial growth and biofilm formation, e.g. for 

Staphylococcus aureus, Pseudomonas aeruginosa, or Escherichia coli (Merriman et al. 

2004, del Pozo et al. 2009a, del Pozo et al. 2009b, Obermeier et al. 2009, Matl et al. 

2011, Zituni et al. 2014). Nevertheless, there are varying application protocols and 

parameters as well as the choice of the electrode material. Mostly, platinum, gold, or 

titanium electrodes are used, in varying appearances, e.g. titanium nanotubules, thin gold 

wires, plates, or rod-shaped electrodes (Ercan et al. 2011, Ehrensberger et al. 2015). 

Furthermore, augmentation of inhibitive effects of electrical stimulation in combination 

with antibiotic treatment could be shown in different studies (Caubet et al. 2004, Matl et 

al. 2011, Nodzo et al. 2015). 

Additionally, different experimental setups concerning the used media exist. Experiments 

were performed in liquid media, using e.g. two metal plates directly immersed in the 

culture medium. Other approaches use bacterial cultures transferred in reaction chambers 

where a surrounding coil induces electromagnetic stimulation. Solid media are also used 

for experiments, where bacteria are grown and cultivated under different conditions 

(Obermeier et al. 2009, Zituni et al. 2014). In general, highest effects on bacteria 

concerning electrical stimulation are achieved by application of DC, while principle 

underlying mechanisms are not yet understood (Asadi and Torkaman 2014).  

Currently two mechanisms are proposed to be responsible for bactericidal effects of ES, 

the direct and indirect effect. Direct effects include disruption of bacterial membranes or 

electrolytic reactions on membrane surfaces. Furthermore, indirect effects include e.g. the 

development of toxic substances such as H2O2 or chlorine molecules through electrolytic 

reactions in the surrounding medium (Asadi and Torkaman 2014, Sandvik et al. 2013). 

However, most experiments were done in vitro, leaving the question of effects of ES on 

bacteria in a PJI situation open. Despite huge numbers of experimental setups and 

literature about electrical stimulation, optimal stimulation parameters have not yet been 

identified and further knowledge about the effects of applied electric fields is needed.  

 

1.2.1 Staphylococcus aureus 

S. aureus is a Gram-positive, coccoid, coagulase-positive, and non-motile bacterium, 

which cannot form spores. It appears almost everywhere in nature and can also be found 

on food. Additionally, it can colonize the skin and mucous membranes of warm-blooded 
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organism and appears in 20 – 30 % of all humans on the skin and mucous membranes of 

the upper respiratory tract (Liu 2009).  

When cultivated on blood agar, where S. aureus appears as white-golden colonies, clear 

areas around the bacteria appear. Within these areas, erythrocytes and hemoglobins are 

completely degraded by S. aureus, namely called β-hemolysis. Normally, S. aureus is a 

commensal bacterium (according to new definitions called pathobiont) which does not 

cause infections in healthy individuals. However, if the opportunity arises, S. aureus can 

lead to different types of infections, ranging from superficial lesions to toxin-mediated 

infections and life-threatening conditions such as endocarditis, osteomyelitis, bacteremia 

and TSST with sepsis (Aires De Sousa and De Lencastre 2004, Bien et al. 2011). It 

possesses a large variety of different virulence factors, such as adhesins termed Microbial 

Surface Component Recognizing Adhesive Matrix Molecules (MSCRAMMSs), 

recognizing extracellular matrix components or plasma components (Lowy 1998, Foster 

and Höök 1998, Joh et al. 1999, Speziale et al. 2009). Since antibiotics are widely and 

often used, antibiotic resistances occur more frequently leading to difficult, expensive, 

and prolonged treatment of infections, e.g. infections with methicillin-resistant S. aureus 

(MRSA). These resistances challenge successful treatment and diminish the number of 

potent antibiotics available to prevent life-threatening courses of infections. 

 

1.2.2 Staphylococcus epidermidis  

S. epidermidis, usually belonging to the commensal skin flora of humans (Grice et al. 

2009), can occur as facultative pathogenic bacterium in nosocomial infections, especially 

implant-related infections. It is a Gram-positive, coccoid bacterium appearing mostly in 

aggregations. S. epidermidis is non-motile, forms no spores and belongs to the coagulase-

negative staphylococci (CoNS). A representative SEM image of S. epidermidis with 

beginning production of extracellular matrix components is shown in Figure 2. Next to 

indwelling medical device infections with S. aureus as causative agent, the major part of 

CoNS infections can be assumed to be caused by S. epidermidis (Otto 2009). This 

bacterial species has a variety of virulence factors, and most strains form biofilms. When 

biofilm formation occurs on an implant surface, this mostly leads to dramatic and 

challenging treatment issues since bacteria within the biofilm are strongly protected from 

therapy through different properties of the biofilm. S. epidermidis possesses specific 
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proteins, which impact surface adhesion to abiotic surfaces, e.g. AtlE, which is a 

bifunctional adhesion/autolysin (Heilmann et al. 1997).  

Furthermore, S. epidermidis can produce the protective expolymers PGA (poly-γ-

glutamic acid) and PNAG/PIA (poly-N-acetylglucosamine homopolymer), protecting it 

from innate host defense mechanisms, such as neutrophil phagocytosis and antimicrobial 

peptides (Otto 2009). However, underlying mechanisms of S. epidermidis infections are 

poorly understood. In case a S. epidermidis infection occurs, treatment is very difficult 

and often leads to revision of the implant and broad debridement of the surrounding tissue.  

 

 

Figure 2: Representative SEM image of S. epidermidis. S. epidermidis was cultivated on polystyrene coverslips in 
complex medium TSB over 72 h. Image taken at the Electron Microscopy Center University Medical Center, 5000 x 

magnification. 

 

1.2.3 Biofilm formation 

One major problem in treating implant-associated infections is the ability of nearly all 

bacteria to form biofilm (Jamal et al. 2015). Biofilm formation is a well-regulated 

complex mechanism and includes five basic steps, schematically shown in Figure 3.  
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Figure 3: General steps of biofilm formation. (Source: https://microbewiki.kenyon.edu/images/8/84/Biofilm.png, 
11:55, 18.06.2017)  

 

First, single planktonic bacteria adhere to a specific point, e.g. the implant surface and 

switch from planktonic phase to a sessile form. The second step is the proliferation of 

bacteria as well as cell-cell adhesion resulting in the formation of micro-colonies with 

additional aggregation of more bacteria. Next, the bacteria start to produce extracellular 

matrix proteins and structures connecting and tightening them, leading to three-

dimensional biofilm structures. These structures consist mainly of bacterial cells itself, 

DNA / RNA, proteins and polysaccharides, though the major component of an intact 

biofilm is water, responsible for nutrient flow within the biofilm structure. The fourth step 

is the maturation of the biofilm. Bacteria are proliferating and more extracellular proteins 

and matrix structures are formed. This complex network is tightly connected and serves 

different purposes to facilitate and support bacterial survival. The last step is the 

detachment or dispersal of parts of the biofilm which are transported by e.g. blood or 

wound liquid to other places, where new biofilms can be formed (Jamal et al. 2015, 

Costerton et al. 1999). 

Within biofilms, bacteria show reduced metabolic activity, slow growth rates, and are 

efficiently protected against host immune responses or antimicrobial substances (Sekhar 

et al. 2009, Mah and O’Toole 2001). Diffusion rates inside biofilms are limited. 

Therefore, antibiotics need a long time to reach deep in the biofilm and are for example 

degraded through enzymes within the biofilm or matrix-bound substances modifying 

antimicrobial agents.  
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Furthermore, the existence of persistent (non-dividing) cells, as well as adaptive 

mechanisms confer antibiotic resistance and lower the susceptibility to environmental 

stress factors (Poole 2002). Besides, immune cells of the host cannot penetrate the biofilm 

and the host immune response is thereby impaired. In case of S. epidermidis, bacteria are 

suppressing the aerobic metabolism, expression of virulence factors and phenol-soluble 

modulins while activating protective factors and fermentation pathways when bound 

inside a biofilm (Yao et al. 2005). 

 

1.2.4 Interactions with bone  

S. epidermidis is more likely to cause dramatic infections due to biofilm formation and 

less immune response of the host, because it is permanently colonizing the human skin 

(Otto 2009, Valour et al. 2013), S. aureus possesses a large variety of factors and 

substances to interact with different cell types. S. aureus can e.g. bind bone extracellular 

matrix components via multiple adhesins (MSCRAMMs) (Heilmann 2011, Josse et al. 

2015) or adhere to bone cells through fibronectin-mediated mechanisms (Rasigade et al. 

2011). Though lacking several virulence factors compared to S. aureus, S. epidermidis is 

also capable of invading bone cells (Shi and Zang 2012, Valour et al. 2013). When 

invading bone cells, S. aureus induces the production and secretion of large amounts of 

interleukin-6 and interleukin-12, as well as monocyte chemoattractant protein-1 (Bost et 

al. 1999, Ning et al. 2011), a phenotype is not yet shown for S. epidermidis. Additionally, 

S. aureus can induce apoptosis of bone cells, leading to massive bone destruction, due to 

inflammation and osteoclast activation (Shi and Zang 2012, Josse et al. 2015). Besides, 

S. aureus can also persist in osteoblasts and macrophages, while possessing several types 

of membrane-damaging factors to facilitate its escape from intracellular vesicles (Josse 

et al. 2015, Vandenesch et al. 2012). Together, bone infections with S. aureus lead to 

difficult treatment and often recurrent infections due to the protection against 

antimicrobial substances and the host’s immune system by its own cells.  

Additionally, S. aureus biofilms can impair osteoblast viability, osteogenic 

differentiation while increasing bone resorption (Sanchez et al. 2013). Regarding the 

interaction of bone cells and S. epidermidis, the mechanisms are poorly understood.  

Khalil et al. 2007 described internalization capability of S. epidermidis into osteoblasts, 

however suggested that internalization does not take place via interaction between 

bacterial adhesins and α5β1 integrin, as it is possible for S. aureus (Khalil et al. 2007).  
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1.3 Aim of the work 

The aim of this work is the establishment of a novel in vitro implant infection system 

suitable for bone cells as well as for bacteria. The system design should allow electrical 

stimulation using sine waves enable studies of electrical stimulation and effects on 

S. epidermidis and S. aureus. Currently no in vitro system is available which allows 

combined experiments with cells and with bacteria. However, such a system could serve 

as base for future studies in the implant infection context. Besides, this work aims to 

investigate if there are possible electrical stimulation conditions, which benefit osteoblast 

proliferation, differentiation, and bone healing in general, but at the same time impair 

bacterial growth and biofilm formation on the implant and in the surrounding area.  

The focus in this work lies on electrical stimulation of bacteria, while another associated 

PhD thesis focusses on electrical stimulation of osteoblast cells using the identical system.  

 

1.4 Interdisciplinary aspect and integration in WELISA 

This work is integrated as part M4 in the DFG funded research training group WELISA 

(GRK 1505/2 welisa). WELISA stands for “Analysis and Simulation of Electrical 

Interactions between Implants and Biological Systems”. It is an inter- and 

multidisciplinary research project combining different expertise’s and fields of research. 

This work focusses on interactions of implants and biological systems, specifically 

orthopedic implants. Other working groups in WELISA are studying cochlea implants or 

deep brain stimulation. Within this work, not only microbiological background is needed. 

To design the stimulation system, engineering knowledge is needed to generate the 3D 

technical drawings. Another important point are the simulations, which are done in 

COMSOL with background facts about engineering and mathematics. Besides, specific 

material properties have to be taken into account for the choice of the chamber material 

and the electrodes. Since the electrodes are further treated to reach a certain surface 

roughness occurring in clinically used implants, changes in surface properties of the 

electrode have to be considered.  

In case of the experiments performed with the new stimulation system, the possibility 

should be considered, that specific electrode reactions could occur, requiring some sort 

of electrochemical understanding.  
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Overall, engineering, mathematical, biological as well as chemical, physical, and 

biological and medical aspects are all combined in this work for the establishment of this 

stimulation system and the interpretation of the results.  
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2 Materials and Methods 

2.1 Chemicals, Enzymes & Kits 

The following chemicals and enzymes were used.  

 

Table 1: Chemicals and enzymes 

Chemical/Enzyme Manufacturer 

Agar Technical Oxoid Ltd., Basingstoke, Hampshire, UK 

L-Ascorbic acid sodium salt Sigma-Aldrich Chemie GmbH, Steinheim, 

Germany 

Crystal violet Fluka Chemie AG, Buchs, Switzerland 

Dexamethasone Sigma-Aldrich Chemie GmbH, Steinheim, 

Germany 

DMEM (1X) /w GlutaMAX, high 

glucose, pyruvate 

Life Technologies, Eugene, OR, USA 

Dimethyl Sulfoxide (DMSO) Merck KGaA, Darmstadt, Germany 

EDTA (Ethylendiamine-

tetraacetic acid) 

Sigma-Aldrich Chemie GmbH, Steinheim, 

Germany 

Ethanol (absolute) Central Pharmacy of the Hospital of the 

University of Rostock, Rostock, Germany 

Fetal calf serum Life technologies, Eugene, OR, USA 

Gentamicin solution 50 mg/ml Sigma-Aldrich Chemie GmbH, Steinheim, 

Germany 

Glutardialdehyde solution 25 % Merck KGaA, Darmstadt, Germany 

Glycerin (99 %) Merck KGaA, Darmstadt, Germany 

β- Glycerophosphate disodium salt 

hydrate 

Sigma-Aldrich Chemie GmbH, Steinheim, 

Germany 

Proteinase K  AppliChem GmbH, Darmstadt, Germany 

Levofloxacin Sigma-Aldrich Chemie GmbH, Steinheim, 

Germany 

MEM w/o Ca2+ Biochrom, Berlin, Germany 

Potassium Dihydrogenphosphate Merck KGaA, Darmstadt, Germany 
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Sodium Chloride Carl Roth GmbH + Co.KG, Karlsruhe, 

Germany 

Sodium Dihydrogenphosphate 

monohydrate 

Merck KGaA, Darmstadt, Germany 

NaIO4 (Sodium metaperiodate) Merck KGaA, Darmstadt, Germany 

SDS (Sodiumdodecylsulfate) Carl Roth GmbH + Co.KG, Karlsruhe, 

Germany 

di-Sodium Hydrogenphosphate 

dihydrate 

Merck KGaA, Darmstadt, Germany 

Sodium Hydroxide Merck KGaA, Darmstadt, Germany 

Trypsin/EDTA solution (1X)  Life Technologies, Eugene, OR, USA 

Tryptic Soy Broth Applichem GmbH, Darmstadt, Germany 

Tween 20 pure Serva Electrophoresis GmbH, Heidelberg, 

Germany 

  

Utilized Kits are listed in Table 2. 

 

Table 2: Utilized kits 

Kit Manufacturer 

ATP Determination Kit 

Life Technologies, Eugene, OR, 

USA 

BD Cell Viability Kit TO/PI 

BD Biosciences, Erebodegum, 

Belgium 

Multiplex ELISA  

Biorad Laboratories, Hercules, 

CA, USA 

PromoKine #PK-CA707-30027 Kit  

PromoCell GmbH, Heidelberg, 

Germany 
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2.2 Laboratory Equipment 

Laboratory equipment and materials used for this work are listed in Table 3. 

 

Table 3: Laboratory equipment and consumables 

Laboratory Instrument / Consumables  Manufacturer 

Accuri C6 FACS BD Biosciences 

CellStar Cell Culture Plate (6, 24, 96 well) Greiner Bio-One GmbH, 

Frickenhausen, Germany 

Cotton Sticks NerbePlus GmbH, 

Winsen/Luhe, Germany 

Dielectric Broadband Spectrometer  Novocontrol Technologies 

GmbH & Co. KG, Montabaur, 

Germany 

Eddy Jet spiral plater IUL instruments, Barcelona, 

Espana 

E-Test Gentamicin 0.016-256 µg/ml bioMérieux SA, Marcy-

l'Etoile, France 

E-Test Levofloxacin 0.002-32 µg/ml bioMérieux SA, Marcy-

l'Etoile, France 

Function Generator Metrix GX305 Chauvin Arnoux GmbH, 

Kehl/Rhein, Germany 

Biozero-BZ8000 fluorescence microscope Keyence, Osaka, Japan 

Luminometer Lumat LB9501 Berthold Technologies GmbH 

& Co. KG, Bad Wildbad, 

Germany 

Nunc Thermanox Coverslips (13, 25 mm 

diameter) 

Thermo Fisher Scientific, 

Waltham, MA, USA 

pH meter WTW series Typ pH720 WTW GmbH, Weilheim, 

Germany 

Ribolyser precellys 24 VWR International GmbH, 

Erlangen, Germany 

Secusept Ecolab Deutschland GmbH, 

Monheim am Rhein, Germany 
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Sonorex Digital 10P Ultrasonic Bath Bandelin electronic, Berlin, 

Germany 

Spectrophotometer SmartSpec™ 3000 Biorad-Laboratories, Hercules, 

CA, USA 

Spectrophotometer SpectraMax M2 Molecular Devices, Sunnyvale, 

CA, USA 

Sterifix® injection filters (0.2 µm) B. Braun Melsungen AG, 

Melsungen, Germany 

 

 

The following software was used: 

• BD Accuri C6 Software (BD Biosciences, Erebodegum, Belgium) 

• GraphPad Prism 6.01 (GraphPad Software, Inc., CA, USA) 

• Microsoft Office 2010 / 2013 (Microsoft Corporation, Redmond, 

WA, USA) 

• WinDeta Software (Novocontrol Technologies GmbH & Co. KG, 

Montabaur, Germany) 

• Windows 7 (Microsoft Corporation, Redmond, WA, USA) 

• Softmax Pro V. 5.4 (Molecular Devices, Sunnyvale, CA, USA) 

 

 

2.3 Construction of the stimulation system 

2.3.1 Basic idea and purpose of construction 

Over the past decades, electrical stimulation in vitro was carried out investigating 

different microorganisms and eukaryotic cell lines. However, methodical and 

experimental setups display a huge variety depending on the focus of the investigation. 

So far, no stimulation system appropriate for basic research was established combining 

the possibilities of stimulating both microorganisms and cells under similar yet defined 

conditions. Therefore, our goal was the construction of a stimulation system enabling 

experiments with bone cells as well as bacteria under similar conditions.  
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The generated system should be suitable for basic research and should offer a broad range 

of applicable methods for investigation of effects of electrical stimulation. Although 

direct current is discussed as a more potent stimulation method than alternating current 

in literature, we chose alternating current as the stimulation method for this system. This 

is due to the fact, that our starting parameter setting should somehow get near to the 

clinically used ASNIS screw system, which is working with alternating current and 

defined frequency and stimulation periods in patients. It is important to state that the 

generated system should not serve as opportunity to evaluate clinically observed effects 

of electrical stimulation or to mimic an implant-infection situation. It should solely serve 

as an experimental tool suitable for widespread basic research of effects of electrical 

stimulation on different bacteria and cells under similar conditions and the underlying 

mechanisms. The system enables three basic aspects to be investigated, which are:  

1) bacterial growth and behavior in the supernatants, 2) changes of bacterial attachment 

and survival on the electrode surfaces and 3) biofilm formation on the chamber bottom, 

which was realized by a coverslip on the chamber bottom and further staining of formed 

biofilm mass. 

 

2.3.2 Construction of the stimulation chamber 

Foto Med® LED.A (Innovation MediTech GmbH, Unna, Germany) was chosen as 

material for the construction of the stimulation chamber. The material can be sterilized, 

which is an essential part in handling and experimental design, when working with 

bacteria. Furthermore, it provides biocompatible properties fulfilling the DIN ISO 10993.  

An additional advantage is the fact, that this material is non-conductive, serving as an 

isolator of the generated electric field inside the chamber to the surrounding area. 

Electrodes were generated in a triangular shape to allow seeding of cells as well as 

bacteria directly on the electrode surface. Length of the electrodes measures 23 mm with 

an equilateral base of 5 x 5 x 5 mm. Electrode and contact rods, enabling connection of 

voltage supply to electrodes, were produced of Ti6Al4V. Contact rods were produced by 

cutting and purchased from Primec GmbH (Bentwisch, Germany). These rods were 

screwed together with electrodes via threads. Electrodes were modified by corundum 

blasting reaching a surface roughness of 21.38 ± 4.67 µm, analyzed with the laser 

scanning microscope Keyence VK-X260 (Keyence Deutschland GmbH, Neu-Isenburg, 

Germany).  
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Images of roughness measurement and electrode surface are presented in Figure 4. A 

polyether ether ketone (PEEK) part of 5 mm width between the electrodes serves as 

insulator to allow application of alternating current to the system. Triangular electrodes 

with insulator and contact rods are shown in Figure 5D. Three-dimensional technical 

drawings generated with CAD software as well as top view of the technical drawing, 

including a coordinate grid used for validation, are shown in Figure 5A and 5B. 

Geometric scales of the generated chamber measure 54 x 54 x 26 mm. Additional 

components of the stimulation system are a lid containing holes for contact rods and an 

electrode holder shown in Figure 5C. A distance of 5 mm between chamber bottom and 

electrodes was chosen to allow investigations of electric field effects on e.g. biofilms in 

short distance to the electrodes.  

 

 

Figure 4: Confocal images of Ti6Al4V electrode surfaces including roughness measurements. A: Confocal 3D laser 
scanning image of the surface roughness measurement of corundum-blasted Ti6Al4V electrodes with 20x 
magnification. Dashed horizontal line shows the measured path with respective roughness values above. Red bar 
represents 100 µm. B: 40x magnified image of the surface of a corundum-blasted Ti6Al4V electrode. Red bar 
represents 50 µm. (Dauben et al. 2016) 
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Figure 5: Technical drawing and realization of the stimulation system. A: Three-dimensional technical drawing of the 
stimulation system including coordinate grid and round coverslip on bottom. B: Top view technical drawing of the 
stimulation system with coordinates. Red dots show coordinates where measurements for validation were done. C: 
Composition of the electrical stimulation chamber. D: Triangular electrodes with contact rods separated by insulator. 
(Dauben et al. 2016) 

 

2.3.3 Simulation and validation of electric field distribution 

To compute electric field distributions within the CAD model of the stimulation system, 

the finite element method (FEM) software of Comsol Multiphysics (Comsol Multiphysics 

5.2, COMSOL, Stockholm, Sweden) was used. Frequency-dependent medium and 

electrode electric properties were previously determined under defined conditions using 

a Broadband Dielectric Spectrometer located at the Department of Physics, University of 

Rostock (Novocontrol, Montabaur, Germany). Relevant values were subsequently 

embedded in numerical simulations. Numerical simulations were done assuming full 

assembly of the stimulation chamber including electrode holder, electrodes as well as 

medium done in Solidworks software. Numerical simulation and validation are described 

as follows: In Comsol a Frequency Domain Study with a harmonic excitation of 20 Hz 

and an Electric Currents Physics was created. The mesh was arranged as a free tetrahedral 

mesh, consisting of approximately 1.63 million mesh cells.  
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To compare and validate the simulation of the electric field distribution with the in vitro 

situation, a simulation was performed using a RMS voltage of 1.35 V. Used electrical 

properties of materials for numerical simulation are presented in Table 4. Potentials inside 

the chamber were measured as VRMS using 20 Hz frequency, 1.35 VRMS and DC-free sine 

wave. The measuring needle was a completely isolated stainless-steel needle (20 mm in 

length) with a conical tip of 0.4 mm diameter as contact surface. The measuring needle 

was grounded to one contact rod of the stimulation system and connected to an 

oscilloscope (TDS 2012B, Tektronix, Bracknell, Berkshire, UK). VRMS measurements 

were done at defined coordinates in a 3 mm distance pattern plotted on the center of the 

chamber bottom according to the measurement grid (Figure5B). VRMS at the defined grid 

points were manually measured directly at the chamber bottom and measurements were 

repeated three times.  

To prevent external influence of the generated electric field, all technical devices except 

function generator and oscilloscope were switched off during the measurements. 

Measured VRMS were then compared to RMS voltages given by numerical simulation. 

(Dauben et al. 2016). The validation set-up is shown in Figure 6.  

 

Table 4: Electric properties of materials and medium used for numerical simulation (Dauben et al. 2016) 
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Figure 6: Representative validation setup of the stimulation chamber. Representative image of the setup for validation 
of electric potential distribution obtained from numerical simulations within the stimulation system. Electric potentials 
were measured with a pick-up electrode (white frame) connected to an oscilloscope (Dauben et al. 2016). 

 

2.4 Bacteria  

2.4.1 Bacterial Strains 

Bacterial strains used during this work are listed in Table 5. 

 

Table 5: Bacterial strains 

  

 

2.4.2 Cultivation and preservation 

Bacteria were cultivated from glycerin stocks on blood agar plates overnight and were 

then stored at 4 °C up to 3 – 4 weeks before passaging onto fresh blood agar plates. 

Bacterial strains Origin Laboratory 

Collection 

No. 

Staphylococcus aureus subsp. aureus 

Rosenbach (ATCC® 25923™) 

Clinical isolate 1945, ATCC 4735 

Staphylococcus epidermidis (Winslow 

& Winslow) Evans (ATCC® 35984™) 

Catheter Sepsis, Tennessee, 

ATCC 

4734 
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Both S. aureus and S. epidermidis were cultivated in tryptic soy broth (TSB) complex 

medium, where 20 ml TSB were inoculated with colony material from glycerin stocks by 

using a sterile inoculation loop. 

The ingredients for 1 l medium were as follows: 

 

TSB medium 

TSB   24.0 g 

pH   7.5 

A. dest.   ad 800 ml 

 

TSB medium was sterilized by autoclaving for 20 min at 121 °C and 2 bar, 

To produce solid media 1.5 % (w/v) agar was added to the medium before sterilization. 

 

Overnight cultures of S. aureus were additionally shaken at 180 rpm at 37 °C while 

overnight cultures of S. epidermidis were incubated without shaking at 37 °C under 

5 % CO2 atmosphere. 

For long-term storage of bacterial strains, 200 µl glycerin (99 % [v/v]) were added to 

800 µl of an overnight culture and stored at -20 °C and -80 °C, respectively.  

 

2.4.3 Growth experiments 

Since staphylococcal infections can occur after joint transplantation, the growth behavior 

of S. aureus and S. epidermidis was investigated in standard cell culture medium DMEM 

as well as in medium suitable for human primary osteoblasts (MEM). Complex medium 

TSB served as reference for optimal growth. Growth experiments were performed in 96 

well plates over 24 h using the spectrophotometer SpectraMax M2. Optical densities 

(OD) at 600 nm were measured every 30 min until 24 h after inoculation. For washing 

steps, if not otherwise noted, 1 x Phosphate Buffered Saline (PBS), was used. 10 x PBS 

consisted of the following components: 

 

NaCl   1.37  M  

KCl   0.027  M 

Na2HPO4 *2 H2O 0.1  M 

KH2PO4  0.02 M   
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pH adjusted to 7.4 with NaOH 

A. dest.   ad 1000 ml 

 

PBS was sterilized at 121 °C and 2 bar for 20 min before use. 

 

Bacterial cultures were prepared according to the following protocol: 

 

1.  Inoculation of the respective bacterium into 20 ml TSB  

2. Incubation at 37 °C under 5 % CO2 atmosphere (S. epidermidis) or without CO2 

but additional shaking at 180 rpm (S. aureus) overnight 

3. Centrifugation of overnight cultures for 10 min at 3.345 g 

4. Washing of the pellet with sterile 1 x PBS  

5. Centrifugation for 5 min at 3.345 g 

6. Repetition of step 4 and 5 

7. Suspension of the pellet in 1 ml of TSB, DMEM / or MEM  

8. Adjustment of optical density at 600 nm to 0.35 (S. epidermidis) or 1.5 (S. aureus); 

0.35 or 1.5 represent approximately 108 Colony forming units per ml (CFU/ml) 

bacteria, respectively 

9. Dilution of the bacterial suspension 1:10 in the respective medium 

10. Adding of 200 µl of the dilution to wells in a 96 well plate 

11. Incubation over 24 h at 37 °C using the SpectraMax M2  

 

Data points of measured optical densities were transferred to Microsoft Excel at the end 

of the experiment and specific growth rates as well as doubling times were further 

calculated using the following formulas: 

 

Specific growth rate µ: µ = log(x(t2)) – log(x(t1)) 

log(e) * (t2 – t1) 

 

Doubling time td:  td = ln(2) 

             µ 
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2.4.4 Biofilm formation on solid materials 

Growth and biofilm formation on titanium aluminum vanadium samples (Ti6Al4V) with 

an average RZ value of 20 were tested in TSB as well as DMEM and MEM. Both DMEM 

and MEM were supplemented with 10 % FCS. Further supplemental substances are noted 

in 2.5.1. Since biofilm formation could not be detected for S. aureus in preliminary 

experiments, only S. epidermidis was used for these experiments. The preparation of the 

experiment was according to the following protocol: 

1. Inoculation of an overnight culture in 20 ml TSB and incubation overnight under 

appropriate conditions (see 2.4.3) 

2. Centrifugation of the overnight culture for 10 min at 3.345 g 

3. Washing of the bacterial pellet with 1 x PBS (once when TSB was used, twice 

when cell culture media were used) 

4. Suspension of pellet in 1 ml of the respective medium 

5. Adjustment of the optical density at 600 nm to 0.35, matching ~ 108 CFU/ml 

6. 100-fold dilution in respective medium to reach final starting concentration of 

106 CFU/ml 

7. Adding of 1 ml/well bacterial suspension to 24 well plates consisting of 6 wells 

with polystyrene coverslips (Nunc Thermanox Coverslips, 13 mm) and 6 wells 

with Ti6Al4V samples 

8. Adding of fresh medium without bacteria to 2 wells with coverslips and 2 wells 

with titanium samples serving as controls 

9. Incubation over 24, 48 and 72 h 

 

Every 24 h up to 72 h incubation, three wells containing coverslips and Ti6Al4V samples 

were used to determine planktonic CFU/ml and CFU/ml of biofilm-bound bacteria on test 

samples. Remaining wells were used to determine biofilm mass using crystal violet 

staining. Crystal violet, in this case, stains mainly biofilm proteins and extracellular 

matrix (ECM) structures and absorbance was measured at 590 nm allowing a relative 

quantification of formed biofilms.  

To determine planktonic CFU/ml, supernatants from each well were collected in separate 

tubes and wells were washed twice with 1 x PBS. Washing fractions were pooled with 

respective supernatant to collect all planktonic bacteria. Next, all samples were 

centrifuged for 10 min at 3.345 g and supernatants were discarded.  
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Bacteria were suspended in 1 ml 1 x PBS and different dilution steps were plated out 

using the EddyJet spiral plater. Plates were incubated at 37 °C under 5 % CO2 atmosphere 

overnight. CFU/ml were enumerated the following day. 

To determine living biofilm-bound bacteria on test surfaces, coverslips and Ti6Al4V 

samples were washed twice with 1 x PBS to remove all planktonic bacteria. Subsequently, 

samples were then transferred into glass tubes containing 1 ml 1 x PBS and were 

ultrasonically agitated using a Sonorex Digital 10P ultrasonic bath for 4 min at 100 % to 

remove the formed biofilm including bound bacteria. Samples were then vigorously 

vortexed and serial dilutions were plated. Plating and determination of CFU/ml followed 

the same principle used for the supernatants. One well with medium and test samples was 

treated the same way serving as control. 

Regarding quantification of biofilm mass, coverslips and Ti6Al4V samples were washed 

twice with 1 x PBS and transferred to a new well. 1 ml 0.1 % crystal violet was added to 

each well and samples were incubated for 20 min at room temperature. Stained samples 

were washed three times with Aqua dest. to remove excess crystal violet. Subsequently, 

bound crystal violet was dissolved by adding 1 ml 1 % SDS and shaking for 20 min at 

37 °C with 350 rpm. 500 µl supernatant were transferred to plastic cuvettes and 

absorbance was measured at 590 nm using a spectrophotometer against 1 % SDS blank. 

Absorbance values of control wells were subtracted from the sample values afterwards. 

Experiments were performed with three biological replicates and each with at least two 

technical replicates. 

 

2.4.5 Scanning Electron Microscopy 

To image formed biofilm on both plastic coverslips and titanium surfaces, scanning 

electron microscopy was used. Samples were washed once with 1 x PBS and subsequently 

immersed in fixation buffer (0.1 M Na2HPO4*2H20 / 0.1 M NaH2PO4*H20, pH 7.3) 

supplemented with 2.5 % glutaraldehyde for at least 24 h. Samples were then dehydrated 

using an increasing ethanol gradient and were subsequently dried following the critical 

point drying protocol of the Electron Microscopy Center, University of Rostock. Dried 

samples were sputtered with gold and imaged using a Merlin VP Compact scanning 

electron microscope (Zeiss, Jena, Germany). 
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2.4.6 Electrical stimulation protocol 

All pieces of the stimulation system were assembled under sterile conditions prior to the 

experiments. Polystyrene coverslips with 25 mm diameter were attached to the center of 

stimulation chambers using silica gel.  

Subsequently electrode holder were put into the chambers and two electrodes with 

respective contact rods were attached to the holders. While drying the silica gel, overnight 

cultures of bacteria were centrifuged for 10 min at 3.345 g and the pellet was suspended 

in TSB. OD was adjusted to 0.35 (S. epidermidis) or 1.5 (S. aureus) and 300 µl of the 

suspension were added to 29.7 ml fresh TSB. 30 ml of bacterial suspension with a final 

concentration of ~ 106 CFU/ml were added to the chamber and the chamber was closed 

with a lid. Gaps between contact rods and lid were sealed with parafilm and the 

stimulation chambers were transferred into the incubator and connected to a time-switch 

and a Metrix GX305 function generator.  

Desired stimulation periods as well as stimulation parameters (frequency, VRMS) were 

adjusted and the stimulation was started. During the experiments, stimulated and non-

stimulated chambers were incubated at 37 °C under 5 % CO2 atmosphere. 

The basic parameter constellation comprised of 20 Hz frequency, 0.2 and 1.4 VRMS 

(effective voltage), 3 x 45 min with 225 min interval per day starting directly after adding 

of the bacteria.  

Experiments were performed, if not otherwise noted, with at least four biological 

replicates. 

  

2.4.6.1 Determination of CFU/ml from the supernatant  

Supernatants from control and stimulated samples were collected and stimulation 

chambers were washed twice with PBS to remove all non-adherent bacteria. Washing 

fractions and supernatants of corresponding samples were pooled and centrifuged for 

10 min at 3.345 g. Supernatants were discarded and pellets were suspended in 1 x PBS. 

Serial dilutions were plated out on TSB agar plates and incubated overnight at 37 °C 

under 5 % CO2 atmosphere. Respective CFU/ml were determined on the following day.  
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2.4.6.2 Antibiotic resistance 

Since it was shown, that electrical stimulation in addition to antibiotic treatment further 

enhances bactericidal effects, possible changes in antibiotic sensitivity of the treated 

bacteria were investigated. Therefore, the so-called E-Test was performed with 

gentamicin and levofloxacin (purchased from Biomérieux, France) after electrical 

stimulation or without electrical stimulation in case of unstimulated samples. Gentamicin 

was chosen because S. epidermidis was resistant against this antibiotic (previously tested 

by the Resistance Laboratory, Institute of Medical Microbiology, Virology and Hygiene, 

University Medical Center Rostock) while being sensitive towards levofloxacin. 

S. aureus was tested sensitive towards both antibiotics. Both antibiotics are incapable of 

penetrating the cell membrane of eukaryotic cells, which is relevant for adherence and 

internalization assays described later.  

Samples of supernatants were diluted in 1 x PBS adjusting optical density to match 

approximately 107 CFU/ml. Cotton swab sticks were immersed for 10 s in the bacterial 

suspension and bacteria were subsequently spread out evenly on TSB agar plates. In the 

following, E-Test stripes with gentamicin and levofloxacin were opposite aligned on the 

respective agar plates and plates were incubated overnight at 37 °C under 5 % CO2 

atmosphere. On the following day, minimal inhibitory concentrations (MIC [µg/ml]) of 

both antibiotics were determined resembling the highest concentration where bacteria at 

least reached the antibiotic stripe before inhibition zones appeared.  

 

2.4.6.3 Determination of CFU/ml from the electrode surface 

Electrodes were removed from the stimulation system and rinsed two times with 1 x PBS 

to remove non-adherent bacteria and subsequently transferred into glass tubes containing 

1 x PBS. Electrodes were ultrasonically agitated to remove all adherent bacteria. 

Suspensions containing former surface-bound bacteria were centrifuged for 10 min at 

3.345 g, supernatants were discarded and pellets were suspended in 1 x PBS. Serial 

dilutions were plated out on TSB agar plates and incubated overnight at 37 °C under 

5 % CO2 atmosphere. Respective CFU/ml were determined on the following day.  
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2.4.6.4 Quantification of biofilm mass 

To assess the influence of electrical stimulation on biofilm formation in the surrounding 

area of the electrode, coverslips at the bottom of the chamber were used for biofilm mass 

quantification. Polystyrene coverslips were removed from the chamber bottom and rinsed 

twice with 1 x PBS. Biofilm mass was stained using 0.1 % w/v crystal violet dissolved in 

Aqua dest. for 20 min at room temperature. Subsequently, coverslips were washed three 

times with Aqua dest. to remove excess crystal violet. Bound crystal violet was dissolved 

in 1 % SDS for 20 min at 37 °C with 350 rpm. Subsequently, absorption was measured 

at 590 nm against 1 % SDS as blank. Measured values were further calculated regarding 

the surface area to determine formed biofilm mass / cm2.  

 

2.4.6.5 pH measurement 

To measure potential pH shifts caused by electrical stimulation, samples from 

supernatants of controls and stimulated samples were taken at each time point and pH 

was measured using a calibrated pH-meter. pH measurements were only done for 

stimulation experiments using DMEM. 

 

2.4.6.6 Quantification of biofilm mass following electrical stimulation 

Samples from the supernatant used for antibiotic resistance analyses and from the 

electrode surface following 72 h of incubation and stimulation were diluted 10-fold in 

fresh TSB. Three wells of a 24 well plate containing polystyrene coverslips were filled 

with each 1 ml per sample and incubated subsequently for 72 h at 37 °C under 5 CO2 

atmosphere. Following incubation, supernatants were removed and wells were washed 

with PBS. Supernatants and respective washing fractions were pooled and stored for 

biofilm composition assay. Coverslips were stained with 0.1 % crystal violet, wells were 

washed with Aqua dest., bound crystal violet was dissolved using 1 % SDS and 

absorption was measured at 590 nm. This assay was done only for experiments using 

DMEM. 
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2.4.6.7 Determination of biofilm composition 

Pooled samples from biofilm formation following electrical stimulation were centrifuged 

and pellets were suspended in PBS. Samples were diluted 10-fold in fresh TSB and 200 µl 

were added to each 2 wells using four 96 well plates. On one plate, 200 µl of fresh TSB 

were added to 4 wells as controls. All four plates were incubated 24 h at 37 °C under 5 % 

CO2 atmosphere. Following incubation, the 96 well plate with the medium samples was 

used as control plate. Supernatants were removed and wells were washed with PBS. 

Formed biofilm was stained for 2 – 3 minutes with 1.6 % crystal violet and consecutively 

wells were washed three times with Aqua dest. The control plate was dried for 1 h at 

67 °C using a static heating block and absorption was measured with a SpectraMax plate 

reader at 492 nm according to the protocol (modified following personal communication 

with PD Dr. Wilma Ziebuhr, IMIB Würzburg, Germany). The obtained values served as 

reference / untreated samples during this assay. 

For the second plate, supernatants were removed, wells were washed with PBS and 200 µl 

of 40 mM NaIO4 was added to each well to dissolve carbohydrate components of the 

formed biofilm. The plate was wrapped in aluminum foil and incubated 24 h at 4 °C. 

Subsequently, NaIO4 was removed, wells were washed twice with PBS, stained and 

measured with the same protocol as the control plate.  

In case of the third plate, supernatants were removed, wells were washed with PBS and 

200 µl of 1 mg/ml Proteinase K was added to each well to dissolve all protein components 

of the biofilm. The plate was then incubated for 4 h at 37 °C under 5 % CO2 atmosphere 

and static conditions. Following incubation, wells were treated as described above 

following NaIO4 treatment. 

The fourth plate was used to stain and measure the amount of extracellular DNA in the 

formed biofilm. For this purpose, supernatants were removed and cells were washed with 

PBS. Extracellular DNA was consecutively stained using 1x “dead stain” (ethidium 

homodimer III, EthD-III) of the PromoKine #PK-CA707-30027 Kit for 30 min in the 

dark at room temperature. After incubation, wells were washed twice with PBS and 

fluorescence was measured at 535 / 595 nm using a SpectraMax M2 plate reader 

(Molecular Devices, Sunnyvale, CA, USA). This assay was done only for experiments 

using DMEM. 
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2.4.6.8 Determination of ATP concentration 

ATP is normally intracellularly used and not released into the medium. ATP is released, 

if the cell wall of bacteria is compromised, so the bacteria are either damaged or dead. To 

investigate possible damage during electrical stimulation, samples of supernatants were 

removed after 24, 48 and 72 h of electrical stimulation and non-stimulated samples. 

Samples were centrifuged and supernatants were transferred to new tubes. Bacteria were 

lysed using a ribolyser for determination of intracellular ATP amount. Extracellular ATP 

concentrations were determined using the supernatant after centrifugation. The ATP 

determination kit (ATP Determination Kit, Life Technologies, Eugene, OR, USA) was 

used for these experiments and samples were treated according to manufacturer’s 

instructions. The utilized kit is based on luminescence intensity measurement. Luciferase 

converts a substrate under consumption of ATP. The substrate is luminescent and the 

intensity, which is equal to the amount of converted substrate, was measured using a 

Lumat LB 9501 luminometer. 

In principle, since ATP consumption is linear to the conversion of substrate into the 

luminescent product, ATP concentrations can be calculated. This method is also suitable 

to get a relative impression of changes in intra- and extracellular ATP ratios. 

Measurements of ATP concentrations were done only once when stimulating S. aureus 

with 1.4 VRMS using an inoculum of 106 CFU/ml in complex medium TSB.  

 

2.4.6.9 Fluorescence activated cell-sorting / FACS analyses 

Since determination of CFU/ml only includes viable and culturable bacteria, the TO/PI 

Bacterial Viability Kit was used in connection with an Accuri C6 Flowcytometer. 

Bacteria or cells are detected with so called forward / sideward detectors, giving an 

overview about the size and possible aggregation of the tested organisms. Furthermore, 

bacteria and eukaryotic cells can be stained with fluorescent dyes and, in this case, four 

fluorescence detectors with different wavelengths can detect the signals. With the help of 

the Accuri C6 Software the forward and sideward scatter signals as well as the 

fluorescence signals can be used to distinguish different populations of bacteria or cells, 

e.g. living and dead bacteria.  

The principle of TO/PI staining is, that thiazolorange (TO) stains all cells/bacteria, 

regardless if living or dead, to different intensities. On the contrary, propidium iodide (PI) 

stains DNA and cannot pass the cell membrane of intact cells/bacteria.  
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If the cell membrane is damaged, PI can enter the cells/bacteria, stains the DNA and these 

cells/bacteria will be detected from the respective fluorescence detector. To test, whether 

electrical stimulation influences or even kills the bacteria, samples from the stimulated 

and non-stimulated supernatants were taken and treated according to the manufacturer’s 

instructions. 

FACS analyses were done only once when stimulating S. aureus with 1.4 VRMS using an 

inoculum of 106 CFU/ml in complex medium TSB. 

 

 

2.5  Cells and cell lines 

Used cells and cell lines are shown in Table 6. 

Table 6: Cells and cell lines 

 

 

2.5.1 Cell culture and preservation 

MG63 cells were cultured in DMEM high glucose supplemented with 1 % GlutaMAX, 

1 % pyruvate as well as 10 % FCS.  

Human primary osteoblasts were cultured in MEM supplemented with HEPES and 10 % 

FCS, 10 mM β-glycerolphosphate, 50 µg/ml ascorbic acid and 0.1 µM dexamethasone.  

MG63 cells were cultivated in DMEM. hOB were cultivated in MEM. Cells were splitted 

when 80 – 95 % confluence was reached.  

During splitting, the medium was removed and the cells were washed once with 1x PBS. 

Afterwards, 2 ml 0.5 % Trypsin-EDTA solution was added to the cells and the cells were 

incubated for 3 minutes at 37 °C to detach the cells from the surface. The detachment 

process was stopped by adding 8 ml of the respective culture medium and the cell 

suspension was transferred into a sterile tube and centrifuged at 300 g for 10 min. The 

supernatant was removed and the cells were suspended in 5 ml fresh culture medium. 

Depending on the cell number, a part of the suspension was added to a new cell culture 

flask and fresh culture medium was added to reach 20 ml final volume.  

Cell /Cell Line Origin 

MG63 osteosarcoma cell line ATCC® 

CRL-1427™ 

Homo sapiens bone osteosarcoma cell 

line, LGC Standards GmbH, Wesel, D 

Human osteoblasts (hOB) Isolated from patient hips 
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Cells were further incubated at 37 °C under 5 % CO2 atmosphere. Regarding experiments, 

MG63 cells were used until reaching passage 50, while hOB were solely used in passage 

3.  

Respective cell culture media were changed every 2 – 3 days until cells were used.  

For long term storage, cells were cultivated until 90 - 95 % confluence, removed from the 

cell culture flask, and were stored in cell culture medium and dimethyl sulfoxide (DMSO) 

in liquid nitrogen. 

 

2.5.2 Adherence and internalization assay 

MG63 cells or human primary osteoblasts were removed from the cell culture flasks, were 

seeded into two 24 well plates with a density of 40.000 cells / ml and were incubated 

overnight at 37 °C under 5 % CO2 atmosphere to allow adherence to the well plate. Cells 

were seeded into 3 x 3 wells for adherence and 3 x 3 wells for internalization to allow the 

investigation of three infection doses at the same time point. Multiplicities of infection 

(MOI) were chosen to be 1:1, 10:1 and 100:1 bacteria per osteoblast. 

Meanwhile, overnight cultures of S. epidermidis or S. aureus in TSB were prepared and 

incubated under the conditions described in 2.5.1. On the following day, overnight 

cultures were centrifuged for 10 min at 3.345 g and washed twice with 1 x PBS. Bacteria 

were then suspended in DMEM, when MG63 cells were used, and in MEM, when primary 

osteoblasts were used. Optical density was adjusted to 0.35 or 1.5 respectively and MOIs 

were prepared with 104, 105 and 106 CFU/ml in the respective medium to reach desired 

MOI values.  

Supernatants from osteoblast cells were removed and cells were washed once with 

1 x PBS to remove FCS residues. FCS can coat the surface of osteoblasts and interferes 

with adherence and internalization ability. Therefore, the medium used for the adherence 

step contained no FCS. 

1 ml bacterial suspension with the respective MOI was added to three wells of the 

adherence and three wells of the internalization plate. Additionally, 1 ml of each 

suspension were added to empty wells on the adherence plate and served as growth 

control of the bacteria. Both 24 well plates were incubated for 2 h at 37 °C under 5 % CO2 

atmosphere to allow adherence of bacteria onto the tested cells. 
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After two hours, supernatants of both plates were removed, sterile filtered using a 22 µm 

filter and stored at -20 °C until further use. 1 ml of DMEM or MEM containing 200 µg/ml 

levofloxacin were added to each well of the internalization plate to kill adherent bacteria. 

Levofloxacin cannot penetrate the membrane of cells and therefore kills only adherent 

bacteria, while internalized bacteria remain vital. This plate was incubated for an 

additional hour at 37 °C under 5 % CO2 atmosphere. Following incubation, supernatants 

were removed and cells were washed once with 1 x PBS.  

Wells containing cells and bacteria on both adherence and internalization plates were 

treated similar after incubation. 200 µl trypsin-EDTA solution were added and plates 

were incubated for 5 min at 37 °C. Cells from wells of the same MOI were pooled and 

respective wells were washed with 1 x PBS. Washing fractions were additionally added 

to respective pooled samples. Next, cells with adherent and internalized bacteria were 

centrifuged for 2 min at 11.000 g rpm, supernatants were removed and cells were lysed 

for 10 min in Aqua dest. with periodic shaking. Subsequently, different dilutions were 

plated out on TSB agar. 100 µl of control wells with only bacteria were taken, serially 

diluted and plated on TSB agar to determine bacterial growth within the two hours of 

adherence. All plates were incubated overnight at 37 °C under 5 % CO2 atmosphere. 

CFU/ml were determined the following day. Additionally, 100 µl of supernatants 

following antibiotic treatment were plated out to check for proper eradication of bacteria 

during incubation with levofloxacin. 

Experiments were performed at least four times and in case of hOB with different 

osteoblast donors. 

 

2.5.3 Cytokine ELISA 

Supernatants from adherence and internalization assays were collected, sterile filtered and 

stored at -20 °C until use. Samples were taken either following 2 h of adherence or after 

a prolonged internalization time combined with antibiotic treatment over 24 h. Cells 

cultured in the respective medium for 2 h or with antibiotic treatment over 24 h served as 

controls. Adherence and internalization experiments were conducted with hOB and 

MG63 when investigating S. epidermidis and solely with MG63 cells for S. aureus. 

Cytokines measured included interleukin 6, interleukin 12, tumor necrosis factor α and 

monocyte chemoattractant protein 1 (IL-6, IL-12, TNF-α and MCP-1) using a multiplex 
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ELISA purchased from BioRad laboratories (Multiplex ELISA, Bio-Rad Laboratories 

GmbH, München, Germany).  

The experimental preparation was according to manufacturer’s instructions. Cytokine 

concentrations were then measured using a Luminex plate reader with assistance of Dr. 

Müller (Department of Cell Biology, University Medical Center Rostock, Germany). 

Subsequently, control values (cells incubated under identical conditions but without 

bacteria) were deducted from the respective sample values. 

 

2.6 Co-culture under electrical stimulation 

To test the suitability of the constructed stimulation system regarding a co-culture setup, 

MG63 osteosarcoma cells as well as S: epidermidis were used. 500 µl with 105 cells were 

added on the coverslip in the system and 3 x 104 cells in 50 µl were added on top of each 

electrode. Cells were incubated for 30 min to allow adherence to the surfaces and 

subsequently 30 ml DMEM without phenol red supplemented with 10 % FCS were added 

to the system. Cells were then incubated for 12 h without any stimulation. On the 

following day, overnight cultures of S. epidermidis were centrifuged and optical densities 

were adjusted to 0.35 in DMEM. Subsequently, appropriate volumes of bacterial 

suspensions were added to the system and carefully mixed, resulting in a MOI of 100, 

meaning final infection doses of 100 bacteria per cell. Samples were then incubated for 

24 h at 37 °C under 5 % CO2 atmosphere. Stimulated samples were treated with 2.8 VRMS 

and 20 Hz frequency under continuous stimulation.  

Determination of bacterial numbers was done as described previously with the addition 

that MG63 cells from electrode surfaces and coverslips were lysed using Aqua dest. prior 

to plating. Coverslips were taken from the system and rinsed with 1 x PBS. Subsequently, 

0.25 % trypsin-EDTA solution were added to the coverslips and incubated for 5 min. 

Detached cells were collected and coverslips were washed with 1 x PBS and pooled with 

respective samples. Samples were centrifuged and cells were lysed using 1 ml Aqua dest. 

Subsequently, serial dilutions were plated and CFU/ml were enumerated after 24 h of 

incubation at 37 °C under 5 % CO2 atmosphere. 

Additionally, cell numbers from electrode surfaces and coverslips were enumerated using 

a TC 10™ automated cell counter (Bio-Rad Laboratories GmbH, München, Germany). 

Detached cells were centrifuged and suspended in 10 µl 1 x PBS while 10 µl trypan blue 

was added. 10 µl of the solution was placed inside a counting chamber and cell numbers 

were determined. 



Material and Methods   33 

 

 

2.7 Statistical analysis 

All experiments were, if not otherwise noted, performed with at least four independent 

biological replicates. Statistical analyses were performed using implemented significance 

tests of GraphPad Prism 6.0. Since normal distributions of data were not expected and 

not tested, Mann Whitney U Test was utilized comparing two groups of four or more 

independent samples. If more than two groups were compared, Multiple Comparison 

Kruskal Wallis Test followed by Dunn’s Correction was used to determine significance 

levels. P values less than 0.05 were considered statistically significant.  
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3 Results 

 

3.1 Numeric simulation of electric potential and field distribution in 

the stimulation system  

Numerical simulations of electric potential and electric displacement field norms are 

shown in Figure 7 while measured VRMS compared to simulated values are shown in 

Table 7.  

 

Figure 7: Simulations of potential and field distributions inside the stimulation system. A: Numerical simulation of 
electric potential in V. B: Numerical simulation of electric displacement field norm in V/m at the bottom of stimulation 
system. Red dots show coordinates where measurements for validation were done (Dauben et al. 2016).  

 

Table 7: Measured and simulated electric potential of the measurement pattern of the stimulation system in the ROI 
(Dauben et al., 2016) 
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First, the simulated potential gradient was higher than measured in the stimulation system. 

When comparing measured values of the four grid points (coordinates -9/9; -3/3; 3/-3; 

and 9/-9) to simulated data, they showed good approximation to real data with maximum 

deviations of 16 mV (Table 7). Additionally, with increasing distance in direction of both 

electrodes, differences rose to maximum deviations of around 400 mV. It is clear at this 

point, that the simulation assumes a broader and more extensive potential gradient than it 

appears in the real stimulation system. However, measured and simulation data showed 

good approximations in the middle of the chamber bottom, the region of interest (ROI). 

In the ROI, measured and real values were nearly identical. Concerning the electric 

displacement field norm shown in Figure 7B, maximum values of field strengths reaching 

around 80 – 90 V/m were obtained. Field strengths decreased steadily with increasing 

distance to the center of the ROI.  

 

 

3.2 Growth of S. epidermidis and S. aureus in complex and cell culture 

media  

 

Growth behavior of S. epidermidis and S. aureus was tested in TSB, MEM, DMEM with 

phenol red and DMEM without phenol red. The last three media were supplemented with 

10 % FCS. Growth was determined in 96 well plates incubated at 37 °C and 24 h. 

Measurements were done electronically every 30 minutes. Representative growth curves 

of at least three independent experiments are shown in Figure 8 and Figure 9. Based on 

these values, specific growth rates and doubling times were calculated and are presented 

in Table 8 for S. epidermidis and Table 9 for S. aureus, respectively.  
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Figure 8: Representative growth curves of S. epidermidis in different media. Optical densities measured at 600 nm 

representing growth of S. epidermidis in TSB, MEM, DMEM with phenol red and DMEM without phenol red over 
24 h. Bacteria were cultured in 96 well plates and optical densities were measured every 30 min.  

 

Table 8: Calculated growth rates and doubling times for S. epidermidis. Values presented are means  ± SD determined 
for growth in TSB, MEM, DMEM with phenol red and DMEM without phenol red (PR). 

 

  

S. epidermidis shows normal growth behavior in the complex medium TSB. A slight lag-

phase was followed by an exponential phase between 2 and 6 hours of growth and 

flattened into the late exponential and subsequent stationary phase. In cell culture media, 

S. epidermidis showed a short lag phase followed by a short exponential phase which 

flattened slowly during the experiment reaching stationary phase like behavior after 20 to 

22 hours of growth (Figure 8). Growth rates were highest in TSB, while a maximum 

growth rate of around 25 % of TSB could be determined for MEM. Using DMEM with 

and without phenol red, only 17 % and around 13 %, respectively, of growth rates were 

reached compared to TSB. This results in doubling times of around 0.88 h in TSB, while 

doubling times increased in cell culture media up to 3 to nearly 7 hours (Table 8). As 

done with S. epidermidis, growth behavior of S. aureus was also tested in the before-

mentioned media.  
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Figure 9: Representative growth curves of S. aureus in different media. Optical densities measured at 600 nm 
representing growth of S. epidermidis in TSB, MEM, DMEM with phenol red and DMEM without phenol red over 
24 h. Bacteria were cultured in 96 well plates and optical densities were measured every 30 min. 

 

Table 9: Calculated growth rates and doubling times for S. aureus. Values presented are means ± SD determined for 
growth in TSB, MEM, DMEM with phenol red and DMEM without phenol red (PR). 

 

 

In general, S. aureus showed similar growth behavior as S. epidermidis in complex 

medium TSB (Figure 9) despite the higher growth rate of 1.35 per h (Table 9) compared 

to 0.79 per h (Table 8). A short lag phase was followed by an exponential growth phase, 

reaching the stationary phase between 6 and 8 hours of growth. In MEM and DMEM with 

phenol red, S. aureus shows a short and, compared to TSB, weak exponential phase 

between 1 and 3 hours of growth. Following this short phase, no further growth could be 

detected until 24 h. Doubling times in those cell culture media were around twice as high 

as determined for TSB (Table 9). Using DMEM without phenol red, weak but steady 

exponential growth was detected, while S. aureus was reaching the stationary phase after 

around 20 h of growth. Growth rates reached around 17 % of determined growth rates 

when using TSB, resulting in doubling times of around 3 h.  
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Based on these results, DMEM with phenol red was chosen as medium for adherence and 

internalization assays using MG63 cells, while DMEM without phenol red was used for 

all electrical stimulation experiments of bacteria done in cell culture medium.  

 

3.3 Biofilm mass production of S. epidermidis on solid materials 

Prior to stimulation experiments, biofilm mass production of S. epidermidis was tested in 

three different media and on two different surfaces. In 24 well plates, CFU/ml of 

planktonic and biofilm-bound bacteria were determined over an incubation period of 72 h 

in TSB, DMEM and MEM. Coverslips or Ti6Al4V samples were inserted in wells to 

allow biofilm mass production on these artificial surfaces. Formed biofilm mass of 

S. epidermidis was stained with crystal violet to quantify the biofilm mass and changes 

of biofilm formation dependent on the used medium and sample surface.  

 

3.3.1 Determination of CFU/ml from supernatants 

Figure 10 shows recovered CFU/ml of S. epidermidis from supernatants following 72 h 

of incubation in different media as well as with coverslips or Ti6Al4V samples on the 

well bottom.  

 

 

Figure 10: Determination of planktonic CFU/ml of S. epidermidis. CFU/ml of planktonic S. epidermidis after 
cultivation on coverslips or Ti6Al4V samples in different media over 72 h. Values are presented as boxplots of 10th – 

90th percentile while whiskers denote minimum and maximum values. n = 9. * p < 0.05; *** p < 0.001; **** p < 0.0001 
(Kruskal Wallis Test with multiple comparison followed by Dunn’s correction) 
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In general, similar tendencies could be observed on coverslips as well as on titanium 

samples at all time points. Highest CFU/ml were always obtained in complex medium 

TSB, while bacteria cultivated in MEM showed significantly lower CFU/ml regardless 

the tested material and the time point. Using DMEM as culture medium, CFU/ml were 

lower compared to experiments in TSB, though no significance levels were reached 

except following 72 h of incubation.  

 

3.3.2 Determination of CFU/ml recovered from biofilms 

Figure 11 shows recovered CFU/ml from biofilm-bound S. epidermidis following 72 h of 

incubation in different media as well as with coverslips or Ti6Al4V samples on the well 

bottom.  

 

 

Figure 11: Determination of biofilm-bound CFU/ml of S. epidermidis. CFU/ml of biofilm-bound S. epidermidis after 
cultivation on coverslips or Ti6Al4V samples in different media over 72 h. Values are presented as boxplots of 10th – 
90th percentile while whiskers denote minimum and maximum values. n = 9. * p < 0.05; ** p < 0.01; *** p < 0.001 
(Kruskal Wallis Test with multiple comparison followed by Dunn’s correction) 

 

Similar trends as observed for CFU/ml recovered from supernatants could be detected for 

biofilm-bound bacteria. CFU/ml of S. epidermidis in TSB and DMEM were in a similar 

range at all sampling points, while CFU/ml were significantly lower in MEM compared 

to the other two media at every sampling point except 72 h of incubation.  
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Comparing coverslips and Ti6Al4V samples, no dramatic differences in CFU/ml could 

be observed, suggesting both materials to be suitable surfaces for S. epidermidis biofilm 

formation.  

 

3.3.3 Quantification of biofilm mass 

Respective biofilm mass quantifications are presented in Figure 12.  

 

 

Figure 12: Quantification of S. epidermidis formed biofilms. Quantification of biofilm mass formed by S. epidermidis 

after cultivation on coverslips or Ti6Al4V samples in different media over 72 h. Values are presented as boxplots of 
10th – 90th percentile while whiskers denote minimum and maximum values. n ≥ 5. * p < 0.05; ** p < 0.01; *** p < 
0.001; **** p < 0.0001 (Kruskal Wallis Test with multiple comparison followed by Dunn’s correction) 

 

In general, biofilm mass in MEM was significantly lower compared to TSB and DMEM 

at any point regardless if coverslips or Ti6Al4V samples were used. Highest biofilm mass 

in TSB and DMEM was detected following 48 h of incubation while values decreased 

again during further incubation (72 h). No significant differences in biofilm mass 

comparing TSB and DMEM could be detected, although biofilm mass on coverslips 

following 48 and 72 h incubation in DMEM was higher compared to TSB.  

Biofilm mass quantification was also tested with S. aureus. No biofilm mass production 

could be detected with this assay in any of the three tested media. 
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3.4 Scanning electron microscopy imaging of biofilms of 

S. epidermidis 

Following determination of biofilm mass production of S. epidermidis on both 

polystyrene coverslips and Ti6Al4V surfaces in different culture media, morphology and 

distribution of bacteria and produced biofilm mass were evaluated via SEM imaging. 

Figure 13 shows representative images of S. epidermidis after 72 h of incubation on 

coverslips and Ti6Al4V samples in TSB. SEM images after 72 h incubation in DMEM 

on coverslips and Ti6Al4V are shown in Figure 14 and SEM imaged after incubation in 

MEM are shown in Figure 15.  

 

 

Figure 13: Representative SEM images of S. epidermidis cultivated in TSB. Representative SEM images of 
S. epidermidis incubated on coverslips (a, b, c) and Ti6Al4V (d, e, f) over 72 h in TSB. a, d – 500x magnification; b, e 
– 2000x magn.; c, f – 5000x magn. 
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Figure 14: Representative SEM images of S. epidermidis cultivated in DMEM. Representative SEM images of 
S. epidermidis incubated on coverslips (a, b, c) and Ti6Al4V (d, e, f) over 72 h in DMEM /. a, d – 500x magnification; 
b, e – 2000x magn.; c, f – 5000x magn. 

 

 

Figure 15: Representative SEM images of S. epidermidis cultivated in MEM. Representative SEM images of 

S. epidermidis incubated on coverslips (a, b, c) and Ti6Al4V (d, e, f) over 72 h in MEM. a, d – 500x magnification; b, 
e – 2000x magn.; c, f – 5000x magn. 

 

Initiation of biofilm formation with production of extracellular matrix structures can be 

seen in Figure 13 a-c and Figure 14 d-f. In general, S. epidermidis appears more evenly 

distributed when incubated on Ti6Al4V than on coverslips. When S. epidermidis was 

incubated on coverslips in both cell culture media, no big clusters of aggregated bacteria 

could be found (see Figure 14 a-c, Figure 15 a-c).  
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3.5 Electrical stimulation of S. epidermidis and S. aureus 

After evaluation of the basic biofilm characteristics for both species on coverslips and 

Ti6Al4V surfaces, bacterial species were subjected to electrical stimulation. Using the 

newly designed stimulation system, effects of alternating electric fields on both bacterial 

species were investigated. Different parameter settings were used for experiments under 

electrical stimulation. Table 10 summarizes all performed stimulation experiments with 

respective parameter settings. 

 

Table 10: Parameter settings for electrical stimulation of S. epidermidis and S. aureus 

S. epidermidis 

/ S. aureus 
Medium 

VRMS 

[V] 

frequency 

[Hz] 

stimulation 

period [d
-1

] 

duration 

[d] 
inoculum Note 

both TSB 0.2 20 3 x 45 min  3 
106 

CFU/ml 
shown 

both TSB 1.4 20 3 x 45 min 3 
106 

CFU/ml 
shown 

both TSB 1.4 20 3 x 45 min 3 
104 

CFU/ml 

Appen-

dix 

both  DMEM 1.4 20 3 x 45 min 3 
104 

CFU/ml 
shown  

both DMEM 2.8 20 continuous 3 
104 

CFU/ml 
shown 

S. epidermidis TSB 0.7 50 3 x 120 min 3 
106 

CFU/ml 
not 

shown 

S. epidermidis TSB 0.2 20 6 x 45 min 1 
106 

CFU/ml 

not 

shown 

 

Four of seven tested parameter settings are described in the following sections. However, 

figures of electrical stimulation of both species in TSB with 104 CFU/ml as inoculum can 

be seen in the Appendix to not further complicate the illustrations. The two last-

mentioned parameter settings are not shown and described further, since they contain no 

significant information regarding these parameter settings. Both last settings were tested 

but no differences were observed between stimulated and control samples.  

 

3.5.1 Determination of CFU/ml from the supernatant  

Figure 16 shows CFU/ml determined from supernatants following electrical stimulation 

of S. epidermidis and S. aureus.  
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Figure 16: Determination of planktonic S. epidermidis and S. aureus following electrical stimulation. CFU/ml of 
planktonic S. epidermidis and S. aureus recovered from supernatants of stimulated and control samples. A: 
Unstimulated controls and bacteria stimulated with either 0.2 or 1.4 VRMS, stimulation period 3 x 45 min / day, inoculum 

of 106 CFU/ml in TSB. B: Unstimulated controls and bacteria stimulated with either 1.4 VRMS and stimulation period 
3 x 45 min / day or 2.8 VRMS and continuous stimulation, inoculum of 104 CFU/ml in DMEM without phenol red 
supplemented with 10 % FCS. n ≥ 4. * p < 0.05; ** p < 0.01 (Multiple Comparison Kruskal Wallis Test followed by 
Dunn’s Correction). 

 

In general, CFU/ml recovered from supernatants of stimulated and control samples 

remained relatively stable throughout the experiments. In complex medium TSB, 

S. epidermidis reached maximum CFU/ml after 24 h of incubation with around 

108 CFU/ml, while S. aureus reached peak bacterial numbers of around 109 CFU/ml 

following 48 h of incubation, independent of any stimulation. Significantly lower CFU/ml 

were obtained in case of S. epidermidis following 48 h treatment with 0.2 VRMS compared 

to controls as well as after 72 h treatment with 1.4 VRMS compared to controls. Regarding 

S. aureus, significant differences following 72 h of incubation were observed between 1.4 

and 2.8 VRMS treated samples. However, these differences did not reach significance 

levels in comparison with unstimulated controls.  
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Experiments with 1.4 VRMS and a lower inoculum of 104 CFU/ml in complex medium 

TSB showed no significant differences between controls and stimulated samples (see 

Appendix Figure 34). When using DMEM as culture medium as well as a lower inoculum 

of 104 CFU/ml, no significant differences could be observed between controls and 1.4 as 

well as 2.8 VRMS treated samples of both species tested. However, S. aureus showed stable 

CFU/ml at all time points with around 108 CFU/ml while S. epidermidis reached similar 

bacterial numbers only after 48 h of incubation.  

 

3.5.2 Determination of CFU/ml recovered from electrode surfaces 

CFU/ml of S. epidermidis and S. aureus recovered from electrode surfaces following 

electrical stimulation are depicted in Figure 17.  

 

 

Figure 17: Determination of electrode-bound S. epidermidis and S. aureus following electrical stimulation. CFU/ml of 
adherent S. epidermidis and S. aureus recovered from electrode surfaces of stimulated and control samples. A: 
Unstimulated controls and bacteria stimulated with either 0.2 or 1.4 VRMS, stimulation period 3 x 45 min / day, inoculum 
of 106 CFU/ml in TSB. B: Unstimulated controls and bacteria stimulated with either 1.4 VRMS and stimulation period 
3 x 45 min / day or 2.8 VRMS and continuous stimulation, inoculum of 104 CFU/ml in DMEM without phenol red 
supplemented with 10 % FCS. n ≥ 4. * p < 0.05; ** p < 0.01 (Multiple Comparison Kruskal Wallis Test followed by 
Dunn’s Correction). 
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When stimulating S. epidermidis in TSB, no significant differences could be detected 

between controls and stimulated samples. However, bacterial numbers of control samples 

were slightly higher at every time point compared to stimulated samples. Stimulating 

S. aureus in TSB, significantly lower CFU/ml were recovered from samples treated with 

1.4 VRMS compared to controls following 72 h of incubation. However, no significant 

differences could be observed when experiments were done with the lower inoculum (see 

Appendix Figure 35), while CFU/ml were slowly decreasing for S. aureus. In DMEM, 

S. epidermidis showed steadily increasing bacterial numbers recovered from electrode 

surfaces, regardless if stimulated or not. Following 48 h of incubation, 2.8 VRMS treated 

samples reached significantly higher CFU/ml recovered from electrode surface compared 

to unstimulated controls. When experiments were performed using S. aureus, no 

differences between both stimulation settings and controls could be observed at any given 

time. 

 

3.5.3 Biofilm mass quantification 

To investigate potential influence of electrical stimulation on biofilm formation in the 

surrounding area of the electrode, formed biofilm at the coverslip on the chamber bottom 

was stained with crystal violet and photometrical quantified measuring the absorption at 

590 nm as described in 2.4.4. Absorption values were further calculated in relation to the 

surface of the used coverslip and are depicted in Figure 18.  
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Figure 18: Quantification of biofilms formed by S. epidermidis and S. aureus following electrical stimulation. Biofilm 
mass quantification via crystal violet staining of S. epidermidis and S. aureus formed biofilm in relation to the surface 
area of the coverslip of stimulated and control samples. A: Unstimulated controls and bacteria stimulated with either 

0.2 or 1.4 VRMS, stimulation period 3 x 45 min / day, inoculum of 106 CFU/ml in TSB. : Unstimulated controls and 
bacteria stimulated with either 1.4 VRMS and stimulation period 3 x 45 min / day or 2.8 VRMS and continuous stimulation, 
inoculum of 104 CFU/ml in DMEM without phenol red supplemented with 10 % FCS. n ≥ 4. * p < 0.05; ** p < 0.01 
(Multiple Comparison Kruskal Wallis Test followed by Dunn’s Correction). 

 

S. epidermidis showed highest biofilm mass after 24 h of incubation in TSB with no 

differences between controls and stimulated samples and decreased until 72 h of 

incubation. In contrast, S. aureus showed very low biofilm mass which was slowly 

increasing during the experiments. No differences could be observed between controls 

and stimulated samples when cultivating S. aureus in TSB. When stimulating both species 

in TSB using the lower inoculum, no significant differences could be observed (see 

Appendix Figure 36). Interestingly, effects were reversed when using DMEM as culture 

medium. S. epidermidis showed slow biofilm mass formation over the course of the 

experiment. S. aureus showed highest biofilm mass following 48 h of incubation, though 

variances were very high.  



Results   48 

 

Notably, biofilm formation after 24 h treatment using 2.8 VRMS resulted in significantly 

increased biofilm formation compared o controls and 1.4 VRMS treated samples. In 

general, biofilm formed by S. aureus was highest after 48 h and decreased to 72 h of 

incubation.  

 

3.5.4 pH measurements 

To observe pH shifts due to possible electrolytic reactions during electrical stimulation, 

samples were taken from supernatants at every time point and pH was measured. Values 

obtained from respective experiments are depicted in Figure 19. 

 

 

Figure 19: pH of supernatants of S. epidermidis and S. aureus samples following electrical stimulation. pH values of 
supernatants of S. epidermidis and S. aureus of stimulated and control samples. A: Unstimulated controls and bacteria 
stimulated with 1.4 VRMS, stimulation period 3 x 45 min / day, inoculum of 106 CFU/ml in TSB. B: Unstimulated 
controls and bacteria stimulated with either 1.4 VRMS and stimulation period 3 x 45 min / day or 2.8 VRMS and continuous 

stimulation, inoculum of 104 CFU/ml in DMEM without phenol red supplemented with 10 % FCS. n ≥ 4. * p < 0.05; 
** p < 0.01; *** p < 0.001 (Multiple Comparison Kruskal Wallis Test followed by Dunn’s Correction). 
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In general, no differences in pH values were observed for experiments performed in 

complex medium TSB between stimulated and control samples. Of note, pH values 

obtained from experiments using S. aureus rose again after 48 h and remained constant 

until 72 h of incubation. Using lower inoculum, pH of S. aureus samples treated with 

1.4 VRMS showed slightly higher pH compared to controls, while no differences could be 

observed for all other time points (see Appendix Figure 37). When using cell culture 

medium DMEM, pH decreased for both species, regardless if stimulated or not. This 

decrease is due to lactic acid production during growth of bacteria leading to a decreased 

pH over time. Interestingly, samples from S. epidermidis treated with 2.8 VRMS showed 

significantly higher pH after 72 h of incubation compared to controls and 1.4 VRMS treated 

samples. A similar effect could be observed when S. aureus was treated with 2.8 VRMS 

though differences were not as high as for S. epidermidis at the same time point. 

 

3.5.5 Antibiotic resistance 

Matl et al. showed in 2011, that bactericidal effects of electrical stimulation by additional 

antibiosis could be enhanced, leading to increased reduction of bacteria in broth media, 

i.e. S. aureus (Matl et al. 2011). An important fact is, that bacteria more sensitive to 

clinically used antibiotics could lead to reduced amounts of antibiotics needed in 

treatment of implant infections and perhaps even to the potential re-use of antibiotics, to 

which bacteria were previously resistant. In addition, since electrical stimulation of 

fractures and implants is widely used in medicine, the potential effects of electrical 

stimulation in case of an infection of the stimulated area had to be investigated. In this 

work, the effect of electrical stimulations prior to antibiotic treatment was tested. 

Therefore, samples from the supernatants were taken after electrical stimulation and E-

Tests were performed to investigate possible changes in antibiotic susceptibility. 

High variances were detected regarding susceptibility for gentamicin in case of 

S. epidermidis. These variances are due to its natural resistance towards gentamicin. In 

case of S. aureus, very low MIC were determined for gentamicin, which was expected, 

since S. aureus was previously tested sensitive towards gentamicin. Both species were 

sensitive towards levofloxacin. In general, no notable differences between stimulated and 

unstimulated samples could be observed in both species under all tested conditions (see 

Appendix Figure 38 - 43).  
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3.5.6 Biofilm mass production following electrical stimulation 

Within these experiments, general biofilm mass production following electrical 

stimulation was observed. Bacteria were treated using the before-mentioned parameter 

settings and samples were taken at the last time point. Samples were further incubated for 

three days using complex medium TSB in 24 well plates with inserted polystyrene 

coverslips to determine short-term effects of electrical stimulation. Following incubation, 

biofilm mass was quantified using crystal violet as described previously. Quantified 

biofilm masses are presented in Figure 20. 

 

 

Figure 20: Quantification of general biofilm formation of S. epidermidis and S. aureus following electrical stimulation. 
Biofilm mass quantification via crystal violet staining of S. epidermidis and S. aureus formed biofilms after 72 h growth 
in complex medium of previously stimulated and control samples. n ≥ 32. * p < 0.05(Multiple Comparison Kruskal 
Wallis Test followed by Dunn’s Correction). 

 

In general, no differences in biofilm formation could be observed regarding 

S. epidermidis following incubation of previously stimulated samples with 1.4 and 

2.8 VRMS as well as unstimulated samples. Comparing the three treatment settings for 

S. aureus, significantly increased biofilm formation was detected for unstimulated 

controls in comparison to 2.8 VRMS treated samples following three days without any 

stimulation in complex medium. However, biofilm formation of both species was rather 

weak after 72 h of incubation. 
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3.5.7 Biofilm Composition 

Since no notable differences could be observed regarding general biofilm formation, 

changes in biofilm composition due to previous electrical stimulation were investigated. 

Samples were differently treated and amounts of biofilm mass as well as extracellular 

DNA were measured. Results of biofilm composition experiments for both bacterial 

species are presented in Figure 21 and Figure 22. 

 

 

Figure 21: Determination of composition of S. epidermidis and S. aureus formed biofilms. Biofilm mass quantification 
via crystal violet staining of differently treated S. epidermidis and S. aureus samples following 24 h of growth in TSB. 
Samples were taken from outgrowth experiments following electrical stimulation with either 1.4 or 2.8 VRMS or without 
electrical stimulation. Untr. – untreated samples, only; NaIO4 – samples treated with NaIO4 to dissolve carbohydrates 

before staining; Prot. K – samples treated with Proteinase K to dissolve all proteins before staining. n ≥ 36. * - p < 0.05; 
** - p < 0.01 (Multiple Comparison Kruskal Wallis Test followed by Dunn’s Correction).  

 

 

Figure 22: Determination of extracellular DNA in S. epidermidis and S. aureus formed biofilms. Extracellular DNA 
quantification via EthD-III staining of S. epidermidis and S. aureus samples following 24 h of growth in TSB. Samples 
were taken from outgrowth experiments following electrical stimulation with either 1.4 or 2.8 VRMS or without electrical 
stimulation. n ≥ 24. * - p < 0.05; *** - p < 0.001; **** - p < 0.0001 (Multiple Comparison Kruskal Wallis Test followed 
by Dunn’s Correction).  
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Figure 21 shows measured absorptions of differently treated and stained biofilm of 

S. epidermidis and S. aureus following 24 h of incubation in 96 well plates. Untreated 

biofilms of previously stimulated and non-stimulated samples showed highest absorption 

values, while previously with 1.4 VRMS treated samples of S. epidermidis showed 

significantly decreased biofilm mass formation compared to 2.8 VRMS treated samples. 

On the contrary, S. aureus biofilm mass formation of 1.4 VRMS treated samples was 

significantly higher compared to 2.8 VRMS treated samples. Comparing both to non-

stimulated control samples, no significant differences could be detected. Following 

treatment with NaIO4, absorption values decreased due to decomposition of 

carbohydrates. 1.4 VRMS samples of S. epidermidis showed significantly decreased 

absorption values compared to control samples, while no differences in biofilm mass 

following NaIO4 treatment could be detected between the three tested groups of S. aureus.  

Following Proteinase K treatment, no significant differences in biofilm mass could be 

detected for S. epidermidis formed biofilms. In case of S. aureus, previously stimulated 

samples showed significantly decreased biofilm mass compared to unstimulated samples. 

However, these changes are probably not that relevant for S. aureus, since remaining 

biofilm mass following Proteinase K treatment was rather very low. Comparing general 

biofilm composition, S. epidermidis showed similar absorption values of remaining 

biofilm mass following decomposition of carbohydrates as well as proteins. Regarding 

the different treatment of S. aureus formed biofilms, nearly no changes could be detected 

following treatment with NaIO4 while absorption values of remaining biofilm mass 

dropped nearly to the detection limit after Proteinase K treatment. This implies, that most 

of S. aureus formed biofilms is composed of proteins while only a small part is 

represented by carbohydrates. Comparing S. epidermidis biofilms, carbohydrates and 

proteins seem to be represented in a more equal ratio in formed biofilms. 

In general, S. epidermidis showed higher amounts of extracellular DNA in formed 

biofilms compared to S. aureus samples (Figure 22). This could be due to the fact, that, 

in general, biofilm formation using S. epidermidis was higher compared to S. aureus (see 

Figure 18). Using EthD-III to stain extracellular DNA as a part of formed biofilm, 

significant differences between the tested parameter settings were observed. When 

S. epidermidis was pre-treated with 1.4 VRMS, obtained values were significantly lower 

compared to both control and 2.8 VRMS treated samples.  
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Regarding S. aureus, stimulation with 1.4 VRMS previously to outgrowth and biofilm 

composition experiments led to significantly increased amounts of extracellular DNA 

compared to controls and 2.8 VRMS treated samples, respectively.  

 

3.5.8 Determination of ATP concentration in supernatants and lysates 

ATP concentration was measured only in one parameter setting using S. aureus and TSB 

as medium under the stimulation conditions of 1.4 VRMS and stimulation periods of 3 x 45 

min per day over 72 h. Measurement of ATP concentration as well as FACS analysis, 

described later, were tested as suitable methods for investigation of effects of electrical 

stimulation using our system but were not further applied to other parameter settings.  

Relative luminescence units (RLU) were measured using a sample from the supernatant 

of control and stimulated samples. Samples were centrifuged and RLUs were measured 

from the supernatants and lysates of the bacteria. These values were summed up for total 

ATP concentration. Relative amounts of free and intracellular ATP are shown below. 

 

 

Figure 23: Determination of ATP amounts following electrical stimulation of S. aureus in TSB. Amount of free and 

intracellular ATP as percentage of total ATP of S. aureus with and without electrical stimulation over 72 h. sup – 
supernatant; lys – lysate. n = 4. 

 

No significant differences were observed when comparing control and stimulated samples 

in case of intracellular and extracellular ATP. Highest extracellular ATP concentrations 

were detected after 48 h with a maximum of around 5 -6 % of total ATP.  
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Lowest free ATP concentrations were detected following 72 h of incubation with a 

maximum of around 0.5 – 1 % of total ATP. This method confirms the previously 

described results for this parameter setting, that no differences between stimulated and 

control samples could be observed.  

 

3.5.9 Determination of live and dead bacteria by FACS analyses 

FACS analyses were conducted using thiazolorange and propidium iodide to distinguish 

living and dead bacteria. Representative pictures of control and stimulated samples after 

72 h incubation are shown in Figure 24. 

 

 

Figure 24: Population distributions of viable and damaged S. aureus following electrical stimulation. Representative 
FACS analyses of S. aureus after 72 h incubation with and without electrical stimulation. Thiazolorange (TO) was used 

to stain all bacteria while propidium iodide (PI) was used to stain damaged and dead bacteria. a: control sample 
unstained; b: control sample stained with TO and PI, c: stimulated sample stained with TO and PI. 

 

Using the unstained control sample, the fluorescence border for TO and PI was 

determined. Unstained bacteria remain in the lower left part, while TO positive bacteria 

are visible in the lower right part. TO negative/PI positive signals would appear in the 

upper left part of the diagram, which could be interpreted as cell residues. TO positive/PI 

positive bacteria would appear in the upper right part. Those bacteria are either damaged 

or dead bacteria.  

Despite the fact, that around 50 – 60 % of the samples were unstained when measured, 

no significant differences could be detected between stimulated and control samples. In 

both (Figure 24 b and c) around 32 – 37 % of the stained bacteria appear only TO positive, 

while 4 – 6 % were TO/PI positive, meaning they were damaged or dead at the point of 

the measurement. 
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3.6 Co-culture of staphylococci and bone cells 

The generated stimulation system should be used for investigating effects of alternating 

current electrical stimulation of bacteria, bone cells and both in co-culture to mimic an 

implant infection situation in a simplified setup. Before combining bacteria and bone cells 

in the stimulation system, adherence and internalization abilities of S. epidermidis and 

S. aureus were determined.  

 

3.6.1 Adherence and internalization of staphylococci to and into bone cells 

As previously described, several studies showed that S. aureus adheres to and internalizes 

into MG63 cells as well as human primary osteoblast. Very few studies dealt with the 

topic of adherence and internalization of S. epidermidis to and into MG63 cell and 

primary osteoblasts (Valour et al. 2013). This study showed a very low amount of 

S. epidermidis adhered to and internalized into tested cells. The authors proposed, that the 

pathogenic mechanism responsible for the dramatic clinical courses of an implant 

infection by S. epidermidis is more likely due to other mechanisms such as biofilm 

formation than to adherence and internalization, as it was shown for S. aureus.  

Since the stimulation system generated during this work was designed to be used for co-

culture experiments with both staphylococci and osteoblast cells, it is necessary to 

investigate the adherence and internalization ability of the used bacterial strains in 

connection with MG63 cells and the human primary osteoblasts. 

Adherence and internalization rates of S. epidermidis to and into human osteoblasts as 

well as osteosarcoma cell line MG63 are shown in Figure 25. Regarding S. aureus, 

adherence and internalization was only tested with MG63 cells. Obtained values are 

presented in Figure 26. 
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Figure 25: Adherence and internalization of S. epidermidis on and into hOB and MG63 cells. Number of adherent and 
internalized S. epidermidis in relation to 10³ osteoblast cells. Multiplicity of Infection describes the initially used 
number of bacteria in relation to the used number of cells. Adh. – adherent/internalized bacteria after 2 h of incubation; 
Int. – internalized bacteria after additional 1 h of antibiotic treatment. hOB – human osteoblasts; MG63 – MG63 
osteosarcoma cells. * - p < 0.05 (unpaired Mann Whitney U-Test) n ≥ 4. 

 

 

Figure 26: Adherence and internalization of S. aureus on and into MG63 cells. Adherent and internalized S. aureus in 
relation to 10³ MG63 osteosarcoma cells. Multiplicity of Infection describes the initially used number of bacteria in 
relation to the used number of cells. Adherence: adherent/internalized bacteria after 2 h of incubation; Internalization: 
internalized bacteria after additional 1 h of antibiotic treatment. n = 4 

 

In general, S. epidermidis revealed a low adherence potential to osteoblast cells though 

adherent and internalized bacteria increase with higher MOIs. While adherence values 

were significantly higher for all tested MOI when comparing MG63 cells and human 

osteoblasts, the number of internalized bacteria was similar between the two groups at 

every MOI tested.  
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Infection with S. aureus shows dose-dependent increasing adherence and internalization 

rates to MG63 cells, while values obtained were around 10 times higher compared to S. 

epidermidis (Figure 25), suggesting a higher propensity of S. aureus for host cell 

interactions.  

 

3.6.2 Cytokine production following infection of bone cells with 

staphylococci 

Samples of supernatants were taken following 2 h of infection during the adherence and 

internalization assay and 24 h of antibiotic treatment as prolonged internalization time. 

Cells incubated only with the respective culture medium served as controls. Samples were 

sterile filtered and treated according to manufacturer instructions and concentrations of 

IL-6, IL-12, TNF-α and MCP-1 were determined for samples of S. epidermidis and 

S. aureus as described earlier.  

Determined concentrations of IL-6 and MCP-1 following infection of hOB and MG63 

cells with S. epidermidis are shown in Figure 27 and Figure 28, respectively. 

Concentrations measured for both cytokines following infection of MG63 cells with 

S. aureus are shown in Figure 29. 

 

 

Figure 27: Interleukin-6 secretion of hOB and MG63 cells infected with S. epidermidis. Concentrations of interleukin 
6 (IL-6) measured in supernatants of human osteoblasts (hOB) and MG63 cells from adherence and internalization 
assays with S. epidermidis. 2 h inf.: cells infected with S. epidermidis for 2 hours in assay medium with a multiplicity 
of infection of 100; 24 h inf. + antib.: Cells cultivated up to 24 h following 2 h infection with S. epidermidis under 

antibiotic treatment with 200 µg/ml levofloxacin as prolonged internalization time. Values of cells cultured under the 
same conditions without bacteria were deducted from the respective sample values. n ≥ 4. 
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Figure 28: MCP-1 secretion of hOB and MG63 cells infected with S. epidermidis. Concentrations of monocyte 
chemoattractant protein 1 (MCP-1) measured in supernatants of human osteoblasts (hOB) and MG63 cells from 
adherence and internalization assays with S. epidermidis. 2 h inf.: cells infected with S. epidermidis for 2 hours in assay 
medium with a multiplicity of infection of 100; 24 h inf. + antib.: Cells cultivated up to 24 h following 2 h infection 
with S. epidermidis under antibiotic treatment with 200 µg/ml levofloxacin as prolonged internalization time. Values 
of cells cultured under the same conditions without bacteria were deducted from the respective sample values. n ≥ 4. 
** p < 0.01 (unpaired two-tailed Mann-Whitney U test). 

 

Infection of hOB with S. epidermidis led to weak but detectable secretion of IL-6 and 

MCP-1 after 2 h of incubation. However, no further IL-6 secretion was detected for 

infected hOB following 24 h of antibiotic treatment. Comparing these results to MG63 

cells infected with S. epidermidis, similar tendencies for the 2 h infection period were 

observed. No IL-6 secretion was detected after 2 h of infection while MCP-1 secretion 

reached values of 5 to 25 pg/ml. Of note, incubation for 24 h with antibiotic treatment of 

infected MG63 cells lead to notably increasing concentrations of IL-6 and MCP-1 in 

supernatants. IL-6 concentrations increased up to 800 pg/ml, while MCP-1 concentrations 

increased to reach values of 2000 to 4000 pg/ml (Figure 27, 28). These results imply, that 

hOB seem to be more sensitive and responsive to infection with S. epidermidis in the first 

hours of infection, while MG63 cells seem to need longer to respond to an infection with 

this bacterium. However, MG63 cells secreted much higher amounts of cytokines 

compared to hOB, which may be due to their origin as tumor cell line compared to 

primary cell lines.  
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Figure 29: Interleukin-6 and MCP-1 secretion of MG63 cells infected with S. aureus. Concentrations of interleukin 6 
(IL-6, A) and monocyte chemoattractant protein 1 (MCP-1, B) measured in supernatants of MG63 cells from adherence 

and internalization assays with S. aureus. 2 h inf.: cells infected with S. epidermidis for 2 hours in assay medium with 
a multiplicity of infection of 100; 24 h inf. + antib.: Cells cultivated up to 24 h following 2 h infection with S. 
epidermidis under antibiotic treatment with 200 µg/ml levofloxacin as prolonged internalization time. Values of cells 
cultured under the same conditions without bacteria were deducted from the respective sample values. n ≥ 4. ** p < 
0.01 (unpaired two-tailed Mann-Whitney U test). 

 

Determination of cytokine concentrations using S. aureus and MG63 cells revealed 

treatment and time-dependent increase of IL-6 and MCP-1. For both cytokines, 2 h of 

infection of cells lead to weak secretion of both IL-6 and MCP-1 (Figure 29 A, B), 

reaching values of around 20 pg/ml IL-6 and 25 to 150 pg/ml MCP-1. However, 

significantly increased concentrations of IL-6 and MCP-1were detected following 24 h 

of antibiotic treatment of infected cells, however with high variance in the range of 

concentration. In general, cytokine secretion of MG63 cells under infection with S. aureus 

resembles those observed when using S. epidermidis. Comparing secreted amounts of 

cytokines of MG63 cells under infection with both bacteria, IL-6 concentrations were 

nearly similar while MCP-1 concentrations were in tendency higher when cells were 

infected with S. aureus compared to S. epidermidis. IL-12 as well as TNF-α secretion 

were not detected in any sample. 
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3.6.3 SEM imaging of MG63 cells and hOB infected with S. epidermidis 

Representative SEM images of MG63 cells and hOB after infection with S. epidermidis 

are shown in Figure 30 and Figure 31, respectively. 

 

   

Figure 30: Representative SEM images of MG63 cells infected with S. epidermidis. Representative SEM images of 
MG63 cells infected with S. epidermidis after 2 h adherence. Left: 500x magnification; middle: 2000x magnif.; right: 
5000x magnif. 

 

   

Figure 31: Representative SEM images of hOB infected with S. epidermidis. Representative SEM images of hOB 
infected with S. epidermidis after 2 h adherence. Left: 500x magnification; middle: 2000x magnif.; right: 5000x magnif. 
 

In general, very few S. epidermidis were found on the surface of the cells. Large areas of 

the cells were not covered with S. epidermidis, while it also appeared that bacteria 

aggregated at some spots on the cells.  

 

 

3.6.4 Co-culture of S. epidermidis and MG63 cells under electrical 

stimulation 

To assess general applicability of the generated stimulation system for co-culture 

experiments, pilot experiments were performed using S. epidermidis and MG63 cells 

under conditions previously described (see Methods 2.6). Stimulation was carried out 

over 24 h continuously and a MOI of 100 was chosen for the co-culture setup since 

S. epidermidis showed low adherence potential to MG63 cells.  
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Recovered CFU/ml of S. epidermidis from supernatants, electrode surfaces and coverslips 

following electrical stimulation in the co-culture setup are presented in Figure 32.  

 

 

Figure 32: Determination of CFU/ml of S. epidermidis during co-culture and electrical stimulation. Recovered CFU/ml 
of S. epidermidis from supernatants, electrode surfaces and coverslips following 24 h continuous stimulation with 
2.8 VRMS and controls in a co-culture setup with MG63 osteosarcoma cells. * - p < 0.05; ** - p < 0.01 (unpaired Mann 

Whitney U-Test) n ≥ 3.  

 

Recovered CFU/ml of 2.8 VRMS treated co-culture samples of S. epidermidis were 

significantly higher compared unstimulated controls for both supernatants and electrode 

surfaces. CFU/ml recovered from coverslips at the chamber bottom were also higher 

compared to unstimulated controls. In general, electrical stimulation enhanced bacterial 

numbers recovered from supernatants, as well as electrodes and coverslips, where MG63 

cells were seeded previously. 

Figure 33 shows cell count of viable cells on electrode surfaces and coverslips following 

24 h of incubation of controls and 2.8 VRMS treated co-culture samples as well as pH 

values measured at the end of the experiment. 
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Figure 33: Cell count of viable MG63 cells following coculture with S. epidermidis under electrical stimulation and 
pH measurements. Left: Viable MG63 cells per ml following incubation for 24 h of controls and stimulated co-culture 
samples, n = 2. Right: pH measurement following 24 h of incubation of controls and stimulated co-culture samples, n 
= 6.  

 

Viable osteoblasts recovered from electrode surfaces following stimulation were in 

tendency lower compared to unstimulated controls. Regarding pH, no differences 

between stimulated and control samples could be detected.  
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4 Discussion 

This work is integrated in the DFG-funded research training group WELISA and focused 

on electrical stimulation of bacteria in an implant-associated infection context. For this 

purpose, an electrical stimulation system was developed to allow electrical stimulation of 

cells and bacteria using alternating current under similar conditions, which was not yet 

described in the literature. Additionally, a basic methodical setup was developed to gain 

maximum data output at minimum costs. The system was functionally validated with 

numerical simulation, while simulation data approximated measured real data regarding 

electric potential distribution in the region of interest. Hence, predictions of electric field 

distributions with varying parameter settings are possible. During this work, 

S. epidermidis and S. aureus, both main causatives of implant-associated infections, were 

subjected to electrical stimulation and effects on growth behavior as well as biofilm 

formation were investigated.  

Furthermore, parameter studies were performed to compare effects of different VRMS and 

stimulation periods to unravel optimal stimulation parameters to negatively influence the 

bacteria. However, effects observed were not constant over time and varied in intensity. 

Of note, using highest stimulation parameter in cell culture medium DMEM, effects on 

biofilm composition could be observed for both tested species. Subsequently, co-culture 

experiments with and without electrical stimulation were performed to investigate effects 

of electrical stimulation in a more infection-related situation. Adherence and 

internalization assays with following cytokine ELISAs were done for S. epidermidis and 

S. aureus in combination with hOB as well as MG63 cells, while pilot co-culture 

experiments under electrical stimulation were only conducted with S. epidermidis and 

MG63 cells.  

 

4.1 Numerical simulation and choice of material 

Numerical simulation proves to be an important tool to predict behavior of different 

systems in silico. In this case, numerical simulation was utilized to predict potential 

distributions and electric field displacement norms under varying parameter settings as 

well as to validate the generated system. However, crucial points in numerical simulations 

are input data as well as the simulation construct itself, which strongly influence the 

outcoming result.  



Discussion   64 

 

In this work, impedance spectroscopy was used to determine system- and medium-

specific electric properties, which were implemented in the following simulations as well 

as the CAD-model of the stimulation system. Since electric properties of materials and 

media can vary depending on temperature, measurements were done in a closed system 

at 37 °C to ensure experimental relevant data output.  

Nevertheless, the obtained field distributions generated by numerical simulation differ 

compared to measured real data. The simulation assumes a more extensive potential 

gradient within the stimulation system than it could be observed during validation. 

Predicted values in the region of interest at the chamber bottom fitted well with measured 

values, while deviations increased with increasing distance to the electrodes. This results 

in an electric potential gradient inside the stimulation system, which is considerably 

smaller compared to the predicted gradient. In turn, this result benefits the fact, that the 

electric field generated inside the system is more homogenously distributed than 

predicted by numerical simulation. Hence, cells as well as bacteria are stimulated with 

similar electric field strengths in the region of interest. Since the system uses alternating 

current, starting parameters were chosen to reflect field strengths generated by the ASNIS 

III s-series screw system, resulting in up to 70 V/m field strength, which was used in 

context with bone fractures, avascular necrosis of femoral heads and foot arthrodesis 

(Windisch et al. 2014, Grunert et al. 2014).  

Ti6Al4V was chosen as material for the stimulating electrodes because of the following 

reasons: First, it is widely used as standard material for total joint endoprostheses (Abdel-

Hady Gepreel and Niinomi 2013, Wang 1996). Second, it provides good material 

properties, such as excellent biocompatibility, high fatigue limits as well as low Young’s 

modulus and density (Abdel-Hady Gepreel and Niinomi 2013, Cornet et al. 1979, 

Velasco-Ortega et al. 2010). Additionally, this material is highly resistant against 

corrosion due to formation of a passivation layer on its surface (Fleck and Eifler 2010). 

Furthermore, electrode surfaces were roughened by corundum blasting, since roughening 

enlarges the surface of an implant. Rough surfaces were shown to enhance synthesis of 

growth factor and extracellular matrix in osteoblasts in vitro (Marinucci et al. 2006, 

Kieswetter et al. 1996, Martin et al. 1996). In vivo, rough surfaces were shown to enhance 

osseointegration by promotion of protein adsorption and cell adhesion to the implant 

surface (Cochran et al. 1996, Mavrogenis et al. 2009, Alla et al. 2011, Suzuki et al. 1997).  
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4.2 Effects of electrical stimulation on bacteria 

In the field of electrical stimulation of bacteria, various setups and stimulation methods 

are applied. Stimulation methods comprise for example direct current (DC), pulsed 

current or alternating current applications in various forms (Asadi and Torkaman 2014). 

In this work, alternating current was chosen as stimulation method, because the before-

mentioned ASNIS III s-screw series system was used as starting point for parameter 

choice, also applying alternating current. Furthermore, electrolytic and electrode 

reactions occurring during DC stimulation should be excluded as factors influencing the 

stimulated bacteria. However, only a few studies dealt with the topic of AC stimulation 

on bacteria compared to DC and pulsed current in general (Asadi and Torkaman 2014).  

In 1972, Rowley conducted an in vitro study with both cathodal direct current and 

milliampere level alternating current. AC stimulation showed little or no effect on E. coli 

growth rates, while bactericidal effects could be observed under DC stimulation (Rowley 

1972). In contrast, Spadaro et al. tested silver, platinum, gold, stainless-steel, and copper 

electrode to evaluate electrochemical effects on growth of four bacterial species using 

low currents of 0.02 to 20 µA/mm2. At lower currents, only silver showed antibacterial 

effects while using the highest currents, all electrodes inhibited growth. The authors 

noted, that these effects occurred with electrolytic breakdown of the medium as well as 

severe corrosion of the metal (Spadaro et al. 1974). Another study conducted by Petrofsky 

et al. subjected S. aureus, E. coli and P. aeruginosa to AC and DC stimulation. Bacteria 

were treated for 30 min with either AC or DC and were subsequently incubated 24 h 

before determination of bacterial counts. The authors reported significantly reduced 

growth of P. aeruginosa, while S. aureus and E. coli where only marginally affected by 

AC stimulation (Petrofsky et al. 2008). Maadi et al. 2010 also observed no inhibitory 

effect of AC on growth of P. aeruginosa in vitro. Here, glass agar plates were connected 

with stainless-steel electrodes and inhibition zones caused by electrical stimulation were 

measured (Maadi et al. 2010). In contrast, DC stimulation with low amperage (10 µA) 

showed antimicrobial activity when applied to S. aureus and S. epidermidis (Liu et al. 

1997). Furthermore, stimulating bacteria with high voltage pulsed currents (HVPC) was 

shown to inhibit growth of S. aureus, E. coli, and P. aeruginosa at both the anode and 

cathode following exposure to HVPC for 2 h at 250 V (Kincaid and Lavoie 1989). 

Another recent study conducted in 2015 investigated effects of alternating current 

combined with different disinfectants.  
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Mirzaii et al. applied electric field strengths of 6 to 10 V/cm2 at 50 KHz, 1 MHz, 10 MHz 

and 20 MHz during lag phases of S. aureus and P. aeruginosa. The authors reported 

effectively reduced growth of S. aureus and P. aeruginosa when 10 V/cm2 at 20 MHz 

was applied (Mirzaii et al. 2015). Regarding effects of electrical current combined with 

antibiotics against bacterial biofilms, del Pozo et al. 2009 showed increased eradication 

of biofilm-bound MRSA (methicillin-resistant Staphylococcus aureus) and 

S. epidermidis. In the mentioned study, biofilms were pre-cultured on Teflon disks and 

were treated in a continuous flow chamber where antimicrobial agents as well as electrical 

current were applied. The authors concluded, that the activity of antimicrobial substances 

can be enhanced by additional electrical stimulation. However, this effect is not 

generalizable across microorganisms and antimicrobial agents (del Pozo et al. 2009a). In 

our work, antibiotic susceptibility was not altered following electrical stimulation. 

Nevertheless, antibiotic treatment could be combined with electrical stimulation using the 

novel stimulation system to further evaluate effects and efficacy of antibiotic treatment 

coupled with electrical stimulation. 

Comparing the obtained results of this work to other studies, it can be stated that AC 

stimulation, under the parameters described earlier, showed little to no effect on growth 

and general biofilm formation of S. epidermidis and S. aureus. Since mostly S. aureus 

was used in literature, this work provides evidence, that S. epidermidis is also largely 

unaffected by AC stimulation. However, we can also report no beneficial effects of AC 

stimulation on bacterial growth. This fact benefits the possibility, that some of the 

parameter settings tested could have a positive influence on bone cells while resulting in 

little to no effects on bacteria. Hence, electrical stimulation using AC could be used to 

enhance wound healing or osteoblast proliferation while not further supporting bacterial 

growth in an implant infection situation. 

 

4.3 Influences of AC stimulation on biofilm composition 

Biofilm formation, regulation and its composition are crucial for facilitating settlement 

on different surfaces, coping with changing environmental factors or evading the host 

immune system as well as persisting on artificial surfaces or devices. S. epidermidis 

possesses the so-called autolysin AtlE, which is a protein belonging to a group of bacterial 

peptidoglycan (PGN) – hydrolases involved in bacterial cell wall degradation processes 

(Biswas et al. 2006). It was also shown to contribute to S. epidermidis binding to 

unmodified polystyrene (Heilmann et al. 1997). Furthermore, AtlE is involved in 
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extracellular DNA (eDNA) mediated biofilm formation of S. epidermidis (Qin et al. 2007, 

Christner et al. 2012). 

eDNA, besides involving primary attachment, contributes to stabilization of biofilms as 

an intercellular adhesion (Whitchurch et al. 2002). It is believed, that these intercellular 

adhesion processes are critical for biofilm formation, especially during the early 

accumulative phase (Qin et al. 2007). More recently, contribution of eDNA during 

S. aureus surface colonization was shown, where eDNA was observed to be important in 

the transition of attachment to accumulation under flow conditions (Moormeier et al. 

2014). Despite being a structural component of biofilm matrix in both S. epidermidis and 

S. aureus, different functions, at least to an extent, are assumed for eDNA. However, 

several studies showed eDNA release through increased cell lysis (Allesen-Holm et al. 

2006, Rice et al. 2007, Christner et al. 2012,). A major part of this cell lysis activity 

depends on AtlE described earlier (Biswas et al. 2006). Comparing this to the results 

obtained from general biofilm formation and the biofilm composition assays, there is a 

possibility that electrical stimulation somehow influences activity and regulation as well 

as eDNA amount in biofilm formation of both tested species. It was shown in this work, 

that previous electrical stimulation lead to significantly decreased amounts of eDNA in 

S. epidermidis biofilms when stimulated with 1.4 VRMS. This in turn, besides the culture 

conditions, could be responsible for overall weak biofilm formation. Additionally, if 

electrical stimulation can influence eDNA amount, the general stability of the formed 

biofilm could be impaired in case of S. epidermidis. It is also possible, that electrical 

stimulation somehow influences AtlE activity, which in turn could lead to decreased cell 

lysis and therefore to a reduced amount of eDNA present in the formed biofilm. 

Regarding S. aureus, significantly increased eDNA amounts were detected following 

stimulation with 1.4 VRMS. However, the increase was in a relatively small range 

questioning biological relevance of this observation. Gene expression and enzyme studies 

could give an insight on relevant expression levels as well as AtlE activity to investigate 

possible influence of electrical stimulation on biofilm-relevant molecules and 

mechanisms. 

 

4.4 Interactions of S. epidermidis with cells 

During this work, it was shown that S. epidermidis adheres and internalizes in hOB as 

well as in MG63 osteosarcoma cells, however, with a less pronounced phenotype 

compared to S. aureus. Both species express cell surface proteins which can mediate 
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specific interactions with host extracellular matrix components (ECM) (Patti et al. 1994, 

Büttner et al. 2015). Those proteins are believed to play an important role in the 

development of device infections, since these devices become covered by ECM as soon 

as they are inserted into the body. Such components are for example fibronectin, 

fibrinogen, vitronectin or collagen (Arrecubieta et al. 2006, Mack et al. 2009). One group 

of such proteins are serine-aspartate repeat (Sdr) proteins (McCrea et al. 2000, Büttner et 

al. 2015), which are belonging to MSCRAMMs (Microbial Surface Components 

Recognizing Adhesive Matrix Molecules) (Josefsson et al. 1998, Foster et al. 2014). 

Three different types are described for S. epidermidis, SdrF, SdrG, and SdrH (Josefsson 

et al. 1998). The proteins SdrF and SdrG of S. epidermidis show an organization which 

is similar to SdrC, SdrD, and SdrE from S. aureus. While SdrG was shown to bind 

fibronectin, and was therefore called Fbe, SdrF was revealed as a collagen-binding protein 

(Arrecubieta et al., 2007). However, Arrecubieta et al showed 2009, that inhibition of 

SdrF in S. epidermidis resulted only in partial binding inhibition. Hence, other collagen 

binding factors seem to be involved in this process (Arrecubieta et al. 2009).  

Concerning electrical stimulation of bacteria and cells in a co-culture setup, increased 

bacterial numbers were observed when both cells and bacteria were stimulated compared 

to control samples. Different causes could be discussed, since underlying effects of 

electrical stimulation are not known yet. It could be possible, that the cells, following pre-

incubation for 24 h to adhere to the surfaces in the stimulation system, where influenced 

by electrical stimulation and expressed increased amounts of collagen or other ECM 

components. Another contributing factor could be elevated expression of ECM or biofilm 

related genes in S. epidermidis under electrical stimulation. However, changes on 

transcription level due to electrical stimulation were not investigated so far. Furthermore, 

Lee et al. showed 2010, that S. epidermidis did not influence cell adhesion and viability 

of MC3T3-E1 cells (osteoblasts) in a microfluidic environment (Lee et al. 2010). They 

could show, that cells were initially not influenced in adhesion and viability on a Ti alloy 

surface. However, at the end of the experiments, cell damaging was reported at the point 

where bacteria started to proliferate and to aggregate (Lee et al. 2010). Similar 

observations were made for the co-culture experiments described here. During the 

experiments described in this work, MG63 cells had 24 h time to adhere and to produce 

ECM components until the onset of electrical stimulation while infecting them with 

S. epidermidis. Since the co-culture experiments were only conducted over 24 h, long 



Discussion   69 

 

term exposure effects on MG63 cells caused by S. epidermidis were not investigated. 

Still, the underlying mechanisms describing the observations are yet to be elucidated.  

Regarding cytokine secretion of osteoblasts following infection, we could show that 

S. epidermidis induces IL-6 and MCP-1 secretion in MG-63 cells. However, to a lower 

amount compared with S. aureus. Additionally, hOB appeared to be quicker in response 

compared to MG-63, though not reaching maximum secretion levels shown for MG-63. 

Also of note is the fact, that cytokine secretion in hOB was also observed when using 

medium control conditions without bacteria. Based on this, the secreted amounts of IL-6 

and MCP-1 are most likely caused by influence of the medium and not by presence of the 

bacteria. Interestingly, when infecting hOB with S. epidermidis, secreted amounts of IL-

6 and MCP-1 were lower compared to medium controls without bacteria. Bost et al. as 

well as Ning et al. showed cytokine secretion by osteoblasts invaded by S. aureus (Bost 

et al. 1999, Ning et al. 2011), while up until now no information is available on secretion 

of cytokines under infection with S. epidermidis. The observations made in this work 

therefore give a hint to a better understanding of the outcome of interaction of osteoblasts 

with S. epidermidis, while it remains to be investigated, if S. epidermidis is also able to 

regulate IL-6 and MCP-1 secretion by influencing Nf-κB signaling in osteoblasts (Ning 

et al. 2011). 

 

4.5 Limitations and Outlook 

The stimulation system described in this work was developed to provide a novel tool in 

researching effects of AC on bacteria and cells suitable for basic research. AC 

circumvents typical electrolytic and electrode reactions occurring when using DC 

stimulation, providing solely effects of the electric field. However, since formation of 

radicals and toxic substances, e.g. H2O2 or chlorine, are described as a mechanism of 

effect in electrical stimulation, such effects using AC stimulation could be neglected. 

Nevertheless, this system is suitable to investigate effects solely based in the generated 

fields without further influence through electrode reactions. Though it provides a broad 

methodical setup for data output, there are also limitations of the system, which should 

be noted. Numerical simulations proved useful for the prediction of electric potentials and 

field distributions, however, simulations should be optimized for future experiments 

using this system to approximate real field distributions better than it is currently the case.  

 



Discussion   70 

 

Furthermore, only Ti6Al4V was used as electrode material in this work. Since not only 

titanium implants are used in the orthopedic context, other implant materials should be 

used as electrode materials to discern the influence of the respective materials on the 

effects of electrical stimulation. Another point is, that only two Staphylococcus species 

were investigated during this work, namely S. epidermidis and S. aureus. Despite the fact, 

that both are the main causatives of prosthetic joint infections, other bacteria commonly 

found in PJI should also be investigated using this system. Examples would be 

Pseudomonas aeruginosa or Escherichia coli, since both are also described as organisms 

used for DC stimulation experiments in literature. Also, bacterial genome wide 

transcription analyses should be performed following electrical stimulation of bacteria to 

obtain information about underlying mechanisms and effects on genome level and not 

only macroscopically. Additionally, the described system was tested with human 

osteoblasts isolated from patient hips as well as the MG63 osteosarcoma cell line. Further 

experimental approaches using different cell types would be beneficial to support better 

understanding of effects of electrical stimulation in general. Another point is the co-

culture setup, which should be extended further to prove the observations made during 

this work. Co-culture under electrical stimulation was not described until now and should 

be used to gain further insight in the complex interplay between bacteria and cells 

subjected to electrical stimulation. Also, this point is of clinical relevance since electrical 

stimulation is used as an adjunctive method in therapy.  
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5 Summary 

This work was integrated in the DFG funded research training group GRK 1505/2 welisa. 

Here, an in vitro system for electrical stimulation of cells and bacteria using alternating 

current was developed. Electrical stimulation of both cells and bacteria can be conducted 

under similar conditions using Ti6Al4V electrodes separated with an insulator in a non-

conductive stimulation chamber. Prior to stimulation experiments, numerical simulations 

for the system were performed to predict potential and electric field distributions inside 

the stimulation chamber. Numerical simulations predicted more extensive potential 

gradients than could be observed in real measurements, resulting in higher field strength 

range anticipations. A basic methodical setup was established to evaluate effects of 

electrical stimulation on bacteria allowing determination of living bacteria in supernatants 

and on the electrode surfaces, quantification of produced biofilm mass, minimal 

inhibitory concentration (MIC) determination of selected antibiotics as well as pH 

measurements, biofilm composition analyses and FACS-based discrimination of living 

and dead bacteria.  

Electrical stimulation of S. epidermidis and S. aureus with either 0.2, 1.4 or 2.8 VRMS 

(either 3 x 45 min per day or continuously stimulated) showed significant but not 

consistent effects on bacterial growth and biofilm mass production. Regarding changes 

in antibiotic susceptibility of bacteria due to electrical stimulation, no effects could be 

observed when bacteria were subjected to electrical stimulation.  

Following electrical stimulation of S. epidermidis with 1.4 VRMS in DMEM, significantly 

decreased amounts of extracellular DNA were detected in the biofilm extracellular 

matrix. In contrast, extracellular DNA amounts were significantly increased after 

electrical stimulation of S. aureus with 1.4 VRMS in DMEM. 

When infecting hOB and MG63 cells with S. epidermidis, IL-6 and MCP-1 secretion were 

detected. hOB showed a faster response, while the maximum response was higher in 

MG63 cells. In a co-culture approach under electrical stimulation, increased CFU/ml 

S. epidermidis were found in supernatants, on and into MG63 cells on electrode surfaces 

and the chamber bottom. 

No electrolytic and electrode reactions were observed during electrical stimulation 

experiments, excluding these factors for effects on bacteria in the developed system. 
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7 Appendix  

 

 

Figure 34: Determination of planktonic S. epidermidis and S. aureus following electrical stimulation in TSB with 104 
CFU/ml inoculum. CFU/ml of planktonic S. epidermidis and S. aureus recovered from supernatants of stimulated and 
control samples. Unstimulated controls and bacteria stimulated with 1.4 VRMS, stimulation period 3 x 45 min / day, 

inoculum of 104 CFU/ml in TSB. n ≥ 4.  

 

 

Figure 35: Determination of electrode-bound S. epidermidis and S. aureus following electrical stimulation in TSB with 
104 CFU/ml inoculum. CFU/ml of adherent S. epidermidis and S. aureus recovered from electrode surfaces of 

stimulated and control samples. Unstimulated controls and bacteria stimulated with 1.4 VRMS, stimulation period 3 x 
45 min / day, inoculum of 104 CFU/ml in TSB. n ≥ 4.  
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Figure 36: Quantification of biofilms formed by S. epidermidis and S. aureus following electrical stimulation in TSB 
with 104 CFU/ml inoculum. Biofilm mass quantification via crystal violet staining of S. epidermidis and S. aureus 
formed biofilm in relation to the surface area of the coverslip of stimulated and control samples. Unstimulated controls 

and bacteria stimulated with 1.4 VRMS, stimulation period 3 x 45 min / day, inoculum of 106 CFU/ml in TSB. n ≥ 4.  

 

 

Figure 37: pH of supernatants of S. epidermidis and S. aureus samples following electrical stimulation in TSB with 104 
CFU/ml inoculum. pH values of supernatants of S. epidermidis and S. aureus of stimulated and control samples. 
Unstimulated controls and bacteria stimulated with 1.4 VRMS, stimulation period 3 x 45 min / day, inoculum of 104 
CFU/ml in TSB. n ≥ 4.  

 

 

 

 

 

 

A
b

s
o

r
p

t
io

n
 a

t
 5

9
0

 n
m

 /
 c

m
²

2 4  h 4 8  h 7 2  h 2 4  h 4 8  h 7 2  h

0

1

2

3

4

5
u n s t i m . 1 . 4  V

R M S

S .  e p i d e r m i d i s S .  a u r e u s

b i o f i l m  m a s s ,

i n o k u l u m  1 0
4

 C F U / m l ,  T S B

p
H

2 4  h 4 8  h 7 2  h 2 4  h 4 8  h 7 2  h

4

6

8 u n s t i m . 1 . 4  V
R M S

S .  e p i d e r m i d i s S .  a u r e u s

p H ,  i n o k u l u m  1 0
4

 C F U / m l ,  T S B



Appendix   XX 

 

 

Figure 38: Minimal inhibitory concentrations of gentamicin following electrical stimulation of S. epidermidis and 
S. aureus in TSB with 106 CFU/ml inoculum. E-Test stripes were used to determine minimal inhibitory concentrations 
(MIC) of controls and with either 0.2 or 1.4 VRMS treated samples over 72 h. Values are presented as median and single 
values. n ≥ 3. 

 

 

Figure 39: Minimal inhibitory concentrations of levofloxacin following electrical stimulation of S. epidermidis and 
S. aureus in TSB with 106 CFU/ml inoculum. E-Test stripes were used to determine minimal inhibitory concentrations 
(MIC) of controls and with either 0.2 or 1.4 VRMS treated samples over 72 h. Values are presented as median and single 
values. n ≥ 3. 
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Figure 40: Minimal inhibitory concentrations of gentamicin following electrical stimulation of S. epidermidis and 
S. aureus in TSB with 104 CFU/ml inoculum. E-Test stripes were used to determine minimal inhibitory concentrations 

(MIC) of controls and with 1.4 VRMS treated samples over 72 h. Values are presented as median and single values. n ≥ 
5. 

 

 

Figure 41: Minimal inhibitory concentrations of levofloxacin following electrical stimulation of S. epidermidis and 
S. aureus in TSB with 104 CFU/ml inoculum. E-Test stripes were used to determine minimal inhibitory concentrations 
(MIC) of controls and with 1.4 VRMS treated samples over 72 h. Values are presented as median and single values. n ≥ 
5. 
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Figure 42: Minimal inhibitory concentrations of gentamicin following electrical stimulation of S. epidermidis and 
S. aureus in DMEM with 104 CFU/ml inoculum. E-Test stripes were used to determine minimal inhibitory 
concentrations (MIC) of controls and with either 1.4 or 2.8 VRMS treated samples over 72 h. Values are presented as 
median and single values. n ≥ 4. 

 

 

Figure 43: Minimal inhibitory concentrations of levofloxacin following electrical stimulation of S. epidermidis and 
S. aureus in DMEM with 104 CFU/ml inoculum. E-Test stripes were used to determine minimal inhibitory 
concentrations (MIC) of controls and with either 1.4 or 2.8 VRMS treated samples over 72 h. Values are presented as 

median and single values. n ≥ 4. 
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