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Abstract

As computers are becoming more and more a part of our everyday life, the vision of Mark
Weiser about ubiquitous computing becomes true. One of the core tasks of such devices is to
assist the users in achieving their goals. To do this, the assistive system has to have knowledge
about the current situation as well as the user’s goal. Such knowledge allows the assistive system
to provide strategies to support the users in achieving their goals beginning from the current
situation. A GPS navigation device is a simple, yet well known instance of such an assistive
system. It recommends a route based on the current location and the manually specified goal.
Obviously, effective assistance can only be provided if accurate knowledge about the user’s

situation and his goal is available. This requires to reason about the actions of the user and
to cope with uncertainties that are inherent to human behaviour. The problem becomes even
harder, as in real world settings, users cannot be observed directly but through sensors that
introduce noise and ambiguity as additional sources of uncertainty. Several applications in the
literature showed that probabilistic methods can be used to infer the required information from
sensor data. However, massive amounts of training data are needed in order to train classifiers
to achieve good recognition rates. This is expensive and prevents trained models from being
reused.
Recently, researchers employed models of human behaviour in order to reduce the need for

training data. These models are generalisable – they allow the specification of human behaviour
without the need for training samples. To this end, these models can be reused in different
settings. While these models allow the synthesis of probabilistic models, only few attempts have
been made to assess their capabilities with respect to low level sensors such as accelerometers.
In fact, different researchers stated that inferring high level knowledge about the user from low
level sensor data is an open research topic.
To address the above problems, objective of this thesis is to answer the question “how to

achieve efficient sensor-based reconstruction of causal structures of human behaviour in order
to provide assistance?”. To achieve that, in the first step the meaning of this question is ana-
lysed and requirements for an inference system are derived. A review of the literature is then
conducted and a meta analysis is performed to assess the capabilities of the different approa-
ches and the complexity of their evaluation setting. The results of this analysis show that none
of the approaches from the literature satisfies all requirements.
To answer the research question, the concept of Computational Causal Behaviour Mo-

dels (CCBMs) is introduced. CCBM allows the specification of human behaviour by means
of preconditions and effects and employs Bayesian filtering techniques to reconstruct action se-
quences from noisy and ambiguous sensor data. Furthermore, a novel approximative inference
algorithm – the Marginal Filter – is introduced. The Marginal Filter is specifically tailored for
categorical state spaces, which are generated by CCBM. To investigate the capabilities with
respect to recognition performance and reusability, different experiments are then conducted.
Each experiment addresses different aspects of the research question. A detailed analysis of
the results of these experiments shows that CCBM is able to achieve good recognition rates.
Moreover, the Marginal Filter is shown to outperform the standard method for approximati-
ve Bayesian inference – the Particle Filter. Furthermore, it is shown that CCBM satisfies the
requirements.
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Zusammenfassung

Die Vision des „Ubiquitous Computing“ von Mark Weiser wird langsam wahr – immer mehr
Computer umgeben uns in Alltagsgegenständen. Eine Hauptaufgabe dieser Geräte ist es, Nutzer
dabei zu unterstützen ihre Ziele zu erreichen. Dabei ist es notwendig, dass Assistenzsysteme in
der Lage sind, Informationen über die aktuelle Situation des Nutzers und seine Ziele zu erfassen.
Dieses Wissen wird dann von den Assistenzsystemen verwendet, um Strategien zum Assistieren
des Nutzers entwickeln. Ein GPS Navigationsgerät ist ein sehr einfaches Beispiel für solche
Assistenzsysteme. Basierend auf der aktuellen Position und einem, wenn auch eingegebenen,
Ziel, ist es in der Lage dem Nutzer eine Route vorzuschlagen.
Eine wichtige Voraussetzung für das Umsetzen der Assistenzfunktionalität ist sicheres Wissen

um die aktuelle Situation und potentielle Ziele des Nutzers. Um solche Informationen bereitzu-
stellen ist es erforderlich, dass das Assistenzsystem Schlussfolgerungen aus den Handlungen des
Menschen zieht. In der Realität ist es nicht möglich Menschen, direkt zu beobachten sondern
unter Verwendung von Sensoren, deren Daten verrauscht und mehrdeutig sind. Dadurch wird
die Erfassung der notwenigen Informationen weiter erschwert. In der Literatur konnte gezeigt
werden, dass probabilistische Methoden in der Lage sind, Informationen über die aktuelle Situa-
tion und das Ziel des Nutzers aus unscharfen Sensordaten zu schließen. Es sind große Mengen
an Trainingsdaten notwendig, um Klassifikatoren so zu trainieren, dass gute Erkennungsra-
ten erreicht werden. Das Erzeugen von Trainingsdaten ist jedoch teuer. Außerdem lassen sich
durch Trainingsdaten keine allgemeingültigen Schlüsse ziehen, was die Wiederverwendbarkeit
so trainierter Modell verhindert.
Modelle menschlichen Handeln wurden in letzter Zeit von verschiedenen Forschern verwen-

det, um die Notwendigkeit von Trainingsdaten zu reduzieren. Solche Modelle erlauben eine
generalisierbare Beschreibung ohne auf Trainingsdaten angewiesen zu sein. Dadurch können
die resultierenden Modelle in verschiedenen Szenarien wiederverwendet werden. Obwohl diese
Modelle das Erzeugen probabilistischer Modelle erlauben, wurden nur wenige Versuche un-
ternommen, ihre Eigenschaften in Hinblick auf die Verwendung von „low-level“ Sensoren wie
Akzelerometer zu untersuchen. Verschiedene Forscher halten die Verbindung von „high-level“
Inferenz mit „low-level“ Sensoren für ein offenes Forschungsfeld.
Diese Dissertation zielt auf die Beantwortung der folgenden Frage ab:„Wie kann man die ef-

fiziente sensorbasierte Rekonstruktion kausaler Strukturen menschlichen Handelns zum Zwecke
der Assistenz erreichen?“. Dazu werden im ersten Schritt Anforderungen an ein Inferenzsys-
tem hergeleitet. Danach wird eine detaillierte Analyse verwandter Arbeiten durchgeführt und
mithilfe einer Metaanalyse die Eigenschaften aktueller Ansätze und deren Evaluationsszenarien
erfasst. Diese Analyse zeigt, dass keiner der aktuellen Ansätze alle Anforderungen erfüllt.
Um die Forschungsfrage zu beantworten, wird das System der „Computational Causal Be-

haviour Models“ vorgestellt. Es erlaubt die Spezifikation menschlichen Verhaltens durch die
Verwendung von Vorbedingungen und Effekten. Bayes’sche Inferenz wird verwendet um Akti-
onssequenzen aus unscharfen Sensordaten zu rekonstruieren. Darüber hinaus wird ein neuarti-
ger Algorithmus zur approximativen Inferenz vorgestellt – der Marginale Filter. Der Marginale
Filter ist entworfen, um den speziellen Eigenschaften kategorialer Zustandsräume, wie sie von
„CCBM“ erzeugt werden, gerecht zu werden. Mittels verschiedener Experimente wird die Erken-
nungsgenauigkeit und die Wiederverwendbarkeit solcher Modelle untersucht. Dabei behandelt
jedes der Experimente andere Teilaspekte der Forschungsfrage. Die Analysen der Ergebnis-
se der Experimente zeigen, dass „CCBM“ in der Lage ist, gute Erkennungsgenauigkeiten zu
erreichen. Außerdem wird gezeigt, dass der Marginale Filter die Standardmethode für approxi-
mative Bayes’sche Inferenz in Hinblick auf die Erkennungsgenauigkeit übertrifft. Zuletzt kann
auch die Wiederverwendbarkeit in allen Experimenten nachgewiesen werden.
Keywords: Aktivitätserkennung, Planerkennung, probabilistische Inferenz
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1
Introduction and Motivation

“It is a capital mistake to theorise before one has data” – Sherlock Holmes

Synopsis: This first chapter describes the aim of this thesis. For this reason, in the first step a
list of requirements is derived by briefly analysing two instances of assistive systems. In the next
step, a detailed problem statement is provided. Finally, it is described how this thesis contributes
to addressing the states problems.

Chapter Sources: Parts of this Chapter have been previously published in the following publi-
cation(s):

• Towards Creating Assistive Software by Employing Human Behavior Models [129]

1.1. Introduction

With the rise of ubiquitous computing [246] in our everyday life, the number of devices sur-
rounding us is steadily increasing. These devices allow for supporting users in everyday activi-
ties without being perceived explicitly. Consequently, the number of context aware applications
increases. Knowledge about the user’s activity, goal, and additional contextual information is
crucial for such applications [98]. Example applications can be found in the domains of smart
environments [55, 260], security and surveillance [84], man-machine-collaboration [95], and
personal assistive systems [99, 179].
According to [120], context aware systems consist of two components. The first component

is called intention analysis (or “inference system”) and tracks the user’s actions. This means
it estimates the user’s current activity, the information about the environment (referred to as
contextual information), possible future actions and the final goal the user is actively trying
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1. Introduction and Motivation

to achieve. The second component is the strategy synthesis component. This component
usually adjusts the environment to the user’s needs. Within this thesis, we focus on the first
component, namely the inference system.
More precisely, this thesis addresses the question of:

IQ How to achieve efficient sensor-based reconstruction of causal structures of human be-
haviour in order to provide assistance?

To this end, we first analyse the meaning of this question. The word efficient means that the
inference system under development has to be able to work online. Whenever a new observation
about the dynamic system1 arrives, a new estimate about the system’s situation2 has to be
computed. The term “online” does not refer to constraints of actual execution time, as this
would require knowledge about the hardware and the application of an realtime operating
system, but rather in the sense of computational complexity. Estimating the dynamic system’s
state online means that computing the estimate for one time-step has to be independent of the
length of the observation sequence so far and of the overall length of the observation sequence.
In fact, the complexity of computing an estimate only depends on the belief3 about the current
situation and the number of possible situation changes. Inference complexity for the complete
observation sequence has to be linear in the number of time-steps4 T – O(T ). In other words,
inference complexity has to be constant for a single observation item. This allows, by adjusting
the necessary hardware, to ensure the system’s ability to react in an appropriate time interval.
The term sensor-based indicates that the inference system has to draw conclusions about

the human protagonist by means of sensors. Knowledge about actions, executed by a dynamic
system, can typically not be obtained directly5, but has to be observed through sensors. Sensors
measure physical properties and their changes, which are affected by the actions of the dynamic
system. Sensor data typically does not allow to directly conclude the dynamic system’s state
as it is subject to noise. Additionally, sensor data is typically ambiguous. Answering the initial
question IQ thus means handling the uncertainty inherent to the sensor observation [46, 237].
As sensors typically do not allow to draw conclusions about the actions of a dynamic system

directly, reconstruction means estimating the sequence of states or actions of the dynamic
system. Based on sensory observation, the inference system has to compute the most likely
sequence of actions.
As the term causal structures indicates, throughout this thesis we focus on causal action

sequences. This means that there are causal links between the actions of the dynamic system
and the internal state. Actions, on the one hand, influence the state of the system but are, on
the other hand, influenced by the dynamic system’s state. Not all actions can be executed in
each state (e.g. a room cannot be left, if the door is closed). Exploiting causal structures allows
the definition of restrictions to the dynamic system, which in result can potentially reduce the
inference complexity.
This thesis focusses on human behaviour. Therefore, the dynamic system under observation is

a human protagonist. Consequently, the answer to the initial question IQ also includes handling

1Here, we refer to the system under observation as dynamic system, which at each time is in a state s ∈ S
represented by a point in the state space S. A function f : S → S allows the system to change that state.
In the following this function is referred to as “action”.

2Situation reflects the dynamic system’s overall state.
3Belief, in this context, stands for the inference system’s representation of the current state of the dynamic
system. In the scope of this thesis the belief is represented by a probability distribution over states.

4The number of time-steps T refers to the number of observation items of the observation sequence rather
than to an actual time.

5Within the scope of this thesis, we use the term “direct observation” to refer to obtaining information about
a dynamic system without noise or ambiguity.
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uncertainties inherent to human behaviour. Additionally, as the term behaviour suggests, we
are especially interested in the reconstruction of sequences of actions, the human protagonist
executes in order to achieve a goal. Within this thesis, we assume the human to be trying to
reach a previously set goal state. However, this does not mean that the human is a completely
rational agent [200, p.36], as human protagonists do not always choose the best action with
respect to reaching this goal [208].
In the remainder of this chapter, the initial question IQ is further substantiated. Firstly,

requirements for the inference system are derived. Secondly, a detailed description of the
problems that are targeted in this thesis is presented. Finally, the contribution and the results
of the thesis are highlighted.

1.2. Motivation and Requirement Analysis

This section first introduces two examples of assistive systems. Based on these examples,
requirements for an inference system are then identified and later used to derive a classification
scheme for related literature.

1.2.1. Motivational Examples

Consider the following example of a Global Positioning System (GPS) navigation device: a
GPS navigation device provides a route from the current location to a target location. Before
starting, the target location has to be entered in the device. Then, according to the needs of the
user, the device computes the most appropriate route from the current location to the defined
target location. During the trip, the GPS navigation device keeps track of the current location
and checks whether the car is on the correct route or not. Before the car arrives at a street
crossing, the navigation device provides assistance to the driver by suggesting further directions.
If, either by accident or by the driver’s choice, the car leaves the precomputed route, the GPS
navigation device recognises the deviation and provides appropriate assistance. This typically
means that the device first suggests the driver to go back to the originally precomputed route
and later starts adjusting the route by re-computing it with the current location. Additionally,
typical GPS navigation devices are able to inform users about potential issues (e.g. exceeding
the speed limit or an upcoming traffic jam).
The GPS navigation device is a very simple example of an assistive system. During the entire

trip the device has to keep track of the current situation of the car. This is done by analysing
data from the internal GPS tracking module. Although GPS is not able to provide an exact
location estimate, the navigation device is able to refine this estimate by assumptions about
the current situation (e.g. cars usually move along streets instead of fields or houses). Single
measurement errors determined by the GPS system are corrected by the navigation system.
Now, consider the more fictional example of a kitchen assistance device: The device observes

the user within the kitchen environment by means of sensors. When the user decides to prepare
a meal, he6 has to select the recipe from the list of recipes provided by the device. A sequence
of actions (plan) is precomputed by the device according to the preferences of the user. The
device starts providing assistance in executing the selected task. During the entire procedure
the kitchen assistant keeps track of the current situation. Whenever a sub-task is completed
the device suggests the next task and monitors whether the user executes it correctly. If the
user decides to change the order of some sub-tasks, the device notices the deviations from the
original plan and adjusts the assistance to the change. If, on the other hand, the user forgets

6To simplify the discussion, the personal pronoun “he”, as well as the possessive pronoun “his” are used as a
substitution of “he / she”, and not as an indication that the person in question is a male.
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to add some necessary ingredients, the device refers the user to the selected recipe and reminds
him to add the ingredients. The kitchen assistance device helps novice users as well as impaired
users, such as people suffering from cognitive decline, during the execution of tasks in everyday
life. A more sophisticated version of the kitchen device might even attempt to recognise the
recipe the user is currently trying to follow from the actions the user is executing without
requiring the user to select the recipe beforehand.
Similar to the navigation device, the kitchen assistance device requires to observe the user

by means of sensors. However, using location estimating sensors only is not enough, as they
do not provide enough information about the manipulated objects. Similar to the navigation
device, the kitchen device has to cope with uncertainties inherent to sensors.
The provided examples are typical instances of assistive systems. Both can be divided into

the inference system, which estimates the current situation, and the strategy component, which
actually provides assistance. In the following, these two instances are used to derive general
requirements for the inference system component of assistive systems.

1.2.2. Requirements analysis

According to Indulska and Henricksen [105], a context aware system, which assistive systems
are a type of, has to fulfil the following five requirements:

IH1 Support for imperfect context information: A context aware system has to cope
with incomplete, imprecise and ambiguous information. The examples provided above
use sensors as source of information.

IH2 Support for context histories: A context aware system requires information about
past and future time-steps. Both introductory examples provide a plan from the initial
state to the selected goal state. This plan contains both, information about past actions
and possible future actions.

IH3 Support for software engineering: A context model should be introduced in early
stages of the software development lifecycle. Based on this context model, runtime context
models can be produced by refinement. Thus, such context models have to be reusable.
In the above mentioned examples, both, the navigation device and the kitchen device,
are refined for the specific application scenario (i.e. the map of roads and the particular
kitchen layout).

IH4 Support for runtime querying and reasoning: The runtime context model has to
represent context information at runtime. This, on the one hand, means that the context
aware system has to provide the information timely. On the other hand, this means the
context aware system has to maintain all necessary information.

IH5 Support for interoperability: The context aware system has to be able to cooperate
with components that were not known at design time. This also includes sensors that can
differ in different application scenarios. The context model has to represent the rich state
space of the dynamic system to ensure that context information provided by previously
unknown components (e.g. sensors) can be incorporated in the runtime model.

Based on this list of requirements for context aware systems introduced by Indulska and
Henricksen [105] and an analysis of the introductory examples, the following requirements for
the inference system can be derived. Each of these requirements is provided in the following.
Furthermore, the method and the criterium used to check whether a considered approach
satisfies the respective requirement is provided.

R1 Plan: The inference system has to provide knowledge about the user’s potential future
actions and goals. Knowledge about the user’s plan can enable to assistive system to
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provide appropriate support [98] in reaching the goal. In the above introduced examples,
the goal is provided by the user. The potential action sequence leading to this goal, in
contrast, is computed by the inference system. A deviation from the plan is noticed by
the system and used to recompute the plan. This requirement is directly related to IH2.
Method : Analysis of the inference approach and evaluation of the recognition performance
Criterium: The approach has to be able to estimate the user’s action sequence and the

final goal with similar recognition performance as baseline classifiers.
R2 Online: The system has to be able to provide information online. It is only possible to

provide effective assistance, if the system is capable of providing information about the
user online. With respect to the navigation device, if the system provides information
about future directions too late, the assistance makes no sense at all. Furthermore, it
can produce potentially dangerous situations, as some drivers can turn around even on
highways resulting in an increased occurrence of wrong-way drivers. Concerning the
kitchen assistance device, assistance provided too late can distract and annoy people. If
the assistance has to be provided online, also the user’s state has to be estimated online.
This requirement represents one part of requirement IH4.
Method : Analysis of computational complexity
Criterium: The computational complexity must be independent from the length of the

observation sequence to allow the estimation to be online.
R3 Uncertainty: The inference system has to cope with uncertainties inherent to sensory

observations. Sensors are unable to provide exact information about the observed ob-
jects but rather provide noisy and ambiguous statements about the current situation.
Processing sensor data to estimate information about the user means to cope with such
uncertainties. Both, the navigation device and the kitchen assistance device rely on sen-
sor observations that cannot be guaranteed to be correct. Furthermore, as in the case
of the kitchen assistance device, it is often not possible to directly interpret sensor data.
This requirement is directly derived from IH1.
Method : Analysis of the inference method
Criterium: The inference method has to be able to cope with ambiguous and noisy sensor

data.
R4 Latent infinity: The inference system has to cope with a very high (potentially un-

limited) number of possibilities. When considering one specific action sequence of the
dynamic system under observation, only a finite number of possibilities actually occur.
However, as there is no prior knowledge about the finite part, the dynamic system’s state
space can be considered as infinite. The inference system has to be able to handle this
latent infinity during inference. With respect to the initial examples, this means that
although the number of streets, crossings, and potential locations is very high (possible
infinite), the navigation device has to cope with it. For the kitchen example, the drawers
or cupboards, for instance, might contain a very high number of kitchen utensils. If for
k utensils, it has to be tracked whether they were taken or not, the inference system
has to cope with 2k difference possibilities. This further increases with an increase of
the number of locations. Also, the number of recipes is potentially unlimited. However,
the kitchen assistance device has to cope with this (possibly infinite) state space. This
requirement is a consequence of IH4 and IH5.
Method : Analysis of the modelling and the inference methods
Criterium: The modelling approach has to be able to construct infinite state spaces.

Furthermore, the inference method must not rely on the state space to be explored
before runtime.

R5 Reusability: The basic functionality of the inference system has to be reusable inde-
pendently of the actual purpose. This means that only simple adjustments of the system
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have to enable its usage in different settings. For instance, the navigation device has to
be able to be reused, even if external conditions, like the map of roads, change. Only
by loading an updated map, the navigation system is able to provide assistance in pre-
viously unknown regions or countries. Similarly, the kitchen assistance device has to be
reusable independently of the actual kitchen layout or the available sensor modalities.
A kitchen assistance device that has to be adjusted manually to every change is neither
practical from economic nor from usability point of view. Several aspects of reusability
are discussed below. This requirement reflects IH5.
Method : Proof by demonstration
Criterium: The approach has to provide a modelling formalism that allows to adjust the

inference model to the specific needs of the experiment by parameters.

Requirement R5 can further be split up into different aspects. With respect to reusability
on the level of the human behaviour model, the following three aspects were identified.

R5.1 Application domain: A behaviour model developed for a specific scenario of an appli-
cation domain has to allow the reuse in a different setting of the same application domain.
While for obvious reasons it is not possible to directly reuse the complete context model,
“simple” changes to the configuration have to be sufficient to adjust the model to the new
setting. According to Indulska and Henricksen [105], the runtime model is a refinement
of the context model. Refining the context model for different scenarios of the same
application domain should neither require the setup of a training phase nor changes of
the context model. With respect to the above described examples, necessary refinements
have to include a concretisation of the map of roads or the actual layout of the kitchen
only.

R5.2 Sensor data: The inference system has to be able to reconstruct action sequences from
different sources of observations. A change of the sensor modality must neither require the
system to be re-developed nor affect the human behaviour model. Especially, the context
model has to allow for reuse even if the sensor modality changes from environmental
observation (dense sensing)[238, 248] to action observation (wearable sensing)[244, 139]
or back. To this end, the human behaviour model should be independent from the actual
sensor infrastructure. As described above, fulfilling this requirement demands the usage
of rich state spaces.

R5.3 Number of Persons: Often, more than one person is involved in an activity. Thus,
a context model also has to handle multiple persons. The human behaviour model has
to be independent of the actual number of persons. If no changes on the causal level
are necessary (a conversation, for example, requires at least two persons), the number of
persons must not affect the model. Again, a refinement of the context model has to be
sufficient in order to adjust the runtime model to the actual needs.

Based on the five requirements a classification scheme is derived in Section 2.2.1. This
classification scheme is then used to categorise related work from the literature (see Table 2.2).
In the following, a detailed description of the problem targeted in this thesis is provided.

1.3. Problem Statement

As discussed in Section 1.1, this thesis aims at efficiently reconstructing causal human behaviour
from sensor observations to eventually provide assistance. To answer the question IQ, an
inference system shall be designed that satisfies the five requirements. To this end, the following
questions are addressed and answered in this thesis.
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Q1 How do current methods for efficient reconstruction of causal human be-
haviour from sensor data address the list of requirements?
Based on the review of the literature, different approaches are identified that satisfy
(a subset of) the requirements. To allow comparison of different approaches from the
literature with respect to the problem domain targeted within this thesis, a classification
scheme is derived. A meta analysis is conducted based on this classification scheme.
Then, the most appropriate approaches, with respect to the classification scheme, are
selected and discussed in detail. Finally, for each selected approach it is analysed how
the satisfaction of the requirements is achieved.

Q2 How to design an inference system to satisfy the requirements?
Based on an analysis of the related work and their drawbacks with respect to the list of
requirements, an inference system is developed.

Q3 How can efficient inference be achieved?
Due to the requirement for latent infinity, efficient approximate inference methods have
to be applied. In general the framework of Bayesian filtering allows inference to be
done efficiently. Particle filters (also known as sequential importance sampling) are typi-
cally applied. However, in order to achieve reasonable recognition rates, a novel filtering
method has to be developed that focusses on the problem domain of inference of causal
sequences of human behaviour.

Q4 Is it possible to ensure the annotation to be causally correct?
To allow an assessment of the quality of the reconstructed action sequences, a comparison
with the ground truth has to be performed. When exploiting causal dependencies of
actions of human behaviour, it has to be ensured that this ground truth is causally correct.
Furthermore, this thesis also targets at the reconstruction of contextual information. For
this reason, an annotation methodology is developed that allows to produce a semantic
annotation by means of causally correct action sequences.

In the next section, the contributions of this thesis are listed.

1.4. Contribution and Results

The contribution of this thesis is fourfold.

C1 The concept Computational State Space Models (CSSMs) is introduced.
CSSMs are a paradigm that summarise the common statistical structure of several recent
modelling approaches. It is discussed that CSSMs are in principle able to answer the
question IQ. Additionally, it is shown that no approach to CSSM exists that satisfies
the entire list of requirements. It is argued that, due to the lack of appropriate inference
techniques up to now, it could not be shown that CSSMs can handle problems related
to question IQ. Based on the concept of CSSM, a classification scheme is derived and
related work is classified accordingly. This contribution addresses question Q1

C2 The concept of CCBM is introduced.
CCBM represents an instance of CSSMs. CCBM employs several aspects of existing
related approaches. By using reusable models of human behaviour and the ability of
coping with uncertain sensor data and efficient inference, CCBM combines the advantages
of recent approaches. It is shown that CCBM satisfies the entire list of requirements.
Three different experiments are used to show that the application of CCBM allows to
answer the initial question. Here, question Q2 is targeted.

C3 A novel inference algorithm – the Marginal Filter – is introduced.
It is discussed that employing causal models by means of preconditions and effects results
in discrete state spaces with sparse transition matrices. Furthermore, it is highlighted that
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the Particle Filter (PF) – an approximate inference technique that is used predominantly
in the literature – suffers from several disadvantages when employed in categorical state
spaces. The Marginal Filter (MF) is then introduced to target these disadvantages. The
MF specifically tailored for inference in such state spaces. Question Q3 is addressed by
this contribution.

C4 A novel annotation process to semantic annotation is introduced.
It is discussed that exploiting the causal structure of human behaviour requires the an-
notation to be causally correct in the first place. For this reason an annotation process
is introduced allowing the annotation of causally correct action sequences by semantic
means. This contribution provides an answer to the question Q4.

The experiments in Chapter 6 show that CCBM is able to reconstruct the action sequence
of the human protagonists at the same level as the baseline classifiers while satisfying the
requirements at the same time. By providing empirical evidence, it is shown that CCBM
allows to handle state spaces that are by orders of magnitude larger than those of related
approaches and satisfies the requirements at the same time. In summary, the results of this
thesis show that CCBM indeed provides an answer for the initial question IQ.

1.5. Outline

The remainder of this thesis is structured as follows: Chapter 2 provides an overview of the
current state of the art. To this end, an overview of both, low-level reasoning as well as
high-level reasoning techniques is given. It it argued that both are essential premises for
answering the initial research question IQ. The paradigm of Computational State Space Model
is introduced and used to classify the related work. Finally, selected related work representing
preparatory work for this thesis is discussed.
Chapter 3 presents Computational Causal Behaviour Models as method used within this

thesis. A detailed description of CCBM, including the statistical model and inference algo-
rithms is provided. The extent to which the requirements are fulfilled is shown. Finally, a brief
overview of the CCBM toolbox is provided.
Chapter 4 concentrates on the problem of providing annotation of reasonable quality. For this

purpose, first, the need for annotation in general and causally correct annotation in particular
are discussed. Then, a novel annotation process is introduced that allows to create causally
correct annotation.
Chapter 5 gives an overview of the methods used to investigate the initial research question

IQ. In the first step, the question IQ is subdivided into research questions that target single
aspects of question IQ, which can be answered by experiments. Then, a brief discussion about
the need of empirical data in favour of simulated data is presented. The general experimental
procedure is described. Finally, a list of evaluation methods is presented that are used to
answer the research questions.
Chapter 6 provides the experiments that were conducted in order to answer the research

questions. For each experiment, methods, results, and discussion are provided.
Finally, the last chapter (Chapter 7) discusses in how far the initial research question IQ is

answered. An outlook to possible future work is provided.
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2
Computational State Space Models

“All models are wrong, but some are useful.” – George E. P. Box

Synopsis: This chapter provides an overview of related work in the domains of activity and plan
recognition. The basic concepts of activity, goal and plan recognition are introduced. It is argued
that neither activity recognition nor plan recognition are sufficient to answer the initial question.
The concept of Computational State Space Models is introduced and described. Based on this con-
cept, related work on activity, action, context, goal, and plan recognition is classified. Finally, a
comprehensive review and classification of related work is presented.

Chapter Sources: Parts of this Chapter have been previously published in the following publi-
cation(s):

• Computational State Space Models for Activity and Intention Recognition. A Feasibility
Study [133]

• Where are My Colleagues and Why? Tracking Multiple Persons in Indoor Environ-
ments [132]

• Towards Creating Assistive Software by Employing Human Behavior Models [129]
• Plan Synthesis for Probabilistic Activity Recognition [131]

The following chapter provides an overview of related work. In the first step an overview of
the problem of human behaviour recognition is given and the basic concepts are introduced.
Then, the basic principle of AR is introduced and it is argued that for several reasons AR is
not able to answer the initial question. Goal and plan recognition are then introduced and
it is discussed that these concepts provide mechanisms for high-level reasoning. Again, it is
argued that the sole application of such concepts is not sufficient to provide an answer to the
initial question IQ. The concept of CSSM is introduced. Based on the requirements, collected
in Section 1.2.2, a classification scheme is derived. It is argued that a combination of both
domains, low-level sensors and high-level reasoning, could satisfy these requirements. Based
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on the introduced classification scheme, the related work is evaluated. Finally, some selected
work is described in detail. It is shown that none of the approaches satisfies all requirements,
but each provides relevant groundwork.
Current work distinguishes between AR and plan recognition (PR) [230]. Activity recognition

is known as the task of inferring the user’s current action from noisy and ambiguous sensor data.
Plan recognition, in contrast, is referred to as inferring the action sequence leading to a goal
under question by using (partial) action observations. An integrated approach, recognising the
current activity from low-level sensors, the plan (including future actions) being executed and
the goal the user tries to achieve, while satisfying the requirements at the same time, is missing.
As Sukthankar et al. point out, “bridging the gap between noisy, low-level data and high-level
activity models is a core challenge of research in this area.”,([230]). A satisfaction of the initially
stated requirements demands a combination of both domains of research. This chapter’s aim
is to, first, introduce the fundamental concepts of activity and plan recognition, then derive a
classification scheme, and eventually, classify related work according to this scheme.

2.1. Activity and Plan Recognition

In the following, an overview of the research domains of AR and PR is provided. It is argued
that, indeed, a gap between AR and plan/goal recognition exists that prevents the application
of PR in the real world. This observation is also supported by Sukthankar et al. [230] and
Kautz [114], who explicitly distinguish between low-level sensor data and high-level behaviour
recognition. To satisfy the requirements, it is, however, necessary to reason about high-level
behaviour on the basis of low-level sensors. Thus, both research domains, AR and PR, have to
be combined. For this reason, in the following, an overview of both fields is given. Beside the
description of the core problems, an overview of the most prominent work is given.

2.1.1. The Problem of Behaviour Recognition

This section introduces the basic concepts of human behaviour recognition from observation
data. As defined by Baxter et al. [21], here, behaviour recognition refers to the overall process
of activity, goal, and plan recognition. To this end, a general model is introduced which is then
refined incrementally.
Objective of recognising the behaviour of a human protagonist is to label temporal segments

by use of observation data. The labels thereby originate from a set of labels A. A can be
thought of as the alphabet of activities and a temporal sequence p ∈ A∗ of labels a ∈ A as
words over the alphabet A. In general, no restrictions to the structure of p exist.
From the inference point of view, the aim of behaviour recognition is to conclude a hidden

variableX from an observable variable Y . Figure 2.1 (a) provides a graphical illustration of this
task. Here, the hidden variable X represents the activity a of the human protagonist. With
respect to the probabilistic structure, two fundamentally different approaches to behaviour
recognition exist: discriminative and generative classifiers [167]. In the following, both types
are discussed.

Discriminative classifier A discriminative classifier determines the conditional probability
P (X |Y ) – for an observed y ∼ Y , it determines a probability distribution over X. To this
end, discriminative classifiers model the dependence of the hidden variable on the observed
variable. Discriminative classifiers are often preferred to generative classifiers, as they directly
map the observation data to activity labels [167]. Typical instances of discriminative classifiers
are linear regression models or support vector machines (SVMs).
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Figure 2.1.: Graphical representation of three different types of classifier. X represents
a hidden state and Y an observation that is used to conclude information about X.
(a) discriminative classifier, (b) generative classifier without temporal knowledge, (c)
generative classifier with temporal knowledge.

Generative classifier In contrast to the discriminative classifier, generative classifiers provide
the joint probability P (X,Y ). In other words, the generative classifier determines the prob-
ability of a joint occurrence of X and Y . The graphical model of the generative classifier is
depicted in Figure 2.1 (b). By exploiting the causal link between X and Y , the joint probability
can be factored into P (X,Y ) = P (Y |X)P (X). Here, P (X) represents the prior probability
of X and P (Y |X) the conditional observation probability. This allows to include knowledge
about the underlying process and to revert the dependency of the hidden variable on the ob-
served variable. Providing the sensor model P (Y |X) is typically easy, as it can be based
on experiences [181, p.5]. The Naïve Bayes (NB) classifier is a typical instance of generative
models.
Another advantage of generative models is that it is easy to incorporate knowledge about

the temporal sequence of activities. This is done by including a transition model P (Xt |Xt−1)
to describe temporal dependencies between different activity classes. Figure 2.1 (c) illustrates
this graphically. Typical instances of temporal generative classifiers are Hidden Markov Models
(HMMs) and Kalman Filters.
While temporal generative models allow to provide temporal smoothed estimates of the

sequence of activities, they do not raise any restrictions to the possible sequences of activity
labels p. In general, not all possible activity sequences actually happen. In fact, the sequence
of activities that may actually happen has to be causally valid. In the following two different
approaches to restrict the number of possible sequences of labels to the subset of causally valid
activity sequences are discussed.

Explicit enumeration of activity sequences One approach to restrict the number of activity
sequences is to explicitly enumerate all valid sequences. Such enumeration is known as plan
library [115], where each plan represents a sequence of activities. From the viewpoint of gener-
ative models, a plan library can be represented as transition model, generated from supervised
label training. An example of a plan library represented as transition model is depicted in
Figure 6.2. The advantage of explicit enumeration is that due to the restriction to the set of
label sequences plan library based approaches provide good recognition rates. However, the
plan library has to be created manually, which is a tedious task due to the high number of ac-
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tion sequences [198]. Additionally, the number of valid activity sequences grows exponentially
with the number of time-steps which additionally increases the effort to manually create a plan
library.

Plan synthesis Another approach to restrict the number of possible action sequences is to
employ a structured state representation for the hidden variable X and generate only causally
valid action sequences. Here, the hidden variable represents not only the current activity, but
also the current state of context, the activity is executed in. The restriction of the number
of plans is implemented by restricting the activities to be executed in a particular state. The
execution of activities depends on the current state. The valid action sequences are “generated”
incrementally during the inference task. This allows to restrict the number of activity sequences
without explicit enumeration to the subset of causally valid activity sequences. This technique
is known as inverse planning [17], as it employs ideas from the domain of automated planning
to infer the action sequence of a human protagonist. This technique is, for instance, used by
Geib and Goldman [77] and Ramírez and Geffner [189].
After having introduced the general concepts of human behaviour recognition, the subsequent

sections provide an overview of the specific realisations of these concepts. To this end, in the
first step the concept of AR is introduced. AR utilises both discriminative and generative
models, but usually do no raise any restrictions to the temporal sequence of labels. In the
second step PR – a high level reasoning method that employs restrictions to the temporal
structure of activity sequences – is discussed. Finally, the concepts of state and action are
further discussed.

2.1.2. Activity Recognition

Activity The literature defines the term “activity” in a heterogeneous way. Rodríguez et al., for
instance, summarise activity as that “what users are doing”,([194]). In contrast, van Kasteren
[237] defines activity in terms of activities of daily living (ADLs) and Sukthankar [228] in terms
of low-level motion data.
To abstract from certain settings and types of sensor data, for the scope of this thesis, the

term activity is defined as in Definition 1.

Definition 1 (Activity) An activity is the condition of performing an operation by a human
protagonist. Performing an activity provides no further information about manipulated objects,
intended purpose, or consciousness of the protagonist.

This definition agrees with the implicit notion of activities in stateless AR by Bulling et al.
[40]. Activities often comprise basic operations as sitting, standing, or walking [141, 18], but
also the execution of gestures [7, 250] can be considered as activity.

Activity recognition Recognising and distinguishing different activities from sensor data is
known as “activity recognition”. Analogous to the term activity, several different definitions
exist. Here, we focus on the recognition of the activity executed by the human protagonist.

Definition 2 (Activity Recognition) Activity Recognition is the task of inferring the user’s
current activity from noisy and/or contradictory sensor data.

According to Bulling et al. [40], the objective of AR is “to provide information on a user’s
behaviour that allows computing systems to proactively assist users with their tasks”,([40]).
Applications of AR arise in different domains, such as video surveillance [84], man-machine
collaboration [250, 43] or training assistance in sports [72].
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The activity recognition workflow Several approaches to recognise the activity of a (group
of) person(s) exist. All of them share a common workflow, which Bulling et al. [40] called the
AR chain. Objective of this workflow is to handle the inherent uncertainties of sensor data.
This workflow has also been used for processing the sensor data within this thesis. Experiment
X2 (see Section 6.2), for instance, applies this workflow on sensor data from wearable sensors.
According to Bulling et al. [40] the AR workflow consists of the following steps:

B1 Collection, preprocessing and annotation of raw sensor data,
B2 Sensor data segmentation and feature extraction,
B3 Classifier training based on training data subset, and
B4 Performance evaluation based on test data subset.

With respect to the first step (B1) – sensor data collection – it has to be noted that sensors
differ in the amount of information they provide. Location-based sensors allow almost direct
interpretation of the sensor data and thus allow location-based AR to achieve high recognition
performances [97, 50]. Motion data, in contrast, for instance from accelerometers, does not
allow such direct understanding, but requires sophisticated algorithms such as decision trees
(DTs) [18], SVMs [191, 33], or random forests [45, 221]. In fact, Chen et al. state that “wearable
sensors are not suitable for monitoring activities that involve complex physical motions and/or
multiple interactions with the environment”,([46]).
AR utilises discriminative and generative models to estimate the activity of human protago-

nists from a wide variety of sensors. However, AR is not able to provide information beyond the
estimated activity class. While knowledge about the user’s current activity allows applications
to be enriched, effective assistance can not be provided without knowledge about contextual
information such as objects currently manipulated or the state of the environment [98].
Often, the process of AR is extended by including knowledge about the temporal structure.

This is done by applying temporal generative models as for instance HMMs. The training
of an HMM adds conditions to the sequences by introducing probabilities to the transition
matrix. This, on the one hand, allows for temporal reasoning and typically increases the
recognition performance, but, on the other hand, requires large amounts of training data to
prevent overfitting. However, it is typically not possible to collect enough training data, so
that each possible transition appears at least once. Furthermore, according to Chen et al. [46],
who use the term data-driven approaches to represent AR approaches in the sense used here,
typical AR approaches suffer from reusability and scalability problems.

Related work on activity recognition Activity recognition has successfully been integrated in
various applications, ranging from the domain of sports [137, 136] to the domain of construction
of automotives [222, 155].
An analysis of the related work on the topic of AR was done based on a review of the

surveys on human AR by Bulling et al. [40], Lara and Labrador [139], Chen et al. [46], and
Aggarwal and Ryoo [2]. For each work the applied sensors, the number of activity classes to be
distinguished, and the utilised classifiers were analysed. Furthermore, the scenario that is used
for experimental validation is collected for each work. Finally, it was reviewed whether the
accuracy was used for evaluation. The accuracy was found to be the dominating performance
metric used in the domain of AR and was therefore selected. Table A.2 gives an overview of
the analysed relevant related work in the domain of AR.
The analysis of the relevant related work showed that 23 out of 37 works used inertial

measurement units (IMUs). Overall, 13 different types of sensors where used for AR studies.
The median number of classes to be distinguished is 8 with IQR = 5 − 14. Regarding the
classifier, it was found that 17 different classifiers were used. The single most often used

13



2. Computational State Space Models

classifier is HMM, followed by DT, SVM, and NB. AR is employed in various application
domains. The most frequently selected domains are ADL (19) and Location (8).

Evaluation of activity recognition Regarding the evaluation of AR, it can be seen that typical
AR approaches distinguish between eight activity classes in median in the domains of ADL and
Location. Since objective of this thesis is to reconstruct causal human behaviour sequences from
sensor data, which essentially has to combine AR with high-level reasoning, the experimental
validation of the proposed approach should at least cover these values. Additionally, as the
most common classifiers for AR are HMMs, the use of HMMs as baseline classifier seems
reasonable. Also, the choice of the accuracy as evaluation criterium for recognition performance
is considered as meaningful.

Activity Recognition for low-level reasoning To conclude, the domain of AR provides differ-
ent techniques for low-level reasoning. Several issues, however, prevent AR from being applied
for high-level reasoning. Firstly, as there is no restriction to the label sequence A∗, with in-
creasing the size of A, also the intricacy of the recognition process increases. Introducing causal
relations between the labels of A, would result in a sparse transition matrix of labels. This,
however, requires high-level reasoning.
The process of AR allows an effective temporal labelling by means of sensor data. However,

high-level reasoning, as required for assistance, needs to estimate the current activity of the
user and also needs to provide knowledge about contextual information and possible future
actions. As discussed, plain AR is not able to provide such knowledge.
Another point, raised by Chen et al. [46], is that AR approaches, as discussed here, are not

reusable. Thus, for each application, even from the same application domain, large amounts
of training data are necessary, in order to successfully recognise activities. This is also true
for the other aspects of requirement R5, discussed in Section 1.2.2. The concept of transfer
learning [177] provides approaches to target that issue. However, they are according to Pan
and Yang [177], currently limited to small scale with limited variety.

2.1.3. Plan Recognition

The previous section showed that AR provides methods to reason about unrestricted activity
sequences from noisy and ambiguous sensor data. As described in Section 2.1.1, different op-
tions exist to restrict the possible sequences of actions. This section discusses PR – a mechanism
to restrict the number of possible action sequences by enumerating all valid plans.

Plan Knowledge about the current activity and additional context information can put ap-
plications in the position to provide context sensitive services. However, proactive assistance
requires knowledge about the user’s potential future actions and the final goal. The literature
typically defines a plan as in Definition 3 in terms of sequences of actions leading to a goal
[106, 75].

Definition 3 (Plan) A plan is a sequence of actions starting from an initial state to a goal
state. The user actively tries to achieve the goal.

Consequently, the specification of a set of plans can be interpreted as restriction to the possible
sequence of actions as described in Section 2.1.1. Furthermore, different plans can be considered
as equivalent if they lead to the same goal. In other words, a goal can be regarded as a set of
equivalent plans. Goal recognition can thus be considered as sub-task of PR.
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Plan recognition PR targets at recognising the action sequence the user is going to execute
in order to achieve a goal. PR is typically defined as in Definition 4. Here, the literature
distinguishes between the agent that executes the plan and the observer that tries to estimate
the agent’s plan.

Definition 4 (Plan Recognition) Plan recognition is the observer’s task to estimate the plan
executed by an agent under observation.

Depending on the agent’s knowledge about being observed or not, the literature distinguishes
two different types of PR [53]:
Keyhole plan recognition denotes PR, where the observer has no knowledge about being ob-

served or does not care about it [15]. “The observer observes the agent by looking through a
keyhole.” Different approaches to keyhole PR are proposed by Kautz and Allen [115], Lesh
and Etzioni [143], Bouchard et al. [31] and Avrahami-Zilberbrand and Kaminka [15].

Intended plan recognition means that the observer tries to infer the “intended” plan of the
agent. The agent is aware of being observed and might adapt his behaviour by this
knowledge. Thus, in difference to keyhole PR, the intended plan is not necessarily the
same as the actually executed plan. According to Carberry [44], this adjustment aids or
hinders the recognition. Contributions to the field of intended PR are the works of Sidner
[213] and Lisỳ et al. [151].

Adversarial PR, where the agent actively tries to prevent recognition by deception [116], often
seen as third case [76], can be seen as special case of intended PR. However, here we focus on
keyhole PR. It can be seen as the more general case as it makes no assumptions about possible
cooperation of the agent being observed [31].
According to Armentano and Amandi [11], PR approaches can be distinguished not only by

considering the agent’s knowledge about being observed, but also by considering the output of
the PR process. They divide them into:
Consistency based approaches check whether observations made about the behaviour of an

agent match known plans. Plans not matching the observations are eliminated whereas
matching plans are provided as inferred plan. Examples for such approaches are Kautz
and Allen [115], Ramírez and Geffner [187], Levine and Williams [146] and the symbolic
PR approach of Avrahami-Zilberbrand and Kaminka [15].

Probabilistic approaches, in contrast, provide a probability distribution of possible plans.
Probabilistic approaches do not only respect prior probabilities about possible plans [11],
but also enable further usage of decision theoretic approaches to select appropriate as-
sistance. Examples are provided by Ramírez and Geffner [189], Geib and Goldman
[78], Schwering et al. [206] and Raghavan et al. [186].

Here we focus on probabilistic PR as it allows to provide a basis for assistance.

Related work on plan recognition Apart from the particular PR setting, a large variety of
different approaches to PR exists. Blaylock and Allen [25] for example use n-grams to recognise
the goal schema and then apply Dempster-Shafer evidence theory to estimate the corresponding
goal parameters. The use of uncertain observations require probabilistic methods to be applied.
Kiefer and Stein [117] and Geib and Goldman [78], for instance, employ probabilistic grammars
to handle such ambiguous information. Raghavan et al. [186] use Bayesian Logic Programming
and Markov Logic Networks to account for such uncertainties.
In contrast to AR, most PR approaches assume the agent to be directly observed1. While

this is typically not viable, current PR approaches restrict themselves to the use of datasets that
are either artificially constructed or generated from man machine interaction. In fact, Blaylock

1The agent’s action sequence is used directly during PR instead of being observed through sensors.
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and Allen [26] argue that datasets originated from either simulation or computer interaction
are most feasible for PR.
A review of relevant related work on PR was conducted by analysing the following surveys on

plan and intention recognition: Carberry [44], Armentano and Amandi [11], Sadri [203], Han
and Pereira [87], Sukthankar et al. [230]. Table A.1 gives an overview of PR approaches. The
approaches are classified according to whether they are keyhole PR (F.keyhole) approaches or
not, whether they provide the posterior plan/goal distribution (F.probability) or not, and if
they use plan synthesis to generate possible plans instead of enumerating them (F.plan.synth).
Additionally, the factor F.direct indicates in how far the observation can be considered as
direct. M.accuracy and M.convergence2 signal usage of the respective performance measure.
An analysis of the related work on PR showed that all approaches use direct observation with

different characteristics. They are either manually specified as in [115], generated by simulation
[189, 188], created by man machine interaction [143, 101], or by use of accurate sensors that
are assumed to be perfect [146]. Few approaches exist that aim at recognising the agent’s plan
from noisy sensor observations [37, 149]. They strive at combining low-level sensor readings
with high-level behaviour reasoning, as it is the scope of this work, and are therefore discussed
in more detail in Section 2.2. Additionally, it can be observed from Table A.1 that only two
approaches use the accuracy to evaluate the PR approach. Convergence, in contrast, is used
by four approaches. In general, it has to be noted that many works on PR approaches omit
the evaluation but rather focus on discussing technical aspects.

Plan recognition for high-level reasoning In summary, the domain of PR provides different
approaches for high-level reasoning about the user’s plan and the final goal from observation
sequences. Typical approaches thereby focus on direct observation. In contrast to AR, which
uses noisy and ambiguous observations that impede a direct conclusion of the executed ac-
tivity, most PR approaches imitate uncertainties by use of incomplete but direct observation
sequences. Consequently, PR approaches do not cope with contradictory observation, as sensors
(e.g. IMUs) would provide.
Regarding reusability, PR approaches employ high-level representations of plans. This al-

lows models to be reused within the same application domain, as typical for knowledge-driven
approaches [46]. Thus, the application of PR based approaches would satisfy the requirements
R1 and R5.
A simple combination of AR and PR, where the first generates an estimate about the current

activity and the latter employs this estimate to conclude the plan and goal would result in a
combination of the disadvantages of both approaches. Firstly, the restrictions raised by PR
will have no influence on the estimated sequence of actions of the AR. Thus, AR will not
benefit from the specification of possible action sequences. Secondly, as AR cannot produce
perfect estimates, the PR has to cope with contradictory observation sequences. A combination
requires both techniques to be interleaved in order to combine the advantages to provide high-
level reasoning from low-level sensor data.
With respect to high-level reasoning, PR focusses on the recognition of the action sequence

rather than on single actions. For this purpose, typical approaches to PR restrict the possible
action sequences by creating a plan library by enumerating all valid action sequences. Creating
such plan libraries is known to be a tedious task [199]. To overcome this issue, the next section
describes the concept of plan synthesis. Plan synthesis employs states and actions to allow
possible action sequences to be generated instead of manually specification by enumeration.

2The PR measure “convergence” indicates the performance the approach’s capabilities to recognise the goal by
providing the number of observations that were processed until the correct goal was recognised (see Section
5.4 for a more detailed information).
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2.1.4. Actions and States

The previous sections introduced AR as mechanism for low-level reasoning and PR for high-
level reasoning. It has been shown that AR allows to cope with noisy and ambiguous sensor
data but does not raise any restrictions to the sequence of activities. PR, in contrast, employs
sets of plans to restrict potential action sequences. The manual specification of such plan
libraries requires an enumeration of all plans.
This section introduces the concept of plan synthesis by means of states and actions. For

this purpose, first the concept of an labelled transition system (LTS) is introduced. Then,
different modelling mechanisms to synthesise such LTSs, algebraic and model-based languages,
are discussed. Finally, it is argued that the model-based description is better suited for the
purpose of this thesis.

LTS for plan synthesis As discussed in Section 2.1.1, plan synthesis employs a structured
state representation and actions to represent the set of causally valid action sequences. Human
behaviour can be considered as a dynamic system, where the state of the environment changes
over time through the execution of actions. A dynamic system can be formally captured by an
LTS [96]. An LTS is a triple 〈S,A,→〉, where S is a not necessarily finite set of states and A
is a set of actions. →⊆ S × A × S is a ternary relation that reflects the labelled transitions
between states. If for two states s, s′ ∈ S an action a ∈ A exists, where 〈s, a, s′〉 ∈→, the action
a is said to be applicable in state s. The state s′ is reachable from s by applying a. This is
written as s a→ s′. If for an action a ∈ A and all states s ∈ S there exists at most one state
s′ ∈ S such that s a→ s′, the action a is said to be deterministic or has deterministic effects.
s

a→ s′ can then be considered as function defined by s′ = a(s). If all actions are deterministic,
the LTS itself is deterministic. For the scope of this thesis, we consider deterministic LTSs.
Bulling et al. [40] divides AR methods to stateless and stateful. The first type omits the

state of the world but rather recognises the activity from the sensor signal, whereas the latter
uses a model of the world to represent context information (see Section 2.1.2). The latter
approach not only achieves higher recognition performance but also increases the amount of
inferred information. Here, the term context refers to the state s ∈ S of an LTS graph 〈S,A,→〉.
Thus, properties of objects (e.g. the current location of a pot or the filling level of bottle) or the
location of a persons can be interpreted as context. Estimating the location of a person [97, 248],
thus, means estimating context information about the person.

Latent infinite LTS The set of states S and the relation → can be infinite, even if the set
of actions A is restricted to be finite. For instance, a state feature that represents a counter
variable and actions that increase this counter3 will create a state space that represents the set
of natural numbers. Also, the use of continuous state spaces (e.g. for location estimation) would
result in an infinite number of states. However, often such methods use parametric methods
to represent such continuous state spaces. A two dimensional gaussian distribution (e.g. used
by Kalman filters) is typically represented as tuple (µ, σ) ∈ R2. A discrete state space with n
state features, in contrast, is represented as (n−1)-d-simplex. Albeit the discrete state space is
finite, its computational complexity is higher than for the exemplified continuous state space.
From the inference perspective, handling such infinite LTSs is feasible as long as only a finite

set of states is considered. This is possible, as an actual sequence of actions can be represented
by a finite part of the LTS. The function, represented by the action a, computes the successor
state from the original state, resulting in an incrementally expanded LTS graph. The resulting
LTS is latently infinite, although generated by use of a finite (or compact) description.

3The set of natural numbers and the successor function, for example, represent such LTS, where even if the
number of actions is restricted to one, the number of states is countable infinite.
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Representing such functions requires actions to be represented as algorithms. For the scope
of thesis we call such algorithmic language a computational action language, as it allows to
represent LTSs in an algorithmic way. An algorithmic description is used to describe the
relation →.

Modelling mechanisms for LTS One important aspect of algorithmic descriptions is that they
enable the reuse of models. According to Mernik et al. [157], domain specific languages (DSLs)
are, among others, one key to enable reusability of software systems. This is particularly
true for application generators, which use high-level abstractions to generate special purpose
applications [126].
In the domain of software engineering and testing, formal specification languages are used

to describe the behaviour of a system under development. Formal specification languages,
such as Z [217], the Vienna Development Method [109], or the Common Algebraic Specifica-
tion Language [161] are used. Such formal specifications are used to assess the correctness
of implementation by tests based on the description of the system’s behaviour. The liter-
ature distinguishes between two types of specification languages, algebraic and model-based
languages [61, 96, 215]. Each of them uses a different approach to model the system’s state
and its operations.

Algebraic languages Algebraic languages describe the state of a system under test “in terms
of combinations of operations required to achieve that state”,([61]). The system is defined by
equivalence of (combinations of) operations to other operations. The state thereby does not
reflect the internal aspects of the system itself. Popular examples are the specifications of
abstract data types, where the state is defined by interactions of operations [85]. OBJ [83] and
the Common Algebraic Specification Language [161] are examples of such languages.
The algebraic method provides a list of operations including interaction patterns such as

sequences or orderings. The state space of the generated LTS usually consists of the sequences
of operations. Partial order plans [125, 212] are typical examples of a dynamic system described
in the algebraic way. The system’s state is defined by the list of actions already completed.
Due to the abstract definition of the system’s state, reasoning about algebraically defined
systems allows to infer the sequence of operations executed so far, but fine-grained information
about the internal state of the dynamic system is not inferable. The usually small state space,
created from a small set of operations, in contrast, limits inference intricacy. It can easily be
seen that the system’s state is defined as a single variable which abstracts all details away [61].
In fact, Sommerville [215, p.229f.] argues that algebraic methods are typically used to specify
the interface of a system. Algebraic methods are used when the system’s action is specified
independently from the system’s internal state.

Model-based languages In contrast to algebraic languages, model-based languages represent
the system’s state by the internal aspects of the system. Operations are specified by their inter-
actions with the state. Pre- and postconditions are used to reflect the state-operation relation
→. The most prominent instances are Z [217] and the Vienna Development Method [109].
Model-based languages define the system in terms of state variables (each modelling one

aspect of the system) and operations that interact with those. The system’s state advances by
applying operations on that state. Operations are defined in how far they modify the system’s
state; preconditions are used to restrict applicability to subsets of states, postconditions (also
known as effects) model state evolvement after operation execution. The model-based specifi-
cation describes the state of the dynamic system by providing a list of state variables including
possible values, which usually leads to more complex state spaces than the algebraic method.
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Operations are defined by their relation to that state. Additionally, in contrast to algebraic
languages, model-based languages allow actions to be defined depending only on (parts of) the
systems state. This enables the reuse of models on the level of actions. Furthermore, modelling
the system’s internal state, rather than sequences of actions, allows reasoning about the state
of the world.
The language of the Stanford Research Institute Problem Solver (STRIPS) [73] can be con-

sidered as model-based. STRIPS is often used in the domain of automated planning and
scheduling. The internal state of the system is represented by multiple state features. The
detailed description of the internal state, on the one hand, allows to reason about single state
features, but, on the other hand, easily leads large state spaces.

Model-based description for inference Denney [61] derived input value domains for system
tests from both types of specification and highlights that the algebraic method is favoured when
considering the interaction of operations while the model-based method is preferred when it
comes to testing specific aspects of the system’s state. Both descriptions allow to restrict
the number of action sequences by modelling actions depending on the system’s state. The
representation of the system’s state, however, differs.
Here, the model-based description is preferred to the algebraic description as it allows to

model actions independently from each other and thus allows to reuse individual action speci-
fications. Furthermore, it is easier to describe the system’s state in terms of properties of the
environment than in terms of actions performed so far.

2.1.5. Computational State Space Models

CSSMs describe a state space by computational means. For this purpose, a model-based
description is employed to specify an LTS. The model-based description thereby uses state
features to describe a state in the LTS. One particular occupancy of the state features describes
one particular state of the LTS. Actions are defined, by preconditions and effects on these state
features. Preconditions restrict the number of states an action can be applied to and thereby
restrict the so-called branching factor. Effects describe how the state changes if a particular
action is applied to it. The state space of the LTS is then created by incrementally applying
all possible action to the set of initial states. In general, no restriction to the expressiveness of
the language exists. It has to provide a computational description that describes the resulting
state s′ of applying an action a to a state s. To this end the language is called computational
action language. Consequently, the resulting state space is not necessarily finite, albeit the
number of actions and state features is finite. A definition of the concept CSSM is provided in
Definition 5.

Definition 5 (Computational State Space Model) A Computational State Space Model
is a state space model, where the transition model of the underlying system is described by
a computable function using an algorithmic representation. The resulting probabilistic model
supports latent infinite state spaces.

2.2. Related Work

In the previous section, a clear distinction of activity, context, and plan recognition was in-
troduced and the current state of research in the particular domains was illustrated. Finally,
the concept of Computational State Space Models was introduced. CSSMs use computational
action languages to describe the dynamics of human behaviour by means of an LTS.
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Based on the analysis, provided in the above mentioned surveys on activity and goal recog-
nition [40, 139, 46, 2, 229], 25 studies were selected to assess the current state of research.
For this purpose, a classification scheme is derived in this section. Additional studies were
added to this list if they were found to represent essential information with respect to at least
one factor of the classification scheme. A comparative overview of these studies is given in
Table 2.2. From them, seven studies are described in more detail. These studies were con-
sidered as most relevant, as each of them represents an important groundwork with respect
to question IQ. Bui et al. [37] (Study 21) introduced a manually specified state space model
to jointly recognise the user’s activity, plan, and additional context information from noisy
location data. Liao et al. [149] (Study 22) extended this approach by replacing the need for
manual specification with training. Both approaches were designed for the specific problem of
inferring the user’s state from location data and are neither reusable nor generalisable to differ-
ent observation data. Training data is used to learn the user dynamics (including probabilities
for state changes) and the observation model. Burghardt et al. [41] (Study 25) investigated dif-
ferent modelling formalisms to describe human behaviour to eventually generate HMMs. State
transition probabilities are generated from these models, rather than by use of training data.
Likewise, Baker et al. [17] (Study 1) provided a computational description of the user’s dynam-
ics. They replaced the need for training data with prior knowledge and goal distance based
action selection. Ramírez and Geffner [189] (Study 4) extended this approach by considering
observation noise as additional degree of uncertainty. They used Planning Domain Definition
Language (PDDL) to describe a planning problem and illustrated how to represent PR based
on noisy observations as inverse to the planning problem. Hiatt et al. [95] (Study 2) used a
model-based description in terms of Adaptive Control of Thought – Rational (ACT-R) to de-
scribe the human decision making. In addition to goal-based utility functions, they introduced
the usage of situation-based heuristics to determine a probability distribution of plans. These
approaches used a computational description of the system dynamics and explicit mechanisms
to reflect the process of human action selection to recognise the user’s plan. However, they
only considered simulated data and direct action observation. Sadilek and Kautz [202] (Study
13) were the first to combine a model-based description of the environment with low-level sen-
sors. They showed how to simultaneously infer the activity, the plan, and additional context
of multiple users from location data. However, the proposed approach had several drawbacks,
such as the need to fully expand the state space. In the following, first the classification scheme
is introduced and then the seven selected studies are described in more detail.

2.2.1. Classification Scheme

In order to classify the related work according to the requirements that were collected in
Section 1.2.2, a number of factors, each representing individual parts of the requirements,
were identified. The reason for the use of these factors is that most publications omit direct
statements about the requirements. Additionally, other factors were added to conclude about
the complexity of the targeted problem. Table 2.1 gives an overview of the factors used to
classify the related work. In the following, first the surrogate factors for each requirement are
introduced. Then, in the second step, the additional factors are introduced and described.

Requirements Requirement R1, states that an inference system has to provide information
about the user’s potential future actions and the final goal. The factor F.target reflects this
requirement by providing information about the estimation target of the respective approach.
Possible values are (A)ctivity, (C)ontext, (G)oal, and (P)lan. The requirement for online infer-
ence (R2) is represented by F.complexity. F.complexity provides the computational complexity
of the approach for one time-step. A value of 1 signals that the complexity is independent
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Factor Description

F.latent.infty Method allows inference in latently infinite state spaces (typically employing a compu-
tational action language).

F.plan.synth Plan synthesis is supported. Otherwise, the approach requires to create plan libraries
by explicitly enumeration.

F.duration Durative actions are supported. (This will significantly increase inference complexity, as
the starting time for an action becomes another state variable, which has a large value
space.)

F.action.sel Explicit mechanisms for modelling human action selection based on opportunistic and/or
goal driven features are supported.

F.probability Method provides (an approximation of) the posterior probability distribution over states
(or actions, depending on the mechanism). This is a prerequisite for selecting assistive
interventions using decision-theoretic methods (i.e. that aim at maximising the expected
utility).

F.struct.state The state maintained by inference provides a structured representation of the environ-
ment state. This allows the formulation of state predicates and the dynamic synthesis
of contingency plans. (Otherwise the state typically represents the action currently
executed.)

F.non.monoton Non-monotonous action sequences are considered, that – temporarily – may increase
goal distance. (This affects the number of plans that need to be considered. Methods
using explicit plan enumeration usually avoid non-monotonicity.)

F.complexity Filter step complexity (computational complexity for the filtering step from t to t+1).
If greater than O(1), for instance O(t), then online filtering is essentially intractable.

F.model.based Method is based on a model-based description.
F.CSSM The approach is considered as Computational State Space Model.
F.source The source of state transition in the model. L – machine learning is used, or P – prior

knowledge is used to estimate the state transitions.
F.target The method targets at estimating the (A)ctivity, the (C)ontext, the (G)oal and/or the

(P)lan.
Method Type of inference method used.
Scenario Scenarios considered in experimental tasks.
N.states Number of S states considered. (See text for further explanation.)
N.plan.length Lengths of plans considered in study.
N.classes Number of classes in classification target used for performance evaluation.
N.subjects Number of subjects participating in trials (or sim in case evaluation is based on simulated

observations).
M.accuracy Accuracy is provided as performance measure.
M.conf.based Other quantities based on confusion matrices (true–positive rate, precision, etc.) are

provided as performance measures.

Table 2.1.: Factors for analysing related work.

from the number of observation items processed so far. Higher values indicate online infer-
ence to be impossible. The factor F.Method serves as surrogate measure for the requirement
R3, as it provides information about whether the approach allows to process uncertain sensor
data. Additionally, the factor F.probability indicates an estimation of the posterior probability,
which signals the approach’s capabilities of handling probabilities. Finally, the factor N.subject,
which provides the number of subjects used for evaluation, allows to conclude the usage of real
instead of simulated observation data. A value of sim, signals that the evaluation was based
on simulation. Requirement R4 is directly reflected by the factor F.latent.infty. The factors
F.plan.synthesis, F.model.based, and F.prior reflect different aspects of the requirement R5, as
they signal the usage of a knowledge driven approach. As discussed, the usage of knowledge
driven approaches allow to create reusable models. The following three classes of criteria can
be distinguished: CSSM properties, criteria regarding the complexity of the evaluation setting
and evaluation factors. Each of them is described in the following.
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CSSM properties The F factors represent properties provided by CSSMs. The use of these
factors allow a more detailed assessment of the capabilities of the approaches in favour to a
binary classification for each requirement. They illustrate how many features of CSSMs are
provided by the approach. Thus, they show in how far an approach can be considered as CSSM.
The factor F.CSSM summarises this assessment and indicates whether the proposed method
is considered as CSSM, namely if Definition 5 holds. The F factors are directly related to the
requirements derived in Section 1.2.2.

Complexity of the evaluation setting The N factors provide statements to quantify the
complexity used to evaluate the approach. Knowledge about the complexity of the experimen-
tal setting gives an indication about the general capabilities of the proposed approach. The
following dimensions of complexity were identified:

CD.1 The factor N.states provides the number of states used to represent the experimental set-
ting. Typically, with increasing the number of states, the inference complexity increases.

CD.2 N.plan.length lists the average length of the action sequence. Again, this has influence
on the inference complexity, as the number of possible plans increases exponentially with
increasing of the length of the action sequence. Imagine, the repeated decision between
two actions. The number of possible plans would be given by 2n, where n is the plan
length.

CD.3 N.classes assesses the number of target classes to discriminate between. As can be seen
from Table A.2, the median number of target classes in the field of AR is 8 (IQR = 5−14).
Inference complexity typically increases with increasing the number of target classes.

Finally, the factor N.subjects gives information about the generalisability of the approach, as
it describes the number of human subjects the sensor data was obtained from.
It has to be noted that the factor N.states has several drawbacks. Firstly, the number is often

not explicitly stated in the literature but rather has to be inferred from the textual description.
Secondly, depending on the discriminative capabilities of the observation sequence, only small
parts of the state space are considered during inference. This is often the case in studies
based on simulated data, where the observation sequence is constructed from the sequence of
ground actions. Ramírez and Geffner [188] and Baker et al. [17], for example, use this kind
of observation in their studies. Finally, the expressiveness of the factor N.states depends on
the representation of the state space. With respect to the above mentioned issues, the factor
N.states is considered as surrogate for state space complexity.

Evaluation factors Several methods exist for estimating the performance of discrimination
tasks (see Section 5.4). In the field of AR, the preferred performance criteria are the accuracy
and other confusion matrix based methods. This can also be observed from Table A.2. The
M factors illustrate in how far confusion matrix based evaluation methods are used. As the
accuracy was found to be the dominant metric, the factor M.Accuracy is introduced to indicate
the usage of the accuracy for evaluation. As remaining criteria, the Scenario and the inference
Method are used. They allow to provide an overview about the intended purposes of the
approaches.
The factors introduced above allow to classify the related work. The F factors give an

overview of the approach’s general capabilities, whereas the N factors provide information
about the complexity of the evaluation scenario. A classification based on these factors allows
to evaluate the related work with respect to the requirements (see Section 1.2.2) and the
experimental evaluation. In the following section, this classification is presented.

22



2.2. Related Work

Referenc
e

F.latent.
infty

F.plan.sy
nth

F.durati
on

F.action
.sel

F.probab
ility

F.struct.
state

F.non.m
onoton

F.complexity

F.model.bas
ed

F.CSSM

F.prior

F.target

Method

Scenario

N.states

N.plan.le
ngth

N.classes

N.subjec
ts

M.accurac
y

M.conf.bas
ed

1
[1
7]

[1
88

]
�

�
�

�
�

�
�

1
�

�
�

G
P

B
D

L
70
00
0†

20
3

si
m

�
�

2
[9
5]

[2
43

]
�

�
�

�
�

�
�

†
1

�
�

�
G
P

B
D

O
M

-
-

�
si
m

�
�

3
[1
88
][8

7]
�

�
�

�
�

�
�

t
�

�
�

G
P

B
P

K
10
00
0†

-
3

si
m

�
�

4
[1
89
][8

7]
�

�
�

�
�

�
�

1
�

�
�

G
P

B
P
L

K
70
00
0

8
5

si
m

�
�

5
[9
8]

[4
6]

�
�

�
�

�
�

�
1

�
�

�
A
C

B
D

A
20
00
00

5†
6

6
�

�
6

[9
9]

[4
6]

�
�

�
�

�
�

�
1

�
�

�
A
C
P

B
D

K
70
00
0

40
�

3
�

�
7

[5
6]

[2
]

�
�

�
�

�
�

�
1

�
�

�
A
C

B
D

O
25
00
00

†
-

5
5

�
�

8
[5
7]

[1
97

]
�

�
�

�
�

�
�

t
�

�
�

A
N

B
N

M
10
00

†
-

15
†

si
m

�
�

9
[6
9]

[2
29

]
�

�
�

�
�

�
�

1
�

�
�

A
B

H
K

28
6

6
-

�
�

10
[1
11
]-

�
�

�
�

�
�

�
1

�
�

�
A

B
H

A
30
0†

12
†

15
3

�
�

11
[1
69
][4

6]
�

�
�

�
�

�
�

1
�

�
�

A
B

R
P

K
96

-
13

2
�

�
12

[1
68
][4

6]
�

�
�

�
�

�
�

1
�

�
�

A
C
G
P

B
R

P
O

35
00

†
3

3
2†

�
�

13
[2
02
][2

29
]
�

�
�

�
�

�
�

t
�

�
�

A
C
G
P

O
M

L
M

-
20

†
4

14
�

�
14

[2
51
][4

6]
�

�
�

�
�

�
�

1
�

�
�

A
C

B
D

A
K

52
8†

-
33

3†
�

�
15

[3
8]

[4
6]

�
�

�
�

�
�

�
1

�
�

�
A

N
M

H
O

72
0†

-
2

1
�

�
16

[3
1]

[4
6]

�
�

�
�

�
�

�
1

�
�

�
G
P

L
D

L
K

-
15

6
si
m

�
�

17
[4
7]

[4
6]

�
�

�
�

�
�

�
1

�
�

�
A

L
D

L
A
K

-
24

†
8

3
�

�
18

[1
17
]-

�
�

�
�

�
�

�
t2

�
�

�
A
G
P

O
G

M
-

50
†

�
2†

�
�

19
[1
99
][4

6]
�

�
�

�
�

�
�

1
�

�
�

A
C
G
P

L
P

A
10
0†

40
†

7†
6

�
�

20
[2
12
][2

]
�

�
�

�
�

�
�

1
�

�
�

A
B

M
F

A
20
00
0

14
†

14
3

�
�

21
[3
7]

[4
6]

�
�

�
�

�
�

�
1

�
�

�
A
C
G
P

B
R

P
O

74
†

-
2

2
�

�
22

[1
49
][4

6]
�

�
�

�
�

�
�

1
�

�
�

A
C
G
P

B
R

P
M

-
-

6†
1

�
�

23
[1
74
][2

29
]
�

�
�

�
�

�
�

1
�

�
�

G
P

B
D

M
49

†
-

�
si
m

�
�

24
[2
8]

[9
8]

�
�

�
�

�
�

�
1

�
�

�
A
C

B
H

A
50
,1
81
,1
20

11
11

1
�

�
25

[4
1]

-
�

�
�

�
�

�
�

1
�

�
�

A
B

H
M

9
10

-
-

�
�

T
ab

le
2.
2.
:
O
ve
rv
ie
w

of
re
la
te
d
w
or
k
an

d
ev
al
u
at
io
n
st
u
d
ie
s.

T
he

su
pe

rs
cr
ip
t
re
fe
re
nc
e
in

th
e
fir
st

co
lu
m
n
gi
ve
s
th
e
or
ig
in
al

so
ur
ce
.

“�
”=

Fe
at
ur
e
in
cl
ud

ed
,
“�

”=
Fe

at
ur
e
no

t
in
cl
ud

ed
,
“x
† ”
=
pr
op

er
ty

x
no

t
ex
pl
ic
it
ly

st
at
ed
,
“-
”=

va
lu
e
un

kn
ow

n,
“�
”=

pr
op

er
ty

no
t
m
ea
ni
ng

-
fu
l
co
ns
id
er
in
g
ta
rg
et
,
F
.t
ar
ge
t:

“A
”=

A
ct
iv
it
y,

“C
”=

C
on

te
xt
,
“G

”=
G
oa
l,

“P
”=

P
la
n,

M
et
ho

d:
B
:v
ar
ia
nt

of
se
qu

en
ti
al

B
ay
es
ia
n

fit
er
in
g
(e
x-

ac
t:

“H
”=

H
M
M

or
ex
te
ns
io
n,

“D
”=

ot
he
r
D
B
N
,
“P

l”=
tr
an

sf
or
m
at
io
n

in
to

a
pl
an

ni
ng

pr
ob

le
m
,
“P

”=
P
O
M
D
P
;
ap

pr
ox
im

at
e:

“P
f”
=
P
ar
ti
cl
e

F
ilt
er
,
“R

P
”=

R
ao
-B

la
ck
w
el
liz
ed

P
ar
ti
cl
e
F
ilt
er
,
“M

f”
=
M
ar
gi
na

l
F
ilt
er
),

N
:N

on
-s
eq
ue
nt
ia
l
B
ay
es
ia
n

in
fe
re
nc
e
(
“M

H
”=

M
et
ro
po

lis
H
as
ti
ng

s,
“B

N
”=

un
ro
lle
d
B
ay
es

N
et
),
O
:o
th
er

ex
ac
t
m
et
ho

d(
“G

”=
gr
am

m
ar
-b
as
ed
,“
M
L”
=
M
ar
ko
v
Lo

gi
c
N
et
w
or
k)

Sc
en
ar
io
:
“K

”=
ki
tc
he
n
ta
sk
,“
A
”=

ot
he
r

A
D
L,

“O
”=

offi
ce
,“
M
”=

m
is
ce
lla

ne
ou

s
ot
he
r
sc
en
ar
io

23



2. Computational State Space Models

2.2.2. Classification Results

Table 2.2 gives an overview of related work, classified according to the classification schema
introduced above.

Recognition target Regarding the recognition, only five studies (Studies 21, 12, 22, 19, and
13) were concerned with the integrated estimation of all estimation targets. The majority
of the studies (19 studies) considered the recognition of the user’s current activity, at least.
From these, 10 studies also considered the recognition of context information in addition to the
activity. The recognition of the user’s plan, including his goal, was considered by 12 studies.
Here, the dominant approach is the application of plan synthesis instead of explicit enumeration
of plans. However, only three (Studies 21, 12, and 13) of the approaches that targeted activity,
context and plan recognition, synthesised the possible plans. Neither Sadilek and Kautz [202]
(Study 13), Bui et al. [37] (Study 21), nor Nguyen et al. [168] (Study 12) supported latent
infinite state spaces or appropriate action selection mechanisms but rather relied on manual
specification or training of state transition probabilities.

Reusability Regarding the reusability, from the 25 studies, only 19 studies used a DSL that
allowed further reuse of the description. From these, the majority of 12 studies used a model-
based description that would potentially allow a reusable description at the level of actions
by simultaneously representing the environment as state of the system. Only five of them can
be considered as CSSM (Studies 1, 3, 5, 2, and 4). While these studies illustrated that it is
indeed possible to create reusable models for plan recognition by using computational action
languages, they neither considered the recognition of the action sequence of real persons, nor
did they use noisy sensor data for inference. In addition, albeit modelling information about
the current state of the world, none of them considered the recognition of context information.
There was no study that supported all features.

Complexity of the evaluation setting Concerning the considered complexity, an analysis of
the state space sizes (CD.1) shows that only problems with small size were used. CD.1 gives
quantitative information about the level of detail considered in the study. The median number
of states considered in the studies is 1,000 (with interquartile range IQR = 98−70,000). From
the 25 studies that were considered to assess the current state of research, only three used more
than 100,000 states (Studies 24, 7, and 5), whereas 10 studies considered not more than 1,000
states.
The length of the action sequence (CD.2) used within the experimental evaluation of the

studies also gives information about the complexity of the task under observation. Shorter
sequences are usually easier to be handled, whereas longer sequences introduce additional
complexity due to the growth of the number of action sequences that is exponential in the
length. The median plan length considered in the studies is 14 (IQR = 9 − 22). Beside the
state space size and the plan length, the use of action durations is another factor that increases
inference complexity. Studies that considered action durations use a maximum number of
20,000 states.
It can be observed that CSSM-like approaches were evaluated through simpler scenarios with

maximum state space size of 70,000 and maximum plan length of 20. Approaches that were not
considered as CSSM, in contrast, had a maximum number of 50,181,120 states and maximum
plan length of 50. With respect to the number of target classes to be distinguished (CD.3),
CSSM-like approaches used a medium number of 3 (IQR = 3− 4) classes, whereas non-CSSM
approaches used 6 (IQR = 5−13) classes. Typically, inference becomes more challenging with
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increasing number of target classes as the probability of randomly selecting the correct class
decreases with increasing number of classes.

Evaluation An analysis of the performance measures revealed that 10 of the studies used the
accuracy to assess the recognition quality. Additionally, 11 studies used other performance
measures based on the analysis of confusion matrix. No study used measures sensitive for
causal structure of the estimated sequence. Appropriate performance measures that reflect
agreement in the causal structure are discussed in Section 5.4.

Inference methods When considering the inference method, approximate methods are dom-
inant. The use of approximate methods is necessary for large state spaces. Furthermore, the
use of action durations or a high number of plan steps increases complexity, which renders
exact methods to be infeasible and requires approximate methods to be applied. All studies,
except for one that focussed on approximate online inference (complexity = O(1)) used vari-
ants of the PF. Only the study of Shi et al. [212] (Study 20) used the D-Condensation filter,
an approximate method tailored for categorical state spaces (see Section 3.2 for a detailed
discussion).

Location-based evaluation One interesting result of the analysis of the selected studies is that
all studies concerned with the integrated recognition of activity, context and plans used sensor
data that is easy to interpret. The studies of Bui et al. [37], Nguyen et al. [168], Sadilek and
Kautz [202] (Studies 21, 12, and 13) used location data. The study of Roy et al. [199] assumed
the sensors to be accurate. Easy to interpret sensors, such as pressure, passive infrared (PIR),
and reed switch sensors, are used. Accelerometers were used only to detect whether the hand
moves or not. However, the use of location data seems to be a good choice to illustrate the
baseline capabilities of an integrated approach to activity, context, and plan recognition based
on noisy sensor data.

Summary To conclude, several approaches exist that strive to reconstruct human behaviour
from low-level sensors. Only few approaches exist that can be classified as CSSM and thus
allow for handling infinite state spaces. However, there is no approach that fulfils all of the
introduced requirements (see Section 1.2.2). In the following a detailed description of the seven
studies is presented that contribute most to the research topic of this thesis.

2.2.3. Policy Recognition in the Abstract Hidden Markov Model by Bui et al.
[37]

Bui et al. [37] propose a hierarchical model for recognising the user’s currently executed plan
from sensor data. Their approach was the first to integrate low-level sensor data and high-level
behaviour recognition in terms of the user’s plan.

Model The hierarchical model consists of policies, where each level in the hierarchy refines
the above level by introducing a sequence of policies. A policy is similar to a contingency plan
in that it does not describe one possible action sequence, but determines how a lower level
policy is selected in a given state. Formally, a policy is defined as quadruple π = 〈S,D, β, σ〉,
where S represents the set of applicable states, D the set of destination states, β the set of
stopping probabilities, and σ a selection function σ(s, π), specifying the probability that π is
selected in state s. At the bottom level, policies can be understood as primitive actions that
stop immediately after one time-step. Below this bottom policy level, a state level is attached,
where each state emits observations. Each policy can be considered as sub-goal, the top level
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policy as top level goal. Thus, recognising the top level policy is similar to recognising the
user’s goal. If a lower level policy terminates, control is given back to the above level policy,
which determines the stopping condition itself.

Inference method To estimate the policy sequence from sensor observations, a dynamic
bayesian network (DBN) is constructed from the model. In the first step Bui et al. [37] il-
lustrated how inference is done by use of direct state observation. By exploiting context
specific independencies [32], they show that inference complexity is independent from the num-
ber of levels in the hierarchy of policies. Bui et al. [37] apply a Rao-Blackwellized Particle
Filter (RBPF) to make inference more efficient compared to a PF.

Evaluation To show their approach to be working, Bui et al. [37] conducted an experiment
with the objective to track a human protagonist while walking through an indoor environment.
At the same time, the proposed approach allows to predict the building’s exit that the user is
most likely heading to. The hierarchical model is created by manually applying region-based
decomposition to the state space, which basically creates a hierarchy of locations based on the
hierarchy of regions of the environment. Altogether, three levels are created, where the highest
level consists of two policies, one for each exit of the building. The bottom level contains
nineteen policies, resulting in an overall state space of 74 states. The location of two persons
is tracked based on cameras in two experiments for about 400 seconds.

Summary Bui et al. [37] were the first to combine noisy low-level sensor data with high-
level PR. They illustrate their approach working by tracking and predicting a user’s path
through an office environment based on camera-based location data. By applying the RBPF,
the authors showed their approach to be more effective than standard PFs. The policies and the
policy selection function, which describes the transition probability of actions and upper level
policies, were specified manually. This requires the state space to be finite, as it would otherwise
impossible to manually define policy selection probabilities for each state. The authors showed
that the hierarchical model leads to a natural decomposition of the environment. Several issues,
however, prevent their approach from being applied to the integrated recognition of activity,
context, and plans of the user. The proposed model allows only states to emit observations.
As can be seen from Table A.2, the dominant sensors for AR are IMUs. This type of sensor is
inherently unsuited to provide state observation, but in contrast allows to observe actions.
Another issue is that actions have to stop after one time-step. A re-selection of the same

action with probability pself represents a geometric action duration with success probability
of pself similar to standard HMMs. This is a limitation, as not all action durations can be
modelled by the geometric distribution. Additionally, the manual specification of policies re-
quires high effort to specify the model and prevents models from being reused. Finally, the
sampled variables s (state) and t (termination level) have a categorical domain. As discussed
in Section 3.2.2, PF-based approximation is inefficient for categorical state spaces due to the
representation of densities based on particle counts, especially if the transition matrix is sparse.
In summary, the method presented by Bui et al. [37] provides an interesting basis, as it is

the first to combine high-level reasoning with uncertainties inherent to sensors. The need for
manual specification, however, contradicts to the requirements of reusability and latent infinity.

2.2.4. Learning and Inferring Transportation Routines by Liao et al. [149]

Liao et al. [149] present an integrated approach to PR from noisy sensor data to “bridge the
gap between the raw GPS sensor measurements and high-level information such as a user’s
destination and mode of transportation”,([149]). In their article they extended previous work.
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In [178], the authors apply a PF to infer the transportation mode and the most likely route
in an urban environment from GPS data. The model was later extended [147] by a goal
and a goal switching node, which accounts for goal selection and goal-directed movement. In
[179], the authors prove their work to be feasible and present the system opportunity knocks.
Opportunity knocks provides assistance in that it guides users through the urban environment
by use of different transportation services. In Liao et al. [149], the previous model is extended
by a novelty node, to model and detect novel, yet unknown, behaviour.

Model The model introduced by Liao et al. [149] is based on a directed graph representing the
street map. Edges represent streets and vertices correspond to intersections of edges. Locations
of the user are restricted to be on edges and are represented as distance to the starting vertex.
The model consists of three layers, each of them modelling one aspect. The bottom level
is composed of the current state x, namely the user’s location and the velocity, the current
transportation mode m, and the edge transition variable τ , which provides the user’s decision
about the future direction. Additionally, the nodes z, which represent GPS readings, and
θ, which provides a snapping to an edge, are used as observable variables. The middle layer
represents the user’s current goal g and the current trip segment t and boolean variables fg and
f t that signal changes about goals or trip segments. A trip segment represents a transfer from
a start location to an end location by use of a transportation mode. For each transportation
mode a counter variable is used to determine the waiting time to change. Aim of the top level
of the model is to decide whether the user’s current behaviour is novel. This is signalled by the
boolean variable n. Novel behaviour causes the model to switch to an untrained mode, where
goal g and trip segment t are set to be unknown.

Inference method Similar to Bui et al. [37], the authors applied the RBPF algorithm. Here,
all variables, except for the user’s location, were used as Rao-Blackwellising variables and were
sampled accordingly. A Kalman filter was used to exactly track the location-based on the
sampled velocity, the direction, and the edge association. The authors first learned the value
domains of the variables in an unsupervised manner. To do this, the expectation maximisation
algorithm was used.

Evaluation To evaluate the proposed approach, the GPS data of one person was recorded for
60 days. The data of 30 days was used to train the model. The goal threshold was set to
one hour, which means that location is considered as goal when the location does not change
for more than one hour. Locations, where the person might change the transportation mode
(e.g. bus stops, parking lots), were extracted by analysing the transportation mode transition
probabilities. Six of the goal locations and all transportation mode changing locations were
learned. Finally, transition matrices for all other variables were learned, and the directed graph
is build upon the most likely trajectories. The evaluation of the goal recognition showed that
their model was able to recognise the correct goal, out of six possible goals, with an accuracy
of 82% after 50% of the time. After 75% of the time the accuracy increased to 98%. Finally,
the authors illustrated, how the proposed system can be embedded into an application named
opportunity knocks, which assists users in finding the correct way to a predefined goal location
in urban environments.

Summary In their work, the authors successfully demonstrate, how to simultaneously recog-
nise the goal, the route, and the transportation mode from raw GPS data. Similar to Bui
et al. [37], they illustrate how to combine low-level sensor readings with high-level goal recog-
nition. Furthermore, they replace the need for manual specification of states, transitions, and
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probabilities, proposed by Bui et al. [37], by an automatic learning process. By applying the
expectation maximisation algorithm, the authors show that the system is able to adapt itself to
the user’s needs. Otherwise, the system needs a huge amount of training data (30 days in the
experiment), for reasonable adaption. This amount could be further reduced by use of prior
knowledge about bus stops and other common (sub-)goals. From the inference perspective, like
in Bui et al. [37], the model use PF based inference for categorical domain variables.
The proposed model is tailored for location-based reasoning and is not easily adaptable to

other scenarios e.g. using wearable sensors. Moreover, it only allows states to be observed,
which is a limitation when it comes to the application of IMUs. Finally, the proposed model
does not allow to explicitly specify durations. The application of the Kalman filter as sub-model
for moving on “edges” replaces the need for durations, but the waiting time for transportation
changes is modelled by a counter. While this seems sufficient for the transportation mode
tracking, an application in tracking ADLs requires more sophisticated duration modelling as
the analysis in Section 6.2 suggests.

2.2.5. Synthesising Generative Probabilistic Models for High-Level Activity
Recognition by Burghardt et al. [42]

Burghardt et al. [42] propose the synthesis of HMMs from different symbolic descriptions of the
user’s activity. They investigate different kinds of description formalisms such as task models
and STRIPS. They demonstrate that it is possible to create the state space for probabilistic
models from such descriptions.

Model In their work, the authors show how to use the different description formalisms to
generate the transition matrix of HMMs. From the task model, the state space is generated by
incrementally executing all potential actions, starting with the initial action. Thus, the state
space is formed by user actions, where an individual state represents the actions that have to be
executed in order to reach this state. The transition probabilities are calculated by considering
the priorities of actions that are allowed to be executed after the currently executed action. The
custom Collaborative Task Modelling Language allows the specification of observation models.
Thus, the observation model can directly be carried from this model.
With respect to STRIPS, the synthesis of the HMM is done by incrementally applying the

planning operators to the initial state until the state space is fully expanded. Preconditions
are used to limit the application of actions to a subset of states. Effects allow actions to change
the state. The state space is represented as finite LTS. A state is represented as a pair of an
environment state and an action. Transition probabilities are uniformly distributed over all
reachable states. To cope with sensor data, the authors propose the use of action observation
models.

Inference method Burghardt et al. [42] generate the transition matrix of HMMs from the
different modelling formalisms. Exact Bayesian inference is applied to estimate the most likely
state sequence from noisy and ambiguous sensor data. For this reason the state space has to
be fully expanded in order to represent the transition matrix of the HMM. As a consequence,
their approach is not able to handle latent infinite state spaces.

Evaluation While Burghardt et al. [42] demonstrate their approach with an example in the
domain of team meetings they do not provide any evaluation with respect to recognition accu-
racy. They rather focus on showing their approach to be valid by generating HMMs from the
different descriptions. For this reason, they focus on team meeting where the team’s action
sequence has to be estimated from location data. In another work, Burghardt et al. [41] show
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that their approach allows to use a partial order planner to generate possible team meeting
action sequence from a STRIPS model. However, they do not apply their approach to plan
recognition from sensor data.

Summary Burghardt et al. [42] propose the generation of probabilistic models from different
kinds of formal descriptions of human behaviour. Furthermore, the authors state that the use
of such formal descriptions allows for reusability within the same application domain (R5.1).
They exemplify the generation of HMMs from top-down task models and bottom-up STRIPS
models.
The work of Burghardt et al. [42] is an important basis for this thesis, as it allows the

generation from probabilistic models of reusable descriptions of human behaviour. However,
the work has several limitations which hinder the direct application. Firstly, the usage of
HMMs for exact inference requires the state space to be expanded prior to the inference. This
limits the state space size and prevents the state space from being infinite. Moreover, state
spaces have to be of very limited size in order to apply exact inference. To overcome the issue
of large state spaces they sketched the idea to use approximate inference but never evaluated
it.
The second issue is that the transition probabilities are uniformly distributed which means

that all possible actions have equal probability. Burghardt et al. [42] describe the idea to
generate the transition probabilities from heuristic functions like that from the planning domain
or from knowledge-driven systems. In particular they discuss the application of production
selection rules from ACT-R [8] but provided no evaluation.
The third drawback of their approach is the missing support for durative actions. While

the approach would in general allow the use of the geometrical distribution to model action
durations, the authors omit the discussion of action durations.

2.2.6. Action Understanding as Inverse Planning by Baker et al. [17]

Baker et al. [17] treat the problem of estimating the user’s goal from observations of his be-
haviour through plan synthesis. They successfully demonstrate that, given a model-based
description of the environment and possible actions to execute in that environment, it is possi-
ble to reason about the plan currently executed. Objective of their work is to compare different
models of rational agents, comprising static goals, changing goals, and sub-goals, with human
reasoning and goal prediction. To do this, they build a model of the environment, possible
actions, and a (set of) goal states(s).

Model Baker et al. [17] use a model-based specification of the model to create a Markov
Decision Process (MDP). The model consists of the state s, which essentially represents the
state of the world, the currently executed action a, and a goal g, which the agent is trying to
achieve. Contrarily to Bui et al. [37], who manually specify the transition probabilities and Liao
et al. [149] who use machine learning methods to estimate the transition matrices, the authors
make use of their model-based description and use an action selection function to determine
action selection probabilities. Given the goal g, in state st and world w, the action at is selected
with probability Pπ(at | st, g, w) ∝ exp(βQπg,w(st, at)), where Q represents the expected cost of
taking action at in state st. The costs are thereby given as the minimal sum of costs of the
action sequence leading to the goal state. Costs are assumed to be proportional to the negative
length of the resulting action sequence, which basically leads to goal-directed action selection.
The β parameter was used to control the level of goal-directedness of the action selection. High
values of β lead to more goal-directed action sequences, whereas low values enforce the other
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direction, a value of β = 0 results in uniform action selection. Two additional parameters γ
and κ control goal switching and the selection of sub-goals.

Inference method Baker et al. [17] apply the framework of MDPs. MDPs allow the full
observation of the state sequence execution by the user. Thus, the proposed model only has to
deal with one source of uncertainty, namely the selected action of the agent.

Evaluation Since the aim of their work is to compare human goal prediction with the com-
putational prediction of a rational agent, three experiments with varying goal conditions were
conducted. A maze world, where at each location, except for the border, nine actions are
applicable, one for staying, and one for each adjacent cell, is used. Three different goals are
distributed to the corners of the maze. Additionally, obstacles that represent walls to hinder
direct goal approaching are added. Some obstacles contain a gap to allow a direct passage. In
their experiments, the authors propose three models, each of them extending the action selec-
tion function of the former. In the first model, the goal is assumed to be static (γ = 0, κ = 0).
By setting γ 6= 0, the second model allows goals to be changed. The third model allows for
selecting sub-goals (κ 6= 0). Their analysis gives evidence that it is possible to map human
action understanding to computational models of rational agents.

Summary Baker et al. [17] were the first to present a plan synthesis-based approach to recog-
nise the goal of an observed actor. The model-based description allows them to completely
omit the necessity of training data. Instead they propose the use of probabilistic action se-
lection based on the goal distance. It can therefore be clearly considered as a CSSM. The
use of a model-based description allows Baker et al. [17] to specify potentially unlimited state
spaces. However, the authors note that other inference algorithms have to be applied in order
to handle such state spaces. In their experiments the authors show that their models are able
to explain human reasoning about goal-directed behaviour. While the work of Baker et al. [17]
is seminal in the model-based specification of human behaviour models for automatic action
understanding, it still suffers from inability to use partial action observations. Additionally,
the lack of probabilistic action durations prevents further usage for recognition of activities,
contexts and plans.

2.2.7. Goal Recognition over Partially Observable Markov Decision Process:
Inferring the Intention of a POMDP Agent by Ramírez and Geffner [189]

In their work, Ramírez and Geffner [189] propose a model-based approach to PR from par-
tial observations. They extend their previous work, where they introduced a planning-based
approach to PR by identifying the goal an observed optimal plan would lead to [187]. There,
similar to Baker et al. [17], they replace the typically used plan library by a model-based de-
scription of the planning problem. In a later work, Ramírez and Geffner [188] extend their
approach to probabilistic PR, which provides a probability distribution over goals in favour to
binary decision about goals.

Model Ramírez and Geffner [189] defined a planning problem by means of PDDL. A set of
state features is used to represent properties of the environment. A set of actions, specified in
terms of preconditions and effects related to these state features, is used to describe the system
dynamics. The state space is created by the transitive closure of the set of actions on an initial
state. A set of states is selected as goal states. In addition, a cost function is used to assign a
non negative value to each pair 〈a, s〉 of action a and state s. For each pair 〈a, g〉, where g is a
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goal state, the costs are defined to be zero. The problem of planning is now defined as finding
the optimal path (in terms of minimal costs) from the initial state to a goal state.
Similar to Baker et al. [17], they define PR as inversion of the planning problem. Given

(partial) observations about an optimal plan, the PR problem is to infer the goal of the observed
plan. Their key assumption here is that a rational agent will choose a cost optimal plan in
order to reach the goal. Like Baker et al. [17], the authors use the Boltzmann policy as action
selection function. They considere three different sources of uncertainty: (1.) the agent’s plan
is only partially observable, which means that some observations are dropped from the sequence
of action observations, (2.) the agent’s selection of action is not deterministic, but determined
by an action selection probability density function, and (3.) actions are assumed to be non-
deterministic, meaning that the outcome of an action is not fixed but rather probabilistic. Note
that albeit Ramírez and Geffner [189] allow observation sequences to be incomplete, they do
not consider noisy or ambiguous observations. Since this is the core meaning of the requirement
R3, their work is not considered satisfying this requirement.

Inference method To solve the PR problem, Ramírez and Geffner [189] constructed a Partially
Observable Markov Decision Process (POMDP) and use a POMDP planner that allows for
belief tracking. Thereby, a plan is considered when the observed action sequence is embedded
in the plan. This means that the plan contains the observed actions in the given order but not
necessarily without gaps. The probability of each plan is then computed by considering the
goal-directed action selection function and the observation likelihood. A probability density
function (PDF) over possible goals is then created from the plan probabilities.

Evaluation By applying their approach to three planning domains, the authors show the
approach to be feasible. An office domain is created based on the experiment of Bui et al.
[37] to model the interactions of an agent within the office environment. The domain consists
of 2.300 states, twenty-three actions, three goals and four possible initial states. With 30%
(resulting in an avg. length of 4.9 items) of the observation sequence, from a set of fifteen
observation items the approach is able to recognise the correct goal with an accuracy of .99.
Extending the sequence to 70% (avg. length of 10.8) allows the correct goal to be inferred with
absolute certainty.
The kitchen domain consists of about 70,000 states and twenty-nine possible actions. From

the state space, sixteen initial states and five different goal states are selected. Here, the goals
are to cook different dishes. Each dish requires up to three ingredients and several kitchen tools,
which are placed randomly in the environment. The proposed approach is able to infer the
correct goal with an accuracy of .96 (.84) with 70% (30%) of the original observation sequence.
Ramírez and Geffner [189] sketch several possible extensions, all of them increasing the

amount of uncertainty. In particular, they suggest to use noisy observations where the set
of observation items is unchanged, but an action may produce an observation belonging to
another action. An HMM is proposed to handle this additional degree of uncertainty.

Summary Ramírez and Geffner [189] extend the goal recognition approach of Baker et al.
[17] by considering incomplete observations and non-deterministic actions. A model-based de-
scription (in terms of PDDL) is used. The transition probabilities are not manually specified
or learned from a large amount of training data but generated by exploiting the properties of
rational agents. However, the proposed approach can be interpreted as a CSSM. The approach
allows to account for uncertainty in observations and actions. However, here uncertainty in
observation means that some observations are simply dropped from the sequence of observa-
tions. This means that although it is not possible to assess the number of missing observations,
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observations provided to the observer are still always correct. This is clearly in contrast to the
observation quality provided by sensors used for AR that, as in the case of IMUs, even does
not allow to directly infer the activity from the observation sequence.
Another issue that prevents the proposed approach from being directly applied to the recog-

nition of human behaviour is the inability of probabilistic modelling of action durations.
Finally, while the approach is, in general, able to handle latent infinite state spaces, the

authors state that using the POMDP planner does not scale very well. This means that more
sophisticated mechanisms are required in case the state space increases and observation noise,
as produced by real sensors, is added.

2.2.8. Accommodating Human Variability in Human-Robot Teams through
Theory of Mind by Hiatt et al. [95]

Hiatt et al. [95] are concerned with the problem of variability in human plan execution. They
consider the collaboration of humans and robots. The robot is equipped with a model that
simulates the human’s theory of mind, and whenever there is reason to believe that the human
acts incorrectly, the robot interferes. In their work, Hiatt et al. [95] apply a variant of the
ACT-R [9] system, specialised for human-robot interaction (ACT-R/E [235]).

Model ACT-R uses declarative and procedural modules to represent declarative knowledge
and memories, and production rules. Declarative knowledge is managed in chunks with an
activation value. Different situational heuristics about how frequently or recently chunks were
accessed control this activation value. A chunk is accessed if it matches the current context
information. The activation value is used to decide upon multiple matching chunks. Declarative
knowledge is used to represent the current cognitive state. Production rules, including a value
of expected utility, represent actions that allow to change the state. The utility function is,
among others, based on goal-directed behaviour. Preconditions allow to restrict the set of
applicable rules per state (configuration of chunks). A more detailed description of ACT-R can
be found in [9]. Models can differ by their initial chunk occupancy, different parameterisations
for the activation value and utility functions, and the initial belief about the world.

Inference method By using the ACT-R model, the robot tracks the human teammate. When-
ever the human executed an action, unexpected to the robot, several different hypotheses are
considered that may cause an unexpected behaviour. For each branch, the probabilities of
the different selections are calculated by either relating the current chunk’s activation to the
overall activation or by relating the utility value of a production rule to the overall sum of all
utility values. Here, random noise is added, to account for uncertainty in the human’s action
selection. In order to explain the variability of the human’s behaviour, different hypothetical
models that differ in belief and parameterisation are considered.

Evaluation Hiatt et al. [95] performed an evaluation based on a simulation of two different
scenarios. In the first scenario, the human-robot team is supposed to patrol in an environment.
At some point, the human unexpectedly went to the wrong direction. After considering several
hypotheses, such as the learned exception of forgetting the radio, the robot was able to interfere
and informed the human about incorrect behaviour. In another experiment, study participants
were asked if the robot’s behaviour seems to be more intelligent and natural compared to two
other behaviours not considering the theory of mind. The participants rated the proposed
approach to be more intelligent and more natural, which provides evidence that the approach
allows to reproduce human reasoning about observed behaviour.
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Summary Similar to the approaches of Baker et al. [17] and Ramírez and Geffner [189], the
authors use a model-based description to PR. As Hiatt et al. [95] state, the approach is able
to reason about time intervals of seconds and minutes. Computational issues that should
be handled by approximate inference, will arise by considering long term simulation. The
proposed approach uses a combination of situational heuristics (context matching, recency,
and frequency) and utility-based production selection. A model-based specification is used to
describe the scenario, which allows for potentially infinite state spaces. Transition probabilities
are governed by state properties and action related utility values. Thus, the approach can be
considered as a CSSM. ACT-R allows to track human decisions and mental properties such as
the content of memory chunks. The authors show that it can also be used for recognising goals
and thereby incorrect behaviour. However, in their work, the authors assume the robot to be
able to fully observe the person4. This is in direct contradiction to the use of sensors, which
inherently provide noisy and contradictory observation of the environment.

2.2.9. Location-Based Reasoning about Complex Multi-Agent Behavior by
Sadilek and Kautz [202]

Sadilek and Kautz [202] address the problem of recognising the behaviour of multiple interacting
persons from GPS data. They use a model-based description of human behaviour in terms of
Markov Logic as basis for probabilistic inference. Moreover, they consider the possibility that
actions may not be successful, but rather be interrupted or fail.

Model In their approach the state of the world is described by parameterised predicates, each
representing one fact about the world. Actions are described in terms of rules. Here, hard and
soft rules are distinguished, where both describe facts about how predicates change over time
in dependence to other predicates. In contrast to hard rules, which are applied whenever the
precondition holds, the weight of soft rules describes how likely such rules are applied. The
weights of soft rules are then learned from training data. The set of predicates is divided into
observable and hidden predicates. Observable predicates reflect sensor data to state mappings,
whereas hidden predicates reflect parts of the state space under question.

Inference method At inference time, based on the observed predicates, the state with the
highest probability is estimated. The probability distribution is created by relating the sum
of all weights of rules that hold to the overall sum of all world weights. The maximum a-
posteriori (MAP) state sequence is inferred by applying a state of the art algorithm for solving
Markov Logic Networks, which is constructed by grounding predicates and rules for each time-
step. The complexity for inference from one time-step t to the next t+ 1 is linear in t (O(t)).

Evaluation In an experiment Sadilek and Kautz [202] showed that the proposed approach is
able to handle 14 persons. The participants were instructed to play the game “capture the
flag”, where two teams, each consisting of seven persons, try to conquer the opponent team’s
territory. The location of each player was tracked by GPS loggers. Four repetitions were
conducted, each lasting between four and fifteen minutes. Similar to Bui et al. [37], the area
was divided into cells (each with an area of 9m2) that were used to “snap” the raw GPS sensor
signal. The state of the world was described by 14 predicates, where some were marked as
observable. The set of eight hard rules, describing physical constraints or rules of the game,
was created. Seven soft rules were used to describe the snapping of GPS data to cells and

4One exception for the full observation are obstacles in the direct sight of view. While this introduces additional
uncertainty, it still does not introduce noise to the observation.
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Approach Uncertainty Online Reusability Latent Infinity Plan

Bui et al. [37] � � � � �
Liao et al. [149] � � � � �
Burghardt et al. [41] � � � � �
Baker et al. [17] � � � � �
Ramírez and Geffner [189] � � � � �
Hiatt et al. [95] � � � � �
Sadilek and Kautz [202] � � � � �

Table 2.3.: Evaluation of the requirements of selected related work. “�”=Requirement
satisfied, “�”=Requirement not satisfied.

how likely events happen. After training the weight of soft rules from three games, the weights
were used to infer the sequence of actions in the fourth game. A comparison to several baseline
models showed significant improvement of the recognition performance.

Summary In their work, Sadilek and Kautz [202] illustrate how to combine a symbolic de-
scription of human behaviour with noisy and ambiguous sensor data. They use a model-based
description of the behaviour of multiple interacting agents. They target the recognition of
activities and context, such as agents being captured. Training data is used to learn the prob-
abilities for soft rules, which is equivalent to transition probabilities between states. However,
several issues prevent the proposed system from being used. Firstly, the approach scales poorly,
which make the technique infeasible for online recognition. Secondly, due to the model only
supporting rule probabilities, which is equivalent to transition probabilities, the model has no
support for probabilistic durations except for the geometric distribution given by the state’s self
transition. Furthermore, similar to other approaches [37, 149], the proposed approach exploits
the fact that location information is relatively easy to interpret. This allows, for example, the
GPS location data to be snapped to a grid of cells of interest. The proposed approach is no
CSSM as it does not allow for latent infinite state spaces. The state space has to be fully ex-
plored at inference time. In addition, transition probabilities have to be learned from training
data instead of using heuristic alternatives based on the state space.

2.2.10. Summary

Table 2.2 contains a detailed classification of all considered related work. Additionally, Table
2.3 provides information regarding the satisfaction of the requirements. It can be seen that
no approach exists that satisfies all requirements. In general, it can be concluded that the
related works either supports sensor uncertainty, or reusability and latent infinity. The idea
sketched in the work of Burghardt et al. [42] is the only one that satisfies uncertainty and
reusability. Therefore, it seems reasonable to extend their ideas and combine the probabilistic
approaches [37, 149] with the model-based specification [17, 189] in order to satisfy all require-
ments. Sadilek and Kautz [202] show how to support multiple persons. Finally, combining the
approaches of Baker et al. [17] and Ramírez and Geffner [189] for goal-based action selection
(without the need for training data) and the situational heuristics of Hiatt et al. [95] into a
more general framework of action selection is reasonable. As described, Bui et al. [37] and Liao
et al. [149] apply the RBPF to reduce inference complexity. Both approaches use a PF for
approximate inference in categorical state spaces. The PF has several drawbacks (see Section
3.2). Thus, a novel inference method for categorical state spaces has to be developed.
Based on the work, presented in this chapter, in the next chapter, CCBM is introduced. It

is shown that CCBM combines the described capabilities and thus satisfies all requirements.
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“Statisticians, like artists, have the bad habit of falling in love with their models.” –
George E.P. Box

Synopsis: This chapter introduces the Computational Causal Behaviour Model as an instance of
CSSM. Based on the concepts introduced in Chapter 2, a statistical model is introduced and de-
scribed. Finally, the CCBM toolbox, which implements the described features and provides support
for experimental validation, is introduced.

Chapter Sources: Parts of this Chapter have been previously published in the following publi-
cation(s):

• Towards Creating Assistive Software by Employing Human Behavior Models [129]
• CCBM – A Tool for Activity Recognition using Computational Causal Behaviour Mod-

els [122]
• Computational State Space Models for Activity and Intention Recognition. A Feasibility

Study [133]
• Tool Support for Probabilistic Intention Recognition using Plan Synthesis [130]
• Synthesising Sequential Bayesian Filters for Plan and Activity Recognition from Extended

Precondition-Effect Rules [127].
• Marginal Filtering in Large State Spaces [172]

The previous chapter provided an overview of the general concept of CSSMs and highlighted
their usage in the literature. Additionally, it was argued that the combination of a reusable
model-based description for generating the LTS graph of actions and states and a statistical
model allowing to account for uncertainties enables high-level reasoning from low-level sen-
sors. This chapter introduces Computational Causal Behaviour Models as one instance of
Computational State Space Models designated for recognising human behaviour from noisy
and ambiguous sensor data. CCBM employs a model-based specification language based on
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preconditions and effects to generate an LTS. A statistical graphical model is then used to
provide the probabilistic semantics for this LTS.
In the following, first the statistical model that is used for inference based on the LTS graph

is described. Based on this model, five sub-models are introduced, each focussing on different
aspects. For each sub-model the probabilistic meaning is introduced. With respect to inference
algorithms, an approximate inference method based on the PF is described and several issues
are discussed. To overcome these drawbacks, a novel inference algorithm – the Marginal Filter
– is then introduced. Finally, the CCBM toolbox, including the modelling language and the
provided inference tools, is presented.

3.1. Statistical Model

The general framework of CSSMs allows the construction of statistical inference models based
on an LTS. Inference within CCBM employs a statistical model to handle noisy and ambiguous
sensor data This section describes the DBN, which is constructed by considering the LTS’
underlying transition system.

Design rationale CCBM aims at reconstructing the user’s current action, the plan and ad-
ditional contextual information from noisy and ambiguous sensor data. For this purpose, the
statistical model has to reflect the user’s current action, the goal and contextual information.
Additionally, the model has to map the dependencies between actions, states and goals. The
execution of an action, for instance, depends on the current state, as not all actions can be
executed in each state. Additionally, as users are assumed to be goal-directed, the user is
supposed to execute actions depending on the current goal. As a result of an executed action,
the environment state changes. Another aspect is that the execution of actions consumes time.
Again, this has to be reflected by the statistical model.
The framework of Bayesian filtering has been shown to effectively estimate a dynamic sys-

tem’s state sequence from noisy sensor data [165, p.631ff]. A mechanism to describe the de-
pendencies between multiple random variables in order to allow methods of temporal Bayesian
filtering to be applied is provided by DBNs. This section introduces the DBN that is used to
reflect the illustrated dependencies.
In general, DBNs distinguish between hidden and observable nodes. The former describe the

state of a dynamic system that cannot be concluded directly while the latter describes variables
that can be observed. Typically, observable nodes are used to represent sensor observations
about hidden states. The framework of Bayesian filtering allows to draw conclusions about the
hidden variables from observations about the observable variables.
In addition to the properties that describe the user’s behaviour, which are typically modelled

as hidden nodes, the model comprises observable nodes that represent sensor data used for
inference. As discussed earlier, two different kinds of sensor data can be distinguished: state
and action observation. As CCBM is supposed to used both types, two observable nodes have
to be added to statistical model, each of them influenced by the respective node of the user’s
behaviour. In the following the resulting DBN is described in detail.

Probabilistic structure The DBN used as probabilistic model in the CCBM framework is
illustrated in Figure 3.1. The hidden state Xt is a five-tuple (At, Dt, Gt, St, Ut). Here, we call
Xt the X state and St the S state. The action executed at time t is denoted by At, Dt is a
boolean flag signalling whether At−1 is terminated in the left-open and right-closed interval
(t− 1, t] and a new action At has to be selected. Ut is the starting time of the action At. The
variable St is the current environment state and Gt denotes the goal (or intention) of the user
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Figure 3.1.: Graphical model used in CCBM. Nodes with single outline denote hidden ran-
dom variables, whereas nodes with double outline denote observable random variables.
Boxes represent tuples of variables. Edges represent dependencies of a (tuple of) random
variable(s) (edge ending) from another (tuple of) random variable(s) (edge starting).

at time t. The observation Yt=(Wt, Zt) for time-step t consists of two conditional independent
parts, the state observation Wt and the action observation Zt. Vt is the timestamp of the
observation data sequence.
The boolean variable Dt introduces a context specific independence [32] into the DBN. If

dt=f alse the variables Ut, St, and At carry over their values from the last time slice and are
independent from their other parents. The value of dt=true means that a new action has to
be selected. As a result, the starting time Ut and the system state St have to be updated. The
dependency of At on St−1, At−1, and Gt allows to represent situation-driven as well goal-driven
behaviour. If a new action is selected, the value of St is the result of applying At to the previous
state St−1. This directly denotes the effect of actions on the environment.

Extensions for multiple agents The model described above only incorporates a single execu-
tion instance (namely, one agent). The support for multiple execution instances is introduced
by different refinements to the action related nodes. To provide several execution instances
with different action sets, the model refines the nodes At, Dt, and Ut by sets of nodes At,
Dt, and Ut. Each set then consists of one node per execution instance. The node St, which
represents the environment state is not further refined as all agents are assumed to act within
the same environment. Consequently, this means that each execution instance (an agent) has
knowledge about the entire environment. This refinement to the action related nodes is for
instance done in Experiment X1 and Experiment X3 (see Section 6.1 and Section 6.3).
The underlying assumption of a common goal node Gt is that a common goal is sufficient

as long as we concentrate on collaborating agents. Modelling non-collaborating agents or even
adversarial agents would require a refinement of Gt. To support different goals for each agent,
the node Gt is further refined by the set of goals Gt – one goal for each agent. While the common
goal node is used in Experiment X1, Experiment X3 uses separate goals for each agent.
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Depending on the kind of observation data, the action observation node Zt can be refined
to a set of nodes Zt, where each node corresponds to one agent. Shared observation nodes,
in contrast, are necessary when the assignment of observations to execution instances is not
possible. This is, for instance, the case in Experiment X3, where state observations are used.
Separate observation nodes for each execution instance would imply that each agent has a
distinguishable and independent set of sensors. While this is typically the case for wearable
sensors such as accelerometers, environmental sensors such as motion detectors do not allow
this separation. The model depicted in Figure 3.1 can be seen as a generalisation of the different
multi-agent refinements. Additionally, the support for multiple agents represents a prerequisite
for the requirement R5.3.

Factorisation into five sub-models From the viewpoint of Bayesian filtering, the DBN can
be used to derive a probabilistic interpretation of the transition model used for example for
the Forward Filtering Recursion [165, p.609]. The state Xt is now represented by the 5-tuple
(At, Dt, Gt, St, Ut). For each node in the DBN, one sub-model can be factorised.

p(Xt |Xt−1) = p(At, Dt, Gt, St, Ut |At−1, Dt−1, Gt−1, St−1, Ut−1, Vt, Vt−1)

= p(St |At, Dt, Gt, Ut, At−1, Dt−1, Gt−1, St−1, Ut−1, Vt, Vt−1)

p(At |Dt, Gt, Ut, At−1, Dt−1, Gt−1, St−1, Ut−1, Vt, Vt−1)

p(Ut |Dt, Gt, At−1, Dt−1, Gt−1, St−1, Ut−1, Vt, Vt−1)

p(Dt |Gt, At−1, Dt−1, Gt−1, St−1, Ut−1, Vt, Vt−1)

p(Gt |At−1, Dt−1, Gt−1, St−1, Ut−1, Vt, Vt−1)

By analysing the dependencies of the graphical model, each of the five sub-models can be
simplified. Each sub-model is thereby used to determine the value of the corresponding random
variables.

p(St |At, Dt, St−1) I action execution model
p(At |Dt, Gt, At−1, St−1) I action selection model
p(Ut |Dt, Ut−1, Vt) I action start time model
p(Dt |At−1, Ut−1, Vt, Vt−1) I action duration model
p(Gt |Xt−1) I goal selection model

In the following, the different sub-models are described and their probabilistic meaning is
introduced.

3.1.1. Action Execution Model

Objective Objective of the action execution model is to represent in how far the actions of
the human protagonist influence the state environment. The action execution model “executes”
a selected action and thereby changes the state according to the action’s effect. To this end, it
provides a probabilistic semantics for the action effects.

General framework The action execution model describes the PDF of the resulting state St
after applying action At in state St−1. Depending on the value of Dt, the value is either copied
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or, if dt=true, it is the result of applying the selected action to the previous state.

p(st | at, dt, st−1) =


1, if dt=false ∧ st=st−1,

0, if dt=false ∧ st 6=st−1,

ψ(st | at, st−1), otherwise
(3.1)

Design considerations With respect to the effects, two aspects have to be considered:

1 whether action effects are deterministic or not and
2 the point in time, when the action effect is applied to the state.

The representation of the action execution model in in (3.1) captures both, deterministic
as well as non-deterministic effects. Non-deterministic action effects are typically considered
within the framework of POMDPs [189]. They allow to model the agent’s knowledge about
the environment to be incomplete (e.g. the protagonist is not sure about the location of a
tool). Furthermore, non-deterministic effects allow to model actions that can fail (e.g. the
protagonist needs several tries to complete an action). Actions with deterministic effects, in
contrast, ensure that a modelled effect becomes true after the action is executed. Deterministic
action effects are used within MDPs as for instance in Baker et al. [17]. Both types of effects
provide the same power of expressiveness, as non-deterministic effects can be coped by non-
deterministic choice of deterministic actions. Consider an action a with preconditions πa, prior
probability pa, and n probabilistic effects ε(i)a . Each action effect has probability pi. The non-
deterministic choice of effects can be governed by n actions ai with precondition πai = πa and
deterministic effects εai=ε

(i)
a . The probability of selecting action ai is then given by pa ·pi. This

could be implemented by introducing an additional action selection feature that represents the
probability of each effect.
Regarding the time where the effect is applied, different alternatives are possible. A distinc-

tion is required, when action durations are introduced, only. Typically, three different types
of effects can be distinguished: (1.) effects that becomes true at the start of the action (e.g.
an agent that moves from a to b, leaves the location a at the start of the action), (2.) effects
that becomes true at the end of the action (e.g. the agent arrives at location b at the end
of the action), and (3.) incremental effects, where different effects become true during action
execution (e.g. while the agent moves from a to b, it passes a third location c). The three
alternatives can be covered by tuples of actions with start time effects. Consider an action
a with preconditions πa and effects εa1 , . . . , εan , different effects for different points in time.
Action a can be split into an inseparable action tuple (a1, . . . , an). The preconditions of action
a1 are set to πa1 , the effects to εa1 . The effects of each action ai ∈ a2, . . . , an are set to the
respective effects εai . From the modelling perspective, lock predicates [256] can be applied to
create inseparable action tuples1.

CCBM realisation With respect to the time of the effect of actions, in CCBM, actions use
start time effects. Action effects are instantaneous, meaning that if an action is applied at time
t, the effects are true at time t. This allows to cover all alternatives by action tuples and an
explicit duration model of each part of the entire action. As a result, durations are provided
for actions rather than for effects.
Regarding the effects, within the framework of CCBM, we assume the human protagonist

to have complete knowledge about the environment. As a result, deterministic effects are
1Introducing such dependencies seem to break up the independencies of actions at first glance. However, as
the introduction of lock predicates is straight forward it can easily be automated by a preprocessing step,
which in return allows the other action specifications to remain unchanged.
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considered sufficient for the scope of this thesis. Furthermore, the use of deterministic action
effects allows the usage of standard planning heuristics for goal-directed action selection (e.g.
landmarks). As discussed, non-deterministic effects can easily coped by non-deterministic
choice of actions.
The probability of state st, given at and st−1 is 1, if st is the result of executing action at in

state st−1.

ψ(st | at, st−1) =

{
1, if st = at(st−1)

0, otherwise
(3.2)

3.1.2. Action Start Time and Action Duration Models

Objective Actions in the real world consume time. Additionally, the specific duration is often
not known beforehand. Modelling actions of human protagonists, thus, requires to model action
durations in a probabilistic way. For this purpose, both the action start time model and the
action duration model introduce a probabilistic duration model for actions.

General framework The action duration model provides a PDF that determines the value of
the variable Dt. Depending on the specific action and the current point in time, the action
duration model has to determine the probability that the action has been finished during the
last time interval. The action start time model maintains the start time of the action which is
used together with the current time to determine the duration of the action so far.

Design considerations The literature uses different mechanisms to provide duration models.
On the one hand, approaches like HMMs model durations by geometric distribution func-
tions [108]. For instance, Bui et al. [37] use this type of duration modelling. Other approaches,
like Ziparo et al. [265] restrict action durations to the χ2 distribution. Different analyses showed,
for example, the log-normal distribution to effectively describe action durations [140, 226].
A restriction of the duration model to the usage of one PDF allows to specialise the inference

mechanism to that function. A restriction to the geometric distribution, for instance, allows to
cover the action duration by the specification of the probability of the self transition. However,
the choice of the correct action duration function depends of the application domain and the
specific action to be executed.
A common method to represent the duration of actions independent from the specific function

is the hazard function, which provides the probability that an action stops, given that it was
still active in the previous time-step. To implement the action durations based on the hazard
function, the start time of the current action as well as the current time have to be provided.

CCBM realisation In order to allow a large variety of action duration functions, CCBM
employs an action duration model based on the hazard function. Consequently, the statistical
model has to provide the action start time and the action duration model.
The action start time model p(Ut |Dt, Ut−1, Vt), describes the PDF of the starting time Ut

of an action At. As long a the action does not change (dt=false), the value of Ut is carried
over from the last state. In case a new action is selected at time-step t the starting time Ut is
set to the current time Vt.

p(ut | dt, ut−1, vt) =

{
1, if (dt=false ∧ ut=ut−1) ∨ (dt=true ∧ ut=vt)
0, if (dt=false ∧ ut 6=ut−1) ∨ (dt=true ∧ ut 6=vt)

(3.3)

Based on the action start time model, the action duration model describes the probability
that an action will stop based on the hazard function. The action duration model determines
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µ vt−1 vt

F(vt−1)

F(vt)

µ vt−1 vt

Figure 3.2.: Example of an action duration PDF and the resulting CDF. Example of a log-
normal distributed ln N (µ = 1, σ2 = .5) action duration. Left: The probability density
function, grey area 1−F (vt−1), dark grey area 1−F (vt), light grey area F (vt)−F (vt−1).
Right: The cumulative density function.

µ vt−1 vt

P(V ≤ vt | V > vt − 0.5)

µ vt

Figure 3.3.: Example of an action duration PDF and the resulting action duration func-
tion. Example of a log-normal distributed lnN (µ=1, σ2=.5) action duration and result-
ing action duration function. A time-step interval of .5 is chosen to illustrate the resulting
function.

the duration of an action At and thus the value of Dt. The Bernoulli random variable Dt is
defined by the action duration distribution p(Dt |At−1, Ut−1, Vt, Vt−1). The probability of action
a to terminate in the interval (vt−1, vt] is given by the differences of the cumulative distribution
function (CDF) F (v | a, u) at vt−1 and vt. F here describes the CDF of the particular action
duration function.

p(dt | at−1, ut−1, vt, vt−1) =
F (vt | at−1, ut−1)− F (vt−1 | at−1, ut−1)

1− F (vt | at−1, ut−1)
(3.4)

Figure 3.2 illustrates an example action duration distribution function (left) and the accord-
ing CDF (right) based on a log-normal distribution ln N (µ=1, σ2=.5). The grey (light and
dark) areas illustrate the probability that the action is not terminated until time-step vt−1.
The light-grey area highlights the probability of the action to stop in the interval (vt−1, vt],
whereas the dark-grey area gives the probability that the action continues after time-step vt−1.
Figure 3.3 exemplifies the contrast between the example action duration CDF and the resulting
density function of the actual termination probabilities.

3.1.3. Goal Selection Model

Objective As discussed in Chapter 1, we focus on rational agents that try to achieve a goal.
Objective of the goal selection model is to provide a mechanism that allows to select and change
a goal to follow. In result, this model allows to reason about the goal of the human protagonist.
To this end, the goal selection model provides a probabilistic meaning for the freedom of the
protagonist to choose a goal.
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General framework The goal variable Gt plays a central role for goal-directed behaviour, as
it represents the set of states that are tried to achieve. Consequently, the goal variable has to
be adjusted to the goal under question. In general, the selection of the goal depends on the
current state. Thus, the goal selection model represents the conditional PDF for p(Gt |Xt−1)
accordingly.

Design considerations Different researchers use goal selection models in their approaches.
Baker et al. [17], for instance, implement knowledge about changing goals such as sequences
or hierarchies of goals. Both variations are implemented for example in the models M2 and
M3 in [17]. Patterson et al. [179] make use of changing goals by introducing an explicit goal
switching node to signal whether a new goal has to be selected or not. Ramírez and Geffner
[189], in contrast, use goals that are fixed.
The use of hierarchical goals, as suggested by Blaylock and Allen [26] or Bui [36], implies a

temporal ordering on the sets of goals. This hierarchy can be further extended until the bottom
of the hierarchy only consists of states that are directly connected by actions. This hierarchy
eases inference by reducing the number of possible plans but also decreases the level of freedom
of the model. However, the use of sequences or hierarchies of goals requires knowledge about
the target application, as the different sub-goals have to specified by the model developer.

CCBM realisation In the scope of this thesis, we focus on fixed and non-hierarchical goals,
which are sufficient to address the question IQ. This type of goal representation was also used
by Ramírez and Geffner [189]. Once a goal is selected, it will not be changed later. The goal
Gt is therefore directly carried over from the previous state.

p(gt | gt−1, st−1, at−1, dt−1, ut−1) =

{
1, if gt = gt−1

0, otherwise
(3.5)

At time t0 = 0 the prior goal probability p(G(i)
0 ) for each goal i is set. This is similar to the

concept of goal-based agents [200, p. 52].
The proposed representation of the goal selection model allows two different ways of goal

recognition. Intra-model goal recognition infers the most likely goal by use of a model that em-
bodies different goals. Baker et al. [17] and Liao et al. [149] for example successfully illustrated
the usage of this technique. Inter-model goal recognition, in contrast, uses one goal per model
and applies model selection techniques to select the most likely model and thus the most likely
goal. Inter-model goal recognition was, for instance, utilised by Ramírez and Geffner [189] and
Armentano and Amandi [12]. A brief discussion about advantages and disadvantages of intra-
and inter-model goal recognition is given in Section A.4. The experiments, presented in this
thesis apply intra-model goal recognition.

3.1.4. Action Selection Model

Objective Objective of the action selection model is to reflect the human protagonist’s choice
to select an action. To this end, the action selection model accomplishes two main tasks:
(1.) it represents the goal-directed behaviour of the human protagonist and (2.) it describes
deviations from the “best possible” action sequence – it embodies the “free will”. The aim of
this model is to provide a PDF that allows to reproduce what actions the human protagonist
selects in a given situation. This differs from the “behavioural” sciences that target questions
about how humans select actions (e.g. Tenenbaum et al. [233] and Gigerenzer [81]).
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General framework The action selection model represents the non-deterministic choice if
multiple actions are applicable in a given situation. A new action is selected if the boolean flag
Dt signals the termination of action At−1.

p(at | dt, gt, at−1, st−1) =


γ(at | gt, at−1, st−1), if dt = true

0, if dt=false ∧ at 6=at−1

1, if dt=false ∧ at=at−1

(3.6)

The new action is determined by the action selection function γ.

Design considerations According to Prescott et al. [183] the human choice of an action is
influenced by a large set of factors. This includes situation-based conflict resolution strategies,
as the specificity or the non-refractoriness known from the cognitive architecture ACT-R [8,
pp.132–137]. Other action selection mechanisms are based on the action’s utility in reaching
the goal from the given state as known from the domain of automated planning. Ramírez and
Geffner [189] and Baker et al. [17] employ a goal distance based action selection mechanism to
reflect rational agents that select actions to decrease the distance to the goal. Beside the usage
of the exact goal distance, the literature employs different approximations [93, 100].
The goal distance (and its approximations) provide knowledge about a model, independent

from training data. Models of machine learning, in contrast, could provide an action selection
feature that is adjusted to the actual human choice by employing training data. Inverse rein-
forcement learning [200, p.857] is a prominent approach to learn a policy about action selection
from training data. Other training-based approaches employ SVMs or neural networks [204]
to provide goal distance estimates.
To summarise, several approaches to implement a probabilistic action selection framework

exist, they range from the application of training free features (e.g. goal distance or specificity)
to approaches that employ methods of machine learning. A common framework that allows
combinations of different features, however, is missing.

CCBM realisation A powerful mechanism to combine different factors, independent from
their nature, are log-linear models [23]. The integration of different factors fk into the action
selection function γ via a log-linear model is given by:

γ̃(at | gt, at−1, st−1) = exp (
∑
k∈K

λkfk(at, gt, at−1, st−1)) (3.7)

γ(at | gt, at−1, st−1) =
1

Z
γ̃(at | gt, at−1, st−1) (3.8)

Z =
∑
a∈A

γ̃(at | gt, at−1, st−1) (3.9)

Here, Z is the normalisation constant, fk : A× G ×A× S → R the features and λk ∈ R their
corresponding weights.
Beside the fact that human action selection is a topic under current investigation, the statis-

tical model used throughout this thesis implements several action selection features from the
set of goal distance based features. The following features are used within the investigations
on the influence of goal distance based action selection to the recognition performance:
fδ : The probability of an action is inverse proportional to the goal distance of the resulting

state. Thus, actions that decrease the goal distance are preferred. The exact goal distance
is computed by an exhaustive process. The algorithm of Dijkstra [63] is used to find the
shortest path to the goal for each node.
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fδ̄ : An approximation of the goal distance that only considers states that were reached by the
actions actually executed during the experiment. This feature is an example for training
based mechanisms to action selection.

fh : An approximation of the goal distance based on the experimental description. Single
consecutive steps are extracted and used for goal distance determination (see Table 6.6
for a specific task script).

fπ : The action’s precondition that allow to restrict the applicability of that action to a subset
of the state space can be interpreted as an “enabling” feature.

Note that for the enabling feature fπ, the weight λπ is set to −∞, which results in a probability
of 0 for actions with preconditions not satisfied by the current state. A change to this weight
would change the transition matrix from sparse to full.

3.1.5. Observation Model

Beside the definition of the system model, the framework of Bayesian filtering (see Section
3.2) requires the specification of an observation model (also known as sensor model). The
observation model is used to incorporate knowledge about the uncertainties of the sensors by
providing the PDF p(Y |X), where Y represents the sensor data and X the system’s state.

Action and state observation model The statistical model, introduced above, allows two
hidden variables to be observed, the action A and the environment state S. For each of them a
corresponding observable node is introduced: the Zt represents observations about the action
At, whereas the Wt node models observations about the state St. The observation model is
given as follows:

p(Y |X) = p(Y |A,S)

= p(Z,W |A,S)

The graphical model in Figure 3.1 renders Z and W as conditional independent, which essen-
tially allows to represent the observation model as a combination of two separate sub-models:
the action observation model P (Z |A) and the state observation model P (W |S).

p(Y |X) = p(Z |A)p(W |S)

The action observation model allows to incorporate sensors that directly observe actions, such
as wearable sensors. Typical instances of such sensors are IMUs. This was also shown by
the analysis of the related work on the domain of activity recognition in Section 2.1.2. The
state observation model, in contrast, allows the usage of sensors that observe the state of the
environment. Localisation sensors such as GPS or PIR sensors are typical examples for sensors
that provide observation about the state. As discussed in Section 2.2, most approaches focus
on one observation model. A general approach, however, has to provide both sub-models.
Furthermore, providing an interface for both types of observation is a prerequisite for R5.2 as
it allows to exchange the observation model without changes to the system model. The usage
of state observation is, for instance, illustrated in Experiment X1 and Experiment X3. Action
observations are used in Experiment X2.

Independent and identically distributed observations One important aspect of the observa-
tion model is that the statistical model is assumed to be stationary [165, p.589]. This means
that the observations depend on the state (or action) only, rather than on the duration of
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the action. Consequently, for each state (or action) the observation have to be independent
and identically distributed (i.i.d.). For human behaviour, the assumption of stationarity of
the observation model often does not hold, as an action may consist of different phases. Ob-
servations in the middle of the execution of an action might be more typical for the action.
When considering the action of taking an object, for instance, first the arm has to be moved
to the object, then the object has to be grasped and finally, the arm has to be moved back.
As a result, observations at the start of an action differ from observations in the middle of
the execution. Additionally, the beginning or the end are influenced by the previous or the
following action, resulting in a “mix” of actions. The resulting effect is that from the beginning
the probability of an action class (given the observations) increases, is stable in the middle
of the execution, and decreases at the end. This is clearly a violation of the requirement of
i.i.d. samples and represents a potential drawback, especially for actions with long durations.
Additionally, the correct detection of action transitions is impacted, which consequently results
in lower recognition performance.
One solution to this problem is to incorporate temporal knowledge about the action’s pro-

cess into the observations [158]. The use of hierarchical models, where different sub-models
are used to represent the temporal structure of actions and thus the temporal change of ob-
servations [176] can be seen as generalisation. Another solution, albeit being impractical for
online recognition, is to scramble the observations of the action class. A within action class
scrambling requires the sensor data to be preprocessed and annotated beforehand. This will
prevent that the observation probability increases at the beginning and decreases and the end
of an action.

3.2. Inference Algorithms

Objective of the inference is to estimate the state sequence of the dynamic system under obser-
vation. Section 3.1 introduced a DBN that allows to estimate the sequences of states from noisy
and ambiguous sensor data. The implementation of the Bayesian filtering algorithm strongly
depends on the representation of the individual sub-models and the belief state. Depending on
the sub-model, specialisations as HMMs or Kalman filters [214] can be applied, allowing opti-
mal solutions of the above equations. Those methods allow the belief state to be represented
by either a parametric form, as in the case of Kalman filters, or by explicitly enumerating all
possible states as in the case of HMMs.

Approximate filtering Accurate handling of the belief state is a prerequisite for effective
state sequence estimation, as only accurate knowledge about the current time-step’s state
density p(Xt | y1:t) allows to correctly predict further state changes. However, in order to allow
specialised methods for exact computation to be applied, the representation of the state space
has to be restricted. Large state spaces, for example, prevent an exact representation of the
belief state and thus prevents the application of exact methods. In fact, the large, possibly
infinite, state space, generated by computational action languages requires an approximate
representation of the belief state. Consequently, approximate filtering methods have to be
used instead. If, in general, the exact representation or computation is infeasible, the density
p(Xt | y1:t) is approximated by a simpler density p̂(Xt | y1:t). An alternative to the application
of approximate methods is a simplification of the state space. Section A.3 gives an overview
how the state space can be reduced in order to apply exact filtering methods such as HMMs.
The following sections describe the inference methods used within the framework of CCBM

throughout this thesis. Based on the graphical model (see Section 3.1), it is illustrated how
inference is done in CCBM.
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3.2.1. The Particle Filter

In contrast to exact methods for inference, the PF [13] approximates the belief state by a
set of weighted samples. Particle filters are widely used for estimating states in complex
systems [124]. They have also been successfully used for recognising activities from uncertain
sensor data [169, 212, 43, 97].

Belief state representation In the PF, the density p̂(Xt | y1:t) is approximated by:

p̂(Xt | y1:t) =
N∑
i=1

ω
(i)
t δ(Xt = x

(i)
t ) (3.10)

δ(X = x) represents the Dirac delta function at x. A set of weighted samples 〈x(i)
t , ω

(i)
t 〉, namely

particles, with
∑n

i=1 ωi=1 is used to represent the density. Here, one particle represents the
tuple X=(S,A,D,U,G).
The standard PF, as usual for Bayesian filtering, works by employing predict and update

cycles. The prediction uses a proposal function to generate a new state from the current state.
Here we use the bootstrap PF [68], where the system model is utilised as a proposal function
(x(i)
t ∼p(Xt |x(i)

t−1)). During update, sensor observation data is used to compute the observation
density p(yt |xt) by making use of the observation model. This step leads to updated weights
and requires a normalisation to be executed afterwards.
To prevent the PF from degenerating, an artificial reduction of variance is introduced by

resampling [68] the most likely particles. While this reduces the diversity of the particles, it
simultaneously focusses on the most likely states. Resampling is usually performed when the
effective number of particles Neff=(

∑N
i=1 ω

2
i )
−1 drops below a threshold [67].

Algorithm 1 illustrates PF based inference in CCBM. The predict step first samples dt
to determine whether the current action at−1 should have been terminated in the elapsed
interval (vt−1, vt] or not. If the action at−1 terminates, a new action is sampled according to
the action selection function γ(at | gt, at−1, st−1). The sampled function at is applied to the
past state st−1 resulting in the new state st. In the update step, both observation models, the
action observation model p(zt | at) and the state observation model p(wt | st) are used to update
the particle weights. Resampling is performed in order to ensure better particle distribution.
Here, systematic resampling [65] is employed, as it has low computational requirements. The
complexity of forward filtering in the PF is O(N T ). O(1), for one time-step with fixed N .

Particle filters for continuous state spaces Particle filters are designed to estimate the joint
density of state sequences in continuous state spaces but often also employed in categorical state
spaces (see for instance [37, 149]). The probability of one state is represented by the density
of samples in the vicinity of this point. Particles are distributed to occupy different points in
the state space. A “distance” is used to control the influence of particles to the probability
density. This “distance-based” probability works well for continuous state spaces, where a
distance can be defined naturally. This allows particles to “smoothly” wander to the correct
state. In contrast, categorical state spaces effectively prevent the use of such distance measure.
Different points in the state space represent different states without any meaningful distance.
Additionally, the frequent use of resampling leads to equal particle weights. This essentially
means probabilities are not represented by weights but rather by numbers of particles. “The
main difficulty for standard particle filters is that they will quickly force all of the particles to be
the same or nearly the same as the most likely particle. In addition, the propagation mechanism
causes most of the particles to follow very similar paths through the network.”,([212]). The effect
of “particle clinging” is a direct result of this property.
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Algorithm 1 The particle filter forward filtering algorithm
1: t← 1
2: for i← 0; i < N ; i← i+ 1 do
3: sample g(i) ∼ p(g) . Sample goal
4: end for
5: while sensor data available do
6: read (vt, wt, zt) from sensor data
7: for i← 0; i < N ; i← i+ 1 do . Iterate all particles
8: sample d(i)

t ∼ τ(T ≤ vt | a(i)
t−1, u

(i)
t−1, T > vt−1) . sample action termination

9: gt ← gt−1

10: if d(i)
t then . Action at−1 terminates

11: sample a(i)
t ∼ γ(At | g(i)

t , a
(i)
t−1, s

(i)
t−1) . Sample new action

12: s
(i)
t ← a

(i)
t (s

(i)
t−1) . Resulting state

13: u
(i)
t ← u

(i)
t−1 . Starting time

14: else
15: a

(i)
t ← a

(i)
t−1; s

(i)
t ← s

(i)
i−1; u

(i)
t ← u

(i)
t−1 . Action continues

16: end if
17: ω̃

(i)
t ← ω

(i)
t−1 · p(zt | a

(i)
t ) · p(wt | s(i)

t ) . Update particle weight
18: end for
19: for i← 0; i < N ; i← i+ 1 do
20: ω

(i)
t ← ω̃

(i)
t /

∑
j∈N ω

(j)
t . Normalise weights

21: end for
22: Resample() . Perform resampling
23: t← t+ 1
24: end while

3.2.2. The Marginal Filter

Particle filters for categorical state spaces As briefly discussed, the PF is inappropriate for
tracking categorical state spaces. However, it is the favoured approximate filtering technique
(see Table 2.2) for AR even in discrete state spaces. It is, for example, used by Nguyen et al.
[169] to recognise behaviours within an office environment. In the PF each particle samples
one successor, by selecting one applicable action for the represented X state according to the
action selection function γ. Consequently, each particle could easily contain the list of all
past X states, including the S state st, the action at, and the starting time ut. In fact, the
PF estimates the joint probability p(X1:t | y1:t) instead of the marginal probability p(Xt | y1:t).
Here, computing the marginal probability is sufficient, as for each time-step t we are only
interested in the current X state xt = (st, at, gt, ut, dt).

Marginal filtering in the literature Klaas et al. [124] were the first to use the marginal filtering.
The key idea of the marginal PF [124] is to create the marginal distribution by summing up the
probabilities of duplicated X states before sampling successor states. During sampling, for N
particles N successor particles are sampled. This leads to duplicated X states being sampled,
which is no issue in continuous state spaces as used by Klaas et al. [124]. Another observation
of their approach is that, as in the standard PF, a sampling-based prediction is used. This
typically results in less likely transitions being to be omitted, even if the sensor data might
recover the probability. The complexity of the marginal PF in O(N2 T ), which is O(N2) for
one filter step and O(1) if N is assumed to be constant.
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Algorithm 2 The marginal filter forward filter algorithm
1: m0 ← NewMap
2: for all g ∈ G do
3: Put(m0, ((s = s0, g = g, a = initAction, u = 0), w = pg)) . Initialise
4: end for
5: t← 1
6: while sensor data available do
7: read (vt, wt, zt) from sensor data
8: mt ← NewMap
9: for all (x = (s, g, a, u), ω) ∈ mt−1 do

10: pd ← τ(T ≤ vt | at−1, ut−1, T > vt−1)
11: Put(mt, (x, ω · (1− pd)))
12: for all a′ ∈ A do
13: ω ← pd · γ(a′ | g, a, s)
14: s′ ← a′(s);u′ ← t . Apply action
15: if (x = (s′, g, a′, u′), ω′) ∈ mt then
16: Update(mt, (x, ω

′ + ω)) . Merge particles
17: else
18: Put(mt, (x = (s′, g, a′, u′), ω)) . Insert State
19: end if
20: end for
21: end for
22: for all (x = (s, g, a, u), ω) ∈ mt−1 do
23: Update(mt, (x = (s, g, a, u), ω · p(zt | a) · p(wt | s))) . Update weight
24: end for
25: Prune(mt); Normalise(mt)
26: Delete(mt−1); t← t+ 1
27: end while

Shi et al. [212] introduced the D-Condensation filter, which is particularly designed for cat-
egorical state spaces. They propose a discrete version of PF, where, instead of sampling, all
successor states are computed for all current X states. Shi et al. [212] introduced marginal fil-
tering to cope with large belief states that result from the usage of a duration model. A state is
represented by the set of all actions, each of them being active or not. Thus, in each time-step,
the successor states (at most 2k) will be computed from one state with k actions, as each action
can stay active or transit to inactive. If duplicate states are created during prediction, they
are merged and their probabilities summed up. This is similar to marginalising in continuous
state spaces as done by Klaas et al. [124]. In order to restrict the maximal number of tracked
states Shi et al. [212] select the N most likely states. This technique is called pruning and
is implemented by means of beam search. The D-Condensation algorithm is only applicable
efficiently if the number k of actions is very low, as it requires to compute at most 2k successor
states before pruning. Otherwise, the prediction step might require O(N2) memory, which
is infeasible for large k. The complexity of the D-Condensation filter is O(N T ), O(N) for a
single filtering step.
With respect to the LTS, as discussed in Section 2.1.4, the D-Condensation filter would

represent the complete state space of the LTS. While this is obviously infeasible for infinite
state spaces, it requires high amounts of memory even for small LTSs. This is due to the
assumption that all k actions may be active at the same time, while in the LTS only one step
can be active at each time-step.
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Particle Filter Marginal Filter

Memory Units

X-States

S-States

Figure 3.4.: Schematic illustration of the S state, X state and representation unit assign-
ment in Particle Filter and Marginal Filter. The PF uses several representation
units to track the same X state, whereas in the MF only one particle is required to repre-
sent oneX state. As illustrated, this results in moreX states (and S states) being tracked
by the same number of representation units in the different approximate algorithms. This
illustration was previously published in [172].

Marginal filtering in latent infinite LTS The MF translates the ideas of the D-Condensation
filter and the marginal PF to the categorical state space provided by the LTS. For this reason
an explicit representation of the LTS state in the form of X states is utilised. In contrast to the
D-Condensation filter, which is developed to handle durative actions in comparatively small
state spaces, the marginal filter employs the concept of marginalisation to restrict the number
of LTS states to be tracked. Additionally, due to the causal modelling approach, the branching
factor b of the LTS is much more limited as in the D-Condensation filter (2k at most). Starting
with the initial state distribution, for each state the successor states are computed. The number
of successor states is thereby restricted by bN , which essentially describes the number of actions
that can be executed in a particular LTS state. Due to incremental exploration of the state
space, the marginal filter has to maintain only a limited sub-set of the potentially infinite state
space. This allows the marginal filter to apply the concepts of the D-Condensation filter to
infinite LTSs.

Belief state representation The MF uses a set of X states to approximate the marginal filter-
ing density by maintaining the density p̂(Xt | y1:t) with finite support supp(p̂). Correspondingly,
p̂ can be represented by a set of pairs of X states x(i) and weights ω(i). By ensuring identical
X states to be merged, the value of p̂(xt) is computed by summing over all trajectories that
arrive in state x at time t. Figure 3.4 illustrates the difference in tracking X states and S
states by the marginal and the PF. As it can be seen from the figure, the number of X states
that can be tracked is higher for the MF even though the number of particles does not differ.

Inference in the marginal filter Similar to the PF, inference is done by executing two steps,
prediction and update. Algorithm 2 gives a detailed description of forward filtering in the MF.
During prediction, for each X state x(i)

t , every applicable action is applied and the successor
state is computed.

p̂(Xt+1 | y1:t) =
∑

xt∈supp(p̂t)

p(Xt+1 |xt)p̂(Xt | y1:t) (3.11)

This step typically leads to a higher number of X states. Due to the restricted branching
factor, only a finite set of states is reachable in each time-step, as for each state only a finite set
of successor states will be computed. The restriction of the branching factor is a direct result
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of the LTS generated from the causal model, which, as discussed, leads to sparse transition
matrices (see Section 2.1.5). In the correction phase, for each X state x(i)

t the observation
model is used to compute the corrected posterior distribution.

p̂(Xt+1 | y1:t+1) = p(yt+1 |xt+1)p̃(Xt+1 | y1:t) (3.12)

The support of the posterior supp(p̃(Xt+1 | y1:t+1)) is still finite. This allows the computation
until this step to be exact, without a need for approximation. The sole approximation is then
to restrict the number of weighted X states to be tracked. This is done by employing beam
search and selecting theN most probableX states from p̃(Xt+1 | y1:t+1) to build p̂(Xt+1 | y1:t+1).
Afterwards the set has to be normalised to ensure p̂ to sum to one. A more sophisticated method
to pruning is discussed by Nyolt and Kirste [171].

Complexity of the marginal filter The complexity of the MF is O(N T ), for one filtering step
O(N). If N is fixed, the complexity of one filtering step reduces to O(1), differing only in the
constant factor to the complexity of the PF. As for the pruning step, an absolute order of
the states by weight is not necessary, the application of sorting can be omitted here. Thus,
the pruning step can be done by selecting the N states with the largest weights, which can be
accomplished in linear time [27].
In addition to efficient forward filtering, the MF allows both, estimating the smoothing

density and the maximum a-posteriori path to be computed in O(N T ). This is basically done
by first considering only actions whose resulting state is part of the filtering density and by
caching the probability of selecting an action at in a specific state st. Caching action selection
probabilities based on the S state allows reusing them in all associatedX states. This effectively
reduces the complexity of selecting a new action from O(nSA) to O(1) per state, where nSA is the
number of applicable actions in state S. The number of applicable actions per state, namely
the branching factor, is constant and can be assumed to be much smaller than the overall
number of actions. In addition, caching prevents the action selection function γ from being
recomputed for different X states that are based on same the S state.

Marginal filtering for categorical state spaces To summarise, the MF allows for efficient
approximate inference in categorical state spaces. It overcomes the drawbacks of the PF by a
weight-based representation, where the representation of duplicated X states is prevented. By
replacing the sampling-based prediction step of the PF by fully expanding the successive time-
step, an exact prediction is allowed. By ensuring duplicate X states to be merged, an efficient
representation of the belief state is enabled. Finally, by substituting the resampling step of
the PF by pruning based on beam search, it is guaranteed that the most likely hypotheses
about the state space are further maintained. Thus, the MF provides an improved method for
inference in categorical state space with sparse transition matrices.

3.3. The Computational Causal Behaviour Model Toolbox

In order to investigate the capabilities of CCBM with respect to recognition performance, the
CCBM toolbox provides an implementation of the concepts introduced thus far. It provides
a collection of tools related to CCBM based inference. The purpose of the CCBM toolbox is
to provide a common infrastructure to investigate different aspects of the question IQ. To this
end, the CCBM toolbox provides a modelling language and an implementation of the inference
algorithms (see Section 3.2). In the following, a brief overview of the toolbox is provided.
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3.3.1. Modelling Language

Objective One central aspect of CSSMs is the computational action language, which allows to
describe the system dynamics by computational means. This allows to specify a latent infinite
LTS. The concept of CSSM, in general, raises no restrictions to the modelling language. Any
computable form can be used to describe the actions and their interactions with the state.
However, as discussed in Section 2.1.4, the application of DSLs allow for reusability. As this
is one of the main objectives of CCBM, the use of a modelling language that satisfies the
needs of the investigations, conducted in this thesis, is considered rather than using a general
purpose programming language such as C++ [225] or LISP [207]. Additional justification of this
decision is provided by Spinellis [216], who provides a list of advantages of DSLs over general
purpose languages when it comes to special modelling purposes. These are for instance, “Direct
involvement of the domain expert” – DSLs allow domain experts to be easily incorporated –
and “expressiveness” – DSLs “can be designed to provide the exact formalisms suitable for that
domain”,(Spinellis [216]).

General framework In order to address the needs of the investigations in this thesis, a list
of requirements for the modelling language was collected. The analysis was done based on
the requirements for the inference system (Section 1.2), the statistical model (Section 3.1) and
the requirements analysis on human behaviour modelling by Yordanova [255]. The following
requirements were considered:

L1 The modelling language has to support the paradigm of model-based specification. In
particular, the modelling language has to allow the specification of the environment state
by means of state features resembling properties of the application scenario under inves-
tigation. Furthermore, actions have to be modelled by their relation to the environment
state. Preconditions are used to limit the number of possible states where actions can be
executed in and effects describe how the execution of an action changes the state.
(This requirement is a direct result of the discussion in Section 2.1.4.)

L2 The modelling language has to support the specification of action templates. By providing
parameters, an action template describes a set of actions.
(This requirement results from considerations with respect to reusability, as action tem-
plates can be reused with different variables that match the definition of the parameters.)

L3 The modelling language has to provide a certain support for multiple agents. In partic-
ular, different execution threads for different agents have to be modelled. Furthermore,
the execution thread for actions has to be specified.
(This is necessary to investigate the multi-agent capabilities of CCBM with respect to
reusability (R5.3) and recognition performance.)

L4 The modelling language has to support the specification of probabilistic action durations.
Depending on the parameters of the action template (see requirement L2), the modelling
formalism has to allow the specification of the actions’ durations.
(This requirement is a result of discussions about action durations in Section 3.1.)

L5 The modelling language has to allow to bind an observation model to the behaviour
model, to support both, action and state observation models. For each action template
(see L2) and for each state feature of the environment state, support for specifying the
interaction of observation and behaviour model has to be provided.
(This requirement is a result of the discussion about the statistical model in Section 3.1.)

L6 The modelling language should allow to separate the general parts of the model from the
parts that are specific to the application scenario. This allows the general parts to be
reused by adjusting application specific parameters.
(This requirement is a result from the considerations with respect to R5.1.)
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Design considerations Yordanova [255], who analysed the requirements for human behaviour
models, gives an overview of alternatives and highlights PDDL as favourite choice to model
human behaviour. Thus, similar to other modelling languages for CSSMs used in the lit-
erature [189], the CCBM modelling language is based on PDDL [156]. In addition to the
specification of human behaviour, the use of PDDL provides further advantages, as it allows
for model checking [173] and automatic state space analysis without requiring full state space
exploration. The latter has been used in the planning domain for e.g. the automatic extraction
of landmarks [193] or reachability analysis [227].
In detail, PDDL satisfies the following requirements directly:
L1: PDDL employs the model-based specification mechanism. State features are described by

means of predicates and fluents. The main difference between both is that predicates use
a boolean value domain, whereas the value domain of fluents can be customised. Actions
are described by preconditions and effects with respect to the state features.

L2: Actions in PDDL are described by use of action schemata with parameters. For each
parameter the type is provided. During grounding for each combination of possible
instantiations of the parameters, a grounded action is created. Thus, PDDL allows the
specification of sets of actions by use of action schemata.

L6: A PDDL planning task consists of two parts: the domain and the problem description.
The domain description can be considered as static within the same application domain.
The problem specification contains a list of involved objects, an initial state and a goal
formula and can thus be considered as dynamic within the same application domain.
This allows domain specifications to be reused with different problem descriptions.

With respect to the choice of the modelling language, the terms “action schema”, “grounded
action” and “action class” are defined as follows:

Definition 6 (action schema) An action schema is a template with parameters. An action
schema describes a set of actions by use of these parameters.

Definition 7 (grounded action) A grounded action is a specific instance of an action schema.
Instead of parameters, grounded actions refer to specific objects.
Within the scope of this thesis the term “action” refers to a “grounded action”.

Definition 8 (action class) An action class describes the type of action. Typically, an action
class refers to an individual action schema, but this is not necessarily the case.
Within the scope of this thesis the term “activity” refers to an “action class”.

Realisation In order to satisfy the entire list of requirements, the CCBM modelling language
introduces additional features. The slots :agent, :duration, and :observation are
introduced to satisfy the requirements that are not directly satisfied by PDDL. Example 3.1
provides an action specification. In detail, the following requirements are addressed:
L3: The CCBM modelling language allows to set the execution slot of an action by use of

the slot :agent. This can either be done by use of a constant or a parameter. For each
object, regardless of the type, that is at least once set by any action schema, a different
execution thread is created. An execution thread reflects the multi-agent concepts that
are discussed in Section 3.1. For the action take in Example 3.1, each grounded action
will be executed in the corresponding execution thread of the individual occupancy of the
parameter ?who. If the variable ?who is, for instance, instantiated with three different
values, three execution threads are created.

L4: To specify a probabilistic action duration for an action template, the slot :duration
is used. The value of this slot does not specify an action duration directly, but rather
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Example 3.1: The action take

The action template take as defined with the CCBM modelling language. The action take
has three parameters: a person that takes something, an object that is taken, and the
original location of the object. The duration of the action is given by the external function
takeDuration. The action is executed in the thread of the person who takes the object. The
action take can be applied whenever the number of objects that are already taken is below
2 and the both the person and the object are at the original location of the object. After
the action take was executed, the number of objects is increased by 1 and the location of
the object has changed to the person – the person is carrying the object. The observation
probability this action schema is computed by the function takeObservation.

(:action take
:parameters (?who - person ?what - object ?from - location)
:duration (takeDuration)
:agent ?who
:precondition (and

(< (objects-taken ?who) 2)
(= (is-at ?what) ?from)
(= (is-at ?who) ?from))

:effect (and
(increase objects-taken)
(assign (is-at ?what) ?who))

:observation (takeObservation)
)

refers to an external function. The rationale here is, that the construction of duration
models including the selection of appropriate PDFs is part of active research. To this end,
the reference to an external function allows the duration model to be adjusted without
changes to the behaviour model. For the action take in Example 3.1, the duration of all
grounded actions that are generated from the action schema is provided by the external
function takeDuration.

L5: The requirement to bind observation models is addressed by the slot :observation.
As for the duration model, the value of the slot refers to an external function. Likewise,
the rationale is that the observation models can thus be exchanged without changes
to the model. In Example 3.1 the observation model for all grounded actions of this
action schema is provided by the external function takeObservation. Additionally,
to support state observations an :observation clause is introduced to the domain.

Example A.1 provides a domain and a corresponding problem description.

Compilation of behaviour models When it comes to inference based on models of human
behaviour, CCBM follows the “source-to-source transformation” creational pattern [216] – the
CCBM modelling language is translated to C++ [225]. The result of the compilation is a C++

representation of the environment state and all grounded actions. Example 3.2 provides the
results of the compilation of the action from Example 3.1. The generated C++ code is then
compiled together with an implementation of the inference algorithms. The rationale here
is that CCBM could take advantage of the execution speed due to the optimised compilation
toolchain, when it comes to inference. This is also an advantage over the usage of interpretation,
as compilation time can be neglected in favour to inference time. The reason for this is that
an inference task will be executed several times without changes to the domain or the problem
specification, as usually action sequences have to be reconstructed from several observation
sequences (for instance Experiment X1 executes 20 inference tasks with the same model). This
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Example 3.2: Compiled representation of the environment state and the action.

For each grounded state feature the state contains a variable. The state is a result of
compiling the action from Example 3.1. The preconditions and effects of the action0 (take
emilia spoon drawer) refer to the compiled state representation in Example 3.2.

struct StateRec {
unsigned int F0:2; // objects_taken emilia
unsigned int F1:3; // is-at plate
unsigned int F2:3; // is-at spoon
unsigned int F3:3; // is-at emilia

StateRec() {bzero(this,sizeof(StateRec));}
};

//(take emilia spoon drawer)
bool action0(StatePtr x, StatePtr x1) {

if(x->F0 < 2 && x->F1==1 && x->F3==1) {
*x1 = *x;
x1->F1 = 0;
x1->F0 = (x1->F0)+1;
return true;

} else {
return false;

}
}

is in contrast to traditional planning where the planner is executed once for each combination of
domain and problem, which are interpreted by the planner to save time of the overall process.

3.3.2. CCBM Inference Tools

Objective of the CCBM toolbox is to allow investigations of the concept of CCBM. This
includes modelling aspects as well as the inference algorithms that were introduced in Section
3.2. To this end, for both inference methods a corresponding inference tool is provided.
Particle Filter: The PF inference tool provides an implementation of Algorithm 1. Thus, given

an observation sequence, the PF estimates the most likely sequence of X states by main-
taining a belief by sets of particles.

Marginal Filter: The MF provides an implementation of Algorithm 2. Like the PF, the MF
takes a sequence of observations and estimates the sequence of X states.

The need for these tools was also described in the workflow for developing causal models for
AR, introduced by Yordanova and Kirste [258]. The inference tools are required to estimate
the activity during the evaluation phase.
Another tool that was suggested by Yordanova and Kirste [258] is the plan validator. It

is used in the validation phase, as it allows to check wether the behaviour model allows to
represent the action sequence derived from the annotation. The need for a plan validation tool
is also described in Chapter 4 to ensure annotation to be causally correct.
As discussed in Section 3.2, the inference complexity of both, PF and MF depends on the

number of particles. The complexity of both the PF and the MF is O(N T ), where N is the
number of particles and T the length of the observation sequence. Efficient inference means to
handle the states in an appropriate way, as similar, for instance, in each time-step, equal states
have to be merged. Bonet and Geffner [29] suggest the usage of hash tables, as they allow to
access elements in constant time. This is also implemented in the CCBM inference tools.
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Causally Correct Annotation

Synopsis: This chapter discusses the need for annotation sequences and the problem of causal in-
consistencies in the annotation. A model-based semantic annotation by means of LTSs is proposed
to overcome this problem. Finally, a workflow that allows to produce causally correct annotation
is introduced.

Chapter Sources: Parts of this Chapter have been previously published in the following publi-
cation(s):

• Towards Causally Correct Annotation for Activity Recognition [92]
• Computational State Space Models for Activity and Intention Recognition. A Feasibility

Study [133]

The annotation of sensor datasets describing human behaviour is an important part of the AR
and the PR process [26, 40]. It provides a target label for each observation in the cases where
supervised learning is applied. It also serves as a ground truth for evaluating the performance of
the activity or plan estimation procedure by comparing the estimated values with the annotated
values. As this thesis targets at activity and context recognition, sufficient annotation labels
that provide the corresponding ground truth are required. Furthermore, as CCBM exploits
causal dependencies the annotation has to be causally correct. Here, a model-based (see Section
2.1.4) approach to semantic annotation of human behaviour is proposed, like for the modelling
of human behaviour.

4.1. Annotation of Human Behaviour

Annotation of activities In the context of human behaviour recognition, three different types
of annotation exist. In the first type of annotation, textual descriptions (or labels) are assigned
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Source sensor modality sensors example labels

[18] motion sensing accelerometers, video walk, stand, sit
[223] object sensing RFID vacuuming, ironing
[54] smart environment switches, device usage, location phone call, wash hands, cook
[149] location tracking GPS, indoor navigation work, sleep, car
[238] dense sensing reed switches, pressure mats, pas-

sive infrared
leave house, showering, prepar-
ing breakfast

Table 4.1.: Examples of annotation schemes The table lists different annotation schemes, where
the choice of the label set was influenced by the sensing modalities used.

to each executed action [60, 64, 86, 238]. The objective is to manually assign a label li to
each time-step of a time series by analysing a separately recorded video log. The resulting
sequence of labels is usually called ground truth, as it provides a symbolic representation of
the true sequence of activities. However, for the finite set L = {l1 . . . ln} of labels there
is usually no further information besides the equality relation. This type of annotation is
therefore known as annotation of activities as it simply provides an activity label without any
further meaning [239]. Annotations such as “take-baking_pan” provide a textual description
of the executed task that, however, do not contain an underlying semantic structure, although
imitating a semantic meaning. There is usually no formal set of constraints that restrict the
structure of the label sequences. Typically, nothing prevents an annotator from producing
sequences like “put fork to drawer” → “close drawer” → “take knife from drawer”. Examples
of such textual labels can be found in the data provided by [192, 218, 60]. This is also the
most common type of annotation of human behaviour, partially because even the assignment
of non-semantic labels to the data is a difficult, time consuming and error prone task [238, 40].
In addition to absent semantic meaning, the label set and its granularity is often decided

upon the expected capabilities of the sensor infrastructure used in the experiment [64, 238, 223].
For instance, temperature sensors in the showers, pressure sensors in the bed, and reed switches
in the door strongly correlate with annotated activities showering, sleeping, opening/closing.
Table 4.1 lists examples from the label set including the sensor modalities from the literature.
While this approach seems convenient at first, it is inappropriate for two reasons: (1.) it
exaggerates the discriminative capabilities of the model as the target labels are determined by
the sensors capabilities and (2.) it effectively prevents the annotation scheme from being reused
independently from type of sensors.

Plan annotation The second type of annotation is the plan annotation. Blaylock and Allen
[26] divide it into goal labelling and plan labelling. Goal labelling is the annotation of each plan
with a label of the goal that is achieved [4, 24]. In contrast, plan labelling provides annotations
not only of the goal, but also of the actions constituting the plan, and of any subgoals occurring
in the plan [19]. The latter is, however, a time consuming and error prone process [26]. The only
attempts of such plan annotation are done when executing tasks on a computer (e.g. executing
plans in an email program [19] or interacting with the terminal [24]). This is also reflected in
activity and plan recognition approaches [189, 95] that use only simulated observations, and
thus simulated annotation, to recognise the human actions and goals.

Semantic annotation The third type of annotation of human behaviour is the semantic an-
notation [123]. The term originates from the field of the semantic web. Semantic annotation
is described as the process and the resulting annotation or metadata consisting of aligning a
resource or a part of it with a description of some of its properties and characteristics with
respect to a formal conceptual model or ontology [10]. The concept is later adopted in the
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field of human behaviour annotation, where it describes the annotating of human behaviour
with labels that have an underlying semantic structure represented in the form of concepts,
properties, and relations between these concepts [49, 201].

Model-based semantic annotation As argued in Section 2.1.4, the model-based represen-
tation provides a model of the system’s state in terms of collection of state variables. The
individual operations are defined in terms of their preconditions and effects on the state of the
model. There have been no attempts to represent the semantic structure of human behaviour
annotation in the form of model-based representation. Here, an approach to semantic anno-
tation of human behaviour is used that employs a model-based representation of underlying
semantic structure.
By providing an LTS, the set of causally correct annotation sequences is given by the se-

quences that can be generated by the LTS. In the following the LTS that represents the possible
annotation sequences in named annotation LTS (aLTS), as it establishes a labelled transition
system to ensure causal annotation correctness. More formally, consider an alphabet of labels
L and an observation sequence of length n. Typically, the output of the annotation process
is an annotation sequence α1:n ∈ Ln. As already argued in Section 2.1.1, this annotation se-
quence is unrestricted in terms of possible sequences. Even impossible sequences can occur.
Objective of the annotation process, proposed here, is to find a set L∗ ⊂ Ln such that α1:n ∈ L∗
represent “correct” sequences. Here, the term correct sequences describe all sequences that can
be generated by traversing the aLTS when starting from the initial state.
This representation allows to provide not only a semantic meaning to the labels, but also

to produce plan labels and to reason about the plan’s causal correctness. Furthermore, it
gives the state of the world corresponding to each label and allows to track how it changes
during the plan execution. This allows to generate a context annotation by “executing” the
annotation sequence with respect to the aLTS. The following section describes the workflow
for creating such model-based semantic annotation. Examples are taken from the Carnegie
Mellon University Multimodel Activity (CMUMMAC) database [59].

4.2. Model-based Semantic Annotation for Human Behaviour

Typical AR experiments, such as the CMUMMAC [59], are the targeted group of datasets.
Participants are instructed to fulfil a task such as food preparation. To ensure comparability
of different repetitions, identical experimental setup is chosen for each trial. As a result, the
action sequence executed by the participants can be regarded as a plan, leading from the same
initial state (as chosen by the experimenter) to a set of goal states (given in the experiment
instruction). Thus, an aLTS can be employed to describe the possible actions sequences.
The proposed annotation process allows to label a sequence of actions leading from an initial

state to a set of goal states. If the action sequence, actually executed by the human protagonist,
consists of two interleaved plans with two distinct goals (e.g. having prepared breakfast and
having finished the morning routine), the goal can be defined as a conjunction of both.
In the following, the workflow steps to manually create a model-based semantic annotation

are described. A graphic of the annotation process workflow is given in Figure 4.1.

Step one: Action and entity dictionary definition In the first step, a dictionary of action
classes (e.g. the action class of “take-fork-drawer” is “take”) and entities is created by a manual
analysis of the video log. The action classes are represented by their name and a description
of the action class that distinguishes it from the remaining action classes. The dictionary
also contains the set of all entities observed during the experiment. All physical objects being
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Figure 4.1.: The proposed workflow for semantic annotations of human behaviour.

action class

a1 take
a2 put
a3 walk

. . .
an stir

entity

e1 knife
e2 drawer
e3 counter

. . .
em pepper

Table 4.2.: Example of the results of the first annotation step. The table exemplifies dictio-
naries of actions (l.) and entities (r.) that were result of the first step of the proposed
annotation process.

manipulated by the human protagonist (including the protagonist(s)) are considered as entities.
The dictionary is manually created by domain experts analysing the video log. The results of
the dictionary definition are the set of action classes and the set of entities manipulated during
action execution (see Table 4.2).
In addition to the name, a definition is provided for each action class. The definition of

action take for example is given in Example 4.1.

Step two: Definition of action relations In the second step, the action relations are defined.
For each action, the number and role of involved objects is defined. In case of take, for example,
an object and a location, where the object is taken from, are defined. In addition, for each
object, possible roles have to be identified. A pot, for example, can be taken, filled, washed,
and stirred. The result of this step is the finite set of labels L = {l1 = ã1

1, l2 = ã2
1, . . . , lk = ãmn },

where ã defines the syntax of the action relation a to be used for the annotation process (see
Table 4.3). This set represents the set of labels to be used for the manual annotation process.
To complete this step, a set of types is defined based on possible roles of all entities.

Step three: Definition of state properties Objective of the third step is to define the state
space by means of state properties. Therefore, a set of state properties is defined, each as
function of a tuple of entities to an entity of the domain. The state space is then defined
by each combination of possible mappings of entity tuples. Finally, the subset of mappings

Example 4.1: Definition of the action take

To grab an object. The location of the object changes from the initial location to the hand
of the person. The action consists of moving the arm to the object, grabbing the object
and finally moving the arm back to the body.
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a1 take (what:takeable, from:location)

a1
1 take (knife, drawer)
a2

1 take (knife, board)
. . .

a2 put (what:takeable, to:location)

a1
2 put (knife, drawer)
a2

2 put (knife, board)
. . .

Table 4.3.: Example of the results of the second annotation step. The table lists the type
signature and each possible instantiation for the set of actions identified in the previous
step.

f1 is-at (what: takeable) → location

f1
1 is-at (knife) 7→ drawer *
f2

1 is-at (knife) 7→ board
. . .

f2 objects_taken () → number

f1
2 objects_taken () 7→ 0 *
f2

2 objects_taken () 7→ 1
. . .

Table 4.4.: Example of the results of the third step of the annotation process. The table
shows a list of functions with type signatures and their instantiations. A ∗ marks functions
holding in the initial state.

that holds in the initial state (start of the experiment) is marked (see Table 4.4). The result
of the third step is a list of functions that define state properties. Moreover, for each entity
defined in the first step, a list of state property functions and action relations is available. The
specification of types from the previous step is extended by the entities’ roles with respect to
the state properties. Based on the type of each entity, defined by their corresponding state
property functions and action relations, a type hierarchy can be created.

Step four: Definition of preconditions and effects Objective of the fourth step is to define
the semantics of the actions. Using the type signature defined in the second step, action
schemata are defined in terms of preconditions and effects. As illustrated above, participants’
action sequences are regarded as plans. Actions are described in a PDDL-like1 syntax, known
from the domain of automated planning and scheduling. The preconditions and effects for the
single action schemata are formed by domain experts. A take action for example requires an
object to be taken, the maximal number of objects not to exceed, and, in case the location is
a container that can be opened and closed, it has to be open. This requires either the plan
sequence to contain an action which opens the container, or the container to be open in the
initial state. Effects of the take action are that the location of the object is changed from the
original location to the hand, the number of taken objects is increased, and if the object to be
taken is dirty the hands become dirty too (see Figure 4.2).

Step five: Manual annotation Once the dictionary of labels is defined, the manual annotation
can be performed. Here, the ELAN annotation tool [249] is used for manual annotation. An
annotator has to assign labels from the defined label set to each time-step of the video sequence.
The ELAN annotation tool allows to synchronise several video files and to show them in parallel.

1In the scope of this thesis the CCBM modelling language is chosen as action language.
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(:action take
:parameters (?what - takeable ?from - loc)
:precondition (and
(= (is-at ?what) ?from)
(not (= ?from hands))
...

:effect (and
(assign (is-at ?what) hands)
(increase (objects_taken) 1)
(when
(not (is-clean ?what))
(not (is-clean hands)))))

Figure 4.2.: Specification of the annotation LTS action take. Extract of the aLTS action schema
for the take action encodes preconditions and effects in the CCBM modelling language.
The entities (i.e. hands) are result of the first step, the list of parameters (i.e. (?what
- takeable ?from - loc)) of the second step, and the available state features (i.e. is-at,
is-clean) result of the third step.

To prepare the annotation sequence for the next step, plain text is extracted from the ELAN
file format. Figure 4.3 shows the ELAN tool during the annotation of a cooking task.

Step six: Plan validation Since the label sequence produced in the previous step consists of
plan operators, the complete sequence can be interpreted as plan, leading from an initial to a
goal state. Objective of the sixth step is to check the causal validity of the label sequence with
respect to the planning domain created in the previous step. A plan validator (such as VAL [102]
or the CCBM validator (see Section 3.3.2)) can be used for this task. If the label sequence does

Figure 4.3.: Screenshot of the annotation procedure using ELAN. The ELAN tool used to
manually create an annotation sequence from the video log of the CMUMMAC [59]. Here
the action “take-knife-drawer” is being annotated. It can be seen that the annotation of
the action “open-drawer” is missing. Thus, the action “take-knife-drawer” is marked as
causally incorrect, as it is not possible to take an object from a closed drawer. The red
explanation mark tags this problem while validating the plan. The annotator is informed
about the causality issue and advised to go back to step four of the annotation process.
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not fulfil the causal constraints of the planning domain, two possible reasons exist: (1.) the
planning domain does not correctly reproduce the constraints of the experimental setting or
(2.) the label sequence is incorrect. In case of an incorrect label sequence, step five (manual
annotation) has to be repeated to correct the detected problems. In case of an incorrect
domain, either the preconditions, defined in step four, have to be relaxed or the effects have
to be revised. Figure 4.3 provides an example of a failed annotation sequence. The action
“take-knife-drawer” cannot be executed, since the action “open-drawer” in not annotated, yet.
Consequently, the plan validation fails, as the preconditions for the taking the knife from the
drawer are not satisfied.

Summary The proposed annotation process has three results, (1.) the sequence of labels,
(2.) the semantic structure of the labels, and (3.) an aLTS describing the causal relation of the
labels. The application of CCBM requires the causal correctness of the annotation and thus
a formal model of causal behaviour. Causality not available in the aLTS cannot be reliably
exploited in the inference model. As consequence the LTS created for inference (inference
LTS (iLTS)) has to be a refinement of the aLTS. Otherwise, the iLTS will not be able to
differentiate between certain states and actions that are discernible in the aLTS.
To summarise, in order to employ the causal structure of human behaviour during inference,

already the annotation of the test and training data has to be causally correct. Furthermore,
reasoning about actions, goals and contextual information requires the annotation to contain
such knowledge. The proposed process allows the creation of a causally correct semantic
annotation of human behaviour. The process was used to provide such annotation for the
second (Section 6.2) and the third experiment (Section 6.3).
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Methods

“Prediction is very difficult, especially about the future.” – Niels Bohr

Synopsis: This chapter’s aim is to provide an overview of the methods used for the experimental
investigations on the capabilities of CCBM. After collecting research questions by analysing the
question IQ and the requirements, a brief discussion about the usage of empirical data is provided.
Then the procedure for executing and evaluating the experiments is introduced. Typical evaluation
measures are discussed briefly and finally, appropriate measures are selected.

Chapter Sources: Parts of this Chapter have been previously published in the following publi-
cation(s):

• Computational State Space Models for Activity and Intention Recognition. A Feasibility
Study [133]

• Plan Synthesis for Probabilistic Activity Recognition [131]
• Where are My Colleagues and Why? Tracking Multiple Persons in Indoor Environ-

ments [132]

The previous chapters introduced the general concept of CSSM and presented CCBM as one
instance to reconstruct human behaviour from sensor data. CCBM was developed to provide a
reusable mechanism to infer the activity, the plan, and the context simultaneously. The topic of
this chapter is a discussion of the methodologies that are used to demonstrate the effectiveness
of CCBM with respect to question IQ. To this end, in the first step a list of research questions
is derived from question IQ and the requirements, stated in Section 1.2.2. The discussion then
addresses the need for empirical data. Afterwards, the general experimental design, which was
the basis for all experiments, is introduced. Finally, measures for performance estimation are
discussed.

63



5. Methods

5.1. Research Questions

In Section 1.2.2, a list of requirements for the inference system was derived. This section now
aims at translating these requirements into research questions that can be answered by con-
ducting experiments and analysing the results. To summarise, the following five requirements
were collected: (1.) Uncertainty – handling sensor observations (R3), (2.) Online – allow-
ing online inference (R2), (3.) Reusability – allowing the behaviour model to be reused (R5),
(4.) Latent infinity – handling possibly infinite state spaces (R4), and (5.) Plan – recognise the
plan and the goal of the human protagonist (R1).
Chapter 3 illustrated that these requirements are addressed by considering ideas from the

literature that partially satisfy them. A model-based description allowing for reusability, similar
to PDDL as used by Ramírez and Geffner [188] is used to generate a possibly infinite LTS
graph. A statistical model, similar to the one described by Liao et al. [149], was introduced
for inference in this graph to cope with uncertainties inherent to sensor data. Finally, the
framework of Bayesian forward filtering was applied to allow online inference of the plan of
the human protagonist. Consequently, CCBM satisfies the stated requirements and allows to
answer the question IQ. Besides to satisfying the stated requirements, an inference system for
CSSMs has to be able to achieve recognition rates at the same level as standard methods.
By using a computational action language, as described in Section 3.3.1, it is very easy to

produce models with very large state spaces. The reason for this is the ability for generalisation
of the computational representation. A model considers all action sequences that achieve the
same objective rather than concentrating on an explicit enumeration of action sequences (see
Section 2.1.4 for a detailed discussion). However, from the viewpoint of statistical inference, a
large state space is first of all not an asset but a liability. A larger state space, allowing more
variance in the action sequences, might achieve weaker recognition performance than a smaller,
potentially more biased state space. This can be considered as an instance of the bias-variance
trade-off [88, p.158].
Objective of the experiments is to provide evidence that, albeit providing a rich state space,

CCBM allows to achieve recognition rates at the same level as baseline classifiers. Thereby it
is shown that CCBM satisfies the requirement for uncertainty by using noisy and ambiguous
sensor data produced by observing human protagonists. As discussed in Section 1.2.2, three
aspects of reusability R5 are targeted by CCBM. R5.1 is addressed by developing a model
for a specific scenario of an application domain and applying the same model to a different
scenario. At the same time the model has to achieve good recognition rates1. Exploiting
action and state observation (Z and W component of the statistical model in Figure 3.1) while
recognising activities based on the same causal behaviour model allows to demonstrate the
satisfaction of R5.2. Finally, to provide evidence for the satisfaction of R5.3, the multi-agent
capabilities have to be investigated.
To a address the above issues, they were rephrased as research questions. More precise, the

following research questions were raised:

RQ1 Is it possible to simultaneously estimate activities, context information, and the goal
from location data with CCBM models of similar complexity as related approaches with
recognition rates at the same level as baseline classifiers?
(addressed requirements: Plan, Uncertainty)

RQ2 Is it possible to reconstruct the action sequences of multiple cooperative agents with a
CCBM model with recognition rates at the same level as baseline classifiers?
(addressed requirements: Plan, Reusability)

1Good recognition rates means that the recognition performance should not be significantly worse than for a
trained baseline classifier.
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Requirement RQ Experiment X1 Experiment X2 Experiment X3

Uncertainty R1 � � �
R4 � � �
R5 � � �
R6 � � �
R7 � � �

Online - � � �
Reusability R2 � � �

R3 � � �
R7 � � �
R8 � � �

Latent Infinity R4 � � �
R9 � � �

Plan R1 � � �
R2 � � �
R4 � � �
R5 � � �

Table 5.1.: Overview of the experiments and the research questions. For each requirement the
list of research questions, which are targeted are listed. For each experiment the targeted
research questions are marked with �.

RQ3 Is it possible to reuse a causal behaviour model that was created for one specific applica-
tion domain in a different scenario within that application domain?
(addressed requirement: Reusability)

RQ4 Is it possible to achieve successful state estimation using CCBM models of everyday
activities with large state spaces (containing hundreds of millions of states)?
(addressed requirements: Plan, Uncertainty, Latent Infinity)

RQ5 Which modelling factors (duration model, action selection heuristics, inference algorithm,
etc.) are relevant for achieving a good performance in CCBM-based inference?
(addressed requirements: Plan, Uncertainty)

RQ6 Is it possible to achieve good recognition rates for fine grained AR from wearable sensors
by means of CCBM?
(addressed requirement: Uncertainty)

RQ7 Is it possible to exploit the different components of the observation model of the statistical
model without further changes to the causal behaviour model used to generate it?
(addressed requirements: Uncertainty, Reusability)

RQ8 Is it possible to create a causal behaviour model that can be reused for different numbers
of agents?
(addressed requirement: Reusability)

RQ9 How is the recognition performance of a CCBM model influenced by an increased state
space resulting from an increased number of agents?
(addressed requirement: Latent Infinity)

To answer these questions, a series of experiments, each targeting multiple questions, was
conducted. Table 5.1 gives an overview of the experiments, the focussed research questions and
the addressed requirement(s).
The remainder of this chapter addresses the methods being used in order to assess the

performance of the recognition.
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5.2. Empirical Data

Reasons for empirical data From the discussion of related work (Section 2.2), it can be seen
that most studies make use of simulated data and/or direct observation. Especially in the
domain of PR, only few researchers use sensor data from empirical studies (e.g. Bui et al.
[37], Liao et al. [149], Sadilek and Kautz [202]). Some researchers even state that the use
of simulated data is favoured due to issues of behaviour annotation [26]. While the use of
simulated data has several advantages (e.g. reproducibility, almost unlimited data), here we
focus on sensor data from empirical studies.
The use of empirical trial data was chosen in favour to simulated data for the following

reasons:
• The use of simulated data (presumably from the same model that is used for inference)

will exaggerate accuracy and overestimate the effect of action selection heuristics. Ad-
ditionally, it will guide research on action selection heuristics in the wrong direction, as
the simulated action sequence will always fit the heuristic’s assumptions, independent
from the actual heuristic. Action sequences, generated from human behaviour require
the heuristic to reproduce human action selection.

• Evaluating model behaviour with respect to sensor data obtainable in real settings re-
quires to have such data available for use as observations.

• Albeit not necessary for the model development, samples of real-world behaviour pro-
vide a good starting point for model construction in order to develop models of realistic
structural complexity with respect to everyday behaviour.

Sufficient sample size Regarding the sample size of the empirical data collection, it has to be
noted that the purpose of the experimental validation is a comparison of CCBM to standard
methods in realistic scenarios. Therefore, relative comparisons of the methods’ recognition
results are required, rather then absolute performance rates. To this end, a convenience sample
of volunteers was considered sufficient to demonstrate the capabilities of CCBM in comparison
to baseline classifiers.

Empirical data for model comparison The main purpose of the empirical samples is to
provide data for model comparison. With respect to designing the causal model of the CCBM,
a large dataset is not required for parameter training. Furthermore, the causal model is not
subject to the

√
n law regarding the standard error of a parameter estimate. A single example

at the symbolic level is sufficient to infer a causal link. In fact, this is one of the main advantages
of CSSM-like approaches as they allow even rare action sequences to be modelled without the
need for training data.

Evaluation with respect to empirical data With respect to the evaluation, typically, leave-
on-out cross validation is applied to prevent models from overfitting. However, for creating the
causal model of the CCBM, leave-one-out cross validation is infeasible, as it would require the
number of model engineers with identical qualification being equal to the sample size. Thus,
the causal model is developed based on the entire dataset. In order to not disadvantage the
baseline models relative to the CCBM, they were also created by use of the complete data.
Thus, both, the CCBM and the baseline performance can be expected to be exaggerated in
absolute terms due to overfitting. However, as we focus on a comparison in favour of absolute
performance this exaggeration is not an issue. If CCBM can be shown to achieve similar
recognition rates as the baseline classifier, then this justifies an investigation of the capabilities
on a larger scale. This should also include the application of leave-on-out cross validation for
the model development (e.g. by learning models [263]).
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5.3. Experimental Procedure

In order to answer the nine research questions RQ1 – RQ9(see Section 5.1), a series of ex-
periments (X1 – X3) is conducted. The models, which are base of the investigations in the
experiments, are constructed by use of a common development process for human behaviour
models that was introduced by Yordanova and Kirste [258]. The workflow targets the devel-
opment of CSSMs in particular. The process includes six phases that have to be executed
subsequently but allows for iterative refinement:

YK1 Analysis: The problem domain is analysed, a data recording experiment is conducted
and the recorded data is annotated. This step also includes a detailed analysis of the
sensor data and a preparation for further processing. According to the process introduced
in the previous chapter, the aLTS is created in this phase.

YK2 Design: A modelling solution including action durations and action selection heuristics
is selected according to the needs of the application scenario. The contextual information
that is of potential interest has to be identified during the second phase. Additionally,
decisions upon the duration modelling and action selection have to be made.

YK3 Implementation: An initial human behaviour model is implemented. The duration
model and the action selection heuristics are implemented according to the decisions of
the previous phase. During this phase multiple duration models can be implemented and
tested for their influence to the model performance.

YK4 Validation: The model is validated with respect to the actual user behaviour recorded
during the first phase. Here, all parts of the dataset have to be considered to avoid
potential overfitting. Based on the separation of single aspects of the model (e.g. the
different sub-models, see Section 3.1) it is checked whether the model is able to explain
the human behaviour that was recorded during the experiment.

YK5 Evaluation: The model is validated with respect to the discriminate power, namely
the recognition performance. Typical performance metrics are selected to assess the
discriminate power of the model. Furthermore, the results are compared to that of
baseline classifiers and their statistical significance is proved.

YK6 Documentation: A documentation is created that contains all design decisions including
their cause.

At each point during the process it is allowed to go back to a previous phase in order to refine
modelling decisions. In the following, each step of this workflow is described in detail with
respect the experiments X1 – X3.

YK1 – Analysis Objective of the first phase (YK1) is to select an experimental setting that is
appropriate to investigate a research question. For this purpose, during the analysis phase, first,
a subset of research questions was selected. Afterwards, an application domain was selected
based this subset.
For Experiment X1, for instance, research questions RQ1, RQ2, and RQ3 were selected.

The application domain “meeting of three persons” was chosen, as it allows to answer these
questions. A public available dataset [121] was selected, as it allows an investigation of most
selected questions. To allow an investigation of RQ3 – reusability with the same application
domain, the dataset was then extended by conducting a second data recording experiment
in the same application domain. An ADL scenario was selected for Experiment X2 and an
indoor tracking scenario for Experiment X3. The considerations which were the basis for these
decisions are described in the respective sections. The results of the data recording experiments
are made publicly available.
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To assess and compare the recognition performance for each dataset, two baseline classifiers
were selected. One non-temporal and one temporal classifier (see Section 2.1.1). Since reason-
able recognition rates were shown previously for the dataset of Experiment X1 by Giersich [79],
a temporal baseline classifier was considered sufficient to demonstrate potential recognition per-
formance. Furthermore, Experiment X1 itself was considered as baseline experiment. For each
experiment, the baseline classifiers were selected and trained on the entire dataset. Section 5.2
provides a discussion of the reasons for not applying Leave-One-Out cross validation.
For Experiment X2 and Experiment X3, the introduced annotation process (see Chapter 4)

was applied in order to produce causally correct semantic annotation. A re-annotation of the
first dataset was omitted as the annotation seemed reliable and the publication contained no
video information that could have been used.

YK2 – Design Objective of the second phase is to make design decisions about the contextual
information that should be included in the model. Furthermore, the set of necessary action
selection features and duration models have to be selected.
Based on the aLTS, context information that was found to be of potential interest during

the annotation process (see Chapter 4) was selected. Moreover, context information, that is
not part of the aLTS can be chosen. This includes, for instance, the location of persons and
objects, or the set of objects currently handled by a person.
To allow an investigation of the influence of the duration model to the overall recognition

performance, two different duration models were created for each experiment. A parametric
model, that employs a parametric PDF to reflect possible actions durations and an empirical
duration model, which restricts possible action durations to the durations actually occurred in
the dataset.
With respect to the action selection model, a goal distance based action selection was selected

for all experiments.

YK3 – Implementation and YK4 – Validation During the implementation phase, the deci-
sions made in the design phase have to be implemented. This applies to the causal model as
well as to the duration and action selection models.

The inference LTS The aLTS is designed to allow a validation of the annotated action
sequences and to provide additional semantics by means of LTS states. However, the devel-
opment of the aLTS does not target at good recognition rates, which is the design goal of the
iLTS. For this purpose, the preconditions and effects of the causal model that describes the
iLTS have to be more specific.
The iLTS was created based on the aLTS by a two-stage procedure. In the first step, a

feasible solution2 for the behaviour model was constructed iteratively based on the aLTS. In
the second step this solution was refined to the iLTS by use of modifications to the actions.
In general two possible approaches can be thought of when analysing the annotated action

sequences with respect to the iLTS - a sequential and a parallel approach. During the former,
the iLTS is developed by considering only one annotation sequence at once – the model is
adjusted to that plan. The latter, in contrast, focusses on all sequences in parallel. Thereby the
model is sequentially adjusted to the different phases of the annotated scenario. The advantage
of the parallel analysis is that it allows the model developer to concentrate on specific phase of
the scenario rather than on the specific characteristics of the individual plans. For this reason,
the parallel analysis of the annotation chosen.

2Feasible solution means that a first version of iLTS is developed that contains more specific preconditions
and effects than the aLTS, albeit being able to validate the annotated plan sequences.
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The feasible solution was created by applying the following steps:

1 The initial model was set to A0 := ∅.
2 The model As(s = 0, 1, . . . ) was applied on all action sequences in parallel to identify

the smallest t where action ai,t of dataset i fails at time t. (t has to be smaller then the
length of the action sequence i). This step has two possible outcomes:

1 If the action ai,t is not contained in As, the action ai,t was added to As with
preconditions and effects based on the aLTS action.

2 If the action ai,t is in As, but it’s preconditions are not met, either the precondition
of ai,t were relaxed, or the effects of a preceding action were extended, such that the
precondition of ai,t were met.

3 If no failed action could be found (t equal the plan length of the longest action sequence):
As is the feasible solution, as all action sequences are valid with respect to As.

In order to limit the number of plans, the final iLTS was then created by further refinement
of the feasible solution by addition preconditions. This final step was executed by manually
analysing each action schema of the feasible solution. After each change to an action schema
all action sequences were validated by use of the iLTS.

The duration model Regarding the creation of the duration model, the following method
was applied. For the parametric model, a set of candidate distributions were fitted to the
observed durations and the best fitted, according to the likelihood, was selected as duration
distribution. The set of candidate distributions was Cauchy, exponential, gamma, geometric,
lognormal, negative binomial, normal, Poisson, and Weibull. The function fitdistr of the
package MASS [241] of the R programming environment [184] was used to fit the distributions.
The empirical duration model was created by using the empirical CDF of the actions’ durations
in the action sequences of the dataset.
The process of fitting the duration models was adjusted for the individual experiment, due

to their specific properties. The number of actions for Experiment X2, for instance, was found
to be larger than for the other experiments. For this reason, evaluation was done based on
the action class rather than on the specific action. Consequently, as the baseline classifiers
were trained on the action class, also the duration model for Experiment X2 was created with
respect to the action class.

The action selection model As determined in the design phase, the action selection model
was based on the goal distance. For all experiments the goal distance was computed by an
exhaustive process.
As Experiment X2 targeted at the investigation of the influence of the different parameters on

the overall recognition performance, additional goal distance based heuristics were considered.
The action selection feature fδ̄ – the core distance – was selected as training based goal distance
heuristic, as it only considers states that actually occurred during the experiment. Furthermore,
fd – the recipe distance – was considered, as it represents an alternative goal distance that was
created by analysing the experimental instruction and the actual action sequences (see Table
6.6). Moreover, also the respective weights λ were adjusted to allow a detailed analysis of their
influence.

YK5 – Evaluation In order to assess the performance of the model, for each experiment
the inference tool created by the CCBM toolbox was applied to the observation sequence.
Several different performance measures (e.g. accuracy) were then assessed and compared with
the corresponding results of the baseline classifiers. The accuracy was considered as main
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Factor Description

Target the targeted filtering distribution (e.g. forward (p(xt | y1:t)), smoothing (p(xt | y1:T )), or MAP-
sequence (argmaxx1:T p(x1:T | y1:T )))

Model the model that is used to represent the temporal relations of actions (e.g. non-temporal
baseline classifier, HMM, or CCBM)

Mode the inference algorithm used to reconstruct the action sequence within CCBM (e.g. MF or
PF)

Observations the observation model
Distance the different action selection features for goal distance approximations (e.g. fδ, fδ̄, or fh)
Weight the weight λk of the different action selection features (e.g. 0 or 1)
Duration the duration models (e.g. parametric or empirical duration model)
Dataset the dataset used for evaluation (given by the identifier of the respective dataset)
Trial the trial used for evaluation (given by the identifier of the respective trial)

Table 5.2.: Modelling factors and their meaning for experimental configurations. For each
modelling factor a description and possible levels are given. Depending of the objective of
the experiment the subset of considered modelling factors and their levels differ.

performance criterium, as the review of the literature revealed that it is the most common
measure. A discussion of evaluation methods is provided in the next section.
To assess the capabilities of CCBM with respect to the recognition performance and the

different reusability aspects, a variation of different modelling factors was used within the
experiments. Table 5.2 gives an overview of all modelling factors that were considered in the
experiments. Note that depending on the objective of the respective experiments only a subset
of these factors is considered within each experiment. A detailed description of the levels used
for evaluation of the experiments is provided in description of the respective experiment.

5.4. Evaluation Methods

In the previous section, the general experimental procedure, the experimental analysis is based
on, was described. This section provides an overview of different evaluation measures used for
quantitatively evaluating the performance.

5.4.1. Different Estimation Tasks

In general, the result of an inference task is a probability distribution p(Xt | y1:t) for each
element in the observation sequence t ∈ T . The structure of this Xt differs depending on
the applied classifier. While for the baseline classifiers, the Xt usually represents a simple
variable (e.g. the current action), when applying the statistical model, depicted in Figure 3.1,
Xt represents a composite variable. In this case Xt consists of five variables: (1.) At – the
current action, (2.) St – the current state of the environment, (3.) Gt – the goal to be followed,
(4.) Dt – the termination flag of the current action, and (5.) Ut – the start time of the current
action. Since the goal of this thesis is to estimate the action sequence, the goal, and contextual
information, the variables At, Gt and St were selected as estimation targets.
Depending on the actual estimation task, the probability distribution of interest is generated

by marginalising over p(Xt | y1:t). The goal probability p(Gt | y1:t), for instance, is computed
by summing up the probabilities of Xt which represent equal values for Gt for each time slice.
The result is a categorical PDF where the number of categories it determined by the number of
goals. This is similar to the concept of statistical model checking [142], where the probability
that a system S satisfies a property φ is determined by multiple simulations. Statistical model
checking uses a threshold on the probability to decide whether the system satisfies the property
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Figure 5.1.: Confusion matrix for multi-class classification. The confusion matrix of a classi-
fication with n classes. When considering the class k (0 ≤ k ≤ n), the four different
classification results can be obtained: true positive (green), true negative (orange), false
positive (brown), and false negative (red).

or not. Here, likewise, a point estimate is determined by selecting the most probable state (or
action) for each time-step t.
Due to the difference in the meaning of the three variables (At, St, and Gt), different eval-

uation methods are chosen. In the following these methods are discussed with respect to the
respective estimation task.
For the multi-agent scenarios, evaluation was based on each single agent rather than on

the combination. Both the estimates and the truth of all agents were strung together and
then evaluated as in the single agent case. As a result, the evaluation provides the average
performance of all agents.

5.4.2. Evaluation of Action Recognition

Objective of the action recognition is to estimate the current action at for each time-step t.
Since this objective agrees with that of the domain of AR, evaluation methods from this domain
are applied. Following, a brief discussion about the evaluation methods is provided.

Standard measures for AR As discussed in the Section 2.1.2 confusion matrix based measures
– the accuracy in particular – were found to be the predominant performance measures (see
Table A.2) in the domain of AR. Figure 5.1 illustrates a confusion matrix for the multi-class
situation with n classes. The confusion matrix gives the amount of (mis)classifications for each
class. The point estimates are collected into the confusion matrix C := (cij), where cij is
the number of time-steps where the class was actually i and class j has been estimated. In
general, the confusion matrix provides four types of classification results (each of them coded
by a different colour in Figure 5.1) with respect to one classification target k:

• true positives (tp) – the class was estimated while it actually happens (ckk)
• true negatives (tn) – the class was not estimated and it did not happen (

∑
ij∈N\{k} cij)

• false positives (fp) – the class was estimated, but did not happen (
∑

i∈N\{k} cik)
• false negatives (fn) – the class was not estimated but did happen (

∑
i∈N\{k} cki)

The first two represent correct classification, while the last two represent classification errors.
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Several measures can be calculated from the confusion matrix each of them providing insights
on different aspects of the classification. Typically, these measures are defined for the two-class
classification problem [34]. As we consider the multi-class classification, these measures are
computed as the weighted mean of the class-wise measures. The following confusion matrix
based measures are used in the scope of this thesis. Consider N time-steps that have to be
classified into M classes.
Accuracy: The accuracy provides the amount of correctly classified time-steps by relating the

number of correctly classified to the overall number of time-steps. The accuracy is the
predominant measure in the domain of AR. The formula for the accuracy is provided in
Equation 5.1.

Accuracy :=

∑N
i=0 cii∑N

i=0

∑N
j=0 cij

(5.1)

Sensitivity: The sensitivity (often called recall) represents the classifier’s ability to correctly
identify a given class. It is provided by the amount of truly positive predicted time-steps
(tp) related to the number of time-steps where the class actually happens (tp + fn). The
formula is given in Equation 5.3.

Sensitivityclass :=
tpclass

tpclass + fnclass
(5.2)

Sensitivity :=

∑M
i=0 Sensitivityi ∗ (tpi + fni)∑N

i=0

∑N
j=0 cij

(5.3)

Precision: The precision represents the classifier’s certainty of correctly predicting a given
class. The precision relates the amount of truly positive predicted (tp) time-steps to the
number of time-steps where the particular class was predicted (tp + fp). The precision
is determined as given in Equation 5.5.

Precisionclass :=
tpclass

tpclass + fpclass
(5.4)

Precision :=

∑M
i=0 Precisioni ∗ (tpi + fni)∑N

i=0

∑N
j=0 cij

(5.5)

F1-Score: F1-score provides the classifier’s ability to predict a given class. The F1-score it
determined by considering the classifier’s precision and sensitivity. Equation 5.7 provides
the formula for F1-score.

F1-scoreclass :=
2 tpclass

2 tpclass + fnclass + fpclass
(5.6)

F1-score :=

∑M
i=0 F1-scorei ∗ (tpi + fni)∑N

i=0

∑N
j=0 cij

(5.7)

Drawbacks of the accuracy Albeit being predominantly used in the literature on AR (see
Table A.2), the accuracy suffers from several drawbacks: (1.) the accuracy is prone to clas-
sification due to chance, (2.) the accuracy does not incorporate the temporal sequence, and
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(3.) the accuracy is based on point estimates. While the first two issues directly apply to the
domain of AR, the last issue is of interest only, if the categorical PDF is used for the evaluation.
In order to cope with these drawbacks, the evaluation within this thesis employs performance
measures that target these drawbacks in addition to the accuracy. These measures are briefly
discussed in the following.

Cohen’s κ Ben-David [22] describes that the accuracy simply counts correct and incorrect
classification results but does not compensate for classification due to chance. To counteract
this issue, Ben-David [22] suggests the usage of Cohen’s κ [51] instead. Cohen’s κ “attempts to
correct the degree of agreement by subtracting the portion of the counts that may be attributed
to chance”,(Ben-David [22]). Cohen’s is computed by κ(C):=p0−pc

1−pc , where p0 represents the
accuracy and pc represents a factor that is based normalised marginal probabilities.

Sequence alignment In order to assess the performance of the classifier with respect to the
temporal sequence of actions, measures that are sensitive for such are applied. Measures that
are based on the confusion matrix ignore the temporal sequence, as it is constructed by “count-
ing” classification results. Thus, they can assign the same value to causally different sequences.
Consider, for instance, the sequence (on, off, off). Consider furthermore the following two
hypothetical estimates e1 = (on,on,off) and e2 = (on,off,on). Both estimates result in the
same accuracy (2/3), although their causal consequence differs. Additionally, the estimate e2

consists of three actions while the true sequence and e1 consist of two actions, as the sequence
(on, on) can be regarded as one action with a duration of two time-steps. Consequently,
e1 can be regarded as better estimate than e2, as it reflects the same causal sequence, but
mistakenly overestimates the duration of the first action. Measuring the sequence alignment
provides a well established mechanism. Within this thesis, the Levenshtein edit distance [145]
and the dynamic time warping (DTW) distance [82] are used. A more detailed discussion on
performance evaluation in the domain of AR is provided by Ward et al. [245].

5.4.3. Evaluation of Contextual Information

A third issue when using confusion matrix based performance measures is that they rely on
point estimates for both the true and the estimated state sequence. This is typically the case
in AR, as the true sequence is directly taken from the annotated action sequence.

Ambiguous annotation When it comes to contextual information that is not annotated di-
rectly, but provided as additional semantic information as it is the case of the approach for
causally correct annotation introduced in Chapter 4, the annotation has to be generated by
“executing” the annotated action sequence within the aLTS. As described in the experimental
procedure, the iLTS is developed on base of the aLTS. As long as the aLTS is unambiguous
with respect to the iLTS, the resulting state sequence is deterministic. However, if additional
contextual information of potential interest is identified during the development of the iLTS,
the aLTS is unable to provide unambiguous annotation.
Consider, for instance, the action sequence (eat, drink, eat, clean). Now consider the task of

estimating if eating has been finished. The aLTS is ambiguous with respect to this information
and the execution results in a probabilistic truth. This was the case in Experiment X2 in Section
6.2. As the confusion matrix does not allow the probability to be incorporated, measures that
are based on it are unable to cope with this uncertainty. Consequently, measures that consider
the entire categorical PDF of states have to be applied.
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Effect Size Cohen’s d η2 Vargha-Delanye A Spearman’s ρ

No effect 0 0 .5 0
Small >.2 <-.2 >.0099 >.56 <.44 >.1 <-.1
Medium >.5 <-.5 >.0588 >.64 <.36 >.3 <-.3
Large >.8 <-.8 >.1379 >.71 <.29 >.5 <-.5

Table 5.3.: Overview of different effect size measures and their interpretation. Original
source for interpretations: d [52, pp.24–27], η2 [52, pp.284–288], A [240], ρ [52, pp.79–80].

The Jensen-Shannon distance The Jensen-Shannon distance (JSD) provides a measure of
distance between two PDFs. Consequently, the JSD can also be applied for point estimates, as
they can be interpreted as peaked distributions, where all values are 0 except for one. The JSD
is employed to measure the distance between the probabilistic truth P and the estimate Q.
The JSD is a metric that is defined as the square root of the Jensen-Shannon divergence [150].

5.4.4. Evaluation of Goal Recognition

When it comes to the evaluation of goal prediction, Blaylock and Allen [26] suggest the usage of
convergence, convergence point, and precision. Convergence is a binary value that states if the
prediction converged to the correct goal at the end of observation sequence. If the prediction
converged, the convergence point gives the first time-step that predicted the correct goal with-
out any changes afterwards. The convergence point is reported as the relative amount of the
observation sequence that has been processed after the point of convergence. A convergence
point of 0 means that the correct goal was predicted from the beginning of the observation se-
quence. The third measure to assess goal prediction performance is the precision. The precision
determines the number of time-steps, where the correct goal was predicted.

5.4.5. Assessing the Size of Effects

According to the publication manual of the American Psychological Association [14, p.34],
a presentation of statistical results should be accompanied by reporting of effect sizes. To
this end, Ellis [70] distinguishes two types of effects: (1.) differences between variables and
(2.) relationships between variables. Accordingly, the results that are reporting within this
thesis are provided with a corresponding measure of the effect size.
With respect to differences of variables, two different measures are used, depending on the

distribution of the values of them. Like the decision, whether to report the mean or the median
of values, the Shapiro-Wilk normality test [211] was employed. The effect size of differences
of normally distributed values was then reported by using Cohen’s d [52]. Otherwise, the
Vargha-Delanye’s A [240] was employed. To allow a common interpretation of these effect size
measures, Table 5.3 provides an interpretation guideline, compiled from the literature.
Regarding the presentation of effect sizes concerning the relationship between two variables,

Spearman’s rank correlation ρ was used. Spearman’s ρ quantifies “strength and direction of a
relationship between two variables”,(Ellis [70]). The assessment of the relationship of multiple
variables was done by applying an repeated measures analysis of variance (rANOVA). Here,
the generalised η2 [175] was employed to provide the size of the effect.
The effect sizes are computed by use of the package “effsize” [234] for the R programming

environment [184].
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6
Experiments

“If you torture the data long enough it will eventually confess.” – Ronald Harry Coase

Synopsis: The previous chapter introduced a list of research questions. This chapter’s aim is now
to answer these questions. For this reason three experiments are conducted, each of them targeting
a sub-set of the research questions. Based on the analysis of the results of the experiments, the
effectiveness of CCBM is demonstrated. Furthermore, it is highlighted that CCBM satisfies the
requirements for an inference system that were derived earlier.

Chapter Sources: Parts of this Chapter have been previously published in the following publi-
cation(s):

• Computational State Space Models for Activity and Intention Recognition. A Feasibility
Study [133]

• Plan Synthesis for Probabilistic Activity Recognition [131]
• Towards Creating Assistive Software by Employing Human Behavior Models [129]
• Where are My Colleagues and Why? Tracking Multiple Persons in Indoor Environ-

ments Krüger et al. [132]
• Evaluating the Robustness of Activity Recognition using Computational Causal Behavior

Models [128]

This chapter presents experimental evidence that CCBM, introduced in Chapter 3, allows the
simultaneous recognition of the activity, context information and the goal of a (team of) human
protagonist(s) from noisy and ambiguous sensor data. To this end, three different experiments
(X1, X2, and X3) were conducted and their results are presented. The experiments aim at
answering the research hypotheses stated in Chapter 5. Objective of the experiments is to
show that CCBM allows to achieve good recognition performance. Each experiment utilises
CCBM to recognise activities, context and/or the goal of the involved participants.
In Experiment X1, a typical team meeting situation is analysed by use of indoor location
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information. Aim of this experiment is to recognise the activity of each person during the
meeting as well as to conclude the common goal of the team, namely the jointly agreed agenda,
from the estimated sequence of activities. Furthermore, the first experiment serves as demon-
stration of the principal feasibility of the proposed approach. For this reason a scenario of
similar complexity as related work was selected. This experiment addresses the requirement
R5.1 – reusability within the same application domain. To this end, the experiment consists of
two trials with different trial layout to assess the approach’s capabilities to address this aspect
of reusability.
In Experiment X2, activities of daily living [113], taking place within a kitchen environment,

are reconstructed from noisy sensor data. The participants were instructed to execute typical
kitchen tasks while being observed by wearable sensors. While the first experiment serves as
baseline check, the second experiment investigates the capabilities of CCBM in more detail. The
effects of the different parameters on the recognition performance are investigated. Moreover,
the requirement R5.2 is targeted by demonstrating that different observation models can be
used without further changes to the behaviour model.
The experiment Experiment X3 is concerned with the problem of simultaneous identification

and localisation of persons in partially observed environments. Binary sensors are used to
reconstruct the paths of varying numbers of persons in an indoor environment. This experiment
illustrates how prior knowledge, encoded in the behaviour model, can be used to solve the
identification problem. By varying the number of involved participants, this experiment allows
an examination of the reusability objective R5.3, namely whether a model could be reused for
different numbers of involved agents. Finally, the effect of increasing the number of agents on
the recognition performance is investigated.
In the following, the experiments are discussed in more detail.

6.1. Experiment X1: Three Person Meeting

The first experiment serves as a baseline experiment to assess the basic feasibility of CCBM
with respect to activity and plan recognition. Objective is the reconstruction of the plans of
three persons during a meeting from location data. The reconstruction of a meeting situation
from location data has been chosen for the following reasons:

• The recognition of meeting activities is a well studied domain. It has been done for
example by Giersich and Kirste [80], Dai et al. [56] and Kim et al. [118].

• At the team level, a meeting situation is rather simple, but by looking at the level of
the single protagonist, it shows increased complexity. This, on the one hand, allows
recognition to be done by simple models such as HMMs, but, on the other hand, also
justifies the use of more complex approaches such as CCBM.

• It provides a cooperative situation where multiple involved persons are trying to achieve
a common agreed goal: following an agenda. The team level plan, which is typically given
by an agenda, is refined by the person level plans. Consequently, the meeting situation
covers all necessary aspects that are targeted in this thesis. The simultaneous recognition
of the activities of multiple agents, additional context information, and the plan of the
cooperative team from noisy and ambiguous sensor data.

• The use of location data for activity and plan recognition can be regarded as baseline
check as it is often chosen in the literature to assess the performance of novel approaches.
As has been discussed in Section 2.2, all reviewed related approaches, if using noisy sensor
data at all, use location data to illustrate their feasibility (e.g. Bui et al. [37], Liao et al.
[149], and Sadilek and Kautz [202]).

• Finally, since meetings are part of the everyday working life, potential subjects do not
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need any introduction to the domain. This allows the data collection to be reproduced
easily while changing only some aspects such as removing parts of the agenda or changing
the planned time for single agenda items.

In the following the experimental setting is described in detail.

6.1.1. Objective

Experiment X1 aims at providing a comparison of the capabilities of Computational Causal
Behaviour Models with related work. This is done by addressing a scenario of similar complexity
(according to the identified dimensions of complexity (CD.1 – CD.3)) as other relevant work
in the domain of activity and plan recognition from noisy sensor data (see Section 2.2).
With respect to CD.1, current studies on instances of CSSM use state spaces of at most

70,000 states, while targeting up to ten action classes (CD.3). Additionally, the maximum plan
length (CD.2) of 20 actions limits inference complexity.
Experiment X1 investigates whether CCBM is able to handle inference tasks with recognition

performances at the same level as established methods. To this end, an experiment with the
following properties is conducted:

1 To compare the capabilities of CCBM to that of the related work, a trial setting of
similar complexity as the related work was selected. For this purpose, a causal model,
which generates an LTS of similar size of the related work, was used.

2 To assess the multi-agent capabilities of CCBM, a trial setting where multiple agents
interact cooperatively was selected.

3 To demonstrate the reusability objective R5.1, a causal model was constructed for one
trial setting and reused for another trial setting in the same application domain. The
same model achieves good recognition rates in both trial settings.

Experiment X1 targets at answering the research questions RQ1, RQ2, and RQ3. In order
to address these research questions, the first two questions were combined and reframed into
one hypothesis allowing a framework of statistical testing to be applied.

H.X1 A suitable parametrised CCBM for multiple agents allows the reconstruction of the
action sequence while simultaneously recognising the correct goal with similar recognition
performance as a baseline classifier.

Research question RQ3 is not translated into a research hypothesis. Here, it is considered
sufficient to demonstrate reusability of the causal model. For this reason, a causal behaviour
model is created to address one application domain. It is then shown that the behaviour model
can be reused in another trial setting of the same application domain without further changes.
A detailed description of both trial settings and the differences is given below.

6.1.2. Trial Setting

For Experiment X1, the data of two trials is analysed, each of them is described in the following.
Both trials are three person meetings that were held in the Smart Appliance Lab at the Mobile
Multimedia Systems Group at the University of Rostock. Figure 6.1 provides a map of the
Smart Appliance lab. The room is equipped with the Ubisense Ultra Wide Band indoor
positioning system (represented by the red circles), where the position of each person wearing
a tag can be estimated. During both meetings the position of all participants was recorded
using this localisation system. Two datasets D1 and D2 were created from the data of the two
trials.
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B

A

C

B

A

C

Figure 6.1.: Overview of the Smart Appliance Lab. For each person (A, B, and C) the cor-
responding seat and the presentation stage are illustrated. Tables are represented as
rectangles, chairs as squares and presentation screens as lines. The letters highlight the
chair and the presentation stage for each person. The red circles represent the Ubisense
indoor tracking system.

Agenda item compliant non-compliant

1st presentation A A B B C C
2nd presentation B C A C A B
3rd presentation C B C A B A

Frequency in D1 8 3 1 2 3 3

Table 6.1.: Different types of agendas including their frequencies. The last row gives the
actual frequency of each possible agenda in dataset D1.

Trial task D1 Dataset D1 contains the location data of three persons during 20 staged meet-
ings. Additionally, an annotation of the activities of each persons and the overall meeting phase
(team activity) is included. The dataset and a detailed description is publicly available [121]
and has been used in previous investigations on team tracking (e.g. by Giersich [79]). As it is
not the purpose of this work to investigate recognition performance in absolute numbers but
rather in comparison to baseline classifiers (see discussion in Section 5.2), it was not neces-
sary to collect empirical data from real meetings. A scripted meeting with shortened action
durations was therefore considered to satisfy the study objectives.
For each of the 20 meeting sequences three participants (A, B and C) were selected from

the overall group of four (three male and one female) at the age of 26–43. One agenda was
generated prior to the first meeting and two types of scripts were generated from this agenda.
The first being a script compliant to the agenda, the second a non-compliant one. Each meeting
consists of three presentations followed by a group discussion. Each participant was assigned
a particular seat and presentation stage. An overview of the different orders of presentation
including their frequencies is given in Table 6.1. For the compliant agenda, the meeting was
scheduled as follows: Once the team has entered the room, person A moves to the stage in
order to give the presentation. At the same time, person B and C move to their seats to listen
to A’s presentation. The presentation of A is scheduled for 60 s, the presentation of B and C for
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Team A B C

Enter at door at door at door
PrepareA move to stage move to seat move to seat
PresentA present listen listen
PrepareB move to seat move to stage sit
PresentB listen present listen
PrepareC sit move to seat move to stage
PresentC listen listen present
Prepare sit sit move to seat
Discuss discuss discuss discuss
Exit move to door move to door move to door

Table 6.2.: Overview of the compliant meeting. For each agenda item of the team the corre-
sponding agent actions are listed.

90 s and 60 s, respectively. After the first presentation is finished, A moves to the corresponding
seat while B moves to the stage. Person B starts the presentation. Afterwards, C moves to the
stage and B back to the seat. After C has finished the presentation, C moves back to the seat
and a group discussion, scheduled for 60 s, starts. Finally, all persons stand up from their seats
and leave the room together. The sequence for the compliant meeting is also given in Table
6.2.

Trial task D2 Dataset D2 also addresses a meeting situation in the lab location. Objective
was to provide another dataset that meets the same requirements as the first one, but comprises
simple changes to the experimental configuration. In contrast to the first dataset that consists
of data from 20 staged meetings, the second dataset features only one meeting. Additionally,
the meeting was not staged. For the second dataset, a seminar with three students was ob-
served. During the seminar, each student gave a presentation, while the other students were
allowed to ask questions during the presentation. Neither the order, nor the duration of the
presentation was scheduled beforehand, but was left up to the students. The final agreed order
of presentations was: (1.) Presentation of C, (2.) Presentation of B, and (3.) Presentation of
A. Similar to the dataset D1, the location of all participants was recorded during the meeting.
The durations of the presentations of A, B, and C were 16min, 17min and 18min, respectively.
The duration of the overall seminar was 52 minutes. In addition to the different durations of
dataset D1, the participants of the seminar shared a common presentation stage. Due to the
possibility of questions during the presentation, a group discussion was not necessary during
the seminar. The group discussion was therefore skipped.

Sensor data and preprocessing Both datasets were created by use of the Ubisense Ultra
Wide Band indoor positioning system [236]. Before the start of recording, each person was
equipped with a tag according to its role (A, B, or C). The Ubisense system is event-based, in
the meaning that it signals changes of the position of the tag. Whenever a person (equipped
with a Ubisense tag) moves, the Ubisense system captures the position and records it. The
resulting dataset consists of a sequence of events, which is not necessarily alternated through
the participants (i.e. the sequence might contain n events from the same tag consecutively).
This means that there is not necessarily a position update for each person at each time-step.
To ease further processing, a preprocessing step was executed. For each location event in

the event stream, a data row was created that contains the time of the event and the position
data for each agent. In addition the data of each agent was extended by a “seen” flag signalling
whether the position was recently updated or carried over from the last time slice. An extract
of the sensor data from the first meeting of the first dataset can be seen in Table B.1. While this
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preprocessing step was already executed in the published dataset (D1), it was still necessary
for the second dataset in order to adjust the format of the sensor data accordingly.

Observation model As described in Section 3.1, purpose of the observation model is to assign
the probability of the observation to each state p(y |x). Since each activity can be assigned
to a specific location in the room, location based activity recognition can be applied. For this
purpose, a state observation model has been chosen that makes use of the S component of the
statistical model (see Figure 3.1). Therefore, seven different locations of interest were identified
from the room layout: (1.) the door, (2.) stage and seat of person A, (3.) stage and seat of
person B, and (4.) stage and seat of person C. A position was considered to be at one of these
locations, if it fits in a circle of a location-specific diameter. If no location was chosen, the
default location “elsewhere” was assumed. The meaning of the location “elsewhere” is that the
position is somewhere in the room, but not at one of the preselected locations. This geometrical
observation model was chosen from a set of different observation models, due to the results of
a preceding analysis, which showed it to allow good recognition performance beforehand [131].
The probability of the sensor data signalling a specific location, when the person is actually
at this position is set to .92. Again, this value is result of a preceding analysis. Consequently,
the probability for each state is calculated by combining the observation probabilities for the
different agents p ∈ P as in equation (6.1).

p(y |x) =
∏
p∈P

p(yp |xp) (6.1)

p(yp |xp) =


1, seen flag not set
.92, position within range for state x and seen flag set
.08, otherwise

6.1.3. Experimental Setup

Baseline classifier HMMs were used as baseline classifiers to compare their recognition capa-
bilities to CCBM, as they were found to be the predominant classifier in AR. These models
were created from the complete set of training data in the following way. For each agenda (see
Table 6.1), the unique set of team states was analysed from the training data. Here, a team
state is just the combination of agent states (e.g. if all agents are sitting the corresponding
team state would be sit.sit.sit). For each agenda a transition matrix was created by supervised
learning for each team state sequence. Note that depending on the actual meeting sequence,
the dimensions of this transition matrix might vary. To combine these transition models to
a common model, a start state was introduced. The transition probabilities from the start
state to the single sub-models were computed from the prior probability of each agenda. The
initial state probabilities were set to zero, except for the start state, the probability of which
was set to one. The resulting model consists of 146 states, with varying number of states per
sub-model. A graphical representation of the constructed transition matrix is given in Figure
6.2. This type of HMM is also known as joint HMM in the literature [42]. Purpose of the so
constructed HMM is to provide a baseline classifier for simultaneously recognising the agent’s
activity and the final agreed agenda of the team. Here, completing the agenda is interpreted
as the common team goal.
The application of Bayesian filtering algorithms to the model results in a probability distri-

bution over possible states. Each state of the constructed HMM is a 4-tuple with the following
elements: 1. action of A, 2. action of B, 3. action of C, and 4. agenda of the meeting. The prob-
ability of an agenda being followed by the team is calculated by marginalising over all states
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Figure 6.2.: Graphical representation of the transition matrix of the baseline HMM for
the meeting experiment. Different colors represent different agendas. Grey represents
the initial state. Note that values are rounded, which means that values of zero actually
represent very small values.

with the same agenda. The probability of the agent activities is estimated in a similar way.
For each possible agent activity, the probability of the activity being executed by the agent
is estimated by marginalising over those team states that comprises the same activity for this
agent (e.g. summing up the probabilities of all states that contain the activity sit at the first
position of the team state). In this way, each filtering run provides a probability distribution
of activities per agent and a probability distribution of agendas.

Causal behaviour model The causal behaviour model was created by following the model de-
velopment process provided in Section 5.3. In fact, the meeting model used within this thesis
is an adapted version of the meeting model introduced by Yordanova [256]. To support the
distinction of different agendas it was extended by a mechanism to track the agenda. Six team
goals were introduced, each of them reflecting one possible agenda of the three participating pro-
tagonists (all permutations of three items). Figure 6.3 illustrates the action start-presentation,
where agenda tracking was implemented. Note that this mechanism is specialised for the case
of three agents and does therefore not allow to generalise for different numbers of protagonists.
A more flexible approach was implemented for the third experiment in Section 6.3.

Model characteristics To provide an idea of the model with respect to the related work, in
the following the size of the causal model is reported. The causal model consists of 16 action
schemata of ten activity classes, which when grounded result in 78 grounded actions. The state
space if formed by 88 state features, 29 describing the state of one of the agents, respectively.
An exhaustive exploration of the state space revealed an overall number of states of 23,717 per
goal. By taking also the six different goals into account, the number of states to be considered
during inference is 142,302 states. The minimal number of actions to be applied in order to
reach a goal state from the initial state is 48. This goal distance is obviously equal for each
goal. Since the agenda to be finished is a team goal, each agent is required to perform actions in
order to reach it. Thus, the goal distance here represents the number of actions to be performed
of all agents.

Duration model As described in the overall experimental procedure, two duration models
were created, a parametric and an empirical duration model. Due to the high number of
training samples per grounded action, it was possible to train the durations specific to the
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(:action start-presentation
:parameters (?p - person ?s - stage ?n - (number 1 3))
:agent ?p
:duration (present (person-id ?p))
:precondition (and (not (has-presented ?p))
(at ?p ?s) (idle ?p)
(forall (?p1 - person)
(imply (not (seated ?p1)) (= ?p ?p1)))

(or
(and (= ?n 1)(= (first) none))
(and (= ?n 2)(and (not (= (first) none))(= (second) none)))
(and (= ?n 3)(and (not (= (first) none))(not (= (second) none))

(= (third) none)))
))

:effect (and
(is-presenting ?p) (not (idle ?p))
(when (= ?n 1) (assign (first) ?p))
(when (= ?n 2) (assign (second) ?p))
(when (= ?n 3) (assign (third) ?p))
(forall (?a - activity) (and
(when (= ?a presenting)(isActive ?p presenting))
(when (not (= ?a presenting))(not (isActive ?p ?a)))))

))

Figure 6.3.: The action start-presentation. The action start-presentation comprises a mechanism
for tracking the order of the agendas, which are defined by the different goals.

grounded action in favour to the action classes.
For the empirical duration model, the frequencies of each duration was also considered in

the duration model.
For the parametric duration model, from the set of probability density functions listed in

Section 5.3, the following distributions where selected as best fitting: (1.) gamma distribution,
(2.) Weibull distribution, (3.) normal distribution, (4.) lognormal distribution, and (5.) Cauchy
distribution Table B.2 gives an overview of the selection distributions including their param-
eters. For the second dataset, the creation of an empirical duration model was omitted due
to the low number of training samples. Instead the duration of all action was assumed to be
normally distributed. Since the purpose of the second dataset is not to show high recogni-
tion rates but reusability within the application domain, the selection of appropriate duration
distributions was not an issue.

Reusability aspect R5.1 In addition to comparing the performance of CCBM to that of the
baseline classifier, this experiment aims at demonstrating reusability within the same applica-
tion domain. For this reason, the dataset D2 was considered. By achieving high recognition
results when using the second dataset D2 the causal model can be shown to be reusable. For
this reason only application-specific parameters were adjusted. The parameters to be adjusted
are: (1.) the duration model, (2.) the observation model, and (3.) the goal state. Obviously the
duration model from the first dataset cannot be reused. The durations of all actions differ by
an order magnitude. Due to the freedom of choice in the seat of each student during the second
trial, the observation model has also to be adjusted. The missing team discussion phase has to
be removed from the agenda, and thereby from the goal state. Objective of this experiment is
to show that the causal model can be reused without further adjustments. Consequently, no
action definition has been changed.
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Factor Level Comment

Target f filtering distribution p(xt | y1:t)

Model HMM HMM transition matrix
C CCBM model

Mode M Marginal filter
P Particle filter

Distance fδ True goal distance, complete state space

Weight Lλ λδ = 1

Duration τc continuous parametric duration models
τd discrete duration models based on empirical distribution function

Dataset D1 short meeting sequences from Kirste [121]
D2 long meeting sequence

Table 6.3.: Factors and levels for the Meeting experiment.

Experimental procedure To assess the performance of the meeting model on D1, multiple
filtering runs were performed. For each filtering run different modelling factors (see Table
5.2) were changed to assess their influence on the recognition performance. The factors to be
changed for the different runs are:

1 Model: describes the type of model is used to represent temporal relations: HMM and
CCBM

2 Mode: describes the inference algorithm used for CCBM: MF and PF
3 Distance: gives the goal-based action selection heuristic: fδ
4 Weight: gives the weight of the action selection heuristics: λδ = 1
5 Duration: gives the duration model: parametric (τc) and empirical (τd).
6 Dataset: gives the dataset: D1 and D2

The factors Model and Mode were combined to a common factor Method. Method consists of
the levels: HMMf, CMf, and CPf, with the meaning HMM forward filtering, CCBM marginal
filtering, and CCBM particle filtering, respectively. Forward filtering was considered sufficient
to assess the model performance in all cases. Table 6.3 provides an overview of all factors
including their possible levels. The following configurations were chosen from the list of factors:
(HMMf, D1): Baseline evaluation of exact inference for trained temporal classifier. Obviously,

due to the different temporal relations, the HMM trained on dataset D1 cannot be used
for dataset D2

(1 configuration)
({CMf,CPf}, {τc, τd}, {D1, D2}): Analysis of the influence of selected CCBM factors to the

overall performance.
(2 × 2 × 2 = 8 configurations)

Each of the configurations is applied to all meeting sequences of the particular dataset.

Experiment execution Objective of each run was to simultaneously estimate (1.) the current
activity of each agent, (2.) the team goal, and (3.) context information about each agent. As
context information, here, we consider whether an agent is currently seated or not. The re-
sulting output consists of a probability distribution over all possible values for each estimated
target. Each of them were created by marginalising over all particles. For the PF, to com-
pensate sampling or resampling based issues each run was repeated 20 times and consolidated
afterwards by merging the estimated densities. Overall, 20 runs of the HMMs, 400 runs of
the PF, and 20 runs of the MF were executed. For each run (consolidated in case of PF) the
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Figure 6.4.: Overview of the accuracies of the baseline HMM for the meeting experiment.
Meetings are sorted according to their accuracy.

performance was evaluated. Additionally, the variance that was introduced by the random
number generator was assessed. A detailed description of performance measures is given in
Section 5.4.

6.1.4. Results

Baseline classifier for D1 In the following, first the results for the first dataset (D1) are
presented. Regarding the performance of the AR, the HMM achieved a median1 accuracy of
.93 (with interquartile range IQR = .91 − .94). The simultaneous recognition of the agenda
achieved a median precision of .75 (IQR = .6 − .99). The goal recognition converged for
each meeting sequence. The median convergence point was .27 (IQR = .25 − .59), which
means that the agenda was correctly recognised after processing 27% of the observation data.
Interestingly, for the sixth meeting sequence convergence was achieved at the first time-step,
giving a precision of 1. Figure 6.4 gives an overview of the baseline (HMMf) recognition results.
No significant correlation between accuracy of AR and precision of goal recognition could be
observed (ρ=−.036, S=1378, p=.88). This is is also illustrated in Figure 6.8. Figure 6.7
illustrates the estimated goal PDF for M17. The probability of each goal at each time-step is
given. The convergence point (cp=.59) is marked as white triangle.

CCBM action recognition for D1 Considering the results of the CCBM, an overview of
the results for ({CMf,CPf},{τc,τd},{D1}) with respect to activity is given in Figure 6.5. For
parametric timing, the median recognition accuracy of CMf was .92 (IQR = .92 − .93). CPf
achieved an AR accuracy of .92 (IQR = .92− .93) in median. This represents small effects in
comparison to the recognition of the baseline classifier (Vargha Delaney’s A=.64 for CPf and
A=.59 for CMf). Furthermore, the difference to the baseline classifier was neither significant
for CMf nor for CPf. By using empirical timing, the MF achieved a median accuracy of .93
(IQR = .92 − .93) and the PF of .93 (IQR = .91 − .93). Both effects were negligible (A=.55
for CPf, A=.54 for CMf). A detailed overview of all recognition results is provided in Table 6.4.

CCBM goal recognition for D1 With respect to recognising the goal, CCBM achieved a
median precision of .96 (IQR = .81 − 1) for the MF (CMf) and .98 (IQR = .79 − 1) for the
PF (CPf). As observed for the HMMs, by applying CCBM, all meeting sequences converged
to the correct goal. The median point of convergence was .08 (IQR = 0 − .24) for CMf. CPf
converged to the correct goal in median after 2% (IQR = 0−22)% of the observation sequence.

1The median accuracy is reported here, as the accuracies were not found to be normally distributed.
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6.1. Experiment X1: Three Person Meeting

Figure 6.5.: Overview of the results of all CCBM configurations for the meeting experi-
ment. Single meetings are sorted according to their baseline accuracies (given in grey).

Duration Mode Target V pV MV pSW A

τc CMf Activity 91.00 .61 -0.00 < .001 0.59
τd CMf Activity 93.00 .67 -0.00 < .001 0.54
τc CPf Activity 61.00 .1 -0.02 .003 0.64
τd CPf Activity 76.00 .46 -0.00 < .001 0.55
τc CMf Goal 171.00 .002 0.12 < .001 0.26
τd CMf Goal 168.00 .004 0.12 < .001 0.26
τc CPf Goal 184.00 < .001 0.16 < .001 0.26
τd CPf Goal 173.00 .002 0.12 < .001 0.28

Table 6.4.: Performance comparison of different CCBM configurations with corresponding
HMM configuration. Wilcoxon signed rank tests were used for comparison. pSW gives
the p-value for the Shapiro-Wilk normality test, A gives the Vargha Delaney effect size.

Figure 6.6 provides a plot of the convergence points for the different classifiers. Additionally,
the relation between the achieved point of convergence and the convergence point of the true
action sequence is shown. The true convergence points are computed by analysing the true
action sequence. Each sequence contains two possible convergence points, when the first or the
second presenter moves to the stage. The first point is selected, when the prior goal probability
allowed to conclude the correct goal from this point (i.e. the prior goal probability for the
correct goal is higher than for the other remaining option), the second otherwise.
As can be seen from the plots, significant correlations between the achieved and the true

convergence exist for the CCBM configurations (Spearman’s ρ = .87, S = 176, p< .001 for
CPf, ρ = .94, S = 79.3, p< .001 for CMf).
The probabilities for each goal at each time-step with all methods for M17 is depicted in

Figure 6.7. The goal recognition precision is provided by the bottom line, which represents the
most likely goal for each time-step.

Comparison to baseline Both, precision and convergence point signal a significant increase
of the goal recognition performance, when comparing to the baseline classifier. The median
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Figure 6.6.: Convergence points for the baseline HMM and the τc-based CCBM config-
urations. The goal is represented by the color of the point. Left: For each meeting
sequence the convergence point is provided. The grey line highlights the earliest possible
convergence point according to the prior goal probability and the annotation. Right: The
relation of achieved convergence point and minimal convergence point according to the
annotation is given. The grey line signals perfect goal recognition. Points above this line
represent late convergence, points below this line represent premature convergence.

prior HMM CMf CPf

ABC 0.40 0.88 1.00 1.00
ACB 0.15 0.74 0.74 0.74
CAB 0.05 0.77 0.86 0.91
CBA 0.10 0.53 0.86 0.85
BCA 0.15 0.37 0.97 0.98
BAC 0.15 0.65 0.64 0.65

Table 6.5.: Mean precision per goal for each classifier. The column prior gives the prior prob-
ability of each goal.

precision increased by 21pp (V(20) = 19, p=.002) when comparing CMf to HMMf. A large
effect (Vargha and Delaney’s A=.26) was observed. The median convergence point decreased
by 19pp (V(20)=179, p < .001). Again, the effect size (A=.84) was found to be large.
For CPf, differences of 23pp (V(20) = 6, p=< .001) and 25pp (V(20)=182, p < .001) for

precision and convergence points were observed. Large effect sizes were observed for both
(A=.26 for the precision and A=.86 for the convergence point). A significant correlation of
AR accuracy and goal recognition precision could be observed for CPf (ρ=.66, S=448, p=.001).
This relation was not observed for CMf.
Figure 6.8 gives illustrates the relation of AR accuracy and goal recognition precision for

CCBM and the baseline HMM. An overview of the mean goal recognition performance per
goal is given in Table 6.5. It could be observed that for each goal the mean goal recognition
precision of CCBM is at least as high as the precision of the HMM. One exception is the
precision of the CMf for the goal BAC, which is 1pp below the precision of the HMM.
For empirical timing (τd), a median precision of .98 (IQR = .76 − 1) for CPf and .95
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Figure 6.7.: The goal PDF for M17 of the HMM baseline classifier and τc-based CCBM
classifiers. Each goal is represented by a different color. For each time-step the proba-
bility of each goal is provided by the size of the bar. The bottom line illustrates the most
likely goal for each time-step. The white triangle marks the convergence point.

(IQR = .79 − 1) for CMf was observed, no difference in median to τc. Furthermore, no
difference (in median) could be observed for the convergence point.

Alternative performance measures In addition to the accuracy, performance measures sen-
sitive to the causal sequence of the action sequence were calculated. With respect to the
normalised DTW, for the sequence of actions estimated by the HMMf a median distance of
.022 (IQR = .005− .033) was observed. CMf and CPf estimated action sequences with median
difference of .024 (IQR = .019− .027) and .014 (IQR = .01− .071). The median Levenshtein
edit distance of the estimated action sequence with the true sequence was .066 (.069, .068) for
the HMMf (CMf, CPf). No significant differences were found for both.

Context recognition Concerning the recognition of contextual information, Figure B.1 pro-
vides a graphical illustration of the probability of each agent being seated or not. From the
figure, the three phases, presentation of C, presentation of B, presentation of C can be seen.
As the dataset D1 was not annotated with the process described in Chapter 4, a context an-
notation is missing. Thus, assessing the performance for estimation contextual information is
not possible. However, Figure B.1 exemplifies the capabilities of CCBM to estimate contextual
information.

CCBM action recognition for D2 Concerning dataset D2, CMf achieved an accuracy of 1 for
τd and .99 for τc. The PF (CPf) achieved an accuracy of 1 for τd and .99 for τc.
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Figure 6.8.: Relationship of activity recognition and goal recognition of CCBM and base-
line classifiers. CCBM plots were based on τc-duration models. The grey line highlights
perfect positive correlation.

Influence of the random number generator To assess the influence of the random number
generator on the recognition performance of the PF, 20 different random seeds were used for
initialisation. The variance of the accuracies that was introduced by the seed is 1.26 ∗ 10−6

(IQR = 5.68 ∗ 10−7 − 4.58 ∗ 10−6). To compare, the variance that was introduced by the
different meetings is 3.75 ∗ 10−4 (IQR = 3.75 ∗ 10−4 − 3.75 ∗ 10−4). The variance of the
accuracies of the different meetings is significant (W(20) = 380, p=< .001) larger (A=.95) than
the variance of the different seeds.

6.1.5. Discussion

The following section aims at answering the research questions stated above. To do this, in
the first step, the research hypothesis H.X1 is investigated. Afterwards, the remaining research
question (R3) is answered.

Complexity of the causal model Objective of the first experiment was to show that CCBM
is able to handle inference tasks for scenarios with same complexity as related approaches
(see Section 2.2). As discussed, the maximum state space size handled by related approaches
was 70,000 states. The maximal plan length was 20 steps and the approaches were used
to distinguish up to ten classes. For the first experiment, a model with state space size of
6 × 23, 717 = 142, 302 states was created. This exceeds typical state space sizes by the factor
two. The number of classes to be distinguished (see Table 6.2) for the scenario was ten per agent.
The plan length for each agent was ten. By also considering that the agents are independent and
not fully synchronised the actual plan length increases. However, the problem was considered
to be similar to the problems discussed in the literature as it does not underestimate the
complexity of the model of the current state of the art. Like all related approaches that
incorporate real sensor data, inference based on location data was chosen.

Hypothesis H.X1 Hypothesis H.X1, which states that CCBM allows the simultaneous recog-
nition of the user’s activity and goal at the same level as trained baseline classifiers has to be
accepted (see Section 6.1.4). In fact, CCBM is able to recognise the activities of each agent at
the same level as the trained HMM. This result is also confirmed by considering performance
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measures sensitive for causality (DTW and Levenshtein distances). No significant difference
was observed. Albeit not considering the causal sequence of actions in general, examining the
transition matrix of the trained HMM (see Figure 6.2) reveals that for each single goal a strong
sequence is enforced. This sequence is rarely interrupted. The HMM consists of 146 states,
resulting in 146 × 145 = 21, 170 degrees of freedom, at least theoretical. Thus, it is obviously
overfitted. While nevertheless CCBM was able to achieve recognition rates at the same level,
this indicates that the problem of reconstructing meeting sequences from location data can
be solved easily. On the other hand it confirms location-based AR as baseline test for model
feasibility.

Goal recognition When it comes to goal recognition, CCBM outperformed the baseline clas-
sifier (see comparison to baseline in previous section). Estimating the correct goal within the
HMM was basically selecting the sub-model, which was best fitted to the sequence of actions
(including timing of actions by self transitions). Thus, action sequences following the same
goal but started with different durations did not necessarily result in the same recognition
rates (see Figure 6.4). CCBM was, for instance, able to recognise the, most likely goal (ABC)
consistently good. The HMM in contrast did not show such consistency. Table 6.5 gives an
overview of the mean goal recognition precision for each goal for each classifier. This provides
evidence for the superiority of goal distance based action selection in contrast to the trained
transition probabilities of the HMM in this scenario.

Influence of the duration model The impact of the duration model to the goal recognition
as well as the AR was neither significant for CMf nor for CPf. Although increasing inference
complexity, the results indicate that a parametric representation of the action durations can
substitute an empirical representation. Additional benefit with respect to reusability is provided
by the increase of flexibility. However, additional research is required, covering for instance the
generation and evaluation of parametric duration models by use of cross validation.

Influence of the random seed A comparison of the variances introduced by the different
sources (meeting sequence or seed) showed that the influence of random number generator
used in the PF is small. The influence of the different meeting sequences is at least one
order of magnitude larger than that of the initialisation seed. Moreover, the variance that was
introduced by the seed itself is only small. As a result, the compensation of the influence of
the random number generator seed can be omitted in further experiments.

Reusability aspect R5.1 Concerning the third research question (RQ3), it was found that the
causal model of human behaviour developed for the dataset D1 could successfully be reused
for dataset D2. The basic model, containing the causal constraints of the meeting domain
was reused without changes. The only changes that were necessary affected the duration and
the observation model. The results indicate that CCBM allows to reuse the behaviour model
within the same application domain.

Summary In summary, Experiment X1 showed that CCBM is indeed able to reconstruct
action sequences in problems of the same complexity as addressed in the related work. CCBM
performs on average at the same level as standard methods, provides earlier convergence, and
allows for reusability. It has been proven that the use of multiple interacting agents, albeit
increasing inference complexity (due to action and state space size increase), allows to achieve
high recognition rates. Additionally it has been shown that CCBM allows to simultaneously
recognise the goal, contextual information as well the action sequence from location data.
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Furthermore, it has been demonstrated that a causal model created for a specific inference
task can be reused within the same application domain. Based on these baseline results, the
experiment in the next section exploits the capabilities of CCBM in a domain with a complexity
exceeding the current state of the art by several orders of magnitude.

6.2. Experiment X2: Kitchen Task

Experiment X1 illustrated the basic feasibility of CCBM to simultaneously recognise the ac-
tivity, context information and the plan from noisy location data. It has been shown that
CCBM is able to handle scenarios with the same complexity as CSSMs have been used for
in the literature. Based on this result, the second experiment now aims at demonstrating the
capabilities of reconstructing action sequences in a more complex scenario. To do this, a typical
kitchen task has been chosen that focusses on the sequence of meal preparation, consumption
and kitchen cleanup. This scenario was selected based on the following considerations:

• Meal consumption can be considered as relevant ADL, while meal preparation and cleanup
are relevant instrumental ADLs [6]. A sequential combination of both represents a typical
episode in every day living. Providing assistance for (instrumental) ADLs is therefore an
important application domain of assistive systems.

• Meal preparation is an activity that is used in the Kitchen Task Assessment [20], a
procedure used as functional measure for assessing the level of cognitive support required
by persons suffering from cognitive decline. The work of Serna et al. [209] provided
evidence that erroneous behaviour, especially in this setting, can be modelled by use of
action languages.

• Kitchen activities are frequently used as trial settings for AR (see Table 2.2). It has for
example been addressed by Rohrbach et al. [196] and Ramírez and Geffner [188].

• Albeit being trivial from the viewpoint of execution by healthy humans, the task provides
a non-trivial causal structure. This includes situations where several actions can be
executed in any order, resulting in high branching factors (e.g. several objects (plate,
knife, spoon, pot, . . . ) have to be cleaned.) On the other hand, the task provides phases
that have to be executed in strict causal sequence (e.g. water has to be filled in the pot
in order to cook). The latter point makes the usage of causal models, especially CCBMs,
meaningful.

A detailed description of the experiment, including objectives, the trial setting and results are
provided in the following sections.

6.2.1. Objective

The related work use relatively small studies to show the effectiveness of CSSMs. Researchers
of CSSM-like approaches addressed in different studies problems tracking at most 70,000 states
(CD.1), distinguishing at most ten action classes (CD.3) and action sequences not longer as the
maximal plan length of 20 (CD.2). No study addressed the limits of all complexity dimensions
simultaneously. Objective of Experiment X2 is to investigate the capabilities of CCBM in a
setting with a problem size that is larger than that of the related work. In detail, the following
objectives were targeted by Experiment X2:

1 While Experiment X1 demonstrated that the CCBM approach is able to address problems
of similar size as related work, objective of Experiment X2 is to extend the problem size
by extending each of these complexity dimensions (CD.1 – CD.3) at the same time, while
still being able to achieve good recognition rates.
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2 Table 3.1 introduced different sub-models, each of them providing parameters that influ-
ence recognition. Experiment X2 aims at investigating the influence of these parameters
and to show that these factors indeed allow flexible configuration to achieve good per-
formance. To this end, the influence of each parameter on the recognition rate has to be
examined.

3 In the literature, it has been stated that “wearable sensors are not suitable for moni-
toring activities that involve complex physical motions and/or multiple interactions with
the environment”,([46]). The choice of wearable sensors allows an investigation of this
statement with respect to more refined system models, as generated from the causal
description.

4 Reusability aspect R5.2, namely reusability regarding the observation model, is inves-
tigated. This is done by exploiting both components of the observation model, action
observation p(z | a) and state observation p(w | s) (see Section 3.1) without further ad-
justment to the causal model.

Experiment X2 therefore addresses the research questions RQ4 – RQ7: The research ques-
tions RQ4 and RQ5 are reframed into hypotheses, allowing the research questions to be an-
swered, if proved to be true.

H.X2.1 A suitably parameterised CCBM for a typical activity of daily living will achieve the
same accuracy on average on a given estimation task as a standard baseline classifier
built from training data when applied to the same task.

H.X2.2 All CCBM modelling factors and their interactions have significant effects on the av-
erage accuracy achieved in state estimation using the CCBM model.

The research questions RQ6 and RQ7 are answered by adjusting the experimental procedure
accordingly. By selecting wearable sensors as data source, and answering the research question
RQ4, research question RQ6 will be answered too. Likewise, the last research question (RQ7)
is not translated into a hypothesis. Similar to the investigation of R5.1 in Section 6.1, it is
considered sufficient to demonstrate reusability by achieving reasonable recognition rates. In
the following, the trial setting is described.

6.2.2. Trial Setting

The trial of Experiment X2 addressed a typical meal time routine. A detailed description of
the trial setting is provided below.

Trial task During the trial, participants had to accomplish the following four main tasks:
(1.) Prepare meal, (2.) set table, (3.) consume meal, and (4.) clean up and put away utensils.
A more detailed schedule of the task sequence is provided in Table 6.6.
Neither absolute motion trajectories nor absolute action duration were of relevance (see dis-

cussion in Section 5.2). For this reason, participants were instructed to shorten some actions to
bound the overall experiment duration. Additionally, this decreases the influence of single ac-
tions to the overall recognition performance. Consider, for example, an action that can easily be
recognised (e.g. cooking or eating) with long duration, lasting 50% of the experiment duration.
An overall recognition rate of 50% would easily been achievable. However, this overestimates
the overall recognition performance. As physical environment, a simplified motion capturing
environment was used where some of the kitchen utensils (e.g. the stove) were replaced by
physical props (cp. [110]). A symbolic map of the spatial structure of the trial domain and the
involved domain objects is given in Figure 6.9.
The trial execution was accompanied by an experimenter, who presented the experimen-

tal task verbally to the participants and explained the physical layout, the props, and their
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Figure 6.9.: The physical trial setup of the kitchen experiment. Left: Instrumentation of the
participants. The red circles represent the placement of each sensor. Right: Conceptual
spatial layout as viewed from above. The lines represent location of involved object at
start of the trial.

use. After the introduction to the trial, participants were instrumented with the wearable
sensor equipment. The participants were selected sequentially without any specific order. The
participants were monitored by the experimenter during the trial. In case of questions, the
experimenter indicated next steps of the task. The sequence of actions was up to the partici-
pants, as long as the causal dependencies allowed the execution. The entire trial was recorded
on video.

Subjects Regarding the overall number of participants, seven subjects (six male and one
female) were considered sufficient to detect relevant effects on accuracy. The rationale here is
that if CCBM can not be proven to be inferior at this level, then this justifies to spend the effort
on a larger scale experiment. Although there is no direct data on how much experimental data
is required for building successful causal models, a weak argument can be found in the domain
of usability research, where it is established that in interactive software five to seven subjects
are sufficient to identify most usability problems – most situations where system behaviour
does not meet user expectations [170].

6.2.2.1. Sensor data and preprocessing

Sensor setup The XSens MVN motion capturing equipment [195] was used for recording
sensor data. It consists of wearable IMUs, each of them recording three axis acceleration and
angular rates. Besides the initial motivation of answering research question RQ4, this sensor
setup was preferred to other setups (e.g. radio-frequency identification (RFID) labelling [180],
cameras [2], or multi-modal setups [251]) for the following reasons:

• The use of wearable sensors is dominant in the field of AR (see Section 2.1.2 and Bulling
et al. [40]). The main purpose of this work is to combine AR from low-level sensors with
context and plan recognition. The choice of wearable sensors, therefore, seems expedient.

• This sensor setup is used in several experiments by various researchers [139, 59, 60],
enabling an easy adaption of the CCBM method to other available datasets in the future.

• Wearable sensors do not require the instrumentation of the environment. Consequently,
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Step fh Task State predicate(s) if task not fulfilled

1 14 Clean hands – (no state predicate with lower step count matches)
2 13 Get food to sink not clean food, holds food, not at sink
3 12 Clean food not clean food, holds food, at sink
4 11 Cut food clean food, not food prepared
5 10 Turn stove on food prepared, not cooked, stove off
6 9 Cook food food prepared, not cooked, stove on
7 8 Turn oven off hungry, cooked, stove on
8 7 Finish setting table & Sit down hungry, cooked, stove off, not seated
9 6 Consume meal hungry, stove off, seated

10 5 Get up not hungry, seated
11 4 clean kitchen utensil not hungry, not seated, 4 kitchen utensil dirty
12 3 clean kitchen utensil not hungry, not seated, 3 kitchen utensil dirty
13 2 clean kitchen utensil not hungry, not seated, 2 kitchen utensil dirty
14 1 clean kitchen utensil not hungry, not seated, 1 kitchen utensil dirty
15 0 done

Table 6.6.: Task script of the kitchen trial For each step the distance values of the recipe distance
(fh) and state predicate(s) that hold before this step are provided.

they are a technically and economically feasible choice for everyday environments. Fur-
thermore, the ubiquitous existence of IMUs in smart phones, smart watches, and fitness
tracker allows to draw conclusions about CCBM’s suitability for daily use.

• IMUs are not influenced by environmental factors such as lighting conditions. Addi-
tionally, they allow a identifying observation of the subjects, preventing identification
problems as in the case of sensor carpets or similar environmental sensors (see Section
6.3). The latter point becomes relevant in real-world applications.

The participants were instrumented with five IMUs, fixed at lower legs, lower arms, and
upper back. The positions are given by the red circles in Figure 6.9. These sensor locations
were chosen to be compatible with sensor data available from other experiments (e.g. the
CMUMMAC database [60]). For each sensor three axis acceleration and angular rates were
recorded, with a sampling rate of 120 Hz, resulting in an overall datastream of 5 × 6 = 30
signals.

Preprocessing As typical in the domain of analysis of wearable data, the data stream has to
be preprocessed, following the standard pipeline as for instance outlined by Bulling et al. [40].
At first, a window-based segmentation with a window size of 128 samples and an overlap of 75%
was performed for each signal of the stream, resulting in a frame rate of 3.75 Hz. Secondly, for
each signal, the following six features were extracted: (1.) mean (2.) variance, (3.) skewness,
(4.) kurtosis, (5.) peak, and (6.) energy. Result of this step was a 6 × 30 = 180 dimensional
feature space at a frame rate of 3.75 Hz. Afterwards, a principal component analysis was
applied to reduce the number of dimensions of the feature space. A k dimensional observation
space was then constructed by selecting the k dimensions of the transformed feature space with
the largest eigenvalues. The values of k were selected by Fibonacci probing.
The requirement for independent and identically distributed observations was not satisfied.

As described in Section 3.1.5, this can result in inferior recognition rates. To estimate the
influence of this effect, a scrambling of observation data, was used. The dataset that was result
of the scrambling operation was published in [134].

Observation model Oko The observation model p(z | a) was then constructed by use of this
k dimensional observation space. For sake of simplicity, all actions a of an action class c =
class(a) were assumed to share the same observation model, resulting in p(z | a) := p(z | c). For

93



6. Experiments

each action class, the observation model distributions were represented as multivariate normal
distributions (k dimensions) with unconstrained covariance matrix Σc, p(z | c) := N(z |µc,Σc).
The parameters µc and Σc were computed by taking all observations into account that were
annotated with action class c. Leave-one-out cross validation was omitted: for each action
class, the observation data of all subjects was considered for observation model construction
(see Section 5.2 for a brief discussion).

Observation model OL With respect to research question RQ7 (the use of different observa-
tion models), a second observation model was constructed. While the IMU-based observation
model exploits the Z and A components of the statistical model (see Section 3.1), objective of
the second observation model was to exploit theW and S components, allowing to demonstrate
the reuse of the causal model with different observation models.
A location-based model was constructed by extracting the location of the participant and

the food from the aLTS model by stepwise execution. An overview of the locations of each
domain object is given in Table B.4. The conditional probabilities were set according to:

p(y |x) =

{
1, if observed locations match locations in x
10−6, otherwise

(6.2)

Clearly, the second observation model provides more precise information than sensor-based
observations, as they are always correct with respect to the annotation. However, as the second
model was constructed only for demonstrating the capability of reuse regarding observation
model exchange (R5.2), the use was considered legitimate.

6.2.3. Experimental Setup

Baseline classifier As in the first experiment, an HMM was used as baseline classifier. In
contrast, as all subjects follow the same goal, a standard HMM was chosen for this experiment.
For each action class, an HMM state was created, resulting in 16 states. The transition ma-
trix was, similar to the first experiment, computed by supervised learning of the annotation
sequence. A quadratic discriminate analysis (QDA) was selected to provide an additional base-
line model, without temporal information. The QDA was computed based on the multivariate
normal distributions used as observation model and the prior class probabilities.

Causal behaviour model The causal behaviour model was constructed by applying the devel-
opment process described in Section 5.3. The iLTS was developed based on the aLTS, which
was created by applying the annotation process described in Chapter 4. During the annotation
process, 16 action classes and 18 entities were identified. The action classes are given in Figure
B.2, the entities in Table B.5. In all, 82 ground actions have been identified to be used during
the annotation. The annotations for subject S1 are provided in Table B.7, to exemplify the
complexity of the task.

Model characteristics The resulting model consists of 99 ground actions, generated from
44 action schemata of 16 action classes. 18 state features were used to model 14 domain
objects and their properties. The median branching factor was b̃ = 5 (with interquartile range
IQR = 3 − 6). The exhaustive exploration of the complete state space revealed 1.47 × 108

states. The minimal number of actions to be sequentially applied to the initial state in order
to reach the goal state is 44. The maximal number of unique actions to be applied was 66.

94



6.2. Experiment X2: Kitchen Task

Duration model Experiment X2 is based on smaller set of action sequence samples as Exper-
iment X1, which means that also the number of duration samples per action is smaller than
for the other experiments. For this reason, it was assumed that all actions sharing the same
action class also share the same action duration distribution. Thus, the action duration model
was created based on the action class, rather than based on the specific action. Two differ-
ent models were selected to determine the effect of possible infinite support on the inference
complexity and the resulting recognition performance.
The empirical model was created by counting the number of steps per action instance from

the annotation sequence. To avoid overfitting due to the low number of samples, the empirical
distribution was created by considering only unique duration samples.
The parametric model was created by applying the process described in Section 5.3. From

the list of durations to be tested, ten classes were found, four Weibull, two gamma and four
lognormal distributions were fitted. The remaining six classes were found to be fit by a common
lognormal distribution. An overview of the selected distributions is given in Table B.8.

Action selection model To detect the effect of the action selection heuristics on the recogni-
tion performance, different goal driven heuristics were selected:
fδ: the complete goal distance
fh: the recipe distance
fδ̄: the restricted goal distance

For a detailed description of these action selection features, see Section 3.1.4.
To investigate the impact of each single heuristic including their weight values (see Section

3.1.4) different weight values were tested. The weight values to be used were created by
exponential probing λk = −(2k), k ∈ {0, . . . , 4}. The value of λk = 0 effectively disabled the
action selection heuristics resulting in uniform action selection.

Reusability aspect R5.2 As discussed in Section 6.2.1, Experiment X2 targets the demon-
stration of the reusability of the causal model with different observation models, each using
a different variable of the statistical model. For this reason, two different observation models
were constructed. The observation model Oko employs sensor data from wearable sensors and
thus provides observations of actions by using the variable Z of the statistical model. The
observation model OL, provides information about the location of entities. It provides obser-
vations of states by using the variable W of the statistical model. The proof of R5.2 is done by
demonstrating the use of both observation models without any change to the causal behaviour
model.

Experimental procedure To investigate the influence of the modelling factors to the overall
recognition performance, several modelling factors were subject to variation. Before evaluating
the research hypotheses, a reduction of configurations was strived by selecting the relevant
observation models. For model comparison, and thus the evaluation of research hypothesis
H.X2.1, using the best parameter set would be sufficient. Developing an understanding for
the influence (answering H.X2.2), however, requires systematic parameter change and thus, a
multi-factorial experimental design. An overview of all factors, including possible values, is
given in Table 6.7. The following factors were subject to change:

1 Model: describes which kind of model is used to represent temporal relations: QDA,
HMM, or CCBM.

2 Target: describes the mode of filtering: forward filtering, smoothing, or MAP-estimate.
3 Mode: describes the filtering algorithm used for CCBMs: MF or PF
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Factor Level Comment

Target f filtering distribution p(xt | y1:t)
s smoothing distribution p(xt | y1:T )
v MAP-sequence xMAP

1:T := argmaxx1:T p(x1:T | y1:T )

Model QDA (no system model)
HMM HMM transition matrix
C CCBM model

Mode M Marginal filter
P Particle filter

Observations Oko IMU data using k ∈ {5, 8, 13, 21} principal components
Oks IMU data, scrambled
OL Locations (categorical)

Distance fδ True goal distance, complete state space
fδ̄ True goal distance, restricted state space
fh Heuristic goal distance, using recipe

Weight Lλ λ ∈ {0, 1, 2, 4, 8, 16}

Duration τc continuous parametric duration models
τd discrete duration models based on empirical distribution function

Table 6.7.: Factors and levels for experimental configurations.

4 Observations:gives the applied sensor model: location-based or IMU (original or scram-
bled) with varying k.

5 Distance: gives the goal-directed action selection heuristic: exact, recipe or core.
6 Weight: gives the value of λi: λi = −(2k), k ∈ {0, . . . , 4}
7 Duration: represents the duration model: parametric or empirical.

From this list the factor Method is created by combining Target, Model, and Mode. The values
of Method are: QDA, HMMf, HMMs, CMf, CMs, CMv, CPf, where for instance “HMMs” means
an HMM model with smoothing distribution as estimation target, “CPf” a CCBM with PF
and forward filtering distribution as target, and “CMv” a CCBM with target MAP-sequence
computed using the Viterbi algorithm. Finally, the factor “Subject” with levels “Si”, where
i ∈ 1 . . . 7, represents the seven datasets being available for experiments.
From the set of potential factor combinations, the following configurations were selected:

(QDA,Oko): Baseline evaluation that serves as demonstration of the discriminative power of
the observations without incorporating temporal relations.
(4 configurations)

(HMM{f, s},Ok{o, s}): Baseline temporal analysis to investigate the impact of temporal rela-
tion, different observation models and scrambling. Observation models for further anal-
ysis were selected based on the results.
(2× 4× 2 = 16 configurations)

({CMf,CMs,CMv,CPf}, {O5s,O21s,OL}, f{δ,δ̄,h}, Lλ, τ{c,d}): Complete CCBM analysis to eval-
uate the influence of different configurations on the overall performance. From the HMM
analysis the scrambled observation models O5s and O21s were selected for analysis. OL
described the location-based observation model. As in the first experiment, comparison
of the different values of Mode is only based on forward filtering.
(4× 3× 3× 6× 2 = 432 configurations).

As all configurations were applied to the data from each of the seven participants, the overall
number of configurations is (432 + 16 + 4)× 7 = 3164.
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Experiment execution The analysis of the influence of the random seed to the overall recog-
nition accuracy of the PF in Experiment X1 showed no significant influence. For this purpose,
also for Experiment X2 a prior analysis of the influence was conducted. Depending on the
results of this analysis, it is decided whether the application of multiple runs in order to com-
pensate random seed based performance variations can be omitted or not. The analysis is done
on the configuration (CPf,O21s, fδ, L1, τc) with 20 different random seeds.

Concerning the evaluation of the different configurations, the methods discussed in Section
5.4 were applied. Thus, performance comparisons were based on the accuracy with respect to
the action class. The target action class was preferred to the more expressive target ground
action for two reasons. Firstly, by using observations that were computed with respect to the
action class, the QDA would, due to missing temporal information, not be able to disambiguate
ground actions sharing the same action class. Secondly, in order to provide the HMMs a suf-
ficient amount of training data, states were selected to represent action classes. Consequently,
the HMM would also not be able to distinguish different ground actions of the same action
class.
In addition to the action class, the estimation of contextual information was targeted. Since

the annotation process established in Chapter 4 provides a database allowing the extraction of
such context information, the ground truth for three different context information was used.
By an analysis of the application domain, the following three situations were identified as being
of potential interest in a real world scenario:

• “Danger” – a potentially dangerous situation exist (i. e., the stove is on): on(stove).
• “Eaten” – the protagonist has finished the dinner: ¬hungry ∧ ¬thirsty.
• “Success” – the protagonist has finished the complete routine (and may be engaged with

additional cleanup): ¬hungry ∧ ¬thirsty ∧ clean(plate) ∧ clean(glass).

6.2.4. Results

This section presents the results of the analysis of the Experiment X2. Each of the following
sections targets one of the two research hypotheses H.X2.1 and H.X2.2. First, the performance
of the baseline models is reported and afterwards compared to the results of the CCBM.
Based on this analysis, hypothesis H.X2.1 is accepted. In the second step, the results of all
configurations are presented and subjected to an analysis of influence of the different factors.

6.2.4.1. H.X2.1 – Model Comparison Results

In the following, the results of the baseline classifiers (QDA and HMM) are presented and com-
pared. Afterwards, the results of the CCBM-based configuration are described and compared
to those of the baseline classifiers. If not stated differently, performance is denoted as accuracy
(see Section 5.4 for further explanation).

Baseline performance Regarding the baseline classifiers, the best mean2 accuracy of the QDA
was .64 with confidence interval (C I.95 = .6, .68). HMM forward filtering (HMMf) achieved as
best mean accuracy .66 (C I.95 = .62, .71) with original observations. The use of scrambled
observation resulted an accuracy of .73 (C I.95 = .69, .77), an increase of 7pp. For all baseline
configurations, the best results were achieved with O21, by use selecting k = 21 principal
components. Additionally, HMM smoothing consistently outperformed HMM forward filtering
with a mean increase of 3.98pp (paired t-test, t(55) = 11.6, p < .001). This difference was
increased for scrambled data, resulting in an increase of 5.57pp (t(27) = 15.9, p < .001). While

2The mean accuracy is reported here, as the distribution of accuracies was found to be normal by applying
the Shapiro-Wilk test of normality.
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Figure 6.10.: Accuracies of the baseline classifier per subject. Different numbers of principal
components in the observation model have been used. An accuracy of .2 (solid grey
line) is achieved by selecting the action class with highest prior probability.

the effect for original was only small (Cohen’s d =-.49), the effect for scrambled data was found
to be large (d =-.94). The results of all baseline classifiers for all configurations are depicted
in Figure 6.10.
The use of scrambled observations for HMM forward filtering consistently outperformed the

use of original observations for all numbers of principal components k. In median, an increase
of 9.89pp (Wilcoxon signed rank test, V(28) = 406, p < .001, Vargha-Delaney A = .23) could
be observed. While the accuracy of HMM forward filtering compared to QDA improved by
11.7pp for scrambled observation (V(28) = 406, p < .001, A = .18), the increase was only
1.67pp (V(28) = 302, p = .023, A = .46) for original observations. As discussed in Section 3.1.5,
this difference is due to the violation of the assumption of independence of the observation.
The observation probability depends on the position of the observation within the process
of the action. Figure B.4 illustrates this difference for original and scrambled observations.
Consequently, further analysis of CCBM performance focused on scrambled data.
Finally, with respect to the number of principal components k, it was found that the models

using k = 21 consistently performed best (see Figure 6.10). In contrast, the models based
on k = 5 principal components had the lowest performance. Accordingly, further analysis of
CCBM results was restricted to these extremes.

Influence of the random number generator To assess the influence of the random number
generator on the recognition performance of the PF, 20 different random seeds were used for
initialisation. The variance of the accuracies that was introduced by the seed is 2.23 ∗ 10−3

(IQR = 8.32 ∗ 10−4− 6.92 ∗ 10−3). The variance that was introduced by the different subjects
is 1.51∗10−2 (IQR = 1.51 ∗ 10−2−1.51 ∗ 10−2). The variance of the accuracies of the different
subjects is significant (W(20) = 143, p=< .001) larger (A=.97) than the variance of the different
seeds. Consequently, the compensation of the influence of the random number generator was
considered as unnecessary and was therefore omitted for the further analysis.

H.X2.1 – Comparison between CCBM and baseline An overview of the results of all CCBM
configurations is provided in Figure 6.11.

Configuration selection for comparison For each configuration, resulting from the combi-
nations of (Mode ={CMf,CMs,CMv,CPf}) × (Observations = {O5s, O21s, OL}) × (Distance =
{fδ, fδ̄, fh}) × (Weight = {L0, L1, L2, L4, L8, L16}) × (Duration = {τc, τd}), the results of the
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Figure 6.11.: Boxplots of the accuracies of all CCBM configuration for the kitchen exper-
iment.

seven subjects are summarised. From the boxplots in Figure 6.11, influences of single parame-
ter combinations (e.g. CMf consistently outperformed CPf) can be seen. A detailed analysis of
these influences if provided in Section 6.2.4.2. From this complete set, all configurations based
on (Mode = {CMf, CMs}) × (Observations = {O21s}) × (Weight = {L1}) × (Duration = {τc}),
were selected for comparison with baseline classifiers. These configurations were selected for
using the least information from the training data (e.g. τc instead of τd), employ the least re-
strictions to the state space (e.g. fδ instead of fδ̄) and utilise the most rational action selection
(e.g. L1 instead of L0, see [17, 188]) from the overall set of configurations. As discussed in Sec-
tion 6.2.3, using the best single configuration in order to prove hypothesis H.X2.1 is considered
sufficient. Here, we focus on both, forward filtering (CMf) and smoothing (CMs).

Testing hypothesis H.X2.1 With respect to forward filtering, CMf showed a significant in-
crease of 3.63pp (V(7) = 27, p = .031) in median when compared to HMMf. This represents a
medium effect (A = .27). Furthermore, CMs exhibits an increase of 6.78pp (V(7) = 28, p = .016,
A = .2) in contrast to HMMs.
Both results support the hypothesis H.X2.1. Moreover, they suggest that with the use of a

suitable parameter configuration, CCBM allows to improve the recognition performance with
respect to baseline classifiers.
A detailed comparison of other configurations based on Mode = {CMf, CMs} is listed in Table

B.3. In addition, to the overall performance, the performances of the single action classes are
shown in Figure 6.13 and Figure B.5. There was no significant difference in the overall per-class
performance of QDA, HMM, and CCBM. Furthermore, it can be seen from these figures that
the three action classes TAKE, PUT, WAIT, provide problems to the recognition in general.

Cohen’s κ An analysis of Cohen’s κ for all Modes gives additional evidence for the supe-
riority of CCBM to the baseline classifiers. The results show highly significant difference in
κ. Table 6.8 lists the κ values, and the differences for selected configurations. Note that,
according to Landis and Koch [138], the κ statistics of CMs (κ ≥ .81) signals “almost per-
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Figure 6.12.: Accuracy comparison of selected CCBM configurations to HMM, by subject
and filter method. The CCBM configurations use (CM,O21s,L1). The grey area
highlights the hull of the CCBM based configurations. (Subjects are sorted by median
performance in all configurations.)

fect” agreement, while the QDA (κ ≤ .6) results in “moderate” agreement, only. The other
configurations (HMMf, CMf, and HMMs), (.61 ≤ κ ≤ .8) achieve “substantial” agreement.

6.2.4.2. H.X2.2 – Configuration Factor Analysis

After having presented the results regarding H.X2.1 by comparing CCBM to baseline classifiers,
in the following, the effect of different parameters of CCBM on the overall performance is
analysed. First, a general overview of the influences and parameter interactions is provided.
These observation are later detailed with respect to Mode and Distance.

Figure 6.13.: Confusion matrix based performance measures per class. Detailed accuracies
for the configuration (OS21s, fδ, L1, τc).
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κ CM− HMM Accuracy CM− HMM

QDA .6 .65
HMMf .7 .73
CMf .74 .042 .77 .037

HMMs .75 .78
CMs .82 .072 .84 .064

Table 6.8.: Cohen’s κ and overall accuracies for selected configurations. CM−HMM represent
the difference between κ and Accuracy values, respectively, for CCBM and corresponding
HMM (n = 6647, p < .001 in both cases). The configuration (O21s,fδ,L1,τc) was used for
CCBM.

H.X2.2: Configuration factor effects Figure 6.11 suggests that several effects of CCBM
configuration factors on Accuracy are present. In the following, an analysis of these effects
using rANOVA is presented. Table B.9 provides a complete overview of the results of the
rANOVA. Effect sizes were determined by the generalised Eta-squared effect size measure
[175]. Here, the discussion focusses on significant effects of at least medium size, η2

G ≥ .0588
(see Table 5.3)

Main effects Significant main effects (all p < .001) for Observations (η2
G = .61), Mode (η2

G =
.34), Weight (η2

G = .18), and Distance (η2
G = .14) were found. No significant effect for Duration

has been observed. The strongest effect was found for Observation, which caused an increase
of 20.5pp (C I.95 = 12.9, 28) from OL to O21s (Cohen’s d =-3.63). Employing the MF (mode
marginal) increased the Accuracy by 9.81pp (C I.95 = 7.96, 11.7) in contrast to the PF (d =-
2.05). The factor Distance caused an increase of 4.99pp (C I.95 = 2.58, 7.4) from fδ (Complete)
to fδ̄ (Restricted) (d =-.98). The use of fh (Script), in contrast, resulted in an decrease of
the Accuracy by 1.57pp (C I.95 = -.55, 3.68) (d = .34). A moderate nonzero Weight improved
the recognition performance, the difference between L0 and L2 was 8.41pp (C I.95 = 6.07, 10.8)
(d =-1.21). The negligible difference (d = .004) between L1 and L2 was not significant (t(6) =-
.049, p = .96). Interestingly, a significant drop from L2 to L16 by 8.39pp (C I.95 = 5.78, 11)
(d = 1.69) was observed.

Interaction effects With respect to interactions of factors, the following significant (all p <
.001) effects were found: Mode×Observations (η2

G = .24), Distance×Weight (η2
G = .1), Mode×

Weight (η2
G = .089), and Observations × Weight (η2

G = .079). A graphical representation of
these effects is given in Figure 6.14.
The Marginal mode gained more from better observations than the Particle mode. While

there was only a small (d =-.32) difference in the Accuracy at OL of 1.55pp (C I.95 = .54, 2.57)
(although significant (t(6) = 3.75, p = .01)), the Marginal mode clearly exceeded (d =-2.96) the
Particle mode at O21s by 20pp (C I.95 = 15.7, 24.3).
With respect to Distance there was a significant difference between L0 to L1 for both Complete

(d =-1.41) and Restricted (d =-2.24) with an increase of 6.5pp (C I.95 = 3.97, 9.02) and 11.3pp
(C I.95 = 8.28, 14.4), respectively. The same tendency for Script (d =-.12) was not significant
(t(6) = .8, p = .45). Increasing the Weight further to L16 caused a large (d = 3.19) performance
decrease of 15.2pp (C I.95 = 13.3, 17.1) for Complete. The same tendency (d = 1.44) could also
be observed for fδ̄ (Restricted), with a decrease of 8.69pp (C I.95 = 4.87, 12.5).
The main reason for this tendency is the interaction of Particle and Complete, which caused a

large (d = 5.94) decrease of 26.7pp (C I.95 = 23.4, 30.1) for L16. For Restricted a large (d = 1.44)
decrease of 15.4pp (C I.95 = 8.43, 22.4) for L16) was observed when using Particle. For Marginal
the medium (d = .65) effect was significant only for L16 (t(6) = 5.76, p = .001) for Complete.
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Figure 6.14.: Interaction plots for the significant interactions. Error bars give the 95% confi-
dence intervals due to between subject variance. Effect comparisons are based on within
subject differences.

Only small and non-significant effects (d = .17, .21, .4 for L4, L8, and L16) were observed for for
Restricted (p = .06, .49, .21). The effect (η2

G = .077) of the interaction Mode×Distance×Weight
is also illustrated in Figure B.6
The effect of Script is, as can be seen from Figure B.7, only significant in the interaction

of Observations × Distance ×Weight (p = .001, η2
G = .018). For O21s, Script had only a large

and significant effect for L16 (d = .12, .29, .098, .44, 1.09, p = .55, .13, .70, .06, .03 for all five
non-zero weights). For OL, in contrast, Script had only a medium (d =-.52) benefit, giving an
increase of 3.04pp (C I.95 = .66, 5.42), at L1 and medium to large effects (d =-.65,-1.14 for L2
and L16), which increases to up to 5.58pp (C I.95 = 2.98, 8.19) at L16. All effects were found
to be significant (p = .020, .003, .001, .001, .002 for the non-zero weights). It could thus be
observed that with weaker observation models even less perfect distance models begin to show
a positive effect.

6.2.4.3. Understanding the effect of Mode

One explanation for the superiority of the Marginal mode is that the MF is able to maintain
more states than the PF, as it represents state probabilities by weights rather than sample
counts (cp. Section 3.2). To analyse this, the number of LTS states (elements of S) as well as
the number of inference states (elements of X) were counted for each step in each filter run. The
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CMf CPf ratio (CMf/CPf)

SpU 0.10 0.001 83.18
XpU 1.00 0.008 127.15
XpS 9.77 6.947 1.42
#S 15000.00 786.500 18.42
#X 1090.50 106.750 10.43

Table 6.9.: Median SpU and XpS values and ratios, across all runs of the kitchen experi-
ment.

numbers obtained were compared with the number of representation units (nU ) available to the
respective filter, giving the quantity “LTS state per representation unit” (SpU) and “inference
state per representation unit” (XpU).
Table 6.9 gives the median values across all runs. As can be seen, the MF clearly makes

much better use of the available representation resources. The numbers show the MF to be 80
to 125 times more efficient than the PF considering representation unit use. Concerning XpU,
the ratio is always 1:1 for the MF. The row “XpS” gives the number of inference states per LTS
state. The MF is able to maintain more inference states (more variations in starting times and
action under execution) per LTS state. #S and #X give the median values for the absolute
numbers of states. (Note that the PF has been used with nPU = 100,000, while the MF used
nMU = 10,000 and nMU = 20,000.)

6.2.4.4. Understanding the effect of Distance

To understand the effect of the Distance on the overall recognition Accuracy, linear models
were fitted to predict the relative remaining time RT of a state from different goal distances
(fδ̄, fδ, fh). The relative remaining time for a state xt, observed at time t of the observation
sequence of length T was thereby computed as RT (xt) := 1 − t/T . Furthermore, the goal
distances were normalised to the interval [0, 1]. The state sequences were generated based
on the ground truth sequences and a stepwise execution of the model. Figure B.3 provides
a graphical overview of the linear models. It can be observed that all models explained a
substantial amount of RT variance. The normalised goal distances are highly correlated with
the true temporal sequences of the observation sequence. However, while r2 for all methods was
high, they showed a markedly different performance (cp. Section 6.2.4.2). As F tests comparing
the residual variances show (column F(958,958) in Table B.6), the Complete and Script models
had a significantly higher residual variance than the Restricted method in predicting RT . The
difference between Script and Complete also was significant (F(958,958) = .76, p < .001). This
variance in the residuals seems to be an indicator for the observed effect of distance method
on performance.

6.2.4.5. State Predicate Estimation

Concerning the estimation of the selected state predicates “Eaten”, “Danger”, and “Success”,
it was observed that median accuracies of .93 or better were achieved. An overview of the
median results for configurations selected for comparison, including JSD is given in Table
6.10. Figure 6.16 depicts the estimated state predicate probabilities for the configuration
(CMf,O21s, fδ, L1, τc). In median, forward filtering (CMf) achieved an Accuracy of at least .93,
whereas smoothing (CMs) further increased this result to a median Accuracy of .97. For Eaten,
even perfect (Accuracy of 1) recognition was achieved for CMs.
In addition to the Accuracy, the use of the JSD was discussed in Section 5.4. The JSD was

found to be more sensitive, signalling differences even if Accuracy suggests perfect estimates.
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Predicate Target Accuracy IQR JSD IQR

Eaten Forward .93 (.92− .95) .021 (.019− .026)
Danger Forward .99 (.98− .99) .017 (.015− .023)
Success Forward .95 (.93− .98) .043 (.028− .056)
Eaten Smoothing 1.00 (1.00− 1.00) 0 (0− .001)
Danger Smoothing 1.00 (.96− 1.00) .002 (0− .038)
Success Smoothing .97 (.89− .99) .033 (.017− .064)

Table 6.10.: Median values and IQR (Q1,Q3) for Accuracy and JSD for predicate estimation.
Estimation is based on configurations (CM,O21s, L1).

Figure 6.15.: Jensen Shannon distance and accuracies for different values for Target and
Distance. Plots are based on the configuration (CM,O21s, L1). The grey line highlights
perfect correlation.

This is clearly the result of considering the probability distribution instead of relying on point
estimates. Figure 6.15 gives a complete comparison of the state predicate estimation of different
configurations (Mode = {CMf, CMs} × Duration = {τc, τd}, Distance = {fδ, fδ̄}). A significant
correlation (Spearman’s ρ = −.86, S = 1.47× 106, p < .001) between JSD and Accuracy could
be observed, serving as justification for the use of Accuracy in favour to JSD.
Subject S3 represents an interesting outlier regarding the estimate of the predicate Danger

(Figure 6.16). Inference mistakenly estimated the action TURN_ON, resulting in a wrong es-
timate of the state predicate. This recognition “error” has only low impact on the Accuracy
of estimating the action sequence. But the impact of the action estimation error on (1.) the
inferred situation and (2.) the subsequent action estimates in contrast, might be high. Fig-
ure 6.15 illustrates this effect graphically. Additionally, Figure 6.17 provides a comparison of
the subject-specific action sequence estimates with respect to sequence alignment based per-
formance measures. It can be seen in the plot that using measures of performance that are
sensitive to the causality of the action sequence, such as the Levenshtein edit distance, reveals
such effects.
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6.2. Experiment X2: Kitchen Task

Figure 6.16.: Estimating the probability of state properties. Sample values for the configura-
tion (CMf,O21s, fδ, L1, τc), plotted for each subject individually.

Figure 6.17.: Comparison of different performance measures sensitive for causality. Values
are scaled within each measure. The coloured lines emphasise the trend for the different
subjects. (smaller means better)

6.2.5. Discussion

Objective of Experiment X2 was to answer the four research questions. For RQ4 and RQ5,
hypotheses were constructed that if proven to be true allow to answer the research questions.
For the RQ6 and RQ7, it was considered sufficient to provide a proof by demonstration in the
first place. While this does not allow to conclude general statements about the capabilities of
CCBM, it provides indicators that justify further research on these questions. In the following
the results and implications of Experiment X2 are summarised.

Complexity of the causal model The current state of the art on the application of CSSMs
focussed on settings with maximal plan length of 20, maximal state space size of 70,000,
and the distinction of maximal ten action classes. This experiment, in contrast, was set up
to simultaneously exceed all of these limitations. The constructed LTS was found to have
1.47 × 108 (S) states, which increased to 6.23 × 109 inference states (X states) when also
considering the start times. At the same time the plan length was increased to 91.6 in mean
while focussing on 16 action classes. Thus, the experiment addressed a model that is several
orders of magnitude larger than models used in comparable studies.
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Hypothesis H.X2.1 Regarding the research question RQ4, CCBM has been compared to
baseline models with respect to recognition rates. A QDA, which only relies on the data, and
an HMM, featuring also temporal aspects, were used for this comparison. Both were based on
training data only, and were allowed to overfit by incorporating the complete dataset in order to
prevent a bias towards CCBM. CCBM was found to achieve recognition rates at the same level
as the HMM. Moreover, CCBM outperforms the constructed HMMs even though the HMMs
were allowed to overfit by training on the complete data. This was also confirmed by the
results of the test of hypothesis H.X2.1. Consequently, the first research question which states
whether CCBM is able to achieve recognition results at the same level as baseline classifiers, if
suitably parameterised, can be confirmed. Although it was not the aim of this study to prove
the superiority of CCBM in absolute numbers, the κ statistic for the action sequence estimated
by CMs can be interpreted as “almost perfect” agreement (see [138]) to the ground truth. The
results show that the use of rich state spaces, created from causal models, albeit increasing
state space complexity, do not reduce recognition performance.

Complexity of the baseline model With respect to the HMM as baseline model, it has to be
noted that the transition matrix for 16 states has 16 × 15 = 240 parameters to adapt to the
training data. The CCBM, in contrast, has only 11× 2 = 22 (eleven different duration models
with two parameters, resp., see Table B.8) parameters. The 16 parameters that describe the
self transitions of the HMM, however, are restricted in their meaning. All of them describe the
λ parameter of the geometrical distribution. For the duration model of the CCBM, the best
fitting PDF.

Hypothesis H.X2.2 The second research question (R5) concentrates on the influences of single
parameters and their interactions. All parameters, except for the duration model, were found
to have significant influence on the recognition performance. The test of research hypothesis
H.X2.2 affirmed this. This, on the one hand, supports the design decision of providing these
configuration capabilities through CCBM parameters and on the other hand suggests further
research for each parameter. While the use of a parametric duration model (with possibly
infinite support) increases inference complexity in contrast to an empirical one, this replacement
had no significant effect on the overall performance. This is an indication for the successful
approximation of the observed action durations.

Observations on factor interactions Besides this, three important observation have be made.

1 The use of the MF increased inference performance in contrast to the PF. This is due to
the weight-based representation of states instead of sample-based representation. As can
be seen from the analysis of related work, all CSSM related approaches use variants of
the PF for discrete state space and are therefore affected by this issue. In fact, only one
of the analysed studies used an approximation particularly tailored for categorical state
spaces.

2 Using i.i.d. observations increases the recognition performance notably. As has been
shown, sensor observations are typically not i.i.d. (see Figure B.4). For this study, this
issue has been addressed by scrambling the observation of the same action class. Obvi-
ously, this is not possible in real applications. Consequently, this issue should addressed
in further research by hierarchical models, such as RBPF as for instance employed by Bui
et al. [37] or Liao et al. [149].

3 By using goal distance based heuristics, recognition performance could be increased.
Furthermore, performance increased with the quality of the heuristics. While fδ̄, learned
from training data, achieved the best results, fh, naively created from the experimental
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script, achieved worst results. The effect of goal distance based action selected increased
with decreasing quality of the observation model. With the best observations (O21s),
even fδ, created from exhaustive exploration, had no effect. All action sequences were
longer than the minimal number of steps necessary to reach the goal. Consequently
goal distance based heuristics underestimate the length of the remaining action sequence,
which is corrected by the observation model. Again, further research on the action
selection heuristics is suggested.

RQ6: Using wearable sensors for fine grained AR Research question RQ6 addressed the
successful application of sensor data from wearable sensors for fine grained AR. The high
recognition rates from wearable sensors by use of CCBM indicates successful application. This
qualifies the statement of Chen et al. [46]. Furthermore, the use of OL, which is similar to obser-
vations generated from environmental sensors consistently performed worse than observation
based on wearable sensors.

RQ7: Reusability aspect R5.2 Regarding the reusability aspect R5.2, a proof by demonstra-
tion was done, supporting the initial statement of reusability despite a changed observation
model. While the Oks observation models use action observations (the Z component, see Sec-
tion 3.1), the OL observation model was set up based on state observations (theW component).
As the increase of state space complexity introduced by CCBM has no negative effect, it

can be assumed that the effect of introducing further state predicates has only limited effect
to the recognition quality. Thus, detailed description of the environment, including involved
objects enables the use of a variety of observation models. This includes state variables that
are at least at modelling time only of limited interest. The introduction or exchange of new
environment sensors allows the application-specific use of observations. The introduction of
additional state variables, in turn, extends the amount of context information to be estimated.

Summary In summary, Experiment X2 showed that CCBM allows to successfully reconstruct
action sequences from wearable sensors. Thereby, a very large state space was employed.
The detection of context situations of potential interest has been illustrated. Furthermore, it
has been shown that the parameters introduced to configure the statistical model underlying
CCBM have significant influence to the overall recognition performance. This result supports
the initial design decisions of introducing these modelling factors to CCBM. Finally, the causal
model has been used with different kinds of observations, each exploiting different parts of the
X state. The CCBM inference techniques have been shown to successfully cope with the large
state spaces created from the causal descriptions, allowing for generalisability with respect to
the application domain. CCBM allows the simultaneous recognition of the current action and
contextual information in problems of higher complexity as related work. CCBM outperforms
baseline classifiers while providing reusability.

6.3. Experiment X3: Indoor Localisation

Experiment X3 is concerned with the localisation of multiple persons within an indoor environ-
ment by means of anonymous binary sensors (i.e. PIR sensors). The problem of simultaneous
identification and localisation, also known as data association problem [248] or track confusion
problem [74], arises when several persons are observed by sensors without any assignment of
sensor data to the identity of the person itself. The persons are moving within the indoor
environment. Sensors without such assignment are often called anonymous, since they do not
allow to conclude the identity of the person being observed from sensor data only. Additionally,
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Figure 6.18.: The problem of simultaneous identification of multiple persons in partially
observed environments. Only one of three rooms is observed by sensors. The red
point represents the sensor. Three persons (A, B, and C) are distributed over these
rooms. Three situations are illustrated which can not be distinguished by anonymous
binary sensors.

binary sensors, as in the case of PIR sensors, are inherently ambiguous concerning the number
of persons being observed, increasing the challenge further. Inferring the identity becomes even
more challenging if not the complete environment is observed but only parts of it. This is, for
instance, the case in typical office environments, where motion detectors for light control are
installed in public accessible areas. The problem of localisation and identification of multiple
person in a partially observed environment arises. This problem substantially differs from the
problems that were addressed by the literature (i.e. Fox et al. [74] or [248]), as it introduces
unobserved regions that allow multiple persons to “hide” from sensor observation. A graphical
illustration of the problem is given in Figure 6.18. Imagine three rooms, of which only one is
observed by an anonymous binary sensor (e.g. a PIR sensor). Imagine further, three persons
(A, B, and C) who are moving within this environment. Due to the capabilities of the sensors
and the environment being only partially observed, several situations exist that can not be dis-
tinguished. Three of these situations are exemplified in Figure 6.18. Obviously, this problem
can not be solved without any specific knowledge about the behaviour of the involved persons.
Such knowledge is called identification features. The scenario was chosen for the following
reasons:

• Several researchers address problems similar to the simultaneous identification and local-
isation problem. Work on this topic has for instance been done by Müller and Hein [163],
Fox et al. [74], and Wilson and Atkeson [248].

• The literature uses different identification features, such as identifying sensors [74] or
person specific behaviour models [248] to solve the track confusion problem. The question
here is, if identification features can be provided by the causal behaviour model (e.g. goals
or actions specific to persons).

• Anonymous sensors, such as PIR are ubiquitous in public buildings. They are typically
installed for light control or similar reasons. Additionally, PIR sensors are unobtru-
sive [163], allowing, for example, to be installed in office buildings [164] and home and
care environments [163].

• Setting up an experiment for this problem is relatively easy, as typical public environments
are already instrumented with such sensors, connected via buildings automation bus [164].
This allows results to be easily transferred to real-world applications.

• The setting allows the number of involved persons to be varied easily. An increase (or
decrease) of the number of involved persons requires no change to the overall experiment.
Specifically, a change to the number of persons does not require changes to the sensor
infrastructure or the observation model. This allows other researchers to easily reproduce
the results on a larger scale.
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Figure 6.19.: The spatial layout of the indoor localisation trial setting. The red circles rep-
resent the PIR sensors, rooms with red circles represent observable areas, consequently.

• The setting allows an investigation of the influence of the number of persons on the state
space complexity and thus on the inference complexity.

• The use of anonymous binary sensors allows to increase the complexity of the problem as
with each increase of the number of persons the number of possible sensor assignments
increases. This allows an investigation of the effect of an increased the state space on the
recognition performance without considering potential identification effects of the sensors.

A detailed description of the experiment is given below.

6.3.1. Objective

Experiment X1 and Experiment X2 showed that CCBM allows the reuse of causal behaviour
models. For this reason, two aspects of reusability were demonstrated, R5.1 and R5.2. The
objective of Experiment X3 is now to investigate the capabilities of CCBM with respect to
reusability with varying number of involved protagonists (R5.3). More specific, it is investigated
if a causal behaviour model developed for a specific number of protagonists can be reused with
a different number of persons. Furthermore, the size of the state space generated by increasing
the number of persons is investigated. For this reason, a trial setting is selected were different
numbers of agents act independently. A common sensorial observation, which is influenced by
each person, is chosen as link between them. This experiment aims at answering the research
questions RQ8 and RQ9.
For both research questions rephrasing to research hypotheses has been desisted, as a proof

by demonstration was considered sufficient to demonstrate the capabilities with respect to
multiple agents. The following sections describe the trial setting, the experimental setup and
the results with respect to the research questions.

6.3.2. Trial Setting

In order to answer the targeted research questions, a trial was done. During the trial, dif-
ferent numbers (1–7) of protagonists were instructed to move through an office environment.
Anonymous binary sensors were used to observe the environment, each of them signalling if at
least one person is moving within the range of the sensor. In the following the trial setting is
described in detail.

Trial task For the trial setting, nine rooms on the same floor, which are connected by a
corridor, were selected. Figure 6.19 shows the floor plan of the trial. The sensor layout follows
a standard instrumentation of office buildings for the purpose of light control [164]. The
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person office start goal
document coffee meeting location

A1 room 214 stairs � � � room 214
A2 room 211 stairs � � � room 211
A3 room 214 room 214 � � � room 214
A4 room 208 room 208 � � � room 208
A5 room 205 room 205 � � � room 205
A6 room 210 room 210 � � � room 210
A7 room 211 room 211 � � � room 211

Table 6.11.: Overview of the different agent configuration.

corridor was partitioned into five observable areas, being monitored by one presence sensor.
Furthermore, the public accessible room 2073 was instrumented with a presence sensor.
Seven participants were considered enough to investigate the effects of a varying number of

persons on inference performance. The rationale here was that seven participants are enough to
show a trend in the influence on the recognition performance. With respect to the investigation
of the reusability aspect R5.3, two different numbers of participants would be enough to perform
a proof by demonstration. Consequently, the decision about the number of participants was
based on the considerations regarding RQ9
An identifier (A{1–7}) was assigned to each person. Beginning with seven involved persons,

the number of persons was decreased by one for each trial run4. Each trial run (trial with a
fixed number of persons T{1–7}) was repeated five times to increase variance of durations and
sensor data. The overall number of trial runs was seven, resulting a an overall number of 35
(7× 5) runs.
Each person was instructed to follow a predefined schedule similar to typical office rou-

tines but with shortened durations. The following different sub-tasks had to be accomplished:
(1.) getting a printed document, (2.) getting a coffee, and (3.) having a meeting. Table 6.11
gives an overview of the person-specific configurations including the starting location, the par-
ticular office and the goal. For each trial run, an exception was made for the person with the
highest identifier per trial run (e.g. in trial run T6 with six involved persons, the schedule of
person six (A6) was adjusted.). The exception is based on the decision that all persons, except
the one with the highest identifier are supposed to have a meeting together. The schedule and
the derivation were created by a domain expert which was blind to the objective of the trial.
The median length of the resulting observation sequences was 473 s (with IQR = 467 − 478)
for all trials. The median plan length over all trials and agents was 36 (IQR = 24− 39).
The complete experiment was recorded by three static cameras, two positioned in the right-

most and the leftmost corner of the corridor, one positioned in room 207. The resulting video
material was used to create the annotation of the scenario using the annotation process de-
scribed in Chapter 4. During the annotation process ten action classes and five entities have
been identified. 27 ground actions have been found while ignoring the executing agent (e.g.
walking-corridor1-corridor2). By also considering the executing person in the ground action
(e.g. walking-A1-corridor1-corridor2), this number is increased to 112. An excerpt of the an-
notation sequence for A1 is given in Table B.10. The complete dataset has been made publicly
available in [112].

3Room 207 was public accessible as it contains a printer and coffee machine that was shared by all persons.
4Two different terms are used to distinguish the different iterations of the trial run: 1. Trial run refers the
part of the trial that was done in equal settings (e.g. Seven trial runs were done). 2. Repetition refers to
the different iterations that were done with equal number of persons (e.g. Five repetition were done for each
trial run).
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Figure 6.20.: Graphical illustration of the location sequence of the first repetition of person
A1 in trial T1. For each room of the trial setting, it is highlighted whenever the person
is in this room. Additionally, the corresponding sensor information is displayed.

Sensor data and preprocessing The PIR sensor nodes, which were developed for this trial, are
based on a MSP430 LaunchPad. Each sensor node was equipped with a PIR sensor and an SD
memory card to store sensor events. Before each trial run, each sensor node was synchronised
with the experimenter’s computer in order to ensure time synchronicity. After each trial run,
the data was downloaded from the SD memory card. The PIR sensors are able to recognise
two different situations. The first being that a person is inside the range of the sensor, the
second that there is nobody within the range of the sensor. Each sensor node records changes
to the situation.
After the trial, the six sensor data streams were synchronised. The sensor data was converted

to an equidistant time base of 1 Hz. The result of the sensor data preprocessing was a data
table consisting of six columns – one for each sensor (Y ) – with one row for each second of the
repetition. In the table, a “1” signals that at least one person is within the range of the sensor
node, whereas a “0” indicates that no person is in the range. A graphical illustration of the
sensor data for first repetition of the trial run T1 with one participant is provided in Figure
6.20. Three effects can be observed that potentially increase inference complexity: (1.) the
sensor typically signals presence of a person too late, (2.) the sensor signals presence of a person
too long, and (3.) the sensor’s presence signal is interrupted during long sequences of presence
(see corridor 2 at time 130).

Observation model The observation model p(w | s) was constructed for each observable area,
independently. Thereby, a counting mechanism, based on the parameter training of the NB
classifier with m-estimate [160, p.179], was employed. For each observable area i a confusion
matrix was constructed from the sensor observation of sensor (Yi ∈ {0, 1}) and the annota-
tion for room R (Ri ∈ {0, 1}). This training procedure was applied for each trial run. The
observation model was created as combination of the observed areas (see equation 6.4).

p(w | s) =
∏
i

p(Yi=yi |Ri=ri) (6.3)

p(Yi=yi |Ri=ri) =
1 + #(Ri=ri ∧ Yi=yi)

2 + #(Ri=ri)
(6.4)
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6.3.3. Experimental Setup

Baseline classifier Purpose of the baseline classifiers was to estimate the location of each
subject for each time-step. The NB classifier was selected as non-temporal baseline classifier.
The reason is that according to Mitchell [160, p.177], the NB classifier is well suited for finite
sets of observation items, as it is the case with binary sensors. A situation is here represented
as a n-tuple, where n gives the number of all involved persons. For each person, the current
location (one out of 14 possible rooms) is represented. The prior probabilities were generated
by counting situations from the annotations. For the trial run with three involved persons, for
instance, a situation would be that A1, A2, and A3 are at corridor1, corridor2, and room205,
respectively. Consequently, situations that did not occur during the trial will not be considered
during classification. Obviously, the NB classifier is overfitted with respect to the training data.
As for the other experiments, an HMM was selected as temporal baseline classifier. Similar

as for the NB classifier, the state space of the HMM was created by considering situations from
the annotated trial runs. The resulting number of states for the baseline HMM for one person
was 11. For two and more persons the following number of different situations was found: 41,
81, 87, 166, 189, 351. Like the NB classifier, the HMMs are overfitted to the scenario. The prior
state distribution was directly taken from the experimental description for each participant.
For each trial run, the transition matrix was created by supervised learning of the annotated
label sequence. Like for the previous experiments, the transition matrix was not subject to
regularisation.

Causal behaviour model The causal behaviour model was created by employing the devel-
opment process described in Section 5.3. Ten action schemata were created, each of them
representing an action class, resulting in the set of ten action classes. Each action schema
was parameterised with an executing agent and a location. This would lead to high number
of ground actions (ten action schemata × 14 locations × number of persons). To reduce the
number of actions, only actions that have been executed in the trial were considered. This
reduced the number of actions and thereby the number of possible states.

Model characteristics The resulting number of ground actions was 25 for T1 with one involved
protagonist. This number increased to 50 (62, 80, 103, 127, 150) for T2 (T{3–7}, resp.). To
provide identification features within the causal model, for each agent the information about
the location of the corresponding office was provided. Furthermore, for each agent a goal was
specified. The goal was directly taken from the experiment description. Finally, an ordered list
of working items was created for each agent. The shortest sequence of actions to be executed
in order to reach the goal per agent in median was 30 (IQR = 26.75− 36.25).
As the participants were modelled independently from each other, the state space is con-

structed by combining the possible states for each agent. The resulting state space sizes are
provided in Table 6.12. Note that the number of states is, albeit being severely restricted, by
far higher than for the baseline classifier.

Duration model For the action duration model, an empirical model was considered sufficient,
as it was not aim of the experiment to assess the influence of the duration model. The action
duration model was created based on the ground action. Thus, the duration of an action would
serve as an additional identification features.

Reusability aspect R5.3 Beside investigations on the effect of the state space size on the
recognition performance, Experiment X3 aims at investigating whether a causal behaviour
model can be reused with a varying number of persons. For this purpose, a model was developed
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Trial A1 A2 A3 A4 A5 A6 A7 overall baseline

T1 73 - - - - - - 7 ∗ 101 11
T2 73 73 - - - - - 5 ∗ 103 41
T3 73 85 42 - - - - 3 ∗ 105 81
T4 73 85 48 36 - - - 1 ∗ 107 87
T5 73 85 48 80 56 - - 1 ∗ 109 166
T6 73 85 54 80 54 42 - 6 ∗ 1010 189
T7 73 85 48 80 54 48 80 5 ∗ 1012 351

Table 6.12.: State space size for the different problems. The overall state space size is defined
as the product of the state space size of each agent. The most right column gives the
number of situation actually appeared during the trial.

that allows an adjustment of the number of agents. Similar as for the experiments X1 and X2,
the definition of the actions and the state features was left unchanged while changing the
number of persons. This was possible by introducing the executing agent as a parameter for
each action (e.g. walking-corr1-corr2 becomes walking-A1-corr1-corr2 to reflect that subject
AG1 is executing the action). The same technique was applied for state features that describe
the current state of the respective protagonist.
To investigate the reusability aspect R5.3, a proof by demonstration was done. By applying

the same causal behaviour model to different numbers of involved persons, the LTS, which is
generated from the causal behaviour model and their parameters, was adjusted to the actual
number of persons. The parameters include a specification of initial state properties such as
the initial location and the office, and the final goal of the respective person.

Experimental procedure Due to the large number of possible states and the increased level
of freedom, the recognition results were expected to be lower than for the temporal baseline
classifier. In order to ensure that this decline in the recognition performance is not caused
by CCBM in principle but by the large state space created by the behaviour model and the
insufficient action selection, an alternative action selection mechanism was considered. For
this reason action selection was based on the transition matrix of the trained HMM. As a
consequence, the action duration model was not provided by the empirical duration model but
rather by the self transitions of the HMM.
Note that the state in the causal behaviour model does not only consist of the location

of the agents as in the HMM transition matrix. As described in Section 3.1, the state also
incorporates the executed action and other contextual information, which, in consequence,
resulted in a larger state space.
The following factors were considered for performance assessment:

1 Model: describes the kind of model that is used to describe the temporal relations: NB,
HMM, and CCBM

2 Transition: describes the way how the transition probabilities were computed: fδ and
fHMM

3 Trial: describes the trial run and thereby the number of participating protagonists:
T{1–7}

For all CCBM inference runs the MF was applied. The reason here was that Experiment
X2 showed that the MF is superior in contrast to the PF in large state spaces. The Weight for
all runs was set to λδ = 1. Table 6.13 provides an overview of all considered factors including
their possible levels. The following combinations of factors were considered:
(NB, T{1–7}): Non-temporal baseline classification with the NB classifier.

(7 configurations)
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Factor Level Comment

Target f filtering distribution p(xt | y1:t)

Model NB Naïve Bayes classifier without temporal relations
HMM HMM transition matrix
C CCBM model

Mode M Marginal filter

Transition fδ True goal distance, complete state space
fHMM Transition probabilities of the trained HMM

Weight Lλ λδ = 1

Duration τd discrete duration models based on empirical distribution function

Trial 1–7 Trial run with fixed number of participating protagonist

Table 6.13.: Factors and levels for the indoor localisation experiment.

(HMMf, T{1–7}): Baseline inference with temporal classifier.
(7 configurations)

(CMf, {fδ, fHMM}, T{1–7}): Analysis of the influence of the selected factors on the recognition
performance.
(2 × 7 = 14 configurations)

Each configuration was applied to the data of all of the five repetitions in each trial.

Experiment execution Objective of all inference runs was to estimate the location of all of
the participating protagonist. Furthermore, the CCBM inference runs were set up to simulta-
neously estimate the activity for each agent. The evaluation was done in a similar way as for
Experiment X1. From the situation-based estimate, an agent-based estimate was created by
marginalising over all states with equal location for that agent. Then, for each time-step the
most likely location was selected from the agent-based estimate. For each inference run the
performance was assessed by using the measures discussed in Section 5.4. Like for the first two
experiments, the accuracy was used as primary criterium.

6.3.4. Results

This section presents the results for Experiment X3. First the performance of the baseline clas-
sifiers is presented. Afterwards the CCBM-based recognition performance is reported. When
reporting the results, we first focus on the estimation of the location of the protagonists. The
AR results of the CCBM-based inference runs are reported afterwards.

Baseline classifier The NB achieved a mean recognition accuracy of .6 (C I.95 = .58, .62) for
the trial run T1. For the HMMf the accuracy for T1 was .79 (C I.95 = .78, .8), which represent a
large (Cohen’s d = −14.7) and significant increase of 19.1 pp (paired t-test, t4=38.4, p< .001).
A similar increase of 20.1 pp (t4=40.9, p< .001, d = −20.4) could also be observed for the
second trial run (T2). Also for the remaining trial runs (T{3–7}) large and significant increases
of the mean recognition accuracies could be observed (19.4, 18.6, 24.6, 25.1, 25.2). A detailed
overview of the results is provided in Table 6.14. A plot of the results is given in Figure 6.21.

CCBM with goal based action selection With respect to (CMf,fδ) for the trial run T1 a
mean accuracy of .85 (C I.95 = .84, .86) was achieved. This is a significant mean increase of
6.01 pp (t4=20, p< .001, d = −8.04) when compared to HMMf. For the second trial run (T2)
a mean accuracy of .79 (C I.95 = .76, .83) was found. The difference to HMMf was negligible
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Trial NB HMM t p M pSW d

T1 .6 .79 38.4 < .001 .19 .45 −14.7
T2 .59 .79 4.9 < .001 .2 .69 −2.4
T3 .57 .76 32.4 < .001 .19 .99 −16.1
T4 .63 .82 25.9 < .001 .19 .073 −14.3
T5 .6 .85 58.9 < .001 .25 .23 −25.8
T6 .62 .87 77 < .001 .25 .76 −58.7
T7 .6 .85 19.8 < .001 .25 .14 −12.9

Table 6.14.: Overview of the mean recognition accuracies of the baseline classifiers. Com-
parison using paired t-test (all df = 4). pSW represents the p-value of the Shapiro-Wilk
test for normality. d denotes the effect size according to Cohen’s d

Figure 6.21.: Overview of the recognition accuracies for the location-based estimate of all
classifiers. Note that for T{2–7} HMMf and (CMf,fδ) achieved almost equal results
and are therefore hardly distinguishable.

(Cohen’s d = −.041). The mean difference of T2 to T1 was 5.66 pp. This decreasing trend
could further be observed for the trial run T3 (T{4-6}) with differences of −15.7 pp (−19, −27.3,
−41.4) in contrast to the HMMf. For T7 the mean decrease of the accuracy was −15.7 pp .
All accuracy declines from HMMf to (CMf,fδ) were large (d > .8) and significant with p-value
< .001. Interestingly, while the mean accuracy for the HMMf showed an increasing trend, the
opposite was the case for (CMf,fδ).

CCBM with HMM transition matrix When considering (CMf,fHMM ) a mean accuracy of
.85 (C I.95 = .84, .86) could be observed for T1. This represents a significant mean increase to
HMMf by 5.93 pp (t4=93.6, p< .001, d = −6.97) but only a negligible (d = −.13) difference to
(CMf,fδ) (t4=−.35, p.75). The mean accuracy for T2 (T{3-7}) was .79 (C I.95 = .84, .86) (.76,
.82, .85, .87, .85). For T2 no difference between HMMf, (CMf,fδ), and (CMf,fHMM ) was found.
With increasing the number of protagonists to 3 (T3), the observed difference of (CMf,fδ) and
(CMf,fHMM ) in the mean accuracy increases to 15.6 pp. Further increasing the number of
participants resulted in differences of 19.1 pp, 27.3 pp, 41.3 pp, and 28.2 pp. Similar to HMMf
an increasing trend in the mean accuracy could be observed. Table B.11 provides a detailed
overview of the recognition accuracies of HMMf, (CMf,fδ), and (CMf,fHMM ).

Alternative performance measures Considering alternative performance measures (see dis-
cussion in Section 5.4), for HMMf the mean value of Cohen’s κ was .73 (C I.95 = .72, .74). An
increase of the number of involved persons (T2) (T{3–7} resulted in .75 (C I.95 = .74, .76) (.71,
.78, .83, .85, .83). For (CMf,fδ,T1) a value of .81 (C I.95 = .8, .82) was observed for κ. For
T2 this value decreased to .75 (C I.95 = .71, .79). Further decreases could be observed for an
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Figure 6.22.: Overview of the AR accuracies the CCBM-based classifier. The accuracy
(CMf,fδ) decreases with increasing the number of agents.

Predictor β0 β1 F(1,33) r2

NB 0.59 0.00 2.46 0.07
HMMf 0.76 0.01 58.77 0.64
(CMf,fδ) 0.79 0.01 8.86 0.21
(CMf,fHMM ) 0.86 -0.06 85.96 0.72

Table 6.15.: Linear models to predict the accuracy from the number of involved persons.

increased number of persons (T{3–7}): .54, .57, .52, .40, .51. For (CMf,fHMM ) a mean κ of
.81 (C I.95 = .8, .82) for T1 was found. This value first decreases for T{2–4} to a minimum of
.71 but then increases for T{5–7} to a maximum of .85.

CCBM action recognition With respect to recognising the activity, (CMf,fδ) achieved a mean
accuracy of .89 (C I.95 = .88, .89) for one protagonist (T1). For two persons (T2) a mean
accuracy of .84 (C I.95 = .8, .87) was observed. The accuracy decreased to .67 (.66, .60, .49,
.59) for T3 (T{4–7}). When using the restricted state space with trained transition probabilities
(CMf,fHMM ) the recognition of the activity showed a mean accuracy of .87 (C I.95 = .86, .88)
for T1. This represents a significant decrease of −1.31 pp (t4=−5.15, p.007) in contrast to
(CMf,fδ). For T2 a mean accuracy of .83 (C I.95 = .82, .84) was observed for (CMf,fδ), which
did not differ significantly from (CMf,fδ) (t4=−.18, p.87). When considering three (T3) or more
protagonists (T{4–7}), mean accuracies of .8 (.83, .81, .84, .84) were observed for (CMf,fHMM ).
For all trial runs with more the three protagonist (T{3–7}) the accuracies increased significantly
by at least 13.2 pp (p < .001, < .001, .002, < .001, < .001). A graphical overview of the action
recognition results is fiven in Figure 6.22

CCBM context recognition With respect to the simultaneous recognition of activity and con-
textual information a significant correlation has been observed for both (CMf,fδ) (Spearman’s
ρ=.97, S=205, p< .001) and (CMf,fHMM ) (ρ=.45, S=3943, p.007).
To understand the effect of the number of involved persons on the accuracy, a linear re-

gression model was fitted to predict the accuracy for each classifier. Table 6.15 provides an
overview of these models. While none of the models were able to explain substantial amounts
of the variance, they still allow to conclude a trend. Figure 6.23 provides a graphical repre-
sentation of these models. For (CMf,fδ) a significant negative influence of the number of the
trial run was found (F1,33 = 86, p < .001). When the number of persons increases by one, the
accuracy decreases by 5.58 pp. Thus, as expected, increasing the state space size deteriorates
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Figure 6.23.: Linear models fitted to predict accuracies of the different classifier from the
number of involved persons.

the capabilities of tracking the correct hypotheses.
For HMMf, the opposite effect was suggested by the results. The fitted linear regression

model, again, showed a significant effect of the trial number (F1,33 = 58.8, p < .001). An
increase of the number of involved persons by one resulted in an increase of the accuracy by
1.48 pp. The reason for this is clearly that the HMMf is overfitted. An increased state space
size results in a more sparse transition matrix. While for T1 the transition matrix of HMMf
contains 29 of 121 possible transitions (ratio: .24), this ratio decreases to .03 for T3. This ratio
further decreases to .006 (697 of 123201) for T7.

When using the transition matrix of HMMf and thereby strongly restricting the state size
for (CMf,fHMM ), a similar significant increase in the accuracies could be observed (F1,33 =
8.86, p .005). Here, an increase in the number of persons by one resulted in an increase of the
accuracy by .82 pp. Reason for this estimated lower increase is the difference in the intercept,
which is higher for (CMf,fHMM ) (79.5) than for HMMf (76).

6.3.5. Discussion

Objective of Experiment X3 was to demonstrate the reusability of a causal behaviour model for
different numbers of involved protagonists (research question RQ8). Furthermore, the influence
of an increased number of persons on the recognition performance should be investigated (RQ9).
The results of the experiment were reported in the previous section. This section further
analyses the results and thus aims at answering the stated research questions.

Research question RQ8 Concerning the first question, a causal behaviour model has been
developed, which was applied to different numbers of agents. By parameterising each action
schema with the executing agent, a set of agent-specific ground actions have been generated.
Each action describes the influence of the executing agent to the environment. Likewise, the
set of agent-specific state features was created, describing those parts of the state space that
depend on the agent. As a result, the state space grew exponentially with the number of
involved persons (see Table 6.12).
As described, the persons in the trial acted independently and were therefore modelled as

independent agents. While this would in general allow to separate the tracking problem for each
agent, the selected setting prevents this, because it is not possible to assign sensor data to a
specific agents. Thus, reconstruction of the behaviour sequences had to be done simultaneously
for all involved persons. As a result, the state spaces could be traversed independently, allowing
the goal distances to be computed for agent-specific state spaces. Traversing the compound
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state space would have been hardly possible due to high memory requirements.
The simultaneous recognition of the activities and the location of the agents demonstrated

the reusability and therefore allows to answer the research question RQ8. It is indeed possible
to reuse the causal behaviour model for a varying number of protagonists. Agent-specific
information, such as the initial location or the goal can be used as parameters for the behaviour
model. In fact, these agent-specific information have been used as identification features here.

Action selection for multiple agents In general, with the use of the exact goal distance fδ
as action selection heuristics the problem of exhaustively traversing large state spaces arises.
This is infeasible for very large state spaces because of actual memory restrictions. Here, the
problem could be circumvented by exploiting the fact that all agents are independent from
each other. This is not the case in general. Additional research in the domain of action
selection, especially in the case of multiple agents, is necessary to find sufficiently accurate
approximations of the goal distance. A review of techniques from the domain of multi-agent
planning, for instance, is suggested. On the other hand, as the recognition results in this
experiment show a decline with increasing number of agents, the goal distance may not be
sufficient to describe action selection in complex multi-agent scenarios. Thus, general research
on multi-agent action selection is suggested.
The results of Experiment X3 suggest that CCBM is able to handle latent infinite state

spaces. The recognition performance thereby strongly depends on the quality of the action
selection heuristics. This corresponds to the results of Experiment X2, where the restricted goal
distance consistently outperformed other action selection mechanisms. Here, the application
of HMM transition matrix based action selection resulted in similar results as for the baseline
classifiers.

Research question RQ9 With respect to research question RQ9, a strong decline of the recog-
nition accuracy was observed when the number of agents, and thus the state space, grows. This,
at first glance, seems to contradict the results of Experiment X2. A state space with millions
of states was found to achieve higher recognition rates than the baseline HMM. However, the
state features in the causal model of the second experiment were correlated – the value of a
state feature depends on the value of another state features (e.g. The plate and the spoon are
in use when the person is eating.). In contrast, the state space of the model of Experiment X3
constitutes independent parts for each agent. Adding an agent’s state features to an existing
state space, does neither introduce restrictions to the existing state space nor for the new part.
In fact, a separate treatment of each agent would increase agent based recognition performance.
However, as the sensor data does not allow any assignment, a separate treatment is impossible.
Experiment X3 concentrated on the simultaneous identification and location recognition

from anonymous sensor data. By omitting the problem of identification, the problem can be
addressed with lifted inference techniques [119] such as the hidden permutation model [38]. In
this setting, these techniques can exploit the fact that the persons can not be distinguished by
sensor data and focus on counting the persons per room rather that maintaining the identities.
Further research should also target an automatic generation of such lifted models from the
causal behaviour model.

Summary To summarise, the results show that (1.) research question RQ8 can be answered
positive and (2.) a large effect of the number involved persons on recognition performance
(RQ9) exist. CCBM allows the development of causal behaviour models that can be reused
across different numbers of involved persons. Furthermore, CCBM is able to handle latent
infinite state spaces as generated from an increased number of persons.
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7
Discussion and Conclusion

“Any sufficiently advanced technology is indistinguishable from magic.” – Arthur Clarke

Synopsis: Aim of this final chapter is to summarise the results this thesis. For this reason, first
a summary of the individual chapters is provided. The results and their implications are then
discussed with respect to the question IQ. Finally, the limitations of the experiments are discussed
and further research directions are outlined.

Chapter Sources: Parts of this Chapter have been previously published in the following publi-
cation(s):

• Computational State Space Models for Activity and Intention Recognition. A Feasibility
Study [133]

• Plan Synthesis for Probabilistic Activity Recognition [131]
• Towards Creating Assistive Software by Employing Human Behavior Models [129]
• Where are My Colleagues and Why? Tracking Multiple Persons in Indoor

Environments[132]
• Evaluating the Robustness of Activity Recognition using Computational Causal Behavior

Models[128]

The previous chapters presented three experiments to investigate the capabilities of CCBM.
This final chapter summarises the results with respect to the question IQ. For this purpose,
Section 7.1 provides a summary of this thesis. Section 7.2 highlights in how far the requirements,
raised initially, are met by CCBM. Finally, Section 7.4 provides further research topics.

7.1. Summary

The following section summarises this thesis. For this purpose the main points of each chapter
are provided.
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Motivation and requirements Main objective of this thesis is to investigate the initial ques-
tion IQ. For this purpose, the requirements for inference systems for assistive systems are
collected from the literature and two motivational examples: (1.) Plan – the ability to provide
an estimate the current state, the action sequence and the final goal of the user, (2.) On-
line – the ability to infer the current situation in a complexity that is linear in length of the
observation sequence processed so far, (3.) Uncertainty – the ability to cope with noisy and
ambiguous sensor data, (4.) Latent infinity – the ability to handle very large, possibly infinite,
state spaces, and (5.) Reusability – the ability to reuse parts of the domain model in different
situations. It has been discussed that an inference system that provides the assistive system
with information about the current situation and potential future development has to satisfy
these requirements.

Computational state space models In order to assess the state of the art with respect to
the initially ascertained requirements an in depth analysis of the related work on the research
domains of AR and PR was conducted. This evaluation revealed that neither AR nor PR
alone are able to provide a solution to this question. Thus, a combination of both research
fields was strived to enable high-level reasoning on the base of low-level sensors. In addition to
the review, a classification scheme that aids at summarising the related work was developed.
Based on this classification scheme, a meta analysis [70] was performed to assess the problem
size targeted by other researchers. For this purpose, several different factors (e.g. state space
size or plan length) have been identified to serve as surrogates for measuring the problem size.
Section 2.1.4 introduced the concept of computational action languages to describe the con-

nection between actions and states. Computational action languages describe behaviour as
algorithms. Furthermore, the application of computational action languages allows to create
reusable causal models of human behaviour. To this end, different researchers [17, 189, 95, 202]
employed model-based descriptions in order to reconstruct action sequences of human protag-
onists. Computational action languages are utilised as they allow to replace training data by
prior knowledge about causal dependencies. Computational State Space Models (see Section
2.2.1) make use of such symbolic descriptions of generative causal connections to describe ac-
tions that compute new states from old states. The application of generative causal structures
is “more accessible to the mind” [181, p.21] rather than mere associations. However, when using
such computational descriptions it is easy to arrive at very large – even infinite – state spaces.
While such rich state spaces are desirable with respect to the descriptive power, they come at
the price of an increased inference complexity. Due to more variation, a larger state space might
achieve weaker performance as a smaller, more biased, state space (see discussion in Section
5.1). The fact that researchers, so far, applied CSSMs only in scenarios with easy-to-interpret
sensor data (see discussion in Section 2.2.10), might be a direct consequence.

Computational causal behaviour models In Chapter 3, the results of the state of the art
review were used to create a novel approach to integrate AR and PR – CCBM. CCBM captures
the concept of CSSMs and thereby the flexibility and generalisability of a computational action
language to create reusable causal models of human behaviour. It thus provides a plan synthesis
based approach to PR. By utilising the framework of Bayesian filtering, CCBM combines
the ability of high-level reasoning with low-level sensor data. Consequently, CCBM provides
an integrated approach to activity, context and plan recognition. At the same time, causal
behaviour models can be reused in the context of CCBM. Based on an explicit description
of the environment by means of state features, the CCBM modelling language makes use of
preconditions and effects to define human actions. A latent infinite LTS is created that describes
all causally valid action sequences from the initial state to a goal. Thus, the LTS contains all
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possible action sequences a human protagonist might execute in order to achieve a goal.
To cope with noisy and ambiguous sensor data when reconstructing action sequences within

such LTS, CCBM utilises methods of Bayesian filtering. A DBN has been introduced to capture
the probabilistic semantics of the LTS and express the connections between different state
variables (e.g. environment state and observation). To handle different types of observation
data, for instance, the DBN contains two different observable variables Z and W , allowing
the use of state based observations (e.g. dense sensing) or action observation (e.g. wearable
sensors). Finally, a novel approximative filtering algorithm, especially tailored for categorical
state spaces with sparse transition matrices, was introduced – the Marginal Filter.
The sample-based representation of probabilities in the PF is replaced by a weight-based

representation. At the same time the marginal filter maintains a set of unique states, increasing
the number of states to be tracked in the belief state. By additionally exploiting the fact that
the transition matrix, generated from the causal model, is very sparse, the marginal filter allows
the prediction step to be executed exactly.
With respect to efficiency, the framework of approximative Bayesian filtering allows inference

to be executed in O(N T ), where N is the number particles and T the length of the observation
sequence. When it comes to the specific approximation methods, no difference between the PF
and MF could be observed in small state spaces (see Section 6.1). However, the application
of the MF in larger state spaces resulted in a significant increase of the recognition rates in
comparison with the PF. As discussed earlier, the reason for this difference is that the particle
filter was originally designed for continuous state spaces that defines a metric on states. This
allows PFs to represent states by the density of samples in the vicinity of a point in the state
space. Categorical state spaces, however, do not permit this approximation, as different points
in the state space cannot be condensed to one state. The superiority of the MF over the PF
is especially interesting in the light of the state of the art. Almost all researchers (except for
Shi et al. [212]) applied (variants of) the particle filter method when it comes to approximate
Bayesian inference in categorical state spaces.

Causally correct annotation In Chapter 4, it is discussed that methods exploiting causal
dependencies of human behaviour rely on causally correct annotation. A novel annotation pro-
cess is introduced that allows to produce causally correct annotation. Besides the opportunity
to validate the correctness of the annotation sequence with respect to causal constraints, the
annotation provides contextual information such as information about the environment. In
fact, the annotation is based on an aLTS generated from a model-based description such as the
CCBM modelling language.

Methods Chapter 5 gives an overview of the experimental procedures that were used to in-
vestigate the capabilities of CCBM. To this end, first, a list of research questions is introduced,
each of them reflecting different aspects of the initial question IQ. The advantages of using
empirical data rather than simulated are discusses briefly. Finally, Chapter 5 discusses the ex-
perimental procedure and the evaluation methods shared by all experiments. It is highlighted
that the accuracy suffers from several drawbacks, albeit being the dominant performance mea-
sure in the domain of AR. For this purpose, other performance measures such as Cohen’s κ,
JSD, and DTW were selected for evaluation.

Experiments In Chapter 6, three experiments were conducted to investigate the capabilities
of the proposed approach in comparison to standard baseline classifiers. Each experiment
thereby addresses a subset of the research questions that were stated earlier. The evaluation of
the experiments indicated that a suitably parameterised CCBM allows to achieve recognition
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rates at the same level as baseline classifiers that were learned from training data. Moreover,
CCBM allowed to recognise the user’s goal and additional contextual information at the same
time. However, statements about the recognition performance of CCBM in absolute numbers
require additional investigation.

Experiment X1 Experiment X1 – a meeting – represents a baseline experiment, constituting
a problem size similar to that of the related work. The rationale here was that CCBM being
able to achieve similar performance as baseline classifiers justifies further investigation with
problems of larger size. Furthermore, the experiment focussed on demonstrating the reusability
capabilities of CCBM with respect to the application domain. For this reason, a causal model
that was created for one specific application domain was reused for another application scenario
of the same domain. The evaluation of the first experiment showed that while the performance
with respect to estimating the current action was similar to that of the baseline classifiers,
CCBM outperforms the baseline classifier when it comes to the recognition of the correct
goal. In conclusion, the results of Experiment X1 proved CCBM to be able to achieve similar
recognition rates as the baseline classifier with problems of the same size as the related work.
At the same time, the computational action language allowed the causal model to be reused
within the same application domain.

Experiment X2 Experiment X2 – a kitchen task – was conducted to investigate the capa-
bilities of CCBM on a problem of larger size. In fact, the kitchen task exceeds the complexity
of previous research. Additionally, this experiment aimed at determining the effect of the dif-
ferent parameters (e.g. filtering method or observation model) to the recognition performance.
Furthermore, it was investigated whether the same causal model can be used to reconstruct
action sequences based on the different types of sensor observation. For this purpose, differ-
ent observation models, exploiting either the W or the Z component of the DBN, were used.
The evaluation of the second experiment showed a superiority of CCBM with respect to re-
constructing the action sequence in comparison to the baseline classifiers. At the same time
CCBM allowed to estimate contextual information, provided by the underlying LTS, with high
accuracy. Maintaining rich state spaces was found to have no negative influence on the recog-
nition performance, but rather expands the variety of estimation tasks accessible with such a
model. Additionally, it has been shown that all parameters, except for the duration model, sig-
nificantly influence the recognition performance, substantiating the initial choice to introduce
the respective modelling factors (see Section 3.1). The small and non-significant effect of the
duration model, in contrast, justifies the choice of empirical duration models as replacement for
parametric ones. The filtering mode (i.e. PF or MF) and the observation model were identified
as factors with the largest effect. The use of non-i.i.d. sensor data, for instance, resulted in a
massive drop in the recognition accuracy. With respect to reusability, a proof by demonstration
was obtained that CCBM allows to exchange the type of observation model without further
changes to the causal model of human behaviour.

Experiment X3 Experiments X1 and X2 indicated a superiority of CCBM in comparison to
the baseline classifiers with respect to the recognition performance. Experiment X3 – indoor
localisation – was conducted to investigate the influence of increasing the state space by adding
additional degrees of freedom to the model. Moreover, the multi-agent reusability (R5.3) was
investigated. By parameterising the causal model with the number of involved persons, the
human behaviour model could be reused with a varying number of persons. The evaluation of
the third experiment showed that the causal model can indeed be reused with a varying number
of persons. A negative effect to the recognition performance was observed. At first glance, this
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seems to be in contrast to the experiences from the second experiment, where CCBM allows
superior recognition rates although employing a rich state space. A more detailed look at the
state features reveals differences. The state features in the kitchen task are highly correlated
with the action sequence of the human protagonist. In the multi-agent model of Experiment
X3, each agent is modelled as completely independent. In consequence, adding an additional
person to the model introduces state features that are uncorrelated with the state features
of the other agents. Even the observation model, which permits the identification of persons
from sensor data is unable to counteract this effect. The negative influence of the number of
persons to the recognition performance could not be observed for the baseline classifiers which
determined the state space from the training data. By using using the transition matrix of
the baseline classifier, it was shown that the negative influence is not present for CCBM in
general, but rather suggest further investigations of action selection mechanisms in multi-agent
settings.

7.2. Discussion

CCBM combines the flexibility of computational action languages with the probabilistic se-
mantics of DBNs. To this end, it allows to create reusable causal models of human behaviour
and to reconstruct actions sequences of human protagonists from sensor data. By employing a
model-based description by means of preconditions and effects (see Section 2.1.4) the CCBM
modelling language uses an explicit description of the environment state. This allows to reason
about activities and contextual information at the same time. By taking goal-directed action
selection (see Section 3.1.4) into account, it allows to estimate the user’s goal and thus the po-
tential sequence of future actions. In consequence, CCBM represents an integrated approach
to activity, context and plan recognition. CCBM therefore satisfies the requirement for PR
(R1).

Inference algorithms With respect to the inference, it could be shown that the MF achieves
a better recognition performance when it comes to large state spaces. The experiments showed
that the MF achieves similar recognition performance as the PF in small state spaces, but
outperforms the PF in large state spaces. This is a result of the improved belief state rep-
resentation. The standard method for approximative inference – the PF – represents state
probabilities by sets of particles. The MF, an inference method particularly tailored for cat-
egorical state spaces, maintains one probability per state and thus makes better usage of the
resources. This allows the MF to maintain more states and thus allows a more accurate belief
state representation.

CCBM satisfies the requirements With respect to the requirements raised initially, it has
been shown that all requirements are satisfied. R1 is addressed by combining the domains of
AR and PR in a way that CCBM allows to infer the user’s plan from sensor data. This has
been shown in all experiments. The requirement R2 has been addressed by the selection of the
inference framework. As discussed in Section 3.2, the framework of Bayesian filtering allows
inference to done with linear time complexity. Inference for one time-step being independent
from the length of the observation sequence processed allows for online behaviour reconstruc-
tion. Assistive systems based on POMDPs such as discussed in Hoey et al. [99] rely on the
ability to track the user’s state efficiently. Consequently, one prerequisite for efficient assistance
is efficient state tracking. A second benefit of the Bayesian filtering framework is the ability
to cope with noisy and ambiguous sensor data. Thus, the requirement R3 is also addressed by
this choice. The maintenance of latent infinite state spaces, as requested by requirement R4,

123



7. Discussion and Conclusion

is addressed by use of the computational action languages that allows to express actions as
computable functions. The application of generative filtering methods allow the state space,
which is described by the computational action language, to be explored incrementally – only
the parts of the state space that are considered during inference are explored. Finally, the
requirement for reusability R5 is addressed by employing a model-based description that can
be configured with application specific parameters. Three different aspects have been identi-
fied and each experiment did a proof by demonstration to show the satisfaction of one aspect.
The following aspects of reusability were established: R5.1 A causal behaviour model that was
created for a specific application scenario – a three person meeting with a four-point agenda –
has been reused in similar, yet different scenario, of the same application domain. This aspect
was demonstrated in Experiment X1. R5.2 A switch between the different types of observation
models required no change to the causal behaviour model. This aspect was demonstrated in
Experiment X2. R5.3 A causal model, establishing a set of actions for a set of agents, has been
reused with a different number of agents. This aspect was demonstrated in Experiment X3.
To conclude, by combining a computational action language to represent a causal model

of human behaviour with probabilistic inference techniques that allow to cope for noisy and
ambiguous sensor data, it is possible to reconstruct human action sequences efficiently.

7.3. Limitations

Beside the contributions of this work, the presented studies have the following limitations:
• The studies were based on a small set of convenience samples. While this does not

invalidate the studies’ results, statements about the “real” effect can hardly be made.
Therefore, all studies concentrated on a comparison of recognition results with baseline
classifiers rather than on absolute values.

• The evaluation of all studies are not based on cross validation. The reasons are of practical
nature, as it would require to manually create causal behaviour models for the selected
“training” subset. Additionally, this would conceptually require a set of equally skilled
domain experts. To not penalise the baseline classifiers, each of them was also trained
without cross validation. However, it would be of interest in how far a causal model that
was created by considering a subset of “training” sequences is able to explain the remaining
sequences. This would allow to assess the number of changes that are introduced to the
causal model by one individual action sequence.

• The observation models were not subject of optimisation. For all experiments, observation
models were selected based on prior analysis. As observation models were not the primary
focus of the studies, no further effort was spent in optimisation. The observation model
of the kitchen study, for instance, used a simple scrambling mechanism to eliminate the
effect of non-i.i.d. samples. This is not possible in application settings, as it requires to
preprocess the complete observation sequence based on a annotation labels.

To establish a more comprehensive statement about the capabilities of CCBM and specifically
the recognition performance a study of larger size is necessary. An analysis of the recognition
performance of CCBM with larger datasets (e.g. the CMUMMAC database [60]) is suggested.

7.4. Outlook and Future Research

The results of this thesis show that CCBM allows the efficient reconstruction of causal structures
of human behaviour. However, as described in Section 7.3, the studies were subject to several
limitations which prevent to draw general conclusions. This includes observations about the
growth (with respect to action schemata and state features) of the causal model with including

124



7.4. Outlook and Future Research

additional trial runs. The conclusion of generalisable results with respect to reusability and
recognition performance requires additional studies do be conducted. Additionally, different
areas for further research were sketched within this thesis. This section provides an overview
of both, potential future extensions to CCBM and studies to assess the capabilities of CCBM
in a more generalisable extent.

Additional studies Aim of this thesis was to provide a performance comparison of CCBM
with standard baseline classifiers (e.g. HMM or NB). For this purpose, it was considered
sufficient to concentrate on a small number of protagonists. Additionally, investigations were
based on simple observation models that were not subject of further optimisation. To provide
statements on a larger scale, additional studies are suggested. The CMUMMAC database [60],
for instance, provides a large amount of trial runs. 55 participants were instructed to make one
(or multiple) meal(s), while being observed by various sensors such as accelerometers, video
cameras, or RFIDs. In all, about 150 trial runs were recorded, each of them targeting one of five
recipes. Additionally, several trials with abnormal behaviour such as the kitchen being on fire
were recorded. However, a missing comprehensive annotation, prevents the dataset from being
used in the literature (see discussion in Chapter 4). This dataset is also suited to be annotated
by means of the proposed annotation process. First attempts to annotate the “Brownie” subset
of the dataset showed very high interrater reliabilities (Cohen’s κ of about .8 and higher). This
signals that the proposed annotation process is able to produce reliable annotation.

Machine learning approach to causal behaviour models The development of causal models
of human behaviour requires domain experts to capture causal dependencies. Some applica-
tion domains, however, provide such causal knowledge in structured descriptions. Examples of
such domains are the operation of machines for manufacturing [1], operation based on instruc-
tion manuals, or cooking based on recipes [261]. Two different approaches exist to put such
structured knowledge into causal behaviour models:

1 Manually extracting the causal dependencies from the description and transferring the
knowledge to the causal model. First attempts to this approach have been made by Bader
et al. [16].

2 The second approach is to automatically analyse the descriptions in order to infer the
causal dependencies. Yordanova [257] proposed an approach to automatically generate
causal models of human behaviour by using such technique.

Similarly, applying machine learning approaches to generate planning models is part of active
research [264, 162, 254]. The development of causal behaviour would benefit from applying such
techniques, as they would allow to automatically create a starting point for model development.

Observation models With respect to observation models, several improvements are thinkable.
While for the studies in this thesis, non-i.i.d. observation data was handled by a simple (but
effective) scrambling mechanism, the online application requires more sophisticated methods.
Here, the use of sub-models to describe the process of single actions is suggested. Such a
sub-model could describe how the sensor data changes during the execution of an action. The
concept of Rao-Blackwellisation [66] provides a powerful mechanism to include motion models
such as a Kalman filters into the statistical model. Such model could, for instance, be used to
describe the progress of taking objects from a cupboard, where first the arm moves away from
the body to the cupboard, then the hand grabs the object and finally the arm moves back to
the body.
Additionally, research on the unsupervised generation of observations models is recom-

mended, as it would reduce the need for annotated sensor data. First attempts have be sketched
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by Hein [90]. Finally, the application of an evaluation based on cross-validation seems advis-
able, to understand the effect of single subjects to the overall recognition performance. This, in
combination with a model development based on machine learning allows to draw conclusion
about the generalisability of the proposed approach.

Action selection heuristics The goal-based action selection was demonstrated to achieve good
recognition rates. However, the analysis of the different goal-directed action selection heuristics
in Section 6.2.4.4 revealed substantial differences with respect to the action sequences actually
executed. The full goal distance, which was generated from knowledge about the causal model,
achieved significantly inferior results than the restricted goal distance that was generated by
analysing the actual action sequences. A machine learning approach could be utilised to predict
the error of the full goal-distance (or any other goal-based heuristic) to the restricted. Satzger
and Kramer [204], for instance, proposed to train a neural network for error prediction of
goal-directed heuristics. In this way, the number of action sequences to be analysed could
be reduced. Additionally, the effect of goal distance based heuristics, such as the landmark
heuristic [193], to the recognition performance should be investigated. These heuristics are
used in the planning community for planning without full state space exploration and show
good results with respect to planning time [193]. Finally, as discussed in Section 3.1.4 further
research on situation driven [210] action selection features is suggested. A comparison of the
shortest possible plans with the plans actually executed by the humans suggests that goal
orientation is not the only factor that influences the selection of the next action. Inference as
well as prediction would benefit from knowledge about additional features that influence action
selection.
The studies in this thesis focussed on goal-directed behaviour. CCBM is able to reconstruct

any causally correct action sequence, as each action, with preconditions met by the current
state, are considered. By employing different action selection features, for instance, one for goal-
directed behaviour and one for erratical behaviour, CCBM would allow to distinguish between
these two types of behaviours. Similar to the goal recognition, for each different behaviour the
action selection mechanism would influence the probability of the action sequence in different
way. As a result, this would allow inference to discriminate between goal-directed (with known
goal) and erratical behaviour. Furthermore, it might be of interest to distinguish between
goal-directed behaviour where the goal is unknown from erroneous behaviour. First ideas to
recognise situations of confusion for people suffering from dementia by use CCBM have been
illustrated by Henkel et al. [94].

Improvement of the annotation process Finally, with respect to the annotation process
described in Chapter 4, finding the “correct” start and end time of actions has been observed
to be the main reason for low interrater reliability. This effect is even increased in comparison
to “standard” activity annotation due to the fine grained annotation. Since activities such as
cooking are split up into their sub tasks (e.g. interleaved sequences of filling and stirring), the
number of transitions increases. One approach to increase the reliability would be to move
away from annotating the points of transition between two actions, but rather annotate only
the mid region of each action. The transitions would then be automatically annotated as soft
passages from one action to another. Additionally, this better reflects the transition in the
sensor observations (see discussion in Section 3.1.5).
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9 Lisỳ et al. [151][15] � � � � � �

10 Raghavan et al. [186][229] � � � � � �
11 Blaylock and Allen [26][229] � � � � � �
12 Tecuci and Porter [232]- � � � � � �
13 Cohen et al. [53][203] � � � � �
14 Geib and Goldman [76][203] � � � � � �
15 Levine and Williams [146]- � � � H � �
16 Schwering et al. [206]- � � � � � �
17 Avrahami-Zilberbrand and Kaminka [15][229] � � � N � �

Table A.1.: Overview of plan recognition aproaches. The superscript reference in the first
column gives the original source. “�”=Feature included, “�”=Feature not included,
“�”=interaction, “N”=simulated, “F”=specified manually, “H”=accurate sensors
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1 Bao and Intille [18][58] IMU 20 DT, NB ADL �
2 Ravi et al. [191][40] IMU 8 DT, SVM, NB ADL �
3 Duong et al. [69]- V 6 HSMM ADL �
4 Yang et al. [253]- IMU 13 Classifier ADL �
5 Casale et al. [45]- IMU 5 RF ADL �
6 Dernbach et al. [62]- IMU 15 ANN ADL �
7 Borzeshi et al. [30]- V 14 HMM Kitchen �
8 Natarajan and Nevatia [166]- V 9 HMM Gestures �
9 Stein and McKenna [221]- IMU, V 10 NB, RF ADL �
10 Logan et al. [152][40] PlaceLab 43 NB, DT ADL �
11 Tapia et al. [231][47] Binary 35 NB ADL �
12 Stiefmeier et al. [222][40] IMU, UWB 46 SM Industry �
13 Kunze et al. [136][40] IMU 3 KNN Sports �
14 Minnen et al. [159][40] IMU 6 Motif Sports �
15 Starner et al. [220][40] V 40 HMM Gestures �
16 Liao et al. [148][40] GPS 6 CRF ADL �
17 van Kasteren et al. [239][40] RS 8 CRF, HMM ADL �
18 Huỳnh et al. [104][40] IMU 16 SVM, K-Means, KNN ADL �
19 Bulling et al. [39][40] EOG 5 SVM Office �
20 Lester et al. [144][40] IMU, BP, A 10 HMM, NB, DT ADL �
21 Amft et al. [7][40] IMU 4 HMM Gestures �
22 Lu et al. [153][40] A 3 HMM, DT ADL �
23 Westeyn et al. [247][40] IMU 7 HMM Medical �
24 Buettner et al. [35][40] RFID 14 HMM ADL �
25 Jatoba et al. [107][139] IMU 6 DT, KNN, NB ADL �
26 Maurer et al. [154][139] IMU, A, T 6 DT Location �
27 Ermes et al. [71][139] IMU 5 DT Location �
28 Randell and Muller [190][139] IMU 6 ANN Location �
29 He and Jin [89][139] IMU 4 SVM Location �
30 Vinh et al. [242][139] IMU 4 CRF ADL �
31 Stikic et al. [224][139] IMU 20 MG, SVM ADL �
32 Ali et al. [5][139] IMU 5 MES Surgery �
33 Huỳnh and Schiele [103][139] IMU 8 MES, SVM Location �
34 Zhu and Sheng [262][139] IMU 4 HMM, ANN Location �
35 Cheng et al. [48][139] Capacitive 11 LDA Location �
36 Brdiczka et al. [33][47] V 5 SVM Location �
37 Wyatt et al. [252][47] RFID 26 KLD ADL �

Table A.2.: Overview of AR approaches. The superscript reference in the first column
gives the original source. “�”=Feature included, “�”=Feature not included, sensor
codes: IMU=Inertial Measurement Unit, MD=Motion Detector, PM=Pressure Mat,
BB=Break Beam, RS=Reed Switch, BP=Barometric Pressure, A=Audio, V=Video,
IR=Infrared, US=Ultrasound, LR=Laser Range Finder, RFID=Radio Frequency iden-
tification, T=Temperature,
classifier codes: KNN=k-nearest neighbour, LDA=linear discriminant analysis,
KLD=Kullback Leibler Divergence, CRF=Conditional Random Field, ANN=artificial
Neural Network, RF=Random Forest, SM=String Matching, MG=Multigraph,
MES=Multiple Eigenspaces
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A.2. Example

Example A.1: Example of a CCBM domain and problem file.

The CCBM domain specifies a maze, where person are moving in. The maze has 5×5 cells
and a person can move from one cell to each adjacent cell. The CCBM problem definition
specifies one person “nora”, who is initially located in the upper left cell (x = 1, y = 1).
Five potential goals are provided, one for each cell in the bottom row (y = 1).

(define (domain maze)
(:types person)

(:functions
(x-position-of ?p - person) - (number 1 5)
(y-position-of ?p - person) - (number 1 5))

(:action step
:parameters (?p - person ?x1 ?y1 ?x2 ?y2 - (number 1 5))
:agent ?p
:precondition (and

(= (x-position-of ?p) ?x1)
(= (y-position-of ?p) ?y1)
(or

(and (= ?x1 ?x2) (= ?y1 ?y2)) ; stay
(and (= ?x1 ?x2) (= ?y1 (+ ?y2 1))) ; walk down
(and (= ?x1 ?x2) (= ?y1 (- ?y2 1))) ; walk up
(and (= ?y1 ?y2) (= ?x1 (+ ?x2 1))) ; walk left
(and (= ?y1 ?y2) (= ?x1 (- ?x2 1))) ; walk right

))
:effect (and

(assign (x-position-of ?p) ?x2)
(assign (y-position-of ?p) ?y2)

)))

(define (problem maze) (:domain maze)
(:objects nora - person)

(:init
(= (y-position-of nora) 1)
(= (x-position-of nora) 1))

(:goals
(= g1 (and (= (y-position-of nora) 5) (= (x-position-of nora) 1)))
(= g2 (and (= (y-position-of nora) 5) (= (x-position-of nora) 2)))
(= g3 (and (= (y-position-of nora) 5) (= (x-position-of nora) 3)))
(= g4 (and (= (y-position-of nora) 5) (= (x-position-of nora) 4)))
(= g5 (and (= (y-position-of nora) 5) (= (x-position-of nora) 5)))

))
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A.3. Construction of Hidden Markov Models

Beside the application of approximative inference, CCBM allows the construction of HMMs
from the specified LTS. HMMs [185] are a special case of DBNs. They allow inference to be
done exactly, but have requirements for the state space in return. The exact representation of
the belief state requires the state space to be finite and small enough to be computed by matrix
multiplication. In HMMs, the system model is represented by a so-called transition matrix with
both dimensions of the size of the state space. In addition, HMMs do not allow the use of custom
state duration functions. State durations in HMMs have to be represented by the geometric
distribution, the discrete specialisation of the exponential distribution, and included in the
diagonal of the transition matrix. Several extensions exist, allowing state durations beyond
the geometric distribution. Expanded State HMM [108] for example introduce combinations of
geometric distribution by expanding single states to topologies of states. Hidden Semi Markov
models [259], on the other hand, break the Markov property by introducing custom state
durations. However, all extensions increase the complexity of the state space and therefore
increase inference complexity, which in return prevents exact solutions.
In order to handle the state space, it is reduced by trimming the (A,D,G, S, U) tuple to

(A,G, S) triples by removing all timing related nodes from the DBN. This is possible since
the geometrical distribution is memoryless: the probability of remaining in a state is constant.
In HMMs, states often represent actions rather than system states [182]. In contrast, CCBM
constructs the state space of HMMs from combinations of system states and grounded actions.
The state transition probabilities are computed by using a reduced version of the action se-
lection function γ, introduced in Section 3.1.4. In it, all λ parameters, except for λδ are set
to 0, resulting in goal-directed transition probabilities. Consequently, the causality and con-
textual information, inherent to the CCBM approach are maintained, in contrast to a simple
translation of actions to HMM states. Another limitation is the restriction to models with
a single execution slot. The reason for this decision is also to restrict the state space com-
plexity as it typically grows exponential in the number of agents. Due to the simplification of
the state space, the inference algorithms for estimating the state sequence reduce to matrix
multiplication. The belief state B is represented by a vector of length of the size of the state
space.
Since counting the transitions from actions based on the causal model as described is only

possible if the state space is completely expanded, this technique is viable for small state spaces
only. In fact, the use of HMM-based inference would not satisfy the requirement for latent
infinity. This technique can therefore only be used with problems of very limited complexity.

A.4. Notes on Intention Recognition

Intention recognition – recognising that a given goal G is the objective of an actor – is based
on the assumption that different goals will give rise to different action sequences. As described
in Section 3.1.4, the selection of an action is determined by the action selection model, which
considers the goal as one influencing feature. While this allows to improve action selection for a
known goal, it also enables reasoning about different goals. In general, two contrary approaches
to goal recognition exist: inter-model and intra-model goal recognition.

Inter-model goal recognition Firstly, the inter-model approach, which uses a set of models,
each parameterised with a different goal. During inference, each model is applied to the ob-
servation sequence and used to infer the state sequence. The likelihood p(y1:t) of the model –
an indicator, how well the model fits the data – is then used to select the most likely model.
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Ramírez and Geffner [188] apply the inter-model design for their planner-based goal recogni-
tion approach. Armentano and Amandi [12] learn different models for different goals, apply the
observation sequence, and eventually use a likelihood-based comparison to detect the correct
goal.

Intra-model goal recognition The second approach uses an intra-model design and includes
different goals within one model. At inference time, each goal influences action selection in
different directions. After application of the correction step, which weights different hypotheses
according to the sensor model, this results in different goal probabilities. Thus, a posterior goal
density is constructed, which allows reasoning about different goals. Different approaches to
intra-model goal recognition exist [26, 43, 17]. They either sample the goal at the beginning
from a prior goal density and consider it fixed afterwards [43], or allow the goal to be changed
by a goal transition function. The latter is used by Baker et al. [17] and Liao et al. [149].

Comparison of both approaches While both approaches have been shown to achieve reason-
able results, they differ from both, the statistical and the computational point of view. The
inter-model goal recognition approach relates the likelihood, computed from different models,
and determines the goal distribution. This is modelled by defining action selection conditional
to G.

From the computational point of view, the inter-model approach allows to distribute the
calculation among various processes, one for each goal, without any additional effort. The
statistical point of view, in contrast, introduces two issues. The first being that the likelihood
of an model usually depends on the complexity (the degrees of freedom) of the model. Common
approaches for likelihood-based model selection are the Bayesian Information Criterion [205]
and the Akaike Information Criterion [3]. Both approaches penalise the degree of freedom of
the model, which requires the full state space to be expanded.
The second, more serious issue is that it requires the sensor model to provide the observation

probabilities p(y |x). While this is typically easy, as this “(. . . ) often can be drawn directly from
our experiential knowledge (. . . )”,([181, p.5]), it becomes painful when using sensor observation
models based on discriminate classifiers such as SVMs or DTs. These classifiers provide, if at
all, a conditional action class density p(c | y). While Bayes’ rule allows to flip this relation,
providing the prior observation density p(y) still remains uncomputable. This is no problem,
as long as the resulting likelihoods are not compared to each other in order to construct model
densities. Thus, the prior observation density p(y) can be ignored as constant factor.
The literature provides different ways of combining generative and discriminative classi-

fiers [219, 91, 135]. However, currently only few work exist that addresses the model selection
problem based on combinations of generative and discriminative classifiers. Lester et al. [144]
for example, fitted sigmoids to the output of different classifiers, allowing to convert them into
probability distributions, which are then fed into the temporal classifier.
The intra-model approach, on the other hand, encodes different goals into one model. This

results in a linear increase of the belief state and a quadratic increase of the transition matrix.
While exact methods can hardly handle this growth, approximate techniques have to increase
the number of samples. This increases the computational requirements. Combining different
goals into one model results in a sound statistical model (as introduced in Section 3.1). The
action class density, computed by applying discriminate classifiers, can be interpreted as like-
lihood by multiplying the prior class density and then directly fed to the inference process as
observation probabilities. Both, the intra- and the inter-model goal recognition approaches are
provided within the CCBM toolbox. Intra-model goal recognition is applied in Experiment X1.
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Additional Information about Experiments

B.1. Experiment X1

Time A.Seen A.X A.Y B.Seen B.X B.Y C.Seen C.X C.Y

0 0 0 0 0 0 0 1 150.473 -143.161
0.216202 0 0 0 0 0 0 1 157.175 -169.946
0.216202 0 0 0 0 0 0 0 157.175 -169.946
0.648499 0 0 0 0 0 0 1 188.268 -199.87
1.4052 1 193.107 -82.845 0 0 0 0 188.268 -199.87
1.6214 1 230.089 -36.153 0 0 0 0 188.268 -199.87
1.9457 0 230.089 -36.153 0 0 0 1 187.265 -196.157
2.5402 1 250.928 77.934 0 0 0 0 187.265 -196.157
2.5942 0 250.928 77.934 0 0 0 1 174.379 -81.656
2.7563 1 253.329 121.539 0 0 0 0 174.379 -81.656
2.8104 0 253.329 121.539 0 0 0 1 190.982 -30.724
2.9725 1 266.518 133.157 0 0 0 0 190.982 -30.724
3.0266 0 266.518 133.157 0 0 0 1 212.95 -3.945
3.1347 0 266.518 133.157 1 143.319 -170.781 0 212.95 -3.945
3.1887 1 292.253 147.207 0 143.319 -170.781 0 212.95 -3.945
3.2428 0 292.253 147.207 0 143.319 -170.781 1 205.842 2.184

Table B.1.: Extract of the preprocessed position data from the first meeting dataset D1.
For each person, three columns contain x and y coordinates relative to one corner of the
room and a flag that signals whether the position was updated or carried from the last
time slice.
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Agent Action Distribution ll Parameter1 Parameter2

1 A enter gamma -25.66 11.91 3.84
2 A moveDoorSeat gamma -34.41 71.24 0.76
3 A sit normal -180.84 1423.58 453.03
4 A moveSeatStage weibull -32.75 11.58 95.02
5 A present normal -91.00 686.10 22.90
6 A moveStageSeat cauchy -89.24 97.14 8.15
7 A moveSeatDoor normal -74.96 80.55 10.27
8 A exit normal 2.09 0.95 0.22
9 A discuss weibull -100.85 9.54 324.31

10 A moveDoorStage gamma -46.98 3.96 0.11
11 B enter lognormal -25.11 1.09 0.29
12 B moveDoorSeat weibull -82.12 1.83 64.26
13 B sit lognormal -222.62 6.69 0.40
14 B moveSeatStage lognormal -70.67 4.55 0.16
15 B present weibull -115.19 16.69 1042.75
16 B moveStageSeat weibull -86.40 5.56 92.88
17 B moveSeatDoor normal -75.36 76.50 10.48
18 B exit weibull 5.05 24.66 2.99
19 B discuss weibull -100.94 9.57 326.83
20 B moveDoorStage cauchy -9.35 99.44 0.86
21 C enter lognormal -28.27 1.04 0.35
22 C moveDoorSeat weibull -65.90 1.70 54.66
23 C sit weibull -190.20 3.50 1637.19
24 C moveSeatStage lognormal -52.56 4.51 0.11
25 C present weibull -119.32 7.22 615.74
26 C moveStageSeat cauchy -88.56 87.73 6.06
27 C moveSeatDoor normal -75.17 73.10 10.38
28 C exit weibull -3.25 27.27 4.98
29 C discuss weibull -100.48 9.91 328.29
30 C moveDoorStage normal -23.17 95.17 11.51

Table B.2.: Selected probability density functions for each action including their param-
eters. Parameter meanings: gamma(α, β), normal(µ, σ), weibull(k, λ), cauchy(x,γ),
lognormal(log(µ), log(σ))

Figure B.1.: The probability of each agent for being seated at each time-step. The probabil-
ity is encoded by the color. Blue represents probabilities above .5 and orange probabilities
below .5. White represents the probability .5. The different presentation phases can be
seen, as for these phases two agents have a probability of > .5 for seated and one agent
< .5.
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Figure B.2.: Frequencies of actions in the dataset. The action WASH (1316) is the most frequent
action whereas STAND_UP (26) is least frequent.

Duration Distance Mode t pt Mt V pV MV pSW d A

τc fδ CMf 3.14 .02 0.037 27 .031 0.036 .043 −.7 .27
τd fδ CMf 7.87 < .001 0.067 28 .016 0.070 .14 −1.17 .16
τc fδ̄ CMf 5.78 .001 0.066 28 .016 0.069 .12 −1.08 .2
τd fδ̄ CMf 9.37 < .001 0.098 28 .016 0.109 .081 −1.43 .061
τc fh CMf 3.61 .011 0.043 27 .031 0.042 .43 −.77 .27
τd fh CMf 7.67 < .001 0.064 28 .016 0.064 .79 −1.09 .18
τc fδ CMs 6.75 < .001 0.063 28 .016 0.068 .078 −1.06 .2
τd fδ CMs 6.70 < .001 0.083 28 .016 0.087 .12 −1.28 .1
τc fδ̄ CMs 6.71 < .001 0.082 28 .016 0.087 .16 −1.26 .1
τd fδ̄ CMs 5.88 .001 0.102 28 .016 0.108 .27 −1.4 .061
τc fh CMs 7.14 < .001 0.060 28 .016 0.064 .12 −1.03 .2
τd fh CMs 6.27 < .001 0.080 28 .016 0.092 .044 −1.22 .14

Table B.3.: Performance comparison of different CCBM configurations with appropriate
HMM configuration. All CCBM configurations are based on (CM, O21s, L1). Paired
t-test and Wilcoxon signed rank tests were used for comparison. For all t-tests, df = 6.
pSW gives the p-value for the Shapiro-Wilk normality test.

Figure B.3.: Linear Models fitted to predict the normalised remaining time to goal (RT)
from the normalised goal distances for different goal distance approximations.
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bottle • • 2
cutting_board • • 2

food • • • • • • 6
glass • • • • • 5
knife • • • • 4
plate • • • • • 5
pot • • • • 4
self • • • 3

stir_spoon • • • • 4
sponge • • 2
spoon • • • • • 5

Table B.4.: Value domains of location slot by domain object for the kitchen experiment.
By considering the locations of the domain objects, the number of potential combinations
is 1,152,000.

Figure B.4.: Effect of scrambling on (expected) log probability of observations vs. nor-
malised relative run position. The orange lines are computed by locally weighted
regression using the loess function in R. Right plot: detail of left plot.
rpos(yt) gives the relative position of the observation with respect to the action class. For
each observation sequence of the same action class c the relative position is computed by
normalising the index to the interval (0,1). The expected (log) probability is computed
by use of the action observation model described in Section 6.2.2.1. The local regression
curves represents an approximation of the expected values. A centering effect can be
observed in the original data which cannot be observed in the scrambled data.
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Figure B.5.: Confusion matrices for QDA, HMM, and CCBM. For each annotated activity,
the probability of classification from sensor data is provided. Blue represents high and
white low probabilities. The blue diagonal represents correct classification.

Figure B.6.: Interactions between Mode, Distance, and Weight. Error bars give 95% confidence
interval due to between subject variance. Effect comparisons are based on within subject
differences.
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Figure B.7.: Interactions between Observations, Distance, and Weight. Error bars give 95% con-
fidence interval due to between subject variance. Effect comparisons are based on within
subject differences.
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bottle • •
cupboard •

cutting_board •
food • • • •
glass • • •
hands • •
knife •
plate • •
pot • •
self • • • •

sponge •
spoon • •

stir_spoon • •
stove •

Table B.5.: The domain objects and their slots for the kitchen experiment. All slots have
boolean value domains with two exceptions: available(hands) is an integer. The actions
implement the constraint 0 ≤ available(hands) ≤ 2. location(object) is a symbolic value.
Allowed values for the different objects are given in Table B.4 (these constraints are again
implemented by the actions).

Predictor β0 β1 F(1,958) r2 F(958,958)

fδ̄ (Restricted) 0.09 0.91 17579 .95 1.00
fδ (Complete) 0.13 0.88 13441 .93 0.78

fh (Script) -0.08 1.20 10029 .91 0.59

Table B.6.: Detailed properties of linear models in Figure B.3 Properties of linear models
for predicting relative remaining time (RT) from different distance heuristics using RT =
β0 + β1Predictor. (For all F , p < .001)
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Step Time Action

1 0 wash hands
2 35 wait
3 43 move sink counter
4 64 take food counter
5 70 move counter sink
6 77 wash food
7 111 move sink counter
8 117 take knife counter
9 122 put food cutting-board
10 126 cut food
11 173 put knife counter
12 177 wait
13 184 take knife+cutting-board counter
14 191 fill food cutting-board pot
15 204 put knife+cutting-board counter
16 211 take pot counter
17 219 put pot stove
18 228 wait
19 230 turn-on stove
20 235 wait
21 247 take wooden-spoon counter
22 256 cook
23 334 put wooden-spoon pot
24 336 turn-off stove
25 341 wait
26 349 open cupboard
27 360 take plate+glass cupboard
28 376 put plate+glass counter
29 389 take pot stove
30 395 fill food pot plate
31 416 put pot stove
32 422 wait
33 427 take bottle counter
34 433 open bottle
35 441 fill water bottle glass
36 453 close bottle
37 463 put bottle counter
38 467 wait
39 469 take plate counter
40 474 wait
41 481 take spoon counter
42 485 put spoon plate
43 488 take glass counter
44 491 move counter table
45 506 put plate+glass table

Step Time Action

46 511 sit-down
47 536 take spoon plate
48 541 eat
49 616 put spoon plate
50 619 take glass table
51 624 drink
52 631 wait
53 638 drink
54 647 put glass table
55 653 take spoon plate
56 657 eat
57 692 put spoon plate
58 699 take plate+glass table
59 705 stand-up
60 710 move table sink
61 724 wait
62 729 put glass sink
63 735 wait
64 759 put plate sink
65 767 take sponge sink
66 773 take spoon plate
67 777 wash spoon
68 797 wait
69 809 wash spoon
70 816 put spoon sink
71 822 take plate sink
72 825 wash plate
73 874 put plate sink
74 881 take glass sink
75 884 wash glass
76 919 put glass sink
77 926 put sponge sink
78 929 move sink counter
79 935 take pot stove
80 939 move counter sink
81 943 put pot sink
82 946 take wooden-spoon pot
83 948 take sponge sink
84 950 wash wooden-spoon
85 964 put wooden-spoon sink
86 970 take pot sink
87 973 wash pot
88 1020 put pot sink
89 1027 put sponge sink
90 1028 (done)

Table B.7.: Action sequence of subject S1 (aLTS annotations).

163



B. Additional Information about Experiments

Class n Model LL Parameter 1 Parameter 2

Base 143 lognormal −410.61 1.9447 0.6112
COOK 9 weibull −44.10 1.3574 56.3776
CUT 7 gamma −32.36 8.0067 0.1101
DRINK 11 weibull −21.55 6.6757 10.4570
EAT 13 lognormal −59.49 3.5710 0.6610
FILL 21 weibull −62.79 2.8518 14.0273
MOVE 54 lognormal −162.58 2.3149 0.4852
PUT 162 lognormal −355.67 1.4638 0.5030
STAND_UP 7 weibull −10.01 4.2093 4.0999
TAKE 165 lognormal −358.01 1.3774 0.5344
WASH 49 gamma −207.42 1.5952 0.0594

Table B.8.: Duration models selected for action classes. Parameter meanings: gamma(α, β),
weibull(k, λ), lognormal(log(µ), log(σ))

Effect F value p value η2
G

Mode F(1,6) =168.93 < .001 * .34 *
Observations F(2,12) = 34.51 < .001 * .61 *
Distance F(2,12) = 23.23 < .001 * .14 *
Weight F(5,30) = 39.25 < .001 * .18 *
Duration F(1,6) = 1.76 .23 .004
Mode:Observations F(2,12) = 79.17 < .001 * .24 *
Mode:Distance F(2,12) = 13.68 < .001 * .033
Observations:Distance F(4,24) = 3.34 .026 * .03
Mode:Weight F(5,30) = 19.65 < .001 * .089 *
Observations:Weight F(10,60) = 13.46 < .001 * .079 *
Distance:Weight F(10,60) = 20.39 < .001 * .1 *
Mode:Duration F(1,6) = 1.63 .25 .001
Observations:Duration F(2,12) = 10.48 .002 * .025
Distance:Duration F(2,12) = 0.65 .54 .002
Weight:Duration F(5,30) = 4.67 .003 * .015
Mode:Observations:Distance F(4,24) = 5.32 .003 * .008
Mode:Observations:Weight F(10,60) = 2.62 .01 * .013
Mode:Distance:Weight F(10,60) = 22.30 < .001 * .077 *
Observations:Distance:Weight F(20,120) = 2.49 .001 * .018
Mode:Observations:Duration F(2,12) = 0.16 .85 .0003
Mode:Distance:Duration F(2,12) = 24.06 < .001 * .01
Observations:Distance:Duration F(4,24) = 2.67 .057 .009
Mode:Weight:Duration F(5,30) = 6.69 < .001 * .022
Observations:Weight:Duration F(10,60) = 1.49 .17 .008
Distance:Weight:Duration F(10,60) = 3.00 .004 * .008
Mode:Observations:Distance:Weight F(20,120) = 4.76 < .001 * .026
Mode:Observations:Distance:Duration F(4,24) = 0.90 .48 .002
Mode:Observations:Weight:Duration F(10,60) = 0.61 .8 .004
Mode:Distance:Weight:Duration F(10,60) = 4.19 < .001 * .009
Observations:Distance:Weight:Duration F(20,120) = 2.34 .002 * .013
Mode:Observations:Distance:Weight:Duration F(20,120) = 1.54 .081 .008

Table B.9.: Significance of effects of CCBM configuration factors on Accuracy, using 216
CMf / CPf configurations. (2 modes, 3 observations, 3 distances, 6 weights, 2
durations.)
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B.3. Experiment X3

B.3. Experiment X3

Time Action Agent Location
4 climbing agent1 stairs
8 walking agent1 corr3
12 walking agent1 corr4
14 walking agent1 room214a

109 working agent1 room214a
115 walking agent1 corr4
121 walking agent1 corr3
123 walking agent1 corr2
142 posterWatching agent1 corr2
146 walking agent1 corr2
151 walking agent1 corr1
155 walking agent1 room207
172 makeCoffee agent1 room207
174 walking agent1 room207
181 walking agent1 corr1
185 walking agent1 corr2
192 walking agent1 corr3
197 walking agent1 corr4
199 walking agent1 room214a
265 working agent1 room214a
269 walking agent1 corr4
273 walking agent1 corr5
276 walking agent1 room218
350 meeting agent1 room218
356 walking agent1 corr5
359 walking agent1 corr4
360 walking agent1 room214a
376 working agent1 room214a
382 walking agent1 corr4
387 walking agent1 corr3
391 walking agent1 corr2
395 walking agent1 corr1
398 walking agent1 room207
399 walking agent1 room208
427 conversation agent1 room208
429 walking agent1 room207
436 walking agent1 corr1
440 walking agent1 corr2
446 walking agent1 corr3
450 walking agent1 corr4
452 walking agent1 room214a
466 working agent1 room214a

Table B.10.: Overview of the annotation sequence of the first iteration for one participat-
ing person.
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B. Additional Information about Experiments

Trial Transition Accuracy t p M pSW d

T1 fδ .85 −20 < .001 −.06 .58 −8.04
T2 fδ .79 −.069 .95 −.0008 .26 −.041
T3 fδ .61 3.1 < .001 .16 .97 11.8
T4 fδ .63 19.1 < .001 .19 .26 7.27
T5 fδ .58 8.81 < .001 .27 .41 5.89
T6 fδ .45 37.9 < .001 .41 .36 22.1
T7 fδ .57 13.1 < .001 .28 .57 7.47

T1 fHMM .85 −93.6 < .001 −.059 .58 −6.97
T2 fHMM .79 - - - - 0
T3 fHMM .76 .99 .38 .0004 .97 .025
T4 fHMM .82 −1.18 .3 −.001 .26 −.065
T5 fHMM .85 1.65 .17 .0003 .41 .035
T6 fHMM .87 6.62 .003 .0009 .36 .24
T7 fHMM .85 .85 .44 .001 .57 .12

Table B.11.: Comparison of the CCBM to the HMM recognition accuracies for the differ-
ent trial runs. Comparison using paired t-test (all df = 4). pSW gives the results of
the Shapiro-Wilk test of normality. The “-” signals that due to equal results executing
tests was not meaningful.
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Theses

1. Efficient sensor-based reconstruction of causal structures of human behaviour can be
achieved by employing causal models of human behaviour in combination with proba-
bilistic Bayesian inference with the Marginal Filter.

2. Computational Causal Behaviour Models allow inference based on causal behaviour mod-
els. CCBM simultaneously estimates activities, context information, and the goal from
location data with models of similar complexity as related approaches while achieving
recognition rates at the same level as baseline classifiers.

3. CCBM achieves successful state estimation of everyday activities with large state spaces
(containing hundreds of millions of states).

4. All modelling factors have relevant influence on recognition performance in CCBM-based
inference.

5. The action sequences of multiple cooperative agents can be reconstructed by employing
CCBM with recognition rates at the same level as baseline classifiers.

6. CCBM achieves recognition rates for fine grained activity recognition from wearable sen-
sors that are comparable to baseline classifiers.

7. The Marginal Filter achieves better recognition rates than the Particle Filter in large
categorical state spaces with sparse transition matrices due to more efficient usage of the
resources.

8. A causal behaviour model that was created for one specific application domain can be
reused in a different scenario of the same application domain.

9. A causal behaviour model that was developed for inference from action observation can
be reused for inference based on state observation and vice versa without changes.

10. A causal behaviour model can be reused for different numbers of persons.
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