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Zusammenfassung

In der vorliegenden Arbeit werden Struktur-Dynamik-Beziehungen in binären und ternären
Mischungen hochgeladener, sphärischer Polymerkolloide untersucht. Experimentellen Zu-
gang zu Struktur und Dynamik liefern statische und quasielastische Lichtstreuexperi-
mente, die mit Index-Matching selektiv die Bestimmung partieller Strukturfaktoren Sij(Q)
und intermediärer Streufunktionen Sij(Q, t) ermöglichen. Um den Brechungsindex pro-
tischer Wasser/Glycerol-Mischungen auf denjenigen der Polymerpartikel einstellen zu
können, wird als kolloidales Modellsystem eine neue Klasse von Copolymer-Partikeln
aus Alkyl- und Perfluoroalkylacrylaten entwickelt. Die theoretische Beschreibung erfolgt
mit Hilfe von Integralgleichungen und Brownscher Dynamik. Hierzu wird der Ermak-
Algorithmus auf Mischungen verschiedener Partikelklassen erweitert. Aus den Trajekto-
rien werden Raum-Zeit-Korrelationsfunktionen berechnet, die mittels räumlicher Fourier-
Transformation in die partiellen, intermediären Streufunktionen und Strukturfaktoren
überführt werden können. Hiermit ist ein direkter Vergleich mit experimentellen Licht-
streudaten möglich.

Abstract

In this work structure-dynamics relations in binary and ternary mixtures of highly charged,
spherical polymer colloids are investigated. Experimental access to structure and dy-
namics is provided by static and quasi-elastic light scattering experiments, that enable
a selective determination of partial structure factors Sij(Q) and intermediate scattering
functions Sij(Q, t) by index-matching. To adjust the refractive index of water/glycerol
mixtures to that of the polymer particles, a new class of copolymer particles consisting
of alkyl and perfluoroalkyl acrylates is developed as a colloidal model system. Integral
equations and Brownian Dynamics are employed for a theoretical description. To that
end the Ermak algorithm is extended to mixtures of different particle classes. From the
trajectories space-time correlation functions are determined, which may be converted into
partial, intermediate scattering functions and structure factors by spatial Fourier trans-
form. Thus, a direct comparison with experimental light scattering data is possible.
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1 Introduction

Soft matter denotes a subgroup of condensed matter comprising systems such as foams,
gels, proteins, other polymers, microemulsions, or colloids. A common property of all
these complex systems is their structural response to an external constraint with an
energy comparable to the thermal energy kBT at room temperature, where kB is the
Boltzmann constant and T the temperature. Since also proteins and DNA with their
secondary and tertiary structure or lipid membranes are typical soft matter systems, self-
organisation of soft matter at mesoscopic length scales and comparably slow dynamic
processes in such systems are of importance for life. On the one hand, mesoscale struc-
tures often are too small for direct observation with a microscope. On the other hand,
they are orders of magnitude larger than molecular length scales, information on which
may be obtained by scattering experiments with X-Rays or neutrons with wavelengths
from ångstrøms to nanometres. The progress in experimental soft matter research during
the last decades is strongly related to the emergence of scattering techniques with high
spatial and energy resolution. Particularly the development of quasi-elastic scattering
experiments analysing temporal fluctuations of scattered coherent radiation, i. e., photon
correlation spectroscopy employing laser light [1] or coherent X-Rays [2], has given access
to processes at relevant time scales from microseconds to seconds. The insights based on
these experimental methods have helped understanding natural soft matter systems and
have enabled the design of synthetic soft matter systems with tailor-made properties.

Colloidal systems have been investigated ever since the middle of the 19th century,
when especially the works of the Scottish chemist Thomas Graham constituted the field
of interface and colloid science [3, 4]. At the beginning of the 20th century the German
scientist Wolfgang Ostwald became another pioneer of colloid chemistry [5–7]. His desig-
nation of colloidal systems as the "world of neglected dimensions" [6] proves that even at
the time he recognised the great potential of this kind of soft matter. Nowadays colloids
are an interesting example of the variety of both naturally existing and synthetically pre-
pared soft matter, with great significance in biological domains, technical applications,
and everyday life. A more detailed approach to the theory of colloids is given in section
2.1.

Throughout the last decades extensive investigations, particularly of polymer colloids,
have lead to an in-depth understanding of structure and dynamics of single species col-
loidal dispersions. Different particle interactions such as hard-sphere repulsion [8–10],
soft short-range interactions [11, 12], long-range electrostatic repulsion [13–16], and even
multipole interactions resulting from electric [17] and magnetic dipoles [18, 19] and elec-
trostatic quadropoles [20, 21] can be introduced by appropriate surface functionalities or
volume properties of the colloidal particles. These systems with a multitude of possible
interactions can be considered as model systems at enlarged scales of length and time for
atomic or molecular condensed matter [22, 23]. Since typical colloidal length scales are
comparable with optical wavelengths, coherent laser light is a suitable probe for investi-
gations of structure-dynamics relations in such systems by means of laboratory methods,
that are comparably easily realisable. To observe analogous phenomena in atomic or
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molecular systems, access to large scale research facilities would be necessary. If possible
at all to cover several magnitudes of time as provided by photon correlation spectroscopy,
a combination of multiple neutron spectrometers or admission to coherent X-Rays at third
generation synchrotron sources of free electron lasers would be required.

Due to size polydispersity, natural and synthetic colloids are in fact mixtures of di-
versely sized species, which differently interact based on responsible volume and surface
related properties. A systematic approach to investigate such real dispersions is the prepa-
ration of mixtures of various species, each with a narrow particle size distribution. The
complexity of colloidal mixtures is enhanced by influences of the ratios of particle sizes,
number densities and potential energy between particles of the mixed species, compared
to a single component, in first approximation monodisperse system. The knowledge about
effects of these additional parameters on structure and dynamics of colloidal mixtures is
sparse. Sophisticated methods including X-Ray and neutron scattering experiments often
are necessary due to opacity of available colloidal model systems, such as poly(methyl
methacrylate) (PMMA) or polystyrene (PS), at moderate concentrations for radiation
with optical wavelengths caused by refractive indices of these polymer materials much
larger than, for example, those of aqueous dispersion media [24]. However, such tech-
niques are limited to a finite number of large scale research centres, including synchrotron
radiation or neutron sources, and being granted the opportunity for performing experi-
ments there is in great demand. Therefore, the development of new colloidal materials
with properties that facilitate investigations with readily available physical and chemical
laboratory techniques is highly desirable, to give access to a shortcut path to new insights
in soft matter physics.

In this work, a new class of monodisperse, charge-stabilised colloidal particles composed
of a copolymer consisting either of two different, highly fluorinated alkyl acrylates or one
highly fluorinated alkyl acrylate and n-butyl acrylate is prepared for the first time by
emulsion polymerisation, introducing highly acidic sulfonic acid surface groups for stabili-
sation of the particles in protic dispersion media. The striking feature of these copolymer
particles is the tunability of the particle refractive index np in a comparably low domain
1.380 ≤ np ≤ 1.449, depending on the molar ratio of the two copolymerised monomers,
enabling index-matching in protic water/glycerol mixtures as dispersion media. Although
two color cross-correlation [25] or diffusing wave spectroscopy [26] with visible light are
well-established methods that may be employed in standard laboratories to overcome dif-
ficulties caused by multiple scattering due to a large particle refractive index, utilising low
refractive index polymers in an index-matched, protic dispersion medium is an elegant
way to suppress multiple scattering even in concentrated dispersions.

The characteristics of the prepared particles, such as particle sizes and polydispersi-
ties, as well as dynamical properties of dilute homocolloidal systems are investigated by
means of dynamic light scattering experiments. Pronounced liquid-like structures formed
by self-organisation of the prepared colloidal particles, interestingly even at unusually
low volume fractions ϕ < 0.005, are probed by static light scattering experiments. The
electrostatic interaction as quantified by the effective number of surface charges, is in-
vestigated via integral equations describing the static structure factors of self-organised
systems and by Brownian Dynamics simulations reproducing the experimentally obtained
structure factors. The refractive index of (co)polymer particles is determined from spec-
trophotometric transmission experiments varying the refractive index of the dispersion
medium by changing the composition of water/glycerol mixtures.

The particle sizes determined from dilute, aqueous dispersions of prepared (co)polymer
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particles as well as their numbers of effective surface charges and number densities derived
from the equilibrium structure of self-organised, moderately concentrated dispersions are
used for the considered preparation of mixtures of highly charged colloids. Binary systems
in terms of strongly scattering tracer particles in an index-matched matrix of highly fluo-
rinated poly(alkyl acrylate) spheres are investigated by means of static and dynamic light
scattering experiments and theoretically modelled by Brownian Dynamics simulations to
quantify the influences of changing tracer and matrix particle number densities on the
short-time and long-time self-diffusion coefficients of tracers in the binary mixture.

Static and dynamic light scattering experiments are performed, complemented by Brow-
nian Dynamics simulations, to illustrate the comparably easy access to partial static and
dynamic intermediate scattering functions Sij(Q) and Sij(Q, t), respectively, in mixtures
of two moderately concentrated colloidal species with similar number densities, exploiting
the possibility of index-matching given by the newly prepared (co)polymer colloids. Si-
multaneously, the imperative of a high degree of diligence while selectively index-matching
one component for scattering experiments is emphasised. In further Brownian Dynamics
simulations of realistic binary mixtures, independent of the performed light scattering
experiments, the complex influences of varying system parameters, such as the ratio of
particle sizes, ratio of number densities, ratio of numbers of effective surface charges, and
temperature, on structure as well as collective dynamics of the mixture are systematically
investigated. These simulations reveal comprehensive information about the effects of
these parameters on binary mixtures of moderately concentrated, highly charged, spheri-
cal particles that have not been studied so far.

The last part of this work comprises systematic Brownian Dynamics simulations of
ternary colloidal mixtures, in terms of tracer particles in a matrix composed of two dif-
ferent colloidal species. Under systematic variation of particle sizes, number densities
and effective surface charges of the matrix particles as well as the total colloidal number
density of the system and the ionic strength of the dispersion medium, intriguing results
about the influences of these varying parameters on the self-organisation of the matrix
particles and hence the self-diffusion behaviour of the tracer particles are obtained for the
first time.
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2 Theoretical principles

2.1 Colloids

The term "colloid" in its simplest meaning describes a mixture of two components, one
being microscopically dispersed in the other. While in a solution solute and solvent form
one common phase, a colloid per definition is a heterogeneous system composed of a
dispersed phase and the surrounding continuous phase, even though macroscopically it
may appear homogeneous. Thus a colloid can only be formed, if the dispersed particles
are insoluble in the continuous medium.

Depending on the aggregate states of the two components, colloidal dispersions can
be divided into several classes [27], compiled in table 2.1. This classification in principle
already dates back to Wolfgang Ostwald [5, 28], a German pioneer in colloid science of
the early 20th century. Examples of some of these classes may be encountered every day,
e. g., smoke (solid particles in a gaseous phase), fog (liquid droplets in a gaseous phase)
or lather (gas bubbles in a liquid phase).

Table 2.1: General classification of colloidal dispersions depending on the aggregate states of
dispersed and continuous phase

Continuous phase
gaseous liquid solid

Dispersed phase
gaseous n/a foam solid foam
liquid liquid aerosol emulsion solid emulsion or gel
solid solid aerosol suspension or sol solid sol

After Ostwald, Hermann Staudinger, one of the fathers of macromolecular chemistry,
approached the colloidal state from a thermodynamic and structural point of view [28].
His classification into dispersion colloids, molecular colloids and associated colloids is also
valid up to now, albeit with the progress of colloid science various sub-classes have been
defined.

Beside the two-phase character there is a second part to the definition of a colloid
regarding the size of the dispersed particles. According to the International Union of
Pure and Applied Chemistry (IUPAC) the term "colloidal" refers to a "state of subdivision
such that the molecules or polymolecular particles dispersed in a medium have at least one
dimension between approximately 1 nm and 1 µm, or that in a system discontinuities are
found at distances of that order" [29]. However, due to the mesoscale character of colloids
as a fluent link between the molecular dimension of true solutions and macroscopically
heterogeneous systems, the length scale boundaries are not at all rigid. Other than the
IUPAC definition, upper size limits ranging from only 500 nm up to 10 µm can be found
in the literature [27, 28].

There are a lot of natural examples for colloidal systems, many of them consisting of
latex, i. e., a "colloidal dispersion of polymer particles in a liquid" (IUPAC [29]). In
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general, the polymer in that sense can be organic or inorganic. One very important
material in natural latices is cis-1,4-polyisoprene, also called natural rubber, that can
be found in the Brazilian rubber tree, Hevea brasiliensis [30, 31]. Due to its unique
high performance properties, natural rubber even today is a significant raw material for
industrially processed products.

After substantial progress in the field of colloid science since the early 20th century,
today synthetic colloids are an essential part of everyday life, e. g., in paints, coatings
or pharmaceuticals. Naturally existing colloids have been widely complemented with
synthetic colloidal systems, for the preparation of which several techniques have been
developed. Basically, one can distinguish between two ways of preparing colloids. On
the one hand, there is the bottom-up preparation starting from smaller molecules and
polymerising those into nanoparticles inside a given medium. On the other hand, a bulk
material can be finely dispersed in another one to result in a colloidal system, which is
referred to as a top-down approach.

This work deals with dispersion colloids of polymer particles in liquid media. If the
permittivities and the polarisabilities of dispersed particles and dispersion medium differ,
a short-range attractive dispersion or van der Waals potential Va [28, 32] acts between
the particles due to the emergence of induced electric dipoles.

Va(rij) = −
A

6

[

2R2

r2ij − 4R2
+

2R2

r2ij
+ ln

(

r2ij − 4R2

r2ij

)]

(2.1)

In 2.1 A denotes the Hamaker constant, rij the particle interdistance and R the particle
radius.

As a consequence, these colloids are thermodynamically unstable and would finally
agglomerate. Thus, to maintain the colloidal state, a stabilisation mechanism has to be
introduced, three of which can be principally distinguished [30]:

• a) Electrostatic - like-charged surface stabiliser groups introduce a long-range elec-
trostatic repulsive potential between particles

• b) Steric - repulsion by osmotic and entropic forces when sterically demanding sta-
biliser surface layers of approaching particles overlap

• c) Electrosteric - polyelectrolyte surface groups exhibit a competition between os-
motic pressure inside the polyelectrolyte layer and entropic elasticity of the poly-
electrolyte chains

The colloids in this work are electrostatically stabilised by the introduction of highly
acidic sulfonic acid groups during preparation (cf. section 3.2). In protic media, such as
water, alcohols or mixtures of both, these acid groups dissociate, such that the particle
surface is negatively charged. Due to the surrounding positively charged counter ion
cloud, an electric double layer is formed, resulting in a screened Coulomb potential Vc,
that for two colloidal macroions i and j has the form

Vc(rij) =
(Zeffe0)

2

4πε0εrrij
· exp

(

−
rij
λD

)

, (2.2)
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with the number of effective surface charges Zeff , the elementary charge e0, the absolute
permittivity ε0εr and the Debye length λD. In electrolytes the latter is a function of the
ionic strength I

λD =

√

ε0εrkBT

2NAe20I
, (2.3)

where kB denotes the Boltzmann constant, T is the temperature and NA the Avogadro
constant, which in German literature is also referred to as Loschmidt constant. Thus, the
presence of stray ions leads to a stronger screening of the Coulomb potential. The combi-
nation of van der Waals attraction according to (2.1) and electrostatic repulsion according
to (2.2) leads to the commonly known Derjaguin-Landau-Verwey-Overbeek (DLVO) po-
tential [33, 34].

By variation of the ionic strength of the dispersion medium and the number density 1̺
of dispersed particles a rich phase behaviour is accessible in charged dispersion colloids.
In the absence of stray ions, where only protons as counter ions are present, and even at
comparably low volume fractions of ϕ ≈ 10−3 charged colloidal particles self-organise not
only into liquid-like structures [13], but also colloidal crystals [35, 36] or even glasses [37].
Due to the comparably large range of electrostatic interaction the volume fractions of par-
ticles, necessary to form these structures, are much smaller than for particles interacting
via a hard body potential [17, 38].

As colloidal dispersions exhibit this rich phase behaviour, they have been considered
model systems of condensed matter for a long time and significant contributions to fun-
damental phenomena in the physics of condensed matter have been made. Still today
colloidal systems are of great significance, e. g., in the process of understanding the glass
transition that still is one of the major challenges in condensed matter physics. The reason
for the successful utilisation of colloids as model systems are the larger length (compara-
ble to optical wavelengths) and time (ms to s) scales of relevance, compared to molecular
matter (≪ 1 nm, range of ps), that enable the application of a variety of modern methods
to study the structure and dynamics of colloidal systems. This ranges from microscopy
methods (transmission electron microscopy [39], fluorescence confocal laser scanning mi-
croscopy [40]), that allow the direct observation of colloidal systems, to the most different
scattering or scattering-related techniques (diffusing-wave spectroscopy (DWS) [41, 42],
small angle scattering (SAS) [43, 44], light scattering [22]), from which indirectly conclu-
sions regarding colloidal structure and dynamics can be drawn.

2.2 Theory of Brownian Dynamics simulations

The random motion of particles dispersed in a fluid is called Brownian motion, in honour
of the Scottish botanist Robert Brown, who first described this phenomenon after he ob-
served pollen [45] and later dust particles in water. The first to observe similar motions
of carbon dust particles was Jan Ingenhousz [46], who did not further investigate on the
topic though. The cause of this random motion was theoretically described in the early
20th century by Albert Einstein, Marian von Smoluchowski and Paul Langevin [47–49],
who pointed out, that the Brownian particles move due to collisions with the much faster
molecules of their surrounding medium. Shortly after, Jean-Baptiste Perrin experimen-
tally proved this theoretical approach to be correct [50]. Two of the first scientists to
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describe the mathematical basics of Brownian motion were Thorvald Niclas Thiele and
Norbert Wiener [51, 52].

The Einstein-Smoluchowski diffusion equation in three dimensions

〈r2〉 = 6DEt, (2.4)

with the mean squared displacement (MSD) 〈r2〉, the time t and the Einstein diffusion
coefficient DE, describes the diffusive motion of Brownian particles. Under the assumption
of spherical particles, the Stokes-Einstein equation (2.17) can be obtained.

Nowadays, computer simulations are a widely applied and powerful tool for the predic-
tion of experimental properties or for comparing specific models to purely theoretical and
experimental findings. Sufficient computing power is more or less easily available to simu-
late the behaviour even of complex systems, e. g., by means of Molecular Dynamics (MD)
methods. However, trying to model a colloidal system consisting of the dispersed par-
ticles and the comparably large number of molecules of the dispersion medium via MD
simulations with sufficient statistics, would still be impractical and time-consuming if
not impossible at all. Assume a typical system of colloidal particles dispersed in wa-
ter. The number densities of water molecules, 1̺H

2
O ≈ 1028 m−3, and of the dispersed

particles, 1̺coll. ≈ 1018 m−3, would vary by about ten orders of magnitude. However,
due to the discrepancy in size, colloidal particles also move much slower than water
molecules, which can be quantified by typical diffusion coefficients (D

H
2
O

SE ≈ 10−9 m2 s−1

vs. Dcoll.
SE ≈ 10−12 m2 s−1). Therefore, the molecules of the dispersion medium can be con-

sidered a continuum, that instantaneously reacts to the motion of the dispersed particles
on the relevant time scale, which is exploited in Brownian Dynamics (BD) simulations.
Zwanzig and Mori achieved the separation of the fast dynamics of the dispersion medium
from the slow dynamics of the colloidal particles via a simplification of the equations of
motion of such a colloidal system by application of a projection operator [53, 54]. The re-
sulting equations of motion can be numerically integrated following the Ermak algorithm
[55]

ri(t+∆t) = ri(t) +
D0

kBT
Fi(t)∆t+ Ri +O(∆t2), (2.5)

with ri denoting the position vector of the simulated particle before and after a time
step ∆t. For the investigation of charged particles the second term describes the motion
caused by an electrostatic force Fi, originating from the effective screened Coulomb po-
tential, proportional to the ratio of short-time self-diffusion coefficient and thermal energy
D0/(kBT ), which is the reciprocal Stokes friction coefficient of a sphere ξ−1 = (6πηa)−1

with the dynamic viscosity η and the sphere radius a. Ri is a random displacement due
to Brownian motion of the particle, that underlies a Gaussian probability distribution
with 〈Ri〉 = 0 and has a mean square value 〈R2

i 〉 = 6D∆t. In this way the trajectories
of a given number of particles can be computed and the coordinates of each particle at
each time step are known. Thus, the pair distribution function g(2)(r) and the MSD
〈r2〉 are accessible for the characterisation of the colloidal structure and self-dynamics.
The computation of the partial, distinct space-time pair distribution function in mixtures,
g
(2)
ij (r, t), from trajectories of Brownian systems is also possible, although computationally

much more demanding than determining the MSD. However, g(2)ij (r, t) enables an access
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to collective dynamics of colloidal dispersions. Details on the method of BD simulations
performed in this work are given in section 3.5.

2.3 Theory of light scattering

Electromagnetic radiation interacts with matter. Due to the typical colloidal length scales
(cf. 2.1) visible light, with wavelengths λ in the range 400 nm ≤ λ ≤ 700 nm, is a suitable
probe for the investigation of structure and dynamics of colloidal systems by evaluation
of scattering experiments.

If a primary electromagnetic wave hits a colloidal material, the electric field vector
induces a fluctuating dipole moment which is related to the electric field by the polaris-
ability tensor. Thus the colloidal particles can be described as oscillating Hertzian dipoles,
which emit secondary electromagnetic waves. The interference pattern resulting from the
entirety of secondary waves can be detected as a characteristic angle-dependent intensity
called scattering function I(Q). The analysis of a time-dependent scattering function
I(Q, t) enables conclusions regarding not only the structure but also the dynamics of the
investigated sample. Q = ki − kf is the scattering vector, defined as the difference of
wave vectors of the incident wave ki and the final wave after scattering kf . A schematic
representation of the scattering geometry is displayed in Fig. 2.1.

Fig. 2.1: Typical geometry of a scattering event caused by interaction of light with matter. The
angle between the wave vectors of incident wave ki and scattered wave kf is designated
as ϑ. The wave vector difference Q = ki − kf is the scattering vector.

For isotropic systems, the scattering function solely depends on the modulus of the
scattering vector

|Q| = Q =
4πn

λ
sin

ϑ

2
, (2.6)

that is a function of the scattering angle ϑ, the vacuum wavelength of the probe λ and
the refractive index of the sample n [56].

To access information regarding the time-averaged structure of a probed sample, the av-
erage scattering intensity is analysed in static light scattering (SLS) experiments. On the
other hand, dynamic light scattering (DLS) is employed to obtain information about the
dynamics of an investigated system. Both SLS and DLS are widely used methods for the
characterisation of colloidal dispersions and are of great significance for the experimental
investigations in this work.

8



2.3.1 Static light scattering

In reciprocal space, for spherically symmetric particles, the scattered intensity I(Q) fac-
torises as [57]

I(Q) ∝ S(Q) · P (Q) (2.7)

with S(Q) denoting the structure factor and P (Q) the particle form factor. The structure
factor accounts for interparticle correlations whereas the particle form factor describes
intraparticle correlations. For ideally monodisperse, spherical particles the form factor in
dependence on the reduced scattering vector QR can be expressed as [58]

P (QR) =

(

3
sin(QR)−QR cos(QR)

(QR)3

)2

, (2.8)

where R is the radius of the particles. An extract of the theoretical form factor of monodis-
perse spheres with R = 300 nm is shown in figure 2.2. The first minimum has a charac-
teristic significance, as it always is observed at QR ≈ 4.49 [59].

10−1 100 101 102

QR

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

I(
Q

R
)

P(QR), R = 300nm

Fig. 2.2: Extract of the calculated form factor P (QR) for uniform spherical particles with radius
R = 300 nm according to (2.8). The first minimum is always observed at QR ≈ 4.49.
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For dilute systems, in the absence of particle interactions, colloids behave as ideal gases
with S(Q) ≡ 1, such that I(Q) ∝ P (Q). For systems of colloidal spheres, in which
interparticle correlations cannot be neglected, the structure factor of an isotropic, liquid-
like system is given by a Fourier-Bessel transform [16, 60]

S(Q) = 1 + 4π 1̺

∞
∫

0

[

g(2)(r)− 1
]

j0(Qr)r2dr, (2.9)

where 1̺ is the particle number density, g(2)(r) the distinct pair distribution function in
dependence on the distance r and j0(Qr) = sin(Qr) · (Qr)−1 denotes the spherical Bessel
function of zeroth order.

The structure of simple liquids is theoretically well understood. There are a number of
established models, all of which are based on the Ornstein-Zernike (OZ) equation [61]

h(r12) = c(r12) +
1̺

∫

c(r13)h(r23)dr3, (2.10)

which separates the total correlation function h(r) = g(2)(r)− 1 into a direct part and an
indirect part. c(r12) describes interactions directly caused by the pair potential between
two particles 1 and 2. The integral term proportional to 1̺ accounts for indirect inter-
actions between particles 1 and 2 mediated by a third particle of the N -particle system,
depending on the position of that particle r3. By infinite recursion, (2.10) leads to a hi-
erarchy of equations, regarding influences of the other N − 3 particles, for the solution of
which additional approximations, known as closure relations, are necessary. With respect
to the interaction potential in different sorts of liquid systems, several different closure
relations have been developed, that combined with the OZ-equation enable the theoret-
ical approximation of the structure of liquids. Examples for these closure relations are
the Percus-Yevick (PY) relation for systems dominated by a hard-sphere potential [62]
or the mean spherical approximation (MSA), that delivers good results for short-range
attractive or repulsive potentials [63]. The obtainment of unphysical negative values for
g(r) at small volume fractions [64] is corrected by a rescaling of the real system proposed
by Hansen and Hayter [65] (rescaled mean spherical approximation (RMSA)). RMSA is
a suitable technique for the quick determination of particle number density and potential
parameters in a system dominated by electrostatic interactions, like the effective number
of surface charges Zeff , due to the availability of a semianalytical solution of the resulting
integral equation for a screened Coulomb potential and a good approximation of experi-
mental data for S(Q) around the coordination maximum. However, one has to be aware
that RMSA overestimates Zeff and for larger Q increasingly bad agrees with experimental
data.

2.3.2 Dynamic light scattering

Due to temporal fluctuations of the local dielectric constant inside an illuminated sample
the scattered intensity also exhibits fluctuations over time [56]. These specific sample-
dependent fluctuations can be analysed by means of an intensity autocorrelation function
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g2(τ) =
〈I(t) · I(t+ τ)〉

〈I(t)〉2
, (2.11)

which is normalised, such that it takes on values between 2, for time increments τ → 0, and
1, for τ → ∞. Experimentally, g2(τ) is accessible via homodyne scattering experiments,
where the scattered light of different sub-ensembles of the scattering volume is optically
mixed before detection. Therefore, g2(τ) is also called homodyne autocorrelation function.

If in a scattering experiment a small portion of the primary beam is mixed with the scat-
tered light, this is called heterodyne optical mixing. The corresponding autocorrelation
function

g1(τ) =
〈E(t) · E∗(t+ τ)〉

〈E(t) · E∗(t)〉
(2.12)

accounts for fluctuations of the scattered electric field [56] and thus is called heterodyne
or field autocorrelation function. For ergodic systems, e. g., liquid-like ordered colloids,
g2(τ) and g1(τ) are related via the expression

g2(τ) = 1 + β [g1(τ)]
2 , (2.13)

with a correction factor β that accounts for the average number of speckles detected in
an experiment. If an appropriate laser light source is employed, β ≈ 1, such that for a
Gaussian distribution of the fluctuations of the electric field g2(τ) and g1(τ) are simply
related via

g1(τ) =
√

g2(τ)− 1, (2.14)

the Siegert equation [66]. With these prerequisites it is possible to determine the intensity
autocorrelation function from a homodyne experiment, the setup of which is more easily
realisable than a heterodyne experiment, and transform it into the field autocorrelation
function via (2.14). Obviously, g1(τ) can take on values between 1 (τ → 0) and 0 (τ → ∞).
An intensity and a corresponding field autocorrelation function, typical for a colloidal
system, are displayed in Fig. 2.3.

Under the condition of free Gaussian diffusion the functional form of the field autocor-
relation function is

g1(τ) = exp(−Γτ), (2.15)

for a system with exactly one relaxation process, e. g., an ideally monodisperse colloid. Γ
is the inverse relaxation time or relaxation rate related to the Einstein diffusion coefficient
DE via

Γ = DEQ
2, (2.16)
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Fig. 2.3: Examples for an intensity autocorrelation function g2(τ), determined by means of a
homodyne scattering experiment, and the corresponding field autocorrelation function
g1(τ), obtained using the Siegert equation (2.14).

known as the Landau-Placzek relation [57, 67]. For spherical particles in an aqueous
medium at low Reynolds number, this also holds for the Stokes-Einstein (SE) diffusion
coefficient [47]

DSE = D0 =
kBT

ξ
=

kBT

6πηRh

, (2.17)

where ξ is the drag coefficient, η denotes the dynamic viscosity of the medium and Rh the
hydrodynamic radius of the particles. (2.17) in this form is only valid for systems, that
meet the stick boundary or no-slip condition, which is the case for particles that are large
compared to the molecule size of the dispersion medium.

Real systems ordinarily exhibit a certain degree of polydispersity, so that due to a
distribution of diffusion coefficients g1(τ) has to be expressed as a sum of exponentials or
an integral [68]

12



g1(τ) = lim
n→∞

n
∑

i=1

Gi(Γi) exp(−Γiτ) =

∞
∫

0

G(Γ) exp(−Γτ)dΓ , (2.18)

with the normalised distribution function of the relaxation rates G(Γ), that contains in-
formation on the size distribution of the observed polydisperse system. The inversion of
(2.18) to extract G(Γ) from experimental data of g1(τ) is known as an ill-posed problem
[69]. To overcome this, different techniques have been developed, such as the cumulant
method [68, 70] or the CONTIN algorithm [71, 72]. The latter utilises Laplace transfor-
mation and Tikhonov regularisation [73] for numerical treatment of the ill-posed problem.
In this work, the CONTIN algorithm is employed for the determination of the size distri-
bution of real colloidal dispersions (cf. 3.4.1).

In moderately dilute dispersions of spherical colloidal particles D0 very well agrees with

lim
t→”0”

DS(t) = DS
S , (2.19)

the short-time limit of the time-dependent self-diffusion coefficient DS(t), where t → ”0”
describes times larger than typical momentum relaxation times in the order of τB ≈ 10−8 s
but smaller than typical structural relaxation times in the order of τt ≈ 10−4 s [74].

For times long compared to τt there is another significant value DL
S ,

lim
t→∞

DS(t) = lim
t→∞

1

6t
〈r2〉 = DL

S , (2.20)

the long-time self-diffusion coefficient [75]. Equation (2.20) originates from the Einstein-
Smoluchowski diffusion equation (2.4) from section 2.2, where 〈r2〉 denotes the mean
squared displacement (MSD) of diffusing particles. Due to direct particle interactions in
moderately dilute systems on longer time scales, there occur so-called memory effects.
Because of the electrostatic repulsion from other like-charged macroions, particles are
deflected from their expected diffusion-path, which results in a smaller value of the MSD.
Therefore, generally DL

S ≤ DS
S . The limiting case DL

S = DS
S can be observed in charged

colloidal dispersions only at very high dilution or strong electrostatic screening. Figure 2.4
shows an example for the typical behaviour of the mean squared displacement over time.
At very small times there is a linear increase of the MSD, the slope of which represents
DS

S . At comparably long times there is another region of 〈r2〉 ∝ t with a smaller slope,
indicating DL

S < DS
S . At intermediate times a sub-diffusive region can be recognised, that

is caused by memory effects due to particle interactions [74].
Löwen and co-workers found, that the ratio DL

S /D
S
S can serve as a dynamical criterion

for the freezing transition in charged colloidal liquids [75] and they could show, that on
the freezing line of the investigated systems this ratio has a practically constant value
of 0.098, even in the limits of zero and infinite screening of the electrostatic repulsion.
Thus the knowledge of the short- and long-time diffusion coefficients exhibits significance
for investigations of the phase behaviour of a colloidal dispersion, complementing from
a dynamical point of view the Hansen-Verlet criterion [76], which is based on the time-
averaged structure.

In less diluted systems, that self-organise to ordered structures, the dynamics of the
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Fig. 2.4: Typical time dependency of the mean squared displacement 〈r2〉 of Brownian particles.
The different slopes at very short and long times correspond to a short-time and a long-
time self-diffusion coeffiecient DS

S and DL
S , respectively, which generally relate to each

other as DL
S ≤ DS

S . In between these limits there is a sub-diffusive region caused by
memory effects.

colloidal particles is not only defined by self-diffusion of single particles but by collective
diffusion as well. For time increments τ in the range τB ≪ τ ≪ τt (cf. (2.19)), the
collective short-time or effective diffusion coefficient Deff(Q)

Deff(Q) =
D0

S(Q)
·H(Q) (2.21)

is related to the self-diffusion coefficient by the static structure factor and a hydrodynamic
function H(Q) [77]. H(Q) accounts for indirect, retarded interactions that are mediated
by the dispersion medium and can accelerate or decelerate collective particle motion
[78]. Eq. (2.21) is also called extended de Gennes relation. Assuming the absence
of hydrodynamic interactions with H(Q) ≡ 1, it is obvious that S(Q) = D0/Deff(Q),
which predicts an alternating progression of the structure factor and the effective diffusion
coefficient. Thus it can be concluded, that for particularly stable configurations, given by
local maxima in S(Q), a deceleration of Deff(Q) in relation to D0 and, for more unstable
configurations with minima in S(Q), an accelerated collective diffusion is to be expected.
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A typical example for this behaviour is displayed in Fig. 2.5.
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Fig. 2.5: Typical structure factor S(Q) of a liquid-like ordered colloidal dispersion of charged
particles and the corresponding collective short-time diffusion coefficient normalised
to the self-diffusion coefficient Deff(Q)/D0. Maxima in S(Q) indicate preferred, more
stable configurations leading to a slowed down particle motion, while more unstable
configurations marked by minima in S(Q) are not favoured, which causes a faster
collective motion on length scales d ≈ 2π/Q.

From (2.21) it is apparent, that the hydrodynamic function of a given system is acces-
sible, if Deff(Q), D0 and S(Q) are known, e. g., from static and dynamic light scattering
experiments. Any deviations between S(Q, 0) = D0/Deff(Q), which is called the short-
time limit of the dynamic structure factor or intermediate scattering function, and the
static structure factor indicate the presence of hydrodynamic interactions between the
observed particles. A quantification is possible via H(Q) = S(Q) ·Deff(Q)/D0.

A more fundamental definition of the hydrodynamic function is given by [79, 80]

H(Q) =
1

ND0

N
∑

i,j=1

(

Q̂ · Dij(r
N) · Q̂ exp(iQ[ri − rj])

)

, (2.22)

where N denotes the number of particles in the system and Q̂ is the unit scattering
vector. rN = {r1, · · · , rN} are the position vectors of the particle centres and Dij(r

N)
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designate diffusion tensors that describe interdiffusion among particles i and j. There
is no exact solution to eq. (2.22) due to the complexity of Dij(r

N) for many-particle
systems. In case of rather dilute, charge-stabilised colloidal dispersions, utilising the
Rotne-Prager approximation [81] for the diffusion tensor, a pairwise additive approach
enables calculations in good agreement to experimental findings [78]. The hydrodynamic
function is then approximated as

H(Q∗) = 1− 15ϕ
j1(Q

∗)

Q∗
+ 18ϕ

∞
∫

1

r

σ

[

g(2)
( r

σ

)

− 1
]

[

j0(Qr)−
j1(Qr)

Qr
+

j2(Qr)σ2

6r2

]

d
( r

σ

)

,

(2.23)

where Q∗ = Qσ with the particle diameter σ, ϕ is the particle volume fraction, jn
denotes the spherical Bessel function of n-th order and g(2)(r/σ) designates the pair dis-
tribution function in dependence on the reduced distance r/σ.

For concentrated dispersions a pairwise additive description does no longer suffice to
calculate hydrodynamic interactions between charged particles in a colloidal dispersion
correctly. Beenakker and Mazur formulated a many-body approximation that takes into
account the hydrodynamic interactions between more than two particles in terms of so-
called renormalised connectors [82]. This method, also denoted as δγ-expansion, is proven
useful for predicting the hydrodynamic interactions influencing diffusive motion of charged
particles in more concentrated dispersions [83]. A more detailed treatment of this field,
however, is relinquished here, as hydrodynamic interactions are not comprised within the
scope of this work.
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3 Methods

3.1 Monomer preparation

The fluorinated alcohols, 2,2,2-trifluoroethanol (TFE) and 1H,1H,5H-octafluoropentanol
(OFP), are esterified following a modification of the Schotten-Baumann reaction [84, 85].
Therein the respective alcohol is brought to reaction with one and a half times the amount
of acryloyl chloride (AC) by heating to reflux. 1 g copper powder and 1 g hydroquinone
(HQ) are added and a steady nitrogen flux is maintained, as described in the literature
[14, 86], yielding the corresponding acrylate esters 2,2,2-trifluoroethyl acrylate (TFEA)
and 1H,1H,5H-octafluoropentyl acrylate (OFPA). The reaction equations are displayed
in scheme 3.1. Copper (Cu) serves as a catalyst, nitrogen (N2) supersedes the air-oxygen
to prevent polymerisation and HQ inhibits a thermally induced polymerisation during
esterification.

Scheme 3.1: Modified Schotten-Baumann reactions of 2,2,2-trifluoroethanol (above) and
1H,1H,5H-octafluoropentanol (below) with acryloyl chloride in the presence of a
copper catalyst. By separation of hydrochloric acid the corresponding alkyl acry-
lates are formed. The presence of nitrogen and hydroquinone prevents unintended
polymerisation during esterification.

After four hours the reaction is completed and the desired product is obtained via
fractional distillation, in case of OFPA applying reduced pressure. The ester is purified
by extracting remaining hydrochloric acid (HCl) and AC with diluted ammonia (NH3)
solution (pH = 9) and is dried afterwards over sodium sulfate (Na2SO4). The identity
of TFEA and OFPA is verified via 1H, 13C and 19F nuclear magnetic resonance (NMR)
experiments by comparison with literature data [87].

3.2 Emulsion polymerisation

Heterophase polymerisation methods are widely used in the preparation of synthetic col-
loidal dispersions [30]. One popular example is the emulsion polymerisation technique
[88, 89], that has been employed for the preparation of colloidal model systems in this
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work. Therein, generally, two immiscible liquid components are emulsified, followed by
radical polymerisation of one component. The resulting polymer particles are growing
while being dispersed in the continuous second component, eventually forming the de-
sired colloidal dispersion. Many modifications regarding the method of emulsification
and the way of initiating the radical polymerisation have been developed, optimising the
preparation process for the specific monomer mixture or desired properties of colloids.
Numerous descriptions and mechanistic investigations of these are published elsewhere
but comprehensive compilations can be found in references [88, 89].

In this work, highly fluorinated, monodisperse, charged polymer colloids are obtained
from the self-prepared monomers TFEA, OFPA and commercially available n-butyl acry-
late (BA), which are immiscible with water. The employed emulsion polymerisation is
well-established for similar monomer systems throughout literature [90–92]. The respec-
tive acrylate monomer or monomer mixture is emulsified in water by vigorous stirring,
heating to the reaction temperature of 70 ◦C, which is maintained throughout the whole
reaction. A N2-atmosphere is generated inside the reaction vessel to prevent an uncon-
trolled polymerisation initiated by the radical character of oxygen molecules from air.
Subsequently, a redox catalyst system consisting of sodium sulfite (Na2SO3) and am-
monium iron(II) sulfate ((NH4)2Fe(SO4)2) is added. Finally, the addition of potassium
persulfate (K2S2O8), by thermolytic radical cleavage of the persulfate anion promoted by
the redox catalyst, initiates the radical polymerisation that is typically finished within
12 h. The purified colloidal dispersion is obtained after filtration and dialysis against
water for at least one week.

3.3 Determination of the particle refractive index

The total scattered intensity It of an illuminated sample can be expressed via the scat-
tering invariant

It = 4π

Q′

∫

0

I(Q)Q2dQ, (3.1)

which is the integral of the scattered intensity over the entire accessible reciprocal space.
This quantity is independent of the particle shape, but solely related to the product of
the total squared volume of scatterers and their scattering length density. The scattering
length density of suspended, homogeneous particles in light scattering experiments is
proportional to the squared difference of the refractive index np of the particle and nm of
the dispersion medium. Independent of the scattering vector Q, the proportionality

Isc ∝ (np − nm)
2 (3.2)

holds for the scattered intensity Isc. In a transmission experiment, the intensity of trans-
mitted light is attenuated both, by absorption from the particles and the medium, and
by the intensity scattered to the entire solid angle 4π, except the forward scattering at
Q → 0. The latter contribution can be neglected using a sufficiently small aperture. The
attenuation due to scattering according to (3.1) and (3.2) is proportional to the squared
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difference of the refractive indices np and nm. At the optical matching point np = nm

with vanishing scattering invariant, a maximum transmitted intensity is reached.
To deduce the refractive index of suspended particles, the transmission of colloidal

dispersions is determined in dependence on the refractive index of the suspending medium
employing a standard UV/VIS spectrometer (Lambda 25, Perkin Elmer). The refractive
index of the dispersion medium is tuned by changing the composition of water/glycerol
mixtures. Starting with a defined volume of a colloidal dispersion and the same volume of
water as a reference, equal amounts of glycerol are added to the colloid and the reference.
In addition to the altered scattering power, the influence of dilution has to be considered.
The transmission is defined as

T =
I

I0
=

I0 −
1̺(Iabs + Isc)

I0
= 1−

1̺(Iabs + Isc)

I0
, (3.3)

where I0 is the incident intensity and I the transmitted intensity. The latter quantity is
attenuated by the absorption of the colloidal particles, Iabs, and the light scattered by
the colloidal particles, Isc. Changes of the absorption related to the composition of the
suspending medium are eliminated by the reference with identical water/glycerol ratio.
Absorption and scattering related to the dispersed particles both are proportional to their
number density 1̺. Hence the complement 1 − T of the transmission normalised to the
number density 1̺ is proportional to the sum of absorption and scattering of the colloidal
particles

1− T
1̺

=
Iabs
I0

+
Isc
I0

=
Iabs
I0

+ (np − nm)
2 It
I0
, (3.4)

which has the functional form of a parabola with its vertex at the optical matching point.
Employing the relation

1̺ =
V0

V0 +
∑

i

Vi

1̺0 (3.5)

with V0 denoting the initial volume of the suspension, Vi the added volumes of glycerol
and 1̺0 the initial number density, the final expression

T = 1−
1̺0
I0

V0

V0 +
∑

i

Vi

[

Iabs + (np − nm)
2It

]

(3.6)

for the parabola is obtained. The particle refractive index can be determined from the
minimum of Φ(nm), the relative attenuation (1−T (nm)) weighted by the ratio of the total
volume V0 +

∑

i Vi to the initial volume V0, in dependence on the refractive index nm of
the dispersion medium.

Φ(nm) = (1− T (nm))

V0 +
∑

i

Vi

V0

=
1̺0
I0

[

Iabs + (np − nm)
2It

]

(3.7)
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The refractive indices of water/glycerol mixtures are given in dependence on the mass
ratio of both components by an interpolation of literature data [93].

3.4 Light scattering experiments

All light scattering experiments in this work are performed with a CGS-3 goniometer,
manufactured by ALV (Langen, Germany). A scheme of the homodyne setup is presented
in figure 3.1 (redrawn with permission from [94]).

Fig. 3.1: Schematic representation of the homodyne setup employed for light scattering exper-
iments in this work (redrawn with permission from [94]). A detailed description is
given in the text.

Coherent, monochromatic (λL = 532 nm) light is emitted by a frequency-doubled
Nd:YAG laser with a power of 50 mW. By a system of mirrors (M) and lenses (L),
the light is directed to a vat consisting of silica glass. A silica glass cuvette, containing
the sample (S), is inserted into the vat, which is filled with toluene and coupled to an
external thermostat to maintain a constant temperature throughout the experiment. All
light scattering experiments in this work are performed at 293 K. The refractive index of
toluene is close to that of silica glass, such that reflections at the interfaces are minimised.
The intensity of the primary laser beam is quantified by a monitor diode (MD), utilising
a beam splitter (BSp), and is adjusted by an attenuator (A). The non-scattered part of
the primary beam is annihilated by a beam stop (BSt). The scattered light, detected at a
scattering angle ϑ, is guided by a single-mode fibre and a fibre-optical beam splitter to two
Avalanche photo diodes (PD), the signal of which is pseudo-cross correlated to intensity
autocorrelation functions, utilising an ALV/LSE-5004 multiple τ digital correlator.

3.4.1 Determination of the particle size

Particle sizes are determined from diluted samples by means of DLS [91]. To screen
electrostatic interactions, an ionic strength of I = 10−3 mol L−1 is adjusted by addition
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of potassium chloride, KCl. The scattered light intensities are detected at an angle of
ϑ = 90◦ for 900 s each. The particle size distributions are then computed using the
CONTIN algorithm proposed by Provencher [71, 72]. The size distributions are therein
derived from the distributions of relaxation rates Γ (cf. 2.3.2), which are connected to the
diffusion coefficients via (2.16), employing the Stokes-Einstein relation (2.17), under the
assumption of non-interacting particles.

To verify the absence of particle interactions, the dependence of the relaxation rate Γ(Q)
on the scattering vector is investigated by means of DLS. For that, scattering intensities
are detected at 64 equidistant Q in the angular range 25◦ ≤ ϑ ≤ 150◦ for 900 s each, using
the identical samples as for particle size determination. Digital correlation of I(Q, t) leads
to g2(Q, τ), which for the observed samples can be simply transformed into g1(Q, τ) via
the Siegert equation (2.14). The relaxation rate Γ(Q) can be determined from the initial
slope of the field autocorrelation function

lim
τ→”0”

−
∂ ln g1(Q, τ)

∂τ
= Γ(Q) = D0Q

2, (3.8)

where τ → ”0” denotes time differences larger than the momentum relaxation time but
significantly smaller than the structural relaxation time [74] (cf. 2.3.2). If particle in-
teractions are not present, Γ(Q) obeys the Landau-Placzek relation (2.16) indicated by a
linear dependence on Q2. This behaviour is exemplified by figure 3.2.

Colloidal particles of dispersions prepared by means of emulsion polymerisation are not
entirely uniform but exhibit a size distribution. The non-uniformity of colloidal particles
is usually quantified via the polydispersity p or the polydispersity index (PDI = p2). It is
the author’s choice to use this designation throughout this work as it is commonly known
from literature. However, it should be mentioned that IUPAC [95] has recommended the
exchange of the term "polydispersity" with "dispersity" due to intrinsic redundancy of
the former.

In terms of the molecular weight distribution of polymer coils, the Schulz-Flory distri-
bution describes the probability of existence of polymer coils of a defined size [96, 97].
This definition can be transferred onto the distribution of colloidal particles consisting of
polymer chains [90, 98], as the particles prepared in this work. The function

c(R) =
1

Γ(Z + 1)

(

Z + 1

R0

)Z+1

·RZ · exp

(

−
Z + 1

R0

R

)

(3.9)

gives a mathematical description of the probability density of the colloidal particle sizes,
where R is a given particle radius, R0 denotes the mean particle radius and Z is a parame-
ter quantifying the distribution width. The transcendent Γ -function for positive arguments
represents a generalised factorial: Γ(N + 1) = N ! for integer N . The polydispersity is
defined as the relative variance of the distribution and relates to Z via [98]

p =

√

〈R2〉

〈R〉2
− 1 =

√

1

Z + 1
. (3.10)

In this way, a Schulz-Flory approximation to the particle size distribution of a colloidal
dispersion obtained by DLS can be employed to determine the non-uniformity of the
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Fig. 3.2: Linear dependence of the relaxation rate Γ(Q) on Q2 for non-interacting spherical
particles. According to the Landau-Placzek relation Γ(Q) = DEQ

2 the slope of the
straight line defines the Einstein diffusion coefficient DE of the observed particles.

prepared colloidal polymer particles [90].

3.4.2 Determination of the static structure factor

To characterise the self-organisation of less diluted systems to liquid-like ordered systems,
the structure factor S(Q) is determined employing SLS [99]. A mixed-bed ion exchanger
[AmberliteR© MB-6113, Merck KGaA] is added to suspensions to remove stray ions in
order to maximise the Debye screening length λD. Employing the afore mentioned ALV
setup (cf. section 3.4) the scattered intensity is detected in the range 25◦ ≤ ϑ ≤ 150◦ at
128 equidistant Q for 60 s each. To access an ensemble average in short time, the sample
cell is continuously rotated during the static light scattering experiment. The particle
form factor P (Q) is determined in an identical experiment using a dilute suspension (cf.
2.3.1), prepared as described in section 3.4.1. According to (2.7) the structure factor S(Q)
is obtained by normalising the average scattered intensity of an ordered system to P (Q).
A graphical example for this is shown in figure 3.3.
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Fig. 3.3: Illustration of the experimental determination of the static structure factor S(Q) by
static light scattering. The scattering function of an ordered sample is normalised to
the form factor P (Q), obtained by a fit to the scattering function of a dilute, disordered
sample resulting from a separate light scattering experiment. Simultaneously normal-
ising the scattering functions to the number densities of the corresponding samples,
leads to S(Q), here multiplied by 105 for reasons of display.

3.4.3 Investigation of collective diffusion

The collective diffusion of less diluted, ordered colloidal dispersions is investigated by
means of DLS. To investigate structure-dynamics relations of identical ensembles, DLS
experiments are conducted directly subsequent to the corresponding SLS experiments (cf.
3.4.2) with the identical samples and cuvette position. In the range 25◦ ≤ ϑ ≤ 150◦ at 64
equidistant Q the scattered intensity is detected for 900 s each. The cuvette is stationary
during DLS experiments. The evaluation of the fluctuations of the scattered intensity is
performed according to section 2.3.2, such that via (3.8) in analogy to the self-diffusion
coefficient for diluted systems, Deff(Q) can be determined for interacting systems. For
liquid-like ordered colloidal systems the collective short-time diffusion coefficient shows a
damped oscillation with increasing Q, as described at the end of section 2.3.2.
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3.5 Brownian Dynamics simulations

The Brownian Dynamics (BD) simulations of colloidal dispersions in this work are per-
formed according to the Ermak algorithm described by equation (2.5). A new position
vector of the simulated, charged particle is computed in dependence on its previous po-
sition, an electrostatic force resulting from the surface charges of the particles and on a
random displacement according to Brownian motion. Thus, hydrodynamic interactions
mediated by the molecules of the continuous phase of the colloidal dispersion are ne-
glected. There are, however, algorithms which include hydrodynamic contributions to
particle trajectories employing available approximations of the diffusion tensor Dij [100].
Due to the numerical demands posed by such algorithms, the inclusion of hydrodynamics
is only realisable for small systems.

As a compromise between numerical effort and statistical accuracy systems consisting
of several thousand Brownian particles are simulated in this work. To avoid surface
effects and maintain comparability to real colloidal dispersions with much larger particle
numbers, periodic boundary conditions are employed. Virtually, the simulated, cubic
box is 3D-periodically replicated. With respect to the calculated pair potential, a cut-
off radius Rc = L/2 is defined, by which only particle interdistances of half the cubic
box length L or less are considered [60]. In general, simulations are initiated employing
cubic crystalline start configurations (fcc or bcc) and performed until equilibrium, which
is identified when the pair distribution functions g(2)(r) of several subsequent time steps
do not differ. The time step size for the BD simulations in this work is adjusted to
∆t = 2×10−6 s, where for shorter simulations every 10th and for longer simulations every
100th step the coordinates of particles are saved to data files for subsequent analysis
of trajectories. Thus, the temporal resolution is reduced by the corresponding factor.
Unless otherwise stated, in this work standard values are employed in simulations for the
temperature T = 293.15K, the dynamic viscosity η = 1.002 × 10−3 Pa · s, and relative
permittivity εr = 78.3 of an aqueous dispersion medium.

Since the Fourier equivalent S(Q) of the pair distribution function is accessible via
light scattering experiments, the simulated g(2)(r) is transformed into a structure factor,
if BD simulation and scattering experiment are compared. This is performed by means
of a Fourier-Bessel transform, as shown in equation (2.9). To avoid artefacts at small Q
due to truncation effects, a least-squares fit of an heuristic, damped oscillating function
[16, 101]

f(r) = 1 + A1 exp(A2(r − A3)) cos(A4(r − A3)) (3.11)

is performed to extrapolate the simulated data to distances r > Rc with the parame-
ters A1 · · ·A4. This procedure is exemplified by figure 3.4 for a typical equilibrium pair
distribution function of a liquid-like ordered colloid.

The coordinates of a particle after each simulation step define this particle’s simulated
trajectory of diffusion. Knowing the position vectors of each particle at each time step
the self-dynamic observable in terms of the mean squared displacement (MSD) 〈r2〉 is
accessible (cf. eq. (2.4) and section 2.3.2). The time dependency of the self-diffusion
coefficient DS(t) is thus obtainable via a Verlet algorithm [102, 103]
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Fig. 3.4: The pair distribution function g(2)(r/σ), in dependence on the normalised distance
r/σ with the particle diameter σ, as gained by BD simulations, is restricted to r = Rc.
g(2)(r/σ) is extrapolated by a damped oscillating function according to (3.11) fit to
the simulated data. Hereby artefacts due to truncation effects after Fourier-Bessel
transform to obtain the static structure factor S(Qσ) are avoided.

DS(t) =
〈r2〉(t+ ∆t)− 〈r2〉(t− ∆t)

2∆t
, (3.12)

which is employed in this work for investigations of tracer particle dynamics in mixtures.
Beyond self-dynamics, the knowledge of the particle trajectories also allows for the

determination of collective diffusion phenomena in simulations of more concentrated mix-
tures of colloidal dispersions. During this work a sophisticated algorithm has been devel-
oped, that correlates the positions of two different particles at each simulated time step.
Via this computationally demanding approach the partial, distinct space-time pair distri-
bution functions g(2)ij (r, t) are determined for correlations between different particles of the
same particle class and different particle classes. Spatial Fourier-Bessel transforms (cf.
eq. (2.9)) of the g

(2)
ij (r, t) result in the partial intermediate scattering functions Sij(Q, t),

which comprise the collective diffusion behaviour in concentrated mixtures of colloidal
dispersions.

In the following, further details of BD simulations performed in this work are compiled.
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3.5.1 Simulation of homo-colloidal systems

Homo-colloidal systems, consisting of one particle species, are simulated to clarify the
numbers of effective surface charges Zeff of the prepared colloidal particles. As described
in section 2.3.1, RMSA evaluation of SLS data overestimates Zeff . By adjusting the num-
ber of charges in BD simulations until the resulting simulated structure factor well agrees
with the corresponding experimental S(Q), a more realistic value of Zeff is determined.
The particle size and number density are set according to previous DLS experiments and
RMSA evaluation of SLS data. In this kind of simulation, 2048 particles of the respec-
tive colloid are modelled starting at a fcc crystalline configuration until the structural
equilibrium is reached.

3.5.2 Simulation of binary mixtures

BD simulations of binary colloidal mixtures are performed in this work, in particular for
the comparison with light scattering results. The main focus is directed onto dynamical
properties in terms of the self-diffusion coefficient of tracer particles in a homo-colloidal
matrix and the collective dynamics in mixtures with similar number densities of both
components. The results of previous characterisation of the prepared colloidal disper-
sions by means of light scattering serve as input parameters, such as particle size and
number density. The numbers of effective charges are set according to the findings from
simulations of homo-colloidal systems. Parameters characterising the dispersion medium,
such as the dynamic viscosity η and the relative permittivity εr, are adjusted to the cor-
responding experimental medium. For better statistical accuracy, in these simulations
8192 particles are simulated starting from a bcc lattice until equilibrium. Subsequently, a
longer simulation run is performed to investigate dynamic properties. In case of diluted
tracer particles the dynamics over 200 ms is simulated. For the collective diffusion of real
binary mixtures in more viscous dispersion media, runs over simulated times up to 1.2 s
are performed.

3.5.3 Simulation of ternary mixtures

Mixtures of three dispersed species, i. e., one tracer component in a matrix consisting of
two colloidal species, are simulated in this work detached from experimental systems. Par-
ticles, medium and potential parameters in these simulations are adjusted as to describe a
realistic aqueous system. The mixtures are simulated with 8192 particles starting from a
bcc lattice. After reaching the equilibrium, dynamic runs of simulated times of 200 ms are
performed. Particle sizes, surface charges, ionic strength of the dispersion medium and
particle number density are systematically varied in relation to a fixed reference system.
The parameters of the three components of this reference system are compiled in table
3.1. The total particle number density is set to 1̺total = 5.0 µm−3.

Table 3.1: Particle diameters σ, relative number densities 1̺
i/

1̺
total, and surface charges Zeff

defined for the reference system in BD simulations of ternary mixtures.

Component σ [nm] 1̺i/
1̺total Zeff

Tracer 100 0.050 200
Matrix A 100 0.475 200
Matrix B 100 0.475 200
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4 Preparation and characterisation

of colloidal model systems

4.1 Synthesis of fluorinated alkyl acrylates

The fluorinated alkyl acrylates TFEA and OFPA are synthesised as precursors for the
preparation of fluorinated polymer colloid dispersions, following the instructions described
in section 3.1. The purified monomers are obtained with yields of 56% and 76% for
TFEA and OFPA, respectively. The spectra obtained from 1H, 13C{1H} and 19F{1H}
NMR experiments for identification of the desired products are attached in appendix
A. Comparison with literature data of Boutevin et al. [87] and database entries of the
Spectral Database of Organic Compounds (SDBS) organised by the National Institute of
Advanced Industrial Science and Technology (AIST), Japan, accessed on November 24
2016 [104, 105], verifies the identity of the fluorinated monomers.

4.2 Preparation of colloidal polymer particles

Colloidal model systems are prepared from BA, TFEA and OFPA via emulsion poly-
merisation as described in section 3.2. Homopolymer colloids of OFPA and BA have
been synthesised and well-characterised before [16, 90, 106]. TFEA is a well-known com-
ponent in the preparation of copolymer colloids [107], while polymers consisting solely
of this fluorinated acrylate have not been studied extensively before. In this work, be-
yond the homopolymers poly(2,2,2-trifluoroethyl acrylate) (pTFEA) and poly(1H,1H,5H-
octafluoropentyl acrylate) (pOFPA), mixtures of TFEA and BA as well as TFEA and
OFPA in different compositions are copolymerised to result in novel classes of highly de-
fined colloidal copolymer dispersions. These are designated as poly(TFEA-co-BA) (pTcB)
and poly(TFEA-co-OFPA) (pTcO), respectively. All 36 colloids, that are prepared in this
work, are summarised in table 4.1, where also the amounts of water, monomer(s), cata-
lysts and radical initiator chosen for the preparation of the respective system are compiled.
The designation of the copolymer systems follows the scheme pAcB-xx, where A and B
denote the two monomers employed in the copolymerisation and xx is the percentage
molar ratio of B in the monomer mixture. The indication of the amount of monomer
nMono for the copolymer systems follows (nA + nB).
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Table 4.1: Compilation of the quantities of monomers, radical initiator, K2S2O8, and redox catalyst system of Na2SO3/(NH4)2Fe(SO4)2 as well as
topological parameters of the resulting colloidal polymer particles. The two digits in the copolymer sample names indicate the molar
ratio of BA in the monomer mixture in percent. The molar quantities nmono for the copolymers are displayed as nTFEA + ni, with i
denoting BA or OFPA, respectively. For monomer amounts indicated by an asterisc, in addition 1 mmol of the crosslinker EGDMA
is added to the monomer mixture. The refractive indices np are determined at ambient temperature for λ = 532 nm. The Einstein
self-diffusion coefficients D0 are determined in aqueous dispersion containing 10−3mol L−1 KCl at T = 298K.

Polymer system ID
VH

2
O nMono mNa

2
SO

3
m(NH

4
)
2
Fe(SO

4
)
2

mK
2
S
2
O

8
Rh,max p

D0/10
−12

np
[mL] [mmol] [mg] [mg] [mg] [nm] [m2 s−1]

pTFEA

I 250 33 104 3 30 37 0.110 5.64
II 250 68 101 1 31 62 0.089 3.57
VI 125 25 48 1 16 56 0.180 4.46
VII 125 10 105 1 15 22 0.177 10.86
VIII 250 86 102 1 30 154 0.041 1.62 1.402
IX 250 40 101 1 30 67 0.091 3.51

pOFPA
III 250 25 98 1 30 106 0.091 2.29 1.380
IV 250 50 98 1 31 140 0.132
V 250 38 100 1 30 128 0.051

pTcB-10

I 250 (45+5) 102 1 30 45 0.088 5.25
II 250 (18+2) 101 1 30 35 0.098 7.06 1.428
III 250 (81+9) 106 1 30 135 0.132 1.80
IV 250 (63+7) 98 1 30 105 0.040 2.18
V 250 (45+5) 100 1 30 70 0.065 3.45 1.422
VI 500 (36+4) 200 1 60 55 0.051 4.37

pTcB-30

I 250 (35+15) 100 1 30 54 0.196 4.39 1.430
II 250 (34+15)* 101 1 30 50 0.108 4.65 1.436
III 500 (70+30) 200 1 60 68 0.141 3.54 1.430
IV 250 (35+15) 100 1 15 53 0.076 4.72 1.432
V 250 (53+23) 153 1 31 72 0.064 3.36 1.428
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pTcB-50

I 250 (25+25) 102 1 32 80 0.055 2.98 1.438
II 250 (25+24)* 101 1 30 90 0.039 2.49
III 500 (50+50) 200 1 61 85 0.045 2.74 1.434
IV 250 (25+25) 100 1 61 55 0.148 4.35 1.433
V 250 (38+38) 152 1 46 67 0.217 3.56 1.439

pTcB-70

I 250 (15+35) 102 1 30 55 0.075 4.34 1.444
II 250 (15+34)* 102 1 31 58 0.084 4.14 1.435
III 500 (30+70) 200 1 61 53 0.135 4.51 1.445
IV 250 (15+35) 101 1 16 62 0.073 3.83 1.446
V 250 (23+53) 151 1 30 76 0.102 3.16

pTcB-90
I 250 (5+45) 101 1 30 58 0.176 4.31 1.449
II 250 (8+68) 153 1 30 54 0.141 4.57
III 250 (5+45) 100 1 15 67 0.052 3.63

pTcO-30 250 (21+9) 103 1 31 36 0.090 6.60
pTcO-50 250 (15+15) 101 1 30 32 0.413
pTcO-90 250 (3+27) 100 1 30 77 0.169

Polymer system ID
VH

2
O nMono mNa

2
SO

3
m(NH

4
)
2
Fe(SO

4
)
2

mK
2
S
2
O

8
Rh,max p

D0/10
−12

np
[mL] [mmol] [mg] [mg] [mg] [nm] [m2s−1]
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4.3 Characterisation of particle-specific properties

The prepared (co)polymer colloids are characterised regarding their particle sizes by means
of DLS as described in section 3.4.1. Data evaluation employing the CONTIN algorithm
results in size distribution functions, exhibiting the probability density P (Rh) of the
hydrodynamic particle radii Rh. These experimental data are approximated by a Schulz-
Flory distribution according to eq. (3.9), where the resulting parameter Z defines the
polydispersity p = (Z+1)−1/2, thus providing a quantitative measure of the uniformity of
the prepared colloidal particles (cf. 3.4.1). The distribution maximum represents the most
probable hydrodynamic radius Rh,max. For nearly symmetric distributions Rh,max coincides
with the mean hydrodynamic radius 〈Rh〉 within experimental accuracy. This equivalence
is met for most of the prepared polymer colloids, as is supported by the examples (a) to
(d) of the chosen size distributions compiled in figure 4.1. The determined most probable
hydrodynamic radii and polydispersities are presented in table 4.1.

In figure 4.1 size distribution functions of the six systems pTcB-50 III, pTFEA VIII,
pTFEA VII, pTcO-90, pTcB-50 V and pTcO-50, consecutively labelled from (a) to
(f), are displayed as examples for all prepared colloidal dispersions. (a), (b), and (c)
show very narrow distributions, that are quantified in low polydispersities of 0.045 for
pTcB-50 III and 0.041 for pTFEA VIII. pTFEA VII exhibits a larger polydispersity of
p = 0.177 despite its narrow distribution. It is a well known phenomenon that the polydis-
persity p increases for decreasing particle diameters, since even small absolute deviations
of individual particle sizes from the mean size become progressively important relative
to a smaller mean particle diameter. pTFEA VIII exhibits the largest most probable
particle sizes with Rh,max = 154 nm, whereas pTFEA VII with Rh,max = 22 nm represents
the system with the smallest particles of the prepared colloids. The size distribution of
pTcO-50 III is a typical example for those dispersions with the most frequently appearing
particle sizes in the range 50 nm ≤ Rh,max ≤ 100 nm and low polydispersity. Fig. 4.1
(d) displays the size distribution function of pTcO-90 with p = 0.169, as an example for
those colloidal systems with slightly elevated polydispersity.

Subplot (e) shows the most significant example for a skew size distribution function
for the systems prepared in this work. The most probable hydrodynamic radius Rh,max =
67 nm and the mean hydrodynamic radius 〈Rh〉 = 70 nm differ by more than four percent.
However, the majority of the prepared polymer colloids, in particular those investigated
in mixtures later in this work, exhibit no difference between Rh,max and 〈Rh〉 within
experimental accuracy.

The last example in Fig. 4.1 (f) shows a bimodal size distribution, that gives rise to a
polydispersity of p = 0.413, due to the existence of particles more than three times the
size of the most probable ones. As the capability of self-organisation is not to be expected
for this dispersion, pTcO-50 is not further investigated in this work.
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Fig. 4.1: Particle size distributions of six examples of the prepared polymer colloids obtained
from DLS data via the CONTIN algorithm. Red curves represent fit functions ac-
cording to a Schulz-Flory distribution, which are employed for determination of the
polydispersity p.
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From the initial slopes of field autocorrelation functions g1(Q, τ) acquired from angle-
dependent DLS experiments with the samples employed for the determination of the size
distribution functions (cf. 3.4.1), relaxation rates Γ(Q) are obtained. These relaxation
rates are proportional to Q2 indicating a free Gaussian diffusion of non-interacting parti-
cles. An example for the system pTFEA II is displayed on the left of Fig. 4.2. This clearly
shows, that the dilution and electrostatic screening by stray ions are sufficient to suppress
particle interactions, that would lead to non-Gaussian diffusion which would alter the
size distribution functions determined using the CONTIN algorithm. The self-diffusion
coefficients D0 obtained from the Q-dependence of the relaxation rates described by the
Landau-Placzek relation (2.16) are also compiled in table 4.1. As is displayed on the
right of Fig. 4.2, these self-diffusion coefficients show an inversely proportional relation to
the most probable hydrodynamic particle radii determined via the CONTIN algorithm,
hence meeting the Stokes-Einstein relation (2.17). Slight deviations occur for the more
polydisperse samples since only the first cumulant is used to determine the relaxation
rates Γ(Q), neglecting polydispersity and skewness of the size distribution functions.
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Fig. 4.2: Left: Relaxation rate Γ(Q) acquired from initial slopes of g1(Q, τ) determined by DLS
for the example colloid pTFEA II. The linear dependence of Γ(Q) on Q2 verifies free
Gaussian diffusion of the particles. According to (2.16) the slope gives the self-diffusion
coefficient D0. Right: Illustration of the linear proportionality between D−1

0 and the
most probable hydrodynamic particle radii Rh,max of the prepared colloids, meeting
the Stokes-Einstein equation (2.17).

The particle refractive indices of the prepared colloidal dispersions are obtained by
means of transmission experiments employing an UV/VIS spectrometer (cf. section 3.3).
The weighted relative attenuation of the transmission Φ(nm) (cf. (3.7)) depends on the
squared difference (np−nm)

2 of the refractive index of the particles, np, and the dispersion
medium, nm. Hence, the minimum of a plot of Φ(nm) versus nm indicates the refractive
index of the probed colloidal particles with nm = np. Figure 4.3 shows such a plot for the
example pTcB-50 IV. The refractive index of these particles is determined to np = 1.433.
The remaining attenuation, given by Φ(nm) ≈ 0.2 in the example figure, can be ascribed
to absorption processes inside the colloidal particles, which are independent from nm.

In table 4.1 the obtained refractive indices of the other colloidal particles are compiled.
In an ideal case, particles prepared from the same monomers or monomer mixtures with
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Fig. 4.3: Dependency of the weighted relative attenuation Φ(nm) on the refractive index of
the dispersion medium nm, measured for the system pTcB-50 IV in a photometric
transmission experiment with a wavelength λ = 532 nm. The vertex of the expected
minimum indicates the index-matching point, where np = nm, thus revealing the
particle refractive index np = 1.433.

the same molar compositions should exhibit identical refractive indices. However, as is
shown in table 4.1, there are small deviations of less than one percent, e. g., among
the refractive indices of the different TFEA-co-BA copolymer particles with 30, 50 and 70
percent ratio of n-butyl acrylate. It can be hypothesised, that these discrepancies originate
from deviations in the densities of the polymer chains inside the colloidal particles. A
further resolution of this effect is not pursued at this point. Since these deviations among
the refractive indices of the particles of the same copolymer systems are marginal, for
most of the remaining system groups only one particle refractive index is determined,
which serves as a benchmark, e. g., in case of the pTFEA systems.

In figure 4.4 the mean refractive indices 〈np〉 of prepared pTFEA and pTcB particles as
well as the known refractive index of poly(n-butyl acrylate) (pBA) particles are displayed
in dependence on the molar fraction of BA, xBA, in the corresponding monomer mixtures.
Obviously, the refractive index of pTcB copolymer particles relates proportionally to xBA.

However, the homopolymers of the corresponding components significantly deviate from
this linear behaviour, resulting in a lower refractive index for pTFEA and a higher one
for pBA. The comparison with the refractive indices of water and glycerol in Fig. 4.4
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Fig. 4.4: Dependence of the mean refractive index 〈np〉 of pTFEA, pTcB, and pBA particles on
the molar fraction of butyl acrlyate, xBA, in the corresponding monomer mixture. For
copolymers a linear increase of 〈np〉 is observed proportional to xBA. The homopoly-
mers at xBA = 0 (pTFEA) and xBA = 1 (pBA) somewhat deviate from this linear
behaviour. As indicated by dashed lines for refractive indices of water and glycerol,
all displayed types of (co)polymer particles can be index-matched in water/glycerol
mixtures.

exemplifies the possibility of index-matching any of the prepared colloidal dispersions in
mixtures of both substances. Refractive indices of prepared pTcO particles are not explic-
itly determined in this work. However, the homopolymers pOFPA III and pTFEA VIII
exhibit refractive indices of np(pOFPA) = 1.380 and np(pTFEA) = 1.402. Hence it is
a plausible assumption that pTcO copolymers will have refractive indices in the range
1.380 < np(pTcO) < 1.402.
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4.4 Characterisation of self-organised single

compound systems

Section 4.3 has provided evidence for the low polydispersities and tunability of refractive
indices of the prepared copolymer particles in the range 1.380 ≤ np ≤ 1.449 for possible
particle sizes 22 nm ≤ Rh,max ≤ 154 nm. In this section, liquid-like structures originating
from the self-organisation of these colloidal particles are investigated by means of SLS.
The evaluation of the resulting structure factors employing the RMSA closure relation
for the Ornstein-Zernike equation, complemented by BD simulations in order to replicate
experimental systems in silico, gives access to characteristic parameters in terms of the
particle number density 1̺ and the number of effective surface charges Zeff .

Each of the 36 different colloidal dispersions are able to self-organise to ordered struc-
tures. However, in the scope of this work, 20 liquid-like samples of 16 different colloidal
systems are characterised in order to exhibit the foundation for the investigations of binary
and ternary mixtures later in this work. The static structure factors S(Q) of the ordered
samples are determined as described in section 3.4.2. For illustration figure 4.5 shows the
SLS results for pTcB-70 I, which exhibits a particle refractive index of np = 1.444. To
avoid multiple scattering from the less diluted, ordered sample, the refractive index of the
dispersion medium is increased to nm = 1.381 by addition of glycerol.
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Fig. 4.5: Left: Determination of the static structure factor S(Q) for the example system pTcB-
70 I by SLS. Blue triangles show the scattering function of a dilute sample of pTcB-70 I,
that contains 10−3 M KCl to avoid electrostatic particle interactions. The red curve is
a fit to this function according to the theoretical form factor of Schulz-Flory distributed
spheres P (Q). Green circles mark the scattering function obtained for a concentrated
sample of pTcB-70 I. Normalising the latter function to the P (Q)-fit and taking into
account the ratio of number densities of the investigated samples results in S(Q), here
multiplied by 105 for better display. Right: RMSA fit to the static structure factor
determined for pTcB-70 I. Experimental data and fit show excellent agreement around
the coordination maximum, which gives access to the particle number density 1̺ and
the number of surface charges Zeff of the probed system. Further details are discussed
in the text below.

On the left side of figure 4.5, the scattering functions of a dilute and the ordered sample
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are displayed. The data points of the dilute sample are interpolated by a fit function
according to a theoretical form factor of Schulz-Flory distributed spheres [90]. Normalising
the scattering function of the ordered sample to this interpolation and taking into account
the ratio of number densities of the investigated samples results in the experimental static
structure factor S(Q), that is here multiplied by 105 for better display. On the right side of
figure 4.5, the fit of the experimental S(Q) by RMSA is exemplified. The first maximum
can be considered an order parameter as its amplitude, Smax(Q), increases with a more
pronounced order of the system. In the displayed example Smax(Q) = 2.84, which is very
close to the Hansen-Verlet criterion of SHV(Q) = 2.85 [75, 76]. Therefore, the probed
liquid-like sample of pTcB-70 I is to be characterised as close to a freezing transition.

The Q-coordinate of the first maximum, Qmax, is related to the most probable next
neighbour distance via dmax ≈ 2π/Qmax, which is why it is also referred to as coordination
maximum. For pTcB-70 I next neighbour distances of dmax = 427 nm are found. It can
be seen, that experimental data and RMSA-fit very well agree around the first maximum,
which is necessary for obtaining reliable values for the fit parameters Zeff , the effective
number of surface charges, and 1̺, the particle number density. For the example system
pTcB-70 I Zeff = 435 and 1̺ = 9.74× 1018 m−3 are obtained.

Discrepancies between fit and experiment at larger Q are a known issue (cf. section
2.3.1) caused by the simplicity of RMSA as a closure relation leading to a linear in-
tegral equation. The deviations at small Q originate from the assumption of an ideally
monodisperse system for the RMSA-fit. According to the fluctuation-dissipation theorem,
the isothermal compressibility κT is connected to S(Q) via limQ→0 S(Q) = 1̺kBTκT [108].
Due to even a small polydispersity of a real, liquid-like colloidal system, the isothermal
compressibility and thus the value of S(Q → 0) is increased.

For spherical particles, the number density 1̺ is related to the volume fraction ϕ via
ϕ = 4π 1̺R3/3 , with R denoting the topological radius of the particles, which can very
well be approximated by the hydrodynamic radius Rh for particle sizes found in the pre-
pared dispersions. For pTcB-70 I, a volume fraction of ϕ = 6.8×10−3 results. Considering
that the system is close to freezing, according to the amplitude of the structure factor,
this unusually low volume fraction exhibits a remarkable result and underlines the poten-
tial of the colloidal systems prepared in this work for utilisation as model systems and
investigations of the phase behaviour of condensed matter.

In table 4.2, all results characterising the coordination maximum, Zeff and 1̺ obtained
for the investigated liquid-like ordered systems are compiled. Lower case characters at
the end of the sample names indicate dilutions of the same colloidal dispersions. In most
cases particles are dispersed in pure water, with a refractive index nm = 1.332 and a
permittivity εr = 78.5. Deviations from these characteristic values quantify the addition
of glycerol to avoid multiple scattering.
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Table 4.2: Compilation of results derived from static structure factors of liquid-like ordered
dispersions employing RMSA. Lower case characters at the end of the sample names
indicate dilutions of the same colloidal dispersion. Given are the most probable next
neighbour distance dmax, the amplitude of the coordination maximum Smax(Q), the
number of effective particle surface charges Zeff and the particle number density 1̺ .
nm is the refractive index and εr the relative permittivity of the dispersion medium.

Sample dmax [nm] Smax(Q) Zeff
1̺ / 1018 [m−3] ϕ× 102 nm εr

pTFEA I 410 2.66 415 11.21 0.26 1.332 78.5
pTFEA IIa 425 2.23 305 9.88 1.01 1.332 78.5
pTFEA IIb 537 2.13 310 5.39 0.55 1.332 78.5
pTFEA IIc 722 1.92 304 1.97 0.20 1.332 78.5
pTFEA VIa 318 2.17 257 23.74 1.75 1.332 78.5
pTFEA VIb 428 1.91 239 9.69 0.71 1.332 78.5
pTFEA IX 727 2.49 453 2.01 0.25 1.332 78.5
pOFPA III 771 1.83 280 1.70 0.85 1.332 78.5
pTcB-10 I 267 2.81 381 38.25 1.56 1.332 78.5
pTcB-10 IIa 400 2.68 419 12.12 0.22 1.332 78.5
pTcB-10 IIc 496 2.24 337 6.42 0.12 1.332 78.5
pTcB-10 VI 469 1.74 264 7.09 0.49 1.332 78.5
pTcB-30 I 509 1.47 158 5.44 0.37 1.332 78.5
pTcB-30 II 634 1.54 192 2.85 0.15 1.332 78.5
pTcB-30 IV 539 1.94 272 4.83 0.31 1.332 78.5
pTcB-50 III 463 2.22 305 7.66 2.04 1.411 58.5
pTcB-50 IV 610 1.31 128 2.96 0.22 1.332 78.5
pTcB-70 I 427 2.84 435 9.74 0.68 1.381 67.1
pTcB-70 II 365 2.25 277 15.67 1.28 1.381 67.1
pTcO-30 610 1.82 258 3.34 0.06 1.332 78.5

The spatial configuration at equilibrium, which is described by the parameters sum-
marised in table 4.2, is governed by the electrostatic repulsion originating from the nega-
tive surface charges of the colloidal particles. Due to the repulsive character of interaction,
next neighbour distances as large as possible are preferred between the particles for a given
concentration. As a consequence, dilution leads to an increase of dmax, which results in
a decrease of electrostatic interaction. This is quantified in a decreasing amplitude of
Smax(Q) indicating a loss of spatial correlation, which is supported by the results for the
three dilutions of pTFEA II and the different concentrations of the systems pTFEA VI
and pTcB-10 II.

Due to the long range electrostatic repulsion in charged colloids, liquid-like ordered
structures evolve at particle volume fractions as low as several percent [109], which is a
significantly smaller concentration than is found in hard body colloidal systems [17, 38]
or molecular liquids. This is well established in the literature for charged homopolymer
colloids and is also confirmed for the colloidal copolymer particle dispersions prepared
and investigated in this work. In fact, table 4.2 gives evidence for the capability of
these new systems to form even highly ordered liquid-like structures at volume fractions
significantly smaller than one percent. This is particularly emphasised by pTFEA IIc
(ϕ = 2.0 × 10−3, Smax(Q) = 1.92), pTcB-10 IIc (ϕ = 1.2 × 10−3, Smax(Q) = 2.24) and
pTcO-30 (ϕ = 0.6 × 10−3, Smax(Q) = 1.82). The corresponding static structure factors
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are shown in figure 4.6.
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Fig. 4.6: Static structure factors and corresponding RMSA fits of colloidal dispersions with
particularly low volume fractions ϕ: pTFEA IIc (upper left, ϕ = 2.0 × 10−3), pTcB-
10 IIc (upper right, ϕ = 1.2 × 10−3), and pTcO-30 (lower centre, ϕ = 0.6 × 10−3).
Despite these low volume fractions pronounced liquid-like structures are formed.

With pTcB-10 I there is a second investigated liquid-like ordered system besides
pTcB-70 I that is close to a freezing transition with Smax(Q) = 2.81, which confirms
the applicability of these copolymer colloids as model systems for investigations of the
phase behaviour of condensed matter. Due to the tunability of the particle refractive in-
dex by variation of the monomer composition of the prepared copolymers, light scattering
experiments of mixtures selectively masking one component in presence of another are
enabled by index-matching.

As mentioned before, RMSA is known to overestimate the number of effective surface
charges. To quantify more realistic values for Zeff , BD simulations for a selection of the
prepared polymer colloid dispersions are performed exemplarily, as described in section
3.5.1. Due to the low polydispersities of the real dispersions compiled in table 4.1, an
approximation of ideally monodisperse systems for simulation is deemed appropriate. In
figure 4.7 the static structure factors obtained from BD simulations for different numbers
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of surface charges are compared to the results from SLS experiments and the corresponding
RMSA fit for the example pTcO-30. The structure factors are displayed as a function of
the reduced scattering vector Qσ, with the particle diameter σ = 72 nm.
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Fig. 4.7: Determination of the surface charge number Zeff by comparison of the static structure
factor S(Qσ) obtained by SLS experiments and RMSA fit to S(Qσ) resulting from BD
simulations for the example system pTcO-30. The equilibrium structure at Zeff = 200
(upper left) exhibits a structure factor, that is higher than the one determined by
experiment. A simulation with Zeff = 180 (upper right) delivers a S(Qσ) which is
slightly too small. The lower centre graphic corresponding to Zeff = 182 shows a
static structure factor obtained from BD in excellent agreement to the SLS result.

At first, the system is simulated for 105 time steps at Zeff = 200 until equilibrium,
resulting in a higher amplitude of the structure factor than obtained from SLS. Subse-
quently, the charge number is decreased to 180 and the system is re-equilibrated after
another 5× 104 steps. Smax(Q) of the corresponding simulated structure factor is slightly
smaller than the amplitude of the experimental S(Q). After 3 × 104 further simulation
steps at Zeff = 182 the structure factor representing the simulated equilibrium config-
uration shows excellent agreement with the static structure factor obtained from light
scattering experiments.
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In this case, the deviation between the number of charges derived from RMSA and that
determined via BD simulations is 92, representing an error of more than 50% based on
the simulation result. In table 4.3 numbers of effective surface charges obtained by BD
simulations in analogous manner are compiled for several other colloidal dispersions and
compared to the corresponding Zeff identified by RMSA fitting of SLS data.

Table 4.3: Compilation of numbers of effective surface charges Zeff determined by RMSA-fit of
SLS data and by BD simulations. Generally, BD delivers significantly smaller charge
numbers, due to the known overestimation of Zeff by RMSA. A rough tendency of
growing discrepancy between Zeff (BD) and Zeff (RMSA) is identified with increasing
charge number.

Sample Zeff (RMSA) Zeff (BD) Zeff (RMSA)/Zeff (BD)
pTFEA IIb 310 200 1.55
pTFEA IIc 304 210 1.45
pTFEA VIb 239 160 1.49
pTFEA IX 453 285 1.59
pOFPA III 280 212 1.32
pTcB-30 I 158 123 1.28
pTcB-30 II 192 145 1.32
pTcB-30 IV 272 185 1.47
pTcB-50 III 305 185 1.65
pTcB-50 IV 128 110 1.16
pTcB-70 I 428 245 1.75
pTcB-70 II 277 178 1.56
pTcO-30 274 182 1.51

RMSA is known to give an overestimation of the number of surface charges. Thus
expectedly, the charge numbers determined by BD are generally smaller than those de-
rived from RMSA. A rough tendency is recognised, that the relative discrepancy be-
tween the two values of Zeff of one colloidal system, which is quantified by the ratio
Zeff (RMSA)/Zeff (BD), increases with rising charge number, as can be seen in table 4.3.
However, there are exceptions to this rule, e. g., Zeff (RMSA)/Zeff (BD) = 1.59 for pT-
FEA IX with Zeff (RMSA) = 453 but for pTcB-50 III a larger ratio Zeff (RMSA)/Zeff (BD) =
1.65 is determined although the charge number Zeff (RMSA) = 305 is significantly smaller.
Hence the observed rough tendency may serve as a rule of thumb but an accurate pre-
diction of the differences between charge numbers determined by RMSA and BD on this
basis is not advisable.
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4.5 Influence of index-matching with glycerol on the

number of surface charges

In chapters 5 and 6 components of colloidal mixtures are selectively index-matched using
water/glycerol mixtures, such that in light scattering experiments these colloids do not
contribute to the scattering signal. A reduced number of effective charges Zeff resulting
from the suppressed dissociation of sulfonic acid surface groups in less protic dispersion
media with increased glycerol content, e. g., by index-matching, would change the struc-
ture and dynamics of colloidal dispersions. So far, a systematic investigation of how
glycerol content may affect Zeff of highly charged particles is not described in the litera-
ture.

Therefore, six samples of pTcB-70 I dispersed in defined mixtures of water and glycerol
are prepared as described in section 3.4.2. To avoid multiple scattering due to the refrac-
tive index np = 1.444 of pTcB-70 I, a minimum mass content of 10% glycerol is found
to be necessary. The other five mixtures exhibit glycerol mass ratios of 15%, 20%, 30%,
40% and 50% with identical particle number density of pTcB-70 I.

The static structure factors of the prepared, liquid-like ordered systems are determined
as described in section 3.4.2 and as illustrated for several other systems of liquid-like order
in section 4.4. Figure 4.8 gives an overview of the obtained static structure factors for
the six samples of pTcB-70 I dispersed in different water/glycerol mixtures. Again, the
evaluation of the experimental data is performed with RMSA to determine 1̺ and Zeff .

From figure 4.8 it is obvious, that the six probed samples exhibit very similar parti-
cle number densities, such that the preparation is considered successful in that respect.
Quantitatively, a mean number density 〈 1̺〉 = 1.01× 1019 m−3 with a standard deviation
of 3.78× 1017 m−3 is obtained, which corresponds to a relative deviation of around 3.7 %.
For the number of effective surface charges a mean value of 〈Zeff〉 = 439 with a standard
deviation of 14 or a relative deviation of little more than 3%, respectively, is determined.
Note, that there is no distinct proportionality between the determined values for 1̺ and
the corresponding number of charges. With regard to the obtained relative deviations the
number of effective charges in a liquid-like ordered system of charged colloidal spheres
seems to be independent of the composition of a water/glycerol dispersion medium. Thus
no such effects are expected to influence the experiments on mixtures reported in sections
5 and 6.
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Fig. 4.8: Static structure factors of pTcB-70 I particles dispersed in water/glycerol media with
six different glycerol mass ratios ωgly in the range 10% ≤ ωgly ≤ 50%. Within a
small uncertainty the particle number ratios 1̺ are identical. In good approximation
the number of surface charges Zeff is proven independent from the water/glycerol
dispersion medium up to ωgly = 50%.
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5 Investigations of binary mixtures

In chapter 4 evidence is presented, that with the preparation of colloidal copolymer dis-
persions consisting of BA and TFEA or TFEA and OFPA in different compositions and
under different reaction conditions systems with defined particle sizes, number densities
and refractive indices are available. This gives access to the preparation of binary mix-
tures of colloidal dispersions, the characterisation of which is facilitated exploiting the
possibility of selectively index-matching one component in light scattering experiments
using water/glycerol dispersion media.

In the first section of this chapter strongly scattering PS tracer particles are employed
in a binary mixture with index-matched pTFEA VI for the investigation of tracer self-
diffusion influenced by a homo-colloidal matrix by means of DLS and BD simulations.
Only few other similar studies of tracer diffusion of charged spheres in a single component
colloidal matrix interacting via an electrostatic potential are published so far [74, 110].
The results presented in 5.1 shall in part serve as a verification of the earlier findings
of other groups and also give first evidence for the applicability of the newly prepared
systems presented in this work for studying mixtures of charged colloidal dispersions.

The second section presents investigations of binary mixtures of charged colloidal dis-
persions with similar number densities. From these, exploiting index-matching with wa-
ter/glycerol dispersion media, partial static structure factors (Sij(Q)) are obtained by
means of light scattering experiments and compared to results of BD simulations. This
comparative study is complemented by comprehensive BD investigations of the influences
of the components’ number ratios, particle sizes, and effective numbers of surface charges
as well as of the temperature of the system on the partial intermediate scattering functions
Sij(Q, t).

5.1 Tracer particles in a homo-colloidal matrix

5.1.1 Light scattering investigations of tracer self-diffusion in a

homo-colloidal matrix

Polystyrene (PS) is an organic polymer that is widely applied and as such very well
characterised. Colloidal dispersions of PS exhibit relatively high refractive indices close
to nPS ≈ 1.58 [111, 112]. Therefore, these strongly scattering particles are predestined for
their application as tracers in a binary mixture with a colloidal system of less scattering
power. Such mixtures can be composed of a small amount of large PS particles as tracers
dispersed in a majority matrix of smaller PS spheres (cf. works by Krause, Nägele, Klein
et al. [74, 113–115]). Härtl et al. investigated mixtures of small amounts of PS tracer
particles in a colloidal suspension of low-refractive-index poly(1H-1H-heptafluorobutyl
acrylate) [116] and poly(1H,1H,7H-dodecafluoro-1-heptyl methacrylate) particles [110].
However, these are the only systematic studies on tracer diffusion in binary mixtures of
charged colloids. The newly developed systems with tunable refractive index prepared
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in this work exploit an alternative approach to investigate tracer diffusion, i. e., index-
matching a homo-colloidal matrix employing a water/glycerol dispersion medium in a
binary mixture with trace amounts of PS. Dynamic light scattering experiments will then
give access to tracer dynamics without disturbances caused by scattering contributions
from matrix particles.

An adequate polystyrene dispersion for these tracer dynamics investigations is prepared
according to the emulsion polymerisation procedure described earlier in this work (cf. sec-
tion 3.2). 30 mmol of the monomer styrene are dispersed in 250 mL of water. 105 mg of
Na2SO3 and 1 mg of (NH4)2Fe(SO4)2 are added as redox catalyst system. The polymeri-
sation is performed at a temperature of 80 ◦C and initiated by the addition of 31mg of
K2S2O8. The third batch of colloidal PS (PS3) is identified most suitable for the perfor-
mance of tracer dynamics investigations. The particle size distribution, characterised by a
most probable hydrodynamic radius of Rh,max = 106 nm, is determined by DLS according
to section 3.4.1 and displayed on the left side of Fig. 5.1. A Schulz-Flory fit is used to
quantify the polydispersity of the prepared polystyrene particles as p = 0.130. A trans-
mission electron micrograph of PS3 spheres, taken at the Centre for Electron Microscopy
of the Universitätsmedizin Rostock (EMZUniRo) and presented on the right side of Fig.
5.1, validates the mean particle size determined by DLS and likewise gives evidence for a
slightly elevated polydispersity of the particles.
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Fig. 5.1: Left: Particle size distribution for PS3 obtained by DLS employing the CONTIN
algorithm, resulting in a most probable hydrodynamic radius Rh,max = 106 nm. The
polydispersity p = 0.130 is derived from a Schulz-Flory fit according to eq. (3.10).
Right: Transmission electron micrograph of PS3 spheres, taken at the Centre for
Electron Microscopy of the Universitätsmedizin Rostock (EMZUniRo).

In this work, a binary stock mixture consisting of trace amounts of PS3 mixed with
roughly 200 times the number of pTFEA VI is prepared. The particle number ratios
of the two components in this mixture are designated as 1̺PS3,0 and 1̺matrix,0. The re-
fractive index of the dispersion medium water/glycerol in each of the samples prepared
and investigated in this section is adjusted to nm = 1.3945, which corresponds to a mass
ratio of glycerol of about 47.5% [93]. This value is very close to the refractive index of
pTFEA particles of np = 1.402 (cf. table 4.1), such that the scattering power of the ma-
trix particles is drastically reduced and the scattered intensity in dynamic light scattering
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experiments can be considered to originate solely from PS3 in good approximation. An
experimental justification for this assumption follows below.

Finally, the short and long time tracer self-diffusion shall be investigated in dependence
on 1̺PS3 and 1̺matrix. Therefore, two sets of samples are prepared. First, starting from the
stock mixture of PS3 and pTFEA VI, the particle number density of the tracer component
is successively decreased by dilution with a dispersion of pTFEA VI in water/glycerol, that
exhibits the same relative concentration of pTFEA as the stock mixture and the same
refractive index. Thus, the particle number density of the matrix component remains
constant. 1̺PS3 is reduced to 75%, 67%, 50%, 33% and 25%, respectively, relative to
1̺PS3,0. This first sample set is represented by the middle row of the scheme displayed in
Fig. 5.2.

Starting from the mixture with 1̺PS3 = 0.50 1̺PS3,0, a second set of samples is prepared
by successive dilution with a dispersion of PS3 in water/glycerol, that has the same relative
concentration of polystyrene and the same refractive index. Thus, the particle number
density of PS3 remains at 0.50 1̺PS3,0 and the particle number density of pTFEA VI is
decreased to 95%, 90%, 80%, 70% and 60%, respectively, relative to 1̺matrix,0. This
second sample set is represented by the bottom row of the scheme in Fig. 5.2. A mixed-
bed ion exchanger is added to all of the prepared mixtures, which are thoroughly shaken
and then left for at least several days before continuing with light scattering experiments,
to assure an equilibrium state of self-organisation of the pTFEA VI matrix.

Fig. 5.2: Schematic illustration of the preparation of samples investigated in this section. Start-
ing from the stock binary mixture consisting of pTFEA VI and PS3 in the ratio
200 : 1, a first set of samples with constant matrix number density 1̺

matrix,0 and
decreasing tracer number density 1̺

PS3 is prepared. Continuing from the sample
with 1̺

PS3 = 0.50 1̺
PS3,0 a second sample set with progressively reduced matrix

number density 1̺
matrix is prepared, while the tracer number density remains at

1̺
PS3 = 0.50 1̺

PS3,0.

For a verification of successful index-matching, despite the small discrepancy between
nm = 1.3945 and npTFEA = 1.402, the scattering functions I(Q) of all prepared binary
mixtures of PS3 and pTFEA VI are determined by means of SLS according to the scheme
described in section 3.4.2. In Fig. 5.3 these are compared to the form factor P (Q) of
pure PS3, that is obtained by a separate experiment using a sample of highly diluted PS3
dispersed in an aqueous solution of 10−3 M KCl. The scattering vectors are corrected for
varying refractive indices of different water/glycerol compositions (cf. eq. (2.6)).

Due to the preparation of the binary stock mixture, the particle number density of pT-
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Fig. 5.3: Scattering functions I(Q) of binary mixtures of PS3 tracers and pTFEA VI determined
by SLS. On the left results for the first sample set with varying tracer number density
are shown, while the graphic on the right presents I(Q) for samples with varying matrix
number density. In both pictures the scattering function of a highly diluted sample of
pure PS3 containing 10−3 M KCl is included for comparison. Graphs obtained for the
mixtures do not significantly differ from that of pure PS3.

FEA VI can be expected to be decreased by no more than a factor of two compared to the
value for pTFEA VIa obtained from RMSA (cf. table 4.2). As the sample pTFEA VIb
still exhibits a pronounced liquid-like structure at an even lower number density than
1̺matrix,0, the scattering functions of the binary stock mixture and the first set of diluted
samples would show distinct oscillations, if the refractive index significantly differed from
the matching point npTFEA. As can be seen on the left in Fig. 5.3, none of the scattering
functions of the samples with the pTFEA number density 1̺matrix,0 is characterised by
considerable deviations from P (Q) of pure PS3. This becomes even clearer by the deter-
mination of the corresponding hypothetical static structure factor. Fig. 5.4 displays the
hypothetical S(Q) of the binary mixture with 1̺matrix = 1̺matrix,0 and 1̺PS3 = 0.5 1̺PS3,0.
Clearly, S(Q) ≈ 1 over the whole investigated Q-range, indicating the absence of any
structural ordering. Thus, no significant influence of the pTFEA matrix on the scattering
function is detected, due to successful index-matching. The scattering functions deter-
mined for the second set of samples with varying matrix number density and constant
tracer number density are presented on the right side in Fig. 5.3. Similar to the first set
of samples, marginal oscillations can be recognised in the scattering functions correspond-
ing to higher matrix concentrations. With successive dilution of the matrix component,
even these vanish as a consequence of weakened scattering power of pTFEA VI, such that
the scattering functions relating to the least matrix number densities presented appear
identical to the form factor of pure PS3.

Having verified, that the scattering signal of the prepared binary mixtures with index-
matched matrix originates only from the polystyrene tracer particles in good approxi-
mation, the self-diffusion of highly charged tracer particles in presence of like-charged
colloidal particles can be investigated. For this purpose, DLS experiments are performed
on each of the samples presented in Fig. 5.2 according to the data acquisition proce-
dure described in section 3.4.3. From the temporal fluctuations of the detected scattering
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Fig. 5.4: Determination of a hypothetical static structure factor S(Q) for the binary mixture
with matrix number density 1̺

matrix,0 and tracer number density 1̺
PS3 = 0.5 1̺

PS3,0.
The scattering function I(Q) of the mixture and the form factor P (Q) of pure PS3 are
identical within experimental accuracy, such that S(Q) ≈ 1 over the observed Q-range,
which proves successful index-matching of the pTFEA VI matrix.

intensities homodyne autocorrelation functions g2(Q, τ) are computed in dependence on
the observed scattering vector Q and the delay time τ , as stated in (2.11). As the pre-
pared mixtures are ergodic systems and a diffusive motion of the tracer particles can be
assumed, from which scattering mainly originates, the corresponding field autocorrelation
functions g1(Q, τ) can be obtained and approximated as single exponential functions (cf.
eqs. (2.14), (2.15), (3.8)). From the initial slopes of these autocorrelation functions the
relaxation rates Γ(Q) for the short-time limit are determined as shown at the end of sec-
tion 3.4.1. In the upper row of Fig. 5.5 an example for a typical field autocorrelation
function, detected for one of the investigated binary mixtures, as well as an example linear
fit to the corresponding function ln g1(τ) for determining the initial slope are presented.
The so obtained short-time relaxation rates for both sets of prepared binary mixtures are
compiled in comparison to Γ(Q) for a dispersion of pure, highly diluted PS3 in an aqueous
solution of 10−3 M KCl in the bottom row of Fig. 5.5.
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Fig. 5.5: Upper left: Example field autocorrelation function g1(τ) at Q = 2.308 × 10−2 nm−1

obtained by DLS with one of the binary mixtures employing the Siegert relation (2.14).
Upper right: Example short-time fit of g1(τ) to determine the initial slope, which is
the negative relaxation rate −Γ . Bottom row: Plots of short-time Γ(Q) vs. Q2 for
the first (left) and second (right) set of binary mixtures in comparison to Γ(Q) for a
sample of highly diluted, pure PS3 containing 10−3 M KCl.

At first glance, the short-time relaxation rates for all investigated mixtures are very
similar. From the illustration in Fig. 5.5 no tendencies corresponding to the degree of
dilution among the differently concentrated samples are discernible. A more quantitative
discussion of this matter will follow below. Qualitatively, the tracer particles exhibit
distinctly lower short-time self-diffusion coefficients in the observed binary mixtures than
are observed for pure PS3 particles, as can be deduced from the much steeper slope of
Γ(Q) for the single-compound system. As expected, the diffusive motion of polystyrene
tracer particles is slowed down in an ordered colloidal matrix. Due to the addition of
highly charged pTFEA spheres with rather large number density, that occupy the space
between PS spheres, the repulsive electrostatic force acting upon the tracer particles is
largely increased. By matching the refractive index of the dispersion medium to the one
of the matrix particles, effectively, the self-diffusion of the tracer species in a repulsive
electrostatic field is observed. Thereby, the possible distance to be covered by the diffusing
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particles is strongly decreased. This effect holds for short-time as well as for long-time
diffusion.

Opposite to pure, diluted PS3 particles a deviation from the Landau-Placzek propor-
tionality of the short-time relaxation rates Γ(Q) to Q2 is observed for PS3 tracers in an
ordered colloidal matrix. At larger scattering vectors an increase of the slope is noted, as
is shown in Fig. 5.5. Considering the relation Q ≈ 2π/d between the scattering vector
and the distance in real space d, the studied tracer particles seem to move faster over
small distances than over larger distances. This can be explained, again referring to the
index-matched matrix particles with their repulsive, electrostatic field. The probability
of a tracer particle being influenced by this field and the extent of this influence are much
smaller, when observing its motion over small distances. Extending the view to larger
distances, the particle trajectory is more likely to be influenced due to electrostatic de-
flection. This also means, that the particle might be directed back to its starting point,
which is known as memory effect. Thus, while the diffusion over short paths is quasi-free,
long diffusion paths are affected by electrostatic repulsion of the host particles.

Since the impact of the charged matrix particles on the self-diffusion of the polystyrene
spheres is of special interest for the prepared mixtures, the short-time self diffusion co-
efficients DS

S are determined from the slopes of the relaxation rates according to the
Landau-Placzek relation (2.16) in the range 2 × 10−5 nm−2 ≤ Q2 ≤ 4 × 10−4 nm−2. The
obtained short-time self-diffusion coefficients for the two sample sets of binary mixtures
are compiled in table 5.1 and table 5.2, respectively.

From the field autocorrelation functions employed to determine the short-time self-
diffusion behaviour, also the long-time self-diffusion coefficients DL

S are accessible. As
described before in section 2.3.2, DL

S is the limiting value of the time-dependent self-
diffusion coefficient DS(t) for t → ∞. Experimentally, a very good approximation for this
time regime is available at delay times τ distinctly larger than the structural relaxation
time τt. However, as limτ≫τt(g1(Q, τ)) = 0 for the here observed systems, noise super-
imposes the physical data. Thus, a compromise between excluding noise and observing
sufficiently large delay times is necessary, in order to obtain reliable long-time self-diffusion
coefficients. An example for such a long-time evaluation of a typical field autocorrelation
function is presented in the upper right of Fig. 5.6. The long-time relaxation rates ob-
tained in this way according to (2.16) for the two sets of binary mixtures are displayed in
the bottom row of Fig. 5.6, together with the long-time relaxation rate for pure, highly
diluted PS3 in an aqueous solution of 10−3 M KCl.

Obviously, the long-time relaxation rates do not proceed along Q2 as smooth as their
short-time analogues. This is due to increased statistical uncertainty within the long-
time fitting procedure of the field autocorrelation function compared to the short-time
fit, that is based on a larger number of experimental data points. Further it is apparent,
that the long-time relaxation rate of PS3 is very similar to its short-time Γ(Q) graph
in Fig. 5.5. In agreement to this observation the obtainable long-time self-diffusion
coefficient of PS3, DL

S = 2.18 × 10−12 m2s−1, is nearly identical to the short-time self-
diffusion coefficient, DS

S = 2.11 × 10−12 m2s−1. As stated earlier in section 2.3.2, the
relation DL

S ≤ DS
S holds universally. The slightly larger value for DL

S most likely originates
from the larger experimental uncertainty of the long-time relaxation rate mentioned above.
Within experimental accuracy DL

S ≈ DS
S is fulfilled, as the investigated sample of pure

PS3 is highly diluted and exhibits strong electrostatic screening of the charged macroions
due to the addition of 10−3 M KCl.
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Fig. 5.6: Upper left: Example field autocorrelation function g1(τ) at Q = 2.308 × 10−2 nm−1

obtained by DLS with one of the binary mixtures employing the Siegert relation (2.14).
Upper right: Example long-time fit of g1(τ) to determine the slope, which is the
negative relaxation rate −Γ . Bottom row: Plots of long-time Γ(Q) vs. Q2 for the first
(left) and second (right) set of binary mixtures in comparison to Γ(Q) for a sample of
highly diluted, pure PS3 containing 10−3 M KCl.

Generally, the long-time relaxation rates of the binary mixtures versus Q2 have smaller
slopes than their short-time analogues, which is apparent when comparing the graphs
presented in the bottom rows of Figs. 5.5 and 5.6. This indication of slower long-time dif-
fusion compared to short-time diffusion is based on the behaviour of the colloidal particles
on a mesoscopic scale, that is described already in section 2.3.2. For a quantification of
this observation, the long-time self-diffusion coefficients of the PS3 particles in the inves-
tigated binary mixtures are determined from the slopes of the relaxation rates according
to the Landau-Placzek relation (2.16). To maintain comparability to the short-time eval-
uation, the range 2× 10−5 nm−2 ≤ Q2 ≤ 4× 10−4 nm−2 is taken as a basis. The obtained
long-time self-diffusion coefficients for the two sample sets of binary mixtures are compiled
in table 5.1 and table 5.2, respectively.
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Table 5.1: Compilation of short-time
(

DS
S

)

and long-time
(

DL
S

)

self-diffusion coefficients of PS3
tracers determined for the first sample set with varying tracer number density.

1̺PS3/
1̺PS3,0 DS

S/10
−12 [m2s−1] DL

S /10
−12 [m2s−1]

1.00 0.53 0.24
0.75 0.53 0.25
0.67 0.55 0.19
0.50 0.59 0.20
0.33 0.55 0.24
0.25 0.57 0.25

Table 5.2: Compilation of short-time
(

DS
S

)

and long-time
(

DL
S

)

self-diffusion coefficients of PS3
tracers determined for the second sample set with varying matrix number density.
Also the impact of adding 10−3 M KCl is shown.

1̺matrix/
1̺matrix,0 DS

S/10
−12 [m2s−1] DL

S /10
−12 [m2s−1]

1.00 0.59 0.20
0.95 0.55 0.29
0.90 0.55 0.33
0.80 0.56 0.38

0.80 + 10−3 M KCl 0.54 0.49
0.70 0.54 0.39
0.60 0.52 0.40

At first glance, the findings for DS
S and DL

S for tracer diffusion of PS3 particles in an
index-matched matrix of pTFEA VI spheres agree with the universal relation DL

S ≤ DS
S .

Further, table 5.1 suggests, that neither short-time nor long-time self-diffusion are system-
atically influenced by a decrease in the particle number density of the tracer component
up to a factor of four relative to the original number density. This is an expectable and
reasonable result, as the binary stock mixture is composed of a number ratio of about
0.005 PS3 vs. 0.995 pTFEA VI, such that a dilution of PS3 by a factor four would not
have a significant effect on this composition. The presentation of the ratio DL

S /D
S
S clar-

ifies, that there is no directed dependency of the self-diffusion behaviour of the tracer
particles on the tracer particle number density in the investigated interval, as is presented
on the left side of Fig. 5.7. Rather, the ratios seem to be distributed around a mean
value of 〈DL

S /D
S
S 〉 = 0.41. Presumably, the deviations from this mean value are subject

to experimental accuracy.
Investigating the second set of samples, the influence of a decreasing number density of

the matrix component on the long-time tracer diffusion is revealed. In the lower right of
Fig. 5.6 an enhanced diffusive motion over long times is indicated by a successive increase
of the slope of the relaxation rate Γ(Q) vs. Q2 with decreasing relative number density
of the pTFEA VI matrix. This becomes even clearer by magnifying the lower Q2-region,
which the linear fitting for obtaining the long-time self-diffusion coefficients is based on,
as presented in Fig. 5.8.
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Fig. 5.7: Illustration of the ratio of long-time and short-time self-diffusion coefficients of tracer
particles DL

S /D
S
S determined for binary mixtures with varying tracer number density

1̺
PS3 (left) and with varying matrix number density 1̺

matrix (right). A decrease of
1̺

PS3 down to a fourth of the original density shows no significant influence on DL
S /D

S
S ,

while a decline of 1̺
matrix leads to an increase of DL

S /D
S
S , which is strong at first and

becoming weaker with decreasing matrix number density. The addition of 10−3 M KCl
largely enhances DL

S /D
S
S .

This qualitative tendency is confirmed by the results for the long-time self-diffusion
coefficients presented in table 5.2. There, DL

S is increased from 0.20 × 10−12 m2s−1, for
the original matrix number density, by a factor of two to 0.40 × 10−12 m2s−1 for the
sample with 60% of the original number density of pTFEA VI. Simultaneously, the short-
time self-diffusion coefficient seems to be decreased by dilution of the matrix component.
However, with a range from 0.59× 10−12 m2s−1 to 0.52× 10−12 m2s−1, this effect is much
less pronounced.

A graphical illustration of the impact of matrix dilution on the dynamics of the tracer
particles is presented on the right side of Fig. 5.7. The ratio DL

S /D
S
S grows quickly first,

then successively slower, with decreasing matrix number density. At very low number
densities of the matrix, in the order of magnitude of 1̺PS3,0, this ratio is expected to reach
the value 1, as there the diffusive behaviour of the tracer component should be similar
to the one of the investigated sample of pure, highly diluted PS3, such that DL

S ≈ DS
S .

This case, however, is not reviewed here. Instead, the effect of electrostatic screening by
stray ions is illustrated for a sample with 80% of the original matrix number density,
that contains 10−3 M KCl. DS

S and DL
S of this sample are also presented in table 5.2.

It is obvious, that the short-time diffusion is only little influenced related to the sample
with the same matrix number density without stray ions. The long-time self-diffusion
coefficient, however, is strongly increased due to electrostatic screening. Thus, by the
presence of stray ions, DL

S /D
S
S is elevated by a third of its value without added KCl.

With regard to the dynamical freezing criterion, that is introduced in section 2.3.2, the
tracer component in all systems investigated in this section is characterised as distinctly
apart from any freezing transition, as DL

S /D
S
S ≫ 0.098 holds for the self-diffusion of PS3

in each mixture under investigation.
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Fig. 5.8: Magnification of the low Q region of the lower right graphic of Fig. 5.6, presenting the
long-time relaxation rates Γ(Q) determined for binary mixtures with varying matrix
number density 1̺

matrix. A tendency of an increased slope with decreasing 1̺
matrix is

apparent, indicating an enhanced long-time self-diffusion of the tracer particles.

5.1.2 Brownian Dynamics simulations of tracer self-diffusion in a

homo-colloidal matrix

Two assumptions are essential for the experimental investigations of tracer self-diffusion
in the prepared mixtures of PS3 and pTFEA VI in section 5.1.1. First, the scattered
intensity in the performed light scattering experiments must originate only from the tracer
particles. Scattering functions obtained from SLS experiments provide evidence, that this
condition is well fulfilled by the prepared binary mixtures. Secondly, the regime in the
delay time τ , that is used as the basis for the investigation of long-time diffusion, has to be
sufficiently larger than the structural relaxation time and must not be governed by noise.
To enable a verification of the experimental results for self-diffusion of tracer particles
in a binary mixture with a homo-colloidal matrix, Brownian Dynamics simulations are
performed.

The methodical basics are described in section 3.5. Since a limited number of 8192
particles is simulated in order to restrict the computational effort to a reasonable extent,
the experimental ratio of number densities of 1:200 of PS3 and pTFEA VI particles is not
exactly realisable in the performed simulations to assure appropriate statistical certainty

53



for the tracer component. Instead, three different compositions of 10:90, 5:95 and 1:99 are
modelled as approximations, keeping in mind the discrepancy to the experimental ratio
of tracer and matrix component.

Table 5.3 summarises the parameters different from or complementing the standard
simulation parameters mentioned in section 3.5, the subscripts A indicating polystyrene
and B indicating pTFEA VI properties. The particle number density ratios of PS3 and
pTFEA VI are adjusted according to the three different simulation compositions above.
Zeff,B represents an approximative value referring to the charge number of the investigated
single component system of pTFEA VIb (cf. table 4.3). Zeff,A is adjusted as a compromise
between realising a similar surface charge density for PS3 as for the matrix particles and
restricting Zeff,A to a value known to be adequate for charged particles.

Table 5.3: Particle diameters σi, numbers of surface charges Zeff,i and total colloidal number
density 1̺

total for BD simulation of PS3 tracers in a pTFEA VI matrix. Dynamic
viscosity η and permittivity εr are adjusted for a water/glycerol dispersion medium
with a refractive index nm = 1.3945, corresponding to a glycerol mass ratio of 47.5 %.
Subscripts A and B denote properties of PS3 and pTFEA VI, respectively.

σA [nm] σB [nm] Zeff,A Zeff,B
1̺total/10

18 [m−3] η [Pa·s] εr
212 112 400 160 13.99 0.0053 66.41

The total colloidal particle number density 1̺total is a calculated value corresponding to
dilution of the aqueous pTFEA VI dispersion with a glycerol mass ratio of 47.5%, that is
realised in the experimental mixtures, starting from the number density of pTFEA VIa
(cf. table 4.2) and also taking into account the addition of PS3. The dynamic viscosity
η and relative permittivity εr are adjusted to represent the experimental water/glycerol
dispersion medium as well.

As described in section 3.5.2, the three independent simulations are initiated from a
bcc lattice and are first modelled until the structural equilibrium is reached, i. e., pair
distribution functions of several subsequent simulation runs do not differ significantly. For
the performed simulations this stage is reached after 1.5×105 to 1.8×105 simulation steps,
which corresponds to simulated timespans between 300 ms and 360 ms. Subsequently, the
equilibrium dynamics is simulated by a single run of 105 steps, i. e., a simulated time
of 200 ms. From the particle trajectories the mean squared displacement (MSD) of each
particle class over this timespan is calculated. Fig. 5.9 presents a compilation of these
MSDs. The designation in that figure follows "TracerXX " and "MatrixYY ", respectively,
where "XX " and "YY " give the percentage molar ratios of the components.

For a better display of the data for tracer and matrix components, a half-logarithmic
presentation is chosen. It can be easily recognised, that the mean squared displacements
of the tracer particles are roughly a factor 2 smaller than those of the corresponding
matrix particles, as expected from the ratio of Stokes-Einstein diffusion coefficients D0,i

for the given particle sizes. The short-time behaviour of each displayed MSD trivially
describes the respective D0,i. However, in the long-time limit, the presented MSDs enable
an evaluation of the tracer self-diffusion without disturbances by noise at even higher
delay times than field autocorrelation functions from DLS (cf. Fig. 5.6). According
to eq. (2.20), DL

S can be obtained in a given time interval. For the example g1(τ)-
function displayed in Fig. 5.6 the fitting interval ranges 6ms ≤ τ ≤ 23ms, which is not
automatically the same for all autocorrelation functions at different Q, as the intervals are
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Fig. 5.9: Mean squared displacements 〈r2〉 of tracer and matrix particles determined from tra-
jectories obtained by BD simulations of binary mixtures with three different compo-
sitions. Graphs are labelled with "TracerXX " and "MatrixYY ", where "XX " and
"YY " give the percentage molar ratios of the respective component.

dynamically adjusted to circumvent noisy experimental data of the correlation functions.
Nonetheless, this interval in the simulated time t shall serve as one benchmark for the
investigation of long-time self-diffusion from BD simulation. As a comparison, the interval
6ms ≤ t ≤ 50ms is employed to examine, whether significant changes occur at a higher
timespan. Table 5.4 gives an overview of the obtained results.

Table 5.4: Long-time self-diffusion coefficients of PS3 tracers obtained from BD simulations of
binary mixtures with different compositions. DL,23

S and DL,50
S correspond to upper

time limits of 23 ms and 50ms, respectively, for the determination of the long-time
self-diffusion coefficients.

Molar ratio of PS3 10% 5% 1%

DL,23
S /10−13 [m2s−1] 0.91 0.98 1.06

DL,50
S /10−13 [m2s−1] 0.85 0.92 1.01
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DL,23
S denotes the long-time self-diffusion coefficient of PS3 particles obtained from the

interval 6ms ≤ t ≤ 23ms, DL,50
S is its analogue for 6ms ≤ t ≤ 50ms. Clearly, the shorter

time interval delivers larger values for the long-time self-diffusion coefficient than the
interval with an upper limit of 50ms. Thus it must be deduced, that the upper time limit
available for long-time evaluation of the experimental field autocorrelation functions does
not exactly describe the time limit necessary for the determination of DL

S . The relative
discrepancies between the determined corresponding DL,23

S and DL,50
S amount to around

five to seven percent. Hence, the experimental results for DL
S from DLS can still be rated

as a good approximation.
The remaining deviations between the long-time diffusion coefficients from simulation

and experiment of less than half an order of magnitude presumably have to be ascribed
to the a priori different compositions of the experimental and simulated binary mixtures.
A clear tendency of accelerated long-time diffusion is recognised from table 5.4 with
decreasing molar ratio of PS3. This effect is also identified for the matrix component
from the corresponding MSDs presented in Fig. 5.9. The origin of this is explainable
by the exchange of the larger PS3 particles, which also exhibit more than twice as much
surface charges, with smaller and less charged pTFEA VI spheres. Hence, more space is
available for quasi-free particle motion and less repulsion is realised, which causes a slight
increase of DL

S . Whether the reduction from 1% to about 0.5% molar content of the
tracer component suffices to overcome half an order of magnitude in DL

S is to be critically
questioned. A further resolution of this matter, however, is beyond the scope of this work.

A very intuitive way of comparing the results obtained from DLS experiments and BD
simulations is available in terms of the time-dependent self-diffusion coefficient DS(t).
Thereby, not only the limiting cases of DS

S and DL
S , but the temporal development over

intermediate times is presented as well. Employing the mean squared displacements
calculated from the trajectories, that are determined for each particle throughout the
simulations, a time dependency is readily obtainable via a Verlet algorithm as described
by eq. (3.12) in section 3.5. The field autocorrelation function g1(Q, τ) resulting from a
dynamic light scattering experiment also comprises the time-dependency of the diffusive
motion of the investigated colloidal particles. Hence, dividing the time domain, ranging
from the first time increment up until the identified long-time limit, into several intervals
and determining the slopes of the correlation function in these regions, a time-dependent
relaxation rate Γ(Q, t) and thus the time-dependent self-diffusion coefficient are accessible.
Due to the reciprocal sensitivity of the scattering vector to sizes and distances in real space
and the defined polydispersity of a real colloidal dispersion, results for DS(t) obtained
in this way might exhibit deviations, depending on the scattering vector at which the
correlation function is determined. As a preferably representative example, g1(τ) for
an intermediate scattering vector Q = 2.308 × 10−2 nm−1 (ϑ ≈ 89◦) obtained from the
binary stock mixture of PS3 and pTFEA VI with number densities 1̺PS3,0 and 1̺matrix,0 is
selected. Fig. 5.10 displays the time-dependent tracer self-diffusion coefficients obtained
for the three simulated compositions and the above mentioned experimental system in
comparison.

The self-diffusion functions in Fig. 5.10 are displayed in the range 10−2 ms ≤ t ≤
2× 101 ms. This span is limited at short times due to the size of the simulation time step
and at large times caused by noise in the field autocorrelation function. Each DS(t) is
normalised to DS(0), which in this case denotes the value for the first argument of each
dataset. Therefore, those values surpassing 1.0 for the experimental DS(t) are unphysical
and most possibly originate from statistical uncertainties in the experimental data for the
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Fig. 5.10: Time-dependent self-diffusion coefficients DS(t) of PS3 tracers in a matrix of pT-
FEA VI determined by DLS experiments and BD simulations. Each DS(t) is nor-
malised to its starting value DS(0). The key gives the molar ratio of the components
of the mixture as A : B, where A denotes the tracers and B the matrix.

field autocorrelation function obtained by DLS. Nonetheless, it can be generally acknowl-
edged, that excellent agreement of the short-time diffusion behaviour is observed. In the
long-time domain, successively better compliance is reached the closer the simulated mo-
lar composition becomes relative to the experimental ratio of 1:200. For the simulation
set with the least tracer content of 1:99, DS(t) almost coincides with the DLS data for
the experimental system at t ≥ 101 ms. As shown before, absolute long-time self-diffusion
exhibits deviations of less than half an order of magnitude between simulation and exper-
iment. This leads to the conclusion, that the cause of these deviations is of systematic
character and influences the diffusion behaviour over the whole time range, and as such
is eliminated by a relative data treatment, e. g., the normalised presentation in Fig. 5.10.
Despite this interesting observation, simulation and experiment show significant discrep-
ancies in DS(t) at intermediate times, the origin of which is not further resolved in this
work.

The approach of verification of the results for long-time self-diffusion of a tracer com-
ponent in a homo-colloidal matrix determined by DLS experiments via BD simulations
appears to be mainly successful, although some issues have to be left unanswered. Fur-
ther studies employing other experimental techniques, such as fluorescence recovery after
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photobleaching (FRAP) [110, 117] and pulsed field gradient NMR [16], or theoretical
calculations [74] could be conducted to verify the results for the long-time self-diffusion
behaviour investigated here. The application of such techniques, however, is beyond the
scope of this work.

5.2 Binary mixtures with similar number densities

5.2.1 Intermediate scattering functions obtained by light

scattering experiments and Brownian Dynamics simulations

In contrast to investigations of self-diffusion in binary mixtures of charged colloidal par-
ticles, the collective dynamics of interacting, charge-stabilised colloids in mixtures of two
different components is not systematically studied, yet. This is because the partial dy-
namic structure factors Sij(Q, t) of such a mixture, also designated as partial intermediate
scattering functions, are readily accessible neither by experiment nor by simulation. With
the refractive index tunability of the colloidal copolymer systems prepared in this work,
however, it is comparably easy to combine two colloidal species with defined particle sizes
and interaction parameters as well as similar number densities and selectively match the
refractive index of the dispersion medium to one of the colloidal particle species. The
scattering power of that index-matched component then vanishes. If the refractive in-
dices of the combined colloidal particle classes A and B are sufficiently apart, the partial
intermediate scattering function SAA(Q, t), describing correlations between particles of
class A, is available by means of DLS experiments at nm = nB and SBB(Q, t) can be
obtained analogously from a dispersion with nm = nA. Knowing SAA(Q, t) and SBB(Q, t),
it is also possible to determine SAB(Q, t) from a third sample of the same mixture with
nA 6= nm 6= nB. This section shall give an impression of how the newly developed col-
loidal copolymer dispersions may facilitate experimental access to partial intermediate
scattering functions of a colloidal binary mixture with similar number densities of the two
components and also illustrate the critical importance of exact index-matching.

For this purpose, a binary mixture composed of pOFPA III and pTcB-30 II is prepared.
Referring to table 4.1, pOFPA III exhibits particles of σA = 212 nm in diameter with a
refractive index of nA = 1.380, while pTcB-30 II consists of particles with σB = 100 nm and
nB = 1.436. The liquid-like order of homo-colloidal dispersions formed by self-organisation
of both pure species is characterised in section 4.4. From table 4.2 it becomes clear, that
the number densities of these two samples are slightly different and comparably low. For
the preparation of the binary mixture, the particle concentration of both components
is increased by evaporation of parts of the dispersion medium water, utilising a rotary
evaporator. Subsequently, different amounts of the concentrated dispersions are combined,
as to result in a binary mixture with very similar number densities of pOFPA III and
pTcB-30 II. Glycerol is added to that mixture, until a refractive index nm = 1.377 of the
dispersion medium is adjusted, which corresponds to a glycerol mass ratio of 35% [93].
A deliberate, slight mismatch of nm and nA is realised. In this way it is illustrated later
on, that the appropriate attention in index-matching is crucial in order to obtain reliable
results for the partial intermediate scattering functions by means of DLS. A mixed-bed
ion exchanger is added to the sample, which is thoroughly shaken and left to stand for
two weeks to assure minimisation of the ionic strength as well as structural and dynamical
equilibration of the sample. A DLS experiment is performed using the equilibrated sample,
following the protocol described in section 3.4.3. The result is a partial collective short-
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time diffusion coefficient Deff,BB(Q) for the pTcB-30 II particles, which due to nm / nA

contains remaining contributions of AA and AB correlations. Normalisation of the short-
time self-diffusion coefficient D0 for pTcB-30 II, determined before (cf. table 4.1), to
Deff,BB(Q) leads to the short-time limit of the partial intermediate scattering function
SBB(Q, 0) = D0/Deff,BB(Q). The experimentally determined approximation SBB(Q, 0) is
presented in Fig. 5.11.
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Fig. 5.11: Approximation of the short-time limit of the partial intermediate scattering function
SBB(Q, 0) of pTcB-30 II particles in a binary mixture with pOFPA III particles. Due
to a deliberate mismatch between refractive indices of the water/glycerol dispersion
medium, nm = 1.377, and of pOFPA III particles, nA = 1.380, contributions of AA
and AB correlations to the presented partial intermediate scattering function are
assumed.

Because t → 0, the partial intermediate scattering function equals the partial static
structure factor of that correlation, such that SBB(Q, 0) = SBB(Q). Thus, a pronounced
liquid-like order of pTcB-30 II in the investigated binary mixture is indicated. However,
as explained above, Fig. 5.11 displays only an approximation of SBB(Q, 0), additionally
containing remaining contributions of AA and AB correlations, due to incomplete index-
matching of pOFPA III. Because the number densities of both components are rather
high, these contributions cannot be neglected. This distinguishes the present system
from the binary mixture with trace amounts of PS3 investigated in section 5.1.1, where
the disregard of matrix component influences on the scattering signal has been proven
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legitimate despite a slight index-mismatch between dispersion medium and pTFEA VI
matrix, due to the much larger scattering power of the tracer component polystyrene.

The average scattering intensity I(Q) detected in a static scattering experiment on a
binary mixture of two classes of spherical particles is generally defined as

I(Q) = 1̺AV
2
APA(Q)(nm − nA)

2 · SAA(Q) + 1̺BV
2
BPB(Q)(nm − nB)

2 · SBB(Q)

+
√

1̺
A

1̺
BVAVB

√

PA(Q)PB(Q)(nm − nA)(nm − nB) · SAB(Q), (5.1)

with the number densities 1̺i, particle volumes Vi, form factors Pi(Q) and refractive
indices ni for each of the two components A and B. nm denotes the refractive index
of the dispersion medium and Sij(Q) designate the static structure factors for each of
the three possible particle correlations AA, BB and AB. Assuming nm = nA for an
experimental binary mixture, one would detect an intensity defined by only the second
addend of (5.1). To obtain SBB(Q), I(Q) would be normalised to the intensity I ′(Q) =
1̺′BV

2
BPB(Q)(n′

m − nB)
2 detected from a dilute sample of component B.

The small mismatch between nm = 1.377 and nA = 1.380, in case of the experimental
sample presented above, thus leads to additional contributions not originating from the BB
correlation. The effective structure factor is then described by the normalised scattering
function

I(Q)

I ′(Q)
=

1̺AV
2
APA(Q)(nm − nA)

2 · SAA(Q)
1̺ ′

BV
2
BPB(Q)(n′
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+

1̺BV
2
BPB(Q)(nm − nB)

2 · SBB(Q)
1̺ ′
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2
BPB(Q)(n′

m − nB)2

+

√

1̺
A

1̺
BVAVB

√

PA(Q)PB(Q)(nm − nA)(nm − nB) · SAB(Q)
1̺ ′

BV
2
BPB(Q)(n′

m − nB)2

=
1̺AV

2
APA(Q)(nm − nA)

2

1̺ ′
BV

2
BPB(Q)(n′

m − nB)2
· SAA(Q) +

1̺B(nm − nB)
2

1̺ ′
B(n

′
m − nB)2

· SBB(Q)

+

√

1̺APA(Q)
1̺ ′

BPB(Q)
·
VA

VB

·
(nm − nA)(nm − nB)

(n′
m − nB)2

· SAB(Q). (5.2)

All information contained in eq. (5.2) regarding the particle number densities, particle
volumes, refractive indices and form factors are known from chapter 4 and from the com-
position of the investigated binary mixture. The particle form factors of pOFPA III and
pTcB-30 II are also known from SLS experiments on dilute samples of these systems, as
they have been employed for the determination of static structure factors of corresponding
liquid-like ordered single component systems in section 4.4. The contributions that are
missing to fully comprehend the shape of the experimental approximation of SBB(Q, 0) in
Fig. 5.11, are the partial static structure factors SAA(Q), SBB(Q), and SAB(Q). For the
determination of these, the experimental binary mixture is modelled via BD simulations.

The simulation procedure is described in section 3.5.2. Particle diameters and numbers
of effective surface charges are adjusted to the most probable particle sizes and the charge
numbers determined for the single component systems of pOFPA III and pTcB-30 II (cf.
tables 4.1 and 4.3). The overall particle number density 1̺total = 10.07 × 1018 m−3 is
calculated in reference to the composition of the binary mixture investigated by DLS.
This also leads to the number density ratios 1̺A/

1̺total = 0.4895 for pOFPA III and
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1̺B/
1̺total = 0.5105 for pTcB-30 II. The water/glycerol dispersion medium is modelled

via a dynamic viscosity η = 2.7926 × 10−3 Pa · s and a permittivity εr = 70.8. Starting
from a bcc lattice the binary mixture is simulated, until after 4×105 steps, corresponding
to a simulated time of 800 ms, the structural equilibrium is identified. The determined
partial pair distribution functions g

(2)
ij (r/σ) in dependence on the reduced distance r/σ,

with σ = σA, are displayed on the left side in Fig. 5.12.
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Fig. 5.12: Left: Partial pair distribution functions g
(2)
ij (r/σ) obtained by BD simulations of

a binary mixture corresponding to the experimentally investigated system. Right:
Partial static structure factors Sij(Qσ) determined by Fourier-Bessel transform of

g
(2)
ij (r/σ). Here, σ = σA, i. e., the particle diameter of pOFPA III. For better display,

the mixed correlation structure factor is presented as SAB(Qσ) + 1.

Via Fourier-Bessel transform according to (2.9), the partial static structure factors
Sij(Qσ), again with σ = σA, characterising the simulated binary mixture are obtained, as
presented on the right side in Fig. 5.12. SAB(Qσ) would normally oscillate around 0, such
that 1 is added to the structure factor of this correlation for better display. Conveniently,
in this way all three possible correlations can be described separate from another, although
by means of scattering experiments only a linear combination of SAA(Qσ), SBB(Qσ), and
SAB(Qσ) is accessible. Obviously, SBB(Qσ) is significantly smaller than the approximate
structure factor obtained by DLS.

Employing eq. (5.2) with the known experimentally determined quantities and the
structure factors from BD, the effective structure factor I(Q)/I ′(Q) displayed in Fig.
5.13 results, where SBB(Q, 0) obtained by simulation is also presented for comparison.

Excellent agreement between the calculated linear combination and the data obtained
from the DLS experiment is noted around the coordination maximum. Hence, the partial
structure factor obtained from light scattering is verified to comprise significant contribu-
tions of AA and AB correlations due to incomplete index-matching of pOFPA III, i. e.,
component B, although the difference of nm = 1.377 and nA = 1.380 seems comparably
small. In the limit Q → 0 the approximation of SBB(Q, 0) from experiment is elevated,
which is ascribed to the polydispersities pA = 0.091 and pB = 0.108 of pOFPA III and
pTcB-30 II (cf. section 4.4), since polydispersity is a well known reason for rising com-
pressibility as visible in S(Q → 0, 0). I(Q)/I ′(Q) is calculated assuming ideally uniform
particles.
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Fig. 5.13: Comparison of the static intermediate scattering functions SBB(Q, 0) determined by
DLS and BD simulation. Calculation of the effective structure factor I(Q)/I ′(Q)
according to eq. (5.2) proves that, due to incomplete index-matching of pOFPA III,
actually a linear combination of SAA(Q, 0), SAB(Q, 0), and SBB(Q, 0) is detected by
DLS. Hence the imperative of exact index-matching for the determination of partial
scattering functions in mixtures is clarified.

These results indicate the potential of the novel colloidal (co)polymer dispersions with
tunable refractive indices, which are prepared in this work, for investigations of colloidal
mixtures with pronounced liquid-like order due to self-organisation. Simultaneously how-
ever, the imperative of exact index-matching one component for the determination of the
sole partial scattering function of the other one is explicitly stressed.

Due to short-time fitting of the field autocorrelation functions obtained from DLS,
until now only the spatial dependency of the intermediate scattering function has been
discussed in this section, while temporal fluctuations are not considered in the static limit
t → 0. In addition to the time averaged structure, the information about is given by static
structure factors Sij(Q) ≡ Sij(Q, 0), BD is capable to analyse the temporal dependency
of the partial intermediate scattering functions Sij(Q, t).

Starting from the equilibrium structure reached after 4× 105 simulation steps, a run of
3×105 time steps, i. e., a simulated time of 600 ms, is performed to serve as a basis for the
investigation of the collective diffusion behaviour of the simulated mixture. As indicated
in section 3.5, a sophisticated, highly parallel algorithm developed for this specific task is
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employed to calculate the partial distinct space-time pair distribution functions g
(2)
ij (r, t)

for correlations between particles of the same particle class and different particle classes.
Therein, the positions of two respective particles out of the ensemble of 8192 simulated
particles are correlated at each of the 3 × 105 time steps. This is performed for each
possible pair of particles corresponding to the respective correlation AA, BB, or AB.
g
(2)
AA(r, t), g

(2)
BB(r, t), and g

(2)
AB(r, t) then exhibit the canonical average of the corresponding

space-time correlations over all particles and all time differences. In Fig. 5.14 a qualitative
3D presentation of such a space-time pair distribution function is displayed.

Fig. 5.14: Qualitative presentation of a typical space-time pair distribution function g(2)(r, t).
The representation g(2)(r, t = 0) vs. r exhibits the damped oscillation known for the
static pair distribution function of a liquid-like ordered system. In the representation
g(2)(r, t) vs. t, a temporal decay indicates the progressive loss of correlation between
two particles over time at a given particle distance r.

In the representation g(2)(r, t = 0) vs. r the typical damped oscillation of a static
pair distribution function of a liquid structure is observed. At larger times minima and
maxima of the distribution function are progressively washed out, indicating the loss
of correlation between two particles over time. In the representation g(2)(r, t) vs. t,
this temporal decay is noticed by a smooth damping, particularly well to be observed
at the distance rmax of the global maximum of the distribution. Spatial Fourier-Bessel
transform of the g

(2)
ij (r, t) results in the partial intermediate scattering functions Sij(Q, t).

A quantitative view on the loss of correlation between the particles of the simulated
binary mixture described by these functions is presented in Fig. 5.15, where Sij(Qσ, t)
are displayed with σ = σA = 212 nm. Minor fluctuations at small Qσ are unphysical
artefacts due to slight truncation effects that could not be avoided during Fourier-Bessel
transform.

As to be expected, the correlations between particles of the same class, AA and BB,
show damped oscillations around 1 with increasing Q, due to the self contribution of
the correlation remaining at large scattering vectors. In case of correlations between
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different particle classes, AB, the intermediate scattering function reaches a value of 0 at
large Q, since there is no self-part for AB correlations. As already noticeable from the
static structure factors on the right in Fig. 5.13, which are identical to the intermediate
scattering functions at t = 0, the heights of the coordination maxima of the intermediate
scattering functions Sij,max(Qσ, t) are not equal. Indeed, they exhibit a measure of the
strength of the respective correlation. Considering this, it is a reasonable observation,
that the maxima relative to their baseline relate to one another as SAA,max(Qσ, t) − 1 =
0.98 > SAB,max(Qσ, t) = 0.79 > SBB,max(Qσ, t) − 1 = 0.63, due to the larger number of
surface charges defined in the simulation for pOFPA III (Zeff,A = 212) vs. pTcB-30 II
(Zeff,B = 145).
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Fig. 5.15: Time-dependencies of the partial intermediate scattering functions Sij(Qσ, t). These
result from Fourier-Bessel transform of partial space-time pair distribution func-

tions g
(2)
ij (r/σ, t) obtained by BD simulations of the experimental binary mixture

of pOFPA III and pTcB-30 II. The reduced scattering vector Qσ is displayed with
σ = σA = 212 nm. Relaxation times of the intermediate scattering functions scale
with the strength of correlation quantified by the global maxima of Sij(Qσ, t) relative
to the corresponding baseline.

Similar to the effects discussed for the qualitative illustration of g(2)ij (r, t) in Fig. 5.14,
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for increasing correlation times t a progressive damping is observed for the intermedi-
ate scattering functions as well, indicating the loss of correlation between two parti-
cles over time. Due to the elevated viscosity η = 2.7926 × 10−3 Pa · s of the simu-
lated water/glycerol dispersion medium, almost three times as large as for pure water,
correlations are preserved for comparably long times. Interestingly, a complete relax-
ation is observed after significantly different times for the three partial intermediate
scattering functions, with the corresponding relaxation times relating to each other as
trel.,AA = 270ms > trel.,AB = 240ms > trel.,BB = 200ms. This sequence coincides both
qualitatively and quantitatively with observations for the global maxima Sij,max(Qσ, t),
such that it is assumed, that trel.,ij scales with the strength of correlation, as expected
according to the de Gennes relation (cf. eq. (2.21)).

Apparently, the intermediate scattering functions exhibit an increase in the limit Qσ →
0 with rising correlation time, which is connected to the progressive loss of correlation,
until in case of SAA(Qσ, t) and SBB(Qσ, t) only the self contribution of the correlation
remains. For SAB(Qσ, t) there is no self contribution, such that the correlation function
approaches 0 at large times.

Fig. 5.15 comprehensively describes the distinct space-time correlations in a binary
mixture obtained by BD simulations on the basis of an experimental mixture of moderately
concentrated dispersions of pOFPA III and pTcB-30 II. Simultaneously it is indicated by
this section, that the newly developed colloidal (co)polymer systems readily provide access
to structural as well as dynamical information in complex systems both by light scattering
experiments and simulation techniques.
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5.2.2 Systematic simulation study on influences of system

parameters on the intermediate scattering function

The previous section has provided evidence, that BD simulations are a powerful and
convenient tool for investigating mixtures of charged colloidal dispersions. Beyond the
connection to structural and dynamical properties of such mixtures determined by means
of light scattering experiments, simulations give a comparably easy access to much more
systematic studies than would be possible with similar effort by experiment. In this
section, the influences of the number density ratios, particle sizes and numbers of surface
charges of the components in a realistic binary mixture of charged colloids as well as the
influence of the temperature of the system on the partial intermediate scattering functions
are systematically investigated.

First of all, a reference system is defined to serve as a benchmark for all further sim-
ulations. To assure the modelling of a realistic mixture, the relative number densities
and particle sizes are adjusted according to the simulated mixture from the section be-
fore. However, the overall particle density is set to 1̺total = 7.25× 1018 m−3 and dynamic
viscosity and relative permittivity are defined by the standard parameters according to
section 3.5 for a dispersion medium of pure water. The numbers of surface charges of
component A and B are somewhat increased, such that Zeff,A = 280 and Zeff,B = 192.
Table 5.5 compiles the simulation parameters of the reference system for this section.

Table 5.5: Total colloidal number density 1̺
total, relative number densities 1̺

i/
1̺

total, particle
diameters σi and numbers of surface charges Zeff,i defined for BD simulation of the
reference system for systematic investigations of binary mixtures with similar number
densities. Subscripts A and B denote properties of the corresponding component.

1̺total/10
18 [m−3] 1̺A/

1̺total
1̺B/

1̺total σA [nm] σB [nm] Zeff,A Zeff,B

7.25 0.4986 0.5014 212 100 280 192

18 simulations with variations of specific parameters, that can be divided into four sets,
are performed with regard to this reference system. The four sets define changes in the
number density ratio of the two components, the particle sizes, the numbers of surface
charges, and the temperature of the surrounding and are correspondingly designated as
Ratio{1 · · · 4}, Size{1 · · · 4}, Charge{1 · · · 4}, and Temp{1 · · · 6}. Changed parameters are
compiled in tables 5.6 to 5.9, while remaining parameters for each respective simulation
are left unchanged with regard to the reference system. Surface charges are adjusted
with respect to the reasonable assumption, that the larger particles do not exhibit a
smaller number of charges than the smaller particle species. Changes in temperature will
influence the viscosity and permittivity of the dispersion medium, which is regarded for
the corresponding simulations compiled in table 5.9.

Each of the 18 independent binary systems with varied parameters is simulated ac-
cording to section 3.5.2 starting from a bcc lattice, until after 2.5 × 105 time steps the
structural equilibrium is reached for each system. Subsequently, a dynamic simulation
run is performed. For most of the simulations these runs exhibit 6× 105 time steps, cor-
responding to a simulated time of 1.2 s. For some of the later dynamic runs the time step
number has been reduced to 4×105 and even 105, after results for the earlier dynamic runs
revealed the velocity of collective dynamics in the simulated aqueous dispersion medium.
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Table 5.6: Parameters of the first simula-
tion set: variation of the num-
ber densities 1̺

A and 1̺
B.

ID 1̺A/
1̺total

1̺B/
1̺total

Ratio1 0.2 0.8
Ratio2 0.4 0.6
Ratio3 0.6 0.4
Ratio4 0.8 0.2

Table 5.7: Parameters of the second simu-
lation set: variation of particle
diameters σA and σB.

ID σA [nm] σB [nm]
Size1 150 100
Size2 300 100
Size3 280 70
Size4 150 150

Table 5.8: Parameters of the third simu-
lation set: variation of effec-
tive surface charges Zeff,A and
Zeff,B.

ID Zeff,A Zeff,B

Charge1 190 190
Charge2 300 150
Charge3 300 100
Charge4 320 80

Table 5.9: Parameters of the fourth sim-
ulation set: variation of tem-
perature T , viscosity η and per-
mittivity εr of the medium.

ID T [K] η/10−3 [Pa·s] εr
Temp1 303 0.7995 76.9
Temp2 323 0.5484 69.7
Temp3 348 0.3795 62.0
Temp4 368 0.2987 56.5
Temp5 278 1.5209 85.8
Temp6 283 1.3098 83.8

The partial, distinct space-time pair distribution functions g
(2)
ij (r, t) are determined

according to the algorithm introduced in the previous section and the partial intermediate
scattering functions Sij(Q, t) are obtained by means of Fourier-Bessel transform. In all
graphical illustrations of the partial intermediate scattering functions following in this
section, the spatial dependency on the scattering vector Q is displayed as Qσ, where
σ = σA of the respective simulation.

Fig. 5.16 gives an overview of the intermediate scattering functions for the correlations
AA, BB, and AB determined for the simulated reference system. Simultaneously, the
temporal decay of the global maximum Sij,max(Qσ, t) is presented for the three correlations
of the reference system as well.

Qualitatively, most information provided by the partial intermediate scattering func-
tions of the reference system agree with what is found in case of the simulated Sij(Q, t)
in section 5.2.1, Fig. 5.15. All three correlations presented in Fig. 5.16 exhibit inter-
mediate scattering functions typical for liquid-like structures. The global maxima of the
partial intermediate scattering functions relative to their baseline relate to one another
as SAA,max(Qσ, t) − 1 = 0.88 > SAB,max(Qσ, t) = 0.72 > SBB,max(Qσ, t) − 1 = 0.53. In
contradiction to the simulations of the system in the previous section, the relaxation
times do not relate to each other in the same sequence as the global maxima, but as
trel.,AB = 100ms > trel.,AA = 85ms > trel.,BB = 75ms. Interestingly, trel.,AB > trel.,AA is
found, although SAA,max(Qσ, t) − 1 > SAB,max(Qσ, t). Thus, it is concluded, that in case
of this reference system the loss of correlation over time depends not only on the strength
of a specific correlation.
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Fig. 5.16: Partial intermediate scattering functions Sij(Qσ, t) and normalised temporal relax-
ation functions characterising the reference system modelled by BD simulations. The
reduced scattering vector Qσ is displayed with σ = σA = 212 nm.
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Structure of the simulated binary mixtures

The results of the intermediate scattering functions at t = 0 obtained for the 18 simula-
tions with varied parameters are presented in Fig. 5.17, for correlations AA as an example.
The corresponding intermediate scattering functions for BB and AB correlations are found
in appendix B.
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Fig. 5.17: Intermediate scattering functions SAA(Q, 0) at t = 0 of AA correlations obtained
from BD simulations: under variation of the number density ratio 1̺

A/
1̺

B (upper
left), with different effective surface charges Zeff,A and Zeff,B (lower left), varying the
particle diameters σA and σB (upper right), and changing the temperature T of the
system (lower right). The reduced scattering vector Qσ is displayed with σ = σA.

In Fig. 5.17 there are four graphics. In the upper left, SAA(Qσ, 0) of the samples with
variations in the number ratios of particle classes A and B are compared. The upper right
graphic presents those static structure factors of samples with modified particle sizes. In
the lower left, effects of changes in numbers of surface charges of the two components of
the mixture on SAA(Qσ, 0) are displayed. The lower right graphic compiles intermediate
scattering functions at t = 0 obtained for different temperatures of the simulated systems.
In all four graphics SAA(Qσ, 0) of the reference system serves as a benchmark.
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Number density dependence Obviously, an increase of the ratio 1̺A/
1̺B leads to an en-

hancement of the AA correlation. While at 1̺A/
1̺B = 0.25 merely a weak liquid-like order

with SAA,max(Qσ, 0) = 1.33 is observed for particles of class A, at 1̺A/
1̺B = 4.00 the par-

ticles of this class form a pronounced liquid-like structure with SAA,max(Qσ, 0) = 2.52. As
becomes apparent when considering BB correlations for the same samples (cf. Fig. B.1 in
appendix B), the observed effect scales with the strength of particle interaction, influenced
by the number of charges. Thus, SBB,max(Qσ, 0) = 1.86 at 1̺B/

1̺A = ( 1̺A/
1̺B)

−1 = 4.00
exhibits a significantly weaker correlation of particles B than SAA,max(Qσ, 0) = 2.52 at
1̺A/

1̺B = 4.00, due to Zeff,A = 280 > Zeff,B = 192. For AB correlations (cf. Fig. B.2
in appendix B), at similar number ratios of classes A and B (0.67 ≤ 1̺A/

1̺B ≤ 1.50) no
significant effect on the amplitude SAB,max(Qσ, 0) ≈ 1 is observed with regard to the ref-
erence. However, with increasing difference between 1̺A and 1̺B the correlation becomes
weaker, because the number of possible pair correlations between one particle of A and
one particle of B is decreased. This effect grows slightly stronger the fewer particles of
the class with larger charge number are present, indicated by SAB,max(Qσ, 0) = 0.79 at
1̺A/

1̺B = 0.25 and SAB,max(Qσ, 0) = 0.84 at 1̺A/
1̺B = 4.00.

For the four simulations with different number density ratios a slight shift of SAA(Qσ, 0)
to larger Qσ is observed with increasing ratio 1̺A/

1̺B. This originates from the enhance-
ment of the number density of particles A with rising 1̺A/

1̺B, leading to sinking particle
interdistances d, which trivially effects the observed shift to larger scattering vectors Q
due to Q ≈ 2π/d.

With increasing ratio 1̺A/
1̺B the value of SAA(Qσ, 0) is reduced in the limit Q → 0. As

the number ratio of B is lowered, the system approaches the limit of a homo-colloidal dis-
persion with regard to the observed AA correlations, which leads to a sinking isothermal
compressibility κT of the system. The proportionality of κT to the limiting value of the
static intermediate scattering function for Q → 0, according to the fluctuation-dissipation
theorem [108], explains the decrease, which is noticed for SAA(Qσ, 0) at Q → 0 for in-
creasing 1̺A/

1̺B. In case of AB correlations a more complex interplay of surface charges
and number ratios leads to a sequence of SAB(Qσ, 0) at Q → 0 not quite straightforward,
which is why this matter is not resolved in detail here. A thermodynamically sound con-
nection between the microscopic circumstances, described for example by partial static
structure factors of colloidal mixtures, and macroscopic properties, such as the isother-
mal compressibility, is given by Kirkwood and Buff’s theory of solutions [118]. Originally
derived for a system of solute and solvent in terms of statistical mechanics, this theory
has proved valid not only for simple solutions but has been shown applicable to alloys
[119], biological systems [120] and charged colloidal particles [121], as the ones simulated
by BD in this section. Generally, for a system consisting of two components 1 and 2,
the isothermal compressibility κT can be expressed in dependence on the Kirkwood-Buff
factors Gij [118]

κT =
1

kBT
·
1 + ̺1G11 + ̺2G22 + ̺1̺2 (G11G22 −G12)

2

̺1 + ̺2 + ̺1̺2 (G11 +G22 − 2G12)
, (5.3)

where ̺1 and ̺2 denote the number densities of the two components and kBT is the ther-
mal energy. The Kirkwood-Buff factors are defined in terms of the total pair correlation
function h(r) = g

(2)
ij (r)− δij

70



Gij = 4π

∞
∫

0

h(r)r2dr, (5.4)

which are also referred to as Kirkwood-Buff integrals. With the definition of the struc-
ture factor S(Q) for spherical particles as the Fourier-Bessel transform of the pair distri-
bution function (cf. eq. 2.9), the partial structure factors

Sij(0)− δij = (̺i̺j)
1/2 ·Gij, (5.5)

are connected to the Kirkwood-Buff factors in the limit Q → 0. In this way, a formal
description of the contributions of the static intermediate scattering functions Sij(Q, 0)
to the isothermal compressibility κT of a binary mixture according to (5.3) is given at
Q → 0.

Dependence on number of effective charges Considering the static intermediate
scattering functions of simulations with different numbers of surface charges, two tenden-
cies can be identified for correlations AA and BB (cf. lower left graphics in Figs. 5.17 and
B.1). First, Sij,max(Qσ, 0) is enhanced with increasing Zeff of the component relevant for
the respective correlation, which originates from the strengthening of particle interactions
due to the higher number of charges of the correlated particles. Secondly, with decreasing
charge number of the respective other component, not directly involved in the observed
correlation, e. g., Zeff,B for AA correlation, Sij(Qσ, 0) is shifted to smaller scattering vec-
tors Q, corresponding to a larger mean distance between correlated particles of class A.
This can, for example, be well observed for the green and red curves in the lower left
graphic of Fig. 5.17, where Zeff,A = 300 is equal in both corresponding simulations while
Zeff,B varies from 150 to 100. A decreased number of surface charges of particles B leads
to a diminished localisation of these particles, e. g., around a central particle of class A.
As an illustration, the distinct pair distribution functions g

(2)
AB(r/σ, 0) at t = 0 obtained

from the two afore mentioned examples of BD simulations are displayed in Fig. 5.18. The
reduced distance r/σ is displayed with σ = σA.

Apparently, a decreased particle localisation leads to the possibility of coordinating
particles B being slightly closer to a central particle A at Zeff,B = 100 compared to the
structure determined for the system with Zeff,B = 150. As this holds for all particles A, the
distance d between two particles A is effectively increased due to electrostatic repulsion.
With Q ≈ 2π/d the shift of static intermediate scattering functions SAA(Q, 0) to smaller
scattering vectors Q at constant Zeff,A and decreasing Zeff,B is explained.

Considering the results for SBB(Qσ, 0) in the lower left graphic of Fig. B.1 in appendix
B, similar effects can be observed for BB correlations vice versa with decreasing surface
charge number of particles A. Further it is to be stated that for Zeff,B ≤ 100 almost no
detectable liquid-like order is observed for BB correlations, indicated by amplitudes of
SBB,max(Qσ, 0) ≤ 1.1.

In case of AB correlations determined for simulations with varying charge numbers
the static intermediate scattering functions SAB(Qσ, 0) are expectedly influenced by an
interplay of the effects observed for AA and BB correlations. Apparently, as long as
Zeff,B ≥ 150, SAB,max(Qσ, 0) roughly diminishes with decreasing overall charge number
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Fig. 5.18: Distinct pair distribution functions g
(2)
AB(r/σ, t) at t = 0 obtained by BD simu-

lations with varied numbers of surface charges Zeff,A = 300,Zeff,B = 150 and
Zeff,A = 300,Zeff,B = 100. The reduced distance r/σ is displayed with σ = σA.
It can be seen, that for a lower charge number Zeff,B particles B may be located
slightly closer to a central particle A than for a larger charge number Zeff,B.

Ztotal = Zeff,A + Zeff,B. For Zeff,B ≤ 100, however, SAB,max(Qσ, 0) is significantly reduced,
although Ztotal remains comparable to those simulations with stronger ordering. It seems
that the lack of surface charges of particles B, leading to almost no order in BB cor-
relations, also effects a decline of correlations between particles of A and B, although
Zeff,A ≥ 300.

Results for all three correlation types AA, BB, and AB obtained from simulations with
varying numbers of surface charges indicate an increase of Sij(Qσ, 0) at Q → 0 with
decreasing amplitude Sij,max(Qσ, 0). This observation can be well understood considering
that for the structure of an ideal gas S(Q) ≡ 1, or in case of a mixed correlation S(Q) ≡ 0.
As such, keeping in mind that a weighted sum of all Sij(Qσ → 0, 0) is proportional to
κT, the observed effects point to an increase of the isothermal compressibility, while the
structure of the correlated particles approaches the limit of an ideal gas, where κT at a
given temperature T solely depends on the number density with κT = p−1 = ( 1̺kBT )

−1.

Particle size dependence The upper right graphic in Fig. 5.17 compiles the results
obtained for SAA(Qσ, 0) by BD simulations of mixtures with varying particle sizes σA and
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σB. The corresponding intermediate scattering functions for BB and AB correlations are
found in appendix B. From the results for all three correlation types it is apparent, that
the shape of the obtained intermediate scattering functions in principal is not influenced
by a variation of any of the two particle sizes. However, a marginal decrease of the
amplitude Sij,max(Qσ, 0) is found for AA and AB correlations with a smaller diameter of
σA = 150 nm. The observable shift of Sij(Qσ, 0) along Qσ merely originates from the
displayed dependence on σ = σA.

Temperature dependence The fourth graphic on the lower right in Fig. 5.17 exem-
plarily presents the effect of different temperatures in the range 278K ≤ T ≤ 368K on the
static intermediate scattering function SAA(Qσ, 0). In agreement with tendencies found
for BB and AB correlations in appendix B as well, a successive, slight enhancement of the
liquid-like order is observed for increasing temperatures. On the one hand a progressive
decrease of the relative permittivity εr of the dispersion medium leads to a more repulsive,
electrostatic potential Vij between charged particles and hence to a more pronounced or-
der. On the other hand, an increasing temperature leads to a rising thermal energy kBT ,
effecting a decrease of the liquid-like order. As can be seen by the inset magnifications
in the lower right graphics in Figs. 5.17, B.1, and B.2, including the amplitudes of static
structure factors at 278K and 368K, the result of the interplay of the described effects
is a comparably weak enhancement of the formed liquid-like order despite a temperature
difference of 90K. E. g., in case of the AA correlation the amplitude is merely increased
from SAA,max(Qσ, 0) ≈ 1.85 at 278K to SAA,max(Qσ, 0) ≈ 1.93 at 368K. Obviously, in the
interplay Vij/kBT the rising electrostatic repulsion slightly overcompensates the simulta-
neous increase of the thermal energy. In summary it can be stated, that temperature does
not exhibit a significant influence on structure formation in binary mixtures of colloidal
particles in a region of thermal stability.

Collective dynamics of the simulated binary mixtures

The temporal dependency of the maxima of intermediate scattering functions resulting
from the performed BD simulations with differing parameters is exemplarily summarised
for AA correlations in Fig. 5.19. The relaxation functions for BB and AB correlation
results are found in appendix C.

Number density dependence First, the upper left graphic in Fig. 5.19 is considered,
wherein time decays of SAA,max(Qσ, t) obtained for mixtures with varying number density
ratio 1̺A/

1̺B are presented. As can be clearly seen, for AA correlations the sequence of
increased relaxation times follows an enhancing ratio 1̺A/

1̺B. Due to a larger overall
charge number within the system by the presence of more particles of class A, as Zeff,A >
Zeff,B, the electrostatic particle interaction is increased, which causes a preservation of
the dynamic correlation of particles over longer times. In this way, the time of complete
relaxation, defined as the time when the normalised correlation function is relaxed to 0.01,
increases from trel.,AA ≈ 80ms for 1̺A/

1̺B = 0.25 to trel.,AA ≈ 150ms for 1̺A/
1̺B = 4.00.

Similar trends are observed for AB and BB correlations as well, whereby for a given ratio
1̺A/

1̺B the relaxation times found for the three correlations in general relate to each
other as trel.,AA > trel.,AB > trel.,BB. This sequence is ascribed to the interaction between
correlated particles, which scales with the number of surface charges, where Zeff,A > Zeff,B.
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Fig. 5.19: Normalised relaxation of the global maxima of partial intermediate scattering func-
tions SAA,max(Qσ, t) obtained by BD simulations under variation of: the number
density ratio 1̺

A/
1̺

B (upper left), effective surface charges Zeff,A and Zeff,B (lower
left), particle diameters σA and σB (upper right), and the system temperature T
(lower right). The reduced scattering vector Qσ is displayed with σ = σA.

Dependence on number of effective charges The lower left graphic in Fig. 5.19 dis-
plays the temporal relaxation behaviour of SAA,max(Qσ, t) determined by simulations with
varying numbers of effective surface charges. Generally, the relaxation time increases with
enhancing charge number Zeff,A caused by a stronger order as indicated by the correspond-
ing static scattering functions SAA(Qσ, 0) (cf. lower left in Fig. 5.17). In case of equal
Zeff,A for those simulations indicated by red and green markers, the relaxation functions
indeed nearly coincide. Marginal deviations that can be identified between these relax-
ation functions are ascribed to the difference of 50 charges in Zeff,B indirectly influencing
pair correlations of particles A. As discussed for static intermediate scattering functions of
the corresponding simulations, a smaller Zeff,B effects a larger distance between particles
A. Due to this a larger relaxation time of the AA correlation is observed. A combination
of both effects results in an increase of the relaxation time of AA correlations observed
for simulations with varying surface charges from trel.,AA ≈ 50ms for Zeff,A = Zeff,B = 190
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to trel.,AA ≈ 150ms for Zeff,A = 320 and Zeff,B = 80.
In case of BB correlations (cf. lower left in Fig. C.1) two domains are to be distin-

guished. For Zeff,B ≤ 100, almost no liquid-like structure is observable, which leads to very
short relaxation times trel.,BB ≈ 5ms. Irregular progression of the BB time correlation
functions for Zeff,B = 100 and Zeff,B = 80 is subject to noisy data for SBB(Qσ, t) in regions
of larger times due to weak ordering. For those simulations with Zeff,B ≥ 150 a rough ten-
dency of increasing relaxation time is noticed with a growing charge number Zeff,A, which
interestingly contradicts what is found vice versa for AA correlations. Hence the interplay
of comparably small charge numbers of class B, causing only moderate liquid-like order
in BB correlations, and comparably large charge numbers of A must lead to the observed
dynamic behaviour, which cannot be resolved in detail at this stage.

As can be deduced from AB time correlation functions (cf. lower left in Fig. C.2), the
time dependency of SAB,max(Qσ, t) is dominated by particles of class A. For the simulation
with a small charge number of Zeff,A = 190 a comparably short relaxation time of trel.,AB ≈
50ms is found. For simulations with larger charge numbers Zeff,A between 280 and 320,
higher relaxation times of trel.,AB ≈ 100ms are identified, which is ascribed to stronger
particle correlation due to the larger charge number of particles A. This effect seems to
be independent from the charge number of particles B, that varies from 192 to 80 for the
observed simulations. Generally, as long as σA > σB and Zeff,A > Zeff,B, the relaxation
times of the corresponding correlations relate to each other as trel.,AA > trel.,AB > trel.,BB,
as observed in case of simulations with varying number ratios.

Particle size dependence As described above, from Fig. 5.17 it is obvious, that the
liquid-like order formed by correlating particles of class A is not influenced by the par-
ticle sizes σA and σB. However, the presentation of the time decay of SAA,max(Qσ, t) in
the upper right graphic in Fig. 5.19 shows, that varying particle diameters do affect the
time correlation of two particles A in the simulated mixtures. Apparently, the relaxation
time increases with a growing sum of diameters

∑

σi = σA + σB. Fig. 5.20 displays the
same relaxation functions for AA correlations renormalised in time to the corresponding
diameters σA, whereby slight deviations between the presented relaxation functions re-
main. However, renormalising the same functions to the corresponding sum of particle
diameters

∑

σi leads to all presented relaxation functions coinciding. Hence, the dif-
ferences observed for temporal relaxation of partial intermediate scattering functions in
dependence on varying particle sizes appear to be not solely caused by the trivial influ-
ences of the corresponding diameters σi on the Stokes-Einstein self-diffusion coefficients
D0,i ∝ σ−1

i , which affect particle displacement in the employed Ermak algorithm (cf. eq.
(2.5)). Interestingly, fluctuations of the sub-systems formed by the two components of
the simulated binary mixture seem to have an influence on the temporal relaxation of the
partial intermediate scattering functions, which can well be also assumed for relaxations
of BB and AB correlations displayed in upper right graphics of Figs. C.1 and C.2.

Temperature dependence The lower right in Fig. 5.19 presents the temperature de-
pendency of the temporal decay of SAA,max(Qσ, t). Clearly, the observed relaxation times
increase with decreasing temperature. Hence, the marginally enhanced structure, as iden-
tified for static intermediate scattering functions in the lower right graphic of Fig. 5.17,
is overcompensated by the simultaneously decreasing dynamic viscosity η of the disper-
sion medium. The latter strongly increases the Stokes-Einstein diffusion coefficient which
contributes to particle displacement in the employed Ermak algorithm (cf. eq. (2.5))
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Fig. 5.20: Normalised temporal relaxation functions of SAA,max(Qσ, t) determined for BD sim-
ulations with differing particle diameters σA and σB. Renormalisation of the delay
time t to the respective diameter σA (left) leads to slight deviations remaining be-
tween the presented relaxation functions, while renormalisation of the delay time t to
the corresponding sum of particle diameters

∑

σi = σA+σB (right) leads to identity
of all presented relaxation functions.

and thus leads to a decrease of the relaxation time trel.,AA ≈ 170ms of AA correlations
at T = 278K to trel.,AA ≈ 20ms at T = 368K. Similar tendencies are also observed for
AB and BB correlations. Again, the sequence of relaxation times compared between the
different types of correlations at a given temperature follows trel.,AA > trel.,AB > trel.,BB,
while σA > σB and Zeff,A > Zeff,B.

Examples for collective diffusion coefficients

In case of self-diffusion it is known, that short-time diffusion coefficients DS
S can be ob-

tained, that may differ significantly from long-time diffusion coefficients DL
S (cf. section

2.3.2). For selected examples of the time correlations discussed before, it shall be illus-
trated, that such distinct diffusive regions in the limits of short and long times are also
identified for collective diffusion in the simulated binary mixtures and may be quantified
in terms of collective diffusion coefficients DL and DS. In Fig. 5.21 the temporal decays
of the maxima of the partial intermediate scattering functions for the simulated reference
system are displayed. The time dependency of the intermediate scattering function is
identical to the field autocorrelation function g1(τ), obtainable from light scattering ex-
periments. As such, the slopes of the functions presented in Fig. 5.21 in the short-time
and in the long-time limit are determined by a single exponential fit to these functions
at short times as well as at long times. This can also be seen in the example graphics in
Fig. 5.21.
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Fig. 5.21: Time relaxation functions for the maxima of the partial intermediate scattering func-
tions Sij,max(Qσ, t) with σ = σA = 212 nm obtained for the simulated reference
system. Respectively fitting a single exponential function to short-time and long-
time data, identifies two different diffusive regions, for which corresponding collective
short-time and long-time diffusion coefficients can be determined. In between the
two limits, a sub-diffusive region is recognised, in which collective diffusion is time-
dependent.

As expected, different slopes are identified in the short-time and the long-time limits.
Especially in cases of the BB and AB correlation sub-diffusive areas in between the two
limiting time domains are recognisable, where the collective diffusion is time-dependent,
while the short-time and long-time diffusion behaviour observable for the AA correlation
are only slightly different. Employing the Landau-Placzek relation, knowing the scatter-
ing vector of each Sij,max(Qσ, t), the corresponding collective long-time and short-time
diffusion coefficients DL and DS for AA, BB, and AB correlations are determined. Table
5.10 compiles the such obtained results for the simulated reference binary mixture and
two examples chosen from the 18 binary mixtures simulated with varying parameters. As
a reminder of the meaning of the simulation IDs the reader is referred to tables 5.7-5.9.
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Table 5.10: Compilation of collective short-time (DS) and long-time (DL) diffusion coefficients
for the simulated binary reference system and two chosen examples of simulations
with varied parameters. For all three presented simulations diffusion coefficients
are determined at the global maxima of the corresponding intermediate scattering
functions with the scattering vectors: QAA = 1.30 × 10−2 nm−1, QAB = 1.34 ×
10−2 nm−1, and QBB = 1.38×10−2 nm−1. The short-time self-diffusion coefficients
of particles A (DS

S,A) and B (DS
S,B) are calculated for comparison according to the

Stokes-Einstein relation.

ID Correlation
DL/10−12 DS/10−12

DL/DS DS
S,A/10

−12 DS
S,B/10

−12

[m2 s−1] [m2 s−1] [m2 s−1] [m2 s−1]
AA 0.25 0.26 0.96

2.02 4.28reference AB 0.21 0.35 0.60
BB 0.29 0.48 0.60
AA 0.18 0.19 0.95

1.49 3.16Temp6 AB 0.20 0.26 0.77
BB 0.27 0.36 0.75
AA 0.17 0.20 0.85

1.43 4.28Size2 AB 0.23 0.28 0.82
BB 0.25 0.44 0.57

As can be expected, the relation DL ≤ DS holds for all collective diffusion coefficients
of a given correlation contained in table 5.10. With respect to the reference, the diffusion
coefficients for simulation Temp6 are generally decreased, due to the temperature T =
283K which is 10K lower than for the reference system. For simulation Size2, DL is
decreased even more relative to the reference, caused by the larger diameter of particles
A slowing down diffusion. In agreement with the findings for the relaxation times of
the maxima of the partial intermediate scattering functions discussed above (cf. Fig.
5.19), the diffusion coefficients found for the three correlations of one simulated mixture
appear to relate to one another as D(AA) < D(AB) < D(BB), while σA > σB and
Zeff,A > Zeff,B. An exception to this rule is found for the long-time diffusion coefficients
of the reference simulation, where DL(AB) < DL(AA) < DL(BB). This might be an
indication either for further influences on the diffusion behaviour, that cannot be resolved
at this point, or for erroneous data at the long-time limit of the AB correlation function,
which might be caused by effects of statistical uncertainty. Expectedly, with regard to
the self-diffusion coefficients of particles A and B calculated according to the Stokes-
Einstein equation (cf. eq. (2.17)), a significant decreasing of collective diffusion is noticed,
due to enhanced particle interactions at distances corresponding to the here investigated
coordination maxima of the intermediate scattering functions.

The systematic studies of the structure and dynamics of binary colloidal mixtures with
Brownian Dynamics simulations exhibit valuable results regarding influences of a variety
of different parameters on the partial intermediate scattering functions Sij(Q, t) charac-
terising the simulated systems. It is also indicated, that by BD simulations collective
diffusion coefficients of such binary colloidal mixtures can be quantified in the short-time
and the long-time limit. As such, the results compiled in this work may form the basis for
further in-depth simulations and for deliberate experimental investigations of liquid-like
ordered binary colloidal mixtures. Well-suited model systems for such experiments are
provided by the colloidal (co)polymer dispersions prepared in this work.
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6 Investigations of ternary mixtures

The comprehensive possibilities provided by the newly developed colloidal copolymer
dispersions, combining a defined particle size with any desired refractive index in the
range 1.38 ≤ np ≤ 1.45, give access to investigations of even more complex systems than
binary mixtures. In this chapter, the self-diffusion of strongly scattering tracers in a binary
matrix of charged colloids with nearly identical refractive index but different particle sizes
and numbers of surface charges shall be investigated. Systematic BD simulations are
performed to obtain extensive information about influences of several parameters of such
a complex ternary system on the self-diffusion behaviour of the tracer particles.

First, a reference system is defined. The simulation parameters of this reference, in
terms of particle diameters σ, particle number densities 1̺ and numbers of surface charges
Zeff , are already given in table 3.1 of section 3.5.3. The dispersion medium water is mod-
elled with a dynamic viscosity of η = 1.002 × 10−3 Pa · s and a relative permittivity of
εr = 78.3 at a reference temperature of T = 293.15K. The parameters of the tracer com-
ponent remain constant throughout all simulations carried out within this chapter. The
parameters corresponding to the components of the binary colloidal matrix are denoted
by subscripts A and B.

In eight different simulation sets the parameters characterising the matrix components
are systematically varied. Table 6.1 compiles these properties for the first simulation
set, simply referred to by integer identifiers (ID) from 1 to 6. The particle diameter of
matrix component A is successively decreased from 100 nm in the reference system down
to 50 nm, while simultaneously the size of matrix particles B is increased from 100 nm to
150 nm. As given in table 6.1, the numbers of effective particle surface charges for both
components are adjusted to preserve a constant surface charge density.

By variation of σ and Zeff at constant number ratios of the matrix components, how-
ever, the overall charge number of the matrix increases with rising size of particles B,
which alters the interaction potential of the ternary system. To realise a constant total
charge number, additional to the variations given by table 6.1, the number ratio of the
less charged component, 1̺A, is successively increased, while 1̺B of the other matrix com-
ponent is reduced. This is presented in table 6.2 for the second simulation set denoted as
ratio{1 · · · 6}.

The reference system is modelled with a moderate total colloidal particle density of
1̺total = 5.0µm−3 and an ionic strength solely originating from the autoprotolysis equilib-
rium of the dispersion medium water. Influences of variations in 1̺total, of the realisation
of a given concentration of stray ions cstray or a combination of both is investigated by six
further sets of simulations, the remaining parameters of which are equal to those defined
in tables 6.1 and 6.2. Table 6.3 gives an overview of the changes of total colloidal number
density and stray ion concentration in these simulations.
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Table 6.1: Adjusted particle sizes σi and
effective surface charges Zeff,i

for matrix components A and
B in the first simulation set of
ternary mixtures. A constant
surface charge density of the
particles is maintained.

ID σA [nm] Zeff,A σB [nm] Zeff,B

1 90 162 110 242
2 80 128 120 288
3 70 98 130 338
4 60 72 140 392
5 50 50 150 450
6 75 113 125 313

Table 6.2: Number densities 1̺
i of matrix

components A and B defined for
the second simulation set ensur-
ing a constant total charge num-
ber. Matrix particle sizes and
charge numbers are identical to
the first simulation set.

ID 1̺A/
1̺total

1̺B/
1̺total

ratio1 0.498750 0.451250
ratio2 0.522500 0.427500
ratio3 0.546250 0.403750
ratio4 0.570000 0.380000
ratio5 0.593750 0.356250
ratio6 0.534375 0.415625

Table 6.3: Further simulation sets with modifications of the total colloidal number density 1̺
total

and addition of a given concentration of stray ions cstray. Remaining simulation
parameters are identical to those of the second simulation set defined in table 6.2.

ID Parameter changes with regard to ratio{1 · · · 6}

dens{1 · · · 6} 1̺total = 15µm−3

is1-{1 · · · 6} cstray = 2× 10−3 M

is2-{1 · · · 6} cstray = 2× 10−5 M

is3-{1 · · · 6} cstray = 2× 10−4 M

dens+is-{1 · · · 6} 1̺total = 10µm−3, cstray = 5× 10−5 M

dens+is2-{1 · · · 6} 1̺total = 10µm−3, cstray = 5× 10−4 M

All 49 BD simulations defined above are initiated from a bcc start configuration. After
2.5 × 105 simulation steps the equilibrium structure is reached for each of the systems.
Subsequently, a dynamic simulation run of 105 steps, i. e., a simulated time of 200 ms,
is performed for every system. Analogously to the BD simulations of tracer particles in
a homo-colloidal matrix in section 5.1.2, a Verlet-algorithm according to eq. (3.12) is
employed to calculate the time-dependent self-diffusion coefficient DS(t) for the tracer
particles from the corresponding mean squared displacements obtained for each simula-
tion. In Figs. 6.1 and 6.2 the normalised time-dependent self-diffusion coefficients of the
tracer particles DS(t)/DS(0) are presented. In total, the two figures contain six graphics,
each of which compiles the eight DS(t)/DS(0) determined for one given size ratio of the
matrix particles as well as the result of the reference simulation. The integer ratio fol-
lowing the simulation ID found in the key of each graphic indicates the size ratio of the
matrix components in the form "σA/nm : σB/nm". The upper time limit of the displayed
graphics is set to tmax = 20ms, as for most of the time-dependent self-diffusion coefficients
data at higher times become increasingly dominated by noise.
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Fig. 6.1: Time dependency of the normalised tracer self-diffusion coefficients DS(t)/DS(0) de-
termined for the eight simulation sets of ternary mixtures investigated. Displayed are
results for the first three ratios of matrix particle diameters σA and σB. Integers in the
keys designate these ratios as: "σA/nm : σB/nm". The tracer self-diffusion coefficient
obtained for the reference simulations is provided for comparison.

Influences of number density and ionic strength

From Figs. 6.1 and 6.2 several qualitative tendencies regarding effects of the simulation
parameters on the tracer self-diffusion can be recognised. With regard to the reference,
an increase of the total colloidal number density 1̺total effects a significant decrease of
DS(t), as is apparent from results for the simulation set dens{1 · · · 6} (black circles). This
originates from an effective enhancement of the repulsive potential between the matrix
and tracer particles, caused by a reduction of the particle interdistance. The realisation
of a given stray ion concentration cstray increases the ionic strength I of the dispersion
medium, which leads to a reduction of the Debye screening length λD and therefore to
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a stronger screening of the repulsive Coulomb potential between two colloidal macroions
(cf. eqs. (2.2), (2.3)). Hence, a successive increase of cstray leads to a larger self-diffusion
coefficient of tracer particles DS(t) with respect to the reference, as can be seen in Figs. 6.1
and 6.2 for the three simulation sets with varied stray ion concentration (magenta, cyan,
and orange circles). In a combination of both, an increased colloidal number density and
an enhanced ionic strength of the dispersion medium, the afore mentioned effects partially
compensate each other, as can be observed for results of the two corresponding simulation
sets in Figs. 6.1 and 6.2 (yellow and purple circles).
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Fig. 6.2: Time dependency of the normalised tracer self-diffusion coefficients DS(t)/DS(0) de-
termined for the eight simulation sets of ternary mixtures investigated. Displayed are
results for the remaining three ratios of matrix particle diameters σA and σB. Integers
in the keys designate these ratios as: "σA/nm : σB/nm". The tracer self-diffusion
coefficient obtained for the reference simulations is provided for comparison.

Within a more quantitative view on the long-time self-diffusion behaviour of tracer
particles influenced by the variation of simulation parameters, two main cases are to be
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distinguished. First, the diffusive motion of tracer particles over longer times may be
slowed-down by an increased size and charge asymmetry of the two classes of matrix
particles. In the second case, the long-time diffusion of tracers appears to be rather
independent from the matrix particle asymmetry under the observed conditions. The
origins of these two different phenomena are discussed in more detail in the following.

Decreased long-time tracer self-diffusion

In Fig. 6.3 the normalised self-diffusion coefficient DS(t = x)/DS(0) of the simulated
tracer particles in dependence on the diameter ratio of matrix particles σB/σA is presented
for five of eight simulation sets. Here, x is a time in the range 10ms ≤ x ≤ 20ms,
at which a long-time limit of the tracer self-diffusion is reached. The normalised self-
diffusion coefficient of tracers obtained for the reference simulation at the given time x
serves as a benchmark. It is obvious from Fig. 6.3, that for simulations presented there
DS(t = x)/DS(0) is significantly decreased with increasing asymmetry of matrix particles.

In case of the here investigated ternary mixtures, long-time tracer self-diffusion is de-
creased if at least one of the two matrix components exhibits a pronounced liquid-like
order. The number of surface charges has an essential influence on self-organisation of
charged colloidal particles, as is well known and has been explicitly proven in section
5.2.2, where binary colloidal mixtures have been investigated which are very similar to
the binary matrix comprised in the here observed ternary mixture.

Fig. 6.4 compares the partial pair distribution functions g
(2)
AA(r/σ) and g

(2)
BB(r/σ) of

matrix particles A and B obtained for selected simulations, exemplarily for systems for
which a decreased long-time tracer self-diffusion is encountered, to the corresponding pair
distribution functions resulting from the reference simulation. σ = 212 nm here denotes
the diameter of the tracer particles.

From Fig. 6.4 it is obvious, that the ordering of particles A is progressively reduced
from a pronounced liquid-like order for ratio1 (σA = 90 nm, Zeff,A = 162) to a moderate
liquid-like order for ratio5 (σA = 50 nm, Zeff,A = 50). Particles B also exhibit a pro-
nounced liquid-like order for ratio1 (σB = 110 nm, Zeff,B = 242), which in contrast to
particles A is even strongly enhanced for ratio5 (σB = 150 nm, Zeff,B = 450). The reasons
for the observed influences of surface charges on particle self-organisation are discussed in
detail for binary mixtures in section 5.2.2. The rigid ordering leads to a decreased fluc-
tuation of matrix particles, which results in an enhanced importance of memory effects
due to long-living coordination cages slowing down tracer self-diffusion in the long-time
domain. Hence even though the liquid-like order of particles A is somewhat reduced, the
pronounced ordering of particles B causes the decline of DS(t = x)/DS(0) observed for
tracers in Fig. 6.3 with increasing size and charge asymmetry of matrix particles.
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Fig. 6.3: Normalised self-diffusion coefficients DS(t = x)/DS(0) of simulated tracers in depen-
dence on the matrix particle size ratio σB/σA at times x in the range 10ms ≤ x ≤
20ms, at which a long-time limit of the tracer self-diffusion is reached. For simulation
sets presented a progressive decrease of long-time tracer self-diffusion is observed with
growing matrix particle asymmetry.
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Fig. 6.4: Partial pair distribution functions g
(2)
AA(r/σ) and g

(2)
BB(r/σ) of matrix particles A and

B obtained for simulations of the second set. σ = 212 nm designates the diameter of
tracer particles. Despite a decreasing tendency, a liquid-like ordering is maintained
among particles A with increasing matrix particle asymmetry. Simultaneously, the
liquid-like order among particles B is significantly enhanced.

Long-time tracer self-diffusion independent of matrix asymmetry

Fig. 6.5 illustrates that for three of the simulation sets, the parameters of which are defined
in tables 6.1 to 6.3, apparently no significant influence of size and charge asymmetry of
matrix particles A and B affects the normalised long-time tracer self-diffusion DS(t =
x)/DS(0) within statistical accuracy. Here, x is a time in the range 5ms ≤ x ≤ 10ms, at
which a long-time limit of the tracer self-diffusion is reached.

The three simulation sets, this phenomenon is observed for, have an adjusted stray
ion concentration of cstray ≥ 2 × 10−4 M in common (cf. table 6.3). For the simulation
with cstray = 2× 10−4 M, Fig. 6.6 exemplarily displays the influence of the ionic strength,
resulting from a highly elevated stray ion concentration, on the structure of the matrix
components A and B in terms of g(2)AA(r/σ) and g

(2)
BB(r/σ). Again, σ = 212 nm designates

the tracer particle diameter. With respect to the partial pair distribution functions ob-
tained for the reference, a drastic decline of liquid-like order is identified for both matrix
components in the observed simulation. The electrostatic screening due to enhanced ionic
strength results in a reduction of particle interactions strong enough, that merely a weak
indication of a first coordination shell around a central particle is given by g

(2)
AA(r/σ) and

g
(2)
BB(r/σ). Obviously, this effect is not significantly altered by increased size and charge

asymmetry of matrix particles.
If any ordering of both matrix components is widely prohibited, the corresponding

particles A and B underlie increased configuration fluctuations. These lead to only short-
living coordination cages of matrix particles surrounding tracers. Hence the significance
of memory effects influencing tracer self-diffusion is largely decreased. As size and charge
asymmetry of matrix particles have no significant effect, due to the strong electrostatic
screening, the long-time tracer self-diffusion coefficients presented in Fig. 6.5 remain
almost constant.
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Fig. 6.5: Normalised self-diffusion coefficients DS(t = x)/DS(0) of simulated tracers in depen-
dence on the matrix particle size ratio σB/σA at times x in the range 5ms ≤ x ≤ 10ms,
at which a long-time limit of the tracer self-diffusion is reached. For simulation sets
presented no significant influence on long-time tracer self-diffusion is observed with
growing matrix particle asymmetry.
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Fig. 6.6: Partial pair distribution functions g
(2)
AA(r/σ) and g

(2)
BB(r/σ) of matrix particles A and B

obtained for simulations of the set with a stray ion concentration cstray = 2× 10−4 M.
σ = 212 nm designates the diameter of tracer particles. The self-organisation to pro-
nounced liquid-like order among particles A and B is widely prohibited by electrostatic
screening. Merely a weak first coordination shell is recognisable in the displayed partial
pair distribution functions. The investigated asymmetry of matrix particles apparently
has no significant effect on structure formation among matrix particles.
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7 Summary and outlook

Dispersions containing mixtures of different, highly charged polymer particles are less in-
vestigated up to now, since the composition of mixtures, in terms of the ratios of particles
sizes, of the numbers of effective charges and of the number densities of the constituents,
opens up a variety of additional parameters that affect the mesoscale structure and dy-
namics of colloidal mixtures. Furthermore, sophisticated experiments are required to
access partial structural and dynamical properties of each constituent. Index-matching in
light scattering experiments enables to selectively suppress contributions of one species, if
the refractive index of the dispersion medium equals that of a selected particle class. Such
experiments give access to structure and dynamics of the unmasked species on mesoscopic
scales of space and time. Precondition for employing index-matching, however, is that
colloidal stabilisation and particle interactions in the system are not altered by adjusting
the refractive index of the dispersion medium. To meet this precondition different col-
loidal model systems are required, the refractive index of which can be matched by protic
water/glycerol mixtures supporting the protolysis of acidic surface groups to maintain
colloidal stability.

Theoretical access to structure and dynamics of colloidal mixtures is possible by Brown-
ian Dynamics simulations of mixtures of charged particles. An extended Ermak algorithm,
taking into account deterministic forces between differently charged particles and stochas-
tic forces regarding interactions between dispersion medium and differently sized particles,
allows for the calculation of particle trajectories in a colloidal mixture.

In this work, starting from well-known homocolloid precursors n-butyl acrylate (BA)
and 1H,1H,5H-octafluoropentyl acrylate (OFPA) and the established copolymer con-
stituent 2,2,2-trifluoroethyl acrylate (TFEA), a novel class of highly defined, charge-
stabilised (co)polymer colloids is developed utilising emulsion polymerisation in aque-
ous media. By systematically changing the molar composition of the monomer mixture,
a variety of colloidal dispersions of highly charged poly(TFEA) [pTFEA], poly(TFEA-
co-BA) (pTcB), poly(TFEA-co-OFPA) (pTcO), and poly(OFPA) [pOFPA] particles is
prepared with hydrodynamic particle radii Rh in a wide range of 22 nm ≤ Rh ≤ 154 nm.
By dynamic light scattering (DLS) experiments with highly diluted samples particle size
distribution functions are determined employing the CONTIN algorithm. Fits of the
size distributions by a Schulz-Flory distribution allow for a quantification of the poly-
dispersity p of the (co)polymer particles. For more than half of the prepared polymer
colloid dispersions very good uniformity indicated by p < 0.1 (PDI < 0.01) is identi-
fied. With few exceptions, remaining colloids exhibit moderate uniformity with p < 0.2
(PDI < 0.04). The ability of these new, charge-stabilised colloidal particles to self-organise
to pronounced liquid-like order, even at unusually low volume fractions ϕ < 0.005, is
proven by static light scattering (SLS) experiments. The obtained static structure factors
S(Q) of homo-colloidal systems are evaluated by employing integral equations, utilising
the Ornstein-Zernike equation and the rescaled mean spherical approximation (RMSA)
closure relation, which results in the determination of most probable coordination dis-
tances, particle number densities 1̺ and the effective numbers of surface charges Zeff .
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By Brownian Dynamics (BD) simulations the known overestimation of Zeff by RMSA is
verified for the experimentally investigated systems and a rough tendency of increasing
discrepancy between Zeff (RMSA) and Zeff (BD) is revealed for rising charge number.

The refractive index np of these colloidal particles, is determined by UV/VIS spec-
trophotometric transmission experiments exploiting the dependence of the scattered in-
tensity on the squared difference of np and the refractive index of the dispersion medium
nm. It is found, that depending on particle composition, np of colloidal particles consisting
of the acrylates mentioned above is freely tunable in the range 1.380 ≤ np ≤ 1.449, en-
abling index-matching in protic water/glycerol mixtures as dispersion media. By analysis
of the static structure factors obtained by SLS for homocolloidal dispersions with identical
particles and number densities in different water/glycerol dispersion media, it is shown
explicitly for the first time that a decreased protic character of the dispersion medium up
to a glycerol mass content of 50% does not alter the effective number of surface charges.
Hence index-matching in such dispersion media will not influence the structure and dy-
namics of colloidal particles beyond effects related to changes in permittivity and dynamic
viscosity, which can easily be taken into account in a theoretical description of the system.

The latter discovery is of critical significance for chapter 5, as therein light scattering
experiments with binary mixtures of charge stabilised colloidal particles are performed,
while selectively index-matching one component and thus excluding contributions of that
species from the detected scattering signal. In case of binary mixtures consisting of
strongly scattering polystyrene tracers in an index-matched matrix of pTFEA particles
the time-dependent self-diffusion behaviour of the tracers is investigated by means of DLS
in the interval 10−5 s ≤ t ≤ 2 × 10−2 s of delay times t. Comparison of BD simulation
results of binary mixtures with similar composition as the experimental system leads to
very good agreement of the normalised time-dependent self-diffusion coefficient in the
short-time domain. For the long-time limit successively better compliance, quantified
by deviations of less than half an order of magnitude, is observed for simulations pro-
gressively approaching the experimental number ratio of tracer and matrix components.
The intermediate time region of the tracer self-diffusion coefficient, however, exhibits sig-
nificant discrepancies between simulation and experiment, the origin of which could not
be resolved in this work and may be an interesting object of future investigations. By
DLS also short-time (DS

S ) and long-time (DL
S ) tracer self-diffusion coefficients at varying

tracer and matrix particle number densities are explicitly quantified. Expectedly, the
ratio DL

S /D
S
S shows no significant dependence on a decreasing tracer number density, but

is considerably increased by reducing the matrix number density. These experimental
findings complement studies of tracer self-diffusion in binary mixtures of charged colloidal
spheres depending on electrostatic screening by Härtl et al. and theoretical investigations
of tracer self-diffusion in such systems by Klein and Nägele et al.

For binary mixtures with similar number densities of the colloidal constituents the de-
termination of partial, static structure factors Sij(Q, 0) by means of SLS experiments is
illustrated. Therein, one of the two components consisting of newly developed copoly-
mer particles with tunable, low refractive index is selectively index-matched by a wa-
ter/glycerol dispersion medium of corresponding composition. With assisting BD sim-
ulations it is shown, that even small deviations of well below one percent between the
refractive index of the medium, nm, and that of the particles to be index-matched, np,
lead to significant contributions of other correlations to the scattering signal. Hence, a
particular diligence in exactly index-matching one of the two components is emphasised,
to enable a successful determination of partial structure factors from colloidal mixtures by
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scattering experiments. Future DLS investigations could comprise the extension to a time-
dependent evaluation of field autocorrelation functions g1(Q, τ) to gain an experimental
access to partial, intermediate scattering functions Sij(Q, t).

In contrast to experimental methods, BD simulations provide a comparably easy ac-
cess to Sij(Q, t) of binary colloidal mixtures, which is verified within this work. The
development of a sophisticated, highly parallel algorithm to correlate pairs of particles in
space and time, based on the simulated trajectories, leads to the determination of dis-
tinct, partial pair distribution functions g

(2)
ij (r, t) that are spatially Fourier transformed

into Sij(Q, t). For the first time, investigations of systematic variations of particle sizes,
numbers of effective surface charges, number densities, and the system temperature are
performed by BD simulations to result in a comprehensive study of those influences on
binary mixtures of charged colloidal spheres. It is found that a changing temperature,
due to a competition of electrostatic repulsion and thermal energy working in different
directions, and varying particle sizes do not affect the structure identified in mixtures in a
significant manner, as long as a region of thermal stability is observed. A strong enhanc-
ing of the formed structures, however, is recognised for correlations, in which particles
with increasing effective charges or number ratios are involved. These insights are com-
plemented by indications of non-trivial, indirect influences, resulting from the interplay
of both sub-systems in a binary mixture.

Similar, indirect phenomena are found with regard to the collective dynamics of the
simulated systems. Due to the strong influence on the dynamic viscosity of the chosen
dispersion medium water, a changing temperature exhibits the most dramatic effects on
the relaxation of obtained intermediate scattering functions. In comparison, the influ-
ences of variations in number densities, particle sizes and effective charges are found to be
significant but rather small with respect to temperature effects on collective dynamics in
water. For selected examples of BD simulations collective short-time and long-time diffu-
sion coefficients are quantified by fitting single exponential functions to the corresponding
regions of the intermediate scattering functions at a given scattering vector Q. Future
studies may comprise extensions of the interactions under investigation in the observed
mixtures, e. g., to hydrodynamic interactions which have not been considered for the BD
simulations in this work.

The addition of tracer particles to a matrix of two different colloidal species with com-
parable number densities defines a realistic ternary mixture, giving rise to even more
complex systems. In this work, the tracer self-diffusion in such ternary mixtures is in-
vestigated for the first time by extensive BD simulations. It is shown, that, as might
be expected, an increased overall colloidal number density leads to a slowing down of
tracer self-diffusion, while adjusting an elevated ionic strength effects a faster diffusive
motion of tracer particles, due to decreased electrostatic particle interaction resulting
from electrostatic screening. With regard to a progressive size and charge asymmetry
of the two matrix particle classes two different effects on long-time tracer self-diffusion
are recognised. Below a threshold concentration of stray ions, for the performed simu-
lations identified in the order of magnitude cstray ≈ 10−4 M, a successive decrease of the
long-time tracer self-diffusion coefficient DL

S is observed with increasing matrix particle
asymmetry. The reason for this is ascribed to long-living coordination cages capturing
tracer particles, as a result of progressive order and reduced particle fluctuations in at
least one of the two matrix components. Above the afore mentioned threshold stray ion
concentration, electrostatic screening apparently causes a suppression of significant order-
ing and thus results in fast particle fluctuations in both matrix components, hence leading
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to short lifetimes of coordination cages surrounding tracers. Thus, the long-time tracer
self-diffusion behaviour is observed to become independent of growing size and charge
asymmetry of matrix particles under these circumstances.

The results obtained from BD simulations for ternary mixtures will need to be verified
by experimental investigations in the future. The possibility of generating a binary ma-
trix consisting of particles with different sizes and effective surface charges but the same
refractive index is given by the availability of colloidal (co)polymer particles prepared in
this work. Introducing, for example, strongly scattering PS particles to such a mixture
while matching the refractive index of the dispersion medium to that of the matrix is
a demanding preparative task but would enable experimental validation of simulation
results provided by this work.
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A Nuclear magnetic resonance

spectra of prepared fluorinated

acrylates

1H  NMR  spectrum  TFEA  (* = solvent)

1H  NMR  spectrum  OFPA  (* = solvent)

Fig. A.1: 1H nuclear magnetic resonance (NMR) spectra of the prepared monomers 2,2,2-
trifluoroethyl acrylate (TFEA) and 1H,1H,5H-octafluoropentyl acrylate (OFPA) with
deuterated chloroform as solvent.
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13C{1H}  NMR  spectrum  TFEA  (* = solvent)

13C{1H}  NMR  spectrum  OFPA  (* = solvent)

Fig. A.2: 13C{1H} NMR spectra of the prepared monomers TFEA and OFPA with deuterated
chloroform as solvent.
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19F{1H}  NMR  spectrum  TFEA

19F{1H}  NMR  spectrum  OFPA

Fig. A.3: 19F{1H} NMR spectra of the prepared monomers TFEA and OFPA with deuterated
chloroform as solvent.
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B Intermediate scattering functions

for BB and AB correlations
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Fig. B.1: Intermediate scattering functions SBB(Q, 0) at t = 0 of BB correlations obtained from
BD simulations: under variation of the number density ratio 1̺

A/
1̺

B (upper left),
with different numbers of surface charges Zeff,A and Zeff,B (lower left), varying the
particle diameters σA and σB (upper right), and changing the temperature T of the
system (lower right). The reduced scattering vector Qσ is displayed with σ = σA.
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C Relaxation of intermediate

scattering functions for BB and

AB correlations
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Fig. C.1: Normalised relaxation of the global maxima of partial intermediate scattering func-
tions SBB,max(Qσ, t) obtained by BD simulations under variation of: the number
density ratio 1̺

A/
1̺

B (upper left), numbers of surface charges Zeff,A and Zeff,B (lower
left), particle diameters σA and σB (upper right), and the system temperature T
(lower right). The reduced scattering vector Qσ is displayed with σ = σA.
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Fig. C.2: Normalised relaxation of the global maxima of partial intermediate scattering func-
tions SAB,max(Qσ, t) obtained by BD simulations under variation of: the number
density ratio 1̺
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