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Figure 5.17: Cumulative 234Th und total particulate matter (TPM) downward flux in the 
water column of three stations in the Mecklenburg Bay. The errors are based on the 
error propagation of SD errors of 234Th activities and TPM concentration. .................... 72 
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ABSTRACT 

Thorium-234 (234Th) has been widely used as a tracer for particle-related processes such as 

horizontal and vertical particle transport, export fluxes and sediment dynamics. For a long 

time, it was assumed that the distribution of 234Th in the ocean is mainly controlled by the 

decay of the mother nuclide Uranium- 238 (238U), its own radioactive decay and the export 

by particles. However, there are increasing indications that the particle and colloidal 

composition plays an important role in 234Th scavenging processes. To gain insight into 

the factors that control 234Th scavenging onto particles, both, laboratory experiments and 

field measurements were conducted.  

In the first part of the laboratory experiments, the adsorption of 234Th onto different 

natural particles was investigated. The particles used differed in surface area and surface 

quality. Rhodomonas spp., Surirella spp. and Synechococcus spp. represented organic 

coated particles, while the fine sediment fraction <100 µm showed a mineral surface. It 

was expected that these particles differ not only in their surface area, but also in their 

adsorption properties.  

The distribution coefficient (Kd) describes the distribution between particulate and 

dissolved 234Th phase in relation to the particle concentration and is commonly used to 

estimate the adsorption of 234Th onto particles. However, the presented study introduces 

the distribution coefficient (KA), which describes the distribution of the 234Th phases in 

respect to the particle surface. In relation to the particle concentration the highest 234Th 

uptake capacity was found for the fine sediment fraction. However, a strong positive 

correlation between the percentage of 234Th associated to the particle phase and the 

particle surface indicated that the surface area plays a crucial role in 234Th adsorption. In 

relation to the surface area the organic coated particles of Surirella spp. and Rhodomonas 

spp. showed a higher 234Th uptake potential compared to the fine sediment particles, 

which supports the assumption of preferential 234Th adsorption to organic particles. A 

strong inverse correlation between logKd and logKA indicates that the use of the particle 

concentration-based logKd does not reflect a suitable proxy to describe 234Th adsorption 

onto different particles. The experimental results of the first part indicated that different 

natural particle types have varying 234Th uptake potential in relation to their surface area 

and quality. 

In a second part of the experiments, the influence of natural colloidal matter in the 234Th 

adsorption process was investigated. It has recently been reported that acid 

polysaccharides (APS), as one major fraction of the colloidal pool, are strongly associated 
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to 234Th activity. Therefore, different polysaccharides with varying functional group 

composition were used for 234Th adsorption experiment. It could be shown that the 234Th 

adsorption seemed to be increased with increasing amount of sulphated functional 

groups. This indicated that sulphated groups are most likely involved in the 234Th 

adsorption process. In addition, the 234Th adsorption onto the fine sediment fraction <100 

µm in presence and absence of one of the polysaccharides as well as the natural colloidal 

fraction was investigated. The 234Th association to the particles is increased only slightly in 

the presence of the polysaccharide. However, in presence of the natural colloidal fraction, 

a significant increase of 234Th adsorption to the mineral surface was observed. I assume 

that not only one fraction of the colloidal pool is involved in the 234Th scavenging but 

rather the total spectrum of colloidal matter. These investigations support the assumption 

of the important rule of colloidal matter in 234Th association to particles and could 

enhance the understanding of 234Th adsorption behaviour on a molecular level. 

The third set of experiments was conducted to understand factors that control 234Th 

scavenging in the bottom water column. The 234Th adsorption for different sediment types 

as well as the influence of the hydrodynamic conditions were investigated. The overall 

observed and pronounced fluffy layer on top of the sediment led to the result that no 

significant differences in 234Th uptake could be observed between the sediment types as 

well as in varying hydrodynamic regimes. It is speculated that in presence of a fluffy layer 

and during moderate resuspension events the 234Th uptake potential could be very similar 

in the whole study area. These findings showed that the fluffy layer has a greater influence 

in 234Th scavenging in the bottom water column than previously expected.  

In the Mecklenburg Bay, south-western Baltic Sea, a significant increased 234Th and 

particle flux as well as decreased particle residence time toward the sediment was 

observed, which indicated high particle dynamic in the bottom water column. This is 

probably caused by the increasing fraction of sediment material in the bottom water 

column. It is assumed that the sediment particles act as ballast and therefore, increase the 

sinking velocity, and also lead to an increased particle surface resulting in increased 234Th 

uptake potential. Particle dynamics in the bottom water column are therefore higher than 

in surface waters.  

The presented study provides insight into factors that control 234Th scavenging and could 

have influence on the application of 234Th as a particle tracer and for the interpretation of 

234Th-based datasets.
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ZUSAMMENFASSUNG 

Der Partikel Tracer Thorium-234 (234Th) ist ein häufig genutztes Radionuklid für die 

Bestimmung von Partikel bezogenen Prozessen, wie dem horizontalen und vertikalen 

Partikeltransport, partikulären Exportflüsse und der Sedimentdynamik. Es wurde lange 

Zeit angenommen, dass die Verteilung von 234Th im Ozean keinen anderen Prozessen als 

dem Zerfall des Elternnuklides Uran-238 (238U), dem eigenen Zerfall und den Export durch 

Partikel unterliegt. Jedoch mehren sich die Hinweise, dass auch die chemische 

Zusammensetzung der Partikel und Kolloide eine entscheide Rolle bei der 234Th 

Adsorption und deren Transport spielen.  Um einen Einblick über die Faktoren zu 

bekommen die das sogenannten 234Th ‚scavenging‘ kontrollieren, wurden im Rahmen 

dieser Arbeit sowohl Laborversuche als auch Feld Messungen durchgeführt.  

Im ersten Teil wurde in Laborexperimenten die Adsorption von 234Th an verschiedene 

natürliche Partikeltypen untersucht. Diese Partikel unterschieden sich hinsichtlich ihrer 

Partikeloberfläche und Partikelqualität. Die einzelligen Mikroorganismen Rhodomonas 

spp., Surirella spp. und Synechococcus spp. wurden der Gruppe der organischen Partikel 

zugeordnet, wohingegen die feine Sedimentfraktion mit einer Partikelgröße <100 µm eine 

mineralische, anorganische Oberfläche aufweist. Es wurde erwartet, dass die Partikeltypen 

sich nicht nur hinsichtlich ihrer Partikeloberfläche, sondern auch ihren 

Adsorptionseigenschaften unterscheiden.  

Der Verteilungskoeffizient Kd, welcher die Verteilung von 234Th zwischen der gelösten und 

partikularen Phase in Bezug auf die Partikelkonzentration beschreibt, wird häufig genutzt 

um die 234Th Adsorption an Partikel zu bestimmen. In diese Arbeit wird allerdings 

zusätzlich ein Verteilungskoeffizient, KA, eingeführt, der die Verteilung der 234Th 

Fraktionen in Bezug auf die Partikeloberfläche darstellt. In Bezug auf die 

Partikelkonzentration zeigt die feine Sediment Fraktion die höchste 234Th 

Aufnahmekapazität. Jedoch deutet ein positiver Zusammenhang der Partikel assoziierten 

234Th Fraktion und der Partikeloberfläche darauf hin, dass die Partikeloberfläche eine 

entscheide Rolle in der 234Th Adsorption spielt. Dabei weisen die organischen Partikel 

Rhodomonas spp. und Surirella spp. das höchste 234Th Aufnahmepotential in Bezug auf 

ihre Oberfläche auf. Dies unterstützt die Annahme, dass 234Th bevorzugt an organische 

Oberflächen adsorbiert. Des Weiteren, wurde im Rahmen dieser Arbeit ein starker 

negativer Zusammenhang zwischen dem logKd und logKA nachgewiesen. Der auf die 

Konzentration-bezogene logKd scheint demnach kein geeigneter Proxy zu sein um die 

234Th Adsorption an Partikel zu beschreiben.  
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Im zweiten Teil der Experimentreihe wurde der Einfluss von kolloidalen Material auf den 

234Th Adsorptionsprozess untersucht. Seit einiger Zeit wird vermehrt über einen 

Zusammenhang von 234Th Aktivität und Konzentration von sauren Polysacchariden (ASP), 

als ein Hauptbestandteil des kolloidalen Materials, berichtet. Um die Rolle von 

Polysacchariden, die sich hinsichtlich ihrer funktionellen Gruppen unterscheiden zu 

untersuchten, wurden Laborversuche mit verschiedenen kommerziell verfügbaren 

Polysacchariden durchgeführt. Es konnte eine zunehmende 234Th Adsorption mit 

zunehmendem Gehalt an Sulfatgruppen im Molekül beobachtet werden. Dies könnte 

drauf hinweisen, dass Sulfatgruppen eine Rolle in der 234Th Adsorption spielen. Allerdings 

sind weiter systematische Studien notwendig um auch andere reaktive Gruppen zu 

identifizieren, die die 234Th Aufnahme beeinflussen. Zusätzlich wurden Experimente zur 

234Th Adsorption an die feine Sedimentfraktion in An- und Abwesenheit eines 

Polysaccharides, sowie des natürlichen kolloidalen Materials untersucht. Die 234Th 

Assoziation an die Sedimentpartikel war nur leicht erhöht in Anwesenheit des 

Polysaccharides, jedoch deutlich verstärkt in Präsenz der natürlichen Kolloide. Dies lässt 

drauf schließen, dass nicht nur eine Komponente des kolloidalen Materials, sondere eher 

das gesamte Spektrum von Substanzen im 234Th ‚scavenging‘ involviert ist. Die 

Untersuchungen in Rahmen dieser Arbeit unterstützen die Annahme, dass Kolloide eine 

wichtige Rolle in 234Th Assoziation an Partikel spielen und können das Verständnis der 

234Th Adsorption auf molekularer Ebene verstärken.  

Der experimentelle Teil des dritten Abschnittes diente der Untersuchung der Faktoren die 

das 234Th ‚scavenging‘ in dem vom Sediment beeinflussten Bereich der Wassersäule 

kontrollieren. Dabei wurde die 234Th Adsorption an verschiedene Sedimenttypen der 

Ostsee bei unterschiedlichen hydrodynamischen Bedingungen untersucht. Es wurde 

erwartet das verschiedene Sedimenttypen Unterschiede in der 234Th Adsorption aufweisen 

und die 234Th Adsorption aufgrund der erhöhten Kollisionswahrscheinlichkeit unter 

erhöhten Strömungsbedingungen verstärkt ist. Die überall zu beobachteten sehr mobile 

und stark ausgeprägte ‚fluffy layer‘ auf der Sedimentoberfläche führt dazu, dass eine sehr 

ähnliches 234Th Aufnahmepotential zwischen den Sedimenttypen festgestellt wurde. Auch 

konnten keine signifikanten Unterschiede in der 234Th Adsorption in unterschiedlichen 

hydrodynamischen Regimen nachgewiesen werden. Es kann spekuliert werden, dass in 

Anwesenheit einer ‚fluffy layer‘ und unter moderaten Strömungsbedingungen das 234Th 

Aufnahmepotential im gesamten Untersuchungsgebiert sehr ähnlich sein wird. Die 

Ergebnisse dieser Untersuchung zeigen, dass die Präsenz der ‚fluffy layer‘ einen größeren 
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Einfluss auf das 234Th ‚scavenging‘ in der bodennahen Wassersäule hat als im Vorfeld 

erwartet.  

In der Mecklenburger Bucht in der südwestlichen Ostsee, konnte eine signifikante 

Zunahme des 234Th und Partikelflusses sowie eine deutliche Abnahme der 

Partikelaufenthaltszeiten in der bodennahen Wassersäule nachgewiesen werde. Dies 

deutet auf eine starke Partikeldynamik in Bodennähe hin, welche wahrscheinlich mit 

einer zunehmenden Sedimentfraktion in diesem Wasserkörper einhergeht. Es wird 

angenommen, dass diese als Ballast auf sinkende Partikel wirken und damit die 

Sinkgeschwindigkeit erhöhen. Im Vergleich zu pelagischen Partikeln, die hauptsächlich 

organischen Ursprungs sind, kann das 234Th Aufnahmepotential der Sedimentpartikel 

aufgrund ihrer größeren Partikeloberflächen erhöht sein. Dies führt zu einer verstärkten 

Partikeldynamik in der bodennahen Wassersäule vor allem in hochdynamischen 

küstennahen Regionen.  

Die vorliegende Arbeit gibt vor allem Einblicke in Faktoren die das 234Th ‚scavenging‘ 

beeinflussen welches Auswirkungen auf die Anwendung von 234Th als Partikeltracer haben 

kann und bedeutend für die die Interpretation von 234Th-basierenden Berechnungen sind.  
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1 INTRODUCTION 

The marine carbon cycle is the most important part of the global carbon cycle and is 

crucial for climate changes (Yin et al., 2006). The transfer of atmospheric carbon dioxide 

to the ocean interior is related to the export flux of particulate organic carbon (POC). To 

understand the biogeochemical cycle of carbon in the ocean, investigations of POC export 

fluxes from the euphotic zone are crucial (Volk and Hoffert, 1985). Over the past several 

decades, Thorium isotopes have been used to describe particle dynamics and particle 

export fluxes in aquatic systems (Cochran and Masqué, 2003). On time scales of days to 

months, the short-lived thorium-234 isotope (234Th) is widely used to trace particle related 

processes such as particle cycling, mass export fluxes from the upper ocean or fluxes of 

any component of the total mass (e.g., carbon, nitrogen, silica, etc.), and scavenging in re-

suspension processes in the benthic boundary layer (e.g., Buesseler et al., 1992; 

Turnewitsch and Springer, 2001; Buesseler et al., 2006; Peine et al., 2009). In addition, the 

234Th based export flux is commonly used for the calibration of sediment traps (e.g. 

Lampitt et al., 2008; Lalande et al., 2008; Cochran et al., 2009). 

234Th is a highly particle-reactive radionuclide with a half-life of 24.1 d. It is produced by 

the radioactive decay of its long-lived (t1/2= 4.468 x 109 yr), chemically conservative and 

non-particle reactive parent nuclide uranium-238 (238U) (Santschi et al., 2006 and 

references therein). If, for a given parcel of water, the scavenging and export rate of 234Th 

onto settling particles is higher than the 234Th production rate by 238U decay, a radioactive 

disequilibrium is produced. This disequilibrium provides information about particle 

dynamics and export fluxes (e.g. Coale and Bruland, 1985; Bacon and van der Loeff, 1989; 

Buesseler et al., 2006; Peine et al., 2009; Evangeliou et al., 2011; Owens et al., 2015).  

The calculation of mass export fluxes (e.g., carbon fluxes) requires the determination of 

234Th flux rates based on the extent of the disequilibrium between 234Th and 238U as well as 

the ratio of 234Th to carbon (the C/234Th ratio) on sinking particles. It is generally assumed 

that large 234Th to 238U disequilibria reflect a higher particle export (Buesseler et al., 2006). 

However, the calculation of export fluxes includes both the scavenging potential of 234Th 

onto particles and the export of the particles by vertical or horizontal transport. Former 

studies assumed that the distribution of 234Th is not appreciably controlled by processes 

other than 238U decay, its own radioactive decay and the export by particles (Bacon and 

Anderson, 1982; Cochran et al., 1993). However, Buesseler et al. (2006) reviewed a distinct 

variation of the C/234Th ratio dependent on the region, season, water depth and sampling 

method which led to large uncertainties in flux estimation using 234Th deficiencies relative 
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to 238U.  Therefore, it appears questionable, whether 234Th represents an appropriate tracer 

for POC (Buesseler et al., 1992, 1995, Murray et al., 1996). Thus, in order to use 234Th as a 

particle export tracer it becomes more important to understand the mechanisms that 

control its particle reactivity. Previous investigations show that the particle composition 

and especially the particle quality may play a critical role in the scavenging process (Guo 

et al., 2002a; Chase et al., 2002; Quigley et al., 2002; Hirose et al., 2011). This could 

subsequently lead to a different 234Th scavenging potential with varying particle 

composition (Passow et al., 2006). It can be assumed that particles with similar sinking 

behaviour but varying 234Th uptake potential would generate quite different 234Th to 238U 

disequilibria, which accordingly may have influence to the calculation of export fluxes.  

Despite the common use of 234Th to determine carbon export fluxes, our knowledge of the 

specific scavenging behaviour of 234Th onto marine organic and inorganic matter, and 

especially the role of the surface area and structure of particles during this scavenging 

process, remains relatively scarce. In particular, the adsorption preference of 234Th to 

different phytoplankton species in the upper ocean, which represent the most important 

contributor to global carbon fixation and mass export of carbon through the water 

column (Ritzrau et al., 2001), has not yet been studied in great detail. Chuang et al. (2014) 

recognized an enhanced adsorption of 234Th in the presence of organic coated living 

diatom cells compared to its cleaned frustules, which indicates preferential adsorption of 

234Th to organic coated particles. Furthermore, the scavenging process to inorganic 

particles, such as sediment minerals with high specific surfaces, is crucial for a thorough 

interpretation of benthic processes like re-suspension and lateral particle transport. 

Laboratory studies by Geibert and Usbeck (2004) illustrated a high 234Th absorption 

capacity to MnO2 and smectite compared to other inorganic components such as CaCO3 

and opal. Kretschmer et al. (2010, 2011) reported a strong positive correlation between the 

234Th uptake and the surface area of the particles. Therefore, it can be assumed that 

different surface structures, compositions and particularly surface areas of particles lead 

to variations in 234Th adsorption. Uncertainties in the interpretation of 234Th-corrected 

particle fluxes in sediment traps as well as calculated 234Th-based carbon export fluxes 

from the euphotic zone may indeed be generated by the possible variability of the 234Th 

distribution among different particles types. On a particle level, this variability may have 

two major causes: (1) the particle surface area, and therefore the available 234Th uptake 

potential; and (2) the chemical composition of the particle surface, which reflects a 

preferential adsorption of 234Th onto a certain type of particle. Therefore, investigations of 

the 234Th adsorption behaviour to different organic and inorganic particles, with respect to 
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the specific surface area, are necessary to understand the factors that control the 234Th 

scavenging process in different sections of the water column and oceanic regions.  

On a molecular level, colloids are known to be involved in the metal removing in the 

ocean (Santschi, 2005). Due to their metal character most radionuclides can be associated 

to colloidal matter by the formation of chelating complexes (Chuang et al., 2015). Previous 

studies have recognized that colloidal particles are involved in the scavenging process of 

234Th onto particles (e.g. Honeyman and Santschi, 1989; Guo et al., 1994; Baskaran et al., 

2003). In a former study Honeyman and Santschi (1989) postulated a “Brownian pumping 

model” according to which Th(IV) isotopes are transferred to larger filterable particles 

through coagulation of colloidal intermediates. In addition, it has been observed that the 

adsorption of 234Th to inorganic surfaces can be modified as a result of organic, surface-

active substances coating these surfaces (Santschi et al., 2006). Therefore, it can be 

assumed that colloidal matters play a critical role in scavenging of trace metals and their 

transfer from the dissolved to the particulate phase.  

It is reported that acid polysaccharides (APS) and siderophores are major components of 

biomolecules which are involved in metal uptake (Neilands, 1995; Buck et al., 2010; 

Kraemer et al., 2014). Exopolymeric substances (EPS), produced by bacteria and 

phytoplankton,  represent an important APS rich fraction of colloidal organic matter 

(COM) and can be attached to the cell surface or are excreted to the environment as free 

colloids (Passow, 2002b). Both laboratory and field studies demonstrated that 234Th is 

associated with APS rich components of EPS (Guo et al., 2002b; Santschi et al., 2003; 

Zhang et al., 2008; Hirose et al., 2011; Xu et al., 2011; Chuang et al., 2014). Some previous 

studies reported that a strong 234Th-binding ligand in size of ≤ 13 kDa is likely responsible 

for 234Th removal in the ocean (Guo et al., 1997; Quigley et al., 2002;  Alvarado Quiroz et 

al., 2006). The latter authors suggested that such ligands are able to form clustered 

structures of 234Th binding complexes including acid functional groups like carboxylic, 

sulphate and/or phosphate acid. However, there is little known about the specific ligand 

or preferred functional groups involved in 234Th adsorption. For a better use of 234Th as an 

oceanographic tracer for particle related processes, systematic studies are needed to 

investigate the role of COM, including the molecular composition and functional groups 

on 234Th scavenging.  

Shelf regions, continental margins and estuaries once cover a relatively small area of the 

global ocean, nevertheless more than 90 % of the organic carbon is buried in their 

sediments. For the biogeochemical cycle of carbon the understanding of particle dynamics 
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in coastal waters is very important (Hedges and Keil, 1995; Hartnett et al., 1998). Shallow 

water systems and estuaries are very dynamic regions in particle cycling due to their low 

water depth and/or the terrestrial input (Bauer et al., 2013). Therefore, the influence of 

suspended sediment particles plays a crucial role for the biogeochemical particle cycle and 

the distribution of pollutants (e.g. Bauer et al., 2013; Kersten et al., 2005; Leipe et al., 

2005). As introduced above, it is assumed that the particle properties on both molecular 

and particle level are important for 234Th scavenging processes. Especially in regions of 

strong terrestrial or lithogenic influence the fact of varying particle types with different 

adsorption potential increasingly becomes a focus. To describe particle dynamics and 

quantify particle fluxes in shallow waters and estuaries 234Th is widely applied (e.g. Wei 

and Murray, 1992; Andersson et al., 1995; Zhang et al., 2004; Kim et al., 2011).  To prevent 

uncertainties in flux calculations and prediction of particle dynamics, the understanding 

of factors controlling scavenging processes are important in the coastal waters which are 

strongly influenced by varying conditions and particularly by a large spectrum of natural 

particle types.  

This study presents both laboratory experiments and field measurements with the aim to 

investigate factors that control 234Th adsorption and to describe the influence for the 

application of 234Th as particle tracer. The Ph.D thesis is structured in three sections which 

deal with a specific topic each. 

The first section presents laboratory experiments to investigate the 234Th adsorption 

behaviour onto natural organic coated particles and the fine sediment fraction <100 µm 

with special emphasis on the surface area and organic content of the respective particles. 

Here, the distribution coefficient (KA) is introduced which reflects the distribution of 

particulate and dissolved 234Th phase normalised to the particle surface. It is expected that 

different particle types show variations in 234Th uptake potential with respect to varying 

particle surface areas and quality. These experiments allow a better understanding of the 

factors that control the scavenging process of 234Th, which is important for the calculation 

of export fluxes and particle residence time as well as to describe particle dynamics.  

In the second section the 234Th adsorption is investigated on a more molecular level. What 

is the influence of natural colloidal matter in 234Th adsorption to particles? If 

polysaccharides represent a major carrier phase, are there differences in association of 

234Th between different polysaccharides? What is the role of their functional group 

composition? To answer these questions controlled laboratory experiments are presented. 

The aim of the study is to investigate the influence of natural colloidal matter in 234Th 
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adsorption to particles as well as to estimate the role of the polysaccharide fraction in the 

colloidal pool for 234Th association. These investigations will enhance the understanding 

of 234Th adsorption behaviour on a molecular level.  

In the third section laboratory experiments and field observation are presented. The 

laboratory investigations were conducted to understand factors that control 234Th 

scavenging in the bottom water column. What is the influence of varying current regimes 

of 234Th scavenging onto natural resuspended particles? Do different sediment types show 

variations in 234Th uptake potential? It can be expected that increasing current velocities 

increase the collision frequency of 234Th and suspended sediment particles and lead to an 

enhanced 234Th adsorption. Due to varying surface areas and/or particle composition it is 

assumed that particles in the water above different sediment types show variation in the 

234Th uptake potential. This could have an influence on the magnitude of the 234Th/238U 

disequilibria, which again leads to uncertainties in the calculation of export fluxes.  

On the other hand, this section will connect the results of the previous investigated 

laboratory experiments with field measurements in the coastal water and sediment of the 

Baltic Sea. The aim is to apply the experimental results in interpretation of the field 

observations and in the calculation of export fluxes and particle residence time, as well as 

the distribution of 234Th in the sediment.  

The presented study could be relevant for (1) the interpretation of 234Th based data, (2) the 

application of 234Th as particle tracer and (3) providing suggestions for further 

investigations.  
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2 234TH METHOD 

2.1 Laboratory analyses and measurement via ß-counting 

The analytical procedure for the total, particulate and dissolved 234Th is described in 

Turnewitsch et al. (2008) and predominantly follows methods by van der Loeff and Moore 

(1999).  

For particulate 234Th, the samples were filtrated at ~ 400 mbar overpressure through 

polycarbonate filters (142-mm-diameter) with a pore width of 0.4 µm or 1.0 µm. Dissolved 

234Th was co-precipitated in the total volume or subsample of the filtrate by formation of 

MnO2. To form MnO2 in a volume of 1 litre, 10 – 30 µl of a 25% NH3 solution, 40 –60 µl of a 

KMnO4 solution (60 g l-1) and 60 – 80 µl of a MnCl2 • 4H2O solution (400 g l-1) were added 

to each sample. Larger sample volumes required adjusted quantities of reagents. If the 

precipitation resulted in a lighter yellow colour, an additional small portion of the 

precipitation chemicals were added. Previous tests have shown that the formation of 

filterable MnO2 particles in deionised water (section 4) seems to be problematic because 

most of the MnO2 particles passed the filter. Probably, this is related to the lack of 

dissolved organic matter which act as crystallisation germ in the formation of MnO2 

particles. Previous experimental test indicated that a small fraction of seawater is 

sufficient for the formation of filterable MnO2. Therefore, 3 ml of 0.2 µm filtered seawater 

was added to samples running in deionised water before MnO2 precipitation. It is 

assumed that the immediate addition of the small portion of in situ water to the samples 

have no influence on interpretation of the results. The precipitating MnO2 particles were 

allowed to develop for at least 3 h. Subsequently, the MnO2 particles were filtered via 

polycarbonate filters with a 1.0 µm nominal pore width by filtration.  

To determine the total 234Th activity of the samples two ways were applied: (1) the total 

234Th activity of the fractioned samples was calculated by summing the separately 

determined particulate and dissolved 234Th activity and (2) the total 234Th content was 

analysed directly by the simultaneous collection of natural particles and MnO2 particles 

on the same filter. Therefore, the unfiltered sample was precipitated with MnO2 and 

filtrated (as described above).  

Between the two MnO2 samples the filtration equipment was rinsed with a solution of 

10 ml of H2O2 l-1 in 1 M HCl and with deionised water. For the particulate, dissolved and 

total 234Th the volume of the filtered water was determined with volumetric flasks and 

graduated cylinders. 
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All of the filters were air-dried, folded in a reproducible way and wrapped in mylar foil. 

The radioactivity emitted from these sample packages was determined non-destructively 

in RisøGM-25-5 low-level beta multi-counters. 234Th is a β-emitter with a half-life of 

24.1 days. The emitted electrons have a very weak main beta decay energy of 0.053 MeV 

(Santschi et al., 2006). However, protactinium-234 (234Pa), its immediate daughter nuclide 

with a half-life of 1.17 min, emits a much higher energy with a maximum of 2.3 MeV (Nour 

et al., 2002). Therefore, the decay of 234Pa was used for the 234Th measurements in the 

presented study. All of the samples were counted as quickly as possible and at least twice 

within 150 days after sampling. After ~150 days the samples were measured again to 

determine background counts.  

The background activity of all spiked samples showed a high variability of 114.5 % (1.04 ± 

1.19 cpm). In the majority of cases (76.6 %), the background activity of the dissolved 234Th 

samples was one order of magnitude higher compared to the naturally expected 

background activities (0.33 ± 0.05 cpm, as noted in Turnewitsch and Springer (2001)). 

These differences may be partly caused by the minor amounts of uranium trapped in the 

MnO2 precipitate, leading to a high background signal. In an additional experiment this 

assumption was supported by separating the 234Th and 238U from the uranium standard 

solution via an ion exchange column. The background level of the 234Th separated samples 

was significantly lower (0.445 ± 0.04 cpm) compared to most of the sample background 

levels. For this reason, a background level of 0.445 cpm was subtracted from all of the 

dissolved 234Th samples. 

Total 234Th activities were corrected for the ingrowth of 234Th from 238U during the 

analytical procedure (see section 2.3). The reported activities are expressed as activity per 

volume of seawater (dpm l-1). Turnewitsch et al. (2008) reported an extraction efficiency of 

99.0 % ± 1.4 % for total 234Th after a second precipitation and filtration step. The counting 

efficiency for each detector used here was determined by Robert Turnewitsch by using 

standard 238U filters, which were prepared according to van der Loeff and Moore (1999). 

The initial total 234Th activity of the experiments was estimated as the sum of 238U activity 

and the activity of the added 234Th spikes (see section 2.2). The activities of 238U in 

seawater were calculated from salinity of the seawater based on the 238U-salinity-

relationship developed by Chen et al. (1986). The seawater used in the experiments was 

stored several days before use. Therefore, an equilibrium between 238U and 234Th of the 

seawater was assumed.  
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2.2 Spiking with 234Th 

To provide measurable differences in activity, the experiments were enriched with 234Th of 

14.83 dpm l-1, which represents six times of the activity in the world’s ocean. Therefore, the 

234Th activity in the experiments resulted from the natural 234Th activity (= 238U, as 

described in section 2.1) of the seawater (or increased salinity for Surirella spp. approach) 

and the added 234Th activity of 14.83 dpm l-1. For increasing 234Th activity a uranium oxide 

solution (U3O8 in 5% HNO3) (Specpure Uranium Plasma Standard Solution, Alfa Aesar, 

Karlsruhe) with a concentration of 1000 ± 2 µg ml-1 was used. As described in the Diploma 

thesis of Stephan Werk (Werk, 2003) the composition of the uranium solution 

corresponds to the natural isotopic ratio of 99.284 % 238U, 0.710 % 235U and 0.0057 % 234U 

(Tsoulfanidis and Landsberger, 1995). With a total specific activity of 0.747 dpm µg-1, the 

standard solution contains 238U activity of 741.65 ± 1.5 dpm ml-1. To increase the 

experimental activity to 14.83 dpm l-1 to each litre of seawater 20 µl of the uranium 

solution was added. Because of the large volume and the use of natural seawater in the 

experiments of section 3 and 5, the spike was added without neutralization. Prior tests 

indicated that the pH did not change during the experiments. Due to the lack of a buffer 

system in deionised water, unfortunately the decreasing pH of the experiments in section 

4, compared to natural seawater, was not considered and is discussed in section 4.3.1. 

 

2.3 Determination of 234Th activity 

For the determination of the 234Th 

activity the samples were measured as 

soon as possible after sampling and at 

least 2 times within the decay period. 

After 150 days, the activity was 

measured again to determine 

background activity.  

Figure 2.1 shows a scheme of the beta 

decay which is described by the 

following equation: 

 

𝐶(𝑡) = 𝐶0𝑒−𝜆𝑇ℎ𝑡            (2.1)                                                   

 

Figure 2.1: Illustration of the 234Th decay of a filter 
sample including the background activity, due to 
other beta-emitting radionuclides beside 234Th. C0 
represents the activity at time sampling and C(t) show 
the activity at point of measurement. 
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𝐶0 =
𝐶(𝑡)

𝑒−𝜆𝑇ℎ∙𝑡                                                                               (2.2) 

 

with:  C0 = 234Th activity (cpm) at time point of sampling 

 C(t) = 234Th activity (cpm) during measurement at time point t 

 λTh = decay constant of 234Th 

 t = time 

 

The 234Th activity (ATh in dpm l-1) was calculated by the following equation: 

 

𝐴𝑇ℎ =
𝐶(𝑡)−𝐶𝐵𝐺

𝑒−𝜆𝑇ℎ∙𝛥𝑡∙𝑉∙𝐸𝑐
                                                                       (2.3) 

 

with: CBG = background activity (cpm) measured ~150 d after sampling 

 Δt = time between particulate or dissolved 234Th filtration and 234Th       

      measurement 

 V = filtered volume (l) 

 Ec = counting efficiency (cpm dpm-1) 

 

The counting efficiency of each detector was determined by Robert Turnewitsch by using 

standard 238U filters, which were prepared according to van der Loeff and Moore (1999). 

The ingrowth of 234Th from 238U during experiments until particulate or dissolved 

filtration was calculated according to the Ph.D thesis of Robert Turnewitsch (1999) and 

follows the equation: 

 

𝐴𝑇ℎ−𝑐𝑜 =
𝐴𝑇ℎ−𝐴𝑈∙(

𝜆𝑇ℎ
𝜆𝑇ℎ−𝜆𝑈

)∙(1−𝑒−[𝜆𝑇ℎ−𝜆𝑈]∙𝛥𝑡1)

𝑒−[𝜆𝑇ℎ−𝜆𝑈]∙𝛥𝑡1
                                  (2.4) 

 

with: ATh-co  = corrected 234Th activity for ingrowth from 238U 

 AU = 238U activity (dpm l-1) 

 Δt = time between particulate or dissolved 234Th filtration and       

  λU = decay constant of 238U 

 Δt1 = time between sampling and particulate or dissolved 234Th filtration 
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3 ADSORPTION OF 234TH ONTO PARTICLES WITH VARIABLE SURFACE QUALITIES 

AND SURFACE AREAS 

3.1 Method and material 

3.1.1 Particle types and preparation 

For the 234Th adsorption experiment, selected natural types of organic and inorganic 

particles were used. Following the assumption of varying 234Th adsorption capacity onto 

the surface of different species, two photoautotrophic protozoa in different taxonomic 

orders were selected, which represent the phytoplankton species: Rhodomonas spp. 

(Cryptophyceae) and Synechococcus spp. (Cyanobacteria). In contrast, Surirella spp. 

(Bacillariophyceae), a benthic diatom species, represents an organic coated particle type 

of the sediment. Furthermore, a different surface structure and composition is expected to 

be caused by the different functional properties of the benthic diatom Surirella spp. 

compared to the planktonic species Rhodomonas spp. and Synechococcus spp., is 

expected. As a representative of inorganic particles with a mineral surface and a main 

component of marine sediment, we used the fine sediment fraction <100 µm. This fraction 

can be re-suspended at the marine sediment water interface and remains in suspension 

over a long period. Together with its high specific surface area it can be assumed that this 

fine fraction could scavenge a large amount of dissolved 234Th from the water column.  

For the experiment, the diatom Surirella spp. was cultured in sterile Erlenmeyer flasks 

under ideal conditions using F1/2 medium plus meta silicate (Salinity 31, 10 °C) in a 

dark/light cycle of 12:12. In contrast, Rhodomonas spp. and Synechococcus spp. were 

cultured in F1/2 or BG11 media. These cultures were kept in vented glass bottles, under 

constant stirring and at room temperature under a dark/light cycle of 12:12 to attain a high 

biomass in a short period of time.  

The fine sediment fraction (<100 µm) was extracted from the Marl layer of beach ridge 

sediments collected at the Stoltera coast, Baltic Sea. Marl sediment was formed during 

glacial deposits and contains a large fraction of fine sediment particles in the Baltic sea 

(Jensen et al., 1999).  To separate the fine sediment fraction <100 µm from the coarse sand 

fraction, a high plastic bucket was used to suspend the collected sediments. The fine 

sediment fraction remains in suspension and the supernatant was decanted. The collected 

supernatant remained for a few days to settle and the clear water was subsequently 

decanted carefully. The fine sediment fraction <100 µm was then dried at 60 °C. After 

drying, the sediment was pestled and sieved, and the fraction <100 µm was captured. The 
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organic material was removed by incineration at 500 °C for 24 h. Two weeks before an 

experimental run the fine sediment fraction <100 µm was suspended in deionized water to 

soak. 

To determine the 234Th uptake onto 

the surface area of the particles, the 

experiments required an excess of 

234Th in the seawater. Due to the large 

surface area of the fine sediment 

fraction the saturation of the 234Th 

uptake at the experimental 

conditions (234Th enrichment of 

14.83 dpm l-1, 3 h incubation time) 

was tested previously. Therefore, an 

increasing concentration (0, 1, 2, 3, 5, 

7, 10, 20, 30, 40, 60 mg l-1) of the fine 

sediment fraction was added to 1 litre 

of 234Th spiked seawater (total activity: natural 234Th activity of the seawater + 234Th spike 

of 14.83 dpm l-1, see section 2.1) and was stirred with a magnetic stirrer. Subsequently, the 

samples were filtered and the activity of particulate and dissolved 234Th was analyses as 

described in section 2.1 The results showed that ~100 % of the total 234Th activity is 

associated to the particulate fraction if 30 mg l-1 of fine sediment was added (figure 3.1). 

The used particle concentration of 6.21 - 11.53 mg l-1 (table 3.1) in the experiments would 

led to an excess of 234Th in seawater. 

 Baltic Sea surface water (salinity 8.0 – 9.45) was collected from the pier in Graal-Müritz or 

during a cruise of the RV ‘Praunus’ from the coastal Stoltera region. The water was 

centrifuged (Heraeus centrifuge 17RS, continuous flow Rotor of titanium 8575 at 15000 

rpm) and filtered on 142-mm-diameter polycarbonate filters (1.0-µm pore width) at 

~400 mbar overpressure to remove large particles. In the experiments, all components 

smaller than 1.0 µm are considered as part of the dissolved/colloidal fraction, which agrees 

well with the definition of colloids in Santschi et al. (2006) and references therein. This 

filtered seawater contains the natural colloidal composition and should display realistic 

adsorption behaviour (Geibert and Usbeck, 2004). If necessary, the seawater salinity was 

increased by adding natural sea salt to that amount of the algae culture to avoiding 

bursting of the cells (salinity: Surirella spp. 31). To prevent undesirable growth of algae, 

water was stored dark at 10 °C until the experiments were performed. 
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Figure 3.1: Previous test of the 234Th uptake with 
increasing concentration of the fine sediment particles 
<100 µm. Black dots represent the results of this test and 
the blue dots show the concentration of the fine 
sediment fraction in the annular flume experiments. 
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3.1.2 Experimental design 

The 234Th adsorption experiments were performed in three identically constructed acryl 

annular flumes (modified after Widdows et al., 1998) filled with 75 litre filtered seawater, 

which permitted the formation of a uniform current velocity and led to a homogenous 

particle distribution. In addition, this design reduced analytical error by permitted the 

analysis of a large volume (2 – 5 litre) for the particle samples. After starting the annular 

flume, the particle suspension was added (particle concentration see table 3.1) and the 

rotational velocity was set to visually suspend all of the particles. After 10 – 15 min, one 

portion (1.5 ml) of spike was added to the flume. A complete mixture of the spike is 

expected within 10 min. Subsequently, three replicates of 1 litre sub-samples were taken 

from each flume via a PE spigot and silicone tube to analyse the total 234Th activity directly 

as described in section 2.1. This value is considered to be the onset of the activity. After 3 h 

of rotation, water was sampled and analysed for the fraction of particulate and dissolved 

234Th activity. Before adding the particles (blank filters) and after the experiment (3 h), 0.5 

– 1 litre subsamples were taken to analyse the carbon and nitrogen content. To determine 

the number and size of the cells, 50 ml of water were sampled and fixed with Lugol 

solution after the end of the experiment. For each annular flume three sub-samples of all 

of the analysed parameters were taken. In total, 7 to 9 replicates were processed.  

Rhodomonas spp., Synechococcus spp., the fine fraction (<100 µm) and particle free 

analyses were performed in three flumes simultaneously. Because of the slow growth and 

the resulted low biomasses for the simultaneous use of three flumes, the Surirella spp. 

experiments were conducted on different days. It is noted that sufficient biomass was 

obtained after 48 – 57 days. Therefore, the three replicates of this particles were 

conducted in a time lag of ~50 - 60 days.  

 Previous studies have shown that the adsorption of the extremely particle reactive 234Th 

onto the walls of the containers and experimental devices is problematic (Baskaran et al., 

1992; Moran and Buesseler, 1992a; Geibert and Usbeck, 2004). Prior to the particle 

experiments, the 234Th spike was added to each of the three flumes without the addition of 

particles (‘particle free run’) to test the adsorption onto the walls of the flumes. Samples 

were taken at subsequent intervals (10 min, 30 min, 1 h, 2 h, 3 h, 5 h) to follow the 234Th 

activity over time.  
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Table 3.1: The range of particle concentrations used in the experiments, the average surface of the 
cells (µm2) of the organic coated particles and the particle surface (m2 g-1). Errors indicate a 95 % 
confidence coefficient. #Labelled error is expressed as standard deviation. 

Rhodomonas spp. 

 

Surirella spp. 

 

Synechococcus spp. 

 

 

fine sediment fraction 

 

Particle concentration (mg l-1) 

3.51 - 3.92 3.39 - 10.44 2.91 - 4.13 6.21 - 11.53 

            Surface of cell (µm²) 

128.76 ± 4.99 1364.52 ± 71.24 12.55 ± 0.49 

 

n.a. 

 

            Particle surface (m² g-1) 

0.34 ± 0.02 0.63 ± 0.09 5.60 ± 0.70 14.75 ± 0.62 

             

3.1.3 Particle analyses  

3.1.3.1 Total particulate matter and particulate carbon  

To determine the total particulate matter (TPM) and particulate carbon (PC or C) 

content, 0.5 – 1 litre of water was filtered by vacuum at ~200 mbar through pre-combusted 

(500 °C for 12 h) and pre-weighed 25-mm-diameter Whatman GF/F filters. Approximately 

10 ml of deionised water was used to rinse the system and remove sea salt from the GF/F 

filter. Until further analysis, the filters were kept frozen at -14 °C. As soon as possible, the 

filters were dried at 60 °C for 24 h and re-weighed to determine the TPM or particle 

concentration. For the PC analyses, samples were folded in tin foil and measured in a 

Carlo-Erba CHN Analyzer, as reported in Verardo et al. (1990) with slight modifications. 

For calibration, acetanilide standards with a carbon content of 71.09 % were measured. 

Empty pre-combusted GF/F filters were used as filter blanks and were subtracted from the 

measured carbon values. For the calculation of the PC, the “Blank filters” (i.e., sampled 

before adding the particles) were subtracted from the particle filters.  

 

3.1.3.2 Elemental analyses of fine sediment <100 µm 

For an exact characterization of the mineral composition of the fine sediment fraction 

<100 µm, an automated quantitative particle analysis was performed using a combined 

scanning electron microscopy (SEM - MERLIN VP compact) and energy dispersive X-ray 
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analysis (EDX – AztecEnergy software). The sample was analysed by R. Bahlo at the 

Leibniz Institute for Baltic Sea Research in Warnemünde. 

The samples were prepared by suspending the combusted fine sediment fraction <100 µm 

in distilled water und filtering the suspension on Nuclepore filter with a pore size of 0.4 

µm. The surface of the dried sample was covered by pure carbon to ensure electrical 

conductivity. For the measurements, a high vacuum, 15 kV electron beam and a working 

distance of 8.3 mm was applied. A secondary electron detector (Silicon Drift Detector – 

SDD) was used to acquire the X-ray spectra. Owing to the automated analysis procedure, 

the resulting large data set was processed for mineral or particle group identification and 

quantification (counting). The definition of a certain mineral or particle group was based 

on the elements’ composition and concentration or ratios of the analysed particle.  

The results of the particle analysis are shown in table 3.2. The fine sediment fraction <100 

µm is dominated by clay minerals (37.1 %), followed by silica (19 %), feldspar (16.3 %) and 

calcite (11.5 %). Organic particles are less than 0.06 % of the total sample. Other minerals 

are mainly composed of dolomite and titanium minerals. Within the clay mineral group 

illite is the main mineral component. With a content of more than 96 %, aluminium-rich 

silica dominated the silica group.  

Table 3.2: Mineral composition of the fine sediment fraction <100 µm analysed after 
combustion of the organic material. In total, 2177 particles were analysed using a 
coupled scanning electron microscope (SEM) and energy dispersive X-ray analysis 
(EDX) analysis (kindly provided by Rainer Bahlo). The unclassified fraction 
comprises the particle which could not be clearly identified. 

 

Particle analyses of fine sediment fraction <100 µm 

 

Percentage (%) 

 

Percentage (%) 

clay minerals 37.08 

Illite 83.33 

smectite 8.46 

chlorite 7.84 

kaolinite 0.37 

silica 19.10 
Al rich silica 96.14 

pure silica 3.86 

feldspar 16.28 

  calcite 11.53 

  other 4.94 

  not classified 11.07 
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3.1.3.3 Particle surface 

Depending on the expected cell number, the Lugol fixated samples were transferred into 

an Utermöhl sedimentation Chamber (annular flume samples) or Bürker chamber (stock 

culture). Depending on the cell size, the cells were left to settle for 2 – 24 h. Cell numbers 

were counted under an Olympus CH 20 microscope (at least 100 cells per sample).  

To estimate the surface area of the organic coated particles different geometric forms 

were assumed according to the recommendation by Hillebrand et al. (1999). Specifically, 

Rhodomonas spp. is represented by a cone and half sphere, Surirella spp. is represented by 

a prism on an elliptic base and Synechococcus spp. is represented by a cylinder and two 

half shares (Table 3.3). The cell size (at least 90 cells) was determined from samples of the 

fixated stock solution because these samples contained more cells per volume. Cell 

dimensions were measured under an Olympus BX51 microscope with the corresponding 

analySIS® Soft Imaging System 3.0 software. Because of the strong deformation of the 

Surirella spp. cells especially the silica shell, which was likely caused by the fixation step, 

living cells from the culture were analysed.  

Table 3.3: Pictures and geometric forms (from Hillebrand et al., 1999) of the organic coated particles 
as well as the equations for the calculation of the surface area. Pictures of Rhodomonas spp. and 
Synechococcus spp. show the fixed cells of the experiments, while the picture of Surirella spp. 
represents the preparation of the silica shell by removing the organic matter with H2O2. 

Rhodomonas spp. 

 

Cone + half sphere 

 

𝐴 =  
1

2
∙ 𝜋 ∙ 𝑑 ∙ (𝑙 + 𝑑)               (3.1)  

       

Surirella spp.

 

Prism (elliptic base)

 

𝐴 =
1

2
∙ 𝜋 ∙ 𝑎 ∙ 𝑏 +

1

2
∙ 𝜋 ∙ (𝑎 + 𝑏) ∙ 𝑐   (3.2) 
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Synechococcus spp.

 

Cylinder + 2 half sphere 

 

𝐴 = 4 ∙ 𝜋 ∙ 𝑟2 + 2 ∙ 𝜋 ∙ 𝑟 ∙ ℎ          (3.3) 

 

The surface area of the fine fraction <100 µm was determined at the University of 

Hannover, Institute of  Solid Sciences, using the Brunauer-Emmett-Teller Method (BET) 

of Brunauer et al. (1938). This method based on the adsorption of nitrogen gas molecules 

on a solid surface. The surface areas of all particle types are summarized in table 3.1.  

 

3.1.4 The distribution coefficients Kd and KA 

Distribution or partition coefficients (Kd) were used to quantify the sorption of 

radionuclides onto different particles (Chuang et al., 2014). 

In this study, the particle specific distribution coefficients (Kd in l kg-1) were calculated 

according to Chuang et al. (2014) using the measured 234Th activities related to the particle 

concentration: 

 

𝐾𝑑 =
𝑇ℎ234

𝑝 

𝑇ℎ234
𝑑 ∙ 𝐶𝑝

                                                         (3.4) 

 

, where 234Thp represents the particulate 234Th activity (dpm l-1), 234Thd represents the 

dissolved 234Th activity (dpm l-1) and Cp is the particle concentration (kg l-1).   

For the calculation of Kd, the equilibrium between the dissolved and particulate phases is 

required. On the basis of kinetic experiments, Lin et al. (2014) reported an adsorption 

equilibrium time of 2 h. Thus, an equilibrium time of 3 h was used for all of the present 

experiments and it is assumed that 234Th between particulate and dissolved phase are in 

radioactive disequilibrium.  
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Analog to the Kd, the measured 234Thp and 234Thd activities, together with the specific 

particle surface (Ap), were used to calculate the distribution coefficient KA.  

 

𝐾𝐴 =
𝑇ℎ234

𝑝 

𝑇ℎ234
𝑑 ∙ 𝐴𝑝

                                                   (3.5) 

 

The reported activities are expressed as logKA (in l m-2). 

 

3.1.5 Statistics 

The results are presented as the mean ± 95 % confidence interval. For the statistical 

analyses, the results were tested using ANOVA with a post-hoc test for unequal N (Tukey 

Honest significant difference test) and normally distributed data. Non-normally 

distributed data were tested using a rank based Dunn´s test. Differences were considered 

to be significant at P < 0.05. Lower-case letters were used to indicate significant 

differences.  

 

3.2 Results  

3.2.1 Recovery and 234Th adsorption onto the container walls 

Recoveries of 234Th were calculated as the sum of the measured particulate and dissolved 

234Th activity compared to the initial total activity of the experiment as described in 

section 2.1. The results are shown in table 3.4 and figure 3.2 and 3.3.  

For the particle free run, the results 

of figure 3.2 indicated a decreasing 

recovery and a resultant increasing 

234Th loss with time (10 min – 5 h), 

ranging from ~ -3.7 ± 0.3 % to 24.7 ± 

2.0 %, which is directly influenced by 

the longer contact time of dissolved 

234Th to the container walls. Total 

234Th activity decreased rapidly with a 

rate of 4.9 ± 0.4 dpm h-1 between 10 

min and 30 min after starting the 

experiment. This rate decreased to 

Figure 3.2: Recovery of the total 234Th activity over time 
for the particle free run. Errors represent a 95 % 
confidence coefficient (n = 5 – 9). 
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0.4 ± 0.04 dpm h-1 towards the end of the experiment (between 3 and 5 h). This almost 

exponential decrease of total 234Th activity indicates an approximate saturation of the 

container walls with respect to the dissolved 234Th content.  

The recoveries of 234Th for the particle runs ranged from 47.3 to 103.8 % (table 3.4). The 

highest recovery after 10 min (with values >100 %) was found for the experiments 

involving the fine sediment fraction <100 µm. Significantly lower recovery values (<70 %) 

were found after 10 min in the experiments for the organic coated particles. Therefore, a 

234Th loss of more than 30 % was determined and requires some discussion. In all of the 

experiments with organic coated particles, the recoveries after 10 min appear to be 

virtually in the same range. In general, the recoveries decrease from the start of the 

experiment (after 10 min) to its conclusion (after 3 h). 

Table 3.4: Recoveries of total 234Th after 10 min and 3 h experiments. Errors indicate a 95 % confidence 
coefficient (n = 9, a: n = 7). 

Recovery (%) 

  Rhodomonas spp. Surirella spp. Synechococcus spp. 

10 min 60.54 ± 4.82 59.47 ± 12.88 66.39 ± 6.83 

3 h 47.26 ± 13.58a 57.70 ± 9.48 57.77 ± 4.27 

            Fine sediment fraction 

      10 min 103.79 ± 3.81 

      3 h 80.48 ± 5.20 

      

            Particle free run 

      10 min 103.72 ± 8.16 

      30 min 93.04 ± 4.95 

      1 h 90.62 ± 4.65 

      3 h 79.86 ± 9.88 

       5 h  75.31 ± 8.13 

       

The results shown in figure 3.3 indicate that some loss of 234Th to the container walls and 

filtration system occurred. A relatively long contact time of dissolved 234Th to the 

container walls leads to a decrease of total 234Th activity. In the case of the organic coated 

particles, a rapid decrease of the total 234Th activity, with a rate in a range of 31.3 – 

41.5 dpm h-1, was measured within the first 10 min after starting the experiment. 

Subsequently (i.e., between 10 min and 3 h), the 234Th loss appears to essentially stall, 

approaching a rate of 0.1 to 0.7 dpm h-1. Notably, in the experiment with the fine sediment 
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fraction <100 µm a significantly slower decrease of total 234Th activity was found. Within 

the first 10 min, the 234Th activity decreased at a rate of 3.5 dpm h-1, which is several orders 

of magnitude lower than the organic coated particles. Between 10 min and 3 h, the 234Th 

activity loss decreased to a rate of 1.4 dpm h-1. 

 

Figure 3.3: Total 234Th activity (234Thtot) over time for Rhodomonas spp., Surirella spp., 
Synechococcus spp. and the fine sediment fraction <100 µm. Errors represent a 95 % 
confidence coefficient (n = 7 – 9). Note that data at 0 h indicate the initially added 234Th 
activity based on the calculation of the natural activity in the seawater and the added activity 
of the 234Th spike. The total 234Th activity after 10 min was determined by collection of 
particulate and dissolved 234Th simultaneously. The total 234Th activity after 3 h was 
calculated as the sum of the fractioned 234Th filtration of the particulate and dissolved 234Th.  

 

3.2.2 234Th adsorption on different particles 

The percentage of particulate 234Th was determined for the 234Th fractioned samples (i.e., 

particulate and dissolved) after 3 h. It was calculated as the deviation between the activity 

of particulate 234Th and the sum of the particulate and dissolved 234Th activity (total 234Th) 

and is illustrated in figure 3.4-a. The fine sediment fraction <100 µm shows the highest 

percentages of 234Th adsorbed onto the particle fraction, followed by Synechococcus spp., 

Rhodomonas spp. and Surirella spp. With a mean of 78.8 %, the fine sediment fraction 

<100 µm scavenged a large fraction of the total dissolved 234Th from the water column 
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within 3 h of the experiment. In contrast, in the organic coated particle experiments, less 

than half of the total 234Th was adsorbed onto the particle fraction. On average, Surirella 

spp. scavenged 29.1 % of the total 234Th onto the surface of the cells, followed by 

Rhodomonas spp. with 34.8 % and Synechococcus spp. with 47.1 %. 

 

Figure 3.4: 234Th adsorption onto different particle types after 3 h experiments. The plots show the 
fraction of particulate 234Th (3.4-a), the distribution coefficient in relation to the particle 
concentration (logKd) (3.4-b) and particle surface (logKA) (3.4-c) as well as the particulate C/234Thp 
ratio (3.4-d). Errors represent a 95 % confidence coefficient (n = 7 – 9). Different lower-case letters 
indicating significant differences of P < 0.05.  

The concentration based logKd values (figure 3.4-b) suggested a trend similar to that of 

particulate 234Th, with a highest mean value of 5.6 ± 0.1 for the fine sediment fraction 

<100 µm, followed by Synechococcus spp., Rhodomonas spp. and Surirella spp. The logKd 

values of the three organic coated particles are in the range from 4.9 to 5.4, which are 

slightly lower compared to the fine sediment fraction <100 µm.  

Determining the 234Th adsorption with respect to different surface areas was a major 

objective of this study. Concentration based results of logKd led to the conclusion that 

most of the dissolved 234Th adsorbs onto the fine sediment fraction <100 µm. However, the 
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results calculated as logKA show a reverse trend, with the highest logKA values for 

Rhodomonas spp. (2.5 ± 0.1) and Surirella spp. (2.2 ± 0.1) and significantly lower logKA 

values for Synechococcus spp. (1.6 ± 0.1) and the fine sediment fraction <100 µm (1.5 ± 0.1) 

(figure 3.4-c). Therefore, Rhodomonas spp. and Surirella spp. scavenged more 234Th 

relative to their surface area compared to Synechococcus spp. and the fine sediment 

fraction <100 µm. Furthermore, within the group of organic coated particles, the results 

indicate significant differences in the adsorption of 234Th to the surfaces.  

The particulate carbon to 234Th ratios (C/234Th) show a similar trend to those of logKA 

(figure 3.4-d). The highest ratios were found for Rhodomonas spp. (35.2 ± 4.2 µmol dpm-1), 

closely followed by Surirella spp. (30.5 ± 2.8 µmol dpm-1) and Synechococcus spp. (17.2 ± 

3.3 µmol dpm-1). The fine sediment fraction <100 µm shows a significantly lower C/234Th 

ratio (of 2.7 ± 2.5 µmol dpm-1). This is related to the lower PC content for the fine 

sediment fraction.  

 

3.3 Discussion  

3.3.1 Variation in 234Th loss between the particle types 

A decrease of the total 234Th activity with increasing contact time can be rationalized by 

the removal of dissolved 234Th to the container walls and the particulate material 

remaining in the filtration system. The presented findings (table 3.4) are similar to the 

results from Geibert and Usbeck (2004), which ranged from 40 to 99 %. The presented 

results show a maximum 234Th loss of more than 30% within the first 10 min for the 

organic coated particles (table 3.4 and figure 3.3). It is unlikely that this massive loss 

occurs by the effect of adsorption of dissolved 234Th to the walls alone. Furthermore, this 

234Th loss is higher compared to the 234Th loss found without adding particles after 3 h 

(table 3.4). The experimental results of Baskaran et al. (1992) indicate that natural 

particles and colloids presented in the experiment act as concurrent surfaces that are 

available for dissolved 234Th and consequently lead to a reduction of dissolved 234Th 

adsorption onto the container walls. This is in contrast to the presented findings of higher 

234Th loss in presence of organic coated particles compared to the particle free run. Due to 

the continuously flow conditions in the experiments the particles collisions frequency is 

enhanced and the formation of aggregates could be encouraged (Jähmlich et al., 2002). 

Therefore, it can be speculated that aggregation processes of the living cells occurred 

which changed the sinking behaviour and led to the precipitation of these aggregates 

(Alldredge and Jackson, 1995; Jähmlich et al., 2002). The resulting removal of particulate 
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234Th out of the water column would consequently increase the 234Th loss. However, it is 

also known that under increasing turbulent drag the aggregates can be destroyed or do 

not have the chance to form (Eisma, 1986). A visual deposition of aggregates and particles 

to the bottom of the annular flume was not observed. Nevertheless, a formation of 

aggregated cannot be excluded.  

More likely is the assumption that living cells, especially the benthic diatoms which are 

able to attach to the surfaces (e.g. Hoagland et al., 1993; Wang et al., 2014) and could had 

removed particulate 234Th out of the water column by sticking to the experimental device. 

It is speculated that such process is responsible for the enhanced 234Th loss in presence of 

organic coated particles.   

The 234Th loss in presence of the fine sediment particles are reduced compared to the 

particle free run (table 3.4). Within 10 min after the start of the experiment, the fine 

sediment fraction <100 µm appears to shift the 234Th equilibrium between the container 

walls and the suspended particles almost completely towards the latter. Therefore, the 

potential loss of 234Th to the container walls becomes reduced. Due to the low organic 

content of the fine sediment particles, the attachment to the container walls is unlikely. 

Here, the effect of concurrent adsorption surfaces and the resulting decrease in 234Th loss 

(Baskaran et al 1992) can be supported.  

Notably, the presented results indicate strong differences in 234Th loss between the 

organic coated particles and the fine sediment fraction <100 µm. Geibert and Usbeck 

(2004) found similar results, with large variations in the recovery values between different 

particle types. In that case, however, no reasons for these observations were provided. 

Here it is concluded that most likely the effect of sticky living cells which attach to the 

surface of the experimental devices are responsible for the enhanced 234Th loss in presence 

of organic coated particles. Nevertheless, at this stage a final conclusion cannot given. 

Rather an outlook for further investigation can be proposed. It would be a benefit to 

remove the 234Th loss onto container walls by rinsing the devices after the experiments 

with dilute acid solution and collect this fraction and determine the 234Th activity in this 

sample. Based on a mass balance for total 234Th used in the experiments the actual 234Th 

loss could be quantified which provides possible reasons and/or further speculation for 

the loss.  
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3.3.2 Affinity of 234Th to different organic coated particles  

According to the presented investigations, Rhodomonas spp. and Surirella spp. show the 

highest 234Th scavenging intensity per unit surface area (figure 2.4-c), which is likely 

caused by the large number of 234Th binding sites. Unfortunately, investigation on the 

chemical composition of the cell surface was not implemented. Therefore, the 

interpretation in this section based on literature and more speculative assumptions. 

Previous studies showed a high affinity of 234Th  associated with acid polysaccharides 

(APS), and its content is used as a proxy for the presence of strong Th-binding ligands 

(Guo et al., 2002b; Santschi et al., 2003; Zhang et al., 2008; Xu et al., 2009; Hirose et al., 

2011; Chuang et al., 2014). APS´s in the form of slime or mucilage layers, sheaths or 

capsules are produced by marine plankton and bacteria (Santschi et al., 2006). Those 

polysaccharides are likely to be major compounds in the matrix of filamentous 

extracellular polymeric substances (EPS) and transparent exopolymeric particles (TEP). 

EPSs and TEPs can be secreted into the environment or coated the cell surface. Released 

EPSs are part of the marine colloidal pool and are major components involved in the 

formations of marine aggregates (Passow et al., 2006; Santschi et al., 2006; Fisher et al., 

2013). EPSs attached to cell walls are important for the transport of essential growth 

substances into the cell and for preventing the direct contact of the cell to toxic 

substances such as heavy metal ions (Pereira et al., 2011, Tourney and Ngwenya, 2014). 

Because of the surface binding properties of metal ions, EPSs have been the object of 

several studies in relation to removing toxic heavy metals. Therefore, increasing interest 

of EPS in the biogeochemical cycle and transport of metals in the environment is observed 

(see, for example, Gardea-Torresdey et al., 1998; Mari et al., 2009; Pereira et al., 2011; 

Yilmaz et al., 2012, Ozturk et al., 2014, Tourney and Ngwenya, 2014). However, the exact 

chemical composition of EPSs and TEPs are largely unknown. The chemical composition 

and formation rate of microorganism EPSs is known to vary between species, but the 

essential sugars are identical (Passow, 2002a). However, some studies have indicated that 

varying growth conditions (e.g. light intensity, increasing salinity, metal toxicity and 

nutrient supply) may lead to differences in the excretion of EPS and the cell surface 

quality and quantity (e.g. De Brouwer  et al., 2002; Gügi et al., 2015 and references 

therein). The binding of metal ions depends on such physical properties as pH, contact 

time and the metal binding capacity (Passow, 2002b; Tourney and Ngwenya, 2014; Pierre 

et al., 2014). Therefore, it can be speculated that the differences in 234Th adsorption of the 

organic coated particles are the result of variations in the EPS composition on the cell 

surface. In the case of the benthic diatom Surirella spp., the high adsorption capacity per 
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surface (see figure 3.4-c) is an indication that the diatoms are surrounded by an 

exopolymeric polysaccharide gel with an adsorption capacity that is much higher than 

that of a pure silica surface (Santschi et al., 2006; Chuang et al., 2014). Compared to 

pelagic cyanobacteria, which produce EPSs primarily to protect their cells from toxic 

substances (Yilmaz et al., 2012; Ozturk et al., 2014), benthic diatoms secrete an adhesive 

mucilage to migrate in sediment (e.g. Higgins et al., 2000; Lundkvist et al., 2007). 

Furthermore, Obst et al. (2009) reported EPSs close to the cell wall of Synechococcus spp., 

which are capable of precipitating minerals (i.e., biomineralization). It is assumed that the 

different functions of EPSs induce variations in the chemical composition of the cell 

surface and thus in their ability to scavenge 234Th. In summary, the presented results 

support the assumption of previous studies that the ability of 234Th to adsorb to different 

organic coated particles depends on the specific chemical composition of the cell’s surface 

(e.g. Guo et al., 2002b; Quigley et al., 2002, Santschi et al., 2003)   

 

3.3.3 The particle concentration effect 

If the portioning between the dissolved and particulate 234Th phase is controlled only by 

the equilibrium between these two phases, the distribution should be independent for the 

particle concentration. However, 

previous studies have shown that the 

logKd value decrease with increasing 

particle concentration (e.g. Honeyman et 

al., 1988; Honeyman and Santschi, 1989; 

Guo et al., 1997; Lin et al., 2014; Hayes et 

al., 2015). This well documented so called 

“particle concentration effect” is probably 

caused by intermediated role of colloidal 

matter and/or physical particle-particle 

interaction (Lin et al 2014).  Therefore, it 

is assumed that increased particle concentrations lead to increasing colloidal matter 

concentration, which leads to an increased colloidal 234Th fraction that pass through the 

filter. On the other hand, the tendency of particles sticks together lead to a decreasing 

surface area which is available for 234Th scavenging (Henderson et al., 1999). 

 In the presented study the particle concentrations used differ between the particles types 

(see table 3.1). To test the effect of particle concentration the logKd values were plotted 
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against the particle concentration (figure 3.5). These findings show no strong variation in 

logKd with increasing particles concentration. This is in contrast to previous studies as 

mentions above. A final explanation cannot be given at this stage. However, the particle 

concentration effect in this study seems to be negligible which is important for the further 

interpretations of the presented data. It can be concluded that the variations in logKd 

values of the experiments are unaffected by the particle concentration and represents 

actual differences between the particle types.  

 

3.3.4 234Th adsorption onto different particles and the influence of surface area  

According to the results depicted in figure 3.4-a and 3.4-b, it is assumed that 234Th 

preferential adsorbs to the fine sediment fraction <100 µm. Chase et al. (2002) determined 

strong 230Th scavenging by carbonate and lithogenic materials, but weak 230Th scavenging 

by opal. Geibert and Usbeck (2004) reported a high 234Th adsorption capacity with respect 

to smectite (as a representative for clay). This finding agrees well with the presented 

findings, with the highest percentage of particulate 234Th found in the fine sediment 

fraction <100 µm. The percentage of particulate 234Th provides information on the 

distribution of the particulate and dissolved 234Th fraction, but it does not reflect the 

adsorption capacity with respect to particle concentration, composition or surface area. 

Instead, the distribution coefficient Kd is based on the particle concentration. Some 234Th 

distribution values have been reported in the literature, though some must be converted 

from Kd in 106 kg L-1 to logKd. The results for sediment trap samples reported by Chase et 

al. (2002) (average logKd value 6.6), Roberts et al. (2009) (range from 5.22 to 6.62) and 

Chuang et al. (2013) (range from 4.17 to 7.08) are in the similar range to the presented 

values. The latter authors investigated sediment trap samples, which represent a mixture 

of several different types of particles (e.g., organic coated and inorganic particles). 

Notably, Chuang et al. (2013) reported increasing logKd values with increasing water 

depth. This could correlate with a higher fraction of degraded material with depth. As 

shown in figure 3.4-b the logKd increases for particles low in PC content. A more recent 

study investigated the 234Th adsorption of intact living diatom cells from Phaeodactylum 

tricornutum (Chuang et al., 2014). In this case, the LogKd values were 6.6 – 6.7, which are 

somewhat higher than the presented findings for Surirella spp. (figure 3.4-b), which may 

be related to different surface structures as already discussed in section 3.3.2. In general, 

Kd values are calculated based on the particle concentration of the sample, but they are 

not related to the surface area or composition of the particles. This representation 
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changes completely with respect to the surface area (see figure 3.4-b and c). The specific 

surface of the fine sediment fraction <100 µm (14.72 m² g-1) is much higher than the 

organic coated particles (0.34–5.6 m² g-1). Therefore, it is not surprising that the fine 

sediment fraction is able to scavenge a larger percentage of dissolved 234Th (figure 3.4-a). 

The percentage of 234Th adsorbed to the particulate phase increases with increasing 

surface area (figure 3.6-a). This supports the assumption of Kretschmer et al. (2010 and 

2011) who postulated that the capacity of 234Th adsorption for sediment particles is a 

function of the surface area. Therefore, it is concluded that larger surfaces may increase 

the uptake potential for 234Th. 

 

Figure 3.6: Correlations between the percentage of 234Th adsorbed to the particulate fraction against 
the surface area (3.6-a); the distribution coefficient in relation to the particle concentration (logKd) 
and particle surface (logKA) (3.6-b) and the C/234Th ratio to logKA (3.6-c). Errors represent a 95 % 
confidence coefficient (n = 7 – 9). Statistical analyses show significant correlation of P < 0.05. 

In general, 234Th adsorption on mineral surfaces is related to ion exchange processes. 234Th 

adsorbs on minerals to balance the negative charge on the surface. For instance, clay 

minerals have a high specific surface because of their interlayer areas, which can interact 

with surface reactive metals such as 234Th. The potential adsorption sites of clay minerals 

are: (1) the basal surface; (2) the edges of the layers; and (3) in the case of expanding clays, 

the internal interlayers (Cornell, 1993). The fine sediment fraction <100 µm of the 

experiments is composed of a large percentage of clay mineral (table 3.2), which could 

have a large 234Th uptake potential. Quartz and calcite are known to be relatively inactive 

with respect to metal adsorption because of their uncharged surfaces (Cornell, 1992). 

Therefore, it can be suggested that these compounds of the fine sediment fraction 

<100 µm are less involved in 234Th uptake. 

This study examined the adsorption of 234Th in relation to the surface area of different 

natural organic coated particles in comparison to inorganic particles, which reflect an 

extension of already investigated sediment particles (Kretschmer et al., 2010, 2011). A 

strong negative linear correlation between the concentration-based logKd value and the 

surface-based logKA value (see figure 3.6-b) was observed. According to these results 

concerning particle surface, it can be concluded that the surface area of particles is more 
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crucial in 234Th adsorption as the particle concentration. Nevertheless, depending on 

scientific question being ask, different parameters to describe 234Th scavenging become 

appreciated. For the question which particle component shows the highest 234Th 

scavenging potential, then the logKd and the percentage of particulate 234Th do not 

represent a suitable proxy. The presented results support the notion of the importance of 

surface areas in 234Th adsorption, but the few experiments presented herein do not allow 

us to offer a definitive conclusion. The effects of surface area and quality must be further 

validated by additional investigations on a wide range of particle surfaces. 

 

3.3.5 Importance for natural Environment 

The presented results do not allow an exact prediction of the 234Th adsorption behaviour 

in natural environments. However, they do provide a suitable approximation of the 

factors that control the scavenging process of natural particles. Because of their high 

surface area, clay minerals adsorb a large fraction of 234Th compared to organic coated 

particles. This could be important for the interpretation of 234Th scavenging processes and 

234Th-based calculations (e.g., residence time, export fluxes, etc.) in different oceanic 

regions or within different depth zones of the water column. Seasonal variability in 

carbon fluxes could result from changing phytoplankton compositions, for example 

during bloom events where a dominant species acts as the main carrier for particulate 

matter (e.g., diatom blooms). In addition, uncertainties in 234Th-based calculations caused 

by varying 234Th adsorption behaviour on different types of particles could lead to regional 

variations of carbon fluxes; for example, when open ocean conditions are compared to 

regions of strong terrestrial input (e.g., coastal zones, estuaries and atmospheric 

deposition of particles). Furthermore, for the characterization of hydrodynamic events 

close to the seafloor (i.e., re-suspension/deposition events) (Turnewitsch et al., 2008,Peine 

et al., 2009), 234Th scavenging  of a large fraction of 234Th by fine sediment particles must 

be considered. Not only varying particle types with more or less efficient aggregation 

and/or sinking behavior could generate large 234Th/238U disequilibria in the water column, 

but also the particle surface plays a crucial role. Both would reflect a strong particle load 

compared to processes in the upper ocean water column, especially in the euphotic zone. 

For instance, if for a given set of particles with equal particle concentration and sinking 

behavior, one particle type shows a higher surface area compared to the other, that 

particle would virtually generate a larger 234Th/234U disequilibria and therefore a stronger 

particles load.  
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In addition, investigations to describe carbon dynamics in the ocean often requires 

C/234Th ratio, in which the particle composition influence the ratio. We observed a strong 

positive correlation between logKA and C/234Th content (figure 3.6-c). Therefore, there 

may be a relationship between C/234Th and the particle surface, which would mean that 

the chemical composition indirectly reflects the particle surface. However, it must be 

noted that we investigated only a few types of particles compared to the spectrum of 

natural particles and that the simple method of characterising cells according to 

geometric forms does not including the organic coating of the cells. Actual cell surfaces 

are much more complex and structured. Nevertheless, this study provides a first insight 

into the 234Th scavenging process with respect to different natural organic coated and 

inorganic particles and the importance of their surfaces area and quality.
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4 THE INFLUENCE OF COLLOIDS ON 234TH SCAVENGING WITH RESPECT TO 

VARYING FUNCTIONAL GROUPS IN THE POLYSACCHARIDE FRACTION 

4.1 Method and material 

4.1.1 Colloidal substances and experimental conditions 

Three parts of laboratory experiments were conducted to describe the influence of 

colloids, especially the polysaccharide (PS) fraction, in 234Th scavenging. The experimental 

procedure is illustrated in figure 4.1 and is described in section 4.1.2. To prevent the 

involvement of other colloidal molecules in the adsorption process, the experiments with 

added PS were performed in deionised water. To provide measurable 234Th activities, the 

experiments were enriched with 234Th to 14.83 dpm l-1 as described in section 2.2. 

For the 234Th adsorption experiment A (figure 4.1), three types of commercial available PS, 

differing in their molecular structure, were used. Due to the assumption of varying 234Th 

adsorption capacity related to different functional reactive groups of the macromolecule, 

different PS (Fucoidan, Chondroitin and Pullulan) were selected. Table 4.1 summarises the 

chemical characterisation of molecules used in the experiment. The concentrations of the 

PS added to the experiment were applied according to the natural dissolved organic 

carbon (DOC) concentration in the ocean. DOC represents the major fraction of the 

dissolved organic matter (DOM) pool. Therefore, the abundance of DOM has generally 

been determined as DOC (Ogawa and Tanoue, 2003). The distribution of DOC 

concentration in ocean depends on the oceanic region, water depth and season (spring 

bloom). For central oceanic region values of 30 - 90 µmol DOC l-1 were reported (e.g. 

Ogawa and Tanoue, 2003; Bauer and Carlson, 2002). For near shore environments and 

high productive oceanic regions, the concentration of DOC increases to >100 µmol DOC l-1 

(e.g. 131 µmol l-1 coastal Golf of Mexico, Guo et al., 1994; >300 µmol l-1 in the Baltic Sea, 

Aarnos et al., 2012). In this study, a DOC concentration of 100 µmol l-1 was applied for the 

adsorption experiments. The concentrations of the PS added to the experiment were 

calculated according to the ratio of the natural 234Th activity (2.5 dpm l-1) to the assumed 

DOC concentration of ~100 µmol DOC l-1. Note that PS concentrations of the results were 

converted to the carbon concentrations of the molecules and were expressed in µmol C l-1. 

As described in section 2.2 the 234Th activity in the adsorption experiments was increased 

to ~15 dpm l-1, which is 6 times higher compared to the natural 234Th concentration. To 

maintain the natural ratio of 234Th to DOC concentration the PS concentration was 

increased correspondingly to the 234Th activity (15 dpm l-1 to 600 µmol l-1). The 
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concentrations used in the experiments were calculated based to the molecular weight of 

the PS’s and are listed in table 4.1. 

Table 4.1: The chemical description, the molecular weight and the concentration of the 
polysaccharides (PS) used in the 234Th adsorption experiments are shown. (Description and 
molecular weight according to Ziervogel and Arnosti, 2007). 

 Description Molecular weight 

(kDa) 

Added concentration 

(mg l-1) 

Fucoidan Sulfated fructose polysaccharide ~100 22.62 

Chondroitin 

Sulfated polymer of N-

acetylgalactosomine and glucoronic 

acid 

63 21.56 

Pullulan 
α (1,6) maltotriose polymere 71.5 and smaller 

fractions 

16.42 

 

In experiment B (figure 4.1) the adsorption of 234Th onto an inorganic mineral surface in 

presence and absence of Fucoidan was determined. The fine sediment fraction <100 µm 

was extracted from marl layer of the beach ridge sediments, collected at the Stoltera coast, 

Baltic Sea as described in section 3.1.1. The concentration of the fine sediment fraction 

used in the experiment (7 mg l-1) was derived from the previous tested 234Th uptake 

potential with increasing particle concentration of the fine sediment fraction <100 µm as 

described in section 3.1.1 and figure 3.1. The concentration of Fucoidan was calculated as 

described above.  

Experiment C (figure 4.1) was performed to investigate the adsorption of 234Th onto 

mineral surfaces in presence and absence of colloidal matter. In situ Baltic Sea surface 

water (salinity: 13.3) was collected during a cruise of the RV ‘Poseidon’ from the 

Mecklenburg Bay. To exclude pre-existing particles, water was filtered through a filter of 

0.2 µm pore size. All components smaller than 0.2 µm are considered to be part of the 

dissolved and colloidal fraction, agreeing well with the definition of colloids in Santschi et 

al. (2006) and references therein. The filtered seawater contains the natural colloidal 

composition and should provide a realistic impression on the adsorption behaviour in a 

natural system compared to the adsorption in absence of natural colloidal material 

(deionised water). To prevent undesirable growth of algae and microorganisms, filtered 

seawater was stored in the dark at 5 °C until experimental run. To create similar 

conditions for both, seawater and deionised water, the pH of the deionised water was 

increased with NaOH to ~8. The pH was observed over the whole period of incubation 

and was frequently adjusted in case that the pH decreased again. 
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4.1.2 Experimental design 

4.1.2.1 Experiment A - 234Th adsorption onto different PS (single-sorbent) 

Experiment A was conducted to determine the adsorption preference of 234Th onto 

different PS. A scheme of the adsorption experiment is shown in figure 4.1. Three 

replicates of 1 litre of 234Th spiked deionised water were added to an aliquot weighted bulk 

of the PS (see table 4.1). Quigley et al. (2001) reported an initial equilibration time of 234Th 

uptake to COM in the order of minutes, whereas the coagulation of the 234Th-colloid-

complexes was reported to need hours. Therefore, the samples were incubated at room 

temperature for an absorption time of 1 h with frequent mixing. To separate the PS’s from 

deionised, water a cross flow ultrafiltration X-Flo76 (Novasep) was used.  The cross-flow 

ultrafiltration based on the tangentially continuous flow of the sample across the 

ultrafiltration membrane. Material smaller than the pore size of the membrane was 

collected in the filtrate. The major advantage of this method is to process a relatively large 

sample volume at minimum time. The cross-flow ultrafiltration unit was preconditioned 

with ~200 ml deionised water in order to remove possible PS contamination from the 

membrane. After an incubation time of 1 h the samples were ultra-filtered through a 

polyether sulfone membrane. It is recommended to use a membrane with a molecular 

weight cut off (MWCO) of 2 - 3 times smaller than the molecular size of the separated 

molecules (personal communication of Carol Arnosti). According to the molecular weight 

of the PS (table 4.1) membranes of a MWCO of 30 kDa (Fucoidan and Chondroitin 

samples) or 10 kDa (Pullulan samples) were used.  

 The activity of the dissolved 234Th in the filtrate was determined and is described in the 

section 2.1 (see also special notes to experiments in deionised water in this section). The 

initial total 234Th activity was determined by measurement of the total activity in the 234Th 

spiked deionised water. The activity of the 234Th phase adsorbed onto PS (colloidal phase) 

was calculated as the difference between the initial measured activity and dissolved 234Th 

phase activity.  

 

4.1.2.2 Experiment B - 234Th adsorption onto fine sediment in presence of Fucoidan (binary-
sorbent) 

Experiment B (figure 4.1) was carried out in order to determine the influence of PS 

(Fucoidan) on the adsorption process of 234Th onto inorganic mineral surfaces. Three 

replicates of 1 litre of 234Th spiked deionised water were added to plastic containers filled 

with (1) the fine sediment fraction (particle size <100 µm) (7 mg l-1), (2) Fucoidan and (3) 
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Fucoidan and fine sediment fraction (particle size <100 µm) (7 mg l-1). According to kinetic 

experiments of Lin et al. (2014), an adsorption equilibrium time of 2 h was used. A similar 

equilibrium time has also been reported in studies of Quigley et al. (2001), Guo et al. 

(2002a) and Roberts et al. (2009) which make the results of the presented study 

comparable. The samples with the added fine sediment fraction were stirred with a 

magnetic stirrer. After incubation of 2 h, the fine sediment fraction <100 µm was collected 

by particulate filtration. To separate Fucoidan from the dissolved fraction, the samples 

were ultra-filtrated (as describe in section 4.1.2.1). The particulate and dissolved 234Th 

fraction as well as the initial 234Th activity was samples and measured as described in 

section 2.1. The initial 234Th activity was determined by measurement of the total activity 

in the 234Th spiked deionised water. The activity of the colloidal 234Th fraction was 

calculated by subtracting the sum of particulate and dissolved 234Th activities from the 

initial 234Th activity.  

 

4.1.2.3 Experiment C - 234Th adsorption onto fine sediment in presence of natural COM 
(binary-sorbent) 

The experiment C (figure 4.1) was conducted to describe the adsorption of 234Th to a 

mineral surface in presence and absence of natural COM. Therefore, three replicates of 

1 litre 234Th spiked in situ water and deionised water were added to plastic containers that 

contained ~7 mg l-1 of the fine sediment fraction <100 µm and stirred with a magnetic 

stirrer. After 2 h of incubation the fine sediment fraction was separated by filtration and 

the activity on the particulate filter was determined. The dissolved 234Th activity was 

analysed according to the description of section 2.1.  

 

4.1.2.4 Control run- 234Th loss onto container walls 

Previous studies have shown that the adsorption of the extremely particle reactive 234Th 

onto container walls and experimental devices is problematic (Baskaran et al., 1992; 

Moran and Buesseler, 1992b; Geibert and Usbeck, 2004). A control run without adding 

any PS or mineral particle was processed to determine the 234Th loss onto container and 

filtration devices.  

In addition, the 234Th adsorption was determined in respect to increasing adsorption 

surfaces of the analytical devices. The contact surfaces were: (1) the experimental 

container only (plastic bottle of 1 litre volume), (2) the experimental container and the 
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ultrafiltration device without an ultrafiltration membrane (-MB) and (3) with inserted 

ultrafiltration membrane (+MB). The samples were incubated in the container for 2 h 

before further procedures. Therefore, the control run was conducted in the same way as 

the experiments of PS and particles. The results were used to correct 234Th activities in 

experimental run with deionised water for the 234Th loss onto the container walls. 

 

Figure 4.1: Scheme of the 234Th adsorption experiments of part A, B and C.  Experiment A determine 
the adsorption preference of 234Th onto different PS. Experiment B was carried out in order to 
determine the influence of the PS Fucoidan on the adsorption process of 234Th onto inorganic 
mineral surfaces. Experiment C was conducted to describe the adsorption of 234Th to a mineral 
surface in presence and absence of natural COM. MWCO – molecular weight cut off, kDa – kilo 
Dalton. 

. 

4.1.3 Determination of the polysaccharide concentration  

The PS concentration was measured before ultra/particulate filtration to determine the 

initial PS concentration of the experiment. To assure that no PS passes the ultrafiltration 

membrane and to estimate whether the PS interacts with fine sediment fraction, PS 

concentration was additionally measured in the ultra-filtrate and particulate filtrate.  

One method frequently used in order to determine total dissolved mono- and 

polysaccharides concentration in marine samples is the TPTZ (2,4,6-tripyridyl-s-triazine) 

method, which is described in detail in Myklestad et al. (1997). The method is based on an 

oxidation reaction reducing Fe3+ to Fe2+ and can be determined colorimetrically after 

conditioning with the chromogen TPTZ. The resultant Fe (TPTZ) 2
2+complex is responsible 
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for the violet colour of the reaction. Monosaccharides with a reducing group will react 

directly in this method. For non-reducing sugars and polysaccharides, first, it is necessary 

to hydrolyse the glycosidic bonds to produce a number of reducing monomers according 

to their degree of polymerisation. Therefore, 1 ml of sample or standard was hydrolysed 

with 0.5 ml 1 M HCl in a glass ampoule and was placed in a dry oven over night at 100°C. 

The analytical TPTZ-procedure was conducted as described in Myklestad et al. (1997). All 

samples were run in triplicates. As standard solutions, the appropriate PS used in the 

experiment was prepared in increasing concentration.  

 

4.1.4 234Th fractions and distribution coefficient  

The activities of particulate and dissolved 234Th fractions were measured directly via beta-

counting. The activity of the PS fraction was calculated based on the subtraction of (1) the 

dissolved or (2) the sum of dissolved and particulate fraction activity from the initial 

activity.  

The distribution coefficient (Kd) describes the partitioning of radionuclides between 

particulate and dissolved phase in relation to the particle concentration and has been 

applied for investigations of adsorption behaviour of various particle reactive elements in 

seawater (Guo et al., 1997; Quigley et al., 2001; Guo et al., 2002a; Geibert and Usbeck, 

2004; Lin et al., 2014; Lin et al., 2015). In the present study, the Kd value is also used in 

relation to the colloidal concentration and will be called Kc. Kd/Kc were calculated using 

the following equation:  

 

                                  𝐾𝑑/𝑐 =
𝑇ℎ234

𝑝/𝑐 

𝑇ℎ234
𝑑 ∙ 𝐶𝑝/𝑐

                                                             (4.1) 

 

, where 234Thp/c represents the particulate or colloidal and 234Thd the dissolved 234Th 

activity (dpm l-1), while Cp/c is the particle or colloidal concentration (kg l-1). The 

dimension of Kd values is l kg-1 and is expressed in this study as logKd. 

 

4.1.5 Statistics 

The results are presented as mean values and the errors indicating the standard deviation 

(SD) of the mean. For the statistical analyses, the comparison of two groups was 
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conducted by running a t-test. When comparing more than two groups an ANOVA was 

carried out. Differences were considered to be significant at P < 0.05.  

 

4.2 Results 

4.2.1 Concentration of polysaccharides 

The actual added concentration (in µmol C l-1) of the experiments was calculated from the 

amount of weighed PS.  

In experiment A, the measurements of PS concentration of the initial solution show some 

discrepancies compared to the added concentrations (table 4.2). In most of the samples 

the measured concentration is somewhat lower compared to the added concentration, 

except of Chondroitin R1. In the replicate sample R2 containing Fucoidan the measured 

concentration is nearly half of the added concentration. It is assumed that the measured 

concentration is affected by errors due to the possible incomplete hydrolyses of the PS. 

This is supported by the standard curve of the PS compared to the monomer Glucose (not 

shown here) which indicate an incomplete hydrolysis. For further calculations, the added 

PS concentration is used.  

Table 4.2: Comparison of added and measured initial PS 
concentrations in the experiments A. R1, 2 and 3 represent the 
replicates of each approach. 

  
concentration [µmol C l-1] 

   Replicate Added  Measured  

Fucoidan R 1 623.3 595.3 ± 29.6 

 
R 2 597.9 350.5 ± 37.6 

 
R 3 614.8 574.4 ± 92.2 

Chondroitin R 1 598.6 675.3 ± 30.3 

 
R 2 604.0 503.7 ± 29.8 

 
R 3 604.4 530.4 ± 36.1 

Pullulan R 1 603.4 507.8 ± 20.9 

 
R 2 600.2 529.6 ± 43.6 

 

 



The influence of colloids on 234Th scavenging  
____________________________________________________________________________________________________________________________________________________________________________ 

-36- 
 

 To ensure that no PS passes the 

ultrafiltration membrane the PS 

concentration was measured in the ultra-

filtrate (figure 4.2-a). In experiment A and 

in relation to the error bars, no molecules 

passed the membrane. In experiment Band 

samples without added Fucoidan, no 

significant PS concentration can be 

observed (figure 4.2-b). The average initial 

measured PS concentration of Fucoidan in 

figure 4.2-c and d is 534.1 ± 60.8 µmol C l-1 

and 570.6 ± 34.9 µmol C l-1. In the ultra-

filtrates, no significant PS concentrations is 

found. Therefore, it is concluded that 

Fucoidan did not pass the ultrafiltration 

membrane. In the binary sorbent 

experiment, where Fucoidan and the fine 

sediment fraction was represented, (figure 

4.2-d) the PS concentration does not change 

significantly after particulate 234Th filtration. 

This indicates that there is no association of 

Fucoidan onto fine sediment particles.  

  

 

4.2.2 234Th lost onto container walls 

Figure 4.3 shows the recovery of 234Th with increasing steps of the experiment. The 

recovery decrease with each additional experimental step. Therefore, highest 234Th 

recovery of 83.6 ± 10.7 % is found for the container incubation only. This indicates a 234Th 

Figure 4.2: a: The concentration of the PS in the 
initial solution and the ultra-filtrate of Fucoidan, 
Chondroitin and Pullulan in experiment A.  Figure 
b-d indicate the concentration of Fucoidan in 
experiment B of the fine sediment (d), Fucoidan 
(e) and Fucoidan and fine sediment (f) added. 
Error bars represent the 95 % confidence level of 
the subsamples (n = 6 - 9) for PS analyses. 
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loss of 16.4 ± 10.7 % onto the container walls. The recovery decrease to 67.4% when the 

samples additionally pass the ultrafiltration device without adding a membrane and 

decrease further to 50.8 ± 8.2 % if an additional membrane is presented. Therefore, a 234Th 

loss of 24.6 % onto the membrane is 

observed. The results suggest a 

significant 234Th loss with increasing 

contact of 234Th to adsorption surfaces. 

To prevent an overestimation of the 

colloidal and underestimation of the 

dissolved fraction, dissolved 234Th 

activities are corrected for the 234Th loss 

of 49 % after ultrafiltration through a 

membrane. For samples run in 

deionised water without ultrafiltration 

(experiment B and C: only mineral 

surface added) the 234Th activities are 

corrected for the 16.4 % loss onto the 

container walls during 2 h incubation. Due to the presence of natural COM in the 

seawater which is known to influence the 234Th loss onto container walls (Baskaran et al., 

1992) the 234Th activities of the seawater experiments are not corrected. For a detailed 

description see section 3.3.1. 

 

4.2.3 234Th adsorption onto different polysaccharides 

Most of the total 234Th in the experiment is adsorbed onto the PS fraction (figure 4.4). The 

differences detected between the different PSs used is only weak. The largest fraction of 

234Th is adsorbed to Fucoidan with 74.7 ± 14.1 %, followed by Chondroitin with 67.4 ± 9.9 % 

and Pullulan with 59.7 ± 5.5 %. This suggests an adsorption preference of 234Th onto 

Fucoidan compared to the other PS. A similar trend is observed for the distribution 

coefficient (Kc). Fucoidan shows the highest logKc values of 5.1 ± 0.3. Slightly decreasing 

logKc values are found for Chondroitin (logKc 5.0 ± 0.2) and Pullulan (logKc 5.0 ± 0.1). 

However, in relation to the standard deviation of the percentage of 234Th fraction and 

logKc, the differences between the PS´s are of minor importance.  
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Figure 4.3: Recovery of 234Th in control run, without 
adding particles or PS, to determine the 234Th loss 
onto the container walls und ultrafiltration devices. + 
and – MB indicate the recovery in presences or 
absence of the ultrafiltration membrane (MB). 
Significance level P < 0.05. 
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Figure 4.4: Figure a: Percentage of colloidal and dissolved 234Th fraction of Fucoidan, Chondroitin and 
Pullulan of experiment A. Figure b: Distribution coefficient (logKc) between the colloidal and 
dissolved 234Th activity in relation to the colloidal concentration. The 234Th activities are corrected for 
234Th loss onto container walls: Errors indicate standard deviation. Significance level P > 0.05. 

 

4.2.4 234Th adsorption onto mineral surfaces in presence of colloidal material 

According to the results presented 

in figure 4.5 and in the presence of 

Fucoidan, the particulate 234Th 
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surface is slightly increased by 

almost 40 %. Hence, it can be 

assumed that the adsorption of 

234Th onto mineral surfaces is 

increased in presence of Fucoidan. 

However, in the approach with 
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to 84.5 ± 11.1 % where only Fucoidan is available. In presence of these mineral surface, the 

colloidal 234Th phase decreases and the dissolved 234Th phase increases. 

Figure 4.6 shows the adsorption of 234Th onto fine sediment fraction in deionised water 

compared to seawater. The percentage of 234Th adsorbed to the fine sediment particles in 

seawater (40.4 ± 10.3 %) is several orders of magnitude higher compared to deionised 

water (2.9 ± 1.5 %). In addition, the logKd value is significantly lower in COM free samples. 

The results of experiment C show a significant increase in 234Th adsorption to mineral 

surfaces in presence of natural colloidal material.  

 

Figure 4.6: Results of the experiment C. The percentage of 234Th adsorbed to fine sediment particles 
(a) and the distribution coefficient- logKd (b) in deionized water and natural seawater. Dissolved 
234Th samples run in deionized water are corrected for the 234Th loss onto the container walls during 2 
h incubation period. Error bars indicate SD of n = 3. Significance level p < 0.05. 
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(APS) content and 234Th removal (e.g. Guo et al., 2002b; Quigley et al., 2002; Azetsu-Scott 
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varying experimental conditions (pH 8, natural and artificial seawater) compared to the 

present study (pH ~4.5, deionised water). It should also be noted that the pH in the 

presented study (~4.5 pH) is somewhat lower compared to experiments in natural 

seawater. The sorption of ions to particle depends strongly on pH. Cations generally show 

an increasing sorption behaviour with increasing pH, whereas the sorption of anions to 

particles increases with decreasing pH (Santschi et al., 2006 - and references therein). 

There are some recent studies that show an increasing Th(IV) sorption with increasing pH 

from 0 - 4 and a maintained level of Th(IV) sorption with pH > 4 (Tan et al., 2007; Xu et 

al., 2015; Kaynar et al., 2015). Xu et al. (2015) explained the decreasing Th(IV) sorption with 

increasing acidification of the medium by the partial protonation of the active groups and 

the competition of H3O+ ions for the adsorption side of the sorbent. According to the 

finding of these authors, in the presented experiments (pH of ~4.5) optimal sorption 

conditions can be expected. However, the variations of logKc compared to Lin et al. (2015) 

cannot exclude the pH effect. Similar experimental conditions would lead to an increasing 

comparability. In addition, the commercially available PS used in these experiments could 

have different chemical properties compared to the natural PS.  

According to our results Fucoidan seems to have higher adsorption capacity compared to 

Chondroitin and Pullulan (figure 4.4). In general, functional groups are known to be 

involved in the metal ions adsorption to PS (Alvarado Quiroz et al., 2006).  These 

functional groups react with the 

metal trough chelation and/or 

ion-exchange (Xu et al., 2014 - 

and references therein). As an 

A- type metal, Th(IV) shows a 

high binding constant to 

oxygen-containing functional 

group (Santschi et al., 2006). Xu 

et al. (2014) demonstrated that 

amine and hydroxyl functional 

groups are involved in the 

adsorption of Th(IV) to the 

sorbent. Alvarado Quiroz et al. 

(2006) reported that a possible 234Th binding ligand consists of parts of carboxyl, sulphate 

and/or phosphate groups. In the presented study, a positive correlation between the 234Th 

activity in dpm µmol C-1 and the ratio of C/SO2
-4 of the monomer, which is proportional to 

y = 0.0345x + 0.0174
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the C/SO2
-4 ratio of the whole molecule, was observed (figure 4.7). Fucoidan, which 

contains several sulphated groups compared to Chondroitin and Pullulan shows a higher 

adsorption capacity of 234Th. According to these findings it can be concluded that the 

234Th adsorption increases with increasing number of sulphated groups in the molecule 

which indicates that sulphated groups are involved in the adsorption process. According 

to this experiment, it cannot be excluded that other functional groups are also influence 

the 234Th adsorption. In addition, the very similar logKc values of the PS used in this study 

indicate no varying adsorption preference of 234Th to different functional group 

composition. This is in line with the findings of Quigley et al. (2002). The authors also 

found no significant differences between commercial PS with carboxyl and those with 

sulphate groups. According to the presented results, rather the numbers of functional 

groups (e.g. SO2
-4) determine the 234Th uptake (figure 4.7). Additional experiments should 

clarify the role of colloids of other molecular composition (e.g. amino acids and humic 

acids) and of the numbers of functional groups in the molecule.  

The observation, that 234Th is most likely associated to functional groups in biomolecules, 

is relevant, on the on hand, for the influence of COM in the 234Th scavenging process, as 

discussed below. On the other hand, variation in functional group composition on particle 

surfaces, especially EPS on living cells (e.g. microorganisms and phytoplankton) can lead 

to variations in 235Th uptake capacity which is discussed in detail in section 3.3.2. 

 

4.3.2 Partitioning of 234Th between dissolved and particulate phase in presence of 
polysaccharides 

Some studies reported that a large fraction of 234Th is associated to COM (Baskaran et al., 

1992; Guo et al., 1997). This agrees well with the presented findings of experiment B, 

where a large fraction of the total 234Th pool is adsorbed onto the PS Fucoidan (figure 4.5). 

The results also show an enhanced 234Th adsorption to mineral surfaces in presence of 

Fucoidan. APS are known to rapidly coat non-living particles (Decho, 1990). This leads to 

the assumption of an enhanced 234Th adsorption onto mineral surfaces in the presence of 

APS. Guo et al. (2002b) and Santschi et al. (2003) reported a positive correlation between 

234Th/POC and APS content. The authors postulated that the APS content controls not 

only the amount of 234Th sorption, but also the rates of coagulation of particles. Also Tan 

et al. (2007) found a positive effect of humic and fulvic acid in the Th(IV) adsorption to 

TiO2 nanoparticles. However, as shown in figure 4.5, the particulate 234Th fraction is still 

weak in comparison to the dissolved and colloidal fraction. In this experiment only 

Fucoidan was available to represent the colloidal fraction. Therefore, it can be assumed 
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that not only one component of the total COM pool is responsible for 234Th scavenging to 

particles. More likely the whole mixture of COM leads to an enhanced adsorption of 234Th 

onto mineral surfaces. This agrees with the finding of experiment C and will be discussed 

in the following section 4.3.3. 

As already mentioned above, it is conceivable that the commercial available PS such as 

Fucoidan does not show the properties and chemical composition of natural PS in 

colloidal matter. Therefore, for future investigations, it is recommended to conduct such 

experiments with naturally available fractions of COM (PS, amino acids, humic acids etc.) 

to identify the most important fraction in 234Th adsorption. This would help to understand 

the mechanisms that control 234Th scavenging on molecular level which would lead to an 

improved knowledge for the application of 234Th as particle tracer.  

 

4.3.3 The effect of natural colloids on the adsorption of 234Th onto mineral surfaces 

Marine colloids are important in the marine carbon cycling in the ocean due to their 

dispersing and complexing capacity (e.g. Amon and Benner, 1994). The adsorption 

experiments of 234Th to mineral particles in the presence or absence of COM attested the 

important role of COM in the 234Th scavenging process onto particles. 234Th adsorption is 

significantly higher in the presence of COM, (figure 4.6) which leads to the assumption 

that COM may act as organic carrier phase in 234Th adsorption onto particles. Former 

studies of Honeyman and Santschi (1989) postulated a model according to which 234Th 

adsorbs onto particles by a colloidal intermediate. It is assumed that the association of 

234Th to inorganic particles can be the result from coating of organic, surface active 

substances like COM (Passow et al., 2006). If inorganic particles are coated with an 

organic film, which is mostly negative charged, the surface properties and reactivity of the 

particles are completely changed. Therefore, it can be expected that metal ion (mostly 

positive charged) sorption is modified by associated COM to less reactive particles 

(Santschi et al., 2006 - and references therein). The results of the presented study strongly 

support this assumption. Therefore, it can be assumed that the adsorption capacity to 

mineral surfaces is enhanced in presence of COM and colloidal substances act as an 

organic intermediate in 234Th scavenging.  

On the next level, these findings would have influence on the 234Th based calculations of 

particle or carbon fluxes as well as for data interpretations. It has been observed that the 

C/234Th ratio varied significantly with region, season, water depth and particle size (e.g. 

Guo et al., 2002b; Buesseler et al., 2006, Passow et al., 2006). Mineral surfaces coated with 
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organic, reactive substances could increase the 234Th uptake capacity relative to the 

carbon concentration. Therefore, the C/234Th would vary depending on the abundance, 

composition and reactivity of the COM which are associated to particles.  

According to the presented results, it can be concluded that COM likely acts as an organic 

carrier phase on a molecular level for 234Th scavenging and can enhance the 234Th uptake 

potential of less reactive, inorganic surfaces. Such findings are essential in order to 

improve the interpretation and understanding of biogeochemical cycles of particles and 

their components like carbon. With this information, better models could be constructed 

that are based on radioisotopes for carbon flux and particle dynamics in the ocean.  
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5 PARTICLE DYNAMIC IN THE MECKLENBURG BAY, BALTIC SEA USING 234TH AS 

PARTICLE TRACER 

5.1 Study area and sampling 

During two cruises on 26th August 2014 with the Vessel “Praunus” and 24th September 2015 

with “Goor II”, three stations were sampled along a vertical transect in the Mecklenburg 

Bay, western Baltic Sea (figure 5.1, table 5.1). In August 2014 sediment cores were sampled 

with the Multicorer (MUC) to determine sediment parameter such as: grain size, water 

content, porosity, dry bulk density, carbon content and chlorophyll-a content (not shown 

here, appendix figure I). The sliced sediment samples were stored deep frozen until 

further analyses. In addition, intact sediment cores were transported to the laboratory 

carefully and without disturbing the surface to investigate the critical shear velocity (u*
cr) 

and turbulent kinetic energy (TKE) as well as the adsorption of 234Th onto different 

sediment types in varying hydrodynamic conditions. Until experimental run the cores 

were kept in darkness and in situ temperature.  

During the cruise in September 2015 water and sediment samples were taken in order to 

determine 234Th activities and the calculation of residence time. A Falmouth Scientific Inc. 

(FSI) sensor with a pump mounted on the device was used to measure conductivity, 

temperature and pressure as well as to take water samples. At each station, approximately 

20 litre seawater were collected at the surface and close to the seafloor (<1.5 meter above 

bottom, mab) for 234Th and PC analyses. Sediment cores were taken to determine the 234Th 

activity in the sediment described in section 5.2.5. Therefore, the single slices of 5 to 8 

parallel sediment cores of each station were mixed to minimise the effect of patchiness. 

The sediment samples were stored cool at 6 - 7 °C until analyses.  

Table 5.1: Position and water depth of the three Stations along a vertical transect in the Mecklenburg 
Bay, western Baltic Sea. Temperature and salinity were measured with the FSI sensor and water 
samples were taken from the surface water (SW) and bottom water (BW) column. 

 
Position 

Water 
depth   

Water 
sample Temperature  Salinity 

Station Latitude Longitude (m)   (m) (°C) 
 23.c 

54° 01.599´N 11° 03.905´E 15.2 
SW 0.89 14.86 13.62 

  BW 14.34 15.10 16.41 

23.b 
54° 02.160´N 11° 03.758´E 20.3 

SW 0.88 14.82 13.84 

  BW 19.01 13.73 19.15 

23.0 
54° 03.498´N 11° 03.291´E 22.9 

SW 0.94 14.90 13.97 

  BW 22.30 13.64 20.34 
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Figure 5.1: Map of the Baltic Sea and the Mecklenburg Bay with the Station 23.c, 23.b and 23.0 along a 
vertical transect. Map was processed with Generic Mapping Tool (GMT) 5.1.2 by Stefan Meinecke. 
Bathymetric data bases on GEBCO-08 data. The figure was prepared with Adobe Illustrator CS6 
version 682. 

 

5.2 Method and material 

5.2.1 Characterisation of the sediment  

To characterise the sediment, different sediment parameter was analysed. Grain size was 

estimated by wet sieving of at least 100 g fresh sediment using sieves with mesh width of 

1000, 500, 250, 125 and 63 µm. The median was determined using the cumulative curve. To 

estimate water content (in %), porosity (φ) and dry bulk density, 5 ml of each layer of the 

sediment were sampled, wet weighted and dry weighted. The total carbon content was 

analysed, after sediment drying and pestling, in a Carlo Erba C/N analyser. The analyses 

followed the description in section 3.1.3.1. A detailed description of methods characterising 

the sediment is given by Bale and Kenny (2005) 
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5.2.2 Critical shear stress velocity (u*cr) and turbulent kinetic energy (TKE) 

Research on sediment dynamics and erosion started with the studies of Hjulstrom̈, (1935) 

and Shields, (1936). The critical shear stress velocity (u*
cr) is the threshold value which 

determines the initial movement of particles (incipient motion). The initial sediment 

motion depends on characteristics of the sediment (grain size, density, packing, sorting, 

shape ect.), the fluid (density and viscosity) and the flow conditions (current velocity and 

turbulent stresses) (Miller et al., 1977). The turbulent kinetic energy (TKE) is the mean 

kinetic energy per mass unit accumulated in turbulent flows (Pope, 2000). 

In an annular flume filled with seawater a 10 cm sediment core was carefully inserted (3 

replicates of each station) without disturbing the sediment surface. The current velocity 

was measured with a Vectrino Profiler (Nortek AS) in a 3 cm cell directly above the 

sediment surface which enabled the recording of a current profile. The current profiler 

measures the current velocity and direction (x, y and z) in multiple layers in the water 

column. The principle mechanism of current measuring is based on the doppler shift 

effect where an acoustic signal of a definite frequency is transmitted and the pulse is 

reflected by suspended particles in the water column. This reflection changes the 

frequency of the pulse proportional to the current velocity. The detector receives the 

pulse and the current velocity is calculated.  

In the experiment, current velocity was increased in steps of ~0.8 cm s-1 with an exposing 

time of 5 min. Two thresholds of critical shear stress velocities were defined analogue to 

Ziervogel and Bohling (2003): (1) initial particle transport (u*
cr-initial) and (2) erosion (u*

cr-

erosion) of surface sediment particles. The detection of the thresholds was carried out by 

visual observation using a zoom camera focused on the sediment surface. Initial particle 

transport was noted when particles started to roll over the sediment (bed load transport). 

An erosion was reached when particles from the sediment surface were resuspended into 

the overlying water. The calculation of the shear stress velocity (u*) and TKE was carried 

out by Michelle Dietz using the software MATLAB and is described in the Master thesis of 

Michelle Ditze (2015). 

The TKE was calculated as follows:  

 

𝑇𝐾𝐸 =  
1

2
∙ 𝑝 ∙ (𝑢′2̅̅ ̅̅ + 𝑣′2̅̅ ̅̅ + 𝑤′2̅̅ ̅̅ ̅)                                              (5.1) 

 

, where p is the density of the water, u’, v’ and w’ are the turbulent fluctuations in x, y and 

z direction of the coordinate system.   

The shear stress velocity (u*) was calculated using the following equation:  
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𝑢∗ = √
𝑝

𝜏0
                                                                                (5.2) 

 

, where τ0 is the shear stress and can be calculated as τ0 = 0.2 ∙ TKE.  

 In addition to the experimental data the results were compared to theoretical u*
cr (u*

cr-

Shields) based on grain size and the Shield parameter as described in Ziervogel and Bohling 

(2003) and largely followed by  Soulsby and Whitehouse (1997). The theoretical critical 

shear stress velocity was calculated as described in Ziervogel and Bohling (2003):  

 

𝑢𝑐𝑟−𝑆ℎ𝑖𝑒𝑙𝑑𝑠
∗ = √

𝜃𝑐𝑟∙𝑔∙(𝑝𝑠−𝑝𝑤)∙𝑑

𝑝𝑤
                                                             (5.3) 

 

θcr – Shield parameter (dimensionless) 

g – Gravity constant (9.81 m s-1) 

ps – Density of the sediment (for quartz sand: 2.65 kg m-3) 

pw – Density of the water (kg m-3) 

d – Mean grain size (m) 

 

The Shield parameter for cohesionsless grains was calculated as follows:  

 

𝜃𝑐𝑟 =  
0.3

1+1.2 ∙𝐷∗
+ 0.055(1 − 𝐸𝑋𝑃[−0.02 ∙ 𝐷∗])                   (5.4) 

 

, with the dimensionless grain size 𝐷∗ = (
𝑔∙𝑝′

𝑣2 )
1/3

∙ 𝑑 (5.5), where p’ is the relative density 

(dimensionless), 𝑝′ = (𝑝𝑠 − 𝑝𝑤) 𝑝𝑤⁄  (5.6) and v is the kinematic viscosity of water (10-6 m² 

s-1). 

 

5.2.3 234Th adsorption onto different sediment types in varying hydrodynamic 
regimes: Resuspension-deposition-experiment 

For the determination of 234Th adsorption onto different sediment types in varying 

hydrodynamic regimes annular flume experiments were conducted. One day before the 

experiment, three 10 cm sediment cores were carefully inserted in the annular flume filled 

with 77 - 78 L in situ water (figure 5.2). The flume was started at a very weak velocity top 

allow for careful mixing of the water mass. Before starting the experiment, three replicate 

water samples of 0.7 – 1 litre were taken for total particulate matter (TPM) and carbon and 



Particle dynamic in the Mecklenburg Bay, Baltic Sea 
____________________________________________________________________________________________________________________________________________________________________________ 

-48- 
 

nitrogen analyses (‘Blank 

filters’). An appropriate amount 

of uranium standard was added 

to increase the natural 234Th 

activity with 14.8 dpm l-1 (see section 2.2). The flume was covered with a black foil 

overnight to prevent additional growth of algae. The next day, before starting the 

experiment, 3 litre of water were taken to determine the initial particulate and dissolved 

234Th activity. The current velocity was adjusted individually for each sediment type to the 

previously determined different current velocities: 1. just beyond the u*
cr-initial and 2. 

beyond the u*
cr-erosion (see section 5.3.2). Samples for 234Th, TPM concentration and PC 

content were collected in varying time intervals over a period of 3 h. Figure 5.3 shows the 

experimental sampling scheme. During the first 1 h (Δt1) of the experiment the sediment 

surface was resuspended (‘resuspension phase’). At the end of that phase water samples 

for PC (3 X 0.5 litre) and particulate and dissolved 234Th (1 X 5 litre) were collected and the 

flume was switched off. After 

stopping the current velocity 

samples for 234Th and PC 

were taken over increasing 

time intervals (30 min, 1 h, 2 

h and 3 h). This phase is 

called ‘Deposition phase’ 

(Δt2 - Δt5). 234Th activity, 

TPM concentration and PC 

content were analysed as 

described in section 2.1 and 

3.1.3.1.  

Due to the lack of time and 

logistic possibilities 234Th 

subsamples were analysed only for one experiment (23.0 at current velocity of initial 

resuspension). The resulting variabilities in 234Th activity were applied as standard error 

Figure 5.2: Sampling scheme of the experiment including the 
current velocity just beyond the u*cr-initial and beyond u*cr-erosion 

over time and the points of sampling (t0-t5) as well as the time 
intervals between sampling (Δt1-Δt5). The experiment was split 
into two phases, the ‘resuspension’ and ‘deposition’ phase. 

 

Figure 5.3: Experimental set-up of 
the annular flume experiments. 1: 
Turbidity-meter, 2: 10 cm sediment 
cores, 3: Second level, 4: Acoustic 
Doppler Velocitymeter (Vectrino 
profiler), 5: Motor, 6: Notebook for 
data record. 
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for all other experiments. Therefore, the errors (based on error propagation) of the 

experiment are a combined effect of this standard error for the 234Th measurements and 

the individual error of the TPM measurements of each sample (3 replicates).   

Unfortunately, it must be assumed that the adsorption process during the resuspension 

and deposition phase was not completed. There were two processes which interfered with 

each other, the continued adsorption of dissolved 234Th to particles and sedimentation/ 

deposition of the particles. Therefore, the particle flux (in g m-2 h-1) and 234Th flux (in dpm 

m-2 h-1) was calculated within each time interval (Δt1-Δt5) according to the following 

equations: 

 

𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑓𝑙𝑢𝑥 =
(𝑇𝑃𝑀𝑡𝑛−𝑇𝑃𝑀𝑡𝑛−1)∗ℎ

(𝑡𝑛−𝑡𝑛−1)
                                                   (5.7) 

 

, where TPMtn and TPMtn-1 are the total particulate matter (TPM) concentration at the 

time points t0-t5 and h represents the height of the water column. The 234Th flux was 

calculated by multiplication of the particles flux with the average of the associated 

particulate 234Th activities.  

 

5.2.4 234Th activity, TPM and PC in the water column 

After sampling, the water samples were acidified with concentrated HCl to a pH < 2 to 

prevent growth of bacteria and phytoplankton and adsorption of 234Th onto container 

walls. Before analyses the pH was adjusted to 8 - 9 with a respective volume of ammonia. 

For particulate 234Th (234Thp) analyses water samples were centrifuged using a continuous 

flow centrifuge (Heraeus Contifuge Stratos Centrifuge from Thermo Scientific TM) at the 

Leibniz Institute of Baltic Sea Research. The remaining particulate material in the rotor 

(Titanium – Rotor 3049) was carefully resuspended and filtered through 142-mm-diameter 

polycarbonate filters (0.4 µm pore width) at ~200 mbar underpressure. Dissolved 234Th 

(234Thd) was co-precipitated in 10 litre of the filtrate by formation of MnO2 and subsequent 

filtration at ~400 mbar overpressure. The activity of 238U was calculated according to Chen 

et al. (1986).For detailed methodical information see section 2.1. 

The PC content in 3 replicates of 1 litre water sample was determined as described in 

section 3.1.3.1. 
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5.2.5 234Th activity in the sediment and the mixing coefficient (Db) 

To determine sedimentary 234Th activity the leaching method was applied. In contrast to 

the total dissolution of the sediment using HNO3/HF the leaching method extracts the 

radionuclide associated with organic matter and which are adsorbed onto the surface of 

the mineral (Siddeeg et al., 2014). Siddeeg et al. (2014) reported specific activities of 234Th 

extracted by leaching, relative to the total dissolution in a range of 30 - 75 %. In this study, 

the research focus is on particle associated 234Th and therefore the use of the leaching 

method seemed to be sufficient.  

Sedimentary 234Th was determined according to a combined procedure reported by Aller 

and Cochran (1976), Anderson and Fleer (1982), Fleer (1991) and van der Leoff and Moore 

(1999) and is described in the Ph.D thesis of Robert Turnewitsch (1999).  

A subsample of the sediment samples was dried overnight at 60 °C and grounded in an 

agate mortar. An appropriate amount of dry sediment was weighted to 46 ml FEP 

centrifuge tubes with ETFE screw closure. To determine the extraction efficiency during 

the procedure 1 ml of a 10 dpm ml-1 230Th spike was added and the sediment was dried 

again over night. Each sample was leached with 33 ml 6 M HCl at 90°C for 4 h and the 

sediment-acid mixture was mixed every half an hour. The suspension was centrifuged and 

the supernatant was decanted into 90 ml PFA cups. The remaining sediment was washed 

with 10 ml 6 M HCl and the supernatant was also transferred into the cups. The 6 M HCl 

solution was evaporated to dryness using a heating plate and the residue was dissolved in 

8 ml 6 M HCl overnight. The sample was transferred to centrifuge tubes and 25% NH4OH 

was added until a stable precipitate was formed (at pH of 8 - 8.5). The precipitation is 

based on formation of Fe(OH)3
 and contains thorium and uranium. Natural sediment 

should contain enough Fe to precipitate thorium. However, for reagent blanks, where not 

enough Fe is expected to for the precipitation, 50 of µl purified FeCl3 solution (50 g l-1 Fe3+) 

was added. For the preparation of the purified FeCl3 solution 121 g Fe(Cl)3 • 6 H2O was 

dissolved in 500 ml 8 M HCl. In a glass separatory funnel, the solution was extracted 3 

times in 167 ml isopropylether. The isopropylether phase containing FeCl3 and FeCl3 was 

back extracted 2 times with 250 ml 0.1 M HCl. The Fe(OH)3 precipitate of the samples was 

washed twice with 16 - 20 ml deionised water and dissolved again in 6 M HCL. The 

precipitation and washing procedure was repeated once and the precipitate was dissolved 

with 9 M HCl.  

The ion exchange column (20 cm length, 0.8 cm inner diameter) was filled with AG1 X8 

100 - 200 mesh anion exchange resin and conditioned with at least 30 ml (3 X column 

capacities) of 9 M HCl (chloride column). The sample was added and the column was 



Particle dynamic in the Mecklenburg Bay, Baltic Sea 
____________________________________________________________________________________________________________________________________________________________________________ 

-51- 
 

rinsed with 20 ml 9 M HCl. Uranium and iron were trapped on the resin and the eluate 

contains thorium. The thorium eluate was evaporated and dissolved in 20 ml 8 M HNO3
 

overnight. The following ion exchange column (nitrate column) was prepared in the same 

way as the chloride column but 8 M HNO3 was used for conditioning. In the nitrate form, 

the anion exchange resin collects thorium, while most other elements including lead and 

sea salt pass through. Therefore, the eluate was discarded and the column was rinsed with 

9 M HCl where thorium was removed from the resin and was collected. The HCl eluate 

was evaporated to dryness and dissolved in 8 M HNO3 overnight. This step was repeated 

by using a short nitrate column (10 cm length) and the HCl eluate was evaporated again 

and the remaining material was dissolved in 8 M HNO3 overnight. The HNO3 solution was 

evaporated to a small drop. The small drop was taken up with 1 ml of 0.01 M HNO3 and 

transferred into the electroplating cell. The cup was rinsed with 2 X 1 ml 2 M NH4Cl buffer 

(pH 2) and 1 ml of saturated ammonium-oxalate solution. Electroplating was conducted 

on silverplanchets with 23 mm diameter according to van der Loeff and Moore (1999).  

234Th activities were measured via beta counting, while 230Th activities were counted in an 

alpha spectrometer. Beta counter and alpha spectrometer were crosscalibrated by Robert 

Turnewitsch during his Ph.D thesis (1999) using 238U planchets, where 238U was in secular 

equilibrium with 234Th. The cpm ratio between beta and alpha counting was 2.162 ± 0.065. 

It meant that for each 238U count in the alpha spectrometer 2.162 234Th counts in the beta 

counter could be measured. The crosscalibration is necessary for the calculation of the 

correction factor (C). The correction factor consists of the activity lost during leaching 

(extraction efficiency) as well as the counting efficiency of the beta counter und alpha 

spectrometer and the crosscalibration following the equation:  

 

𝐶 =  
𝑐𝑝𝑚

𝛼− 𝑇ℎ230  𝑠𝑝𝑖𝑘𝑒

𝑑𝑝𝑚
𝛼− 𝑇ℎ230  𝑠𝑝𝑖𝑘𝑒

∗
𝑐𝑝𝑚

𝛽− 𝑇ℎ234  𝑝𝑙𝑎𝑛𝑐ℎ𝑒𝑡

𝑐𝑝𝑚
𝛼− 𝑈238  𝑝𝑙𝑎𝑛𝑐ℎ𝑒𝑡

                           (5.8) 

 

𝐶 =  
𝑐𝑝𝑚

𝛼− 𝑇ℎ230  𝑠𝑝𝑖𝑘𝑒

𝑑𝑝𝑚
𝛼− 𝑇ℎ230  𝑠𝑝𝑖𝑘𝑒

∗ 2.165                                                  (5.9) 

 

, where the sample specific cpmα-230Th spike to dpmα-230Th spike represents the measured 230Th 

activity (cpm) of the spike in the alpha spectrometer and the added 230Th activity (dpm). 

The cpmβ-234Th planchet to cpmα-238U planchet expresses the measured 234Th activity in beta – 

counter to the measured 238U activity in the alpha spectrometer of the 238U planchet 
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(crosscalibration: 2.162 ± 0.065). The measured sample activities of 234Th (in cpm) were 

divided by the correction factor (C). 

Sedimentary excess 234Th (234Thex) is defined as the 234Th unsupported by the decay of the 

parent 238U. It is supplied by particles scavenging 243Th from the overlying water column 

and transporting into the sediment. 234Thex was calculated by subtracting the activity 

supported (234Thsup) by its parent nuclide, 238U, from the total Thorium activity in the 

sample. Activities of 238U were not analysed but in most studies 234Thex was reported within 

the uppermost sediment layer. It can be assumed that in coastal water sediments no 

234Thex could be found below 5 cm (e.g. Aller and Cochran, 1976; Gerino et al., 1998; 

Baumann et al., 2013). Therefore, the activity in the deepest sediment layers were assumed 

to be 234Thsup and were subtracted from the total measured activity to calculate 234Thex. 

 

5.2.6 Analytical problems - The ingrowths of bismuth-212 
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Figure 5.4: Station 23.c (0.5-1 cm - leaching) as an example of the decay curve of beta 
activity for the original measured activities and the 212Bi corrected decay within 
~170 days (a). The beta activity of 212Bi over ~170 days, that grows in by the decay of 
228Th of the sample (b). 

During repeated 234Th measurements of the samples an unusual 234Th decay was observed. 

Figure 5.4-a shows an example of the beta decay curve of the original measured activity 

(blue dots) of station 23.c 0-0.5 cm. The activity increases during the first 50 days after 

sampling and afterwards it decreases slightly. It is strongly suggested that another nuclide 

must have grown in. This assumption is supported by the mass spectrometer plot of this 

example shown in figure 5.5. Not only the peak of the 230Th spike could be found but also 

two other additional main peaks. It can be expected, that after the leaching procedure and 

the separation steps using columns, most other elements, except thorium, have been 
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removed. According to the emitted energy, two additional natural thorium isotopes (232Th 

and 228Th) could be identified in the samples. 

 

Figure 5.5: The mass spectrometry plot of station 23.c (0.5-1 cm) as an example of leached sediment 
sample. 232Th, 230Th and 228Th were identified according to the emitted energy. 

The identified thorium isotopes decay by emitting alpha particles and therefore had no 

influence on the beta signal of 234Th. However, the ingrowths of some beta emitting 

progenies of 232Th and 228Th could have disturbed the 234Th signal. For the identification of 

the disturbing nuclides it has to be considered that 1. the progeny emitted beta particles, 

2. the emitting beta energy is high enough for detection and 3. the half-life of nuclides of 

the decay series is short enough to allow beta emitting daughter nuclides could have 

grown in during ~170 d of the measurement period. The influence of the beta emitting 

progenies of 230Th and 232Th within the decay series should be negligible due to the long 

half-life of 230Th and 232Th itself (figure 5.6). However, within the decay series of 228Th 

bismuth-212 (212Bi) could be identified as a beta particle emitting progeny (figure 5.6) with 

an emitting energy (2.252 MeV) similar to that of 234Th daughter 234Pa (2.195 MeV). Waples 

at al. (2003) described that one of the major problems associated with beta counting of 

234Th was the ingrowths of beta producing progeny from 228Th. Therefore, it is highly likely 

that the ingrowths of 212Bi is the main cause for the unusual decay of 234Th samples. In 

figure 5.4-b it is shown that the activity of 212Bi reaches a maximum after ~24 days and 

decreased slightly after that. This agrees with the decay of the beta activity of the sample 

(figure 5.4-a, blue dots). The 212Bi activity (in cpm) of each time point of measurement was 

calculated from the activity of 228Th measured in alpha spectrometer. 212Bi decays with an 

emission of alpha (36 %) and beta (64 %) particles. However, 212Bi emits different beta 

particles with varying energy level. The low energy particles are not available for 

detection. It is assumed, that only the high energy beta particles can be detected. That 
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means only 55.4 % of total 212Bi activity decays with high energy beta particles (Brown, 

2005; Martin, 2007).  

All beta counter measurements were corrected for the ingrowths of the high beta energy 

particles of 212Bi (55.4 %). In most cases the corrected 234Th decay curves are significantly 

more suitable (figure 5.4-a, red dots). Therefore, 212Bi seems to represent the largest 

fraction of the ingrowths of other nuclides. However, additional disturbing nuclides which 

influence the 234Th beta signal cannot be excluded and therefore some uncertainties 

remain. The problem of ingrowths of other nuclides is not be noticed for a two-point 

measurement (start and background) of the 234Th activity. It is therefore recommended to 

measure beta activity at least 3 - 4 times during the decay period.  

In this study, all sedimentary 234Th data are corrected for the ingrowths of 212Bi. 

 

Figure 5.6: Thorium- and uranium decay series are illustrated as well the 
type of radioactive decay and the half-life of the nuclide. Source: world 
nuclear association (http://www.world-nuclear.org/information-library/ 
safety-and-security/radiation-and-health/naturally-occurring-radioactive-
materials-norm.aspx (from: 24.05.2016)) 

 

5.2.7 The mixing coefficient (Db) 

The particle mixing intensity can be estimated by modelling the sediment distribution of 

a particle-reactive radionuclide, such as 234Th. In this study the models of Soetaert et al., 

1996 were used to quantify sediment mixing. These models consist of hierarchical families 

of local and non-local exchange models, where each member of the hierarchy includes all 
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processes of the previous model and one or two additional processes. The models are 

based on the following assumptions: (1) steady state, which means a constant supply of 

234Th; (2) continuous nonlocal mixing and (3) no porosity gradients. In addition the model 

needs the decay rate of 234Th (10.5 y-1) and the sedimentation rate (western Baltic Sea 

0.2 cm y-1, Leipe et al. (2005) and references therein) and works on the principle of the 

best fit for the simplest exchange model.  

The distribution of the tracer in the simplest model (model 1) is influenced only by the 

flux, sedimentation rate and the decay. Mixing by organisms is not considered. Model 2 

adds the diffusive exchange but no nonlocal mixing. The following model added nonlocal 

processes and different conditions were considered (Soetaert et al., 1996).   

In this study, the best fit for the sediment profiles was used to calculate the Db from each 

sediment. The results were presented as measured 234Thex data compared against profiles 

generated with the best fit model.  

 

5.3 Results  

5.3.1 Hydrography and sediment characteristics of the study area 

 

Figure 5.7: Temperature and salinity profile at the stations along a transect in the 
Mecklenburg Bay as well as the depth dependent density plot. The point data were 
extrapolated within the sections. 

In September 2015, the temperature in the water column varies from 13.4 in the bottom 

water column to 15.2 °C at the surface. At all stations, the salinity increases towards the 
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bottom. For example, at Station 23.0 the salinity increases with water depth from 13.9 at 

the surface to 20.4 in the bottom water column (figure 5.7). Depending on water depth 

the bottom water salinity varies between the stations from 16.4 at station 23.c to 20.3 at 

station 23.0 (table 5.1, figure 5.7). The density vs. depth profile shows a mixed surface 

water mass down to ~8 m, followed by a strong density gradient and an additional mixed 

bottom water mass to ~1.5 mab. A stratification of the water column is governed by the 

pronounced salinity/density gradient which is produced by episodic saline inflow from 

the North Sea into the basins of the Baltic Sea. 

According to the sediment parameters, the stations differ clearly from each other (table 

5.2). Station 23.c shows low water content, high dry bulk density, low carbon and nitrogen 

content as well as a high median grain size. This represents typical medium sand 

sediment. In contrast station 23.0 shows a high water content and low dry bulk density 

and low median grain size. According to the Udden-Wentworth-scale (Wentworth, 1922) 

this sediment can be classified as a silt sediment. The water content and organic content 

increase with increasing distance to the coast, while median grain size and dry bulk 

density decrease. Therefore, these stations represent three different sediment types of the 

Baltic Sea. According to these results it can be expected that there are also differences in 

234Th uptake potential.  

Table 5.2: Summary of the sediment characteristics of the three study sides in the Mecklenburg Bay. 
The ranged values represent the minimum and maximum values of the sediment profile. 

Station 
Median 

grain size 
(µm) 

Sediment 
type 

Water 
content (%) 

Dry bulk density 
(g cm-³) 

C-content 
(mg g-1 dry 

Sed.) 

N-content 
(mg g-1 dry 

Sed.) 

23.c 330.37 
medium 

sand 
29.5 - 17.5 1.63 - 1.27 3.32 - 1.50 0.42 - 0.19 

               

23.b 147.25 fine sand 53.8 - 22.9 1.48 - 0.65 10.41 - 4.39 1.02 - 0.50 
               

23.0 44.76 silt 83.1 - 73.0 0.31 - 0.19 53.87 - 48.08 6.48 - 5.74 
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5.3.2 Thresholds of sediment motion  

Figure 5.8 shows the results of the determination of the measured u*cr compared to the 

calculated u*cr according to Shields (based 

on grain size) as well as the TKE of the 

three stations in the Mecklenburg Bay. 

The initial particle motion can be 

observed at 0.27 - 0.55 cm s-1, while 

erosion is determined between 0.49 and 

1.04 cm s-1. Both, the initial particle 

motion and erosion decrease with 

increasing distance to the coast. In all 

cases the calculated u*cr of Shields is 

somewhat higher compared to the 

measured values.  

For TKE no clear trend can be observed. 

Both initial and erosion TKE of station 

23.c are in the same range of 0.15 ± 

0.03 J m-3. The initial TKE decreases with 

increasing water depth, while highest 

TKE for erosion is found at station 23.b 

with 0.33 ± 0.11 J m-3. At station 23.b and 

23.0 TKE increases towards erosion.  

 

5.3.3 Resuspension-deposition-experiment 

As shown in figure 5.9, during the resuspension phase (Δt1, figure 5.3) the particulate 

matter concentration strongly increases. Highest values of particulate matter (44.0 ± 

1.1 mg l-1) in suspension is found during strong erosion conditions of station 23.0. The 

particle concentration strongly decreases within 30 min after the resuspension phase (Δt2, 

figure 5.3) with a decreasing rate in the rage of 0.03 to -1.17 mg min-1. This rate decreases 

over time to almost ~0 (Δt5: 0.003 - 0.02 mg min-1) at the end of the experiment. In 

general, decreasing rates during experiments under erosion conditions are higher 

compared to initial resuspension. After 3 h, the particle concentration is in the range of 2.1 

to 4.3 mg l-1. In relation of the decreasing particle concentration, a clear trend between the 

stations cannot be observed.  

Figure 5.8: 5.8-a: Measured critical shear stress 
velocity (u*cr) of initial motion of particles and 
erosion as well as the calculated u*cr according to 
Shields at three stations in the Mecklenburg Bay. 
5.8-b: Turbulent kinetic engery (TKE) of initial 
resuspension and erosion flow regime for the 
sediments. The errors indicate SD. 
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Figure 5.10 shows the particle – and 234Th fluxes during the resuspension phase (Δt1, figure 

5.3) of the three sediment types at current velocity of initial resuspension and significant 

erosion. In general fluxes are increased at erosion condition velocities. Station 23.0 shows 

significant higher particle and 234Thp fluxes at both initial and erosion flow conditions 

with maximum values of 12.1 ± 1.1 g m-2 h-1 and 234Th fluxes 26681 ± 2894 dpm m-2 h-1 

followed by 1.8 ± 0.3 g m-2 h-1 and 9205 ± 1790 dpm m-2 h-1 at station 23.b and 0.7 ± 0.1 g m-2 

h-1 and 2344 ± 442 dpm m-2 h-1 at station 23.c.  
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Figure 5.9: The total particulate 
matter (TPM) concentration over 
time during the resuspension 
and deposition phase (figure 5.3) 
of three stations along the 
transect at the Mecklenburg Bay, 
Baltic Sea. The closed and 
opened Symbols of each type 
represent two different current 
velocities (initial resuspension 
and significant Erosion). Errors 
indicate SD TPM concentration. 
of 
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Figure 5.10: Particle- and particle-associated 234Th (234Thp) fluxes at two different current 
velocities of initial resuspension and significant erosion of the sediment surface of three 
stations along the transect at the Mecklenburg Bay, Baltic Sea. Errors of particles fluxes 
are based on the error propagation of SD of the total particulate matter (TPM). Errors of 
234Thp fluxes result from error propagation of the standard 234Th error and the SD of the 
TPM concentration for individual samples (see section 4.2.3). 

The distribution coefficient (Kd) describes the partitioning of particulate and dissolved 

234Th in relation to the particle concentration. Figure 5.11 shows the logKd during the 

resuspension phase at the three stations. LogKd does not vary between initial resuspension 

and erosive current conditions at the sandy station and is in the same range from 5.7 ± 0.8 

to 6.1 ± 0.5. Station 23.0 shows a somewhat lower logKd of 4.6 ± 0.4 and 5.3 ± 0.5. The 

logKd of erosion is slightly weaker than the initial sample. However, all tests for 

significances (ANOVA on ranks) between initial and erosion samples of the station show 

no significant differences.  

 

 

5.3.4 234Th distribution in the Mecklenburg Bay 

5.3.4.1 234Th activities in the water column 

Activities of particle associated 234Th (234Thp), dissolved 234Th (234Thd), 238U as well as the 

ratio of total 234Th (234Thtot) and 238U in the water column are shown in figure 5.12. The 

salinity-derived activities of 238U increase from 0.968 dpm l-1 at the surface to 1.417 dpm l-1 
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Figure 5.11: The distribution 
coefficient (logKd) at the three 
stations during the resuspension 
phase of the experiment. Errors are 
based on the error propagation of 
the standard 234Th error and the SD 
of the TPM concentration for 
individual samples (see section 
4.2.3).  Significance levels P > 0.05. 
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in the bottom water column. In general, 234Thp and 234Thd activities are very similar at all 

stations and sampled water depths. 234Thp range from 0.17 dpm l-1 to 0.25 dpm l-1 and 234Thd 

varies from 0.35 dpm l-1 to 0.48 dpm l-1. In the surface water, station 23.0 shows a slightly 

increased 234Thd activity. 

 At all sampled water depths, the ratio of total 234Th and 238U activities is well below 1 and 

ranged from 0.49 to 0.68. This means that strong radioactive disequilibria are pronounced 

in the whole water column.  

 

5.3.4.2 Sediment excess 234Th and particle mixing  

The results for sedimentary 234Th are shown in figure 5.13. In this study, the supported 

234Th was not directly measured. However, as described in section 5.2.5 it is assumed that 

the lowermost sediment layers only comprise the supported 234Th. For station 23.c and 

23.b there are some problems with this assumption, due to the strong minimum of total 

measured activity in 1 - 2 cm sediment depth followed by an increasing and relatively 

constant activity down to 10 cm (figure 5.13). If it is assumed that the lowermost sediment 

layers represent only supported 234Th and this value would be subtracted from the total 

activity, it is likely that excess 234Th would be underestimated. Kersten et al (2005) showed 

varying 238U activity in the sediment with lower activities in the surface sediment by 

almost a half. Boryto and Skwarzec (2014) and Skwarzec et al (2004) found that in the 

southern Baltic, vertical diffusions processes of uranium from the sediment into the 

bottom water, through the pore water, occur. Aller and Cochran (1976) discussed the 

phenomenon of increasing uranium concentration with sediment depth. The authors 

described uranium depletion in the surface sediment due to oxygenation effects. Under 

oxygenated conditions uranium exist in the dissolved form of U6+ compared to reduced 

conditions in the deeper sediment layers, where uranium is reduced to U4+ by 

precipitation of Fe or Mn hydroxides. In this state, it is almost insoluble and cannot be 

exchanged with the overlaying water by diffusion, while the soluble form of uranium can 
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be exchanged with the overlying water column. In this study, sediments of station 23.c 

and 23.b are sandy and most likely permeable. It is strongly assumed that such diffusive 

exchange processes also took place at these sites and led to a depletion of 238U in the 

superficial layers of the sediment. As a result of increasingly reduced conditions, the 238U 

activities increase in the deeper sediment (figure 5.13). Therefore, within the uppermost 

2 cm of the sediment the minimum is assumed to represent 234Thsup, while below 2 cm the 

last data points are set to be 234Thsup. At station 23.0 it is assumed that the 238U depletion 

in the uppermost sediment layer does not exist due to the impermeable character of this 

sediment type and the expected reduced conditions for these sediment type. This 

assumption is supported by the absence of a minimum within the topmost 2 cm of total 

activity found at station 23.0. The resulting 234Thex of 23.c and 23.b are highest at the 

sediment water interface of 0.16 and 0.31 dpm g-1 and decrease with increasing sediment 

depth down to 1.5 cm depth. At station 23.0 and 23.b a decrease of 234Thex with increasing 

depth and a subsurface maximum between 3 - 5 cm and 3.5 - 8.75 cm is observed.  

Highest 234Thex activity of 0.37 dpm g-1 is found at the sediment water interface of station 

23.0. In general, this station shows highest 234Thex activities per g dry sediment (figure 

5.13).  

 

Figure 5.13: 234Th profiles of the sediment from three stations along the transect in the Mecklenburg 
bay. The white striped area indicating supported 234Th and the dark grey area shows the excess 234Th. 
Total measured activities are represented as filed black dots. The inventories are calculated from the 
dry bulk density and are shown in each plot.   

234Thex inventory was calculated based on the dry bulk density and the thickness of the 

sediment layer. The inventory of 234Thex increases from station 23.0 to 23.c (figure 5.13).  

The results of describing particle mixing using the models of Soetaert et al (1996) are 

shown in figure 5.14. The best fit for station 23.c and 23.b is model 3. Model 3 includes not 

only the sedimentation, the decay and diffusive mixing, but also the nonlocal injection of 

the flux at a depth L, where two layers are considered (from 0 to L and from L to ∞) 

(Soetaert et al., 1996). For station 23.0 the best fit is given for model 1 (figure 3.14). This 
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model describes that the distribution of the tracer is influenced only by the flux from the 

overlying water column, the sedimentation rate and the decay of the tracer. In model 1 the 

biological activities are not considered. However, the 234Thex sediment profile shows two 

strong subsurface maxima in 1 - 2 cm and 2.5 - 6 cm, which indicates biological activity. 

The model of Soetaert et al (1996) cannot handle with two subsurface maxima. It is 

assumed that the model 1 is not suitable for station 23.0 to describe the distribution of 

234Th and possible artefacts seem to exist. Therefore, the best fit for the simplest model is 

applied for Model 3 at this station.  

In general, the Db values increase with increasing water depth. Highest Db of 2.35 cm² y-1 is 

found at station 23.0 followed by 23.b and 23.c. The injection flux is highest at station 23.b 

followed by 23.0 and 23.c. The measured and modelled profiles fit very well at station 23.c 

and 23.b. For 23.0 some discrepancy can be found between modelled and measured 234Thex 

due to the second injection depth as described above. Therefore, it can be assumed that 

the calculated Db of 2.35 cm² y-1 is somewhat underestimated.  

 

Figure 5.14: The observed and modelled 234Thex activity using the models of Soetaert et al. (1996) as 
well as the mixing coefficient (Db) and the injection flux (FluxInj) at the three station in the 
Mecklenburg Bay. The Db and FluxInj were calculated from model 3. 

 

5.4 Discussion  

5.4.1 The erodibility of the sediment in the Mecklenburg Bay   

The morphology of the western Baltic seafloor is characterised by sills and basin 

structures formed during the Pleistocene and Holocene transgression. The Mecklenburg 

Bay is a basin with a maximum depth of 28 m (Köster and Lemke, 1996). The distribution 

of the sediments in the Baltic Sea is affected by multiple flooding and draining events 
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resulting from the different postglacial uplift of the basins (Niedermeyer et al., 2011). The 

major source of sediment material in the south-western Baltic Sea is glacial till. The input 

of sediment into the Baltic is mainly caused by erosion of the coast followed by river 

discharge and air dust deposition as a minor part (Köster and Lemke, 1996). The 

distribution pattern of the sediment, especially the grain size is controlled by erosion, 

transport and deposition regimes. Zones of fine sediment accumulation are located below 

the wave influenced level. In shallow coastal water intensive sediment transport takes 

place due to the high hydrodynamic regime (Tauber and Lemke, 1995) which leads to a 

sorting towards coarser sediments.  

The results of this study (figure 5.8) agree very well with the reported u*cr of Ziervogel and 

Bohling (2003) for stations in the Mecklenburg Bay between Kühlungsborn and 

Warnemünde. To the best of my knowledge, this study is the only one which 

experimentally determined u*cr in the Mecklenburg Bay. The authors found initial particle 

transport of the fine sand sediment (similar to the station 23.b of the presented study) in a 

similar time of year in the range of 0.35 to 0.6 cm s-1 and the erosion thresholds of 0.7 to 

0.8 cm s-1. Their findings are in the same range as the observed values (u*cr-initial: 0.45 cm s-

1; and u*cr-erosion: 0.78 cm s-1) from station 23.b of the presented study. At their fine 

sediment (mud) station (comparable to station 23.0 of this study) initial particle motion 

ranged from 0.3 to 0.5 cm s-1 and mean erosion was detected at 0.62 cm s-1 which agrees 

very well with the finding of this study of 0.27 cm s-1 for u*cr-initial and 0.49 cm s-1 u*cr-erosion 

at station 23.0. 

The strong discrepancy between the measured and the calculated thresholds are likely 

due to the existence of a fluffy layer on the sediment surface at all stations. Shields 

theoretical values are calculated only from the grain size and the very labile and loose 

bound particles are not being considered. Fluff material is presented at the sediment-

water interface and consisted mainly of detrital particles settled from the overlying water 

(Lund-Hansen et al., 2002). In contrast to the underlying sediment (in this study sand or 

silt), the fluff material can be resuspended at lower critical shear stress velocities 

(Stolzenbach et al., 1992; Leipe et al., 2000). Therefore, the low critical shear stress 

velocity of this study can be explained by the presence of a fluffy layer located on the top 

of the sediment surface. Table 5.3 shows the comparison of critical shear stress velocities 

of fluffy material with other studies. The measurements of critical shear stress velocities of 

these studies showed that the thresholds are in same range for u*cr-erosion presented in this 

study (figure 5.8). 
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Table 5.3: Summary of critical shear stress velocities of fluff material from different studies at varying 
locations. 

u*cr 
(cm s-1) 

Location/Experiment Method Citation 

initial  
0.3-0.5 
erosion 
0.5-0.8 

south-western Baltic sea annular flume this study 

0.4-1.2 
NW western European continental 

margin 
erosion chamber Thomsen and Gust, 2000 

0.4-0.8 
sieved sediment and 

phytodetritus 
laboratory channel 

flume 
Beaulieu, 2003 

0.4-0.5 south-western Baltic Sea erosion chamber Jähmlich et al., 2002 

 

At the silt station 23.0 a strong and at least 0.5 cm thick fluff layer was observed while the 

fluff of the sandy station was rather represented as loose flocks on top of the sediment 

surface. Additionally, at the silt station the erosion of large aggregates could be observed. 

Thomsen and Gust (2000) showed that the erosion probability increases with increasing 

particle size. Therefore, it can be concluded that the large aggregated particles at station 

23.0 eroded by lower u*cr as shown in figure 5.8. 

Based on the results of this study it is concluded that the calculated u*cr of Shields (based 

on the mean diameter of the sediment) compared to the measured u*cr could lead to 

variations in sediment transport due to the presence of a fluffy layer which can be 

resuspended in reduced flow conditions. Especially the application of models to describe 

transport of sedimentary material (e.g. Kuhrts et al., 2004; Bobertz et al., 2009), which 

required the critical shear stress velocity, could be underestimated if fluff material is 

present on the natural sediment surface. Based on model studies, Bohling (2005) reported 

an erosion risk during storm events in the shallow water areas of the Mecklenburg bay of 

up to 87 % and less than 10 % in areas of water depth of more than 23 m. This author 

ignored the fluffy layer in the model run and only the underlying sediment was referred to 

surface sediment. According to the results of this study and the previous study of 

Ziervogel and Bohling (2003) it can be assumed that the erosion risk would increase if the 

fluffy layer is included in the model. It is recommended that thresholds of sediment 

motion should be measured directly instead of theoretically estimated. At least, reported 

thresholds of fluff material should be taken into account by using model approaches to 

determine sedimentary transport processes.    
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5.4.2 Particle dynamic in the Mecklenburg Bay 

The overall 234Th/238U ratios of well below one (figure 5.12) indicate a strong depletion of 

234Th activities by particle scavenging and removal from the water column. This is very 

typical for shallow coastal environments as found elsewhere (e.g. Wei and Murray, 1992; 

Kersten et al., 1998, Forster et al., 2009; Evangeliou et al., 2011; Ma et al., 2014). In the 

Mecklenburg Bay Kersten et al. (1998) and Forster et al. (2009) found 234Th/238U ratios of 

0.2 - 0.5 and 0.09 - 0.19. The results of 0.5 - 0.7 in the presented study are near the upper 

end of the range. The particulate and especially the dissolved 234Th values of this study 

(figure 5.12: 234Thp 0.17 - 0.25 dpm l-1; 234Thd 0.35 - 0.47 dpm l-1) are slightly higher 

compared to Kersten et al. (1998) (234Thp 0.05 - 0.55 dpm l-1; 234Thd 0.09 - 0.41 dpm l-1) and 

Forster et al. (2009) ( 234Thp 0.08 - 0.11 dpm l-1; 234Thd 0.02 - 0.11 dpm l-1). The 238U activities 

are in the same range of 0.9 - 1.4 dpm l-1 in this study and 0.9 - 1.7 dpm l-1 and 1.0 - 1.5 dpm 

l-1 in Kersten et al. (1998) and Forster et al. (2009) which indicates no influence of varying 

salinity and therefore different 238U activities between the studies. Natural variability 

could explain the differences between these three studies in the same sampling area. 

However, the relative strong discrepancy to Forster et al. (2009) could also result from the 

different sampling methods used (filtration versus continuous-flow centrifuge). Compared 

to the results of Kersten et al. (1998) the 234Thp activities of the presented investigations 

are in good agreement but the 234Thd of this study are near the upper end of the range 

found by Kersten et al. (1998). In both studies the continuous-flow centrifuge was used for 

the determination of 234Thp, but Kersten et al. (1998) used a different analytical method to 

extract 234Thd from the centrifugate. It can be assumed that the method of MnO2 

precipitation to extract 234Thd (van der Loeff and Moore, 1999) from the filtrate used in 

this study is more efficient compared to other techniques. In previous studies, it has been 

reported that 234Thd is removed by this procedure with an efficiency of nearly 100 % (e.g. 

van der Loeff and Moore, 1999; Turnewitsch and Springer, 2001; Turnewitsch et al., 2008). 

Therefore, it can be assumed that possible higher extraction efficiency could result in 

higher 234Thd activities.  

The discrepancies in 234Th activities to the previous studies in the same area is most likely 

result from a combined effect of both, natural variability and the methodological 

differences. Despite these discrepancies, it can be concluded that the pronounced total 

234Th/238U disequilibrium, which occurred throughout the whole water column, strongly 

indicates very dynamic 234Th scavenging and particle export in the shallow water of the 

Mecklenburg Bay.  
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5.4.3 Particle residence time  

The distribution of 234Thp and 234Thd to 238U indicates considerably scavenging of 234Thd 

from the water column and export into the sediment. Therefore 234Th-derived residence 

time were calculated from the following definitions and equations (according to Forster et 

al., 2009): 

The scavenging residence time, τd, is the characteristic time that 234Thd takes to be 

transferred into the particulate phase.  

 

𝜏𝑑 =
1

𝑘𝑎
=  

𝑇ℎ𝑑
234

𝜆234∙( 𝑈− 𝑇ℎ𝑑)234238                                                (5.10) 

 

, where ka is the rate constant of net absorption of 234Thd onto particles (scavenging rate); 

234Thp, 234Thd and 238U are the activities of the respective fraction and λ234 is the radioactive 

decay constant of 234Th (0.02876 d-1). 

The residence time of particle associated 234Th, τp, is the time before 234Thp is being 

exported from a given water layer. 

 

𝜏𝑝 =
1

𝜆𝑝
=  

𝑇ℎ𝑝
234

𝜆234∙ 𝑈−𝜆234∙( 𝑇ℎ𝑑+ 𝑇ℎ𝑝
234 )234238                              (5.11) 

 

, where λp is the rate constant for the removal of 234Thp (removal rate).  

These equations are based on the assumption that the pool of 234Thp is maintained by the 

uptake form 234Thd from the solution to particles, its radioactive decay and particle export.  

Kersten et al. (1998) showed that these steady-state equations to calculate residence times 

are acceptable for the Baltic environment.  

The following table 5.4 shows the scavenging and particle-associated residence time in the 

water column and sediment as well as the scavenging rate, removal rate and the TPM 

concentration. For the calculation of the particle-associated residence time of 234Thex 

(Inventory) in the sediment the equation 5.11 was used. Therefore, it was assumed that all 

234Th in the sediment was presented in the particulate phase (234Thd = 0). 
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Table 5.4: Residence time (in days) of dissolved 234Th (τd) and particle associated 234Th (τp) in the water 
column (SW - surface water, BW - bottom water) and the sediment inventory as well as the dissolved 
234Th scavenging rate, particulate 234Th removal rate and the total particulate matter concentration 
(TPM) of the three stations in the Mecklenburg Bay. Errors are based on error propagation of the SD 
of the activities or TPM concentration. n.d. = no data, due to no replicated samples. * = the particle 
residence time of excess 234Th inventory. 

  

scavenging 
residence time 

(τd) 

particle-
associated 

residence time 
(τp) 

234Thd 
scavenging 

rate 
(ka) 

234Thp 
removal 

rate 
(λp) TPM 

    (d) (d) (d-1) (d-1) (mg l-1) 

23.c 

SW 22.60 ± 3.52 14.79 ± 2.30 0.044 0.068 2.28 ± 0.09 

BW 19.32 ± 1.24 13.78 ± 0.89 0.052 0.073 1.99 ± 0.15 

Sediment 
   

16.73 
     

             

23.b 

SW 20.20 ± 5.00 13.97 ± 3.45 0.050 0.072 1.32 ± 0.08 

BW 17.87 ± 3.40 10.64 ± 2.03 0.056 0.094 1.53 ± 0.23 

Sediment 
   

2.22 
     

             

23. 0 

SW 30.68 ± 3.10 22.41 ± 2.26 0.033 0.045 1.32 ± 0.19 

BW 17.64 ± n.d. 12.62 ± n.d. 0.057 0.079 1.60 ± 0.19 

Sediment 
   

4.97 
      

The residence time of dissolved and particle-associated 234Th in the water column are in 

the range of 17.64 and 30.68 days and 10.64 and 22.41 days (table 5.4). This is somewhat 

higher compared to residence times found in the same area from Kersten et al. (1998) and 

Forster et al. (2009), who reported values in the order of <10 days and <5 days for 

dissolved 234Th and particle associated 234Th residence time in the range of 1.3 – 20.1 days 

and 2 – 4 days. The particle-associated 234Th residence time of the presented study is near 

the upper end of the results of Kersten et al. (1998). However, dissolved 234Th residence 

times are almost one order of magnitude higher compared to the previously mentioned 

studies. This is due to the relatively high dissolved 234Th activities of this study compared 

to Kersten et al. (1998) and Forster et al. (2009) as discussed in section 5.4.2. Nevertheless, 

the residence times of dissolved and particle associated 234Th in the space of 10 days to a 

few weeks, compared to more than 100 days in open ocean conditions (e.g., Charette and 

Moran, 1999), indicates a high level of particle dynamics which is typical for coastal 

waters.  

The scavenging and particle associated residence times in the water column are overall 

higher in surface water compared to bottom water (table 5.4). This decrease in residence 

times with increasing water depth is also reflected in a higher scavenging and removal 

rate and in bottom water, probably due to higher particle concentration resulting from 

resuspension events. These findings agree with those of Kersten et al. (1998) who also 
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found lower scavenging residence time in the bottom water of the Mecklenburg Bay. The 

particle concentrations of this study, however, are only slightly enhanced at station 23.b 

and 23.0 (table 5.4). At station 23.c the TPM concentration even decreases towards the 

bottom. This small increase or decrease in TPM concentration in the bottom water 

column is rather in contrast to the assumptions of lower scavenging and particle-

associated residence time with increasing particle concentration and cannot be the only 

explanation. Turnewitsch and Graf (2003) and Forster et al. (2009) found that the organic 

matter content in the near bottom water column of the south-western Baltic tends to be 

low and the mineral and lithogenic fractions are increased which indicated transport of 

sediment particles in the water column. In the presented study, the particulate organic 

content of the water samples is also lower in the bottom water (see appendix Table VII) 

which indicated an increasing fraction of sediment particles in the bottom water column. 

According to the experiments in section 3 it can also be speculated that resuspended 

sediment particles with a large surface could have a higher 234Th uptake potential which 

would lead to a higher scavenging rate in bottom water. This is in agreement with 

scavenging rates in table 5.4 which shows higher values for the bottom water column. The 

increasing scavenging rates would in turn lead to decreasing residence time of dissolved 

234Th in bottom water column compared to the upper water column. On the other hand 

particles with a high 234Th uptake potential (in this case sediment particles) might also 

indirectly increase the scavenging rate but also the 234Thp removal rates due to ballasting 

effect of mineral particles (Armstrong et al., 2001).  

It is concluded that the decreasing particle-associated residence time and the increasing 

234Thp removal rate in bottom water column could be due to both the higher 234Th uptake 

potential of sediment particles and the ballasting effect of the resuspended mineral 

particles. Therefore, particles with a higher surface area resuspended in the water column 

might influence the 234Th scavenging rate and therefore indirectly affects the residence 

time.  

  

5.4.4 234Th adsorption varying in hydrodynamic regimes and different sediment 
types  

 According to the results of the 234Th-resuspension-deposition experiment the 234Th flux 

during resuspension seems to be highest at station 23.0, but the particle fluxes are also 

highest at this station (figure 5.10). This strongly indicates that the 234Th fluxes during the 

resuspension-phase are an effect of the total particle concentration. The higher the 
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particle concentration in suspension, the higher the 234Th fluxes. This is supported by a 

strong linear correlation between the particle concentration and the 234Th fluxes as shown 

in figure 5.15. The red dot represents the value during significant erosion conditions of 

station 23.0 and is not included into the 

regression. Here the effect of adsorption 

saturation can be assumed. The particle 

surface is saturated in 234Th and no more 

234Th can be absorbed. This also explains the 

low logKd value of this station (figure 5.11). 

According to the finding in figure 5.15 the 

234Th fluxes seems to depend only on the 

particle concentration and a particle surface 

effect of the sediments cannot be estimated. 

In this case, it would mean that the 234Th 

uptake potential of the suspended material 

is similar at all stations. This is in contrast to 

the findings of section 3.3.4, where particles with higher surface area showed higher 234Th 

uptake capacity. However, as discussed in section 5.4.1, all sediment types showed a 

strongly developed fluffy layer at the surface of the sediment. Therefore, it can be 

assumed that only the fluffy layer was resuspended, which shows a very similar 234Th 

adsorption behaviour due to the similar chemical composition and therefore similar 

particle properties. This assumption is supported by the very similar decreasing rates of 

the particle concertation (figure 5.9) during the deposition phase. According to the 

varying sinking properties, it is expected that the fine sediment enhanced in organic 

material at station 23.0 remains very long in suspension compared to the quartz particles 

at station 23.b and 23.c. This could not be observed, which indicated that the resuspended 

material was very consistent in the sinking behaviour.  

According to the findings in section 3.3.4 it is expected that also the sediment types 

varying in surface area and/or 234Th uptake potential could show variations in logKd. 

However, the logKd of figure 5.11 shows no significant differences between the stations 

which supports the assumption that only fluff material was resuspended during the 

experiment. It is speculated that sediment particles with expected varying surface areas 

were not taken into account. In addition, no varying logKd values between initial 

resuspension and erosive flow conditions can be observed. This indicates that the 234Th 

adsorption behaviour in different hydrodynamic conditions seem to be very similar.  

Figure 5.15: Linear correlation between the 
particulate 234Th flux and the total particulate 
matter (TPM) concentration of the resuspension 
phase of the resuspension-deposition-
experiment. The red dot is not included into the 
regression due to an expected saturation in 234Th 
adsorption. 
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According to the experimental findings in this study it can be concluded that the fluff 

material shows an enhanced mobility in particle exchange processes at the sediment-

water interface than previously expected. This leads to a high spatial redistribution of 

material in the study area. Therefore, it can be assumed that during moderate near 

bottom current velocities in the Mecklenburg bay, where only fluffy material is 

resuspended, no differences in 234Th uptake potential can be observed between different 

sediment types due to the expected varying composition and properties of the 

resuspended material. However, it is conceivable that during very strong storm events 

large amounts of the underlying sediment material are resuspended which could lead to 

an increasing 234Th uptake potential in the bottom water column of areas covered with 

clay minerals compared to areas consisting mainly of quartz sediment. Nevertheless, it has 

to be taken into account that the fluffy layer can be very different in composition and 

surface area compared to the pelagic particles which could change the adsorption 

condition for 234Th in the bottom water column. According to the experimental findings in 

this study 234Th shows no varying adsorption behaviour for different hydrodynamic 

regimes.  

 

5.4.5 The transport of 234Th from the water column to the sediment  

The 234Th/238U disequilibrium is primarily used for the determination of particle export 

from the upper water column. To calculate the fluxes of 234Th, an expression of 234Th 

activity with time (∂234Th/∂t) is required. Based on Owens et al. (2015) the following 

equations can be used to describe 234Th fluxes: 

 

𝜕 𝑇ℎ234

𝜕𝑡
= 𝜆234( 𝑈238 − 𝑇ℎ𝑡𝑜𝑡

234 ) − 𝑃 + 𝑉 = 0                         (5.12) 

 

, where 238U and 234Thtot is the activity of 238U and total 234Th, λ234 is the decay constant of 

234Th, V is the sum of advective and vertical diffusive fluxes of 234Th and P is the export of 

234Th on sinking particles. In a steady state system, it is assumed that ∂234Th/∂t is equal to 

zero. A steady state system can be assumed in the presented case because of the 

continuity of the pronounced disequilibria throughout the water column and the absence 

of strong activity gradients between the stations. In periods of significant 234Th changes, 

e.g. during phytoplankton blooms, the non-steady state effects would become more 

important. However, the samples were taken during one day of the cruise; dramatic 
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changes in 234Th activities cannot be expected. In addition, a non-steady state would 

require sampling of 234Th in different time spans, which was not possible on this cruise.  

Due to the absence of clear horizontal gradients of 234U, 234Thd and 234Thp throughout the 

water column (figure 5.12), the horizontal advective transport as well as the horizontal 

turbulent diffusion can be neglected.  

Based on the equation 5.13 a cumulative downward flux, PTh, of particle associated 234Th 

towards the sediment was calculated according to Forster et al. (2009):  

 

𝑃𝑇ℎ = 𝜆234 ∫ ( 𝑈238 − 𝑇ℎ𝑡𝑜𝑡
234 )𝑑𝑧

𝑧

0
                                      (5.13) 

 

The cumulative downward flux is based on a simple box model which is describe in figure 

5.12.  

 

Figure 5.16: Scheme of the simple box model used for the calculation of 234Th downward 
fluxes toward the sediment. The water column is divided into 3 boxes based on the density 
gradient of figure 5.7. Z1-3 indicates the layer thickness of the box. The red arrow represents 
the downward export fluxes. SW and BW represents the surface water and bottom water 
sampling depth. The green box illustrates factors that control the 234Th distribution in each 
box. 

Due to the relatively sparse sampling resolution in the water column (two sampling 

depth) (table 5.1), the applied box model consisted of 3 boxes. The boxes are defined 

according to the density depth profile in figure 5.7, where a mixed surface layer to 8 m was 

observed, followed by a strong density gradient down to ~1.5 mab. Therefore, the surface 

box (z1) is defined from the surface (zo) to 8 m below the surface (z8m); the mid box (z2) is 
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located between 8m water depth (z8m) and 1.5 m above bottom (z1.5mab) and the bottom 

water box (z3) from 1.5 mab (z1.5mab) to the seafloor (zmax). The surface water- and bottom 

water sampling depth (SW, BW) are included in the surface water box i.g. bottom water 

box. The mid box consists of the activity gradient of the SW and BW. In each box the 234Th 

distribution is controlled by the production of 234Thd from the decay of 238U; the 

adsorption of 234Thd onto particles; the decay of 234Thp and 234Thd itself and the export of 

settling particles out of the box (figure 5.16, green box). Therefore, the cumulative export 

flux comprises the export flux of the overlying boxes. By multiplying the 234Th fluxes in the 

water column with ratios of TPM to 234Thp the export of TPM from a given box of water 

can be calculated. The results of cumulative 234Th and TPM fluxes at the three stations are 

shown in figure 5.17. 

 

Figure 5.17: Cumulative 234Th und total particulate matter (TPM) downward flux in the water column 
of three stations in the Mecklenburg Bay. The errors are based on the error propagation of SD errors 
of 234Th activities and TPM concentration. 

Both the 234Th as well as the TPM fluxes increase almost linearly towards the sediment. 

The increase of cumulative 234Th flux per meter depth is very similar at all stations and is 

highest at station 23.b (16.3 dpm m-2d-1) followed by 23.0 (15 dpm m-2d-1) and 23.c (13.7 dpm 

m-2d-1). This indicates similar particle dynamics in the study area. The overall increasing 

export fluxes from the surface to the sediment can be explained by the increasing fraction 

of sediment particles to the TPM pool with increasing water depth. As already discussed 

in section 3.3.4 and 5.4.3 sediment particles show higher surface area which can lead to 

increasing 234Th uptake potential. On the other hand, it is known that increasing sediment 

fractions in the water column result in higher settling velocities (e.g. Leipe et al., 2000) 

and the minerals act as ballast for POC rich particles (Armstrong et al., 2001; Gustafsson et 

al., 2006 and references therein). Both, the high surface area of the particles and the 

ballasting effect, can be responsible for increasing 234Th fluxes towards the sediment.  

cumulative 
234

Th downward flux 

(dpm m
-2

d
-1

)

0 100 200 300 400

w
a

te
r 

d
e
p

th
 (

m
)

0

5

10

15

20

25

23.c

23.b

23.0

cumulative TPM downward flux 

(mg m
-2

d
-1

)

0 500 1000 1500 2000 2500 3000
0

5

10

15

20

25



Particle dynamic in the Mecklenburg Bay, Baltic Sea 
____________________________________________________________________________________________________________________________________________________________________________ 

-73- 
 

The increasing cumulative TPM flux per meter decreases with increasing distance to the 

coast from 131.1 mg m-2d-1 at station 23.c to 95.7 mg m-2d-1 at station 23.0. This is related to 

the generally increasing TPM concentration from station 23.0 to 23.c (table 5.4), probably 

due to the increasing influence of the shallow water areas.  

The observed cumulative downward 234Th  and TPM fluxes of this study are somewhat 

lower compared to estimated values of Forster et al. (2009) in the south-western Baltic 

Sea. This can be explained by the relatively high 234Th/234U disequilibria compared to the 

findings of Forster et al. (2009) as discussed in section 5.4.2.  

The inventories of sedimentary 234Thex can be converted into the depositional flux by 

using the equation 5.13 in which zsed represents the sediment depth (Thsed = Used). The 

term (238U – 234Thtot) is substituted by the inventory of 234Thex. The respective depositional 

fluxes of station 23.c, 23.b and 23.0 are 69.2, 60.6 and 37.8 dpm m-2d -1. This is ~3 - 9 times 

lower compared to the water column–derived cumulate 234Th fluxes near the seafloor of 

190.9 ± 10.1 dpm m-2d-1 at station 23.c, 295 ± n.d. dpm m-2d-1 at station 23.0 and 300.6 ± 21.5 

dpm m-2d-1 at station 23.b (figure 5.17). Forster et al. (2009) reported depositional fluxes in 

the Mecklenburg Bay based on measurements of Kersten et al. (2005) of 8340 and 11100 

dpm m-2d -1 which are ~120-300 times higher compared to the results presented in this 

study. Such strong differences are related to the generally significant lower 234Thex values 

in this study (0.02 - 0.73 dpm g-1, figure 5.13 and 5.14) compared to Kersten et al. (2005) 

(0.13- 4.68 dpm g-1). It can be assumed that methodical variations and natural variabilities 

are the major reasons for this discrepancy.  Kersten et al. (2005) extracted 234Th in a 

concentrated HF/HClO4/HNO3 acid mixture. Probably the total dissolution of the 

sediment could result in higher extraction efficiency. As described in section 5.2.5, 

Siddeeg et al. (2014) found specific activities of 234Th extracted by leaching, relative to total 

dissolution, in a range of 30 - 75 %. In the presented case the extraction efficiency 

compared to Kersten et al. (2005) was just ~16 %. Therefore, a final answer why these 

strong discrepancies in the same area exist cannot be given at this stage. 

The strong discrepancy between the water column-derived 234Th flux and the sediment-

derived 234Th flux (water >> sediment) can also be explained by the strong mobility of the 

fluffy layer. Based on the results, it would mean that more 234Th reaches the seafloor as 

can be effectively found in the sediment in form of 234Thex.  It is assumed that a large 

fraction of settled 234Thp is related to recently sedimented material, which covered the 

sediment in form of the fluffy layer. As already discussed in section 5.4.1 and 5.4.4, this 

material can be resuspended easily. Therefore, it is assumed that the fluffy material is in 

permanent exchange with the bottom water column and does not remain a very long time 
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at the sediment surface. This would also explain the low sediment residence time (table 

5.4). In summary, this indicates very dynamic exchange processes at the sediment-water 

interfaces, which is typical for highly dynamic coastal water systems.  

It can be concluded that the discrepancy between the water column-derived 234Th flux and 

the sediment-derived 234Th flux is a result of both, methodical uncertainties during the 

leaching process and natural variability due to the presence of a fluffy layer which lead to 

a highly dynamic particle exchange at the sediment-water-interface.  

 

5.4.6 Particle reworking in the sediment 

The particle residence time in the sediment also characterises the length of time that 

sediment remains within the observed sediment depth. The residence time of the excess 

234Th inventory is highest at station 23.c followed by 23.0 and 23.b (table 5.4). Together 

with the low sediment mixing coefficients (Db) of 0.64 cm² y-1 at station 23.c (figure 5.14) it 

can be assumed that the particle reworking is reduced at this station compared to the 

other stations which leads to a higher residence time of particle- associated 234Th. Based 

on sediment data of sandy sediment habitat of the south-western Baltic sea, Gogina et al. 

(2016) reported that the benthic community is dominated by Hydrobiidae, Pygospio 

elegans and Cerastoderma glaucum. This species are known to live on the sediment 

surface or within the 0 - 4 cm sediment depth (Gogina and Zettler, 2010;  Urban-Malinga 

et al., 2014). This agrees with the found 234Thex in the upper 3 cm of the sediment. 

According to the results of this study (figure 5.14 and table 5.4) it can be concluded that 

station 23.b and 23.0 are highly dynamic in sediment reworking. The distinct subsurface 

maxima of excess 234Th indicate intensive non local particle transport into deeper 

sediment layer which are typical for deep borrow polycheates like Scoloplos amiger and 

bivalve like Arctica islandica (Gogina et al., 2010). In the deeper part of the Mecklenburg 

Bay Gogina et al. (2016) postulated a community in the sediment that is dominated by 

Diastylis sp., Corbula gibba, Dipolydora quadrilobata, Artica islandica, Aricidea suecica and 

Abra alba. While e.g. C. gibba and Diastylis sp. are shallow burrowing species, A. islandica 

is a very deep borrowing species which is very abundant in the deeper parts of the 

Mecklenburg bay (Gogina and Zettler, 2010; Darr et al., 2013). A. islandica is known to be a 

mobile deposit feeder which feeds below the surface and passes material to deeper 

sediment layers by burrowing (Taylor, 1976). At station 23.b some shells of A. islandica is 

observed, therefore it can be assumed that this bivalve could be responsible for the strong 

particle reworking at this station. 
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SUMMARY AND CONCLUSION  

The object of this study is to deduces factors controlling 234Th adsorption and to describe 

the influence for the application of 234Th as particle tracer. Both, laboratory experiments 

and filed measurements were conducted to investigate 234Th adsorption behaviour onto 

particles and colloids as well as on different sediment types. These findings were applied 

to interpret the 234Th distribution at three stations in in the Mecklenburg Bay, south-

western Baltic Sea.  

In laboratory experiments, the adsorption of 234Th onto different natural particles with 

respect to particle surface and quality was investigated. Therefore, different organic 

coated particles such as Rhodomonas spp., Surirella spp. and Synechococcus spp.; and the 

mineral surface of the fine sediment fraction <100µm were used. According to the particle 

concentration-based logKd values, most 234Th is associated to the inorganic mineral 

surface area, followed by the organic coated particles. However, this trend is reversed 

when the particle surface area of logKA is considered, where the organic coated particles of 

Rhodomonas spp. and Surirella spp. demonstrate a higher 234Th uptake potential. This 

finding supports the assumption of preferential 234Th adsorption to organic particles. It 

can be speculated that differences in 234Th adsorption between the organic coated particle 

result from the variations in surface composition, due to varying functional properties. It 

is concluded that 234Th uptake potential strongly depends on both, the composition as 

well as the surface area of the particles. Therefore, variations in particle and carbon fluxes 

which resulted from the 234Th/238U disequilibria, are not only caused by the chemical 

composition due to more or less efficient aggregation or sinking behaviour, but also from 

the varying uptake potential of different surface area of the particles. For instance, this 

could be important for the investigation of particle dynamics near the seafloor or areas of 

strong terrestrial influence, where particles with a large 234Th uptake potential are 

presented. At similar particle concentration, as in the surface water, this could lead to an 

increasing 234Th uptake onto these particles which would generate a larger 234Th/238U 

disequilibrium. The calculation of fluxes based on these 234Th/238U disequilibria would 

virtually generate a higher 234Th and particle load in bottom waters.  

Overall, the presented results concerning the adsorption behaviour of 234Th onto natural 

particles highlight the importance of the particle’s surface area and quality in 234Th 

scavenging processes. The strong positive correlation between logKA and particulate 

C/234Th ratio indicate that there is a relationship between the chemical composition and 

the particle surface. The particle surface area seems to be more crucial in 234Th adsorption 
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than the particle concentration. Nevertheless, depending on the scientific question being 

ask, different parameter become appreciated. For investigation of the role of different 

particle types in 234Th scavenging, the logKd and the percentage of particulate 234Th is not 

sufficient.  

However, it should be noted that the differences in adsorption to different types of 

particles were investigated only for single particles rather than the total spectrum of 

natural particles found in the ocean. For this reason, additional studies are required to 

evaluate a broader range of particle types, especially with respect to investigate the 

preferential adsorption of 234Th where two or more different particle mixtures are 

presented. However, the separation of the particles types and the inter particulate effect 

will be challenging. 

In order to determine the influence of colloidal material in 234Th scavenging, the 234Th 

adsorption onto the fine sediment fraction in presence and absence of one commercial 

available polysaccharide type and the natural colloidal fraction was investigated. In 

presence of one polysaccharide type the adsorption onto the mineral surface is slightly 

increased. However, in presence the natural colloidal fraction, a significant enhanced 

234Th adsorption onto the particles is observed. It is concluded that not only one fraction 

is responsible for the association of 234Th onto particles. More likely the whole spectrum of 

colloidal material leads to an enhanced adsorption of 234Th to mineral particles. The 

increased 234Th adsorption onto the mineral surface is likely related to coating the 

particles with the natural colloidal material which could change the surface properties 

and reactivity. According to the presented results, it can be concluded that colloids likely 

act as an intermediate in 234Th scavenging which can enhance 234Th uptake potential of 

less reactive, inorganic surfaces. It is conceivable that differences in colloidal composition 

leads to varying 234Th uptake potential. To determine the differences in 234Th adsorption 

depending on colloidal composition additional, comparative experiments of varying 

colloidal material of different oceanic region (e.g. estuaries versus open ocean) are 

needed. Such investigations would be important for the interpretation and understanding 

of 234Th based data on a molecular level.  

To investigate the role of varying functional group composition in 234Th adsorption, 

experiments with different polysaccharides, which represents a major fraction of the 

colloidal pool, were conducted. A strong correlation between the amount of sulphated 

functional groups and the 234Th activity is observed. This indicates that sulphated groups 

are involved in 234Th uptake on molecular level. However significant differences in logKd 

between the polysaccharides types could not been observed, probably due the reduced pH 
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during the experiments with deionised water. Therefore, it cannot be excluded that the 

results are affected by errors. A final conclusion of functional groups which are involved in 

234Th adsorption cannot given at this stage. Additional experiments should clarify the role 

of varying fractions of the colloidal pool (e.g. amino acids and humic acids) and the 

influence of functional group composition in 234Th uptake. According to the presented 

results, it is strongly recommended to consider the experimental conditions, especially 

the pH level.  

At three stations in the Mecklenburg Bay, Baltic Sea, a strong increase of 234Th and 

particle fluxes and decrease of the particle-associated residence times towards the 

sediment can be observed. This seems to be related to the increasing fraction of sediment 

and/or fluff material in the bottom water column. On the one hand this leads to an 

enhanced ballasting effect due to increasing sinking velocities of sediment material. On 

the other hand, it can be assumed that sediment particles show a larger surface area 

compared to pelagic particles as already described above. It can be concluded that both, 

the presence of sediment particles with enhanced sinking behaviour, but also the 

increased 234Th uptake potential due to the larger surface areas could lead to the increased 

234Th and particle fluxes in the bottom water column of the study area.  

In laboratory experiments the adsorption of 234Th onto different sediment types and in 

varying hydrodynamic regimes were investigated. Significant differences in 234Th 

adsorption between varying flow conditions could not been observed. This indicates that 

the hydrodynamic regime does not play a crucial role in 234Th scavenging. In addition, the 

234Th uptake potential at different sediment types are very similar, most likely due to the 

overall pronounced fluffy layer on top of the sediment surface which was resuspended. 

The actual sediment surface does not seem to be resuspended during the experiments. 

Therefore, it is assumed that moderate flow conditions in the study area leads only to 

resuspension of the fluffy layer while the underlying sediment remains relatively 

unaffected. In addition, the calculated 234Th fluxes down to the sediment are some orders 

of magnitude higher compared to the 234Th depositional flux which is necessary to supply 

the 234Th inventory in the sediment. Amongst analytical problems in determination of 

sedimentary 234Th, the fluffy layer could also be responsible for the strong discrepancy. 

According to the experimental and filed observation, it can be concluded that the 

presence of a fluffy layer enhanced the mobility of particles and it seems to be in 

permanent exchange with the overlying water column. Due to the high hydrodynamic 

condition at the sediment water interface in coastal water, this material does not remain 
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very long time at the sediment surface. Therefore, the fluff material seems to play a more 

important rule in particle and 234Th dynamic in the study area than previous expected.  

The investigation of the 234Th distributions in the study area in relation to the 

experimental findings described above provides information about the factors that control 

234Th scavenging and the applications of 234Th as particle tracer. The results could help to 

understand 234Th adsorption processes which would be useful for the use of 234Th as tracer 

for particle dynamics.    
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APPENDIX 

Table App. I: Particulate, dissolved, total and initial total 234Th activity as well as the particulate organic carbon content (POC) of the 
experiments of section 3. Errors of the 234Th activity indicate the 95 % confidence level and the a- labels errors represents the SD. 

 

  234Th (dpm l-1) POC (mg l-1) 

    particulate dissolved total initial total   
  Rhodomonas spp.  10 min             9.36 ± 0.75 

15.47 1.00 ± 0.04a 

  3 h 2.39 ± 0.25 4.90 ± 2.02       

Suriralla spp.  10 min             10.11 ± 2.19 
17.00 1.01 ± 0.12a 

  3 h 2.75 ± 0.21 7.07 ± 1.61       

Synechococcus spp.  10 min             10.26 ± 1.06 
15.45 0.84 ± 0.07a 

  3 h 4.24 ± 0.68 4.68 ± 0.17       

fine sediment fraction 10 min             16.11 ± 0.59 
15.52 0.25 ± 0.14a 

 
3 h 8.42 ± 1.57 3.02 ± 0.44       

control run 10 min             16.00 ± 1.26 

15.43 

      

 
30 min             14.36 ± 0.76       

 
1 h             13.98 ± 0.72       

 
2 h             12.32 ± 1.56       

  3 h             11.62 ± 0.04       
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Table App. II: Total initial, dissolved and colloidal 234Th activity of the experiment A of 
section 4 corrected for the 49 % 234Th loss onto container walls. The errors indicate the SD 
of n = 3, a n = 2. 

  234Th (dpm l-1) 

  initial total dissolved colloidal 

Fucoidan  19.10 ± 0.00 14.25 ± 2.71 4.86 ± 2.71 

Chondroitin 17.15 ± 2.03 12.19 ± 3.43 4.96 ± 1.39 

Pullulan 17.91 ± 1.35a 10.62 ± 0.18a 7.30 ± 1.53a 

 

Table App. III: Particulate, colloidal and dissolved 234Th activity of the experiment B of section 4 
corrected for the 49 % 234Th loss onto container walls. The errors indicate the SD of n = 3, a n = 2. 

  234Th (dpm l-1) 
  particulate colloidal dissolved  

mineral particles 0.11 ± n.d.       10.08 ± 0.48 
Fucoidan       9.08 ± 0.84a 1.66 ± 0.84a 

Fucoidan + mineral 
particles 

0.19 ± n.d. 4.69 ± 0.85a 5.86 ± 0.85a 

 

Table App. IV: Particulate and dissolved 234Th activity as well as the added particle 
concentration of the fine sediment particle of the experiment C of section 4. Activities in 
deionized water are corrected for the 49 % 234Th loss onto container walls. The errors indicate 
the SD of n = 3. 

 

234Th (dpm l-1) 
 added particle 

concentration (mg l-1) 

  particulate dissolved        

seawater 6.24 ± 1.39 9.34 ± 2.12 7.28 ± 0.21 

deionised water 0.55 ± 0.29 18.02 ± 0.90 7.55 ± 0.21 

 

Table App. V: Particulate and dissolved 234Th activity as well as the particle 
concentration before starting the experiments (t0) of section 5.3.3. The errors 
indicate the SD of n = 3. 

  

234Th (dpm l-1) particle concentration 
(mg l-1)     particulte dissolved 

23.c  
initial 5.76 6.44 1.55 ± 0.29 

erosion 6.92 5.69 1.59 ± 0.16 

23.b  
initial 10.21 3.76 1.59 ± 0.30 

erosion 14.38 1.13 1.64 ± 0.25 

23. 0 
initial n.d. n.d. 1.85 ± 0.27 

erosion 6.27 3.74 1.46 ± 0.12 
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Table App. VI: Particulate and dissolved 234Th activity as well as the particle concentration of the 
resuspension phase of the experiment of section 5.3.3. The errors indicate the SD of n = 3. 

  

234Th (dpm l-1) particle concentration 
(mg l-1)     particulate dissolved 

23.c  
initial 7.58 ± n.d. 5.83 ± n.d. 3.26 ± 1.54 

erosion 9.13 ± n.d. 5.75 ± n.d. 2.02 ± 0.07 

23.b  
initial 10.76 ± n.d. 4.42 ± n.d. 4.11 ± 0.45 

erosion 13.39 ± n.d. 2.13 ± n.d. 4.33 ± 0.11 

23. 0 
initial 6.23 ± 0.44 1.74 ± 0.08 7.87 ± 0.34 

erosion 6.06 ± n.d. 4.01 ± n.d. 8.51 ± 0.56 

 

Table App. VII: Particulate carbon content of the 
water samples (SW – surface water, BW – bottom 
water) of the three stations in the Mecklenburg 
Bay, Baltic Sea. Errors indicate the SD of n = 3. 

    particulate carbon (mg l-1) 

23.c 
SW 0.33 ± 0.02 

BW 0.25 ± 0.01 

     
23.b 

SW 0.23 ± 0.01 

BW 0.12 ± 0.05 

     
23. 0 

SW 0.26 ± 0.03 

BW 0.17 ± 0.02 

     

 

 
Figure App. I: The chlorophyll-a concentration, water content and dry bulk density in the sediment 

of the three stations in the Mecklenburg Bay, Baltic Sea. Errors indicate the SD of n = 3. 
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