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Summary

Introduction

Starting with the Human Genome Project, genome research has had a fundamental impact on
scientific progress. One of the surprises of the Human Genome Project was the relatively small num-
ber of protein-coding genes in the genome, estimated in roughly 23,000. It is nowadays accepted
that eukaryotic complexity is not dictated by the number of protein-coding genes of the genome,
but rather achieved through the combinatorics of gene expression programs. Distinct aspects of the
expression pattern of a gene are mediated by discrete regulatory sequences, known as cis-regulatory
elements. Cis-regulatory elements are typically short and harbor binding sites for multiple transcrip-
tion factors (TFs) in a particular arrangement, defining what we call cis-regulatory grammar. The
advent of affordable high-throughput sequencing technologies has provided us with a plethora of
genome-wide assays that have revolutionized our ability to interrogate the genome. Nevertheless,
our understanding of gene regulation remains incomplete.

Aim and Methodology

The work described in this thesis was aimed at developing computational and statistical methods
to guide the search and characterization of novel cis-regulatory elements. We pursued this through
the integrated analysis of DNA sequence, gene expression, and epigenetic data.

Results

First, we analyzed the evolutionary history and species-specific divergence of cis-regulatory ele-
ments. Mutations in cis-regulatory elements have played a major role in species adaptation and spe-
ciation. Disruption of cis-regulatory elements has been associated with a wide range of human di-
seases. We found evidence arguing that TF binding site composition is often necessary to retain, and
sufficient to predict regulatory activity in the absence of overt sequence conservation. Second, we
addressed the sequence encryption of cis-regulatory elements and developed computational tools to
decipher it. For this purpose, we collected distal cis-regulatory elements in the loci of genes expressed
in particular cells and tissues, and constructed several machine learning classifiers that discriminate
cis-regulatory elements from other noncoding sequences based on sequence features. Furthermo-
re, we applied massive parallel testing to thousands of de novo designed cis-regulatory elements to
evaluate and validate various regulatory grammar rules, including the effect on expression of the
number of TF binding sites, their location, spacing, and order. Finally, we turned to the characteri-
zation of transcriptional networks partaking in embryonic development, in the search for suitable
diagnostic and prognostic markers of congenital diseases.

Discussion and Conclusions

The aforementioned computational approaches and underlying mathematical models represent si-
gnificant progress towards deciphering the genetic component of complex disease susceptibility. Our
findings have been extensively validated with the aid of ChIP-seq and gene expression datasets, and,
where applicable, compared to those produced by alternative methods. More importantly, collabora-
tors from several experimental biology laboratories have independently confirmed our computational
predictions in transgenic zebrafish and mouse. Transgenic experiments allow us to investigate trans-
criptional regulation in specific cells and tissues, as well as across embryonic development, studying
both the enhancement and repression of transcription, using different model organisms. Eventually,
the research line presented here promises to advance and complement the drug development efforts
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to manage and prevent complex diseases such as diabetes and cancer, among other leading causes
of death in the world.
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“El motor de la ciencia es la curiosidad con las preguntas constan-
tes: ¢Y eso como es? ¢En qué consiste? ¢{Como funciona? Y lo mas
fascinante es que cada respuesta trae consigo nuevas preguntas.
En eso los cientificos le llevamos ventajas a los exploradores, cuan-
do creemos haber llegado a la meta anhelada, nos damos cuenta
de que lo mas interesante es que hemos planteado nuevos proble-
mas para explorar.”

César Milstein (1927-2002)
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2. Introduction

The human genome contains 3.2x10° base pairs and an estimated of 23,000 protein-coding genes
(International Human Genome Sequencing Consortium 2004; Pennisi|2012). Furthermore, the es-
timated number of protein-coding genes in the human genome, has been repeatedly revised down
from initial predictions of 100,000 in the 1980s as genome sequence quality and gene finding meth-
ods have improved. By comparison, the mouse genome comprises 2.7x10° base pairs and approxi-
mately the same number of protein-coding genes as the human genome (Mouse Genome Sequencing
Consortium, Waterston, et al.|[2002). Many plant genomes, such as maize, are relatively large and
encompass more protein-coding genes than the human genome (Schnable, Ware, et al.2009). There
is no clear correspondence between the size of eukaryotic genomes and the number of protein-coding
genes. Moreover, it is currently accepted that the number of genes bears no direct relationship to
organismal complexity. The non-protein coding (noncoding) portion of the eukaryotic genome —
~ 98.5% in the case of humans - is associated with noncoding RNA or constitutes regulatory, struc-
tural and/or repetitive DNA (Lander, Linton, et al. 2001). Emerging evidence suggests that organ-
ismal complexity arises through the regulation of gene expression, and in particular, transcription
(Levine and Tjian |[2003).

2.1. Eukaryotic Transcriptional Regulation

In Eukaryotes, transcriptional regulation is achieved through the interaction of several levels of
control, including chromatin packing and transcription factor (TF) activity.

Chromatin packing restricts the accessibility of the genes to the RNA polymerase and TF proteins.
Indeed, chromatin exists in what is probably a continuum between the compact heterochromatin,
tightly wrapped around the histones, and the open euchromatin. High-level transcription requires an
open chromatin structure (Kornberg and Lorch [1992)). Changes in chromatin structure, commonly
referred to as chromatin remodeling, are regulated by the acetylation, methylation, and ubiquitina-
tion of histone tails (Strahl and Allis|2000).

TFs, also known as trans-acting elements, are regulatory proteins that can promote or inhibit
transcription by binding to specific DNA sequences or cis-regulatory elements. All characterized
transcribed protein-coding genes have a promoter immediately upstream of the 5’ end of the tran-
scription start site (TSS) that is recognized by the RNA polymerase II as well as basal TFs. Promoters
consists of a core promoter, which is, in general, considered to be necessary and sufficient for low-
level transcription, and additional proximal promoter elements (Smale and Kadonaga 2003)). The
core promoter is approximately 100 base pairs long, contains the TSS, and interacts directly with
the components of the preinitiation complex (PIC) (Roeder 1996). Although the RNA polymerase
IT catalyzes RNA synthesis, it is unable to recognize the TSS or melt the DNA. Therefore, the RNA
polymerase II cannot initiate transcription on its own. This is accomplished by the PIC, which in-
volves general TFs, such as TFIIA, TFIIB, TFIID, TFIIE, TFIIE, and TFIIH (Lee and Young2000). These
TFs interact with a set of elements in the proximity of the TSS, such as the TATA box, the initiator
element, the downstream promoter element (DPE), the TFIIB recognition element (BRE), and CpG
islands. Eukaryotic core promoters are heterogeneous, and although most promoters contain one
or more of these elements, none seems to be essential for promoter function (Smale and Kadonaga
2003)). The core promoter is modulated by proximal promoter and additional distal cis-regulatory
elements, which are recognized by more specific TFs. Distal cis-regulatory elements are similar to
proximal promoters, but a single distal cis-regulatory element can control the expression of different
genes at different times.

Distal cis-regulatory elements have been classified on the basis of their behavior in synthetic as-
says. Because the assays are well established, the distal cis-regulatory elements most studied to
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date are enhancers and silencers. Enhancers and silencers are typically a few hundred base pairs
long, and mediate positive and negative regulation of transcription, respectively, independently of
their position and orientation with respect to the TSS of their target gene. Thus, they may reside
several thousands base pairs upstream or downstream of their target genes, even within introns of
neighboring genes with unrelated expression patterns, and in some cases, in different chromosomes
(Visel, Akiyama, et al.[2009; Williams, Spilianakis, et al. 2010). Although not well understood, dis-
tal transcriptional regulation would involve long-range direct interactions between the TFs bound
to enhancers and silencers, and promoters, with concomitant looping of the intervening DNA. Fur-
thermore, such interactions would be established either by simple diffusion within the nucleus or
by an active “tracking” mechanism, in which enhancers and silencers migrate along the chromatin
fiber until they encounter a promoter. TFs bound to enhancers, silencers, and promoters would in-
teract with coactivators, proteins that recruit chromatin remodeling factors and communicate with
the basal transcription machinery to assemble a functional PIC on the promoter (Bulger and Grou-
dine 2011). A different class of distal cis-regulatory elements, known as insulators or boundary
elements, establish discrete transcriptional domains. Insulators have been shown to possess either
one or both of two activities, blocking enhancers (enhancer-blocking insulators) and/or protecting
against heterochromatin spreading (barrier insulators) (Gaszner and Felsenfeld 2006). Most verte-
brate enhancer-blocking insulators contain binding sites for the TF CTCE a zinc finger protein with
multiple roles, including transcription activation and repression (Bell, West, et al.|1999; Yusufzai and
Felsenfeld [2004). CTCF has also been implicated in the function of barrier insulators, but it has been
suggested that additional proteins may be required for specificity (Cuddapah, Jothi, et al. 2009). The
above regulatory elements may be either discrete or clustered within locus control regions (LCRs) to
mediate complex transcriptional programs involving several genes within a genomic locus.

2.2. Cis-regulatory Elements

Cis-regulatory elements consist of clusters of binding sites for TFs. Binding sites are short (usu-
ally 6-20 base pairs long) and degenerate sequences. The particular nature, number, and spatial
arrangement of TF binding sites, together with the availability of the cognate TFs, determine the
activity of a given cis-regulatory element, i.e., its effect on a gene. For example, the transcription
of the Drosophila Nidogen (Ndg) gene at different developmental stages and in different cell types
is controlled by the binding of multiple Forkhead (Fkh) TFs, which are differentially expressed in
the developing Drosophila, each binding to distinct binding sites in the same enhancer (Philippakis,
Busser, et al. [2006; Zhu, Ahmad, et al. [2012). In addition, we have recently shown that cardiac-
specific expression of Ndg is dependent on the binding of Myb and a POU homeodomain (POUHD)
TF (Figure [2.1I). The number of binding sites for a given TF also plays a role in determining the
activity of a cis-regulatory element. Indeed, more than 50% of known promoters and experimentally
assayed enhancers in the vertebrate genome contain multiple binding sites for the same TE making
this a pervasive feature of vertebrate cis-regulatory elements. Furthermore, evolutionary conserved
noncoding sequences containing multiple binding sites for the same TF occupy nearly 2% of the
human genome, suggesting that arrangements of multiple binding sites for the same TF play an im-
portant role in transcriptional regulation, probably conferring robustness (Gotea, Visel, et al.|2010).
The spacing between the TF binding sites also influences the interactions between the TFs that bind
to a given cis-regulatory element. In order to engage in a direct protein-protein interaction, TF have
to bind to sites positioned on the same face of the DNA. Since there are approximately 10 base pairs
per helical turn of DNA, direct interactions between TFs are only possible if their binding sites are
separated by a multiple of 10 base pairs. For example, the activity of a virus-inducible enhancer of
the human IFNB gene requires a precise helical relationship between individual TF binding sites. In-
troducing slightly more than a half-helical turn (6 bp) between two known binding sites, reduces the
level of virus induction by 9-fold. Inserting 10 bp fully restores the activity of the enhancer (Thanos
and Maniatis [1995)). Spacing rules between TF binding sites at larger distances usually reflect DNA
wrapping around nucleosomes (Spitz and Furlong[2012]).
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Figure 2.1. An enhancer of the Drosophila melanogaster Ndg gene. Wild-type regulatory activity of this

enhancer requires the occurrence of binding sites for Myb and a POUHD TE (A) Sequences rep-
resenting binding sites for a POUHD TE pointed (pnt), Myb, tinman (tin), and twist (twi) in
the Ndg enhancer. (B) Motifs representing TF binding sites obtained from TRANSFAC (Matys,
Kel-Margoulis, et al. 2006) and Philippakis, Busser, et al.|2006. (C) GFP (green) and the beta-
D-galactosidase (lacZ (magenta) are co-expressed when driven by the wild-type (WT) Ndg en-
hancer (Ndg"'-GFP and Ndg"“"-lacZ, respectively). (D) GFP (green) expression driven by a mu-
tated Ndg enhancer, in which POUHD sites have been selectively inactivated (Ndg"°VHP-GFP),
is significantly reduced compared to beta-D-galactosidase (magenta) driven by Ndg"'-lacZ. (E)
beta-D-galactosidase driven by a version of the Ndg enhancer in which Myb binding sites have
been selectively inactivated (Ndg""P-lacZ) is de-repressed into additional somatic mesodermal
cells compared to GFP driven by a WT version of the Ndg enhancer (Ndg"'-GFP). Figure modified
from Busser, Taher, et al.|2012.
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Figure 2.2. Region encompassing TBX4 in the human genome (hg19). (A) Sequence comparison of human
with chimpanzee, mouse, chicken and fugu (http://ecrbrowser.dcode.org). Regions with
at least 70% identity over a 100 bp window are colored: blue, exons; red, conserved intergenic
sequence; salmon, conserved intronic sequences; green, repeats. Colored boxes indicate positions
of confirmed enhancers (see C, D, and E). (B) In situ hybridization for Tbx4 mRNA in E12.5 mouse
embryos. (C-E) lacZ staining of E12.5 transgenic mouse embryos illustrating expression patterns
seen with the different constructs: (C) yellow, hindlimb I; (D) green, lung and genital tubercle;
(E) pink, hindlimb II and umbilical cord. Figure modified from Menke, Guenther, et al.|{2008|

Spatiotemporal patterns of expression are largely controlled by distal cis-regulatory elements. Mul-
tiple distal cis-regulatory elements often act cooperatively or competitively (e.g, (Buttgereit [1993;
Lin, Chen, et al. 2007; Perry, Boettiger, et al.|[2011))) to determine the expression pattern of a gene.
Thus, two independent enhancers control hindlimb expression in vertebrates, one located upstream
and one downstream of the TBX4 coding exons (Menke, Guenther, et al.2008). These two enhancers
differ in their precise patterns of activity within the hindlimb, and in their degree of sequence con-
servation (Figure [2.2). A third enhancer directs gene expression of TBX4 in the lung. Decoupling
transcriptional regulation into multiple cis-regulatory elements provides a flexible mechanism for
altering the strength and location of the expression of a gene, making it possible, for example, to
separately modify the size of forelimb and hindlimb bones during vertebrate evolution.

2.2.1. Using Reporter Gene Assays to Study Cis-regulatory Activity

The regulatory activity of genomic elements is routinary tested using reporter gene assays. Most
assays use a relatively long DNA construct, such as a bacterial artificial chromosome (BAC), which
encompasses the genomic region of interest and a reporter gene. The construct is introduced into
a model system in order to observe and/or quantify the mRNA, protein or protein activity of the
reporter gene after allowing time for gene expression. In a promoter assay, the putative promoter is
placed directly in front of the reporter gene. In an enhancer assay, the putative enhancer is usually
placed in front of a minimal promoter, which is not sufficient to direct gene expression without the
presence of an enhancer, followed by a reporter gene. Insulators can be assayed for barrier insulator
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activity by placing them on both sides of a known enhancer and promoter, followed by a reporter
gene.

An ideal reporter gene encodes a protein whose expression can be detected with high sensitivity
above any endogenous expression and that displays a wide dynamic range of responses. Common
reporter genes include those coding of the luciferase (luc), the green fluorescent protein (GFP), and
the beta-D-galactosidase (lacZ).

2.2.2. High-throughput Identification of Cis-regulatory Elements

Chromatin immunoprecipitation used in conjunction with high-throughput sequencing (ChIP-seq)
is one of the current methods of choice for the genome-wide interrogation of protein-DNA (e.g.,
TF-TF binding sites) interactions (e.g., (Mikkelsen, Ku, et al.|2007; Robertson, Hirst, et al.|[2007)).
Briefly, ChIP-seq assays involve (Landt, Marinov, et al.|[2012):

(i) Cross-linking of proteins to the DNA, frequently perfomed by formaldehyde treatment.
(ii) Cell disruption and chromatin shearing by sonication or enzymatic digestion.
(iii) Immunoprecipitation with an antibody that is specific for the protein of interest (e.g., TFs,
modified histone, RNA polymerase) with its bound DNA.
(iv) Reversion of the cross-linking.
(v) Analysis of the enriched DNA by high-throughput sequencing.

ChIP-chip is the array-based predecessor of ChIP-seq, where the DNA fragments of interest are hy-
bridized on an array (Ren, Robert, et al.[2000).

Using genome-wide ChIP-chip, Heintzman, Hon, et al. (2009) characterized cis-regulatory ele-
ments according to their histone modification patterns on diverse human cell lines. Their analysis
revealed that while the chromatin state at promoters and insulators is largely invariant across cell
types, the chromatin state at enhancers is highly cell-specific, consistent with cell-specific activity.
By performing ChIP-seq with antibodies against Ep300, a well-known coactivator, Visel, Blow, et al.
(2009) were able to identify enhancers that are specifically active in the forebrain, midbrain and
hindbrain of the developing mouse embryo with a 5-16 times higher success rate than that obtained
based on sequence conservation alone. Similar strategies have been applied to other tissues and
developmental stages in order to identify both tissue-specific and temporally important enhancers
(May, Blow, et al.[2012). To date, multiple ChIP-seq maps of TF binding and histone modifications
exist, constituting important resources for the investigation of the mechanisms involved in transcrip-
tional regulation. In particular, the international Encyclopedia of DNA Elements (ENCODE) project,
launched in 2003 by the National Human Genome Research Institute (NHGRI) with the aim of pro-
viding a global view of the functional elements encoded in the human genome sequence (ENCODE
Project Consortium [2004)), continues to generate vast amounts of ChIP-seq data across multiple tis-
sues and cell types. These data are currently released under a rapid release policy, immediately
after validation. Furthermore, the Mouse ENCODE project was initiated by the NHGRI in 2009 as a
complement to the ENCODE project, in order to annotate functional elements encoded in the mouse
genome by applying the same technologies and experimental pipelines developed for human EN-
CODE (Mouse ENCODE Consortium, Stamatoyannopoulos, et al.|2012)).

Since transcriptionally active genomic regions are enriched with sites that are hypersensitive to
DNases (Gross and Garrard|1988)), high-throughput approaches targeting DNasel hypersensitive sites
(DHS) have proved useful for systematically uncovering cis-regulatory elements on a genome-wide
scale. Briefly, cell nuclei are first digested with DNasel. Cleaved DNA ends are then selected by
different procedures, for example, by ligating them to a biotinylated tag which is then captured
by a streptavidin column (Crawford, Holt, et al. |2004). Finally, the DNA encompassing DHSs is
identified using microarrays or high-throughput sequencing. DNase-seq has been extensively used by
the ENCODE consortium, which thereby determined the existence of millions of distinct DHS across
the human genome, most of them presumably representing highly cell-specific distal cis-regulatory
elements (Thurman, Rynes, et al.[2012)).
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ChIP-seq and DNase-seq are powerful techniques in that they can query the entire genome in a
single experiment. However, these experiments identify cis-regulatory elements indirectly, based on
their association with specific TFs, coactivators, histone modifications, and chromatin structure. That
is, despite their relatively high success rates, these approaches are not functional assays. Therefore,
they do not demonstrate by themselves the functional significance of a TF or modified histone as-
sociated with a particular genomic region. Indeed, putative cis-regulatory elements determined by
ChIP-seq and/or DNase-seq must be validated with standard reporter gene assays (Thurman, Rynes,
et al. 2012; Visel, Blow, et al.|2009).

Several methods have recently been developed or adapted to assess cis-regulatory activity with
higher throughput than the standard reporter assays. For example, self-transcribing active regula-
tory region sequencing (STARR-seq) assays enhancer activity in a direct, quantitative, and genome-
wide manner (Arnold, Gerlach, et al. 2013). STARR-seq works with any source of input DNA. Thus,
Arnold, Gerlach, et al. (2013) sheared Drosophila genomic DNA and cloned the resulting fragments
downstream of a minimal promoter. These constructs were then transfected into a Drosophila cell
line. Active enhancers are assumed to enhance their own transcription. Hence, their activity can be
estimated from their level of transcription. Unlike STARR-seq, site-specific integration fluorescence-
activated cell sorting followed by sequencing (SIF-seq, (Dickel, Zhu, et al. [2014))) seeks the inte-
gration of a putative cis-regulatory element into a single genomic locus, providing a reproducible
chromosomal context. Putative cis-regulatory elements are linked to a minimal promoter and a gene
encoding the Venus yellow fluorescent protein, and targeted into a single site in the genome of a
mouse embryonic stem cell. Cells expressing the reporter gene are isolated using flow cytometry,
and the cis-regulatory elements inserted into these cells are finally amplified and identified through
high-throughput sequencing. The use and development of high-throughput methods able to assess
regulatory activity in a genomic context and in a wide variety of cells will eventually enable the
comprehensive study of the roles of distal cis-regulatory elements in the human genome.

2.3. Prediction of Cis-regulatory Elements

The variability in the genomic location and sequence heterogeneity of distal cis-regulatory ele-
ments makes them particularly difficult to predict (Hardison and Taylor |2012).

Since functionally relevant sequences are under purifying selection, they are generally more con-
served than non-functional sequences. On these grounds, comparative genomics rapidly became
one of the most widely used strategies to predict distal cis-regulatory elements. One of the first ap-
plications of comparative genomics to the identification of distal cis-regulatory elements involved
a 1,000,000-base-pair-long human locus comprising the IL4, IL13, and IL5, three cytokine genes,
which had been previously shown to exhibit coordinated expression (Kelly and Locksley|[2000). This
locus also encompasses approximately 90 highly conserved noncoding sequences (CNSs, at least
70% sequence identity with mouse over 100 base pairs). The largest CNS was assayed for regulatory
activity in transgenic and knockout mouse assays, concluding that this element modulates the ex-
pression of all three cytokine genes, separated by more than 120,000 base pairs of sequence (Loots,
Locksley, et al. |2000). More generally, comparative genomics has proven to be powerful, in that,
~ 50% of highly conserved noncoding sequences act as enhancers in reporter gene assays (Bejer-
ano, Pheasant, et al. [2004; Pennacchio, Ahituy, et al. 2006). Interestingly, most assayed CNSs with
regulatory activity (available through the VISTA Enhancer Browser, http://enhancer.1bl.gov,
(Visel, Minovitsky, et al. 2007))) direct gene expression in the central nervous system.

Computational methods attempting to identify distal cis-regulatory elements in the vertebrate
genome face several challenges:

(i) The modeling and prediction of TF binding sites is usually done using position-weight matri-
ces (PWMs, (Staden|1984)) collected from the literature. PWMs available in motif databases
describe the probability of observing the respective nucleotides A, C, G, and T in each position
of a sequence. Examples of collections of PWMs include TRANSFAC (Matys, Kel-Margoulis,


http://enhancer.lbl.gov

2.4. Cis-regulatory Elements in Human Diseases

et al.|2006)) and JASPAR (Sandelin, Alkema, et al. [2004). However, TF binding sites are nor-
mally short and highly variable, and thus, functionally significant binding events can only be
predicted with relatively low sensitivity and specificity.

(i) Genome-wide analysis of ENCODE ChIP-seq datasets shows that co-binding TF often exhibit
position and orientation preferences (Jankowski, Szczurek, et al. 2013; Wang, Zhuang, et al.
2012). However, it remains to be learned to what extent constrained spacing and orientation
of interacting TFs are critical for regulatory activity.

(iii) Transcriptional regulation usually requires the coordinated action of multiple TFs. Indeed, the
combinatorial binding of TFs to the DNA defines the spatial and temporal expression patterns
driven by a given cis-regulatory element. Most of our knowledge regarding synergistic and
antagonistic interactions between TFs has been derived from in vitro experiments. However,
evidence is accumulating that the epigenome can modulate TF cooperativity (Chen, Xiao, et al.
2013).

(iv) Additional, possibly unknown, genetic and epigenetic factors may be important for cis-
regulatory activity. For example, enhancers active in the heart have a significantly higher GC
content than enhancers active in other tissues (Erwin, Oksenberg, et al.|2014).

Limited by our current understanding of transcriptional regulation, most computational methods
for predicting distal cis-regulatory elements are based on general genomic features: the nature and
number of TF binding sites, their spatial constraints (e.g., putative cis-regulatory element have high
densities of TF binding sites), and/or their evolutionary conservation. Existing methods can be
roughly classified into four families:

(i) Evolutionary methods that compare homologous sequences between distant or closely related

species (e.g., (Boffelli, McAuliffe, et al. 2003; Ovcharenko, Stubbs, et al.[2004)).

(ii) Probabilistic models that search for significant clusters of TF binding sites (e.g., (Blanchette,
Bataille, et al. [2006; Frith, Li, et al. 2003} Narlikar, Sakabe, et al.|[2010))).

(iii) Machine learning approaches that scan the genomic sequence for windows containing multiple
motif matches to known TF binding sites (e.g., (Busser, Taher, et al.|2012)).

(iv) Alignment-like methods, that align the sequence (i.e., order) of TF binding sites found on a
sequence to that of a known cis-regulatory element (e.g., (Hallikas, Palin, et al.[2006)).

Many methods are hybrids of two or more strategies (Su, Teichmann, et al. 2010)).

2.4. Cis-regulatory Elements in Human Diseases

Most mutations in regulatory sequences do not disrupt the amino acid sequence of genes, do not
create alternative transcripts, do not introduce premature stop codons, and do not affect the 3-
dimensional structure of proteins. Instead, they affect the dynamics of gene expression. Noncoding
mutations in cis-regulatory elements controlling TFs can radically alter entire regulatory networks,
causing, for example, changes in cell-fate decisions. However, the overall expression pattern of a
gene is usually controlled by multiple cis-regulatory elements. As a result, the majority of noncoding
mutations are likely to have cell- and condition-specific, rather than pleiotropic effects (Carroll|2008)).
Thus, while mutations within an enhancer 1.5 million base pairs upstream of SOX9 result in Pierre
Robin sequence (PRS), a form of cleft palate, mutations within other two regulatory elements result
in bone dysplasia and in disorders of sex development, respectively (Benko, Gordon, et al. 2011}
Benko, Fantes, et al. [2009; Kurth, Klopocki, et al. 2009). On the other hand, coding mutations
in SOX9 lead to the campomelic dysplasia syndrome, which comprises PRS, skeletal defects and
sex reversal (Wagner, Wirth, et al. |1994). Hence, regulatory mutations are currently assumed to
constitute a significant determinant of disease (Epstein 2009; Herz, Hu, et al. [2014; Smith and
Shilatifard 2014; Symmons and Spitz |2013).

To directly assess the impact of a noncoding mutation on gene expression, Genome-Wide Associa-
tion Studies (GWAS) test for correlations between gene expression in unrelated individuals and SNP



and copy-number variants (CNV) genome-wide profiles (Stranger, Nica, et al. [2007). GWAS have
revealed an ever-expanding list of diseases associated with noncoding genetic variants (Manolio,
Collins, et al. 2009). For example, complex diseases such as Alzheimer’s, type 2 diabetes, multi-
ple sclerosis, and cancer, all with high socio-economic impact, are associated with noncoding SNPs
(Stranger, Stahl, et al. 2011). In turn, over 90% of the ~ 15,000 SNPs in the manually curated
GWAS Catalog of the NHGRI (www.genome.gov/gwastudies, (Welter, MacArthur, et al. 2014))
reside in noncoding portions of the genome. Moreover, ENCODE has recently shown that 76% of
noncoding SNPs are indeed in or very near DHSs, which suggests they are likely regulatory in nature.

Furthermore, a general model considers regulatory mutations as the key driving force behind
the evolution of species, first advocated in a pioneering work of King and Wilson in 1975 (King
and Wilson |1975)). For instance, lactose tolerance has evolved recently, and varies among different
human populations (characteristic to about 90% of Americans of northern European descent, 90%
of Africa’s Tutsi tribe, 50% of French, and 1% of Chinese, for example). Since lactase’s only function
is the digestion of lactose in milk, most mammals cease to produce lactase, which is coded for by
the LCT gene, after weaning (Swallow|[2003). In some European and African populations, the ability
to digest milk through adulthood was independently fixed since cattle domestication in the early
Neolithic Era (Tishkoff, Reed, et al.|[2007)). More precisely, the expression of LCT through adulthood
depends on a regulatory mutation located ~ 20, 000 base pairs upstream of LCT (Enattah, Sahi, et al.
2002; Wang, Harvey, et al.|1995).

Finally, over 30% of SNPs in the GWAS Catalog of the NHGRI are located at least 10,000 base
pairs away from any known protein-coding gene, arguing for the importance of distant regulatory
mutations in disease susceptibility and phenotypic diversity in the human population.

3. Novel Methods and Results

Biological sequence data are rapidly accumulating due to the progress of DNA sequencing tech-
nologies. Currently available genome-wide datasets have the potential to dramatically impact our
understanding of the mechanisms that control gene expression, and, ultimately, of how gene ex-
pression relates to development, physiology and disease. We have developed a series of integrative
approaches combining the development of novel computational methods, statistical analysis of ge-
netic, epigenetic and expression data, and experimental validation using transgenic assays with the
aim to determine how DNA sequence features and variations contribute to cis-regulatory activity.

3.1. Most Noncoding Sequences in the Human Genome are Associated
with TF and Developmental Genes

A basic observation of genome biology is that genes differ widely in their size (length) and structure
within and between species. Intergenic regions also vary. Furthermore, in the eukaryotic genome,
the size of the intergenic regions is strongly correlated with the regulatory complexity of their corre-
sponding flanking genes (Nelson, Hersh, et al. 2004). Hence, it is not surprising that genes associated
with different biological functions have very different intergenic sizes (Taher and Ovcharenko[2009).
This has important implications for the functional analysis of cis-regulatory elements.

The goal of functional enrichment analysis is to determine whether a set of coding or noncoding ge-
nomic elements is statistically enriched for some biological annotation. Many annotation databases
have been developed, including the Gene Ontology (GO) (Ashburner, Ball, et al.|2000). A common
test to calculate enrichment is Fisher’s Exact Test. Let G be the set of all N genomic elements, k of
which are annotated with a particular GO term. Let S be a subset of G containing n elements. The
probability that m elements in G are annotated with that GO term can be calculated as:

min(n,k) (k) (N—k

P(X > min,k,N)= > =

=
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3.2. Noncoding Sequence Conservation is not Necessary nor Sufficient for Cis-regulatory Activity

The standard approach to annotating cis-regulatory elements is to annotate them according to
the one or two nearest genes. However, this procedure introduces a strong bias toward genes that
are flanked by long intergenic regions (Taher and Ovcharenko |2009). For example, the majority of
genes with relatively long intergenic regions relate to basic cellular processes, such as cell adhesion,
binding, TFs, and development), while genes with relatively short intergenic regions correspond to
lineage-specific and adaptive feature. Consequently, annotating cis-regulatory elements according to
the one or two nearest genes leads to the false inference of over- and under-representation of specific
GO categories that preferentially contain longer or shorter genes, respectively. As an alternative, we
proposed to use a binomial distribution with parameters n and p;p. pgo is the probability of observ-
ing an association with a particular GO term, assuming that we are randomly sampling noncoding

elements from the human genome:
1.GO
p _ 'nc
GO — HG
LflC

where LSCO is the total size of the noncoding sequence in the loci of genes annotated with a given
GO term, and LfCG is the total size of the noncoding sequence in the human genome. Given a set S
containing n noncoding elements, the probability that m or more elements in S are annotated with
the GO term can be calculated as:

m—1
n . .
P(X >2mln,pgo) =1— Z (1) “Pgo (1 —pgo)"™
i=0
Accounting for the variability in the size of intergenic regions across different gene loci effectively
eliminates the ascertainment bias from the functional characterization of noncoding elements.

3.2. Noncoding Sequence Conservation is not Necessary nor Sufficient for
Cis-regulatory Activity

Although comparative genomics has proven effective in identifying known and novel cis-regulatory
elements in the human genome, the degree of noncoding sequence conservation is not directly cor-
related with functional constraint. For example, targeted deletion of ultraconserved sequences in
mice failed to reveal notable abnormalities (Ahituv, Zhu, et al. 2007)). Also, a study relying on ChIP-
seq experiments with the coactivator Ep300 indicated that cis-regulatory elements involved in heart
development are only weakly conserved across vertebrates (Blow, McCulley, et al. [2010). Further-
more, only a small fraction of presumably functional TF binding sites appear to be shared between
mammals (Kunarso, Chia, et al.[2010}; Schmidt, Wilson, et al.[2010). Indeed, the prevailing consen-
sus is that the function of cis-regulatory elements is maintained by the conservation of their overall
architecture, rather than of the sequence.

To recognize cis-regulatory elements that share a common ancestor but have diverged to the point
where we cannot align them using standard comparative genomic approaches, we designed a strat-
egy that relies on pairwise alignments among at least three species. Specifically, given N > 2 species,
we aim at identifying triplets of sequences for which we reliably align (e.g., with at least 70% se-
quence identity over 100 base pairs) at most W —1, and not less than 2 out of the (g) possible
pairs. For example, the human and zebrafish sequences in Figure cannot be confidently aligned.
However, the alignments between zebrafish and frog, and frog and human have a sequence identity
greater or equal than 70%, suggesting that all three sequences most likely share a common ances-
tor. Moreover, since the human sequence is relatively well conserved, approximately half of these
sequences are expected to be functional (Pennacchio, Ahituv, et al. 2006), and constitute diverged
cis-regulatory elements. We systematically scanned the human, frog, and zebrafish genomes and
identified ~ 1,500 analogous triplets of sequences. These sequences were next employed to con-
struct a model to describe pairs of diverged orthologous cis-regulatory elements that preserve their
ancestral function (Taher, McGaughey, et al. 2011).
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Figure 3.1. Alignment-free prediction of orthologous cis-regulatory elements. (A) Pairwise
alignments for three orthologous sequences in human (hgl8, chr18:53,271,349-
53,271,555), frog (xenTro2, scaffold_97:133,388133,595), and zebrafish (danRer5,
chr24:28,243,171-28,243,307). Only the human and the frog sequences and the frog and
the zebrafish sequences can be aligned with at least 70% identity across at least 100 base pairs.
The frog sequence has evolved more slowly relative to the human and zebrafish sequences,
and thus, can be used to establish the orthology of the diverged human and the zebrafish
sequences. (B) Overview of the detection of diverged orthologous cis-regulatory elements. We
look for functional orthologs of conserved human/frog CNSs (query) in the zebrafish sequence by
computing TF binding site alignments for the target and control loci, and using a support vector
machine (SVM) to distinguish significant from random alignments. (C) Composite overviews
of in vivo GFP expression data from 16-20 individual zebrafish embryos for constructs encom-
passing a candidate human (hg18, chr1:7,633,413-7,633,621) and zebrafish (danRer5,
chr23:28,890,355-28,890,563) pair. The keys for the marked expression are provided
next to each image, followed by the number of fish in the set with that specific expression. One
representative GFP live image from each enhancer set is displayed. Figure modified from Taher,

McGaughey, et al.
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3.3. Sequence Features Predict Cis-regulatory Activity

Since the functional units of cis-regulatory elements are TF binding sites, our model relies on
the binding site composition of the sequences, rather than on their nucleotide composition. Let us
assume a cis-regulatory element that is conserved according to a number of criteria between two
species A and B and not in C. To identify its diverged functional ortholog(s) in C, we:

(i) Delimit syntenic loci in A and B encompassing the cis-regulatory element.

(i) Delimit a target locus in C that is orthologous to the loci delimited in[(D)]

(iii) Define two control loci in C, adjacent to the target locus and with the same length.

(iv) Search and score putative TF binding sites in the orthologous cis-regulatory elements in A
and B using the motif databases TRANSFAC (Matys, Kel-Margoulis, et al. | 2006) and JASPAR
(Sandelin, Alkema, et al.|[2004)) and MAST (Bailey and Gribskov|[1998).

(v) Search and score putative TF binding sites in the locus delimited in C, analogously as in

(vi) Score the sequence of the target and control loci in C using a sliding window approach, looking
for sequences of putative TF binding sites that are observed in both A and B.

(vii) Compare the scores of the best-scoring window in the target and control loci using a support
vector machine (SVM), to decide whether the best-scoring window in the target locus repre-
sents an ortholog of the cis-regulatory element in A and B.

A model trained on the dataset of ~ 1,500 human, frog, and zebrafish sequences mentioned
above was able to predict the correct zebrafish ortholog for 51% of the human sequences. The
model was next applied to a more general case, where we cannot trace the ancestry of the human
and zebrafish sequences using the frog sequence. We found candidate pairs of human/zebrafish
diverged orthologous cis-regulatory elements in 10% of the loci that we examined.

The human counterparts of the candidate pairs are conserved in frog, enriched in binding events
for the coactivator Ep300, and in the neighborhood or genes associated with development and TF
activity, suggesting that they act as cis-regulatory elements in vivo. Transgenic zebrafish assays were
undertaken to verify the function of a set of randomly selected 18 candidate pairs. As expected based
on the level of conservation of the sequences, 8/18 (44%) of the assayed human sequences displayed
enhancer activity. More importantly, 7/8 (88%) of the assayed zebrafish sequences also exhibited
enhancer activity. Moreover, 5/7( 71%) of the human/zebrafish pairs showed consistent patterns
of activity, confirming that our method is able to identify orthologous cis-regulatory element despite
extensive sequence divergence.

3.3. Sequence Features Predict Cis-regulatory Activity

Standard comparative genomic approaches to predict cis-regulatory elements rely on the assump-
tion that functional elements are conserved across species. However, as illustrated in the previous
section, this assumption is not always justified. In addition, the power of comparative genomics is
limited in that it cannot determine the saptiotemporal pattern of expression driven by a particular
cis-regulatory element. In order to overcome this restriction, we designed an approach that dis-
criminates cis-regulatory elements from other noncoding sequences in the genome using sequence
motifs as features. Since cis-regulatory elements basically consist of clusters of TF binding sites
(Taher, Narlikar, et al.|2015), we represent each cis-regulatory element by a vector of binding site
occurrences, analogously to the spectrum kernel (Leslie, Eskin, et al. [2002)). Specifically, given a
cis-regulatory element denoted by S; and a set of n motifs corresponding to TF binding sites denoted
by My, M,, ..., M, the feature vector representation of S; is:

fa
fiZ
fin

where f;; denotes the (frequency of) occurrence of motif M; in sequence S;.
The approach involves the following steps:

y =
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(i) Compile a collection of cis-regulatory elements with a particular activity (e.g., drive expression
in the developing hindbrain) (positive set).
(ii) Randomly sample genomic regions of the same length and sequence properties (e.g., GC- and
repeat-content) as the elements in the positive set (control set).
(iii) Search and score putative TF binding sites in the sequences of the elements compiled in |(i)

and using:
a) known motifs from databases such as TRANSFAC (Matys, Kel-Margoulis, et al.|2006) and
JASPAR (Sandelin, Alkema, et al.[2004); and/or

b) de novo motifs, discovered by looking for significantly overrepresented sequence patterns
within the sequences of interest with tools such as MEME (Bailey and Elkan [1994) and
PRIORITY (Narlikar, Gordan, et al. [2006)).

(iv) Represent each element in |(i)| and by a fixed-dimension feature vector of (frequency of)
occurrence of the motifs in [(iii)

(v) Construct a machine learning classifier to distinguish the feature vectors representing elements
in the positive set from the feature vectors representing elements in the control set.

We used different machine learning algorithms to construct models that describe sets of en-
hancers that drive gene expression in particular contexts, such as the developing vertebrate hindbrain
(Burzynski, Reed, et al.|2012) and forebrain (Pattabiraman, Golonzhka, et al.|2014; Visel, Taher, et
al.[2013), and mesoderm and somatic muscle in Drosophila (Busser, Taher, et al.|[2012).

For instance, in order to determine the sequence basis of transcriptional regulation in the vertebrate
hindbrain (Burzynski, Reed, et al.|2012)), we first compiled a dataset of 211 sequences from the hu-
man genome that had been shown to act as enhancers in the mouse and/or zebrafish hindbrain in in
vivo reporter assays. Next, for each enhancer we randomly selected 10 control sequences with similar
length, GC, and repeat-content from the noncoding portion of the genome. Then, we trained three
SVM classifiers on different but highly overlapping subsets of the dataset to distinguish enhancers
from their respective control sequences. To evaluate the classification performance we measured
the area under the Receiver operating characteristic (ROC) curve (AUC) in a cross-validation setup.
The SVM classifiers achieved similar performances, with an average AUC of ~ 90%, indicating that
they are able to accurately discriminate hindbrain enhancers from other noncoding sequence in the
genome (Figure [3.2]A). Finally, we applied the classifiers to predict novel hindbrain enhancers in
the human genome, and identified a total of ~ 40,000 sequences that were classified as hindbrain
enhancers by all classifiers, constituting good hindbrain enhancer candidates. A random subset of
34 candidates were tested using transgenic zebrafish assays (Figure [3.2B). In 88% of the cases, the
results of the assays verified strong hindbrain enhancer activity (Figure [3.2/C). In contrast, none of
the 6 sequences selected among deeply conserved sequences (determined using the Most Conserved
Elements database from the UCSC Table Browser, (Siepel, Bejerano, et al.|2005))) that were not clas-
sified as hindbrain enhancers by any of the classifiers drove consistent expression in the hindbrain.
Notably, our validation rates are similar to those obtained using ChIP-seq with Ep300 experiments
(Visel, Blow, et al.|2009), confirming the high predictive power of our computational model (Figure
B-2D).

In addition, our computational models are able to distinguish between enhancers that are ac-
tive in different parts of a tissue, such as the mammalian embryonic forebrain (Visel, Taher, et al.
2013). Thus, to improve our understanding of the cis-regulatory architecture and gene networks
relevant to forebrain development, we combined sequence conservation and ChIP-seq experiments.
Thereby, we identified a total of 4,656 candidate embryonic forebrain enhancers. 105 of 329 (32%)
of these candidates tested in lacZ reporter assays in transgenic mice exhibited reproducible forebrain
enhancer activity at embryonic day (E)11.5. The precise spatial expression pattern of the 105 en-
hancers was subsequently determined through a high-resolution analysis. We found that ~ 40% of
the enhancers were active in the dorsal part of the embryonic forebrain, or pallium, while another
~ 40% were active in the ventral part of the embryonic forebrain, or subpallium. The remaining
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Figure 3.2. Systematic elucidation and in vivo validation of enhancers active in the vertebrate hind-
brain. (A) Area under the ROC curve (AUC) for three hindbrain enhancer support vector ma-
chine (SVM) classifiers trained on three subsets of the complete dataset. AUC values range from
0.5 (random discrimination) to a theoretical maximum of 1. The average AUC for the three
hindbrain classifiers is ~ 0.9. (B) Combine SVM score distribution for noncoding sequences in
the human genome, for all three classifiers (gray). Scores have been transformed into [—1,1],
preserving the sign. Scores > 0 correspond to candidate hindbrain enhancers for at least one clas-
sifier. Approximately 12% of the sequences had a score > 0 for all three classifiers (red). (C) GFP
reporter expression from stable lines corresponding to hindbrain candidate enhancers showing
expression across the hindbrain as well as in some non-hindbrain domains. (D) Validation rates
in in vivo reporter assays for forebrain and midbrain candidate enhancers determined using ChIP-
seq with Ep300 experiments (Visel, Blow, et al. 2009) as compared to the hindbrain candidate
enhancers predicted using our SVM classifiers.
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~ 20% were active in both pallium and subpallium. We constructed a Random Forest (RF) classifier
to discriminate between these three classes of enhancers based on motif occurrences. In contrast
to SVMs, which are inherently two-class classifiers, RF classifiers naturally support multiclass clas-
sification. Furthermore, RFs can be used to directly rank the importance of variables by comparing
the error rate in the classification with the error rate obtained when the values of a variable are
randomly permuted (Breiman 2001). Our RF classifier accurately predicted the activity of ~ 80%
of the enhancers. Moreover, the motifs that were found to be highly important for the classification
were overall more evolutionary conserved than non-important motifs, supporting their functional
relevance. Indeed, the majority of the most discriminatory motifs corresponded to predicted binding
sites for homeodomain-containing TFs, consistent with the known critical role of these proteins in
forebrain development (Hébert and Fishell [2008). In particular, we found motifs compatible with
the binding sites of several members of the distal-less homeobox (DLX) TF family. This example
demonstrates how various computational and experimental tools can be combined to investigate
gene regulatory mechanisms underlying embryonic development, and ultimately understand the
role of distal cis-regulatory elements in developmental disorders.

3.3.1. Cis-regulatory Sequence Features are Conserved in Diverged Orthologs

We next combined SVMs with comparative genomics to further elucidate the regulatory mech-
anisms underlying the formation of mesoderm and muscle founder cells (FCs) in Drosophila
melanogaster (Busser, Taher, et al.|2012). The Drosophila mesoderm gives rise to a number of tis-
sues, including heart, fat body, and visceral and somatic muscle. Among other TFs, twist has been
shown to be essential for mesoderm development (Baylies and Bate [1996)), and, in particular, in
the specification of muscle types (Furlong, Andersen, et al. 2001). A defined number of cells in the
mesoderm segregate as muscle progenitor cells, which further divide to become muscle FCs (Taylor
2000). Each somatic muscle derives from the fusion of a single muscle FC with a set number of
fusion-competent cells.

Because the dataset of muscle FC enhancers that was available to us comprised only 16 sequences,
we first devised a phylogenetic profiling strategy to extract diverged orthologs (50-80% sequence
identity) of each Drosophila melanogaster muscle FC enhancer in 14 other insects, including 11
Drosophila species (Siepel, Bejerano, et al. |2005). At most two orthologs were selected for each
Drosophila melanogaster muscle FC enhancer, totaling 24 sequences from 6 different species. Trans-
genic reporter assays confirmed that, despite extensive evolutionary reshuffling of known critical
TF binding sites, the orthologs directed gene expression in patterns comparable to those of their
Drosophila melanogaster counterparts. We also showed that including the enhancer orthologs in the
motif enrichment analysis increased our statistical power to detect subtle patterns and associations
in the original data.

The dataset comprising the 16 Drosophila melanogaster muscle FC enhancers and their 24 or-
thologs was used to train a SVM classifier to distinguish muscle FC enhancers from other noncoding
sequences in the Drosophila melanogaster genome. We assessed the performance of the classifier in
a cross-validation setup, obtaining an average AUC of ~ 0.89, which demonstrates the accuracy of
our approach. We used this classifier to achieve two main aims:

(i) Create a genome-wide map of putative muscle FC enhancers.
(ii) Establish the identify of TFs with a relevant role in muscle FC transcription.

First, we predicted a total of 5,500 muscle FC enhancers, which were found to be 4-fold over-
represented in proximity to genes that are known to be expressed in muscle FCs. Moreover, in situ
hybridization showed that many genes with unknown functions flanking muscle FC enhancer pre-
dictions are indeed expressed in muscle FCs (13-fold enrichment, P = 0.0002). Transgenic reporter
assays validated 75% of our enhancer predictions. Second, we confirmed that many of the TFs asso-
ciated with the TF binding sites exhibiting the greatest power in discriminating muscle FC enhancers
from other noncoding sequences in the genome are involved in muscle development. We recognized
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Myb, ETS, POU homeodomain (POUHD), forkhead, and T-box motifs as critical for muscle FC tran-
scription, a role subsequently validated through reporter and mutagenesis assays. In conclusion, our
results show that machine learning combined with comparative genomics is useful for recognizing
functional TF binding sites and for facilitating the identification of cognate TFs that control specific
spatiotemporal patterns of gene expression.

3.3.2. Proximal and Distal Cis-regulatory Elements Share Sequence Features

Finally, we developed a machine learning framework to show that proximal and distal cis-
regulatory elements cooperate very closely to determine the spatiotemporal pattern of expression
of a gene (Taher, Smith, et al.[2013). Since promoters are typically immediately adjacent to the TSS
of their target genes, they can be predicted with relatively high accuracy (Narlikar 2014). Indeed,
promoter prediction is a common element of gene prediction methods. In contrast, enhancers can
be located virtually anywhere in the genome. However, it has been long recognized that promoters
and enhancers are functionally very closely related, and possibly indistinguishable from each other
(e.g., (Maniatis, Goodbourn, et al.|1987; Maston, Evans, et al. 2006)). All of this directed us to the
assumption that we can use the features present in the promoter sequence to predict enhancers.

For this purpose, we first compiled 79 datasets of promoters based on gene expression profiles on
different human tissue and cell types, which we derived from the GNF Novartis Gene Expression Atlas
(Su, Wiltshire, et al.|2004). Each dataset consisted of the 200 promoters of the most highly (positive
set) and most lowly expressed (control set) genes in a given tissue or cell. For each tissue or cell,
predicted TF binding sites within the sequences of the positive and control sets were used to train a
SVM classifier capable of distinguishing between the two sets. We obtained reliable classifiers for 92%
(73/79) of the tissues and cells under consideration, with an AUC between 60% (for subthalamic
nucleus promoters) and 98% (for heart promoters). Basically, this result provides evidence for the
occurrence of features in the promoter sequence that are associated with the spatiotemporal pattern
of expression of its target gene.

We next applied the classifiers to predict enhancers, scanning the noncoding sequence of the loci
of the 200 most highly and lowly expressed genes in each of the 73 tissues with reliable classifiers.
Thirty-percent of reliable promoter-based classifiers produced consistent enhancer predictions, with
significantly higher densities in the loci of the most highly expressed compared to lowly expressed
genes (e.g., over 5-fold enrichment in the case of liver). Enhancer predictions were verified in vivo
using the hydrodynamic tail vein injection assay in mice. Fifty-eight percent (7/12) of high-scoring
liver-enhancer predictions yielded robust enhancer activity in the mouse liver, versus zero for the
controls (0/5), selected among low-scoring predictions. In summary, promoters often contain un-
ambiguous tissue- and/or cell-specific sequence signatures that can be learned and used for the de
novo prediction of enhancers.

3.3.3. Cracking the LAnguage of Regulatory Elements (CLARE): a Web-interface for the
Discovery of Cis-regulatory Elements

To provide and encourage access within the scientific community to our cis-regulatory element pre-
diction tools, we set up a web server, which we named CLARE (Cracking the LAnguage of Regulatory
Elements, (Taher, Narlikar, et al. 2012)). CLARE is freely available athttp://clare.dcode.org/.

The only input required from the user is a set of sequences of cis-regulatory elements in FASTA
format. CLARE proceeds in three main steps:

(i) Randomly sample noncoding regions from the human genome of the same length and and
GC-content as the input cis-regulatory elements (control set). Optionally, the user can upload
his/her own control set.

(ii) Search and score putative TF binding sites in the input and control sequences using tf-
Search (Ovcharenko, Loots, et al.|2005) with known motifs from the TRANSFAC (Matys, Kel-
Margoulis, et al.[2006), JASPAR (Sandelin, Alkema, et al.[2004), and UniPROBE (Robasky and

17


http://clare.dcode.org/

3. Novel Methods and Results

Bulyk|2011)) databases as well as the top 10 overrepresented motifs among the input sequences
discovered de novo with PRIORITY (Narlikar, Gordan, et al. 2006).
(iii) Build a linear regression classifier.

After running, CLARE returns three primary outputs:

(i) Putative TF binding sites that are relevant to the classification.
(ii) Classifier performance.
(iii) Predictions of cis-regulatory elements.

CLARE provides a user-friendly interface for biologists to analyze and prioritize genomic regions
and TF binding sites for further experimental validation.

3.4. Parallel Enhancer Testing Suggests a Flexible Cis-regulatory Grammar

Despite continual progress in the cataloging of cis-regulatory elements, little is known about the
grammatical rules that govern their activity. TFs act in a combinatorial and partly redundant manner.
Hence, de novo creation or deletion of TF binding sites within a particular cis-regulatory element can,
though not always, modify the intensity and spatiotemporal pattern of expression of its target gene.
For example, the gain of new TF binding sites for conserved regulators of wing development within
an enhancer that regulates the yellow gene resulted in the evolution of a wing spot in Drosophila
biarmipes (Gompel, Prud’homme, et al. 2005). Deciphering these grammatical rules is essential to
enabling high-resolution mapping of cis-regulatory elements, accurate interpretation of nucleotide
variation within them, and the design of sequences that can deliver molecules for therapeutic pur-
poses in a spatiotemporal manner.

Integrating statistics, combinatorics, and computational techniques we designed a collection of
~ 5,000 synthetic cis-regulatory element sequences (SRESs) representing binding site arrangements
for 12 TFs (AHR/ARNT, CEBPA, FOXA1, GATA4, HNF1A, HNF4A, NR2F2, ONECUT1, PPARA, RXRA,
TFAP2C and XBP1) that are known to play an important role in liver development and function
(Smith, Taher, et al. 2013). The regulatory activity of the SRESs was examined using a massively
parallel reporter assay in the mouse liver (Figure A). Briefly, each SRES along with a unique
20-base-pair-long tag was first cloned into an expression vector (pGL4.23) containing a minimal
promoter driving transcription of luciferase (minP/luc). The entire sequence of each SRES and its
associated tag were determined by sequencing. The library of SRESs was then introduced into three
mice through hydrodynamic tail vein injection, livers were harvested after 24 h and sequencing
was performed to quantify abundance of transcribed tags. These data were used to estimate the
regulatory activity of each SRES. With the aim to test distinct hypotheses regarding the nature of
homotypic clustering, synergy between TFs in heterotypic enhancers and the impact of binding site
spacing and order on expression, we designed three classes of sequences (Figure B):

(i) ClassISRESs (n = 533) were homotypic, containing 1, 2, 4 or 8 copies of the same TF binding
site with different spacing.
(ii) ClassII SRESs (n = 1,797) were heterotypic, containing exactly 2 different types of TF binding
sites arranged as 2, 4 or 8 sites that were separated uniformly.
(iii) Class III SRESs (n = 2,636) were heterotypic, with 3-8 different types of TF binding sites
separated by a fixed distance, with only 1 site per TE

In all cases, the TF binding sites were patterned onto two different 168-base-pair-long sequences
which did not exhibit regulatory activity in liver. All of these sequences are enriched in liver-specific
enhancers identified using ChIP-seq experiments (Shen, Yue, et al.|[2012).

We found that certain TFs act as direct drivers of gene expression in homotypic clusters, indepen-
dent of spacing, whereas others function only synergistically. Heterotypic enhancers were stronger
than their homotypic analogs, and favor specific TF binding site combinations, mimicking putative
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Figure 3.3. Synthetic enhancer sequence design. (A) Schematic of massively parallel reporter assay
methodology. SRESs were cloned upstream of a minimal promoter in a tagged luciferase library
and then assayed in vivo using hydrodynamic tail vein injection. Livers were dissected 24 h after
injection, mRNA was generated, and tags were reverse transcribed and sequenced. (B) SRESs
consist of patterns of 12 consensus binding sequences arranged homotypically (class I) or het-
erotypically (class II and class III) on 1 of 2 neutral, 168-bp templates.

native enhancers. Exhaustive testing of TF binding site permutations supported a model with flexi-
bility in binding site order. The flexibility and redundancy of the cis-regulatory code can explain both
its functional robustness and the apparent simplicity with which changes in cis-regulatory elements
can alter the spatiotemporal pattern of expression of a gene.

This work provides a unique catalog of tissue-specific synthetic enhancers as well as a massively
parallel view of the basic principles of regulatory activity in vivo.

3.5. Regulation of Gene Expression in Embryonic Development

During embryonic development, starting with the totipotent zygote, one genome gives rise to mul-
tiple cells with different identities. The developmental program requires the coordinated expression
of genes encoding TFs and components of cell signaling pathways, and is primarily controlled by
TFs binding to specific cis-regulatory elements. Developmental regulatory networks are often com-
plex, with multiple levels of cross-talk between different pathways and both positive and negative
feedback loops. Detailed information on developmental stage-specific changes in gene expression is
crucial for elucidating the regulatory networks underlying development and morphogenesis (Taher,
Pfeiffer, et al.[2015])).

In an effort to learn more about the genes involved in limb morphogenesis, we employed whole-
genome microarrays to examine gene expression across 5 stages of limb development, from limb
initiation, at E9.5, to E13.5, when they are fully patterned (Taher, Collette, et al.|2011). Our data
and analysis describe the global gene expression dynamics during early murine fore- and hindlimb
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development, when cartilage, tendons, muscle, joints, vasculature and nerves are specified and the
musculoskeletal system of limbs is established. Differential expression was assessed using a lin-
ear modeling approach and the empirical Bayes statistics as implemented in the limma R package
(Ritchie, Phipson, et al.|2015).

In particular, we observed that the onset of limb formation is characterized by the up-regulation
of TFs, which is followed by a massive activation of genes at E10.5 and E11.5. Furthermore, we
found that the limb developmental program involves over 3,500 genes that exhibit ~ 20 distinct
expression profiles across the 5 stages considered. Interestingly, approximately 30% of these genes
that were identified as significantly up-regulated in the limb were novel, or have not yet been char-
acterized in the limb, dramatically expanding the repertoire of genes that are likely to function in
the limb. Hierarchical and stage-specific gene clustering identified expression profiles that are likely
to correlate with functional programs during limb development. Further characterization of these
transcripts and their regulators will provide new insights into specific tissue patterning processes.

This was, to our knowledge, the first comprehensive analysis of the gene expression dynamics
governing limb morphogenesis.

4. Discussion and Outlook

Despite its unprecedented scale, the cis-regulatory sequences identified by large international
projects such as ENCODE most likely account for only a fraction of all cis-regulatory elements in
the human genome (He, Kong, et al. 2011). Furthermore, given their cell- and condition-specific na-
ture, the discovery and experimental validation of all regulatory sequences in the human genome is
expected to remain an elusive goal for years to come. Recent advances in molecular biology coupled
with high-throughput sequencing technologies, including ChIP-seq and DNase-seq, have opened up
new possibilities to annotate the noncoding portion of the genome. Nevertheless, the occurrence
of biochemical events as reported by these technologies does not necessarily imply cis-regulatory
activity. In other words, despite their relatively high validation rates, these methods only predict
cis-regulatory elements. Hence, developing computational methods that can help identify and char-
acterize cis-regulatory sequences remains a central problem in biology.

High-throughput sequencing is transforming computational biology. The large datasets generated
by current technologies require the development and implementation of appropriate analysis, in-
terpretation, and visualization methods. Unlike coding regions, noncoding regions in the genome
typically lacks any annotation regarding their biological functions. We conceived a method to assign
biological meaning to a set of noncoding genomic regions by analyzing the annotations of the nearby
genes (Taher and Ovcharenko 2009). In addition, to improve our understanding of the language of
transcriptional regulation, we established a strategy to ascertain the ancestral identity of diverged
noncoding sequences (Taher, McGaughey, et al. 2011). More precisely, we showed that genomic
pairwise comparisons among multiple species facilitates the detection of ancestral sequence iden-
tity. We applied this principle to determine orthology relationships between thousands of noncoding
elements in the human and zebrafish genomes that fail to align under standard pairwise sequence
comparison. Moreover, our approach can be easily generalized to other species. For diverged non-
coding sequences that defy detection based on sequence similarity, even after including more species
into the analysis, we designed an alignment model based solely on the distribution of TF binding
sites. Our results demonstrate that cis-regulatory elements can maintain their function despite se-
quence divergence. Further, because of the cell- and condition-specific nature of cis-regulatory ele-
ments, there is a pressing need for accurate high-throughput approaches that can be used to identify
cis-regulatory elements in a wide variety of cell types and biological contexts. In contrast to ChIP-
seq and DNase-seq, computational approaches provide access to sequence features that contribute
to our understanding of transcriptional regulation. We designed different machine learning-based
tools that predict cis-regulatory elements on the basis of a few characteristics that cis-regulatory ele-
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ments are known to share (Burzynski, Reed, et al. 2012}; Busser, Taher, et al.|[2012; Taher, Narlikar,
et al. 2012 Taher, Smith, et al. 2013} Visel, Taher, et al. [2013)). Our results show that distinct
combinations of TF binding sites are responsible for cell- and condition-specific regulatory activity.
Furthermore, the regulatory code appears to have a relatively simple grammar (Smith, Taher, et al.
2013). Indeed, although there is still no comprehensive picture of the necessary and sufficient se-
quence features for cis-regulatory elements, we have succeeded at creating cis-regulatory elements
de novo from non-functional sequence by the addition of TF binding sites. Interestingly, a single
copy of the 17-bp binding motifs for HNF1A or XBP1 is sufficient to drive consistent expression in
adult liver when paired with a minimal promoter. To our knowledge, these constitute the shortest
functional elements characterized in vivo and could, eventually, be used in inducible, as well as non-
inducible, transgenic experiments. Finally, we showed how to elucidate transcriptional relationships
in the developing embryo from high-throughput gene expression data (Taher, Collette, et al.|2011)).

To estimate how our classifiers will generalize on an independent dataset we examined their per-
formance in a cross-validation setting (SVM and linear regression) or their out-of-bag (OOB) error
(RF). One round of cross-validation involves partitioning a dataset into two complementary subsets,
a training and a test set. The classifier is subsequently trained on the training set and evaluated on
the test set. Multiple rounds of cross-validation are performed on different partitions to estimate the
variability of the results. In the case of RF classifiers, there is no need for cross-validation to get
an unbiased estimate of the test set error. Indeed, each tree in a RF is constructed using a different
bootstrap sample, consisting in approximately two-thirds of the original dataset. Hence, one-third
of the trees can be used as “test” set to evaluate each data point in the dataset. The OOB error is
the fraction of the instances in which the class assigned to a given data point is not equal to its true
class averaged over all data points. Within these frameworks, we systematically compared our meth-
ods to other state-of-the-art approaches. For example, a few approaches were proposed in the past
to identify orthologous pairs of cis-regulatory elements that do not show any discernible sequence
conservation (Berezikov, Guryev, et al.|[2004; Blanco, Messeguer, et al. 2006; Hallikas, Palin, et al.
2006). Despite relying on similar models, the optimal parameter configuration of these methods
depends on the exact question being addressed. In our framework, they succeeded in retrieving
the zebrafish orthologs of the human sequences in less than 20% of the cases, as compared to the
51% achieved by our approach. Also, we compared our machine learning classifiers that predict cis-
regulatory activity based on sequence features to four state-of-the-art methods: CisModule (Zhou
and Wong 2004)), Cluster-Buster (Frith, Li, et al.|2003)), MSCAN (Alkema, Johansson, et al. [2004),
and Stubb (Sinha, Liang, et al.|2006)). Our classifiers outperformed all others in terms of both sensi-
tivity and specificity, exhibiting substantially and significantly higher AUCs. Finally, we assessed the
quality of our genome-wide predictions according to the following criteria:

* Functional analysis.

* Overlap with DHSs and ChIP-seq data.

» Expression pattern of neighboring genes.

* Experimental validation using reporter gene assays, performed by collaborators.

Reporter gene assays in transgenic zebrafish and mouse provide the most stringent and impartial
validation for our computational predictions.

Our models rely on sequence motifs representing TF binding affinities. Several methods have been
developed to characterize and predict TF binding affinities. TF binding affinities are then modeled
using PWMs, which assume independence between positions, and more sophisticated models. To
improve the accuracy of these models, phylogenetic footprinting is often employed to restrict the
search to conserved TF binding sites. Despite their simplicity, PWM scores have been shown to be
strongly correlated with TF binding affinities (Stormo [2000; Stormo [2013). TF binding affinities
are most commonly derived from in vitro data, which are context independent. Actual binding is
known to be highly dependent on cell-specific conditions, such as chromatin accessibility and TF and
coactivator availability (Spitz and Furlong[2012). However, even models integrating multiple types
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of sequence data achieve only modest accuracies (e.g., (Zhong, He, et al.2013))). Sequence features
alone appear not to be sufficient for functional TF binding site recognition. ChIP-seq measurements
of TF binding have been successfully used for cis-regulatory element prediction (e.g., (Yip, Cheng,
et al. 2012))) and can substitute predicted TF binding sites in a straightforward manner to improve
the performance of our tools.

The current state of knowledge suggest that some repetitive sequences in the human genome play
an important role in transcription regulation. The regulatory role of repetitive elements such as
transposable elements (TEs) was already recognized by Barbara McClintock in the 1940s and 1950s.
Nevertheless, TEs have long been dismissed as “junk” DNA, and are only now beginning to receive the
attention they deserve. Indeed, ~ 50% of the human genome is derived from repetitive sequences,
most of which are classified as TEs (de Koning, Gu, et al. 2011)). The proliferation and evolution
of TEs have had multiple impacts on the vertebrate genome. For example, TEs have substantially
contributed to the expansion of binding sites for CTCF (Schmidt, Schwalie, et al.|2012)). Also, DNase
I hypersensitivity data from ENCODE has demonstrated that over half of primate-specific open chro-
matin regions are associated with TEs, and that this association depends on the specific TE family
(Jacques, Jeyakani, et al.2013). However, the repetitive nature of TEs makes them difficult to an-
alyze. Standard analyses of high-throughput sequencing data usually exclude sequences matching
to multiple locations of the genome. Including such sequences would improve the sensitivity of the
analysis, but at the expense of specificity. Once various technical issues have been addressed, the
analysis of extensive panels of epigenetic marks in the near future is likely to show that a large
fraction of sequences derived from TEs have regulatory activities.

Although high-throughput whole-genome sequencing has facilitated the identification of non-
coding variants, the discrimination of causal mutations for complex diseases is still a formidable
challenge. The vast majority of SNPs identified in GWAS reside in noncoding portions of the
genome. Indeed, increasing evidence suggests that most causal mutations are expected to lie
within cis-regulatory elements (Stranger, Stahl, et al. 2011). Moreover, several resources, includ-
ing HaploReg (http://www.broadinstitute.org/mammals/haploreg/haploreg.php), Reg-
ulomeDB (http://regulomedb.org), and GWAS3D (http://jjwanglab.org/gwas3d) have
been developed for the specific purpose of annotating noncoding variants from GWAS (Edwards,
Beesley, et al.2013). Nevertheless, medical research continues to focus primarily on protein-coding
variants. The main reason for this is our lack of understanding of the general principles of transcrip-
tional regulation and how it controls developmental and disease progression. Hence, an essential
future goal is to understand how cis-regulatory elements drive specific spatiotemporal patterns of ex-
pression and how they interact with each other. The joint analysis of GWAS with functional genomics
is key to unleash the value of whole-genome sequencing for personalized medicine.
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