
 

 

From the professorchip of Animal Breeding 
 
 
 
 
 
 

 

Analyzing gene expression data  

with linear mixed models: 
 

Applications to variable pool sizes 

and biomarkers 

 
 
 
 
 
 

 

Dissertation 

 

for attainment of the academic degree 

doctor of agriculturae 

 

from the Faculty of Agricultural and Environmental Sciences 

of the University of Rostock 

 
 
 
 
 
 
 
 
 
 
 
 

Submitted by: 

 

Henrik Rudolf 

from Rostock 

 
 
 
 

Rostock, July 2015 

zef007
Schreibmaschinentext

zef007
Schreibmaschinentext
urn:nbn:de:gbv:28-diss2016-0062-1

zef007
Schreibmaschinentext

zef007
Schreibmaschinentext



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gutachter: 

 

Manfred Schwerin, Prof. Dr. rer. nat. Universität Rostock, Agrar- und  

              Umweltwissenschaftliche Fakultät  

 

Norbert Reinsch, Prof. Dr. agr.           Leibniz-Institut für Nutztierbiologie 

              Institut für Genetik und Biometrie 

 

Kaspar Bienefeld, Prof. Dr. agr.         Humboldt-Universität Berlin 

              Lebenswissenschaftliche Fakultät 

 

 

Datum der Verteidigung:           15.01.2016 
 



To my Family.





I

Acknowledgements

At first I thank Norbert Reinsch for his many ingenious suggestions, valuable insights

into research, and support. I have learnt very much from him.

I thank Manfred Schwerin for giving me the opportunity and provide the first report.

For his willingness to discuss and support I sincerely thank Gerd Nuernberg. Many

thanks go to the colleagues and staff of the Insitute for Genetics and Biometry at

the Leibniz Institute for farm animal Biology who supported me during my time.

Without my family and Anna, it were not possible to write this thesis, I am very

glad to have them.

This work has been funded by the German Federal Ministry of Research (BMBF

project HyBee, PTJ 0315124D) and by the H.-Wilhelm-Schaumann-Stiftung and by

the International Leibniz Graduate School on functional diversity in farm animals

(ILGS DivA).





Contents III

Contents

1 Introduction 1

1.1 A few basics to linear mixed models . . . . . . . . . . . . . . . . . . . 3

1.2 Background to honeybee and the HyBee project . . . . . . . . . . . . 4

1.3 Design principles for pooling experiments . . . . . . . . . . . . . . . . 5

1.4 Estimation and tests of blending error variance . . . . . . . . . . . . 8

1.5 Searching RNA-marker for hygienic behavior . . . . . . . . . . . . . . 9

2 Design and modeling pooling experiments 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Modeling bias on the log-scale . . . . . . . . . . . . . . . . . . 13

2.2.2 Conditions for unbiased hypothesis testing . . . . . . . . . . . 15

2.2.3 Generalized covariance structure . . . . . . . . . . . . . . . . . 20

2.2.4 Repeated use of individuals in pool building . . . . . . . . . . 25

2.2.5 Two-color arrays . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.1 Designs with flexible pooling . . . . . . . . . . . . . . . . . . . 28

2.3.2 The effect of replication . . . . . . . . . . . . . . . . . . . . . 29

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Relevance of blending error variance 37

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37



IV Contents

3.2 Material and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Random effects in gene expression experiments with variable

pool sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.2 Experimental data . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.3 Simulated data . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.4 Statistical analyses . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.1 Simulated data sets . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.2 Experimental data . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Biomarker search for hygienic bees 57

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Material and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.1 Collection of hygienic workers and controls . . . . . . . . . . . 60

4.2.2 Design of the gene expression experiment . . . . . . . . . . . . 60

4.2.3 Classification with two-color array data . . . . . . . . . . . . . 61

4.2.4 A mixed model approach for preprocessing . . . . . . . . . . . 62

4.2.5 Adaptive Lasso for binomial data . . . . . . . . . . . . . . . . 63

4.2.6 Course of search . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.1 Search for biomarker with adaptive lasso based on resampling 66

4.3.2 Predictions for bees from validation data . . . . . . . . . . . . 68

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.1 Mixed model preprocessing . . . . . . . . . . . . . . . . . . . . 69

4.4.2 Biomarker candidate with 4 transcripts . . . . . . . . . . . . . 71

4.4.3 Outlook on possible applications . . . . . . . . . . . . . . . . . 72

5 Summary and Discussion 75

5.1 Variable pool sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76



Contents V

5.2 Inaccuracies due to blending . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 Biomarker for hygienic behavior . . . . . . . . . . . . . . . . . . . . . 85

5.4 Using R for programming of analysis tasks . . . . . . . . . . . . . . . 89

6 Zusammenfassung 93

7 Appendix 97

7.1 Supplement for Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . 97

7.1.1 Simulated and estimated blending error variance . . . . . . . . 97

7.1.2 Matrices for EM-REML and mixed model equations . . . . . . 98

7.2 R-script for EM-REML . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.3 Variance functions for comparison of designs . . . . . . . . . . . . . . 104

7.4 Intra-class correlations of hygienic tasks . . . . . . . . . . . . . . . . . 106

Bibliography 107





1

1 Introduction

Honeybees play an important role in nature as pollinators. At present, colonies of

Apis mellifera are threatened by the mite Varroa destructor. The brood care of bees

- consisting of certain behavioral traits, which might support resistance over the mite

- is a complex social behavior and dependent on several circumstances. The root

levels of brood care in the transcriptome can be investigated with gene expression

profiling. This multi-step method allows for the measurement of thousands of genes

simultaneously. A linear mixed model is an appropriate method for the analysis

of measurements which are influenced by experimental factors and distortions. It

offers the possibility of considering systematic sources of variation and to adjust the

question of interest with respect to other experimental factors.

The choice of design in a microarray experiment depends on the experimental ques-

tion, number of individuals to analyze, number of available arrays, the choice of

one- or two-color platforms, and also the financial background. With DNA microar-

rays, the mRNA of an individual or pooled sample is isolated and transcribed into

cDNA and then the fluorescent emission of labelled complementary hybridization is

scanned. Pooling - the blending of individual mRNA samples - reduces hybridiza-

tion costs and compensates for insufficient amounts of mRNA. For a given number

of arrays the inclusion of more individuals via pooling also has an advantage when

testing the hypotheses, as for differentially expressed transcripts theoretically get

a higher power. On the other hand, due to blending and the logarithmic transfor-

mation, a part of the normalization for statistical analysis of gene expression data,

biases can be introduced. However, by adequately choosing the design and statis-
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tical analysis method, their impact can be excluded from contrasts and hypotheses

tests.

The blending of individual mRNA samples into a pool also has consequences on

the variance of measurements. Furthermore, an additional technical error can occur

due to pooling. In the authors opinion, a corresponding variance component called

blending error variance has to be included in a model for data from pooled sample

designs. Four experimental data sets were examined in order to study the relevance

of the blending error variance.

The variance structure of the data is also of importance, if multivariate methods

come into play, which is often the case in a biomarker search. The goal in such an

analysis is the selection of a set of genes whose joint expression pattern is a basis for

a rule to classify unknown samples. The preparation of the data to a suitable gene

expression matrix with one expression vector per sample is generally not straight-

forward. This is the case, if a design with replications is applied. In experiments

with two-color arrays, the entries of the gene expression matrix have to be further

extracted out of differences of expression values. This transformation is essential for

the ability to find good candidate biomarker genes.

In the background of a honeybee project about the hygienic behavior against the

parasitic mite V. destructor, methods presented in this thesis were initially devel-

oped. But they are applicable to a much wider class of experiments. For the choice of

design in the case of variable pool sizes (the number of individuals per pool), a con-

dition for unbiased contrasts was derived. The relevance of a technical error due to

the blending of individual samples into pools was investigated with four experimen-

tal data sets of different species and in several simulations. For the transformation

of two-color array data to a gene expression matrix suitable for a biomarker search

the known back-transformation to single channel expression led to poor classifica-

tion performance. A method aimed at the best possible preservation of the variance

structure was developed.

This introductory chapter is concluded as follows. Because the main methodol-



1.1 A few basics to linear mixed models 3

ogy used in this thesis for tackling the aforementioned problems were linear mixed

models, the next section contains some related background with basic explanations

about contrast and variance functions. Then a brief description of the gene ex-

pression experiment from the German Federal Mnistry of Education and Research

(BMBF)-project HyBee is presented. Thereafter, the issues picked up in the above

mentioned areas of research will be described, to be discussed in the three main

chapters of this thesis.

1.1 A few basics to linear mixed models

A linear mixed model allows for fixed and random effects. It is used here to model

the vector y of logarithmically transformed expression for a transcript via design

matrices X for fixed effects and Z for random effects.

y = Xβ + Zu + e, (1.1)

where E(y) = Xβ, E(u) = 0, E(e) = 0, V (u) = G, V (e) = Inσ
2
e , Cov(u, e) = 0.

In this work, the covariance matrix of random effects G consists of one block per

random effect in u. This is called the variance component form of the general model.

The variance structure modeled for y in equation 1.1 is V(y) = ZGZ>+Inσ
2
e , where

In denotes the (n × n) identity matrix. Generally, with such a variance structure

heterogeneity and correlations can be considered. There are some ways to fit a linear

mixed model, for instance, the restricted maximum likelihood (REML) method. It

estimates the residual variance and each of the variance components, and then the

estimates of the fixed and random effects are obtained by solving the mixed model

equations.

To compare estimated parameters β̂ a contrast might be used. (l × p)-matrix

K> = (kij)i=1...l,j=1...p , where p is the number of parameters and l the dimension, is

called contrast matrix if
∑

j kij = 0, ∀i. A contrast function is estimable if and only
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if K>(X>V−1X)-(X>V−1X) = K>, where (X>V−1X)- is a generalized inverse of

X>V−1X. This applies to models where the design matrix X is not of full rank.

With a contrast K> and estimated β hypotheses K>β̂ = 0 can be tested. The corre-

sponding Wald-statistic 1
l
(K>β̂)>(K>(X>V̂-1X)-K)-1(K>β̂) has an F-distribution.

For details and a complete overview of linear model theory, the reader is referred to

the work of Searle (1971).

With a (one-dimensional) contrast, it can then be tested whether a gene or tran-

script is differentially expressed between (two) treatments. Contrast functions can

also be used for comparing two designs, e.g. regarding the power to detect differences

between treatments. The calculation of variance functions K>(X>V-1X)-K, using

the design matrices X and assuming known V, yields a smaller variance function

for the contrast for a ’better’ design.

1.2 Background to honeybee and the HyBee project

Colonies of A. mellifera are threatened by the parasitic mite V. destructor. The

mites reproduce inside the brood cells. Hygienic behavior is considered an effec-

tive control strategy against brood diseases. The afore-mentioned project (BMBF

project HyBee, PTJ 0315124D) was one part of the FUGATO-plus research series

with the title: HyBee - developing molecular methods for the selection of pathogen

resistant honeybees based on gene expression differences of hygienic and not hy-

gienic worker bees. Hygienic behavior was analyzed at the individual level of worker

bees. Various experiments with regard to this rare individual behavior for instance

in breeding and olfactory learning were executed. The gene expression experiments

which investigated the two behavioral classes of worker bees from behavioral assays,

are a subject and motivation for this thesis. The first part was a preliminary experi-

ment which included pooled samples with 22 arrays. The second part was conducted

in the final year of the project with 64 arrays per tissue and single samples.

The basis for the evaluation of worker bees were infrared video observations of in-
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dividually marked worker bees showing their activities in a hive with a section of

Varroa-parasitized brood. The detected hygienic bees were then compared in a

microarray experiment against control bees and between different colonies. The ob-

jective for the development of the gene expression experimental design was to use all

hygienic bees, whose identification took great efforts, with a given number of arrays.

Several bee colonies participated in the behavioral assay of 48 hours duration, which

was repeated seven times. After each assay the bees were freeze-killed with liquid ni-

trogen to secure age-specific expression. For the gene expression experiment, it was

decided to compare bees with different hygienic status only inside the same colony

and the same assay. Thus, the blocking factors for the experiment were assay and

colony. The number of available arrays in the project was limited and beforehand

the number of hygienic bees was unknown. Therefore it was planned to pool bees

detected as hygienic from the same block and oppose a pool of controls, which were

available in large numbers, to be measured with a two-color array. This principle

leads to variable pool sizes.

1.3 Design principles for pooling experiments

There are many possible ways to combine pooled samples on different arrays. For

economical reasons the number of arrays is usually limited, and here it is assumed

to be fixed. In a study like the bee project, where in the beginning the number of

extraordinary individuals within a large number of animals is unknown, an effective

use of resources might be to consider pools of variable size. This would include all

individuals with a rare property like the hygienic behavior of honeybees. It was

considered a problem, that biases are introduced due to pooling (Kendziorski et

al., 2005) and with a variable pool size, the variance of measurements is no longer

homogeneous. As a consequence it was recommended to avoid variable pool sizes in

microarray experiments.

The root of the problem is that pooling happens on the original scale of mRNA sam-
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ples of individuals and the statistical analysis takes place after data normalization,

including a logarithmic transformation. In Zhang et al. (2007) the relationships

of expectation and variance between pooled samples and individual samples were

theoretically derived. The situation that the bias and the variance of measurements

of pooled samples on the logarithmic scale both depend on the pool size, motivated

the search for possibilities to correct for flexible pooling (experimental designs with

pooled samples allowing a different number of individual samples to be blended into

a pool). First, intuitively one might guess, the size of the control pool shall equal

the treatment pool to secure estimates of main treatment effects, which can be ad-

justed for pool size. As in experiments like the bee project, the number of controls

is usually large, to each pool of the ’special’ individuals an equally sized pool of

controls can easily be opposed. Secondly, it has to be investigated how the variance

heterogeneity can be handled in the analysis.

How this principle basically works is shown in the following for a minimal example.

We consider one factor of interest with two levels: treatment (with two pool sizes)

and control, to be measured with four one-color arrays. Such an experiment can

be modeled with a linear model y∗ = Xβ + ε, where y∗ is the data vector, X is

the design matrix, β = [ µ β1 β2 ]> is the parameter vector and e the residual

term. Here, measurements assumed to be independent and therewith V = V(y∗) is

diagonal. Furthermore, it is assumed that the vector h contains the biases due to

pooling of the data vector y∗. The entries of h and the covariance matrix V depend

on the pool size and thus get a different index for each pool size. Assigning to the

first treatment pool a control pool of the same size and also for the second treat-

ment pool, the entries in h are pairwise equal, as well as elements on the diagonal

of V. A generalized least squares estimate of unbiased measurements y would be

β̂ = (X>V−1X)-X>V-1y. For the biased measurements y∗ = y + h the estimate

of β is also biased and denoted by β∗. Evaluating the influence of biased measure-

ments on the contrast of main effects, K> = [ 0 1 -1 ] is applied on β∗. Then we
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can write:

K>β∗ = K>(X>V−1X)-X>V-1(y + h)

= K>β̂ + K>(X>V−1X)-X>V-1h. (1.2)

For unbiasedness the right term in equation (1.2) has to be checked, first calculating:

(X>V−1X)-X>V-1h

=







1
v1

1
v1

1
v2

1
v2

1
v1

0 1
v2

0

0 1
v1

0 1
v2







1 1 0

1 0 1

1 1 0

1 0 1







-



1
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1
v1

1
v2

1
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1
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0

0 1
v1

0 1
v2







h1

h1

h2

h2




=




2
v1

+ 2
v2

1
v1

+ 1
v2

1
v1

+ 1
v2

1
v1

+ 1
v2

1
v1

+ 1
v2

0

1
v1

+ 1
v2

0 1
v1

+ 1
v2




- 


2h1
v1

+ 2h2
v2

h1
v1

+ h2
v2

h1
v1

+ h2
v2




=




0 0 0

0 v1v2
v1+v2

0
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=




0

h1v2+h2v1
v1+v2

h1v2+h2v1
v1+v2



.

(1.3)

From the finding of equation 1.3 it follows that K>(X>V−1X)-X>V-1h = 0. Hence,

the difference of main effects of the two levels is unbiased, if for each pool of the

treatment an equally sized pool of controls is opposed.

In chapter 2, it is shown that balancing pool sizes between treatment groups also

suffices in the general case of more treatments and more complex variance struc-

tures. Together with a general pooled sample design with flexible pooling, the way

of statistical analysis also had to be refined. Therefore, a model for analysis of pool-

ing experiments was developed. It allows us to adequately handle the bias caused

by pooling and the variance heterogeneity, which were the main concerns about

microarray experiments, where the pool size is not fixed.
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1.4 Estimation and tests of blending error variance

Biases reflect the impact of pooling on the expectation, while the influence of the

technical error due to pooling on the variance of pooled samples and on differen-

tial expression was underestimated. Analyzing experiments with variable pool size

makes it possible to estimate the technical error due to pooling. It appears through

unequal shares of individual mRNA in a pool. In Figure 1.1, it is shown how blending

Figure 1.1: Scheme for blending of individual samples at DNA level

of individual samples might be imagined at the level of aliquots. For a pool blended

from three individual samples, the fictive weights in an ideal pool and a real pool

are displayed. It is important to remark that unequal shares might arise differently

for every transcript, instead of assuming overall weights, which correspond to the

volumetric amount of the individual samples in a pool.

In Zhang et al. (2007), the pooling technical variance was assigned to the variance

of weights of individuals in a pool with expectation 1
γ
, for a pool size γ. This concept

was further developed and extended to the blending error variance corresponding to

distortions of the expression level of pools at the logarithmic scale, where it can be

estimated as a random effect in a mixed model.

In chapter 3, four experimental data sets were investigated. The blending error

variance was estimated by using an EM-REML script developed for the case of two

random effects or rather three variance components in a linear mixed model. Tran-

script by transcript was tested, if blending error variance was significantly different

from zero, by a REML log likelihood ratio test of the hypothesis σ2
2 = 0. Correction

for multiple testing according to a false discovery rate of 5% was applied. Further-
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more, basics of estimation of variance components with REML and the simulation

of pooled sample gene expression data with respect to the log-transformation are

given.

1.5 Searching RNA-marker for hygienic behavior

The data from the gene expression experiment with 64 arrays from the tissue of the

mushroom body was chosen for the biomarker search for hygienic behavior, because

recognition of olfactory sensitivity was attributed to that area of the bee brain. A

biomarker search is done for selecting a set of genes, whose joint gene expression

pattern allows the derivation of a rule for the classification of unknown samples to

classes.

To start the search algorithm with gene expression data (64 arrays), certain prepa-

rations are necessary, including setting up a gene expression matrix with one data

vector per sample (1,. . . ,95). Then learning takes place with multivariate methods.

Applying a scheme which re-samples training and test set, a classifier is calculated

and then evaluated at the test set. Repetition of this procedure, many thousand

times, yields a forecast of the misclassification rate (prediction error) expected with

independent or validation data (e.g. Dziuda, 2010). The two-color array design

from HyBee included replicated use of bees and therefore correlated measurements

have been generated. A good preservation of the variance structure of the data is

essential for biomarker search. Only then can a classifier be expected to be general-

izable and allow the classification of unknown samples to pre-defined classes. In the

beginning a simple approach deriving expression vectors for individual samples from

the differences in log expression via back-transformation prepended several learn-

ing methods. The performance in this setting was poor, independent of the chosen

method, with prediction errors of around 40% (results not shown).

In chapter 4, a new approach is presented which includes an estimation of random

bee effects, as a summary of all phenotypical information. In this way, the correla-
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tions between measurements via the covariance matrix of the mixed model and also

the multiple usage of bees are considered, although both masked in differences.

Further structure and related publications

Altogether, selecting the optimal design for the special circumstances of a study

and properly modeling and analyzing microarray data are challenges which this

work deals with, with emphasis on pooling and biomarker search.

The research topics introduced above yield the following structure: Using the matri-

ces corresponding to the design of a pooling experiment, an unbiasedness condition

for contrasts is given in chapter 2. Together with other aspects of flexible pooling,

it was published in the journal Statistical Applications in Genetics and Molecular

Biology. The empirical investigations into the inaccuracies of the blending of in-

dividual samples into pools from the chapter 3 were included in a paper Rudolf

et al. (2015), which was accepted for publication in BMC Genomics. A manuscript

including the presented findings of chapter 4 is in preparation (Rudolf et al., 2016).

Presented results, in relation to other work and consequences for future research are

summarized and generally discussed in chapter 5. A summary in German is also

given in chapter 6. The Appendix gives some supplementary information to chapter

3, an R-script for estimation in linear mixed models with EM-REML, the result of

generalized linear mixed model analyses to estimate intra-class correlations of traits

from the behavioral assay of HyBee, as well as calculations of variance functions

for minimal examples of designs with regard to the power to detect differentially

expressed genes.
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2 Flexible pooling in gene expression

profiles: design and statistical

modeling of experiments for

unbiased contrasts

2.1 Introduction

Pooling is a widely used method in gene expression profiling, which is employed

to control the costs of the arrays or to deal with an insufficient amount of RNA

(see e.g. Kerr (2003)). At the same time pooling reduces the biological variation

and the variance of contrasts, what favors statistical testing. Several researchers

investigated pooling with regard to power of tests for finding differentially expressed

genes. Kendziorski et al. (2003) showed that for the precision of estimates pooling

is most advantageous when biological variability is larger than technical. Most of

the work in finding optimal designs related to pooling is done for a fixed number

of individuals and varying number of arrays according to a uniform pool size. The

assumption of a fixed number of allocated arrays is economically more reasonable.

Peng et al. (2003) concluded that optimal pooling designs can be found to meet

statistical requirements while minimizing total cost. To make data convenient for

statistical methods, e.g. linear models, the log-transformation became an accepted
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standard. That pooling happens on the original scale makes modeling more com-

plex. Zhang et al. (2007) assessed the difference of pool-signals and their averaged

contributions on the log-scale. Further, they mentioned that changing sizes of pools

in an experiment should be avoided for two main reasons. First, it leads to biases

in measurements depending on the size of pools and second also to variance hetero-

geneity. However, situations occur in which mRNA-pooling with varying numbers

of individuals per pool is favored, for example if comparisons between subjects in

a family of animals are performed, where it is impossible to quantify the size of

the subgroups in advance. One aim is to include more individuals than in the uni-

form pool size design, if the number of arrays is limited. We were motivated by

contemplating the design for a honey bee experiment, where rare cases - workers

with a certain kind of behavior, see Thakur et al. (1997) - ought to be compared

with controls from the same colony. In an elaborate experiment a certain number of

cases was identified, too much to be compared individually. Therefore pooling RNA

of cases from the same colony was considered. This led to variable pool sizes, as

the number of identified cases per colony was not uniform. We asked the question

of experimental designs allowing for unbiased contrasts and tests of hypotheses by

choosing the number and size of control pools adequately. There are similar situa-

tions in plants and animal families with a high number of offspring like in fish, mice

or pigs with an abundant number of individuals, which can be taken as controls.

Also the investigation of human diseases may lead to experiments where few cases

are found among many potential controls, e.g. Jacobsen et al. (2007).

In this article, we study microarray experiments with varying pool sizes (flexible

pooling) for an efficient use of individuals and address the drawbacks given above.

Under certain restrictions we show how to eliminate the bias caused by pooling

for correctly testing hypotheses. In this context, we derive a balancing condition

for suitable designs which allows us to estimate contrasts without bias. Our data

are usually not only heteroscedastic but may, in principle, also be correlated, due

to repeated mixtures and replications. Hence, the two random effects introduced



2.2 Theory 13

to handle the variance heterogeneity also reflect the impact of the mixtures. Our

approach with different pool sizes increases the possibilities of designing pooled mi-

croarray experiments. The results for one-color arrays are extended to two-color

arrays. Finally, consequences on experimental power are examined by means of

simulation.

2.2 Theory

2.2.1 Modeling bias on the log-scale

In this section we consider the statistical model for mRNA pooling according to

Zhang et al. (2007) and review their results regarding the bias and variance of the

pooled samples. This is the starting point for our new approach to unbalanced

sampling by means of flexible pool sizes.

To enforce normality in the data, a log transformation is deployed (see Geller et al.

(2003)). In a general setting with T treatments and N individuals per treatment we

describe the logarithm of the true gene expression level for each subject by

logmtq = µt + εtq,

where µt is the fixed treatment effect for a gene, εtq is the biological error modeled

by independent random variables which are identically distributed as N(0, σ2
b ), t =

1, . . . , T and q = 1, . . . , N .

Pooling is now applied for controlling costs, securing enough mRNA for hybridization

or reducing variance of observations. Only in an ideal pool each individual has an

equally sized contribution. In general, the true gene expression level of one gene in

a pool of size γ is built from convex linear combinations of γ elements like

mp
tj =

γ∑

k=1

(wtjk ·mtjk) ,
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where mtjk is the true gene expression level of individual k in pool j of treat-

ment t with t = 1, . . . , T , j = 1, . . . , S and S the number of pools per treat-

ment. The weights are built from N(1, σ2
z)- distributed random variables z by

wtjk = ztjk/
∑γ

k=1 ztjk and have expectation 1/γ and variance σ2
w. As pooling

happens on the original scale the distribution of log-pool-signals is analytically in-

tractable. Like in Zhang et al. (2007) we assume that convex linear combinations of

log-normal distributed random variables can be approximated by log-normal distri-

butions. Their computations, based on a Taylor Expansion and the Delta Method,

lead to approximative formulas for expectation and variance of pool-signals on the

log-scale. Supposing the distribution of log
(
mp
tj

)
can be adequately approximated

by a normal distribution, the mean log gene expression levels µpt of the pools are:

µpt = E
[
log
(
mp
tj

)]
≈ µt +

σ2
b

2
− 1

2γ

(
eσ

2
b − 1

)(
1 +

γ − 1

γ
σ2
z

)
(2.1)

and the biological variance of the log of the expression level of a pool can be expressed

by

σ2,p
b ∼

1

γ

(
eσ

2
b − 1

) (
1 + γ2σ2

w

)
. (2.2)

Here we mention that in formula (2.2) the coefficient of σ2
w has to be γ2, which was

incorrectly displayed in the original paper of Zhang et al. (2007) (details can be

found in the Appendix).

Until now we assumed a balanced model, with the same number of pools per treat-

ment S, number of individuals per pool γ and number of arrays. The disadvantage

of a uniform pool size experiment is that any random fluctuation in the number

of individuals forces the experimenters either to buy more arrays or leave out indi-

viduals. As in the already mentioned honey bee experiment, situations may occur

when varying numbers of subjects have to be included in the gene expression anal-

ysis without changing the number of pools or arrays. In doing so we can use more

individuals as in the uniform pool size experiments and expect to increase power in

tests for differentially expressed genes (DEGs). We combine pools of different size in
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one experiment and do this in such a way, that the pools assigned to each level of a

treatment agree both in number and sequence of their sizes. This is necessary for a

bias-free analysis, as we will see in the next sections. In our setting A is the number

of different pool sizes for each of the T treatments, Pi the number of pools of size

γi in each treatment and n is the total number of pools n = T
∑A

i=1 Pi = TS. For

example, in a microarray experiment with only two treatments we oppose to each

pool of the first treatment group an equally sized pool of controls. In this minimal

case we apply formula (2.1) for µpt − µt to two treatments (T = 2) and to one pool

per treatment (P1 = 1). For the next pairs of pools we check again the size and

either need to increment P1 or switch to another pool size. An application of this

design is presented in the Appendix.

Formula (2.1) can be utilized for defining the biases

hi =
σ2
b

2
− 1

2γi

(
eσ

2
b − 1

)(
1 +

γi − 1

γi
σ2
z

)
, (2.3)

for pools of size γi, i = 1, . . . , A. They depend on the biological variance σ2
b , the

pooling technical variance σ2
z and the pool size γi for the pool i. Due to our flexible

pooling experimental design we see in the following that the contrasts defined by the

practical question of testing for differences in gene expression between treatments

are unbiased.

2.2.2 Conditions for unbiased hypothesis testing

The logarithm of the observed gene expression levels is modeled in the pooled setting

as

yptj = log
(
mp
tj

)
+ etj, (2.4)

where etj is the technical error which is assumed to be independent, identically

distributed as N(0, σ2
t ), t = 1, . . . , T and j = 1, . . . , S. The matrix reformulation of
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the previous equality can be written as

yp = Xβ + h + e, (2.5)

where yp = [y11, y21, . . . , yT1, y12 . . . , yT2, . . . , yTS]> is the data vector with covariance

matrix V, X = 1S ⊗
[

1T IT

]
is the design matrix, h = [h11TP1 , · · · , hA1TPA

]> is

the vector of nonnegative biases, e = [e11, . . . , eTS]> is the vector of technical errors.

Here we denote the Kronecker product by ⊗ and vectors of length n built from n

elements a by a1n = [a, ..., a]> and the n× n identity matrix as In. The fixed effect

β = [µ, β1, . . . , βT ] includes an intercept µ and the treatment effects βt = µt − µ.

We consider a contrast K>, which fulfills the necessary and sufficient condition for

estimability K>
(
X>V-1X

)-
X>V-1X = K>, where

(
X>V-1X

)-
is the generalized

inverse of X>V-1X.

For the generalized least squares estimator β̂ we can write

E
(
K>β̂

)
= E

(
K>

(
X>V-1X

)-
X>V-1yp

)

= K>
(
X>V-1X

)-
X>V-1E (yp)

= K>
(
X>V-1X

)-
X>V-1 [Xβ + h]

= K>
(
X>V-1X

)-
X>V-1Xβ + K>

(
X>V-1X

)-
X>V-1h

= K>β + K>
(
X>V-1X

)-
X>V-1h (2.6)

Hence, K>β̂ is an unbiased estimator for K>β if and only if

K>
(
X>V-1X

)-
X>V-1h = 0. (2.7)

In order to test for differences of gene expression levels between treatments we choose

the contrast function

K>= [0T−1 1T−1 -IT−1] . (2.8)

As already mentioned, we consider designs which have an equal number of pools of
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the same size for each treatment group and for each possible pool size. In conse-

quence, the vector of biases h contains only elements of equal values for each pool

of the same size. We show now that the bias of the chosen contrast can be removed

from the analysis by these suitable designs. Each individual occurs in one pool only,

so that we can assume to have independent pools. In this heteroscedastic model

we have a diagonal structure of V = Φ ⊗ IT , with Φ =




v1 0

. . .

0 vS




, where

variances of independent pools are on the diagonal with their values reflecting pool

sizes. At first we evaluate:

(
X>V-1X

)-
=

[(
1S ⊗

[
1T IT

])>
([Φ⊗ IT ])-1

(
1S ⊗

[
1T IT

])]-

=




1>SΦ-11S ⊗




T 1 · · · 1

1

... IT

1







-

=
1

S∑
j=1

1
vj




0 · · · 0

... IT

0



.

For h̃ = [h11P1 , . . . , hA1PA
]> we have h = h̃⊗ 1T and

X>V-1h̃⊗ 1T =

(
1S ⊗

[
1T IT

])>
([Φ⊗ IT ])-1 h̃⊗ 1T

= 1>S ⊗




1>T

IT



(
Φ-1h̃⊗ 1T

)

= 1>SΦ-1h̃⊗




T

1T


 =

S∑

j=1

hj
vj




T

1T


 .
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Hence, we get

K>
(
X>V-1X

)-
X>V-1h = [0T−1 1T−1 -IT−1]

1
S∑
j=1

1
vj




0 · · · 0

... IT

0




S∑

j=1

hj
vj



T

1T




=

S∑
j=1

hj
vj

S∑
j=1

1
vj

[0T−1 1T−1 -IT−1]




0

1T


 = 0T−1.

This means that the difference between the treatments can be unbiasedly estimated,

although the estimations of the fixed effects show a systematic error due to variable

pool sizes.

We generalize our statistical model to the case of d multivariate measurements taken

from the same individuals. For instance, one may consider the same quantity of in-

terest at different times (longitudinal data) or measurements which are distinguished

by a second factor (e.g. tissue) at one time. In this case the entries of the data vec-

tor y∗ and the bias vector h∗ have two indexes according to the number of pools

(n = ST ) and the d levels of the second factor. Hence, the vectors y∗ of measured

log-pool-intensities and h∗ of biases can be written as:

y∗ = [y11, . . . , y1d, y21, . . . , y2d, . . . , yn1, . . . , ynd]
>,

h∗ = [h11, . . . , h1d, h21, . . . , h2d, . . . , hn1, . . . , hnd]
>.

Note that the new design matrix X∗ = X⊗ Id has the dimension STd× STd, and

the bias vector is h∗ = h ⊗ 1d. Moreover, a similar structure expressed by means

of the matrix Id is found for the contrast asserting the question of testing for the

differences in gene expression levels between treatments K>
∗

= K> ⊗ Id . V
∗ has a

block-diagonal structure and two consecutive blocks of V∗ have the same elements.

The covariance matrix V∗ consists of repeated (d × d)-blocks with entries derived

from the variances of the univariate case and a fundamental correlation matrix W.

For the matrix W various correlation structures can be imagined, for instance au-

toregressive dependencies for measurements over time or just correlations between
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different tissues. Thus the n (d× d)-blocks can be merged in V∗ = V⊗W. Before-

hand we saw that condition (2.7) ensures the unbiasedness of the contrast. For a

design with two factors this equality is illustrated by an example in the Appendix.

We now check the relation (2.7) in the multivariate setting

K>
∗
(
X∗>V∗

-1
X∗
)-

X∗>V∗
-1

h∗ = 0.

This can be written as

K> ⊗ Id

[
(X⊗ Id)

> (V ⊗W)-1 (X⊗ Id)
]-

(X⊗ Id)
> (V ⊗W)-1 h∗ = 0,

which is equivalent to

K> ⊗ Id
[
X>V-1X⊗W-1]- (X>V-1 ⊗W-1)h⊗ 1d = 0.

Hence, it holds that

K>
(
X>V-1X

)-
X>V-1h⊗ 1d = 0. (2.9)

This means that the unbiasedness for the univariate case is valid for the multivariate

one as well. In the second case the maintenance of the condition K∗>h∗ = 0 in the

design requires more effort, since we need to level the pool sizes for each additional

factor, too.

Summary of rules for designs with flexible pooling The overall principle derived

from the above calculations is to secure the balance pool sizes between treatment

groups. This symmetry in the structure of the pool sizes across treatments ensures

that the condition K>h = 0 holds. Hence, the pooling biases do not matter any-

more, since they are eliminated by others with a corresponding value in the contrast

function. In the particular case of one treatment and a control we need pairs of
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equally sized pools, the first pool of each pair from the treatment and the second

one from the control. Further each pair is required to share the same combination

of other possible explanatory variables. In this case the unbiasedness condition is

fulfilled.

2.2.3 Generalized covariance structure

Through the appropriate choice of the design the bias is eliminated. For a correct

analysis of experiments with flexible pool sizes we have to deal with the appear-

ing inhomogeneity in the variance of the measurements. We use a mixed model

approach, mainly because the estimation of variance components allows reasonable

testing, comparison of designs and yields a better error structure. Several authors

(e.g. Wolfinger et al. (2001), Tempelman (2005)) review microarray experiments

with mixed effects models. As discussed in Rosa et al. (2005) these models are

preferable because in a fixed effects model the error term refers only to the lowest

level of replication, leading to overestimation of power as well to inflation of the

type I error. In microarray experiments varieties consisting of the mRNA samples

and arrays are considered as blocks. In our model the random effects are shaped

by repeated mixtures, replications and pool sizes, which leads to biologically inter-

pretable variance components.

Decomposition of pool variance

Starting from the approximation of the biological variance of a pool of size γi as

given in the relation (2.2), we can estimate the total variance of this pool as

vi ≈
1

γi

(
eσ

2
b − 1

) (
1 + γ2i σ

2
w

)
+ σ2

t

=
(
eσ

2
b − 1

) 1

γi
+
(
eσ

2
b − 1

) (
σ2
wγi
)

+ σ2
t

≈
(
eσ

2
b − 1

) 1

γi
+
(
eσ

2
b − 1

)
σ2
z

γi − 1

γ2i
+ σ2

t . (2.10)



2.2 Theory 21

We elaborate three variance components to be estimated with a mixed model, whose

interpretation allows a new approach to pooled microarray experiments. We define

σ2
1 := eσ

2
b − 1 and σ2

2 := (eσ
2
b − 1)σ2

z . Biological variance between pools is de-

scribed by σ2
1 and the variance of mixtures by σ2

2. The technical variance σ2
t , caused

by hybridization and measurement, corresponds to the array errors. The possible

replication steps are illustrated in the Appendix in Figure 2.4. If there are more

measurements than pools, we get replications of pools and the question what is repli-

cated becomes important. If only the ’measurement steps’ like reverse transcription,

labeling and hybridization are repeated, we deal with the random pool effects and

the residual variance, which contains the technical error. Otherwise, if some steps

like extraction, mixing or amplification are executed, additional sources of variation

appear, which we describe by a second random effect for every new mixture of a

pool.

Mixed model and random effects

Our aim is now to formulate an appropriate mixed model for the observed pooled

gene expression levels and to estimate its variance components. Therefore, in our

model equation we introduce two more random effects for pools of different sizes

and their repeated mixtures, and also an error term for their replications. We de-

note by Li the cardinality of the set of different mixtures of the pool (t, i) for gene

expression measurements. We have tuples
{(
wltik

)
k=1,...,γi,l=1,...,Li

}
of weights for

each mixture of the pool (t, i). Then the true gene expression level in the pool

(t, i) and for the mixture l is mp
til =

γi∑
k=1

wltikmtik. Additionally, Ril is the number

of the technical replications of the mixture (t, i, l) leading us to the observed values

yptilr = log(mp
til)+etilr. Then the model contains a fixed treatment effect βt, a vector

of biases h, a random effect for pools u1, a nested effect for repeated mixtures u2,

and the technical error

yptilr = µ+ βt + hi + u1ti + u2til + etilr, (2.11)
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where u1ti ∼ N
(

0, 1
γi
σ2
1

)
, u2til ∼ N

(
0, γi−1

γ2i
σ2
2

)
, etilr ∼ N (0, σ2

t ) , t = 1, . . . , T ,

i = 1, . . . , A, l = 1, . . . , Li and r = 1, . . . , Ril.

The data is correlated due to repeated mixtures or replications of the pools of the

same size for each treatment. After grouping pools of the same size together we can

write the covariance matrix of the observations from treatment t as

Cov (ypt···,y
p
t···) =

A
⊕
i=1

Σi,

where Σi = 1
γi
σ2
11Pi×Pi

+
Li

⊕
i=1

Mil, Mil = γi−1
γ2i
σ2
21RiLi

×RiLi
+ σ2

t IRiLi
and Pi =

Li∑
l=1

Ril.

Writing the vector yp by pool sizes and alternating the blocks of the same sizes

across treatments we obtain its covariance matrix as V =
A
⊕
i=1

(1T ⊗ Σi). This is

needed for the extension of the validity of condition (2.7) to the case of generalized

covariance between measurements.

Our bias vector is concatenated out of sequences of hi corresponding to different

pools of size γi: h =
A

conc
i=1

(1T ⊗ hiPi) and the design matrix X equals
A

conc
i=1
{[1T IT ]⊗ 1Pi

}.

We check now condition (2.7) for our mixed model.

We calculate first

X>V-1X =

(
A∑

i=1

1>Pi
Σ-1
i 1Pi

)


T 1>T

1T IT


 ,

and

X>V-1h =

(
A∑

i=1

hi1
>
Pi

Σ-1
i 1Pi

)


T

1T


 .

We get:

K>
(
X>V-1X

)-
X>V-1h =K>

(
A∑

i=1

1>Pi
Σ-1
i 1Pi

)-1



0 0>T

0T IT



(

A∑

i=1

hi1
>
Pi

Σ-1
i 1Pi

)

T

1T
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=

(
A∑

i=1

1>Pi
Σ-1
i 1Pi

)-1( A∑

i=1

hi1
>
Pi

Σ-1
i 1Pi

)
K>




0

1T


= 0T−1.

For the multivariate case we add a new index ν for the additional factor

yp,νtilr = µp,ν + βνt + hνi + u1,νti + u2,νtil + eνtilr,

with ν = 1, ..., d and the calculations with Kronecker products run similarly to those

of equation (2.9).

Using the matrix formulation, the linear mixed model is rewritten as

yp = Xβ + h + Z1u
1 + Z2u

2 + e,

where yp is the previous data vector, β = [µ, β1, . . . , βT ]> is the vector of fixed

effects, h is the vector of biases, u1 and u2 are vectors containing random effects of

pools and mixtures and e contains the residuals. The random effects are attached

to the belonging measurements by Z1 and Z2 and their covariances are functions of

the pool size. The corresponding weights for the covariances of u1 are the entries of

the diagonal matrix G1 and equal to the inverse pool sizes. γi−1
γ2i

are the elements of

the diagonal matrix G2, matching to every mixture of a pool of size γi. Therefore

the matrices Z1 and Z2 have the dimensions n× TA and n× TΛ respectively, with

Λ =
∑A

i=1 Li. Then, the covariance matrix has the form

V = Z1G1Z
>
1 σ

2
1 + Z2G2Z

>
2 σ

2
2 + Inσ

2
t . (2.12)
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We obtain the estimators for the fixed and random effects from the mixed model

equations




X>X X>Z1 X>Z2

Z>1 X Z>1 Z1 + G-1
1 λ1 Z>1 Z2

Z>2 X Z>2 Z1 Z>2 Z2 + G-1
2 λ2







β̂

û1

û2




=




X>Y

Z>1 Y

Z>2 Y




where λ1 =
σ2
t

σ2
1

and λ2 =
σ2
t

σ2
2
. Since the variance parameter σ = (σ2

1, σ
2
2, σ

2
e)
>

is

unknown, we compute first the REML-estimator σ̂. The generalized least squares

estimator (GLSE) for β is β̂ = {X>V (σ̂)-1 X}-1X>V (σ̂) Y. The estimator σ̂ in-

troduces extra variability to β̂, making adjustments in the covariance matrix Φ̂A of

β̂ necessary.

We test for differences in gene expression between treatments with the help of a

scaled F-test with approximative denominator degrees of freedom m as suggested in

Kenward and Roger (1997) F ∗= m
m+(T−1)−1

1
T−1(β̂− β)>K(K>Φ̂AK)-1K>(β̂− β).

Various designs can be employed depending on the question of interest for the re-

searchers. Therefore we introduce a modified e-optimality criterion based on Land-

grebe et al. (2004). The matrix K> stands for T -1 experimental questions and,

since the covariance matrix of our generalized least squares estimator is Φ̂A, we have

Cov(K>β̂) = K>Φ̂AK. Following their minimax approach, we set the e-efficiency

to tr
(
K>K

)
[λmax(K

>Φ̂AK)]-1 and are able to calculate the efficiency of our design.

In general, one needs estimates of variance components to choose the most efficient

design. Optimal designs were considered in Passos et al. (2009), where Fisher’s in-

formation matrix was used as criterion for the e-efficiency. For the practical decision

regarding optimal design, expense-effectiveness is assessed with the help of a cost-

function.

In the Appendix we compare the power of the new approach for the individual sam-

ple, equally sized pools and flexible pooling design. In the first three experiments

each sample was only used once, so that no correlations or replications of the pools

resulted. As our method includes more individuals, it yields smaller biological vari-
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ances. This also reduces the variances of the contrast functions and leads, in theory,

to higher precision of the corresponding tests. We verified this with simulated data

and illustrated the power of our F*-test for DEGs in a heteroscedastic linear model.

2.2.4 Repeated use of individuals in pool building

In certain cases individuals may contribute RNA to more than a single pool. An

example from the literature is the data set analyzed in Kendziorski et al. (2005),

where 24 individuals were used to build pools of the sizes 2, 3 and 12. For a joint

analysis of all pools (including individuals as pools of size one) correlations between

pools are reflected in the matrix G1. Further, if RNA cannot be obtained from one

individual - e.g. because of lost antenna of insects - it’s RNA can sometimes be

replaced by that from an individual from another pool. In that case the conditions

for unbiasedness maintained, though at the cost of correlations between pools sharing

RNA from joint individuals. For correct handling of resulting correlations we alter

our assumption that each individual appears in one pool only, and we introduce the

vectors

btj(q) =





1, if individual q ∈ pool (t, j)

0, otherwise

, where q = 1, . . . , N.

We assume that the S pools do not necessarily have different sizes γ1, . . . , γS in each

treatment and we do not consider any repeated mixtures or technical replications.

The true gene expression level of a gene in a pool (t, j) is now written as

mp
tj =

N∑

q=1

ztjqbtj(q)
N∑
s=1

ztjsbtj(s)

mtq =
N∑

q=1

wtjqmtq,

where ztjq are independent and normally distributed N(1, σ2
z) random variables.

The weights wtjq have expectation E(wtjq) = btj(q)
1
γj

and variance Var(wtjq) ≈
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btj(q)
γj−1
γ3j

. By using the two-dimensional Delta method we approximate

Cov
(
log(mp

tj1
), log(mp

tj2
)
)

=
1

E(mp
tj1

)E(mp
tj2

)
Cov(mp

tj1
,mp

tj2
),

where j1 6= j2, j1, j2 ∈ {1, . . . , S}. We now compute

Cov
(
mp
tj1
,mp

tj2

)
=

N∑

q=1

1

γ1γ2
btj1(q)btj2(q)Var(mtq)

≈ btj1 ∗ btj2
γ1γ2

(
e2µt+2σ2

b − e2µt+σ2
b

)
,

where btj1(q) ∗ btj2(q) =
N∑
q=1

btj1(q)btj2(q) is the number of individuals belonging to

both pools. Finally it holds

Cov
(
log(mp

tj1
), log(mp

tj2
)
)
≈ btj1 ∗ btj2

γ1γ2
σ2
1.

The covariances between the logarithm of the true gene expression levels of the pools

are proportional to the number of individuals used in both pools. These correlations

between the pools are introduced in the matrix G1 and change its diagonal structure

as we illustrate with the example proposed in the Appendix (see figure 3). This leads

to a much more complex structure of the covariance matrix V, hence calculations of

the inverse of V and the GLSE could be computationally expensive. On the other

hand, ignoring these correlations may cause errors in the estimation.

2.2.5 Two-color arrays

In this section we apply our model to the case of two-color arrays, where mRNA of

two samples is compared by dyeing them in green and red sepia. This microarray

methodology utilizes incomplete block designs and allows to discard the array and

dye effects, modeling only differences between samples. Dye swap strategies lead to

correlations as these designs include repeated measurements for the samples. If an
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experiment involves only two groups, direct comparisons provide more information

regarding a specific contrast (Rosa et al. (2005)). With increasing complexity of the

experiment, a setup which eliminates the pooling biases is more difficult to realize.

The basic idea is to apply the above system of one-color arrays. As the so called

M-value is the log-ratio of two intensities corresponding to the samples of an array,

we build a vector of differences by means of the matrix D. D has a row for each two-

color array with the entries 1 and -1 for the two selected pools and zero otherwise.

The simple example of putting two consecutive pools on an array is shown in the

Appendix. We obtain the model M := Dy = DXβ + Dh + e.

Hence, the structure of the covariance matrix V changes to DVD>. We have

E (M) = DXβ + Dh. If K>β̂ = K>
[
(DX)>V-1DX

]-
(DX)>V-1y is estimable, it

holds

E
[
K>β̂

]
= K>

[
(DX)>DX

]-
(DX)>D (Xβ + h)

= K>β + K>
[
(DX)>DX

]-
(DX)>Dh.

It follows that Dh = 0 is a sufficient condition for unbiasedness.

We notice that the compensation of biases in K>β̂ happens simultaneously with

taking differences if pool size does not vary inside the blocks. That means, we

recommend hybridizing only two pools of the same size together on an array.

If dye swap and dye balance strategies are used to cancel out the dye bias (e.g.

Knapen et al. (2009)), our mixed models handle the resulting correlations in the

measurements in an appropriate way. In the described honey bee experiment, dye

balance is applied, which means that pools of rare cases are labeled an equal number

of times with both the red and green dye. In odd groups we hybridize one pool from

the rare cases group (with swapped color) a second time, but together with a new

control pool, which reduces correlations and improves the power compared to a

standard dye swap.
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2.3 Discussion

2.3.1 Designs with flexible pooling

First, we investigate the bias in pooled experiments in the scenario of one-color ar-

rays. Flexible pool sizes are useful in experiments which compare subjects with a

not predetermined size of the treatment groups. Additional subjects can be included

by increasing the size of pools in the study without increasing costs for arrays. Our

statistical analysis begins with approximative bias and variance of a pool which were

computed in Zhang et al. (2007). The bias depends on the size of the pool, but does

not tend to zero with increasing pool size γ. To enforce unbiasedness we look at the

bias as a constant vector in the linear model equation, which contains this distortion

for each observation. We showed, that a suitable contrast function applied to the

estimated parameters can eliminate the biases after linear mapping.

Using a decomposition of the approximative variance of the pools on the log-transformed

scale, we are able to deal with the occurring variance heterogeneity. Thus, we get the

advantage that resulting biological variance of the pools is expected to shrink and

the precision of tests should be increased. The hypothesis of no difference between

gene expression levels across treatments is tested by the F ∗-statistic. The variance

components are unknown and can be estimated with the methods shown in Section

2.3. This increases the uncertainty, diminishing the expected gain in the accuracy

of the hypotheses test for DEGs.

We investigated the publicly available data set analyzed in Kendziorski et al. (2005).

Our method allows a joint analysis of all groups of observations, irrespective of their

size. The analysis of the complete set of arrays yields a DEG ranking list, which

coincides to 80% with their reference list generated from the 24 single samples. Since

they used a design which included for both treatments an identical structure in the

pool sizes, it fulfills the unbiasedness condition. In fact, with our criterion we can

theoretically confirm their statement that ’... similar amount of distortions are often

observed in both control and treatment conditions ... and the bias canceled out for
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most part when testing.’

Under other circumstances as in the described honeybee example it may happen,

that the balance of pool sizes between treatments cannot be maintained (e.g. due

to loss of samples). Then the bias has to be explicitly modeled as a cross-classified

nuisance effect with one level per used pool size. The way in which the covariance

matrix of all observations is modeled remains as described here and the treatment

effect can then still be tested in an unbiased manner. This is, of course, at the

expense of denominator degrees of freedom and power, as the model contains more

fixed effects.

2.3.2 The effect of replication

We now look at the consequences of modeling mixtures in experiments with repeat-

edly measured pools. Suppose that all pool sizes in the experiment are equal, as

recommended in the literature so far, and that for each measurement of gene expres-

sion in the laboratory we get a new mixture and do not replicate. Then it is clear

from the properties of mixed models that we cannot distinguish between σ2
2 and

σ2
t , since the structure of the random effects for mixtures and measurements will be

Z2G2Z
>
2 σ

2
2 = γ−1

γ2
Inσ

2
2. That simplifies the analysis of the data. Otherwise, if the

pools are replicated and only mixed once, we get correlations between observations,

and a distinguishable second random effect, i.e. Z2G2Z
>
2 σ

2
2 is not diagonal. Then

one can estimate σ2
2 and the covariances should be regarded for the data analysis.

From this viewpoint the methodology for designs with equal pool sizes has to be

applied by using a new mixture for each measurement, because only in that case we

get one variance component and the analysis can be done in straightforward manner.

That means that reasonable analysis of the data in the general case (with replica-

tions) requires knowledge of the structure of Z2, making an exact documentation of

each mixture of a pool in the lab necessary.
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2.4 Conclusion

Due to practical challenges we developed a new, more general design for pooled gene

expression experiments. The bias introduced through flexible pooling was canceled

by the symmetrical structure of the pools between treatments. Hence, testing for

differences between gene expression levels across treatments proves to be unbiased.

To identify differentially expressed genes we choose the contrast in equation (2.8)

for the linear hypothesis. Also, the provided condition allows researchers to check if

a design is valid for any contrast used. Since different pool sizes cause heteroscedas-

ticity, we propose a new statistical model comprising fixed effects (intercept and

treatment effect), two random effects modeling the impact of pooling and repeated

mixtures, and a technical error due to replication. In order to obtain an accurate

model we advise the experimenters to make an exact documentation of each mixture

of a pool. The estimation of the covariance matrix V is made possible by means

of restricted maximum likelihood if we have different pool sizes. The variation of

mixtures of the pools is underestimated in the literature and requires further analy-

ses based on appropriate data. A new F ∗-test is used which accounts for additional

variability due to the estimation of the variance parameter. We apply this model

to the setting of one- or two-color array experiments and we base the choice of the

best design on the e-optimality approach.

Balancing the pool sizes between the treatment and control group is easily achieved

in the case of two levels for the fixed effect. With every further level in the experi-

ment the unbiasedness is still possible but takes more effort.

The presented model and methods induce substantial improvements for the design

of pooled microarray experiments and allow a sound statistical analysis. The new

design strategy is particularly applicable to comparisons of rare properties in large

families of animals or plants for enhancing the efficiency and controlling cost.
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2.5 Appendix

Approximation of biological variance of pools

We compute here the biological variance of a pool of size γ

σ2,p
b ∼

Var
(
mp
tj

)
[
E
(
mp
tj

)]2 =

1
γ

(
e2µt+2σ2

b − e2µt+σ2
b

)
(1 + γ2σ2

w)
(
eµt+σ

2
b/2
)2

=
1

γ

(
eσ

2
b − 1

) (
1 + γ2σ2

w

)

≈ 1

γ

(
eσ

2
b − 1

)(
1 +

γ − 1

γ
σ2
z

)

.

This was incorrectly displayed in Zhang et al. (2007) in Section 2.2 in equations

(12) and (13). As a consequence the non-centrality parameter δ2 in equation (16)

is too large. That shifted the F-tests, and the power was overestimated. This

error may cause the lack of response of the calculated power to pooling technical

variance shown in Figure 4 of Section 3.4 in that paper. In the top of Figure 2.1 we

evaluate the power in the setting of Zhang et al. (2007) for simplicity with only two

treatments. As usual, we develop the power curves as the probability to detect a

certain mean class difference (∆) between the two treatments. On the alternative of

the hypothesis K>β = ∆ = 0, first the non-centrality parameter (δ2) is calculated:

δ2 = ∆
(
K>

(
X>(V)-1X

)-
K
)

∆,

for both versions of the covariance matrix V. For X we select

[
1 1 0
1 0 1

...

]
and take the

suitable contrast function K> = [0 1 -1]. Then the power of the F-test to detect

DEGs can be determined according to:

1− q = 1− Fδ2,1,2∗(S−1)(f0.95,1,2∗(S−1))

Checking numerically the relative change from the corrected power we find distor-

tions of up to 4%. For the theoretical power calculations in the bottom of Figure 2.1
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Figure 2.1: Power for the detection of a difference between two treatments in an
experiment with 100 individuals per treatment, measured in 25 pools
of size 4. Top: power curve for σ2

z = 0.42 when the correct formula is
used (solid) and with the formula of Zhang (dotted). The latter almost
coincides with the curve for σ2

z = 0 (dashed). Bottom: power curves for
σ2
b = 0.75, σ2

t = 0.25 and σ2
z ∈ {0.42, 0.22, 0.052}.
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different levels of the pooling technical variance are used. The slope of the power

curves is weaker with increasing σ2
z , as expected.

Variance structure for a two-color experiment

Generally, two-color microarray experiments are illustrated by a set of arrows (e.g.

Young and Speed (2002)). Their tail and head denote the green and red labeling

assignments. We look at an experiment with four stochastically independent pools,

four two-color arrays and two pool sizes 2 and 4 (see Figure 2.2). We build the

A1
2

C1
2

A2
4

C2
4

Figure 2.2: Scheme for a two-color experiment with four independent pools, two
different pool sizes and four arrays

matrix G1 with the inverse pool sizes on the diagonal to estimate the biological

variance,

G1 =




1/2 0 0 0

0 1/2 0 0

0 0 1/4 0

0 0 0 1/4




. The matrix Z1 =




1 −1 0 0

−1 1 0 0

0 0 1 −1

0 0 −1 1




is the design matrix for the random effect of the pools. If we have eight mixtures,

then G2 contains eight entries γi−1
γ2i

on its diagonal. Then Z2 = DI8 holds, with

D =




1 −1 0 0 0 0 0 0

0 0 1 −1 0 0 0 0

0 0 0 0 1 −1 0 0

0 0 0 0 0 0 1 −1




.

From equation (2.12) we get:

V=




σ2
1 + 1

2
σ2
2 + σ2

t −σ2
1 0 0

−σ2
1 σ2

1 + 1
2
σ2
2 + σ2

t 0 0

0 0 1
2
σ2
1 + 3

8
σ2
2 + σ2

t −1
2
σ2
1

0 0 −1
2
σ2
1

1
2
σ2
1 + 3

8
σ2
2 + σ2

t




.
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Unbiasedness for two-factorial experiment

We denote the factor of interest with A and the disturbance factor as D. In the

minimal case we have a crossed factorization with two levels for each factor. We

draw one box for each pool including factors and pool sizes. The pool sizes of the

A1D1
2

A2D1
2

A1D2
5

A2D2
5

Figure 2.3: Scheme for an experiment with four independent pools, two different
pool sizes and two factors

levels of the first factor are equal on each level of the second factor (see Figure 2.3).

Then we use K> =

[
0 1 −1 0 0

]
.

The covariance matrix is V =




v1 0 0 0

0 v1 0 0

0 0 v2 0

0 0 0 v2




. Since it holds

(
X>V-1X

)-
X>V-1h =




2
v1

+ 2
v2

1
v1

+ 1
v2

1
v1

+ 1
v2

2
v1

2
v2

1
v1

+ 1
v2

1
v1

+ 1
v2

0 1
v1

1
v2

1
v1

+ 1
v2

0 1
v1

+ 1
v2

1
v1

1
v2

2
v1

1
v1

1
v1

2
v1

0

2
v2

1
v2

1
v2

0 2
v2




- 


2h1
v1

+ 2h1
v2

h1
v1

+ h1
v2

h1
v1

+ h1
v2

2h1
v1

2h2
v2




,

in the end we get K>
(
X>V-1X

)-
X>V-1h = 0.

Summary of the results for simulated pooling experiments

We simulated data from two treatment groups. The number of pools was fixed to 24.

The pool sizes were chosen randomly from a shifted Poisson distribution (λ = 3)

with expectation 3 + 2. For the individual sample design we chose the pool size

1. For the second design the pool size was determined as the minimum size of all

pools from the treatment group. In the third design we applied the new principle

for flexible pooling designs: balanced sizes of pools between treatment and control
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group. In the fourth design we reduced the pools to twelve and added one technical

replication for each. Thereby we evaluated correlations with a comparable number

of used individuals to the second design. Here the choice of the technical error had

a strong influence on the results. We assumed V to be known with the variance

components σ = (σ2
b = 0.12, σ2

z = 0.12, σ2
t = 0.22) and used them to generate the

biological and technical errors. For the designs 1,2 and 3 we assumed to have inde-

pendent pools and no replications, so that V is diagonal. The mean class difference

was estimated with the GLSE. Then we applied an F -test to decide whether a gene

estimation est. var theor. simul. avg. no. used
pool design of contrast contrast power power individuals

single 0.400 0.027 0.6486 0.649 24
equal 0.401 0.015 0.8700 0.876 63

flexible 1 0.401 0.011 0.9488 0.950 120
flexible 2 0.399 0.016 0.8603 0.859 60

Table 2.1: Results of simulation study for comparison of designs with none-pooled
samples, equally sized pools, flexible pool sizes without and with replica-
tion

is differentially expressed. We got the simulated power for each design as the fre-

quency of the rejected tests in 10000 runs. Table (1) shows averaged estimations of

a simulated mean class difference (∆ = 0.4), theoretical variance of the contrast,

simulated and empirical power for DEG detection at the type I error level α = 0.05

and the average number of used individuals. The gain in accuracy is visible and

most valuable if the cost of the individuals are small relative to the arrays.

Construction of G1 for an experiment with individuals occur in several

pools

In an example (see Figure 2.4) we assume 11 individuals to build four pools, where

the individuals 1-4 form the first, individuals 3-6 the second, 7-9 the third and

9-11 the fourth pool. The matrix G∗1 includes the pool sizes on the diagonal

g11 = 4, g22 = 4, g33 = 3, g44 = 3 and also the number of shared individuals at

g12 = g21 = 2 and g34 = g43 = 1. Then we calculate
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Individual samples ObservationsPools Mixtures

Technical replications(Repeated) mixtures(Repeated) use of individuals

Figure 2.4: Scheme for possibilities of replication

G1 = G0
1G
∗
1G

0
1 =




1
4

0 0 0

0 1
4

0 0

0 0 1
3

0

0 0 0 1
3



[

4 2 0 0
2 4 0 0
0 0 3 1
0 0 1 3

]


1
4

0 0 0

0 1
4

0 0

0 0 1
3

0

0 0 0 1
3


=




1
4

1
8

0 0
1
8

1
4

0 0

0 0 1
3

1
9

0 0 1
9

1
3


,

where G0
1 is the diagonal matrix with the inverse pool sizes.

In general, we take B as the matrix built by the vectors btj introduced in Section

2.4 having B = [b11, . . . ,bTS]. Then G1 is built by G1 = G0
1B
>BG0

1.
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3 On the relevance of technical

variation due to building pools in

microarray experiments

3.1 Introduction

In gene expression profiling pooling is a method to reduce hybridization costs and

compensate for insufficient amounts of mRNA. In the subsequent statistical anal-

yses of gene expression data, where a log-transformation during preprocessing is

standard, it is important to consider how the expectation and variance of the gene

expression of pools relate to individual samples. The impact of pooling on the identi-

fication of differential gene expression has been studied in Kendziorski et al. (2005),

separately for different pool sizes. It has been shown that biological averaging occurs

for most of the transcripts and differential expression inferences are comparable for

individuals and pools. In Zhang et al. (2007) approximations for the expectation

and variance of pooled samples were derived. Furthermore, it was shown that biases

as well as heteroscedasticity are introduced by variable pool sizes. Experiments with

unequal pool sizes therefore were recommended to be avoided. As demonstrated in

Rudolf et al. (2013), however, a wide class of experiments, in which pool size can be

handled as a nuisance effect and is cross-classified with treatment, allows for tests of

unbiased contrasts. In the case of a balanced cross-classification the pool size effect
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must not explicitly appear in the model at all, though hypotheses on treatments

remain unbiased, as shown in Rudolf et al. (2013). In any case variable pool sizes

have an effect on the covariance of observations. This can be taken into account

by considering how many individuals are allocated to each pool and by introduc-

ing a random effect for blending along with a corresponding variance component.

The latter can be interpreted as a second kind of technical variability induced by

inaccuracies in blending slightly unequally-sized aliquots of mRNA from several in-

dividuals into common pools. Though this subject has been treated theoretically as

described, investigation into the practical importance of this second kind of techni-

cal variability is lacking.

Consequently a study was performed, in which gene expression data from experi-

ments with four different species were analyzed to investigate the relevance of the

aforementioned new kind of technical error in terms of size and significance of the

corresponding variance component. Furthermore, we investigated potential conse-

quences on the number of transcripts identified as differentially expressed between

different treatments when analyses neglect this kind of error.

3.2 Material and Methods

This section offers a short recap of the underlying statistical models. The four

experimental data sets are then introduced. In all of them - whether from single-

Characteristics Mouse Rat Bee Human

Individuals 60 24 14 55
Pools 12 22 12 16
Pool size 5 2,3,12 2,4 3
Observations 44 56 22 30
1-/2- color-array 1 1 2 2

Table 3.1: Overview of properties of the experimental data sets.

or two-color arrays - there are more observations than pools (see Table 3.1), which

allows for the estimation of all desired variance components. Data simulations are
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also described and have been included as a useful aid for the interpretation of the

experimental data results. Finally, the statistical methods applied for parameter

estimation and statistical testing are described.

3.2.1 Random effects in gene expression experiments with

variable pool sizes

When aliquots of mRNA from different individuals are blended into common pools,

the inaccuracies of this procedure may induce a special kind of technical error. Re-

spective random effects, together with a corresponding variance component, were

proposed (Rudolf et al., 2013) as a means of modeling the variability of pooled

observations in gene expression experiments with variable pool sizes (i.e. differing

numbers of individuals per pool). Thus, for background-corrected and normalized

log-intensities y (length of vector y equals the number of arrays) of a certain tran-

script, the model in matrix notation is:

y = Xβ + Z1u1 + Z2u2 + e, (3.1)

where X and Z are the design matrices of the fixed (β = (µ, βt)
>) and random

(u1,u2) effects. The distribution of uj is assumed to be uj ∼ N(0,Gjσ
2
j ), j = 1, 2

with covariance matrices Gjσ
2
j (σ2

j are the variance components) and the residuals

are e ∼ N(0, Iσ2
e). Random effects of single individuals are assumed to be indepen-

dently identically distributed with a biological variance σ2
1, while observations from

a number of γi pooled individuals have a biological variance
σ2
1

γi
. The vector u1 may

comprise biological effects of single individuals as well as average biological effects

of groups of individuals constituting common pools, according to the experimental

design.

The random effect of blending (i.e. for the technical procedure of building a pool)

only applies to observations from pools and not to observations from single individu-
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als. Therefore, u2 consists of one effect per mixture, which had been prepared in the

lab. The associated variance component is σ2
2. So, the variance of the observations

becomes:

V(y) = Z1G1Z
>
1 σ

2
1 + Z2G2Z

>
2 σ

2
2 + Inσ

2
e . (3.2)

The model of this variance structure is based on the closed form approximation of

the variance of pools on the scale of log-intensities, proposed in Zhang et al. (2007)

vi ≈
(
eσ

2
b − 1

) 1

γi
+
(
eσ

2
b − 1

)
σ2
z

γi − 1

γ2i
, (3.3)

where σ2
z is the pooling technical variance and σ2

b is the biological variance of indi-

viduals. The substitutions σ2
1 := eσ

2
b − 1 and σ2

2 := (eσ
2
b − 1)σ2

z led to our assumed

variance structure (3.2).

In the following, the relevance of accounting for the blending error variance compo-

nent σ2
2 is investigated in four experimental data sets by comparing the described

full model (m2) described above with a reduced one (m1) that lacks this particular

variance component. The methodology was checked by a simulation beforehand.

3.2.2 Experimental data

Mouse data

Mouse data consisted of observations from 44 one-color microarrays. RNA for this

experiment was extracted from the ovaries of 60 female mice, 30 of which came

from a long-term selection line with an extraordinary litter size. All others came

from a control line. Pooled samples were built by blending RNA from five mice per

sample. Each mouse was only represented in a single pool. For the sake of technical

replication, all 12 pooled samples were measured twice by preparing two microar-

rays per sample. Additionally, animals from two pools per line (10 animals per line)

were measured individually. These individual measurements were not included in
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the previously published analysis of this data (Vanselow et al., 2008), where more

details of the experiment can be found.

28 (14 per line) different biological effects were defined per transcript. The dimen-

sions of the design matrix Zm
1 are therefore 44 × 28. In detail, random biological

effects were assigned to all individually measured mice (individuals 1 to 10 within

each line) and corresponding entries in Zm
1 equal 1. The biological effects of the

same ten individuals (in two groups of five) were assigned to the observations from

the first and second pooled samples in each line (two observations per pool due to

technical replication). In this case, non-zero entries in Zm
1 are 1/5. However, pooled

samples numbered 3 to 6 within each line each had a biological effect of their own,

modeling the average effect of the five respective members of each pool. Note that

for the pools 3 to 6 the corresponding non-zero entries in Zm
1 are 1. The 28 × 28

covariance matrix Gm
1 scales the random biological effects and has non-zero entries

only on the diagonal, each of them equals the inverse pool size 1/γi. The 22 ob-

servations from the first line are represented in the upper part of the design matrix

Zm
1 :

Zm
1 =




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.2 0.2 0.2 0.2 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.2 0.2 0.2 0.2 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0.2 0.2 0.2 0.2 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0.2 0.2 0.2 0.2 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

...
...

...
...



.

The technical variability due to blending individual samples only comes into play

when observing pooled samples, not for measurements of individuals. Since blending

was done only once per pool, there are 12 different effects due to imperfect blending.

Therefore, the 44 × 12 design matrix Zm
2 (see section 7.1.2) contains zero rows for

observations from single animals. The corresponding 12× 12 covariance matrix Gm
2

is diagonal with entries γ−1
γ2

= 4
25

, according to equation (3.3).
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Rat data

This data set is publicly available at the Gene Expression Omnibus database website

(accession no. GSE2331) and contains one-color array data. Rats of the treatment

group were treated with Retinoic acid. For the details of data generation and pre-

processing, please see the original paper from Kendziorski et al. (2005). Rats from

the groups A (control) and B (treatment) were measured individually and in pools

of various sizes. Each of the twelve rats from both groups was used 4 times, for an

individual measurement and in pools of 2, 3, and 12. For the sample composition

we again defined the random effects from the smallest disjunct elements. Therefore,

with the help of the matrices Gr
1 and Zr

1, convex linear combinations were built

from the 24 individuals. Here, Gr
1 is the 24 × 24 unity matrix and Zr

1 contains

a row for each measurement with entries according to reciprocal pool sizes. Per

group, there are 28 measurements partitioned into 12 individual samples, 6 pools

of 2, 4 pools of 3, and one of 12, plus 5 technical replications. Thus, the dimen-

sions of the matrix Zr
1 are 56 × 24, detailed in section 7.1.2. In each group, there

were 11 pools, and the diagonal matrix Gr
2 has the dimensions 22× 22 with entries

{2
9
, 1
4
, 2
9
, 1
4
, 2
9
, 1
4
, 1
4
, 1
4
, 2
9
, 1
4
, 11
144
, ...}. The matrix Zr

2 was constructed analogously to Zr
1.

Honeybee data

This data set stems from a honeybee project dealing with differences in the pathogen

resistance of so-called hygienic and non-hygienic worker bees as far as they are

reflected in gene expression differences. Bees designated as ’hygienic’ were observed

to open brood cells and assisting the removal of diseased brood. The bees’ activities

were recorded on a Varroa-parasitized section of a brood comb. Pooling was applied

in a preliminary experiment with a limited number of bees and microarrays. For

7 hygienic bees and 7 control bees, mRNA was extracted from nerve tissues of the

mushroom body (MB), antennal lobe (AL) and Antennae (ANT). The number of

individuals blended into a pool was either 2 or 4. Out of the 14 bees, 6 different



3.2 Material and Methods 43

Cy3 Cy5

4
ANT
XII

4
ANT
XI

1
ANT

1
ANT

2
ANT
IX

2
ANT

X

4
AL
VIII

4
AL
VII

2
AL
V

2
AL
VI

4
MB
IV

4
MB
III

1
MB

1
MB

2
MB

I

2
MB
II

1

20

21

2 3 14 15

17
19

16

4

5

11 12

18 22

13

6 7 8 9

10

pool size:
1,2,4

array no.:
1,2,…,22

pool mixture:
I,II,…,XII

classified behavior:
hygienic      control

pool composition:
1                 2                3                4 5                6

tissues:
MB,AL,ANT

Figure 3.1: Scheme for the design of the two-color microarray experiment with hon-
eybees. The numbered arrows (1-22) represent two-color arrays, the ar-
rowheads (tails) indicate Cy5 (Cy3) dye. Light (dark) boxes symbolize
RNA from hygienic (control) bees. Pool size (1, 2, 4) and mixture (Ro-
man numerals) are shown in each box. Tissues are abbreviated as MB
(mushroom body), AL (antennal lobe), and ANT (Antennae). Boxes
in the same column share the same biological effect, indicated as pool
compositions 1 to 6.

sample compositions were built and analyzed for all three tissues with two-color

arrays (for the design see Figure 3.1). A few individual hybridizations were not

carried out due to an insufficient amount of amplified RNA (single samples from

AL). For the normalized two-color microarray data we used a model for differences

M of log-intensities from the red (R) and green (G) channel

M = µ+ ∆ + b12 + b23 + Z1u1 + Z2u2 + e. (3.4)

Here M is the vector of log-ratios (M = log R
G

= logR − logG) for one transcript

with dimension n, equal to the number of arrays. The design matrix X for the fixed

effects links observations to the overall mean µ (which includes the dye effect, i.e.
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the difference of red and green channel), the differences ∆ between the behaviors

(hygienic minus control) and two differences between tissues (b12 for MB minus AL,

b23 for AL minus ANT). The latter effect has been included since data from all tissues

were jointly analyzed due to the limited number of arrays. The random effect u1 for

each sample composition has a variance structure determined by Gh
1 and Zh

1 . The

variance structure of the second random effect u2 for the blending of individuals

is generated by Gh
2 and Zh

2 . Both design matrices for the random effects differ,

however, from experiments with one-color arrays: each row of Z1 and Z2 contains

two non-zero elements (as opposed to a single one) in order to model the differences

between effects with entries of 1 for the red and −1 for the green channel. The

residual errors e ∼ N(0, σ2
e) are again assumed to be stochastically independent

and include the technical errors created through the hybridization, imaging, and

scanning of each array.

Human data

The human data was taken from the GC6 (Grand Challenge in Global Health no. 6

- Biomarkers of protective immunity against Tuberculosis) project. For the project

data, please see Maertzdorf et al. (2010). One focus of this project was to identify

immune system differences between people who were exposed to Tuberculosis but

never became sick and those who developed severe symptoms. Therefore, as a part

of this larger study the three classes TST+, TST− and TB were compared, where

TST stands for the tuberculosis skin test (+ and - indicate positive and negative

results, respectively) and TB for acute tuberculosis. Overall, the data set consists

of samples from 55 humans in 16 pools of three and in 10 single samples, which were

labeled on 30 two-color arrays. In the sample composition, one also sees correlations

between pools in three cases, where individuals were used more than once, i.e. in

different pools (see matrix Gg
1). For each observation we modeled fixed effects for

the mean (including dye effect) and treatment (3 levels) as well as random effects

of sample composition and imperfect blending. Because there were two samples on
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each array, the design matrix Zg
1 for the composition of the samples had two entries

per row, as presented in section 7.1.2. Each pool was built only once, so Gg
2 is

a diagonal matrix with dimensions 16 × 16 and entries 2
9
. The random effects of

imperfect blending were assigned to measurements via Zg
2, with two non-zero entries

per measurement.

3.2.3 Simulated data

The relationship between the variance of a random effect of a pool and deviations

from the homogeneous aliquots of individuals in a pool sample, given in equation

(3.3), is based on a theoretically derived approximation (Zhang et al., 2007). Fur-

thermore, true proportions of aliquots are not available. Therefore, the equality of

the estimated variance component σ2
2 and the product of variances (eσ

2
b − 1)σ2

z was

checked by fitting the model to simulated data, in order to assay the estimations

when the true state of nature is known.

By setting x ∼ N(µg, Iσ
2
b ) the vector of individual gene expressions of the individuals

of a pool and w the vector of weights (proportions of individuals in the pooled RNA

of a joint sample), we calculated a value for true gene expression on the log-scale as

log
(
w> × exp (x)

)
. (3.5)

The technical errors, distributed as N(0, σ2
t ), were then added. Note that, due to

(3.1), each observation is composed by the fixed effects Xβ = µg, the distortion

due to biological variation u1 = x̄ − µg and the difference generated by imperfect

blending u2 = log(w>×exp (x))− log
(

exp (x)
)

, plus the log-bias log
(

exp (x)
)
− x̄.

For the simulation of weights the Dirichlet distribution with parameters ai = 1
σ2
z
− 1

γ
,

i = 1, . . . , γ was used. Then, a0 =
γ∑
i=1

ai = γai, and the expectation of each weight

is ai
a0

= 1
γ
. Therefore, the variance of the weights - theoretically ai(a0−ai)

a20(a0+1)
- is γ−1

γ3
σ2
z .

Using the approximation γ−1
γ3
σ2
z ≈ σ2

w for the variance of weights w from Zhang et al.

(2007), the Dirichlet parameters ai can be chosen in order to obtain weights with a
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given variance σ2
w.

Various proportions of transcripts (0, 1/3, 1) were simulated as affected by imper-

fect blending. In order to investigate the distribution of the RLRT-statistic under

the null hypothesis (σ2
2 = 0), the pooling technical variance σ2

z was set to zero for

all transcripts. Then, one third of the transcripts were simulated with imperfect

blending, as well as data where all transcripts contained these effects.

As a test case, further simulations were tailored for a comparison of models with

regard to the power to detect differential expression in the presence of imperfect

pooling at all loci. Variances were set to σ2
t = 0.17, σ2

b = 0.103 and σ2
z = 2.7 accord-

ing to the estimations from the mouse data. This was simulated with 100 repetitions.

An experiment consisting of 60 individuals from two equally-sized treatment groups

was simulated, in a 44 one-color microarray setting. The observations generated

were both from single individuals (20) and pools of size five (24). The individual

values used in the first two pools of each line were also used as single individuals.

For the full details of the design, please see the description of the mouse data set

above, which has an identical structure. For each of the 9000 transcripts, a mean

expression level was randomly chosen from a uniform distribution over the interval

[8, 14]. A subgroup of 3000 transcripts was randomly chosen to be differentially ex-

pressed between both treatment groups. For each of these, a mean treatment effect

was sampled from a uniform distribution over the interval [0.5, 1.5] with a random

sign ∈ {−1, 1}. False positive and negative test results were then evaluated using

the mean number of transcripts, averaged over all 100 repetitions.

3.2.4 Statistical analyses

Three variance components were considered: first, biological variance (σ2
1); second,

blending error variance (σ2
2); and third, residual variance (σ2

e). Similar models that

lack the second variance component have been used previously (e.g. Yang, 2003).

Transcripts were excluded from analyses if the log-expressions of both groups were
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smaller than eight (corresponds to 256 at the original scale), which is frequently

considered to be a threshold for meaningful gene expression. This resulted in 8554

observations for the mouse data, 6264 for rats, 13761 for bees and 12348 for the

human data set. An EM-REML algorithm was used to estimate the variance com-

ponents. Then the mixed model equations




X>X X>Z1 X>Z2

Z>1 X Z>1 Z1 + G-1
1 λ1 Z>1 Z2

Z>2 X Z>2 Z1 Z>2 Z2 + G-1
2 λ2







β̂

û1

û2




=




X>Y

Z>1 Y

Z>2 Y



,

where λ1 = σ2
e

σ2
1

and λ2 = σ2
e

σ2
2
, were solved for the estimates of the fixed and random

effects and the REML-log-likelihood was calculated.

For each transcript, a residual likelihood ratio test (RLRT) was used to test the null

hypothesis H0 : σ2
2 = 0, thereby assuming a half-half mixture of a χ2

1-distribution

and a point mass at zero (see e.g. Scheipl et al., 2008). According to this assumed

distribution of the test statistic, the distribution of p-values from all transcripts in

one experiment under the null hypothesis deviates from the uniform distribution

(see figure 3.2). The proportion of transcripts with a relevant blending error vari-

ance was estimated as π̂1 = 1 − π̂0. Therein, the estimated proportion of true null

hypotheses (π̂0) was estimated as described in Dabney et al. (2011). The proportion

π̂1 was then compared with the proportion of transcripts simulated without blend-

ing errors. After correcting all p-values according to a false discovery rate (FDR)

of 5%, the transcripts with a significant RLRT were determined. Beyond that, we

evaluated the proportions of the estimated variance component σ2
2 in relation to the

total variance.

The practical relevance of the variance component for imperfect blending of sam-

ples was further investigated by comparing the number of transcripts identified as

differentially expressed in different treatment levels by means of the full model (m2,

equation 3.1) and the null model (m1) y = Xβ+ Z1u1 + e without a random effect

of imperfect blending. Degrees of freedom for the applied F-Tests of fixed effects in
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mixed models were adjusted according to Kenward and Roger (1997). In order to

account for multiple testing, an FDR of 5% was applied to the p-values of the latter

F-tests.

For the mouse data set, the normalization was done with the gcrma method (Wu

et al., 2004). Loess- and quantile normalization (Smyth and Speed, 2003) was

used for the two-color array data. The rat data set was downloaded as normal-

ized (www.ncbi.nlm.nih.gov/geo).

The open-source statistical programming package R (R Core Team, 2012) was used

to implement an EM-REML algorithm for the estimation of all three variance com-

ponents. The formulas for the expectation and maximization steps can be obtained

from e.g. Mrode and Thompson (2005). Convergence of the EM algorithm was

assumed when the condition

√(
Bn−1 −Bn

)> (
Bn−1 −Bn

)

B>nBn

< ε, (3.6)

was fulfilled Schaeffer (1986), where ε = 10−8 and Bn =

[
σ̂2
1 σ̂2

2 σ̂2
e

]>
is the

vector of estimates of the variance components in the n-th iteration. False discovery

rates were computed with the help of the R-package qvalue Storey and Tibshirani

(2003). In the case of p-values from RLRT test statistics, the ’bootstrap’ option was

used to estimate π0, as suggested by Storey (2002).

3.3 Results and Discussion

3.3.1 Simulated data sets

First, the results of the RLRT for the blending error variance component are shown

for the case of the validity of the null hypothesis (σ2
2 = 0). Here, a uniform distribu-

tion of p-values can be observed on the interval [0, 0.5) as expected (see Figure 3.2,

topright). The Distributions of log-estimates of σ2
2 (Figure 3.2, left panels from top
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Figure 3.2: Estimates of blending error variance for simulated data. Log-estimates of
the blending error variance σ2

2 (left) and p-values (right) of RLRT (H0 :
σ2
2 = 0) for simulated data. Top: perfectly blended individuals were

simulated. The p-values of the interval [0,0.5) are uniformly distributed
and nearly half of the transcripts have a p-value of 1. Middle: 3000 out of
9000 transcripts affected by imperfect blending of individuals. Bottom:
all transcripts were simulated with imperfect blending.
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to bottom) show an increasing proportion of large values, in full accordance with

the increase in the simulated proportions of transcripts with a relevant blending

error variance (which was 0, 1/3 and 1). The corresponding p-values (right panels

of Figure 3.2, top to bottom) fairly mirror the same trend. The estimates for π̂1 ap-

proximated the simulated proportions of affected transcripts well. However, when it

Number or Data set
proportion of Simulated Experimental
transcripts s1 s2 s3 mouse rat bee human

total 9000 9000 9000 18646 15923 14400 43256
crit. > 8 9000 9000 9000 8554 6264 13761 12348
sign VC 1 1794 6704 4329 6 7093 0
π̂1 0.005 0.295 0.918 0.75 0.29 0.68 0.40

Table 3.2: Number of transcripts with non-zero blending error variance. Results of
the residual likelihood ratio tests of the hypothesis H0 : σ2

2 = 0 for tran-
scripts exceeding the minimum expression level (crit. > 8). Numbers of
transcripts with a significant variance component for imperfect blending
(sign VC) were counted according to the FDR correction level of 5%. π̂1
is the estimated proportion of transcripts with σ2

2 > 0.

came to the identification of individual transcripts, their number clearly lagged be-

hind the proportions present in the data. Corresponding results are shown in Table

3.2. Differences in both models’ abilities to find differential expression in the simu-

Number of Data Set

transcripts Simulated Experimental

identified s1 s2 s3 mouse rat human

m1 & m2 3112 3119 3128 3344 1636 787
m1 48 113 279 504 141 350
m2 4 13 29 516 12 154

Table 3.3: Number of transcripts identified as differentially expressed at an FDR of
5% by data set and model. Simulated data sets s1, s2, and s3 refer to
scenarios were none, one third, and all transcripts were associated with a
non-zero blending error variance component. The number of transcripts
identified with both models is indicated by m1 & m2, transcripts identified
solely with the null model (m1) or the full model (m2) are shown in the
second-to-last and the last line.

lated data sets were also observed (Table 3.3). The null model yielded an average

of 3407 expressed transcripts declared as differentially expressed, compared to 3157
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from the full model. The average shared number is 3128, but the 3000 simulated

as differentially expressed in a total of 9000 transcripts was clearly outbid by both

models. Figure 3.3 shows the average numbers of four sets of transcripts and their

1

3

4162

1

5

2222

3

25

65

208
77 765

0

1

64

DEG m1 DEG m2

DEG sim VC significant

Figure 3.3: Sets of differentially expressed transcripts (DEGs) for both models and
coincidences of transcripts with a significant variance component for im-
perfect blending. These were averaged over 100 repetitions of the sim-
ulated experiment based on the mouse design and variance components
σ2
t = 0.017, σ2

b = 0.094 and σ2
z = 2.7 (all transcripts with effects for

imperfect blending). The average counts of the sets of differentially ex-
pressed transcripts are labeled with ’DEG m1’ for the null model, ’DEG
m2’ for the full model, ’VC significant’ for transcripts with a significant
blending error variance, and ’DEG sim’ for the transcripts simulated as
differentially expressed.

intersections: the set of transcripts with a simulated differential expression, one set

of transcripts identified as differentially expressed for each of both models, and the

set of transcripts, which were identified as connected with an attributable (larger

than zero in terms of FDR) blending error variance. Upon counting the numbers

in the intersection regions which corresponded to true discoveries, a similarly high

power for both models was observed. Only 7 (m1) and 10 (m2) of the transcripts

simulated as differentially expressed have not been found. But, adding the numbers
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which correspond to false discoveries yielded a value of (1+25+64+77)/6000 = 0.028

for m2 and (65 + 208 + 64 + 77)/6000 = 0.069 for m1. This is clearly larger than

5%, the chosen level of permitted false discoveries. The number of transcripts incor-

rectly labeled as differentially expressed in the group of transcripts with a significant

blending error variance was inflated by a factor of about three for m1 (285) in com-

parison with m2 (102).

Furthermore, in a series of simulations, the pooling technical variance σ2
z was var-

ied within the range of (0, 2.7]. A plot of the obtained estimates of σ2
2 against

the simulated values σ2
z(e

σ2
b − 1) (see section 7.1) shows nearly perfect consistency.

The exception is some upward bias for very small simulated values, which can be

attributed to the well-known properties of the REML-method (Swallow and Mona-

han, 1984).

Therefore, it can be concluded at the very least that tests for differential expression

with the m1 model tend to be too optimistic, depending on the given experimental

conditions. To summarize, should the model contain the additional random effect of

imperfect blending, the statistical analysis yields results which agree very well with

the simulated characteristics.

3.3.2 Experimental data

Histograms of log-transformed estimations of the variance components due to im-

perfect blending are shown in Figure 3.4. Estimates range from nearly zero (10-6)

to less than one hundred (102). A clear bimodal distribution can be observed in

all cases, where the left part of each distribution (values less than approximately

10-3) represents very small values close to zero while the other part represents more

substantial values. In the mouse and the bee data, the proportion of transcripts

with substantially large values clearly exceeds the proportion of small values. For

the human data, the proportion of small estimates also prevails somewhat, while a

balance between minor and substantial values can be observed for the rat data. This
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Figure 3.4: Histogram of log-estimates of the variance component σ2
2 for the exper-

imental data sets mouse, rat, bee, and human.

is also reflected in the average (over all transcripts) of all three variance components

obtained with the reduced (m1) and the full (m2) models, as shown in Table 3.4.

In light of the averages, the inclusion of a blending error variance had the conse-

quence of a more or less reduced residual variance, most pronounced in the mouse

and honeybee data. In the human data, the average residual variance remained

almost constant, yet the average biological variance decreased - a phenomenon not

observed in the other data sets. Distributions of the size of σ2
2 relative to the total

variance of a standard observation — with respective pool sizes of 5, 3, 4, and 3 for
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Figure 3.5: Diagram of p-values of RLRT and variance ratios. For each experimental
data set, a histogram of p-values of the likelihood ratio test statistic for
the test of H0 : σ2

2 = 0 are shown (left), as well as histograms of the
variance components for imperfect blending, expressed as the proportion
of the total variance (right) of a standard observation. y-axis: count of
transcripts.
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Mean estimated Experimental data set / model used

variance Mouse Rat Bee Human

component m1 m2 m1 m2 m1 m2 m1 m2

σ2
e 0.037 0.017 0.010 0.009 0.104 0.035 0.062 0.060
σ2
1 0.109 0.109 0.024 0.024 0.031 0.033 0.105 0.055
σ2
2 - 0.295 - 0.011 - 0.215 - 0.155

Table 3.4: Mean estimated variance components. Estimated variance components
for residuals (σ2

e), biological effects (σ2
1), and imperfect blending (σ2

2) -
averaged over all analyzed transcripts for the null model (m1) and the
full model (m2).

mouse, rat, bee and human data — are given in Figure 3.5 (right, top to bottom).

All distributions exhibit a clear spike near zero, followed by estimates that nearly

exceed the full range of variance ratios. The rat data are an exception; hardly any

values larger than 0.6 were observed.

These impressions are mirrored by the distributions of p-values from RLRT-tests

for the hypothesis of a non-existing (σ2
2 = 0) blending error variance (left panels

in Figure 3.5, top to bottom). The number of individual transcripts, which could

be associated with a non-zero blending error variance at a false discovery rate of

5%, varied strongly between data sets. There were 4329 of such transcripts in the

mouse data and 7093 in the honeybee data, while only 6 were identified in the rat

data and none at all in the human data (Table 3.2). These high numbers are consis-

tent with considerable estimates for the fraction (π̂1) of non-zero variances in mouse

(π̂1 = 0.75) and honeybee (π̂1 = 0.68) data (Table 3.2). Note that the respective

estimated proportions were π̂1 = 0.29 and π̂1 = 0.40 in the rat and human data (Ta-

ble 3.2), also indicating the existence of non-zero blending error variances in these

two data sets, though almost no particular non-zero variance could have successfully

been identified at the chosen false discovery rate of 5%.

Counts of differentially expressed transcripts detected with both models are shown

in Table 3.3. About half of all transcripts analyzed were declared differentially ex-

pressed in the mouse data. About five hundred were exclusively detected with one

of both models: 504 with the null model and 516 with the full model. The list of
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the top 100 transcripts - ranked by their p-values - showed a large dissimilarity as

indicated by a value of 0.11 for Kendall’s correlation test. In the rat data, 1636

differentially expressed transcripts were jointly identified by both models, while 141

were solely found with the help of m1 and 12 with m2. No numbers appear in Ta-

ble 3.3 for the honeybee data, as no differentially expressed transcripts were found.

Finally, there were 1137 differentially expressed transcripts from the null model in

the human data, from which only 787 were ’confirmed’ by the full model.

3.4 Conclusions

In light of the large numbers of blending error variances diagnosed as greater than

zero in the mouse and honeybee data, the practical relevance of this second kind of

technical error has been clearly demonstrated. In both other data sets, estimates of

π̂1, the proportion of positive blending error variances, may be taken as an indicator

of their existence, though hardly any particular values could be identified, presum-

ably due to a lack of power. As demonstrated mainly by simulation, there are also

consequences for the detection of differentially expressed transcripts, in which the

nominal FDR-level was shown to be too optimistic when the blending error variance

was not taken into account. Therefore, we strongly recommend the application of

adequate models (as described in Rudolf et al. (2013)) including random blending

effects and their variances when observations from pools of different sizes are to be

jointly analyzed.
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4 Are there biomarkers for hygienic

behavior of individual Apis

mellifera workers?

4.1 Introduction

Colonies of Apis mellifera are threatened by the parasitic mite Varroa destructor.

Presence of mites in a colony damages the population, since infested larvae hatch

weakened, bees show degenerated bodies, and have a shortened life span (e.g. Boeck-

ing and Spivak, 1999). Chemical treatment led to problems including adverse ef-

fects on bees, contanimation of honey, development of resistance of the mites (e.g.

Rosenkranz et al., 2010; Rademacher and Harz, 2006).

Meanwhile there is consensus that breeding of resistant colonies is more sustainable

and more efficient than drug treatment alone. Hygienic behavior of A. mellifera

towards parasitized brood is a major part of this resistance and a target in selection

(Büchler et al., 2010). An enhanced rate of removal of diseased brood may restrict

the effective reproduction of mites and free comb space for new larvae. As a result

such colonies have a lower disease load, since mites are also vectors of diseases. The

probability of colony collapse is reduced, which is mainly triggered by an overspill

of the mite population (Genersch et al., 2010).

Various measures have been proposed for operationalization a colony’s ability to
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control its mite population (e.g. Villa et al., 2009; Rinderer et al., 2014). Quan-

tification of general hygienic behavior is often done on a special area on the comb.

Brood is either severly damaged by applying an array of needles (pin test) or killed

by deep-freezing. In the latter case a section of deep-frozen brood of standardized

size is inserted and degree of brood removal is measured (e.g.) 48 hours later. In

the study of Spivak and Reuter (2001) colonies that removed the freeze-killed brood

from the comb section within 48 hours on two trials were considered as hygienic.

Varroa sensitive hygiene (VSH) is assessed as the rate of removal of mite-infested

pupae. The number of infested cells per 100 non-infested cells was used to test VSH

bees for differences in resistance to the mite in Harbo and Harris (2009). The level

of natural infection was measured and correlated to the removal rate. By select-

ing on VSH they managed to get siginificant improvements with respect to VSH in

comparison to unselected commercial controls.

Some recent sudies have investigated aspects of hygienic behavior at the molec-

ular level. Varroa resistant colonies, that survived without treatment for several

years, were compared with highly parasitized colonies by Navajas et al. (2008).

They found 116 differentially expressed genes, a large proportion of them responsi-

ble for development of the nervous system and neuron excitability. Another study

showed that the hygienic genotype of the social partners in the colony affect the

hygienic behavioral performance and the brain gene expression of single worker

bees (Gempe et al., 2012), suggesting a complex genetic architecture underlying the

hygienic output at the colony level. Quantitative trait loci (QTL) for individual hy-

gienic behavior towards artificially killed brood were mapped by Oxley et al. (2010).

Engagement of hygienic behavior was related to three QTL, which accounted for

30% of the phenotypic variability. By interval mapping Tsuruda et al. (2012) found

a chromosome-wide significant QTL on cromosome 9 for the individual VSH trait,

which was considered as perforating the wax capping, enlarging the opening of an

already perforated cap, or removing a pupae. Workers were sampled if they engaged

in these behaviors for at least two minutes, and if the targeted brood cell was in-
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fested by V. destructor. The transcriptoms of antennae from VSH bees (observed

performing VSH-related tasks) and non-VSH bees were compared in Mondet et al.

(2015) by RNA-sequencing. Differentially expressed were 258 genes, and gene ontol-

ogy analysis revealed that a category called ’defense response’ was enriched in the

VSH bee antennae.

Reliable molecular markers would probably be a great help in breeding for Varroa re-

sistance, because it might supplement or even replace measures on the phenotypical

level. Molecular markers can be used as surrogates for complex phenotypes, which

are difficult to associate with a few genetic markers. Expression-based biomarkers

are close to the phenotype, in fact they can be interpreted as a molecular phenotype

(Schudoma et al., 2012). Therefore, the development of a biomarker, considered as

a set of genes with satisfactory discriminatory power whose joint expression pattern

is predictive of class membership (Dziuda, 2010), is a goal in the investigation of

hygienic behavior in the genome.

In this article, the steps of a search for a molecular marker for individual uncap-

ping and removal behavior are presented, using data from a gene expression experi-

ment with two-color arrays. Usefulness and further steps of research for breeding of

colonies resistant to Varroa destructor is discussed.

4.2 Material and Methods

In the following the collection of bees and the design of the gene expression exper-

iment are explained. Then, the preprocessing step of two-color array data with a

linear mixed is described, and the applied re-sampling scheme for the biomarker

search using logistic lasso regression.
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4.2.1 Collection of hygienic workers and controls

In the behavioral experiment individual hygienic behavior of worker bees against

Varroa-parasitized brood was evaluated. The worker bees were progenies from 7

young queen bees, which were bred from different queens of a selection line mated

with unselected drones, and were back-crossed with drones from different queens

of the selection line. Rearing of bees was standardized in the same hive. At the

age of one day bees were individually marked. 2000 worker bees from 7 colonies

participated in the behavioral experiment of 48 hours duration. This population

of bees from 7 different genotypes (of queen bee, also referred as colonies) were

presented a honeycomb which contained a section with Varroa-parasitized brood for

infrared video observations. After 48 hours they were simultaneously killed in liquid

nitrogen for age-specific gene expression.

After video analysis of 7 repeats (runs) of this setting, worker bees, which engaged

the opening of at least one diseased cell, and involved herself in at least one removal,

were selected into the hygienic behavioral class. Worker bees from the same run and

colony with no activities were sampled as controls.

4.2.2 Design of the gene expression experiment

For the gene expression experiment the two-color array (TCA) platform was used,

the honeybee whole-genome oligonucleotide microarray representing 13440 tran-

scripts. In the 7 repeats of this setting worker bees of 4 colonies were observed

showing hygienic behavior, in total 43 bees. As not in every possible of the 7×4 = 28

groups of bees appeared a hygienic bee, a dye balance design (Knapen et al., 2009)

was sequentially applied, which means that the hygienic bees of each group had to

be labeled equally often with red and green dye. By doing so, the difference of the

effects for behavior is separated from dye effects, as well the effects of colony and

experimental run. In groups with an odd number of hygienic bees therefore one of

them had to be used a second time. On that array a sample of a new control bee
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of the same group was hybridized. As the number of odd groups was nine, the 43

hygienic bees were matched with 52 controls on 52 arrays. Another 12 two-color

arrays (TCA) were labeled with mRNA samples of hygienic bees only for a compar-

ison between colonies. This design, developed for high power to detect differences

in the transcriptome between the behavioral classes, created data with correlated

measurements. The design was planned for three different nerval tissues: Anten-

nae, anntenal lobe and mushroom bodies. Supposing that a successful detection

of Varroa-parasitized brood relies on the olfactory sensitivity, whose recognition is

connected to mushroom bodies, their RNA was examined for a biomarker search.

4.2.3 Classification with two-color array data

In the classification context a defined class membership per sample (bee) is needed

for usual multivariate methods. This means that a proper data matrix has to be

used, which contains for each transcript a vector (i.e. column) of gene expression

values of the samples.

Usually, data from TCA experiments are prepared for analyses by normalization,

consisting of background correction, adjustment of distribution and logarithmic

transformation. Afterwards it consists of differences from measurements of sam-

ples, in detail M -values as log-spot-ratios of intensity measurements of red versus

green channel. Because of this difference of log-intensities of red and green channel,

setting up a gene expression matrix is a non-standard procedure.

In the simple case of a reference design (several samples compared with a unique

reference sample), the gene expression matrix can be built by these M -values. Oth-

erwise a preprocessing step for preparing of the gene expression matrix is needed.

A few examples for biomarker search in this case exist. In an experiment described

in Nota et al. (2010), log-spot-intensities (A) were used to back-transform to single

channel log-intensities R = A + 1
2
M and G = A − 1

2
M) of the individual samples.

Applying this procedure, it seemed to impact correlations in our data matrix, and
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performance of classification methods in terms of prediction errors were poor.

Furthermore, as the data were produced from an experimental design including

replications, it is not obvious how to handle multiple measurements, as averaging

changes the variance and a (random) selection of a single sample data point is arbi-

trary. Thus, there was need to develop an new approach.

4.2.4 A mixed model approach for preprocessing

The particular structure of the data, which consists of differences of log-intensities

with correlations and multiple used samples, were accounted for by a mixed model

based data preparation step. The summary of all available information for each

sample was carried out by the estimation of a random bee effect, which was then

entered as a phenotypic value in the data matrix. By doing so, one accounts for

the variance structure. No matter an individual is involved in one or more measure-

ments, there is only one solution for each bee.

Let Mna , with na the number of arrays, be the vector of differential log-expression

values for a transcript j, where j = 1, . . . , p with p the total number of transcripts

(features).

Mna = µ+ Zxn + ena (4.1)

The vector M is modeled via equation 4.1 with a mean effect µ, which contains

also the distortions through color, since for all arrays the log-values of the green

channel are subtracted from the red. The bees used in the hybridization design are

numbered i, i = 1, . . . , n. A random bee effect xn ∼ N(0, σ2
x) is included. Then Z

is of dimension na×n and contains two non-zero entries per row, 1 for the individual

used for the red channel of the array and −1 for green. Residual errors in ena are

assumed to contain also distortions due to measurement.

Thus, the distortions through channel effects and measurement are excluded. The

fitted random bee effects xn contain information about behavior and colony and

other biological effects. The gene expression matrix X of dimension “samples x
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transcripts“ is built column by column with the fitted random effects (scaled by σx)

from the above linear mixed model.

X = [x1, . . . ,xp] (4.2)

Of course, so far no class information has been used. With this gene expression

matrix and the vector of class membership biomarker search can now be started.

4.2.5 Adaptive Lasso for binomial data

For the selection of features (chose a few transcripts out of several thousand) in a

sparsity situation, with only a few truly relevant predictions within a large number of

candidates, a penalized least squares method is well suited (Hastie et al., 2009). The

lasso is a regularization technique for simultaneous variable selection and estimation

of predictive coefficients in a linear model (Tibshirani, 1996). Zou (2006) proposed

the adaptive lasso to fulfill consistency in variable selection. Further they provided

a method for generalized linear models, which is applied here for binomial data. Let

y = (y1, . . . , yn)> be the response and consider x1, . . . ,xp the columns of the gene

expression matrix X

β̂
∗(n)

= argmin
β

n∑

i=1

(
−yi(x>i β) + log(1 + ex

>
i β)
)

+ λn

p∑

j=1

ŵj |βj| , (4.3)

where λ is the nonnegative regularization parameter and β the vector of coefficients

βj, j = 1, . . . , p. In contrast to the common lasso, weights ŵj are inserted for each

coefficient - to be estimated in an initial step. The adaptive lasso estimates can be

found by the LARS algorithm Efron et al. (2004). Inside the open-source statistical

programming package R (R Core Team, 2012), the adaptive lasso implementation

of Kraemer and Schaefer (2012) was used for calculations.
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4.2.6 Course of search

For about 2000 worker bees from 7 colonies, only 43 bees from 4 colonies were iden-

tified as showing hygienic behavior. After normalization of the two-color microarray

Biomarker
Search

data

Validation data 22 bees

73 bees

12

52

Gene expression matrix

13439 genes

10 HY

12 NH

40 NH

33 HY

M = log2(R/G)R G

Design:
95 bees

64
arrays

M
ixed m

odel
pre-processing

N
orm

alization

Data:

Legend: HY hygienic bee
NH control bee

Figure 4.1: Scheme of data generation and transformation to gene expression matrix
of search data and validation data.

data, 64 arrays with 13439 transcripts each were available. Therefore the gene ex-

pression matrix would have dimension 95×13439 in maximum. For an overview how

the data were processed see Figure 4.1. For the sake of evaluating the biomarker

candidate, 12 arrays were removed before the search. As a validation sample, hy-

gienic and control bees of each of the 4 colonies were chosen, to be adequate for the

investigated data space. This so-called internal validation was done for two main

reasons. First it is considered to provide valid assessments of the model perfor-

mance. Secondly, external validation data is difficult to access for a model building

researcher and might, if not representative, even produce misleading results (Kessler,

2007).

The mixed model approach introduced above was then separately applied to both,

the search data and the validation data. All splits of the data were done with respect
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to the ratio of hygienic and control bees. That means, the validation data consisted

of data points from 10 hygienic and 12 control bees.

For the biomarker search the following procedure was repeated 5000 times (re-

sampling). The generated search data set of dimension 73 × 13439 was randomly

split into training set and test set (about 2/3 to 1/3) containing 49 (22 HY to 27

NH) and 24 (11 HY to 13 NH) bees also stratified by the behavioral class. With

adaptive lasso a selection of transcripts and estimation of coefficients (β∗) was exe-

cuted in the training set. Coefficients β∗i of non selected transcripts were set to zero.

With these coefficients a value for each sample of the test set was calculated as

exp
p∑
i=0

xiβ
∗
i

1 + exp
p∑
i=0

xiβ∗i

.

Due to the logit transformation these values are inside the interval (0,1) and can

be interpreted as susceptibility of a bee to show the hygienic behavior. By default,

the cutoff for classification was set to 0.5, and the prediction error as proportion

of wrongly classified samples was determined. Also statistics of used features were

generated, including number of appearances. The most used features were then used

to build a candidate biomarker.

4.3 Results

The results in terms of prediction error and selected features are presented and used

to derive a set of transcripts for a biomarker candidate, which was then tested in an

internal validation. The learning took place with the 73 bees search data and the

classification in an internal validation with the 22 bees validation data.
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4.3.1 Search for biomarker with adaptive lasso based on

resampling

In Figure 4.2 the histogram of the prediction errors from 5000 resampling steps

is shown for test set size 24 (around one third of the training data set). The re-

Prediction error
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Figure 4.2: Histogram of prediction errors from a resampling with 5000 repetitions.
In each run 49 from 73 bees of the search data set, were used to train a
classifier with adaptive lasso. Prediction errors were then determined as
wrongly classified cases of the remaining 24 bees of the test sets.

sulting distribution of the prediction error is appropriate to assess the ability of the

biomarker to classify new samples (Dziuda, 2010). It can be characterized by the me-

dian 5
24

and interquartile range of 1
8
. A more detailed view on the results of adaptive

lasso in the resampling procedure is presented in Figure 4.3. It shows the prediction

error according to the numbers of transcripts used by adaptive lasso. Although in

average 13 transcripts were used, in 254 from 5000 runs no feature could be selected

and the error is 0.458. This number is the ratio of the number of hygienic bees (11)

in a test set of 24, if stratified sampling with respect to 43 hygienic and 52 control

bees is applied. Already with 5 used transcripts the prediction error can be expected
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Figure 4.3: Histogram of prediction errors by number of used transcripts. Confidence
intervals were calculated from standard errors of prediction errors of runs
which were equal according to the number of selected transcripts.

to lie around 25%, with further growing number of transcripts small improvements

can be seen (prediction error around 20%). To determine the biomarker candidate

the selected transcripts in every run were stored and their frequencies are shown in

Figure 4.4. The first 4 transcripts had a clearly higher frequency then the following

transcripts, whose numbers of usage differ not very much. Therefore the size of the

biomarker candidate was set to 4, including the transcripts AM03409, AM09219,

AM07292 and AM01976 (oligo IDs). From a logistic model fit for the search data

set of 73 bees the coefficients for the top 4 ranked transcripts were determined and

are displayed in Table 4.1.

Transcript (Intercept) AM03409 AM09219 AM07292 AM01976
Coefficient -0.2412685 0.3511680 -0.8159310 -0.3421664 -0.3893987

Table 4.1: Coefficients of logistic regression with the biomarker candidate of 4 tran-
scripts. The logistic regression model was fitted with all 73 bees of the
search data set.
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Figure 4.4: Counts of most used transcripts, which were selected by adaptive lasso
in 5000 repetitions.

4.3.2 Predictions for bees from validation data

This biomarker candidate set was then applied to classify the bees from the 12 arrays,

which were not used while learning. From a new mixed model fit, the data points of

the validation data were calculated. Then the bee effects were used together with the

coefficients from the learning to calculate the predictions. Denoting the biomarker

coefficients from Table 4.1 with β∗ and the respective column of the validation data

matrix to x, the predictions

exp
4∑
i=0

xiβ
∗
i

1 + exp
4∑
i=0

xiβ∗i

, (4.4)

with x0 = 1 were used to classify the 22 cases at a cutoff of 0.5. It turned out, that 6

bees from 10 hygienic were correctly classified and 10 out of 12 controls. This gives

a sensitivity of 60%, specifity of 83% and a prediction error of 27% for the validation
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Figure 4.5: Predictions for 10 hygienic and 12 control bees from the validation data.
The bees were grouped by their true behavior, left side hygienic and
right side control bees. The predictions were calculated according to
Equation (4.4) with the coefficients from Table 4.1 and a cutoff of 0.5.
Thus, the upper left and lower right quadrant of the figure contain the
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data.

4.4 Discussion

4.4.1 Mixed model preprocessing

Two-color array data was transformed for biomarker search with an adapted ap-

proach. For each bee a single data point was sequentially determined by fitting a

mixed model for every transcript.

For multivariate methods a conservation of the correlation structure while transform-

ing the data is essential. It turned out, that the correlation structure of transcripts is
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only little affected by the transformation proposed opposite to back-transformation

to single channel data. This was investigated by calculating correlations of tran-
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Figure 4.6: Scatterplot of correlations between consecutive transcripts for M-vectors
(y-axes) before transformation (array data) and for sample vectors (x-
axes) after transformation (GEM data of dimensions 95 × 13439). On
the left the sample vectors (as columns of GEM) were derived through
back transformation to red and green channel values (128) and crossing
out rows until unique bees (95). On the right, the estimated random bee
effects from the proposed preprocessing were entered into the columns
transcript-wise.

scripts for the data matrix of M (dimensions: 64× 13439) and compare with corre-

lations after transformation in the sample data matrix (dimensions:95×13439). The

latter were determined a) by back-transformation two red and green channel data

(128 bees) and crossing out rows until each bee is represented only once (left) and

b) with the proposed preprocessing which uses random bee effects (right). As not

all 13439 ∗ 13438/2 correlations could be displayed, they were calculated for consec-

utive transcripts (1 vs. 2, 2 vs. 3, . . . , and 13438 vs. 13439). Then corresponding

pairs (before and after transformation) of correlations were used as coordinates of

the spots in Figure 4.6. On the left side can be seen, that the structure changed

due to back-transformation to single channel values. On the right, the spots are

mostly very close to the diagonal, which indicates a very good preservation of the

correlation structure.

This approach might be applied to a wide range of experiments with in principle

arbitrary designs, which have to be considered in the design matrices of the mixed
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model. The only assumption is that there need to be replications in the design,

either repeated arrays or repeatedly used samples, for estimability of the variance

component and random bee effects.

4.4.2 Biomarker candidate with 4 transcripts

Four transcripts from the top list of used transcripts from 5000 resamplings were se-

lected. Based on homology searches the top ranked transcript AM03409 is possibly

involved in neuron development. This pathway was also found to be upregulated in

Varroa resistant bees by Navajas et al. (2008).

The results of the validation showed the ability of the biomarker candidate set to

classify unknown bees according to hygienic behavior. The prediction error of 27%

for the validation data was above the median prediction error from Figure 4.3. This

deviation might be connected with the low number of bees in the validation data.

The specifity was even higher than the mean during the learning. For reinforcement

of the sensitivity from a level of 60% a cutoff value lower than 0.5 might be consid-

ered.

An independent validation study requires testing of many colonies. The data in the

HyBee project was collected in an elaborate experiment with visual identification of

activities of bees. This high efforts would have to be repeated for a validation study,

as known class memberships are inevitable. For such a study a change of the data

generating platform should be considered, because direct measurement for instance

with RT-PCR are known to be more precisely than microarray measurements. In

any case, using the derived candidate biomarker shall follow the same recipe for

the independent validation data. It suffices to generate expression values for the

biomarker transcripts, and on the resulting gene expression matrix of small dimen-

sion the calculated coefficients of the logistic regression procedure can be applied.

The candidate biomarker was chosen with 4 transcripts, because of the ranking in

usage. Also an increase in the number of transcripts in the biomarker would be
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possible, by adjusting to this number before the logistic regression for estimation of

coefficients takes place.

4.4.3 Outlook on possible applications

The data here was collected age-specific, as the bees were killed simultaneously with

liquid nitrogen. This is impossible in a practical application for beekeepers. For eco-

nomical reasons the evaluation of the hygienic potential of colonies might be done

with randomly chosen bees. But, the proportion of hygienic bees in a colony is con-

sidered in the low one-digit percentage range, which causes an uncertainty how many

of them are among a collection of say 50 bees per colony. If using pooled samples

costs would be controlled, but methods have to be adapted. For prediction using

pooled samples, also a biomoarker search with pooled samples is recommended. This

biomarker is then not applicable for the prediction of single samples (Telaar et al.,

2013). Therefore, it is necessary to decide which biomarker, for pooled or single

samples, is more useful for beekeeping.

A further possibility would be a pre-selection of small colonies. An RNA-marker

could be used for testing young queen bees, via their workers, which shortens the

generation interval and helps selection progress.

Furthermore, for assessment of colonies with a desirable low infection pressure a

biomarker might help. Analyzing worker bees of colonies with a desirable low infec-

tion pressure, they might differ in their hygienic scores (value of biomarker averaged

over bees). In the case of low scores, causes of low mite population might be a

good (chemical) treatment or a low presence of mites in the region by chance, and

with high scores the worker bees might be keeping the mite population low by early

engaging hygienic behavior. In the latter case, such a colony would be valuable for

breeding purposes.

The number of transcripts of a biomarker is important for the strategy of its applica-

tion. For a few transcripts only evaluating with Real-Time-PCR would be preferred
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for its higher precision, in the two-digits region an attempt of production of a bee-

chip can be made.

There exist projects which studied breeding values of bees for brood care based on

the Pin test or freeze-killed brood (e.g. Bienefeld et al. (2008)). Using a biomarker

to assess hygienic behavior for such bees with a high breeding value, a relationship

would be revealing.

After a successful validation study a possible application of the biomarker would

be the analysis of colonies, where only some worker bees are collected and a minor

number of transcripts is analyzed for assessing their hygienic potential. One advan-

tage of this procedure is that bee combs need to be processed only once, instead of

inserting a section of prepared brood and later counting success in removal, what is

user-friendly for beekeeping.

Measurement of gene expression data may be a useful approach for the investigation

of the regulation of traits in the transcriptome. The transcripts of a RNA marker

could be used to derive a phenotypic value for single bees. This quantitative values

(interpretable as probability to show hygienic behavior) can be used for breeding

purposes and other analyses.
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5 Summary and Discussion

The aim of this thesis was to study aspects of design and statistical analyses of

gene expression experiments, initiated through the HyBee project (details in 1.2).

In chapter 2 a new and more general design strategy for pooled gene expression

experiments was developed. The bias through variable pool sizes was canceled by

a design with a symmetrical structure of the pools between treatments. A general

condition for unbiased contrasts was derived, which applies to one- or two-color ar-

ray experiments. As a consequence, it became possible to include different numbers

of individuals into pools of the same gene expression experiment. Therewith all

’special’ individuals can be measured more efficiently than in a design with equally

sized pools (more individuals while limiting the number and costs of the arrays).

The proposed linear mixed model for log intensities of gene expression is appropriate

to account for the variance heterogeneity in analyses of experiments with variable

pool sizes. Therein, an effect for blending of individual samples and the corre-

sponding variance component was introduced, with the practical relevance checked

in chapter 3. Experimental data sets from four different species were analyzed with

the full model and with a reduced version, where this kind of technical error is lack-

ing. The impact of neglecting the blending error variance on the type I error was

shown in tests for differentially expressed transcripts.

In the third main part, chapter 4, an example of biomarker search was given in

the context of hygienic behavior of honeybees. Furthermore, a novel method to

generate the gene expression matrix was presented with respect to the correlation

structure of the data. This method allows more experimental data sets to be used
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in a biomarker search, namely from two-color array designs. A biomarker candidate

with four transcripts was derived by using a known penalized regression approach in

a re-sampling scheme. The search of a molecular marker will contribute in breeding

Varroa-tolerable colonies.

5.1 Variable pool sizes

In the behavioral assays of HyBee, activities of bees versus the mite V. destructor

were studied. Inside the comb, bees of seven colonies were presented with a diseased

brood section. This experimental setting was repeated seven times for a duration of

48 hours each. The aim was to identify and analyze bees showing hygienic behavior.

This was considered as the uncapping and removal of Varroa-parasitized brood cells.

The aim of the microarray experiment was to analyze all cases, which exclusively

executed both of these tasks. Due to the limited number of arrays, it was planned

to use pooled samples, if too many cases for individual sample hybridizations had

been found. Using a two-color array platform, direct comparisons of hygienic and

control bees were possible. To reduce distortions, only bees of the same colony and

runs should be hybridized on the same array. The number of cases showing hygienic

behavior in a group (same colony and run) is not uniform. Therefore, a design with

variable pool size (the number of individual samples blended into a pooled sample)

was considered and conditions for adequate statistical analyses were derived.

Pooling designs and its impact on detection of differentially expressed genes have

previously been investigated in several publications. Most of the work was done for

a fixed number of individuals and a varying number of arrays according to a uniform

pool size (e.g. Kendziorski et al. (2003)). There are major concerns about variable

pool sizes in an experiment. It leads to biases in measurements depending on the

size of pools and also to variance heterogeneity. In chapter 2, designs with flexible

pooling were examined for tests of unbiased contrasts, by choosing the number and

size of control pools adequately. Approximation formulas of Zhang et al. (2007) for
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expectation and variance of pool-signals were used to quantify the bias (equation

2.3). The vector of biases h was introduced into a model for gene expression data.

A generalized least squares estimator of biased measurements was calculated, as

well as the expectation of an estimable contrast function according to the hypoth-

esis that there was no difference between treatment effects. A condition could be

derived to check if a contrast function can be estimated unbiasedly in the equation

(2.8). It turns out that it suffices to oppose each pool of a treatment class with an

equally sized pool of controls. It was also shown that this rule can be applied to a

general case with more than two treatments. Furthermore it is also applicable for d

multivariate measurements. They could appear through measurements of the same

quantity of interest at different times or measurements which are distinguished by

a second factor (like tissue from which RNA were extracted). Such designs require

more effort, because for each additional factor the pool sizes have to be leveled.

The inhomogeneity in the measurement variance of experiments with variable pool

sizes could be accounted for as follows. After decomposition of the pools variance

and allocation of corresponding variance components (in equation 2.10), random

effects were assigned for composition (u1) and mixture (u2) of pools in the linear

mixed model: y = Xβ + Z1u1 + Z2u2 + e. The correlation matrices for the two

random effects (G1 and G2) have entries, which are functions of pool size. There-

with, the modeled variance structure (equation 2.12) correctly considers the variance

heterogeneity due to variable pool sizes. The variance parameter σ = (σ2
1, σ

2
2, σ

2
e)
>

can be estimated using restricted maximum likelihood (REML). Then, from the

mixed model equations the solutions of fixed and random effects can be determined.

Regarding the tests for differential expression, in general F-tests for the contrasts

K>β̂ have to be used. It should be noted that, for these tests of fixed effects in the

mixed model, adjustments have to be done, including the covariance matrix of β̂

and estimation of degrees of freedom (Kenward and Roger, 1997).

The above system of one-color arrays can be applied to two-color arrays by building

a matrix of differences D, which has a row for each two-color array with the entries
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1 and -1 for the two selected pools and zero otherwise. Then it follows that Dh = 0

is a sufficient condition for unbiasedness of contrasts. The practical consequence is

that only two pools of the same size are recommended to be hybridized together on

an array.

With the theory presented in chapter 2, a general framework for modeling of gene

expression experiments with pooled samples was developed. Therein, included as a

special case are designs with individual samples, if pool size is one and the second

variance component σ2
2 is removed from the model.

In Zhang et al. (2007) simulations were tailored for the influence of pooling technical

variance (σ2
z) on the power to detect a certain mean class difference in pooled sam-

ple designs. Since a mistake led to the underestimation of the impact of σ2
z , a few

simulations were recalculated and provided in section 2.5. Thus, some loss of power

(up to 4%) in the dependence of pooling technical variance could be shown. Former

constrains of pooling experiments with variable pool size are now vanquished, since

a uniform pool size in the whole experiment is no longer neccessary. The benefit

is shown by an example of a fictive result of the behavioral experiment with three

colonies in figure 5.1. Assuming that for every run one pool is available, with the

flexible pooling design, 13 individuals can be analyzed. In the case of equally sized

pools, only nine could be used. With more individuals power is expected to increase.

The gain in power for such experiments was further investigated by simulations. In

figure 5.2, results of a simulation are shown comparing the power to detect differ-

ential expression for three design strategies. Applying the flexible pool size design,

the power to detect a mean class difference was higher than in the design with the

equally sized pools. The vertical dotted lines indicate the number of pools to reach

a power of 95%. It can be concluded that, with the flexible pool size design, less

arrays are needed to get a certain power level.

Flexible pool size designs might be used in analyzing families with a high number

of offspring. Individuals with a special property can be included in the design by

the number in which they appear for a block of the experiment by increasing or
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HY1
3

NH1
3

HY3
6

NH3
6

HY2
4

NH2
4

First colony: 3 hygienic bees

Second colony: 4 hygienic bees

Third colony: 6 hygienic bees

Figure 5.1: Design with variable pool sizes, which schematically shows different num-
bers of hygienic bees in a run (or a colony) and corresponding pool sizes.
On the left side, symbolic colonies with different numbers of hygienic
bees (yellow) and non-hygienic bees (gray) are displayed. Rectangles on
the right side symbolize the pools for each run, with behavioral classes
(HY: hygienic, NH: not hygienic) and pool size.

decreasing the pool size.

5.2 Inaccuracies due to blending

In chapter 2, a mixed model for log-transformed gene expression data from designs

with pooled samples was developed; additionally, it considered blending samples by a

random effect and a corresponding variance component. By applying pooling, RNA

from different individuals sharing the same experimental conditions and explanatory

variables are blended and their concentrations are jointly measured. As a matter of

principle, individuals are represented in equal shares in each pool. However, some

degree of disproportionality may arise from the limits of technical precision. As a

consequence, a special kind of technical error occurs, which can be modeled by a

respective variance component. The theory — allowing for variable pool sizes —

has been applied to four microarray gene expression data sets from different species

in order to assess the practical relevance of this type of technical error in terms of
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Comparing the power of various pooling designs when testing for differentially expressed genes

Results
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Figure 5.2: Comparison of power for three design strategies. Different number of
runs (with two pools each, one pool for treatment and one for control)
of an experimental setting with an expected number of five individuals
per pool for a certain mean class difference ∆ = 0.4. The simulated vari-
ance components were σ2

b = 0.08,σ2
t = 0.22, and σ2

z = 0.12. The number
of individuals of the treatment class was simulated from a Poisson dis-
tribution. Then, for design ’flexible’, an equally sized pool was opposed
for each run; for design ’equal’, the minimum number was chosen as pool
size; and for design single only two single samples were chosen.

significance and size of this variance component. Variable pool sizes have an effect

on the variance of measurements. This was taken into account by considering how

many individuals are allocated to each pool, and by introducing a random effect for

blending with a corresponding variance component, called blending error variance.

Experimental data sets from four species were chosen with the condition that the

design included, firstly, pools of a different size, and, secondly, replications of mea-

surements. This is necessary for the estimation of all desired variance components.

The following linear mixed model (m2) was used for background-corrected and nor-

malized log-intensities y of a certain transcript, where the length of the vector y

equals the number of arrays: y = Xβ + Z1u1 + Z2u2 + e. Random effects of single

individuals were assumed to be independently identically distributed with biological

variance σ2
1, observations from a number of γi individuals have biological variance
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σ2
1

γi
. The random effect for blending u2 consists of one effect per mixture, the asso-

ciated variance component is σ2
2.

The starting point was a data set from mice, with the specialty, that for some

pooled sample observations there also existed observations of individuals which were

blended into these pools. In figure 5.3, it can be seen that the first 10 individuals

Motivation Modeling Estimation and testing Mouse data Results Summary
Design Random effects

Random effects for one mouse line
individuals
per line 30

compositions
16

mixture
effects 6

1
2
3
4
5
6
7
8
9
10

21
22
23
24
25
26
27
28
29
30

11
12
13
14
15
16
17
18
19
20

1
2
3
4
5
6
7
8
9
10
11 (1-5)
12 (6-10)
13 (11-15)

14 (16-20)

15 (21-25)

16 (26-30)

1
2
3
4
5
6
7
8
9
10

11

12

13

14

2
3

4

1

5

6

1
2
3
4
5
6
7
8
9
10

11, 12
13, 14
15, 16

17, 18

19, 20

21, 22

1-5
6-10

composition
effects 14

measurement
effects 22

σ2
1 σ2

2 σ2
e

10 / 15Figure 5.3: Random effects and variance components in the mouse experiment (de-
tails in section 3.2.2). For simplicity only one mouse line is shown, the
structure of the other line was identical.

were measured as a single sample. They were subsequently blended into two pools

of size 5 (composition 11 and 12). The other four pools were retrieved as a mixture

of the individual samples no. 11–30. If generated according to the last example of

section 2.5, the correlation matrix of effects with dimensions 16 × 16 would not be

invertible, because of linearly dependent rows. This happens, because the variance

of the sum of five individuals effects is five times the variance of their pool. There-

fore, the number of composition effects (corresponding to biological variance) was
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reduced to 14 by crossing out no. 11 and 12. Here, the rule applies, which states

that the effects of pools that only consist of individuals (or smaller pools) that get

an effect of its own, have to be canceled. In the corresponding rows of Z the weights

of these smaller elements in the canceled effect appear (see matrices for mouse in

section 7.1.2). In doing so, the matrix G1 became diagonal with entries of recip-

rocal pool size (individual samples are referred to as pool size one). With minor

adaption for the matrix Z, the structure Z1G1Z
>
1 σ

2
1 was maintained and biological

variance σ2
1 could be estimated adequately. The first two pools (composition no.

11 and 12) gave an effect for the mixture of a pool, as well as the other four pools

(compositions no. 13–16). Thus, six effects for blending of individuals were assigned

and the corresponding blending error variance could be estimated, with respect to

the correlation matrix G2 with the diagonal entries γ−1
γ2

= 4
25

. Since all pools were

measured twice, in the end there were 22 arrays used per mouse line.

The second data set were from rats, which were analyzed in Kendziorski et al. (2005)

separately for each pool size. For the third data set from honeybees, modeling had

to be adapted because a two-color array platform was used. The vector of log-ratios

M = log R
G

= logR − logG consists of the differences in intensities of the red and

green channel. Therefore, the parameter vector β = (µ,∆, b12, b23)
> also consists

of differences for behavior (∆) and tissue (b12, b23). The intercept µ includes the

dye effect, i.e. the difference of the red and green channel. Random effects for

each sample composition (u1) and for the blending of individuals (u2) are defined

as before. Both design matrices for the random effects differ from the experiments

with one-color arrays. Each row of Z1 and Z2 now contains two non-zero elements

in order to model the differences between effects, with entries of 1 for the red and

-1 for the green channel. The same system was applied to the fourth data set of

humans, who were analyzed for their susceptibility to tuberculosis with dependence

of the tuberculosis skin test result.

As true proportions of aliquots are not available, and the relationship between devi-

ations from homogeneous aliquots of individuals and the random effects of mixtures
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of pools on the log-scale is complex, methodology was checked by simulation. The

principle was to simulate normally distributed gene expressions of the individuals

of a pool, transform it to the original scale, calculate mixtures as linear combina-

tions with random weights, and transform back to the log-scale (see equation 3.5).

For the simulation of weights the Dirichlet distribution was used with parameters

ai = 1
σ2
z
− 1

γ
. To get weights with a certain variance σ2

w the pooling technical vari-

ance σ2
z can be calculated through the approximation σ2

z ≈
γ3

γ−1σ
2
w. It was shown in

section 3.2.3, that the expectation of each weight was 1
γ
. Three different proportions

of transcripts (0, 1
3
, 1) were simulated, as affected by imperfect pooling. The first

case (0) was to check the distribution of the REML log-likelihood ratio test (RLRT)

statistic under the null hypothesis (σ2
2 = 0). With the assumed half-half mixture

of chi-squared distributions with zero and one degree of freedom, the distribution

of p-values of the test statistic in figure 3.2 was uniform on the interval [0, 0.5), as

expected. Furthermore, simulations were executed to assess the impact of imperfect

blending on differential expression. A design identical to the mouse experiment was

chosen, with those estimated variance components. Differentially expressed tran-

scripts were simulated and the performance in detection was investigated with the

full model (m2) and the model (m1) by means of the type I and type II errors. Fit of

models was done by EM-REML, and statistical analyses were performed for σ2
2 = 0

with RLRT. False discovery rates of 5% for identification of certain transcripts with

a non-zero blending error variance were applied. As a measure for relevance, the

proportion of false null hypotheses was estimated by π̂1 = 1 − π̂0, where π1 was

taken from the R-package qvalue (Dabney et al., 2011), and then the ability of both

models to detect differential expression was compared with F-tests. The latter was

determined from simulation results shown in figure 3.3. It turned out, that the level

of permitted false discoveries 5% was exceeded by the model m1, but ensured in the

full model m2.

The practical relevance of the second random effect for blending individual sam-

ples was investigated in experimental data of four different species, in chapter 3.
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Methodology for estimation and tests of the corresponding blending error variance

was developed in sections 3.2.1 and 3.2.4. With little modifications the model can

be applied for analyses of data from both platforms, one- and two-color arrays. The

hypothesis σ2
2 = 0 was tested by RLRT, whose RLRT-statistic was calculated by

taking twice the difference of the REML log likelihood between m2 and m1. The

number of transcripts with a significant variance component due to imperfect blend-

ing was found to be 4329 (23%) in mouse data and 7093 (49%) in honeybees, but

only six in rats and none whatsoever in human data. These results correspond to a

false discovery rate of 5% in each data set. The relevance was further assessed by

means of the estimated proportion of true null hypotheses. The proportion of tran-

scripts, which were influenced by blending error variance, was determined as 0.75 in

the mouse data set, 0.68 for bee, 0.29 for rat, and 0.40 for human. Differential ex-

pression was further compared for both models. The number of transcripts found to

be differentially expressed between treatments was always higher when the blending

error variance was neglected. Simulations clearly indicated overly-optimistic (anti-

conservative) test results in terms of false discovery rates whenever this source of

variability was not represented in the model (results shown in table 3.3). Therefore

it can be concluded, that imperfect equality of shares, when blending RNA from dif-

ferent individuals into joint pools of variable size, is a source of technical variation

with relevance for experimental design, practice in the lab and data analysis. Its

potentially adverse effects, incorrect identification of differentially expressed tran-

scripts and overly-optimistic significance tests, can be fully avoided, however, by the

sound application of recently established theory and models for data analysis.

Modeling gene expression data adequately, especially from designs including pool-

ing, in the opinion of the author has to deal with almost all sources of variation if

possible. The aim was reached by modeling log expression differences with a mixed

model, where two random effects corresponding to biological variance and blend-

ing error variance are assigned. The technical error (σ2
t ) is included in the residual

variance σ2
e . The possibilities with the proposed model are displayed in the figure
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Figure 5.4: Scheme for steps of microarray experiment with pooling and sources
of variation. On the left side, variance structure in experiments with
uniform pool size. On the right side, the variance structure modeled in
case of variable pool sizes with biological variance and blending error
variance, with the option to account for one- or two-color platforms.

5.4 on the right side. Compared to a design with equally sized pools (left), the

coverage of sources of variation is more detailed. Another advantage is that dye and

measurement distortions — array by array as they appear — are associated with

the residual errors.

5.3 Biomarker for hygienic behavior

Honeybee colonies are threatened by the mite V. destructor. Chemical treatment

has been used following precisely developed plans (e.g. Rosenkranz et al., 2010).

There is consensus that breeding of tolerable colonies is more sustainable and more

efficient than drug treatment. To enable the breeding of tolerable colonies, evalua-

tion of hygienic performance of a colony of bees is necessary. Colony level measures

— which are recommended for repeated capture — were developed, but require sev-
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eral steps. These include the preparation of a comb section with damaged brood,

and the determination of removal rate after a certain period of time. Identification

of the individual hygienic behavior of bees, considered as uncapping and removal

of diseased brood, is even more laborious. Therein, recorded video observations of

individually marked bees have to be watched, and a detailed documentation of all

tasks of bees on the particular section of the brood comb is required. A molecular

marker based on behavior of individuals might be applied for marker-assisted selec-

tion. Furthermore, only some of the bees need to be collected for genetic analyses,

which is user-friendly for beekeepers.

The development of a biomarker, considered as a set of genes with satisfactory dis-

criminatory power whose joint expression pattern is predictive of class membership

(Dziuda, 2010), is a goal in the investigation of hygienic behavior in the transkrip-

tome. After using the experimental data from a preliminary experiment of HyBee

in chapter 3, here the data from the main behavioral assay from the last project

year was used, which also used two-color arrays, but with single samples. In order

to select hygienic bee individuals, a section of a brood comb, artificially inserted

with Varroa mites was presented to seven colonies. The activities of all the bees

in this particular section were recorded in a 48 hours duration. The trait hygienic

behavior was defined as a bee beginning uncapping (’beginner’) and at least helping

to remove (’helper’) the diseased brood, exclusively. At the end of seven repeats

(runs), 43 bees were observed showing this hygienic behavior. The intra-class cor-

relation of the defined hygienic behavior among other traits was the highest, which

means that a large part of variability in behavior can be claimed to the genotype

(colony). An overview of the results of all the traits is given in the section 7.4. The

43 bees from four different colonies were compared with 52 controls in a dye balance

design. In each group of bees (defined by colony and run), the hygienic bees had

to be labeled equally with red and green dye. In groups with an odd number of

hygienic bees, one of them was used a second time, but together with a new control.

Furthermore, comparisons of hygienic bees with different genotypes were done with
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12 arrays. Power of tests for differential expression was expected to benefit from

this ’independent swap’ over a standard dye swap, which was shown theoretically

with variance functions in section 7.3.

Preparing data for biomarker search means to set a gene expression matrix (GEM)

with one data point per sample. In our case, two-color array data (64 arrays) with p

transcripts had to be transformed to sample (n=95) data. The GEM for two classes

contains entries xij, which is the value for transcript j (j = 1, . . . , p) and sample

i (i = 1, . . . , n1 + n2), where n1 = 43 and n2 = 52.

X =




x11 x12 . . . x1p

x21 x22 . . . x2p
...

...
. . .

...

xn11 xn12 . . . xn1p

...
...

. . .
...

xn1+n21 xn1+n22 . . . xn1+n2p




, xi =




xi1
...

xip




>

Then, the data matrix consists of sample data points xi (rows) of length p. If the

rows are not sorted by classes, the class membership for a biomarker search can also

be given as a dummy-coded vector.

The transformation of two-color array data (differences) with replications (multiple

use of bees, correlations) is non-standard. Thereby, for an analysis with multivariate

methods a good preservation of the variance structure is essential. A mixed model

approach was developed, which allowed us to summarize all available information

for each sample by the estimation of a random bee effect, which was then entered

as a phenotypic value in the data matrix. The vector of differential log expression

values M was modeled with a single fixed effect µ (the mean effect), which contains

distortions through color. The design matrix Z is similar to the matrices for the

composition of samples from chapter 3. The gene expression matrix is built column

by column with the fitted random effects for bees. Of course, so far no class infor-

mation has been used. To choose a transcript out of several thousand, the adaptive

lasso regression was applied. Via cross-validation the optimal shrinkage parameter
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and therewith the transcripts are chosen. In the same step, regression coefficients

are determined. The search method is based on re-sampling. First the 64 arrays

were split into 52 for the biomarker search, and 12 which were separated for an

internal validation. Then, the preprocessing with the mixed model was executed

separately for learning and validation data. The 73 bees from the first 52 arrays

built the rows of a gene expression matrix for learning. Then, in 5000 repetitions

they were sampled by 1/3 for a test set (24 bees), and 2/3 for a training set (49).

The latter was used for the adaptive lasso fit, the selected features were stored for

every repetition, and with the estimated coefficients the predictions of each test set

of 24 bees were calculated. The classification of each test set was evaluated via the

proportion of wrongly classified samples (prediction error). In the 5000 repetitions,

the median was 5
24

. With the records of used transcripts frequencies of usage were

calculated. Figure 4.4, which shows the corresponding histogram was used to deter-

mine the size of the biomarker candidate. Since the usage of transcripts was only

slightly different beginning from rank 5, the first four transcripts were chosen. The

coefficients for predictions were determined in a logistic regression with these four

transcripts . Therewith, for the internal validation the preprocessed gene expres-

sion matrix from the 22 separated bees was used to calculate predictions, which

are shown in figure 4.5. At the standard cutoff of 0.5, they were classified to the

hygienic class or the non-hygienic class. The prediction error was found to be 27%.

This is inside the confidence interval for four used features in figure 4.3. Thus, the

average prediction error in the learning correctly assessed the prediction error in the

internal validation set. Based on homology searches, the transcript most often used

(AM03409), is involved in neuron development. This agrees with results of Navajas

et al. (2008), where the set of genes differentially expressed between tolerant and

sensitive bees were mainly involved in transcription and neuron development.

Different approaches for the selection of a biomarker candidate are of course possi-

ble. The selected biomarker candidate might be to some extent dependent on the

method adaptive lasso. Correlation-based filter approaches or discriminatory mea-
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sures like T2 (Dziuda, 2010) could be used instead. Also the principle to select from

a top list according to the number of appearences in all 5000 resamplings might be

changed. For instance, in Pinsky and Zhu (2011), it was shown that a highly neg-

ative correlated feature to the first feature is advantageous for performance. Such

tuning methods are somewhat too advanced for the discovery phase of a biomarker

search. A next step would be to compare different approaches and to check if they

lead to similar results. A validation study should prove the predictive ability of a

biomarker, with an independent data set of new samples from the target population.

The application of a validated biomarker for beekeeping is possible, one could just

collect bees and analyze them for their hygienic potential for a marker-based se-

lection, but still difficulties could arise. Because of the low proportion of hygienic

bees in a colony, a collection of say 50 bees per colony could be analyzed. If using

pooled samples, costs would be controlled but methods have to be adapted. For

predictions using pooled samples, a biomoarker search with pooled samples is also

recommended. This biomarker is then not applicable for the prediction of single

samples (Telaar et al., 2013). Therefore, it is necessary to decide which biomarker,

for pooled or single samples, is more useful for beekeeping.

The preprocessing approach presented allows access to much more data for a biomarker

search, namely from two-color array experiments. As the principle to derive a phe-

notypic value for each individual is general, it can also be used with data from other

platforms. For example, with RNA-sequencing data, but with respect to the Poisson

distribution of count data, a generalized linear mixed model would be appropriate.

5.4 Using R for programming of analysis tasks

Difficulties arise if one wants to apply the full model with standard software packages

like SAS or SPSS. The input of custom effects and variance components is difficult,

and application of models to thousands of genes needs further (macro) program-

ming. For estimation of mixed models the package ASReml (Gilmour et al., 1995)
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offers more functionality. It uses the average information REML algorithm, which

improves the convergence while fitting the model in comparison to EM-REML. Cor-

relation matrices can be specified, but need to be positive definite for algorithms.

The design matrices (X,Z) are computed from the data. In doing so, it might hap-

pen that the inverse of the correlation matrix of random effects (G) does not exist.

In the end for each variance component j, a structure ZjGjZ
>
j σ

2
j has to be fitted

to the data, this provides another option for handling the problem of the inversion

of Gj. Defining the effects from the smallest disjunct elements, Gj is invertible

and correlations are mapped through Zj. An example how this works can be seen

for the mouse data in chapter 3. Therefore the option to enter matrices directly is

important for the usability of analysis software.

To have all programming under the same platform, the open source software R was

chosen for preparations, fitting, and analyses of the data. Inside R, several packages

for analysis of gene expression data exist. For linear models, ’Limma’ (Smyth, 2005)

provides possibilities to analyze gene expression data with linear models. Therein,

mixed models were used for normalization and estimation of spot correlations in a

Bayesian approach. In Smyth and Altman (2013), a model for ’Estimating the intra-

spot correlation from the M-value and A-values’ contains effects for samples. So far

’Limma’ does not provide an option to enter random effects for individuals when

modeling the log gene expressions. Therefore, the R-script ’emreml.R’ was created,

for estimation of variance components, solution of effects and testing of contrasts.

The possibility to directly enter all the matrices (X,G,Z) needed was important.

The output of the estimations with the R-script ’emreml.R’ are shown in figure 5.5.

It can be seen that differences between classes (’delta’), which are important for the

question of interest, might differ between the two models m1 and m2 (see discussion

above). The code of the emreml.R function is given in the appendix. There exists

no R-package, to the author’s best knowledge, which comfortably allows the anal-

yses recommended in this work. Thus, future research directions could include the

further development of the R-script which could be incorporated in an R-package.
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Motivation Modeling Estimation and testing Mouse data Results Summary
Estimates and LRT Significant and truly alternative genes Relevance for DEG

Estimates and p-values of LRT for mouse data
 m1 loglh  m1 delta  m1 sigma_e^2  m1 sigma_1^2       m2 loglh m2 delta  m2 sigma_e^2  m2 sigma_1^2  m2 sigma_2^2 LRT-Stat 
1 42.09905  0.08825813 0.010430625  0.0878477145       49.83809 0.27718939 0.007450469  0.017085987   0.342758819     15.478063404 
2 62.42431  0.06974972 0.009812557  0.0093139973       64.17506 0.09321161 0.006951189  0.007025708   0.045500943  3.501494139 
3 60.57780  0.04609593 0.008579208  0.0161788990       62.11884 0.01527470 0.006673767  0.010962079   0.045166913  3.082075877 
4 40.83996  0.45496675 0.017620502  0.0593901652       40.84118 0.45431160 0.017332623  0.059699639   0.002709609  0.002440013 
5 41.00656  0.28450898 0.029795715  0.0218624342       42.01564 0.27755716 0.019938398  0.026551168   0.094539178  2.018175535 
6 36.77707  0.15923954 0.049284243  0.0006439431       38.58250 0.20437227 0.027500383  0.014796522   0.184495727  3.610862746 
7 39.04216  0.20273630 0.018607138  0.0673993706       42.85163 0.22559359 0.006973913  0.064352825   0.167653784  7.618940741 
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Figure 5.5: Output from emreml functions of mouse data set summarized for some
transcripts (rows). On the left side, the estimations for the reduced
model (with prefix m1) are presented, and on the right side, the esti-
mations for the full model (m2). Note that, two times the difference of
’loglh’ yielded the RLRT-statistic.

The strength of mixed models was used in this thesis to account for several issues of

gene expression experiments and variance structure of the data. Phenotypic values

are handled with regard to the influence of individuals; naturally, the individual

appears as a random effect, if behavior on the basis of the transkriptome is de-

clared. Problems with analysis in statistical software packages were circumvented

by programming scripts for EM-REML and F-tests in linear mixed models.
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6 Zusammenfassung

Ziel dieser Arbeit war es Versuchspläne und Auswertungsmethoden zu entwickeln

und einzusetzen für Genexpressionsexperimente zum Vergleich von Bienen mit un-

terschiedlichem Hygieneverhalten. Seit einiger Zeit ist der Bestand an Bienenvölkern

durch die Milbe Varroa destructor bedroht. Die Milben, welche sich in der Brut ver-

mehren und von der Homolymphe der Bienenlarve ernähren, breiten sich im Stock

aus und schwächen die Bienenvölker sehr stark. Die Milbenpopulation ist ein Haupt-

faktor für das Zusammenbrechen der Bienenvölker. Die Bruthygiene der Bienen ist

ein komplexes Verhaltensmuster und kann als natürlicher Abwehrmechanismus zur

Reduzierung der Milbenpopulation beitragen. Nur wenige Bienen sind in der Lage

Varroa-parasitierte Brut zu erkennen. Das Hygieneverhalten gegenüber der Milbe

besteht aus dem Öffnen infizierter Zellen und dem Ausräumen der befallenen Larven.

Die Erforschung der genetischen Komponenten dieses Verhaltens kann einen wichti-

gen Beitrag zur Zucht von Varroa-toleranten Bienenvölkern leisten. Dazu wurden

Bienen, die das gewünschte Verhalten zeigten, in aufwendigen Verhaltensessays iden-

tifiziert. In sieben Durchgängen wurden den Arbeitsbienen von sieben verschiedenen

Bienenvölkern Abschnitte mit Varroa-parasitierter Brut präsentiert. Die Auswer-

tung der jeweils 48-stündigen Infrarot-Videoaufnahmen lieferte unterschiedliche An-

zahlen der hygienischen Bienen für die verschiedenen Völker. Zur Reduzierung von

Störgrößen wurde geplant nur Bienen des gleichen Volks und des gleichen Durch-

gangs hinsichtlich des Verhaltensunterschieds miteinander zu vergleichen.

Aufgrund der begrenzten Zahl von Arrays und da die Zahl der hygienischen Bienen

unbekannt ist, war weiterhin überlegt worden, Mischproben der Bienen je nach dem



94 6 Zusammenfassung

in welcher Zahl sie auftreten zu erzeugen. Dies führt zu variablen Poolgrößen, wovon

in der bisherigen Literatur abgeraten wurde. Der erste der Hauptgründe sind die

Verzerrungen zwischen den Messungen, welche durch die Log-Transformation bei

der Normalisierung der Daten entstehen. Zweitens erfordert die erzeugte Varianz-

inhomgenität besonderen Aufwand bei der Modellierung und Auswertung der Mes-

sungen. Der interessierende Unterschied im Verhalten kann mit Hilfe von Kon-

trastfunktionen der geschätzten Parameter im gemischten linearen Modell analysiert

werden. Im ersten Kapitel wurde gezeigt, dass das Ausbalancieren der Poolgrößen

(Anzahl der Individuen in einer Mischprobe) zwischen den Gruppen die verzer-

rungsfreie Schätzung von Kontrasten ermöglicht. Für den allgemeinen Fall wurde

eine Bedingung für die Verzerrungsfreiheit der Kontraste abgeleitet. Darin gehen die

Designmatrix (X), eine angenommene Varianzstruktur (V), sowie die Kontrastfunk-

tion (K) ein. Die Varianzheterogenität wurde in einem gemischten linearen Modell

durch zwei zufällige Effekte berücksichtigt. Im Modell y = Xβ + Z1u1 + Z2u2 + e,

ist das erstens die zufällige Abweichung (u1) durch die Kombination von Individuen

welche einer biologischen Varianz unterliegen. Außerdem wurde die Unsicherheit

durch ungleiche Anteile der Individuen im Pool berücksichtigt, welche beim Mis-

chen der Proben entsteht (u2). Die dazugehörigen Varianzkomponenten (σ2
1 und σ2

2)

gehen in die modellierte Varianzstruktur ein.

Im zweiten Abschnitt wurde die Bedeutung der neuen Varianzkomponente (σ2
2,

engl.: blending error variance) anhand experimenteller Daten untersucht. Dazu

wurden Datensätze analysiert, in welchen verschiedene Poolgrößen vorkamen. Diese

stammten von Mäusen, einem Vorversuch im Bienenprojekt, Ratten und Menschen.

Bisher konnten diese nur separat nach Poolgröße, oder für einen Teil der Indi-

viduen mit fester Poolgröße ausgewertet werden. Der Einfluss der neuen Kom-

ponente wurde durch den Vergleich der Eigenschaften des vollen Modells und eines

reduzierten Models, das diese nicht enthielt, untersucht. Mit Hilfe von REML-

Likelihoodquotienten-Statistiken wurde geprüft, ob die Komponente signifikant ver-

schieden von Null ist. Nach Korrektur der entsprechenden p-Werte auf multiples
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Testen konnten in drei der vier Datensätze Transkripte identifiziert werden. Bei

den Daten der Mäuse und Bienen waren diese sehr zahlreich, wenige wurden bei

den Ratten gefunden, und keins bei den Human-Daten. Der Anteil der durch die

Mischungsvarianz beeinflussten Transkripte wurde mit Hilfe des Anteils der wahren

Nullhypothesen geschätzt. Außerdem wurden die differentiell expremierten Tran-

skripte hinsichtlich des jeweiligen Gruppenvergleichs in den Experimenten mit bei-

den Modellen bestimmt. Hier zeigten sich Unterschiede, im reduzierten Modell

wurden zumeist mehr Transkripte identifiziert, was durch einen höheren Fehler 1.

Art hervorgerufen werden kann. In einer Simulationsstudie analog zum Design im

Mäuse-Datensatz konnte gezeigt werden, dass das α-Niveau beim Testen im re-

duzierten Modell nicht eingehalten wird, aber im vorgeschlagenen Modell sind die

Tests konservativ.

Die Genexpressionsdaten aus dem Hauptversuch (mit Einzelproben) des Bienenpro-

jekts wurden im dritten Abschnitt dieser Arbeit für eine Biomarkersuche verwendet.

Das Ziel hierbei war, ein Genexpressionsmuster mehrerer Transkripte zu entdecken,

welches die Klassifizierung unbekannter Bienen in die Klassen hygienisch und nicht-

hygienisch ermöglicht. Das ausgewählte Lernverfahren adaptive Lasso benötigt (wie

die meisten anderen) eine Datenmatrix welche einen Datenpunkt je Individuum

enthält. Daher ist eine Aufbereitung der in Differenzen der Log-Intensitäten von

rot und grün gelabelten Proben vorliegenden Genexpressionsdaten nötig. Dazu

wurde ein spezielles Vorbereitungsverfahren, wiederum mit Hilfe gemischter linearer

Modelle, entwickelt. Dies ermöglicht es, die vorliegenden Informationen zu einem

Individuum als phenotypischen Wert zusammen zu fassen. Untersuchungen der Ko-

rrelationen vor und nach dieser Transformation zeigten, dass die Varianzstruktur

viel besser erhalten bleibt, als bei einem einfachen Zurückrechnen auf Werte der

rot oder grün gelabelten Individuen. Nach Unterteilung der Bienen in den Vali-

dierungsdatensatz (22 Bienen) und die Lernstichprobe (73 Bienen) wurde der neue

Ansatz zum Aufstellen der Genexpressionsmatrix (GEM) separat angewendet, durch

Schätzen der Bieneneffekte für jedes der 13439 Transkripte. Aus der Lernstichprobe
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der 73 Bienen wurde zufällig das Trainingssets gezogen und adaptive Lasso auf den

entsprechenden Teil der GEM angewendet. Dabei werden Transkripte ausgewählt

sowie deren Effekte geschätzt und benutzt um das Testset vorherzusagen. Die so

geschätzte Klassenzugehörigkeit wird mit der tatsächlichen des Testsets verglichen

und der Vorhersagefehler als Anteil der falschen unter allen Vorhersagen errechnet.

Dieses Schema wurde 5000-fach wiederholt und dann die gespeicherten Transkripte

anhand ihrer Häufigkeiten sortiert. Da nach den ersten 4 ein deutlicher Abstand in

der Häufigkeit der selektierten Transkripte vorlag, wurde der Biomarker Kandidat

hier auf 4 begrenzt. Mit diesen 4 Transkripten wurde ein einzelner Lernschritt mit

der gesamten Lernstichprobe durchgeführt. Die Koeffizienten wurden anschließend,

zur Vorhersage der unabhängigen 22 Bienen genutzt. Dabei ergab sich ein Vorher-

sagefehler von 27%, eine Spezifität von 83% und eine Sensitivität von 60%. Ein

molekularer Marker kann eine wertvolle Hilfe bei der Zucht auf hygienische Bienen

sein. Ein Vorteil wäre, dass der Imker nur ein paar Bienen zur Analyse einschickt,

anstatt wie jetzt aufwendig und in regelmäßigen Abständen die Ausräumrate bei

künstlich geschädigter Brut zu überprüfen. Dazu sind aber weitere Vorbereitungss-

chritte nötig, wie z.B. eine Validierungsstudie, oder je nach Einsatzgebiet (Analyse

der Königin, Vorhersage mit gepoolten Proben) auch ein komplett neues Experiment

und anschließende Lernverfahren.

Genexpressionsexperimente ermöglichen die Analyse komplexer Merkmale auf Ebene

des Transkriptoms. Gegenüber SNP- oder Sequenzing-Techniken liegt ein Vorteil

im Einblick in die gewebespezifischen Zusammenhänge, z.B. zeitnah wenn ein In-

dividuum ein Verhalten ausführt. Obwohl es inzwischen neuere und teils genauere

Verfahren zur Bestimmung des Transkriptoms gibt, sind Genexpressionsmessungen

weiterhin etabliert, um einen Überblick zu liefern als Basisuntersuchung oder auch

bei der Biomarkersuche, da ein Herausfiltern univariat unbedeutender Transkripte

nachteilig für multivariate Verfahren ist. Die phenotypischen Werte auf Basis des

Transkriptoms wurden modelliert, und der zufällige Einfluss des Individuums auf

das Verhalten natürlicherweise als zufälliger Effekt im gemischten linearen Modell.
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7 Appendix

7.1 Supplement for Chapter 3

7.1.1 Simulated and estimated blending error variance

In various simulation runs, the pooling technical variance σ2
z was altered in the range

of (0, 2.7] to evaluate whether the approximation in equation (3.3) is applicable for

our purposes. Numbers of individuals in a pool were randomly from a Poisson
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Figure 7.1: Plot of the average estimated variance components σ̂2
2 versus simulated

values σ2
z(e

σ2
b − 1).

distribution chosen. For each number, as many individuals were artificially blended
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into a pool and an equally sized pool of controls was opposed. In figure 7.1 estimates

and simulated values agree very well; some bias for small values can be attributed

to the EM-REML algorithm used for variance component estimation.

7.1.2 Matrices for EM-REML and mixed model equations

This section shows various matrices for the experimental data sets in detail. They

were explained to some extent in the section 3.2.2.
Matrices Mouse

Zm
1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.2 0.2 0.2 0.2 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.2 0.2 0.2 0.2 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0.2 0.2 0.2 0.2 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0.2 0.2 0.2 0.2 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0.2 0.2 0.2 0.2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0.2 0.2 0.2 0.2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0.2 0.2 0.2 0.2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0.2 0.2 0.2 0.2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Zm
2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Figure 7.2: Design matrix Zm
1 for random composition effect of the mouse data.
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Matrices Mouse

Zm
1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.2 0.2 0.2 0.2 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.2 0.2 0.2 0.2 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0.2 0.2 0.2 0.2 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0.2 0.2 0.2 0.2 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0.2 0.2 0.2 0.2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0.2 0.2 0.2 0.2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0.2 0.2 0.2 0.2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0.2 0.2 0.2 0.2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Zm
2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Figure 7.3: Design matrix Zm
2 for random blending effect of the mouse data.
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Matrix rat (Zr
1)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A14 B2 B3 B5 B6 B8 B9 B10 B11 B12 B13 B14 B15

0 0 1/3 0 0 0 0 0 1/3 1/3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1/2 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1/3 0 0 0 0 1/3 1/3 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1/2 1/2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

1/3 1/3 0 1/3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1/2 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1/2 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1/2 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1/3 0 1/3 1/3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1/2 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 0 0 0 0 0 0 0 0 0 0 0 0
1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 0 0 0 0 0 0 0 0 0 0 0 0
1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 0 0 0 0 0 0 0 0 0 0 0 0
1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/3 1/3 0 1/3 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/2 1/2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/3 0 1/3 1/3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/2 0 1/2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/2 0 1/2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1/3 1/3 1/3 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1/2 1/2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/2 1/2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/3 1/3 1/3 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/2 1/2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12
0 0 0 0 0 0 0 0 0 0 0 0 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12
0 0 0 0 0 0 0 0 0 0 0 0 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12
0 0 0 0 0 0 0 0 0 0 0 0 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Figure 7.4: Design matrix Zr
1 for random composition effect for the rat data. This

data set was analyzed seperately by pool sizes in Kendziorski et al.
(2005). On the top are displayed the original notations of the rats.



7.1 Supplement for Chapter 3 101

Matrices Bee

Gh
1 =

⎡
⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1

2 0 0 0

0 0 0 1
2 0 0

0 0 0 0 1
4 0

0 0 0 0 0 1
4

⎤
⎥⎥⎦, Gh

2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
4 0 0 0 0 0 0 0 0 0 0 0

0 1
4 0 0 0 0 0 0 0 0 0 0

0 0 3
16 0 0 0 0 0 0 0 0 0

0 0 0 3
16 0 0 0 0 0 0 0 0

0 0 0 0 1
4 0 0 0 0 0 0 0

0 0 0 0 0 1
4 0 0 0 0 0 0

0 0 0 0 0 0 3
16 0 0 0 0 0

0 0 0 0 0 0 0 3
16 0 0 0 0

0 0 0 0 0 0 0 0 1
4 0 0 0

0 0 0 0 0 0 0 0 0 1
4 0 0

0 0 0 0 0 0 0 0 0 0 3
16 0

0 0 0 0 0 0 0 0 0 0 0 3
16

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Xh =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 -1 0 0
1 1 0 0
1 -1 0 0
1 -1 0 0
1 -1 0 0
1 1 0 0
1 -1 0 0
1 1 0 0
1 -1 0 0
1 1 0 0
1 1 0 0
1 -1 0 0
1 1 0 0
1 1 0 0
1 -1 0 0
1 1 0 0
1 0 -1 -1
1 0 0 1
1 0 1 0
1 0 1 1
1 0 -1 0
1 0 0 -1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Zh
1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

-1 1 0 0 0 0
0 -1 1 0 0 0
0 0 -1 1 0 0
0 0 -1 1 0 0
-1 1 0 0 0 0
0 -1 1 0 0 0
0 0 -1 1 0 0
0 0 0 -1 1 0
0 0 0 0 -1 1
1 0 0 0 0 -1
0 0 0 -1 1 0
0 0 0 0 -1 1
0 0 1 0 0 -1
0 0 0 -1 1 0
0 0 0 0 -1 1
1 0 0 0 0 -1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and Zh
2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
-1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 -1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 -1 1 0 0
0 0 0 0 0 0 0 0 0 -1 1 0
0 0 0 0 0 0 0 0 0 0 -1 1
0 0 0 0 0 0 0 0 0 0 0 -1
0 0 0 0 0 -1 1 0 0 0 0 0
0 0 0 0 0 0 -1 1 0 0 0 0
0 0 0 0 1 0 0 -1 0 0 0 0
0 -1 1 0 0 0 0 0 0 0 0 0
0 0 -1 1 0 0 0 0 0 0 0 0
0 0 0 -1 0 0 0 0 0 0 0 0
0 0 -1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0 -1 0
0 0 1 0 0 0 -1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 -1
0 0 0 -1 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 -1 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Figure 7.5: Design matrices of the honeybee data from the premilinary gene expres-
sion experiment of HyBee.

Matrices Human

Gg
1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/3 0 0 1/3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1/3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1/3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1/3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/3 0 0 0 0 0 0
0 0 0 0 0 1/3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1/3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1/3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1/3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1/3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1/3 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/3 0 0 0 1/9 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/3 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/3 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/9 0 0 0 1/3 0 0 0 0 0 0 0
0 0 0 0 1/3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/3 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/3 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Zg
1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0
1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0
0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 -1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 -1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 -1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 -1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 -1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 -1
0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 -1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Zg
2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0
1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 -1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 -1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0
0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 -1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1
0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 -1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Figure 7.6: Design matrix Zg
2 for random blending effect of the human data from

the GC6 project.



102 7 Appendix

Matrices Human

Gg
1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/3 0 0 1/3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1/3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1/3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1/3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/3 0 0 0 0 0 0
0 0 0 0 0 1/3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1/3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1/3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1/3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1/3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1/3 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/3 0 0 0 1/9 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/3 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/3 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/9 0 0 0 1/3 0 0 0 0 0 0 0
0 0 0 0 1/3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/3 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/3 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Zg
1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0
1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0
0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 -1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 -1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 -1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 -1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 -1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 -1
0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 -1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Zg
2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0
1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 -1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 -1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0
0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 -1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1
0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 -1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Figure 7.7: Correlation matrix Gg
1 of biological effects and design matrix Zm

1 for
random composition effect of the human data from the GC6 project.
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7.2 R-script for EM-REML

emreml_1

emreml=function (y, X, Z1, Z2, G1, G2, initE, initU1, initU2, display, cr){
  n <- length(y)
  Xy <- t(X) %*% y
  Z1y <- t(Z1) %*% y
  Z2y <- t(Z2) %*% y
  XX <- t(X) %*% X
  XZ1 <- t(X) %*% Z1
  XZ2 <- t(X) %*% Z2
  Z1X <- t(Z1) %*% X
  Z2X <- t(Z2) %*% X
  Z1Z1 <- t(Z1) %*% Z1
  Z1Z2 <- t(Z1) %*% Z2
  Z2Z1 <- t(Z2) %*% Z1
  Z2Z2 <- t(Z2) %*% Z2
  RHS <- c(Xy, Z1y, Z2y) ; lhsRow <- length(RHS)
  oldE <- initE ; oldU1 <- initU1 ; oldU2 <- initU2
  rankX <- qr(X)$rank
  G1inv <- solve(G1) ; G2inv <- solve(G2)
  rankG1 <- dim(G1)[1] 
  rankG2 <- dim(G2)[1]
  z1 <- length(RHS)-dim(Z1Z1)[1]-dim(Z2Z2)[1]+1
  z2 <- length(RHS)-dim(Z2Z2)[1]+1
  diff <- 1 ; i <- 0
  while (diff > cr) {
    i <- i + 1
    lambda1 <- as.vector((oldE/oldU1))
    lambda2 <- as.vector((oldE/oldU2))
    LHS <- rbind(cbind(XX,XZ1,XZ2),cbind(Z1X,Z1Z1+G1inv*lambda1,Z1Z2),
                 cbind(Z2X,Z2Z1,Z2Z2+G2inv*lambda2))
    LHS_I <- solve(LHS)
    B <- LHS_I %*% RHS
    e <- y - cbind(X, Z1, Z2) %*% B
    sig2E <- (t(e) %*% y)/(n - rankX)
    c22 <- LHS_I[z1:(z2-1), z1:(z2-1)] ; c33 <- LHS_I[z2:lhsRow, z2:lhsRow]
    u1 <- B[z1:(z2 - 1)] ; u2 <- B[z2:length(B)]
    sig2U1 <- (t(u1) %*% G1inv %*% u1 + sum(G1inv * c22) * oldE)/(rankG1)
    sig2U2 <- (t(u2) %*% G2inv %*% u2 + sum(G2inv * c33) * oldE)/(rankG2)
    bn <- matrix(c(oldE, oldU1, oldU2), nrow = 3, ncol = 1)
    bn1 <- matrix(c(sig2E, sig2U1, sig2U2), nrow = 3, ncol = 1)
    diff <- sqrt(t(bn1 - bn) %*% (bn1 - bn))/sqrt(t(bn) %*% bn)
    if (display==TRUE) cat("iteration", i,"sol",format(B[1:(z1-1)],digits=4), 
             "sige2",sig2E,"sigU12",sig2U1,"sigU22",sig2U2, "diff",diff,"\n")
    oldE <- as.numeric(sig2E)
    oldU1 <- as.numeric(sig2U1)
    oldU2 <- as.numeric(sig2U2)
  }
  V <- (Z1%*%G1%*%t(Z1))*as.numeric(sig2U1)+(Z2%*%G2%*%t(Z2))*
                         as.numeric(sig2U2)+diag(rep(1,n))*as.numeric(sig2E)
  Z <- cbind(Z1, Z2)
  V_ <- solve(V)
  LogLik <- -1/2*(log(det(V))+log(det(t(X)%*%V_%*%X))+
                  t(y)%*%(V_-V_%*%X%*%solve(t(X)%*%V_%*%X)%*%t(X)%*%V_)%*%y)
  beta <- t(B)[1:rankX]
  return(list(`Iterations`=i,`LogLh`=LogLik,`Solutions`=beta,
              `sigma_e^2`=sig2E,`sigma_U1^2`=sig2U1,`sigma_U2^2`=sig2U2))
}
  

Seite 1

The file displayed here, is an R-script for fitting a linear mixed model with two ran-

dom effects and three variance components, namely biological, blending error, and

residual variance. Here, it was used with input for: Vector of log-intensities y, design

matrices for fixed and random effects X,Z1,Z2, the (invertible) covariance matrices

(G1,G2), initial values for the variance components, display (TRUE/FALSE) for

output of interim results, and the convergence rate cr (10−8 was used in this work).
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7.3 Variance functions for comparison of designs

This section includes calculations of variance functions (vf) for several designs, done

in preparation of a gene expression experiment with honeybees. In principle a lower

variance function leads to a theoretically higher power to detect differential expres-

sion, because the inverse of the variance function is the middle term of the F-statistic

for testing if Kβ = 0. With lower vf larger F-statistics can be expected, which lead
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Figure 7.8: Four possibilities for designs of a two-color array experiment (left) for
measurement of three hygienic bees from two colonies, and corresponding
theoretical covariance structure (right) using single samples. The yellow
boxes symbolize samples of hygienic bees (denoted A1, A2, A3), gray was
used for controls (C1, . . . , C6). The latter number in the box named
the genotype. Arrows symbolize two-color arrays, head (tail) the red
(green) labeled sample. The covariance matrices shown, were calculated
for biological variance of σ2

b = 0.4 and residual variance of σ2
e = 0.2.
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to more rejections of the null hypothesis.

In figure 7.8 are shown minimal examples of four designs strategies. Three rare cases

(hygienic bees) were assumed. The first (top) design compared the 6 samples with

a design containing a loop over the samples (arrays no. 1 to 6), plus two arrays

for comparison of genotypes (arrays no. 7 and 8), to secure comparison of hygienic

(HY) and control (NH) bees without bias due to color and without distortion through

colony. With the assumed variances (σ2
b = 0.4, and σ2

e = 0.2) covariance matrices

were calculated as V = ZGZ>σ2
b + Inσ

2
e . The design matrices X were set with pa-

rameters according to differences of behavior (HY-NH) and differences in genotype

(313-225). In the first case the design matrix was X =
[ −1 1 −1 1 −1 1 −1 1

0 0 0 −1 0 1 −1 1

]>
, where

x11 = -1 stands for effect NH-HY (C1(313) labeled red, A1(313) labeled green) on

array 1. Furthermore, x12 was 0, because there were no difference in genotype on ar-

ray 1. Then the variance function vf = K>(X>V-1X)-K was found to be vf = 0.3.

In the second design, loops were done only inside genotype, it turned out that

vf = 0.3 was the same like before, but two arrays saved. The third design uses di-

rect comparisons, where a kind of dye swap called ’independent swap’ (same hygienic

samples and new control, hybridized with opposite colors) was applied. Therewith

we got 9 bees, and an improvement for vf = 0.233 was found. The fourth design also

suffices for dye balance, with the minimum number of arrays (4). Here vf = 0.292

was calculated, which is still below the first two designs. Although results depend on

assumptions for variance components, a dye balance design with an extra control to

level the two numbers of red and green labeled hygienic bees can be recommended.

In fact, design no. 4 was sequentially applied to groups of hygienic bees (same run

and genotype) of the behavioral assays from the HyBee-project.
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7.4 Intra-class correlations of hygienic tasks

The behavioral assay of HyBee was analyzed for several traits. A variety of activities

of worker bees was available, broken down by the two cell types infested and non-

infested. Workers which engaged the opening of a cell were denoted as ’beginner’

and those who helped removal of brood as ’helper’. With a generalized linear mixed

Trait Cell type No. of bees SumA> 2 ICC (%)
B & H infested 52 8 51.3

Beginner infested 68 1 16.5
Helper infested 285 1 26.7
SumA both 12888 113 22.5
B & H control 67 18 9.7
B or H control 593 18 16.4
Helper control 391 0 18.5

Beginner control 135 0 11.9
Active both 1290 113 22.2

Table 7.1: Overview of investigated traits of the behavioral assays of HyBee. Activi-
ties of worker bees were recorded on video and were checked and evaluated
by two observers. Each trait was analyzed seperately, hence the column
’No. of bees’ accounts for all bees, whose activities included the trait at
least once. The numbers in the column denoted SumA> 2 are the worker
bees which showed the trait and were active at least 3 times. ’Beginner’
is a bee, which engaged uncapping of a cell, and ’Helper’ a bee involved
in removal of brood.

model (SAS, proc glimmix) the intra-class correlations (ICC) for several traits were

calculated. The model included a fixed effect for the run (1, . . . , 7) of the experimen-

tal setting and a random effect for the workers queen bee. The trait with the highest

ICC was the detection/uncapping and removal. The results of table 7.1 means, that

51% of the variability in this trait can be attributed to the genotype of the queen

bee.
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