
Design and application of

variable-to-variable length codes

Dissertation

zur

Erlangung des akademischen Grades

Doktor-Ingenieur (Dr.-Ing.)

der Fakultät für Informatik und Elektrotechnik

der Universität Rostock

vorgelegt von

Heiner Kirchhoffer, geb. am 20.04.1979 in Hermeskeil

aus Berlin

Rostock, 23. Februar 2016

zef007
Schreibmaschinentext
urn:nbn:de:gbv:28-diss2016-0035-1

Tag der Einreichung: 28. August 2015
Tag der öffentlichen Verteidigung: 16. Februar 2016

Gutachter:

Prof. Dr.-Ing. habil. Erika Müller
Universität Rostock, Institut für Nachrichtentechnik

Prof. Dr.-Ing. Thomas Wiegand
Technische Universität Berlin, Institut für Telekommunikationssysteme

Prof. Dr.-Ing. Sascha Spors
Universität Rostock, Institut für Nachrichtentechnik

Abstract

Contemporary video codecs feature sophisticated entropy coding tech-
niques as an integral part. A widely used approach is the context-based
adaptive binary arithmetic coding (CABAC) scheme as employed by the
video compression standards H.264/AVC and H.265/HEVC. Arithmetic
coding is famous for its ability to approach the entropy rate of a source with
known properties arbitrarily close. However, it is also known for its highly
sequential processing structure, which limits the achievable throughput.
The probability interval partitioning entropy (PIPE) coding scheme replaces
binary arithmetic coding with a number of binary coders, each optimized to
a different fixed probability. This provides a basis for massive parallel pro-
cessing. In this work, the options for using so-called variable-to-variable
length (V2V) codes as binary coders are studied. In order to find V2V
codes for the whole probability interval, the code design algorithms use a
variable probability instead of a predefined fixed probability value for source
symbols. This leads to the concept of polynomial-based algorithms, which
is the basis for the design of numerous V2V codes with minimum redun-
dancy for particular constraints. Exhaustive search is used as a general
strategy, however several properties of V2V codes are exploited in order
to greatly reduce the size of the search space. The derived V2V codes
are the basis for the design of numerous PIPE coders for H.265/HEVC that
have a low redundancy. Only 6 V2V codes of moderate size are required to
cause an average bit rate overhead of less than 0.45%. This compares to
approximately 0.09% average bit rate overhead for the M Coder as used in
H.265/HEVC. An essential building block for enabling massive parallel pro-
cessing in PIPE coding is the so-called chunk-based multiplexing, which
contains several improvements over previous schemes. Interestingly, when
combined with suitable V2V codes, a nonparallelized software implemen-
tation of chunk-based multiplexing for H.265/HEVC is already faster than
an optimized implementation of the M coder.

Zusammenfassung

Hochentwickelte Entropiekodiertechniken sind ein wesentlicher Bestand-
teil moderner Videocodecs. Ein oft benutztes Verfahren ist das Context-
based Adaptive Binary Arithmetic Coding (CABAC) Schema, das in den
Videokodierstandards H.264/AVC und H.265/HEVC zum Einsatz kommt.
Arithmetisches Kodieren wird wegen seiner Fähigkeit, die Entropierate
einer Quelle mit bekannten Eigenschaften beliebig genau anzunähern,
geschätzt. Jedoch ist es auch für seine stark sequenziell arbeitende Struk-
tur bekannt, die den erreichbaren Datendurchsatz begrenzt. Im Probabili-
ty Interval Partitioning Entropy (PIPE) Kodierverfahren wird das arithmeti-
sche Kodieren durch eine Anzahl binärer Kodierer ersetzt, von denen jeder
auf eine andere Wahrscheinlichkeit optimiert ist. Damit wird die Grundla-
ge für umfangreiche Parallelisierungsmöglichkeiten geschaffen. In der vor-
liegenden Arbeit werden die Möglichkeiten zur Verwendung sogenannter
variable-to-variable length (V2V) Kodes in den binären Kodierern unter-
sucht. Um V2V Kodes für das gesamte Wahrscheinlichkeitsintervall zu
erhalten, wird in den Algorithmen zum Kodeentwurf eine variable Wahr-
scheinlichkeit anstelle eines festen Wahrscheinlichkeitswerts für die Quell-
symbole verwendet. Dies führt zum Konzept der polynombasierten Algo-
rithmen, welches die Basis für den Entwurf vielfältiger V2V Kodes mit mi-
nimaler Redundanz für bestimmte Randbedingungen ist. Die erschöpfen-
de Suche kommt als generelles Prinzip zum Einsatz, jedoch werden hier-
bei mehrere Eigenschaften von V2V Kodes ausgenutzt um die Größe des
Suchraums massiv zu reduzieren. Die so erzeugten V2V Kodes sind die
Basis für den Entwurf einer Vielzahl von PIPE Kodierern mit niedriger
Redundanz. Bereits mit 6 V2V codes moderater Größe wird ein mittlerer
Bitratenüberschuss von nur 0,45% erreicht. Im Vergleich dazu erzeugt der
M Coder, wie er in H.265/HEVC benutzt wird, einen Bitratenüberschuss
von 0,09%. Ein wesentlicher Bestandteil zur Verbesserung der Parallelisie-
rungsmöglichkeiten im PIPE Kodiersystem stellt das sogenannte chunk-
basierte Multiplexen dar, welches mehrere Verbesserungen gegenüber
seiner Vorgänger enthält. Interessanterweise ist schon eine nicht paral-
lelisierte Softwareimplementierung des chunk-basierten Multiplexens für
H.265/HEVC, bei Verwendung geeigneter V2V Kodes, schneller als eine
optimierte Implementierung des M Coders.

Acknowledgements

First and foremost, I would like to thank my supervisor, Professor Erika
Müller, for giving me the opportunity to pursue my doctorate at the Univer-
sity of Rostock. I would also like to express my sincere thanks to Professor
Thomas Wiegand for enabling and supporting my doctoral research project
at the Fraunhofer Institute for Telecommunications, Heinrich-Hertz-Institute
(HHI) in Berlin. It always was an honor and pleasure to work in his research
group. I am especially grateful to my mentor at HHI, Dr. Detlev Marpe, for
his constant support, encouragement and guidance. I have greatly bene-
fited from his profound expertise. I am very thankful to Dr. Jonathan Pfaff
for spending his time in reviewing my thesis and for many valuable com-
ments. I would like to thank my colleagues Dr. Heiko Schwarz, Dr. Martin
Winken, Philipp Helle, Mischa Siekmann, Jan Stegemann, Christian Bart-
nik, André Roth, and Paul Haase for supporting me in many ways, for many
inspiring discussions and for their valuable feedback. Very special thanks
go to my parents, to my siblings and their families who provided moral and
emotional support.

Contents

1 Introduction 1
1.1 Main contributions . 3
1.2 Organization of the thesis . 4

2 Probability interval partitioning entropy coding 7
2.1 Overview . 7
2.2 Average code length per symbol . 11
2.3 Ideal binary arithmetic bin coders . 11
2.4 Optimal probability interval derivation . 13
2.5 Bin coders based on variable-length codes 14
2.6 Multiplexing . 14
2.7 State of the art PIPE coding . 15
2.8 Chapter Summary . 16

3 Variable-to-variable length codes 19
3.1 State of the art V2V coding . 21
3.2 Average code length and redundancy of V2V codes 22
3.3 Nonzero redundancy of finite size V2V codes 24
3.4 Asymptotic optimal V2V codes . 25
3.5 Negated source trees . 26
3.6 Canonical source trees . 26
3.7 Prefix merge algorithm . 28
3.8 Canonical V2V codes . 31
3.9 Prime and composite V2V codes . 32

3.9.1 Suboptimality of composite V2V codes 34
3.9.2 Primality test for V2V codes . 36
3.9.3 Primality of canonical V2V codes 36

ix

CONTENTS

3.10 Chapter summary . 38

4 Joint V2V code and probabiltiy interval design 39
4.1 Basic principle of polynomial-based algorithms 40

4.1.1 Finite-state machine-based algorithms 41
4.1.2 Grouping of identical polynomials 43
4.1.3 Precise polynomial root handling 43
4.1.4 Implementation . 43

4.2 Polynomial-based Huffman algorithm . 44
4.3 Merging V2V codes with probability intervals 47
4.4 Polynomial-based Tunstall algorithm . 48
4.5 Polynomial-based package merge algorithm 51
4.6 Chapter summary . 56

5 Design of limited size V2V codes 59
5.1 The set of all possible V2V codes . 59
5.2 V2V codes with Huffman or package-merge code trees 61
5.3 Evaluation method . 62
5.4 Selected sets of V2V codes . 62

5.4.1 Fixed-to-variable length codes 63
5.4.2 Variable-to-fixed length codes . 64
5.4.3 Leaf-limited V2V codes . 65
5.4.4 Height-limited V2V codes . 67

5.5 Particular V2V codes . 74
5.5.1 HEVC-related V2V codes . 75
5.5.2 Systematic V2V codes . 76

5.6 Chapter summary . 81

6 Application of PIPE coding to H.265/HEVC 83
6.1 P coder design . 83

6.1.1 V2V code selection strategies . 94
6.1.2 Evaluation . 95
6.1.3 Comparison to the M coder . 98

6.2 Complexity and throughput considerations 106
6.3 Complexity-scalable entropy coding . 109
6.4 Throughput optimized V2V coder setup 112
6.5 Chapter summary . 113

x

CONTENTS

7 Multiplexing in PIPE coding 115
7.1 Review of decoder-synchronized encoding 115

7.1.1 Trade-off between bit rate and ring buffer size 118
7.1.2 Disadvantages . 118

7.2 Chunk-based multiplexing . 119
7.2.1 Ring buffer utilization . 121
7.2.2 Parallel bin decoding . 121
7.2.3 Experimental evaluation . 122

7.3 Chapter summary . 122

8 Conclusions and Future Work 125
8.1 Future Work . 127

Appendix A Canonical V2V code tables 129
A.1 Optimal canonical V2V codes of limited size 129

A.1.1 Fixed-to-variable length codes 129
A.1.2 Tunstall (variable-to-fixed length) codes 136
A.1.3 Leaf-limited V2V codes . 166
A.1.4 Source-height-limited V2V codes 170
A.1.5 Code-height-limited V2V codes 174
A.1.6 Source-and-code-height-limited V2V codes 175

A.2 HEVC-related V2V codes . 181
A.2.1 TMuC V2V codes . 181
A.2.2 Systematic V2V codes . 183

Appendix B Miscellaneous 185
B.1 Mediant inequality . 185
B.2 P coders derived by the successive removal algorithm 186
B.3 P coders derived by exhaustive search 189

Glossary 195

Theses 213

xi

1

Introduction

The worldwide Internet traffic has seen a steady growth in recent years. Consumer
Internet video is estimated to amount to 64% of the consumer Internet traffic in 2015
according to a study by Cisco [1]. The success of Internet video is made possible
by efficient video compression algorithms like the widely used video coding standard
H.264/AVC [2] of ITU-T and ISO/IEC. Any improvement in video compression effi-
ciency can greatly contribute to a better exploitation of the available Internet infras-
tructure, which creates a persistent interest in new video compression schemes.

Moreover, the technological advance leads to increasing video resolutions and
frame rates of video capture and playback devices, which corresponds to steadily
increasing bit rates, making the task of video compression and decompression more
and more demanding. This naturally leads to a desire for parallel processing capa-
bilities since the operating frequency of a particular hardware encoder or decoder
implementation cannot be increased arbitrarily.

During the standardization of H.265/HEVC [3], the most recent video coding stan-
dard of ITU-T and ISO/IEC, much effort has been spent to incorporate several tech-
niques with regard to the above mentioned aspects. The compression efficiency is
greatly improved relative to its predecessor H.264/AVC, and several techniques for
parallelized encoding and decoding, like e.g. wavefront parallel processing, are in-
cluded [4]. The entropy coding stage of H.264/AVC and H.265/HEVC, known as
context-based adaptive binary arithmetic coding (CABAC)[5], substantially contributes
to the compression efficiency. The binary arithmetic coding stage of CABAC, known
as M coder, has a sequential processing structure with strong symbol to symbol de-
pendencies, which makes the joint or parallel processing of binary symbols difficult to
achieve.

1

1. INTRODUCTION

The so-called probability interval partitioning entropy (PIPE) coding concept [6, 7,
8] evolved during the standardization process of H.265/HEVC, where it was proposed
as entropy coding engine [9]. This scheme has the potential to improve the paral-
lelization capabilities. While binarization, context modeling, and probability estimation
techniques are inherited from CABAC, the M coder is replaced with a number of binary
coders. The symbols to be encoded are distributed to the binary coders according to a
partitioning of the probability interval and each coder is optimized to encode symbols
with a predefined fixed probability. An efficient way of implementing binary coders is
the use of so-called variable-to-variable length (V2V) codes, which map variable length
words of symbols to be encoded to variable length code words.

In this thesis, the properties of V2V codes are studied and algorithms for the design
of V2V codes are derived. Numerous V2V codes of different types are generated and
their suitability for an application in the PIPE coding concept is discussed. Several
exemplary PIPE coders are configured and their compression efficiency is compared
to the M coder of CABAC. Moreover, a scheme for multiplexing the output of the binary
coders, which allows a particularly high degree of parallelization, is presented.

2

1.1 Main contributions

1.1 Main contributions

• A canonical representation for V2V codes is defined and an algorithm for creating
actual V2V codes from a canonical representation is presented. The so-called
prefix merge algorithm is developed, which derives prefix-free codes for given
code word lengths and given numbers of ones and zeros.

• The concept of prime and composite V2V codes is introduced. It is shown that
the redundancy of composite V2V codes always lies between the redundan-
cies of the included prime V2V codes. This can be used to sort out composite
V2V codes in algorithms for code design. Furthermore, an algorithm for testing
whether a canonical V2V codes is composite is developed.

• Instead of using numeric probability values in algorithms for code design, vari-
able probability values are employed, which leads to the concept of polynomial-
based algorithms. Such algorithms yield as result the set of all codes that can
occur for all possible probability values. For each code in the set, a probability in-
terval with analytical exact interval boundaries is also yielded. Such a probability
interval specifies all probability values for that the original code design algorithm
yields the same code, which also is the code that is associated with the interval.

• Numerous optimal limited-size V2V codes are derived along with exact probabil-
ity intervals for which they are optimal. They are the basis for a low redundancy
PIPE coding setup. Furthermore, so-called systematic V2V codes with simple
structure are presented.

• A concept for designing PIPE coders based on a candidate set of V2V codes is
presented. It allows the optimization of the PIPE coders to a given training set of
e.g. H.265/HEVC-encoded bit streams. Furthermore, the so-called successive
removal algorithm is presented, which has a low complexity, but may yield coders
with a higher redundancy.

• Based on a training set of H.265/HEVC-encoded bit streams, the redundancy of
the M coder of CABAC is derived and compared to the various PIPE coders.

• A multiplexing technique for PIPE coding, which is based on fixed-length bit se-
quences, is presented. It introduces numerous options for increasing the achiev-
able throughput by parallel processing.

3

1. INTRODUCTION

1.2 Organization of the thesis

In Chapter 2, the PIPE coding concept is reviewed. Based on the CABAC scheme,
various options for replacing the M coder with a number of parallelizable binary coders
are discussed. The influence on the redundancy is derived when the binary coders
use ideal arithmetic coding and an example is given of how to realize binary coders
with variable-length codes. Furthermore, the need for multiplexing of the output of the
parallel binary coders is discussed.

In Chapter 3, the concept of variable-to-variable length (V2V) codes is analyzed. Sev-
eral properties are derived and a canonical representation, the so-called canonical
V2V codes, is defined. Based on this representation, the prefix merge algorithm is
introduced, which allows the generation of a V2V code from a canonical representa-
tion. The canonical representation turns out to be valuable for efficiently designing
V2V codes. Furthermore, the concept of prime and composite V2V codes is proposed
and several properties are derived.

In Chapter 4, a new principle for designing variable-length codes is presented where
the symbol probabilities are given as univariate polynomials. It can be applied to any
algorithm that only uses summing, multiplication and comparison operations on prob-
abilities. This is demonstrated for the Huffman algorithm, the Tunstall algorithm, and
for the package merge algorithm. The result of running such an algorithm is a set of
probability intervals and for each probability interval one associated code. For each
such probability interval, the associated code is identical the code that is produced
by executing the original algorithm for an arbitrary value in the associated probability
interval. A polynomial-based algorithm yields the exact and unique number of different
codes, the underlying original algorithm can produce for the probability interval.

In Chapter 5, the question of how to design optimal V2V codes is addressed. Of
interest are the codes which have certain size limitations like a maximum source or
code tree height. With such constraints, codes can be designed to suit a particular
application. Procedures for finding such codes by exploiting the properties derived in
Chapter 3 are described using the concept of polynomial-based algorithms of Chap-
ter 4. A broad variety of optimal codes is derived, which can be used to design an
actual PIPE coder. In addition, the so-called systematic V2V codes are discussed.
They have simple construction rules and allow for particularly efficient software and
hardware implementations.

In Chapter 6, the aspects of selecting V2V codes for a PIPE coder setup are studied.

4

1.2 Organization of the thesis

Based on a training set of H.265/HEVC bit streams, a configurable bit rate criterion is
derived, which is used for the subsequent V2V code selection procedure. Based on
this criterion, several PIPE coders are constructed from the V2V codes of Chapter 5
by either exhaustive search or by a less complex V2V code selection algorithm. The
bit rate overhead of these PIPE coders is compared to the M coder. Furthermore,
the aspects of complexity-scalable entropy coding are discussed and a concept for
increasing the throughput of a PIPE coder is reviewed.

In Chapter 7, multiplexing in PIPE coding is addressed. First, the basic principle of
decoder-synchronized encoding is reviewed and based on this, the chunk-based mul-
tiplexing is developed and studied. The influence on memory utilization and paralleliza-
tion options is compared for both schemes. An experimental evaluation concludes the
chapter.

In Chapter 8, the insights gained in this thesis are summarized and several aspects
for further research are discussed.

5

2

Probability interval partitioning
entropy coding

Probability interval partitioning entropy coding (PIPE) is a lossless source coding tech-
nique [6, 7, 8] for arbitrary binary and nonbinary information for which statistical depen-
dencies are known. The PIPE coding scheme is able to exploit these dependencies
by context modeling based on a priori domain knowledge coming from the particular
source coding application. The subsequent probability estimation is mainly based on
universal prediction techniques [10]. So far, the process is basically the same as in
CABAC of H.264/AVC and H.265/HEVC. The actual entropy coding is carried out in
the coding stage that follows the probability estimation, and which shall be denoted
binary coding engine (BCE) throughout this text. CABAC uses the M coder as binary
coding engine, which is based on binary arithmetic coding, while PIPE coding uses a
technique based on a partitioning of the probability interval, which shall be denoted P
coder throughout this text.

2.1 Overview

A block diagram of a PIPE coder is depicted in Fig. 2.1. The encoder consists of a bi-
narizer and context modeler, a probability estimator, and the P encoder. The decoder
consists of corresponding stages. Input to the PIPE encoding process is a sequence
of symbols of various types depending on the source coding application. In the case
of a video codec like H.264/AVC or H.265/HEVC these are e.g. motion vector differ-
ences, quantized transform coefficient levels, control flags, etc. The binarization and
context modeling stage converts the input symbols into a sequence of binary symbols,

7

2. PROBABILITY INTERVAL PARTITIONING ENTROPY CODING

Probability

Estimator

Bin Encoder 1

Bin Encoder 2

Bin Encoder

Multiplexer
Probability

Interval

Allocator

Binarizer

&

Context

Modeler

Probability

Estimator

Bin Decoder 1

Bin Decoder 2

Bin Decoder

Demulti-

plexer

Probability

Interval

Allocator

Debinarizer

&

Context

Modeler

Bit

Stream

PIPE Decoder

PIPE Encoder

P Decoder

P Encoder

Figure 2.1: Block diagram of the PIPE coding scheme.

so-called modeled bins, and also carries out context modeling such that each bin is
associated with one of many statistical models, which are usually referred to as context
models or probability models. At this stage, dependencies are exploited by assigning
modeled bins with similar statistical properties to the same probability model based on
causal information. This may be any information which was previously encoded and
which is thus available in the decoder where exactly the same context modeling needs
to be carried out. This can be understood as an abstraction layer since the subsequent
probability estimation is done independently for each of the probability models. I.e.,
only the modeled bins associated with a probability model as well as model-intrinsic
parameters (like initialization values) are used to carry out the probability estimation.
In order to avoid signaling cost for estimated parameters, backward-adaptive tech-
niques are usually employed. The probability estimator of CABAC [5], for example,
uses a state transition table. The underlying concept is probability estimation based
on weighting past symbols. Further approaches with a higher complexity demonstrate
that an improvement of the compression efficiency can be achieved [11, 12].

A sequence of modeled bins produced by the binarization stage can be described
as a realization {wi} of a binary random process {Wi}. The probability estimator

8

2.1 Overview

derives conditional pmfs

pWi(wi|wi−1, . . . , w1) = Pr(Wi = wi|Wi−1 = wi−1, . . . ,W1 = w1). (2.1)

For notational convenience, we shall denote a sequence xi, xi−1, . . . , x1 by xi so that
(2.1) can be written as

pWi(wi|wi−1) = pWi(wi|wi−1, . . . , w1). (2.2)

For entropy coding, it is sufficient to design a coding system for symbols with a prob-
ability of one in the interval (0, 0.5] since symbols with probability of one in the interval
(0.5, 1) can be negated before entropy encoding. Such a conversion is done in the
probability estimation stage where each modeled bin wi is converted into a so-called
coding bin gi according to the relationship

gi = wi ⊕ ui (2.3)

where ⊕ denotes the exclusive disjunction and with

ui =

1 if pWi(1|wi−1) > 0.5

0 otherwise.
(2.4)

Consequently, {Wi} is converted into a new random process {Gi} with pmfs

pGi(x|gi−1) =

1− pWi(x|wi−1) if ui = 1

pWi(x|wi−1) otherwise.
(2.5)

The conditional probability of one pGi(1|gi−1) is in the interval (0, 0.5] for all i. There-
fore, gi = 1 is also denoted less probable symbol (LPS) and gi = 0 is denoted more
probable symbol (MPS). ui specifies the value of the MPS of coding bin gi. In the de-
coder, wi is restored by applying (2.3) to gi, which also requires ui. The output of the
probability estimator are symbols gi with associated conditional pmfs pGi , which are
forwarded to the binary coding engine. Actually, the implementation of the probability
estimator in CABAC is based on gi and ui instead of wi. I.e., the probability estimator
directly assigns to each symbol gi a probability estimate pGi(1|gi−1) ≤ 0.5, and also
takes care of the exclusive disjunction in (2.3) when necessary.

The objective of the binary coding engine is to approach the entropy rate [13]

H̄({Gi}) = lim
n→∞

1

n
H(G1, G2, ..., Gn). (2.6)

9

2. PROBABILITY INTERVAL PARTITIONING ENTROPY CODING

This is a straightforward task since conditional pmfs are given and can directly be
used to encode the coding bins. The backward-adaptive probability estimation process
changes the conditional pmfs of {Gi} from bin to bin, which must be taken into account
in the binary coding engine. In CABAC this is achieved with the M coder by simply
changing the probability for interval subdivision from bin to bin. The use of variable-
length codes instead of the M coder is however difficult. The PIPE coding concept
overcomes this problem by a subdivision of the binary probability interval (0, 0.5] intoK
disjoint subintervals Ik = (pk, pk+1] with 0 < k ≤ K + 1, p1 = 0, and pK+1 = 0.5. Each
symbol gi can then be uniquely associated with one of the subintervals, depending on
whether pGi(1|gi−1), i.e., the conditional probability of symbol one is in the subinterval.
One distinct encoder, denoted bin encoder, is associated with each subinterval. An
important aspect of the PIPE coding concept is that bin encoders do not regard the
conditional pmfs of the individual symbols. Instead, all symbols associated with a
particular subinterval are treated as if they come from a binary i.i.d. process. Each
bin encoder produces code bits, which are multiplexed into a single bit stream by the
multiplexer.

Complexity considerations

The M coder of CABAC approaches the entropy rate very closely while already having
a relatively low complexity. However, the sequential nature of the M coder makes it
difficult to realize a very high throughput or parallel processing. An obvious option for
increasing the throughput is a higher operating frequency of the employed hardware
architecture. Apart from this, universal concepts as e.g. speculative decoding [14, 15]
give a rather small additional speedup. Even specific techniques like the fast renor-
malization [16] only achieve moderate improvements. Due to these limitations, a lot of
research targets throughput and parallelization questions.

PIPE coding is an approach that addresses these problems since it transforms the
task of encoding {Gi} into a number of independent encoding operations, which can
run in parallel. The number of parallel coders can be adapted to the requirements of
the application and each parallel coder can process multiple symbols at once.

In order to take full advantage of PIPE coding, the binarization, context modeling,
and probability estimation need to be adjusted so the P decoder is able to deliver
sequences of symbols instead of individual symbols. Hence, no dependencies may
exist between symbols of such a sequence of symbols.

10

2.2 Average code length per symbol

2.2 Average code length per symbol

To evaluate a binary coding engines, the so-called average code length per symbol
shall be defined. It corresponds to the expected description length per symbol used in
[13, Eq. (5.39)], which is lower bounded by the entropy rate (2.6). Let B be a binary
coding engine and let `B({Gi}, (g1, g2, . . . , gn)) be the so-called encoded length of a
sequence g1, g2, . . . , gn from random process {Gi} when encoded with binary coding
engine B. The average code length per symbol of encoding the random process {Gi}
with the binary coding engine B shall be defined as

L̄({Gi}, B) = lim
n→∞

1

n

∑
(g1,g2,··· ,gn)∈Bn

p{Gi}(g1, g2, . . . , gn)`B({Gi}, (g1, g2, . . . , gn)) (2.7)

where B = {0, 1} is the binary alphabet with Bn being the n-fold Cartesian power of
B and where p{Gi} is the joint pmf of {Gi}. Note that the limit does not need to exist.
When

`B({Gi}, (g1, g2, . . . , gn)) = − log2 p{Gi}(g1, g2, . . . , gn), (2.8)

the average code length per symbol equals the entropy rate (2.6) of {Gi}.

2.3 Ideal binary arithmetic bin coders

In this section, an ideal binary arithmetic coder that operates at a fixed probability
shall be used as a binary coding engine. Let B̂(Y) be an ideal binary arithmetic coder
that can encode a binary random variable Y with zero redundancy. Such a binary
coding engine B̂(Y) produces − log2 pY (0) bits for encoding a zero and − log2 pY (1)

bits for encoding a one. Consequently, the encoded length of a sequence of bits only
depends on the number of ones and zeros contained in the sequence as well as on
pY . With M(g1, g2, . . . , gn) being the number of ones in the sequence g1, g2, . . . , gn

and with N(g1, g2, . . . , gn) being the number of zeros in the sequence g1, g2, . . . , gn,
the encoded length of sequence g1, g2, . . . , gn encoded with B̂(Y) is given as

`B̂(Y)(g1, g2, . . . , gn) = −M(g1, g2, . . . , gn) log2 pY (1)−N(g1, g2, . . . , gn) log2 pY (0).

(2.9)
Note that, in contrast to (2.8), it doesn’t depend on the joint pmf of {Gi}. The average
code length per symbol for the ideal binary arithmetic coder is yielded by substituting

11

2. PROBABILITY INTERVAL PARTITIONING ENTROPY CODING

(2.9) in (2.7). It can be written as

L̄({Gi}, B̂(Y)) =

− log2 pY (1) lim
n→∞

1

n

∑
(g1,g2,··· ,gn)∈Bn

p{Gi}(g1, g2, . . . , gn)M(g1, g2, . . . , gn)

− log2 pY (0) lim
n→∞

1

n

∑
(g1,g2,··· ,gn)∈Bn

p{Gi}(g1, g2, . . . , gn)N(g1, g2, . . . , gn). (2.10)

For x ∈ B define

p̄{Gi}(x) =

lim
n→∞

1
n

∑
(g1,g2,··· ,gn)∈Bn

p{Gi}(g1, g2, . . . , gn)M(g1, g2, . . . , gn) if x = 1

lim
n→∞

1
n

∑
(g1,g2,··· ,gn)∈Bn

p{Gi}(g1, g2, . . . , gn)N(g1, g2, . . . , gn) otherwise.

(2.11)
Note that the limit in (2.11) exists if and only if the limit in (2.10) exists. Substituting
(2.11) in (2.10) yields

L̄({Gi}, B̂(Y)) = −p̄{Gi}(0) log2 pY (0)− p̄{Gi}(1) log2 pY (1). (2.12)

Note that

p̄{Gi}(1) + p̄{Gi}(0)

= lim
n→∞

1

n

∑
(g1,g2,··· ,gn)∈Bn

p{Gi}(g1, g2, . . . , gn) (M(g1, g2, . . . , gn) +N(g1, g2, . . . , gn))

= lim
n→∞

1

n

∑
(g1,g2,··· ,gn)∈Bn

p{Gi}(g1, g2, . . . , gn)n

= lim
n→∞

∑
(g1,g2,··· ,gn)∈Bn

p{Gi}(g1, g2, . . . , gn) = 1 (2.13)

and therefore p̄{Gi} can be seen as pmf of a binary random variable. Thus, combining
(2.12) and (2.13), we have proved the following Lemma.

Lemma 2.1. If the pmf p̄{Gi} exists for {Gi}, an ideal arithmetic coder operating at an
arbitrary fixed pmf pY produces an average code length per symbol for {Gi} equal to
the cross entropy H(Z;Y) = −pZ(1) log2 pY (1)− pZ(0) log2 pY (0), where Z shall be a
binary random variable with pmf p̄{Gi}.

Moreover, from (2.13) follows that (2.12) can be written as

L̄({Gi}, B̂(Y)) = p̄{Gi}(0) log2

pY (1)

pY (0)
− log2 pY (1). (2.14)

12

2.4 Optimal probability interval derivation

The cross entropy H(Z;Y) as used in Lemma 2.1 can be written as

H(Z;Y) = H(Z) +D(Z‖Y) (2.15)

where D(Z‖Y) is the Kullback-Leibler divergence [13, Eq. (2.26)].

Lemma 2.2. If the pmf p̄{Gi} exists for {Gi}, the average code length per symbol
L̄({Gi}, B̂(Y)) that an ideal binary arithmetic coder B̂(Y) produces for random pro-
cess {Gi} is minimal when pY = p̄{Gi}.

Proof. Let Z be a binary random variable with pmf p̄{Gi}. The cross entropy is mini-
mized when D(Z‖Y) = 0, which is fulfilled if and only if pY = p̄{Gi} according to [13,
Theorem 2.6.3].

2.4 Optimal probability interval derivation

In order to use ideal arithmetic bin coders with the PIPE coding concept, the probabil-
ity intervals and the representative probabilities at which the bin coders operate need
to be derived such that the average code length per symbol is minimized. For given
probability intervals, the representative probabilities can unambiguously be derived by
(2.11) due to Lemma 2.2. This takes into account which values of pGi(1|gi−1) fall in
a particular interval and how the values are distributed. When, on the other hand,
the representative probabilities are given, the optimal interval boundaries can be de-
rived as follows. For two adjacent representative probabilities, the interval boundary in
between these two values can unambiguously be derived by equating (2.12) for both
values. Since (2.14) is a linear equation, there exists a unique solution which is the
intersection point of two straight lines. These relationships between interval bound-
aries and representative probabilities suggest the use of the Lloyd-Max algorithm [17,
18] for iteratively deriving good probability intervals. An algorithm based on this idea
is presented in [9].

In the case of CABAC, pGi(1|gi−1) can only attain one of 63 values (denoted
states), which translates the problem of finding optimal intervals into deriving sub-
sets of the states. Interestingly, an optimal solution to this problem can be found in
publications related to context quantization [19, 20]. In these papers, the quantiza-
tion of context states is carried out by first mapping each context state to a pmf. The
subsequent quantization is then based on pmfs which is the same problem as finding
optimal probability intervals for the PIPE coding system. Greene et al. [19] show that
an optimal solution for this problem can be efficiently found by dynamic programming.

13

2. PROBABILITY INTERVAL PARTITIONING ENTROPY CODING

2.5 Bin coders based on variable-length codes

An alternative to binary arithmetic coding for bin coders are variable-length codes. In
order to efficiently use variable-length codes for source coding, the individual symbol
probabilities should not exceed p = 0.5. A simple and well-known example how to
achieve this for a binary source is to regard fixed-length words of the source and
assign a Huffman code [21] to all possible fixed-length words. The resulting code is
e.g. known as fixed-to-variable length (F2V) code. By properly choosing the word
length, a symbol probability of p ≤ 0.5 can always be ensured.

In general, the source words don’t need to be of fixed length. When also allowing
shorter source words than of the fixed length, the redundancy of the resulting code
can greatly be reduced as will be shown in Ch. 3. Such codes are denoted variable-
to-variable length (V2V) codes (or dual-tree codes [22]). A binary tree is used to parse
the binary source into source words. This binary tree corresponds to a prefix-free code
and is commonly denoted source tree or parse tree. The prefix-free code that is used
to assign code words to the source words is commonly denoted code tree. A further
special case of V2V codes that use fixed-length code words are the so-called variable-
to-fixed length (V2F) codes. The famous algorithm by Tunstall [23] yields optimal V2F
codes. However, for comparable source and code tree size, Tunstall codes tend to
have a higher redundancy than F2V or V2V codes as shown in Ch. 5.

2.6 Multiplexing

Distributing the bins to different coders creates a number of bit streams. These can
either be stored and transmitted independently, or they can be multiplexed into a single
bit stream. Since having a number of streams is for the most application undesirable,
multiplexing is usually used for PIPE coding. Amongst the available multiplexing tech-
niques, the ones that can be implemented without extra signaling cost of where to find
which bits in the multiplexed bit stream are of particular interest. For V2V bin coders,
an intuitive concept for this is the decoder-synchronized encoding [24]. The basic
problem is that a bin encoder can output a codeword earliest when all bins which are
encoded in this code word are known. However, the decoder requires the code word
when the first bin is requested. In the decoder-synchronized encoding, the encoder
interleaves code words of the various bin encoders so that the decoder can read a
code word when the first bin of the code word is needed.

Binary arithmetic coding that operates at a fixed probability can also be used for

14

2.7 State of the art PIPE coding

implementing bin coders. Of particular interest in this context is the so-called multi-
MPS (more probable symbol) coding concept [25]. It allows the joint encoding and
decoding of MPS sequences with low complexity. Decoder-synchronized encoding
is in principle possible as well for binary arithmetic bin coders as described by [26].
However, it is difficult to realize in an encoder since the position of a code bit in the bit
stream becomes known some time before the value of the code bit. The number of
these pending bits can dynamically grow due to the phenomenon of outstanding bits
as they can occur in arithmetic coding [5].

For bin coders where decoder-synchronized encoding is feasible, a number of fur-
ther optimizations can be applied. It is e.g. possible to interleave fixed-length bit
sequences instead of only single code words while still being decoder-synchronized
[27, 28]. This may greatly increase throughput and parallelization capabilities.

Another important technique is the so-called low-delay control (see fill symbol con-
trol in [24]). In an encoder, it can happen that a source word takes, by chance, a very
long time to complete. Low-delay control artificially completes code words when they
are pending in the encoder for a long time by adding flushing bins. The decoder must
detect such situations as well and discard corresponding flushing bins. Flushing bins
also occur when the encoding of a sequence of bins is finished since all pending code
words must be completed. The various aspects of multiplexing in the PIPE coding
system are discussed in Ch. 7.

2.7 State of the art PIPE coding

The PIPE coding concept was originally developed as an alternative [29] to the state
of the art CABAC scheme as found in the video compression standards H.264/AVC
and H.265/HEVC. Many of the ideas behind the PIPE coding concept can be found in
several former data compression schemes as discussed in the following.

A very early approach, described by Fano [30], splits a Markov source into a set
of memoryless sources and assigns individual codes to each of them. This scheme
is basically identical to conditional Huffman codes [8]. Since it produces one code
word for each input symbol, the minimum achievable bit rate is limited to one bit per
symbol and thus, it requires a multi-symbol alphabet preferably with a large number of
source letters to compress well. The work by Ono et al. [24] addresses this problem
by grouping symbols of a binary source. This introduces new difficulties related to the
interleaving of the resulting code words for which Ono et al. present a solution as well
[24]. The so-called decoder-synchronized encoding interleaves the output of several

15

2. PROBABILITY INTERVAL PARTITIONING ENTROPY CODING

parallel coders in a way that allows low complexity decoding. The work by Howard
[26] generalizes the coding system of Ono et al. by allowing various families of run-
length codes. Even if it is not explicitly discussed, the coding concept reveals the idea
of partitioning the probability interval. Kiely and Klimesh [31, 32, 33] generalize the
coding schemes by Ono et al. and Howard by introducing the separation of modeling
and coding. Instead of considering a Markov source that is split into a set of mem-
oryless sources, they formulate the idea of partitioning the unit interval into several
narrow subintervals. Any probability modeling scheme may then be combined with the
coding scheme and binary input symbols are decomposed into subsets according to
the probability intervals. This is essentially the idea of the PIPE concept. Variations
of the scheme by Ono et al. can also be found in the work of Macq et al. [34, 35]
and Nguyen-Phi et al. [36] where the coding concept is combined with a probability
estimation scheme based on a finite-state machine.

2.8 Chapter Summary

In this chapter, the PIPE coding concept is reviewed and the differences to CABAC
are described. The aspects of using a plurality of fixed probability bin coders (as
present in PIPE coding) instead of binary arithmetic coding (as present in CABAC)
are discussed. In particular, the options for establishing parallel processing in a PIPE
coding system are pointed out.

The average code length per symbol turned out to be a suitable quantity for evalu-
ating the compression efficiency of a binary coding engine. It has the entropy rate as
lower bound so that the difference between average code length per symbol and the
entropy rate directly reveals how far from optimal a binary coding engine is.

It was shown that a random variable can be derived from the random process of
the coding bins {Gi} for that an ideal binary arithmetic bin coder, which operates at a
fixed probability, produces an average code length equal to the average code length
per symbol that it produces for {Gi}. This observation is the basis for a discussion of
strategies for jointly deriving optimal ideal binary arithmetic bin coders and associated
probability intervals for the use in a P coder. One approach is based on the Lloyd-
Max algorithm, while another approach employs dynamic programming according to
an algorithm by Greene et al.

An important aspect of the PIPE coding concept is the multiplexing of the out-
put of the individual bin coders for that the state-of-the-art approach, the decoder-
synchronized encoding, is shortly reviewed.

16

2.8 Chapter Summary

An alternative to using fixed-probability binary arithmetic coding for the bin coders
is to use variable-length coding. However, this requires the joint processing of coding
bins, which leads to the concept of V2V codes. An in-depth analysis of the properties
of V2V codes is the topic of the next chapter.

17

3

Variable-to-variable length codes

Variable-to-variable length (V2V) codes are a two stage coding concept for binary

sources. Each stages uses a binary tree as prefix-free code, both trees having the

same number of leaf nodes. There exists a bijective mapping between the leaf nodes

of the binary tree of the first stage and the leaf nodes of the binary tree of the sec-

ond stage. Encoding of binary input symbols is carried out by parsing them with the

binary tree of the first stage into a sequence of so-called source words and writing the

corresponding so-called code words1 of the binary tree of the second stage to the bit

stream. Decoding of the bit stream uses the same procedure, but with the two binary

trees exchanged. A prefix-free code can be seen as a full binary tree, i.e., every node

has 0 or 2 children. The binary symbols visited when traversing the tree from the root

node to a leaf node form a binary word and a prefix-free code is fully described by the

set of its binary words. In the context of V2V codes, the prefix-free code of the first

stage is denoted source tree and it is unambiguously described by the set of source

words S = {σ1, σ2, . . . , σn}. The prefix-free code of the second stage is denoted code

tree and it is unambiguously described by the set of code words C = {c1, c2, . . . , cn}.
Since the source and code tree have the same number of leaf nodes, |S| = |C|. The

symbol S shall interchangeably be used to refer to a source tree as well as to the set

of source words of a source tree. Analogously, the symbol C shall interchangeably be

used to refer to a code tree as well as to the set of code words of a code tree.

1Although the term code words is generally used for prefix-free codes, it shall only be used for the
binary tree of the second stage of a V2V code in this work.

19

3. VARIABLE-TO-VARIABLE LENGTH CODES

Source tree

The source tree is used to convert the binary input into a sequence of source words
by parsing binary source symbols until a source word σi is matched and by repeating
this process until the end of the binary sequence is reached. A potential incomplete
source word can then be completed by adding arbitrary stuffing bits until a code word
is complete. Depending on the application, it may be necessary to also signal the
number of added stuffing bits in order to be able to remove them at the decoder.
However, this shall be neglected in this work. For the subsequent discussion, the
binary input is assumed to come from an i.i.d. binary random process {X}. Encoding
{X} with a source tree S creates a random variable S over the source words S and an
i.i.d. random process {S} over S. The pmf pS(σ) depends on the number of ones and
zeros in the source word σ and on the pmf of X. Let x be a binary word. With M(x)

being the number of ones, and N(x) being the number of zeros in x, the source word
pmf pS(σ) is given as

pS(σ) = pX(1)M(σ)pX(0)N(σ). (3.1)

The expectation value of the lengths of the source words shall be denoted average
source word length and it is defined as

¯̀(S) =
∑
σ∈S

pS(σ)`(σ) (3.2)

where `(σ) is the length of source word σ. If a symbol of {S} contains on average ¯̀(S)

symbols of {X}, such a symbol of {S} must on average also contain ¯̀(S) times the
average information of symbols of {X}, i.e., the entropy

H(S) = ¯̀(S)H(X). (3.3)

Code tree

For encoding {S}, a code word is assigned to each source word using a code tree.
The source words are bijectively mapped to the code words using a mapping function

k : S↔C. (3.4)

Such a function is uniquely described by an index permutation function π which bijec-
tively maps to source word with index i a code word with index j = π(i). A random
variable C can be derived from S by simply replacing the alphabet S with C using the
mapping function k. Consequently, this yields an i.i.d. random process {C} = k({S})

20

3.1 State of the art V2V coding

over C, which produces the sequence of code words. The concatenation of the output
of {C} is the entropy coded representation of the binary source {X}. The source tree
S, the code tree C, and the permutation function π constitute a V2V code v = (S, π,C),
a system for encoding binary sources.

3.1 State of the art V2V coding

Most of the literature related to V2V codes came up independently of the work around
the PIPE coding concept. A comprehensive survey can be found in [37]. Some of the
most relevant studies in this area are by Fabris [38], Freeman [22, 39], and Stubley
[40, 41, 42]. These works mainly address the question of generating suboptimal V2V
codes with possibly low redundancy since no fast algorithm is known to derive optimal
V2V codes so far.

Fabris starts the analysis with a concatenation of Tunstall (V2F) [23] and Huffman
(F2V) [21] codes which are both known to be asymptotically optimal (when the aver-
age code word length goes to infinity). However, if the maximum code word length
(or some other size-limiting criterion) is fixed, there usually exist V2V codes which
compress closer to the entropy than a Tunstall or Huffman code. Based on this obser-
vation, Fabris develops a greedy algorithm which starts with a V2V code consisting of
a Tunstall source tree and derives a suitable Huffman code tree. Then he modifies the
two trees in order to reduce the redundancy and thus yield a good V2V code which
is however not always optimal. Since the code tree of an optimal V2V code is always
a Huffman code, finding an optimal source tree appears to be the more challenging
problem. Approaches for finding source trees are described by e.g. Tunstall, Stubley,
or Freeman. They are based on growing the source tree from the root. In the ap-
proach by Freeman, leaf node splitting decisions are based on deriving the Huffman
code length for each potential split and selecting the one minimizing the resulting re-
dundancy. A further approach by Freeman is based on using a heuristic for how well a
particular leaf node of the source tree is matched to the potential redundancy of a Huff-
man code word, i.e., the source leaf node probability is close to 2−i for some i ∈ Z+.
One approach by Stubley is based on the same idea but uses a different heuristic
in order to be able to extend the scheme towards an adaptive V2V code which also
incorporates probability modeling. Although only the exhaustive search finds optimal
V2V codes, Stubley shows [40] that the suboptimal codes of some heuristic algorithms
almost achieve the same low redundancy as optimal codes. Kiely and Klimesh [31,
32, 33] describe a coding concept which is related to V2V coding. It is based on the

21

3. VARIABLE-TO-VARIABLE LENGTH CODES

idea that a code tree may not only use bits which are directly written to the bit stream,
but also symbols which are encoded with other available V2V codes.

Designing V2V codes that have a low redundancy is not the only aspect of interest.
Other parameters, like the achievable throughput, can be important as well. Senecal
et al. [43] present a scheme for increasing the throughput of V2V codes by source
string merging which increases the average number of bits per code word of a V2V
code.

Relation to unequal letter cost coding

The design of V2V codes is related to coding with unequal letter cost. Many ap-
proaches for V2V code design are based on somehow determining a source tree and
deriving for it an optimal code tree with the Huffman or package merge algorithm. An
alternative approach is to start with a code tree and find for it an optimal source tree.
This would make sense if the number of code trees to test in an exhaustive search is
much smaller than the number of source trees to test. However, it would also require
an algorithm which is able to find an optimal source tree for a given code tree. This is
related to the concept of coding with unequal letter cost [44, 45, 46]. To the authors
best knowledge, no polynomial-time algorithm is known for this problem. However,
if this problem becomes solved in future, design of optimal V2V codes may become
simpler as well.

3.2 Average code length and redundancy of V2V codes

The expected length of a code word is given as

¯̀(C) =
∑
σ∈S

pS(σ)`(k(σ)) (3.5)

and it shall be denoted average code word length. The average number of code word
bits per binary source symbol of a V2V code v is given as ratio between average code
word length and average source word length

¯̀
v(X) =

¯̀(C)
¯̀(S)

=

∑
σ∈S

pS(σ)`(k(σ))∑
σ∈S

pS(σ)`(σ)
. (3.6)

To distinguish it from the average lengths of source words and code words, it is de-
noted average code length of a V2V code. The redundancy of the code tree is given

22

3.2 Average code length and redundancy of V2V codes

as

R(C) = ¯̀(C)−H(S) = ¯̀(C)−H(C). (3.7)

It can be rewritten as

R(C) =
∑
σ∈S

pS(σ)`(k(σ)) +
∑
σ∈S

pS(σ) log2(pS(σ))

=
∑
σ∈S

pS(σ)
(
`(k(σ)) + log2(pS(σ))

)
=
∑
σ∈S

pS(σ)
(

log2 2`(k(σ)) + log2(pS(σ))
)

=
∑
σ∈S

pS(σ) log2

pS(σ)

2−`(k(σ))
. (3.8)

A random variable Ŝ and accordingly an i.i.d. random process {Ŝ} shall be defined
over S, which a prefix-free code with code words C can encode with zero redundancy.
I.e., its pmf is given as

pŜ(σ) = 2−`(k(σ)). (3.9)

The redundancy (3.8) can be rewritten as Kullback-Leibler divergence [13] (or relative
entropy) of {Ŝ} from {S}

R(C) =
∑
σ∈S

pS(σ) log2

pS(σ)

pŜ(σ)
= D(S‖Ŝ). (3.10)

It is well-known that D(S‖Ŝ) ≥ 0 with equality if and only if

pS(σ) = 2−`(k(σ)) (3.11)

for all σ (see [13, Theorem 2.6.3]). The average code length of V2V code v as given
in (3.6) can be rewritten as

¯̀
v(X) =

¯̀(C)
¯̀(S)

(3.12)

=
H(S) +D(S‖Ŝ)

¯̀(S)
(3.13)

=H(X) +
D(S‖Ŝ)

¯̀(S)
(3.14)

23

3. VARIABLE-TO-VARIABLE LENGTH CODES

where (3.3) is substituted into (3.13). From (3.14) can be seen that ¯̀
v(X) is lower-

bounded by the entropy of the binary source H(X). The redundancy of a V2V code is
given as

Rv(X) = ¯̀
v(X)−H(X) (3.15)

=
D(S‖Ŝ)

¯̀(S)
(3.16)

=
R(C)
¯̀(S)

. (3.17)

3.3 Nonzero redundancy of finite size V2V codes

It can be shown that there exists no V2V code (of finite size) with zero redundancy for
binary source symbols with 0 < pX(1) < 0.5. Stubley shows in [40, Sec. 7.1.3] that
there exist particular values of pX(1) for which the redundancy of a V2V code cannot
be zero. In the following, it is proven by contradiction that the redundancy of a V2V
code cannot be zero for 0 < pX(1) < 0.5 and pX(1) ∈ R.

Lemma 3.1. Let S = {σ1, σ2, . . . , σn} be the set of source words of a source tree.
There exists exactly one source word σα that only consists of ones and one source
word σβ that only consists of zeros.

Proof. Since a source tree is a full binary tree, each node has 0 or 2 child nodes.
Consequently, it is possible to traverse the tree from root by always selecting 1 as next
symbol, yielding σα or by always selecting 0 as next symbol, yielding σβ.

Assume that there exists a redundancy-free V2V code with 0 < pX(1) < 0.5. Let
σα and σβ be as in Lemma 3.1 with source word lengths a = `(σα) and b = `(σβ).
Substituting the probabilities of source words (3.1) for σα and σβ into (3.11) yields

2−c = pX(1)a ⇐⇒ 2−
c
a = pX(1) (3.18)

2−d = (1− pX(1))b ⇐⇒ 1− 2−
d
b = pX(1) (3.19)

where c and d are the lengths of the code words to be associated with σα and σβ,
respectively. The following Lemma is taken from [47].

24

3.4 Asymptotic optimal V2V codes

Lemma 3.2. Let a1, a2, ..., an, b1, b2, ..., bn ∈ Q+ and k ∈ Z+. A sum
∑n

i=1 ai
k
√
bi =

M ∈ Z cannot occur if at least one k
√
bi is irrational.

Proof. See [47].

Theorem 3.1. Let σα and σβ be source words according to Lemma 3.1 with length a =

`(σα) > 0 and b = `(σβ) > 0. For a binary random variable X, there exists no pX(1) ∈
R with 0 < pX(1) < 1/2 for which (3.11) is fulfilled for σα and σβ. Consequently, the
redundancy of the V2V code cannot be zero.

Proof. Theorem 3.1 requires pX(1) > 0, which is always fulfilled for (3.18) and (3.19),
and pX(1) < 1/2 which yields

2−
c
a <

1

2
⇐⇒ c

a
> 1 (3.20)

1− 2−
d
b <

1

2
⇐⇒ d

b
< 1. (3.21)

Substituting (3.18) in (3.19) yields

2−
d
b + 2−

c
a = 1 (3.22)

⇐⇒ ab
√

2−ad +
ab
√

2−bc = 1. (3.23)

From Lemma 3.2 follows that the sum on the left-hand side of (3.23) cannot become
1 if at least one of the roots is irrational. Since d/b < 1 by (3.21), 2−d/b must be
irrational. Consequently, (3.23) has no solution for 0 < pX(1) < 1/2 and the Theorem
is proven.

3.4 Asymptotic optimal V2V codes

Although V2V codes of finite size are guaranteed to have nonzero redundancy (for
pX(1) 6= 1/2), there are several well-known approaches of designing V2V codes where
the redundancy approaches zero when the size of the code is allowed to go to infinity.
Kraft’s inequality [13, Theorem 5.2.1] proves the existence of a prefix-free code C for
which

H(S) ≤ ¯̀(C) < H(S) + 1 (3.24)

25

3. VARIABLE-TO-VARIABLE LENGTH CODES

holds. Well-known approaches for generating codes that satisfy (3.24) are Huffman’s
algorithm [21] or the Shannon-Fano code [13]. Substituting (3.7) in (3.24) yields

R(C) < 1. (3.25)

I.e., when the code tree fulfills (3.24) and when the expected source word length goes
to infinity, the redundancy (3.17) asymptotically approaches zero.

3.5 Negated source trees

Next, consider for an arbitrary source tree, a corresponding source tree where each
symbol of each code word is negated. This corresponding source tree is denoted
negated source tree in the following. From (3.1) follows that the probability of a source
word is identical to the probability of the corresponding negated source word when
pX(1) and pX(0) are swapped. Consequently, when for each element of a set of
source trees, the negated source tree is also element of the set, it is sufficient to only
regard the probability interval [0, 0.5] for algorithms that are based on source word
probabilities. This property of sets of source trees shall be denoted negated source
tree property.

3.6 Canonical source trees

The redundancy of a V2V code (3.17) is influenced by the source tree only through the
source word probabilities and the source word lengths. The source word probabilities
only depend on the numbers of ones and zeros of a source word according to (3.1).
I.e., the order of ones and zeros in a source word is not important. Consequently, there
may exist different source trees that do not differ in their source word probabilities.

Definition 3.1. Two source trees are equivalent if the multiset of source word proba-
bility polynomials (3.1) of both trees is identical.

An example for equivalent source trees is given in Fig. 3.1 where the two source
words 11 and 00 are identical while the remaining three source words differ only in
the order of ones and zeros. In order to efficiently handle equivalent source trees, a
canonical representation of source words and source trees is defined.

Definition 3.2. The canonical representation of a source word σ shall be defined as
Cw(σ) = (M(σ), N(σ)). I.e., it consists of the number of ones M(σ) and the number

26

3.6 Canonical source trees

1

0

11

101

100

01

00

11

10

011

010

00

Figure 3.1: Example for two equivalent source trees.

of zeros N(σ) of source word σ. The canonical representation of a source word shall
interchangeably be referred to as canonical source word.

Definition 3.3. The canonical representation of a source tree S shall be defined as
Cs(S) = {Cw(σ) | σ ∈ S}b. I.e., it consists of the multiset1 of canonical source words
of source tree S. The canonical representation of a source tree shall interchangeably
be referred to as canonical source tree.

Lemma 3.3. For 0 < pX(1) < 1, two source trees are equivalent according to Def. 3.1,
if and only if they have the same canonical representation.

Proof. Clearly, if two source trees have the same canonical representation, they are
equivalent. To prove the other direction of the claim, it obviously suffices to show that if
two source words σ1 and σ2 have the same source word probability polynomials, then
one has Cw(σ1) = Cw(σ2). The associated source word probability polynomials as
defined in (3.1) are equal if and only if

pX(1)M(σ1)(1− pX(1))N(σ1) = pX(1)M(σ2)(1− pX(1))N(σ2) (3.26)

holds. (3.26) can be rewritten as

pX(1)M(σ1)(1− pX(1))N(σ1) − pX(1)M(σ2)(1− pX(1))N(σ2) =0

⇐⇒ pX(1)M(σ1)(1− pX(1))N(σ1)
(

1− pX(1)M(σ2)−M(σ1)(1− pX(1))N(σ2)−N(σ1)
)

=0.

(3.27)

(3.27) holds if any of the three product terms on the left-hand side equals zero.
pX(1)M(σ1) equals zero if and only if pX(1) = 0 and (1 − pX(1))N(σ1) equals zero if
and only if pX(1) = 1. Both values are not allowed for pX(1). Consequently, (3.27)

1Multiset definitions are subscripted with a small b like e.g. {1, 1, 2}b in order to distinguish them from
set definitions.

27

3. VARIABLE-TO-VARIABLE LENGTH CODES

holds if and only if

1− pX(1)M(σ2)−M(σ1)(1− pX(1))N(σ2)−N(σ1) =0

⇐⇒ pX(1)M(σ2)−M(σ1)(1− pX(1))N(σ2)−N(σ1) =1 (3.28)

holds. Since pX(1) < 1 and since 1 − pX(1) < 1, the product on the left-hand side
of (3.28) can only equal 1 if the exponents of both product terms equal zero. Conse-
quently, M(σ2) = M(σ1) and N(σ2) = N(σ1) and thus Cw(σ1) = Cw(σ2).

An algorithm that is based on source word probabilities (as e.g. Huffman’s algo-
rithm) yields exactly the same results for any two equivalent source trees and thus can
be directly applied to the canonical representation that both source trees share. Con-
sequently, instead of applying an algorithm to a set of source trees, it can be applied
to the corresponding set of canonical source trees, which is usually much smaller.

A similar concept is known for code trees (or in general, prefix-free codes), where
only the code word lengths are relevant for the redundancy. Neither the numbers of
ones and zeros, nor their order is important. Accordingly, the situation is a bit more
relaxed for code trees than for source trees, where the number of ones and zeros is
important.

The canonical Huffman codes [48, 49, 50] take advantage of this property to effi-
ciently represent and transmit Huffman codes. However, this concept works for arbi-
trary prefix-free codes. Since only the code word lengths are of interest, a canonical
representation of a prefix-code is given as the multiset of code word lengths. More-
over, it is well known that for any multiset of code word lengths, a prefix-free code
can be constructed when the Kraft inequality [51] holds. A corresponding algorithm is
given in [13, Sec. 5.2]. The canonical representation of a code tree C shall be given
as the multiset of code word lengths

Cc(C) = {`(x) | x ∈ C}b. (3.29)

3.7 Prefix merge algorithm

Generating a source tree from its canonical representation is a similar problem as
generating a prefix-free code from code word lengths. However, it has the further
constraint that the numbers of ones and zeros of the source words must be correct.
While it is trivial to derive the canonical representation of a source tree, the reverse
way is not very intuitive. In the following, an algorithm is presented that allows the

28

3.7 Prefix merge algorithm

construction of a source tree S′ when only the canonical representation Cs(S) of a
source tree S is known. The algorithm ensures that Cs(S) = Cs(S′) holds while S = S′

needs not to hold. It is based on merging source words that only differ in the last bit
(i.e., with identical prefixes) and is thus denoted prefix merge algorithm.

Lemma 3.4. For a source tree S, let

Ŝ = {σ̂ ∈ S | ∀σ ∈ S : `(σ̂) ≥ `(σ)} (3.30)

be the subset of source words of maximum length. Let x ∈ Ŝ be a source word with
the maximum number of ones amongst the source words of maximum length. I.e.,

∀σ ∈ Ŝ : M(x) ≥M(σ) (3.31)

holds for x. Then, the leaf node associated with x has a sibling that is a leaf node
as well and the associated source word, which shall be denoted y, has canonical
representation Cw(y) = (M(x)− 1, N(x) + 1).

Proof. Since a source tree is a full binary tree, each leaf node must have a sibling.
Obviously, each leaf node at the highest depth must have a sibling which is a leaf
node as well. Since the leaf node associated with source word x is at the highest
depth, it must have a sibling that is a leaf node and that has an associated source
word y of the same length as x. This proves the existence of y.

Since two source words whose associated leaf nodes are siblings differ only in
the last bit, their number of ones must differ exactly by 1. Since x has the maximum
number of ones amongst all source words of the same length, y must have a one less
and a zero more than x.

By only employing the canonical representation Cs(S) of a source tree S, Lemma
3.4 identifies the canonical representations of two source words x and y for which the
associated leaf nodes are siblings. These leaf nodes can be pruned, which means
that they are removed and their common parent node becomes the new leaf node. In
terms of the canonical source tree Cs(S), this pruning corresponds to replacing Cw(x)

and Cw(y) with the canonical representation Cw(z) of their common prefix, denoted
z, which is the source word, associated with the new leaf node. When one of the
canonical source word Cw(x), Cw(y), or Cw(z) is known, the other two can be derived
since x has a one more than z and y has a zero more than z. Consequently, a pruning
step is unambiguously described by one of these three canonical source words.

Let Cs(Sn) be a canonical source tree and let Cw(xn), Cw(yn), and Cw(zn) be
according to the description above, but subscripted with an index n. The canonical

29

3. VARIABLE-TO-VARIABLE LENGTH CODES

source tree after pruning shall be denoted Cs(Sn+1). Next, two properties are derived
for this relationship.

Firstly, although the relationship is established purely on canonical source trees
and canonical source words, it can be used to manipulate real1 source words and
source trees. I.e., when a source tree is given, which has canonical representation
Cs(Sn), a pruning step can be applied, which results in a source tree with canonical
representation Cs(Sn+1).

Secondly, a pruning step can also be applied in reverse order, which shall be de-
noted a growing step. More precisely, if a canonical source tree Cs(Sn+1) is given, it
can be converted into Cs(Sn) by extending the leaf node associated with the canonical
source word Cw(zn) with a one branch and a zero branch. I.e., canonical source word
Cw(zn) is duplicated and a one is appended to the first copy while a zero is appended
to the second copy. This can also be used to grow a real source trees.

The prefix merge algorithm uses both properties. In a first step, for the given
canonical source tree, a sequence of pruning steps is derived until the canonical
source tree is fully pruned, which means that only two canonical source words of
length one are left. These are the merge by prefix steps where the name of the
algorithm comes from. In the second step, the sequence of pruning steps is used in
reverse order to grow a real source tree that has the desired canonical representation.
Equivalently, the tree can be created during the pruning procedure by converting the
individual pruning steps into subtrees and merging these.

An algorithmic description is as follows:

1. Initialize an empty list and add all canonical source words to it.

2. Associate with each canonical source word in the list, a tree only consisting of a
root node.

3. Out of all canonical source words of maximum length in the list, find a source
word x which has the largest number of ones. Find for this source word a possi-
ble sibling y. I.e., with a ‘one’ less and with a ‘zero’ more. This corresponds to
Lemma 3.4.

4. Remove x and y from the list and create a new canonical source word z consist-
ing of the common prefix of x and y. I.e., with as many ‘ones’ as y and as many
‘zeros’ as x.

1‘Real’ meaning that all source words are exactly known.

30

3.8 Canonical V2V codes

5. Associate with z a tree consisting of a root node, a ‘1’ branch and a ‘0’ branch.

6. Append the tree of x to the ‘1’ branch and the tree of y to the ‘0’ branch.

7. If the list is empty, terminate. The tree associated with z is the desired source
tree.

8. Add z to the list and continue with step 3.

Let Sc be a canonical source tree and let function Rs(·) yield a source tree Rs(Sc),
that is generated by applying the prefix merge algorithm to Sc. Although the algorithm
allows a degree of freedom in creating siblings in step 3, which may lead to different
source trees, it shall be assumed that function Rs(·) always yields the same Rs(Sc)

for a given canonical source tree Sc. In other words, each canonical source tree Sc is
unambiguously associated with one particular source tree Rs(Sc).

Furthermore, let X be a set of source trees and let a function Eq(·) be defined as

Eq(X) = {Rs(Cs(S)) | S ∈ X}. (3.32)

I.e., it yields another set of source trees, derived from the canonical representations
of the set of source trees X. The set Eq(X) shall be denoted canonical representation
of a set of source trees X. An algorithm that can be carried out with canonical source
trees yields identical results for X and Eq(X) while Eq(X) may contain fewer elements
than X. This property is exploited in the V2V code design strategies of Ch. 5.

3.8 Canonical V2V codes

As discussed in the previous section, for algorithms that are based on source word
probabilities, source word lengths, and code word lengths of V2V codes, canonical
source trees and canonical code trees can be used. Consequently, a canonical rep-
resentation shall be defined for V2V codes. It is denoted Cv(v) for a given V2V code
v = (S, π,C), and simply consists of a canonical source tree, a permutation function,
and a canonical code tree. More precisely,

Cv(v) = (Cs(S), π,Cc(C)). (3.33)

Tab. 3.1 shows the canonical representation of an exemplary V2V code as depicted
in Fig. 3.2. A column of the table contains numbers of ones and zeros of a source
word σi along with the length of the corresponding code word cj . I.e., the bijective

31

3. VARIABLE-TO-VARIABLE LENGTH CODES

1

0

Source tree Code tree

Figure 3.2: Examplary V2V code.

M(σi) 2 2 2 1 1 0
N(σi) 0 1 1 2 2 2
`(cj) = `(k(σi)) 1 3 3 4 4 3

Table 3.1: Tabular representation of a canonical V2V code for source words S =

{σ1, σ2, . . .} and associated code words C = {c1, c2, . . .}.

mapping of source word indexes i to code word indexes j results implicitly from the
table structure. Note that there are several columns with identical values which could
be used to further compress the table format. However, for better readability, the format
as exemplified in Tab. 3.1 is used for presenting V2V codes in the following.

3.9 Prime and composite V2V codes

In this section, the concept of prime and composite V2V codes is introduced.

Definition 3.4. A V2V code shall be composite if two prefixes a and b of nonzero
length exist for which all of the following conditions are fulfilled:

• Two or more source words have prefix a

• Two or more code words have prefix b

• All source words with prefix a are associated with code words with prefix b

• All code words with prefix b are associated with source words with prefix a

A V2V code shall be prime if it is not composite.

32

3.9 Prime and composite V2V codes

1

0

Source tree Code tree

Node of prefix a Node of prefix b

Outer V2V code

Inner V2V code

Figure 3.3: Example for a composite V2V code.

A composite V2V code v according to Def. 3.4 can be split into two V2V codes. An
example is depicted in Fig. 3.3. Prefix a corresponds to the internal node where the
source tree is split and prefix b corresponds to the internal node where the code tree
is split. The two separated subtrees constitute the so-called inner V2V code. In the
remaining source and code tree, the two internal nodes where splitting was carried out
are now leaf nodes. These are associated with each other and the resulting code shall
be denoted outer V2V code. In the example of Fig. 3.3 the outer and inner V2V codes
are prime since they cannot be split further. In principle, it is possible that inner and
outer V2V codes are composite and further splitting can be applied repeatedly until all
resulting outer and inner V2V codes are prime. This is similar to the prime factors of
a natural number. However, a V2V code is not uniquely described by its prime V2V
codes since it needs to be specified how the codes are connected.

Encoding with a composite V2V code is identical to encoding with the outer V2V
code and switching to the inner V2V code after a source word a is encoded. After
encoding a source word with the inner V2V code, it is switched back to the outer V2V
code. In terms of the average code length, this corresponds to elongating source
word a by the average source word length of the inner V2V code and code word b is

33

3. VARIABLE-TO-VARIABLE LENGTH CODES

elongated by the average code word length of the inner V2V code.
Consider the multiset of prime V2V codes, that results from repeatedly splitting a

V2V code. The question arises, whether this multiset is unique for the V2V code. It
turns out, that this is the case, because all potential splitting points can be determined,
based on the original (unsplit) V2V code. Splitting at these points always results in the
same subtrees, regardless of the order in which the points are processed. Therefore,
always the same multiset of prime V2V codes is yielded.

3.9.1 Suboptimality of composite V2V codes

Let a composite V2V code v with source tree S and code tree C be split into inner and
outer V2V codes according to Def. 3.4 (with prefixes a and b). SI and CI shall be the
source and code trees of the inner V2V code, and SO and CO shall be the source and
code trees of the outer V2V code. Let x_y denote the concatenation of two binary
words x and y. Then, S can be written as

S = (SO \ {a}) ∪ {a_σ | σ ∈ SI} (3.34)

and C can be written as

C = (CO \ {b}) ∪ {b_c | c ∈ CI}. (3.35)

Let S, SI , CI , SO, and CO be the random variables associated with S, SI , CI , SO, and
CO, respectively, for encoding a random variable X. The average code length (3.6) of
v can be expressed as

¯̀
v(X) =

¯̀(C)
¯̀(S)

=

∑
σ∈SO\{a}

pS(σ)`(k(σ)) +
∑
σ∈SI

pS(a_σ)`(k(a_σ))∑
σ∈SO\{a}

pS(σ)`(σ) +
∑
σ∈SI

pS(a_σ)`(a_σ)

=

¯̀(CO)− pSO
(a)`(b) +

∑
σ∈SI

pSO
(a)pSI

(σ)
(
`(b) + `(k(σ))

)
¯̀(SO)− pSO

(a)`(a) +
∑
σ∈SI

pSO
(a)pSI

(σ)
(
`(a) + `(σ)

)

=

¯̀(CO)− pSO
(a)`(b) + pSO

(a)`(b)
∑
σ∈SI

pSI
(σ) + pSO

(a)
∑
σ∈SI

pSI
(σ)`(k(σ))

¯̀(SO)− pSO
(a)`(a) + pSO

(a)`(a)
∑
σ∈SI

pSI
(σ) + pSO

(a)
∑
σ∈SI

pSI
(σ)`(σ)

.

(3.36)

34

3.9 Prime and composite V2V codes

With ∑
σ∈SI

pSI
(σ) = 1, (3.37)

(3.36) becomes

¯̀
v(X) =

¯̀(CO) + pSO
(a)¯̀(CI)

¯̀(SO) + pSO
(a)¯̀(SI)

. (3.38)

An intuitive interpretation can be given for (3.38) as follows. pSO
(a)¯̀(SI) corresponds

to the elongation of source word a and pSO
(a)¯̀(CI) corresponds to the elongation of

code word b.

Lemma 3.5. The average code length of a composite V2V code is in between the
average code lengths of the outer and the inner V2V code it can be split into.

Proof. Let a, b, c, d be real and positive. The mediant inequality states that if a/b ≤ c/d,
then

a

b
≤ a+ c

b+ d
≤ c

d
(3.39)

where (a + c)/(b + d) is denoted mediant of a/b and c/d. A proof can be found in
the related literature (see [52] for an overview) and is shortly reviewed in Appendix
B.1. Since ¯̀(CO), ¯̀(SO), ¯̀(CI), ¯̀(SI), and pSO

(a) are real and positive, ¯̀
v(X) is the

mediant of the average code lengths of the inner and outer V2V code. Consequently,

¯̀(CO)
¯̀(SO)

≤ ¯̀
v(X) ≤

¯̀(CI)
¯̀(SI)

(3.40)

holds if
¯̀(CO)
¯̀(SO)

≤
¯̀(CI)
¯̀(SI)

(3.41)

and
¯̀(CO)
¯̀(SO)

≥ ¯̀
v(X) ≥

¯̀(CI)
¯̀(SI)

(3.42)

holds if
¯̀(CO)
¯̀(SO)

≥
¯̀(CI)
¯̀(SI)

, (3.43)

which completes the proof.

Lemma 3.5 states that each composite V2V code consists of at least one prime
V2V code that has a lower or equal average code length as the composite V2V code.
This property may be useful when searching a candidate set of V2V codes for min-
imum redundancy codes. Whenever a composite V2V code occurs and when it is

35

3. VARIABLE-TO-VARIABLE LENGTH CODES

guaranteed that the prime V2V codes it consists of are in the candidate set, the com-
posite V2V code can be disregarded as optimal V2V code. Because one of its prime
codes has either lower or the same average code length as the composite V2V code.

As discussed in the following chapters, a search for optimal V2V codes is often
based on a set of candidate source trees and optimal code trees are created with the
Huffman [21] or package merge algorithm [53]. In such a case, when a composite V2V
code occurs, it is sufficient if the source trees of its prime V2V codes are in the can-
didate set. This is because V2V codes with the same source trees as the prime V2V
codes have lower or the same redundancy as the prime V2V codes. Consequently,
composite V2V codes can be disregarded as well.

3.9.2 Primality test for V2V codes

In order to benefit from the fact that composite V2V codes can be disregarded in many
V2V code design schemes, primality of the related codes must be tested. This can
be done by iterating over all possible subtrees of the source tree and searching for
a corresponding subtree in the code tree such that both subtrees form an inner V2V
code according to Def. 3.4.

3.9.3 Primality of canonical V2V codes

The concept of prime and composite V2V codes can also be applied to canonical V2V
codes. When for a canonical V2V code, one particular V2V code can be found that is
composite, the canonical V2V code is considered composite and can be disregarded
in many algorithms according to the argumentation above. However, it turns out that
deciding whether a composite V2V code exists for a given canonical representation is
a difficult task.

For the most applications it is not necessary to determine for each canonical V2V
code whether it is prime or composite. Instead, it may be sufficient when some of the
composite V2V codes can be detected and sorted out. If there would be a simple test,
which is able to detect particular composite V2V codes only, this can already reduce
the overall complexity. In the following, such a test is developed. It is based on the
fact that source and code trees can be grown from the leaf nodes, starting with the
longest source and code words. For the source tree, the prefix merge algorithm can
be applied as described in Sec. 3.7. For the code tree, an even simpler method can
be employed, which is derived from the prefix merge algorithm.

36

3.9 Prime and composite V2V codes

i 1 2 3 4 5
M(σi) 2 1 1 1 0
N(σi) 0 1 1 2 3
`(cj) = `(k(σi)) 2 3 3 2 2

Table 3.2: Exemplary canonical V2V code for primality testing.

An algorithmic description is as follows:

1. Initialize an empty list and add all canonical code words to it.

2. Associate with each canonical code word in the list, a tree only consisting of a
root node.

3. Out of all canonical code word of maximum length in the list, select two arbitrary
code words x and y.

4. Remove x and y from the list and create a new canonical code word z which is
by 1 shorter than x (or y).

5. Associate with z a tree consisting of a root node and two branches.

6. Append the tree of x to the one branch and the tree of y to the other branch.

7. If the list is empty, terminate. The tree associated with z is the desired code tree.

8. Add z to the list and continue with step 3.

The above algorithm has the freedom to select two of potentially many code words in
step 3. The same is true for the prefix merge algorithm, but with some more restrictions
regarding the numbers of ones and zeros (see step 3 of the prefix merge algorithm in
Sec. 3.7). Having in mind which leaf nodes of the source tree are associated with leaf
nodes of the code tree, this freedom can be used to somehow skilfully select source
and code words for merging so that inner V2V codes are formed. If this succeeds,
the corresponding canonical V2V code is composite. A full primality test may be very
complex using this concept since the degree of freedom in step 3 of both algorithms
may lead to a large number of possible different V2V codes.

An example for the concept is given in the following for an exemplary canonical
V2V code as depicted in Tab. 3.2. It corresponds to the V2V code depicted in Fig. 3.3
which it is known to be composite. From the code word lengths, it is clear that k(σ2)

37

3. VARIABLE-TO-VARIABLE LENGTH CODES

and k(σ3) are merged first since they are the two longest code words. According to
the prefix merge algorithm, σ4 and σ5 are merged first in the source tree. So far, no
other choices for merging were possible. When continuing the procedure, all of the
remaining code words are of length 2 and an arbitrary pair could be merged. Since
σ4 and σ5 are already merged in the source tree, merging k(σ4) and k(σ5) creates an
inner V2V code. This proves that the canonical V2V code is composite.

The strategy of selecting source and code words for merging in order to find inner
V2V codes is not further specified so far. It may be possible to describe an algorithm
that is able to securely find inner V2V codes if they exist. However, when only using
a primality test to reduce the computational complexity of an algorithm for e.g. V2V
code design, a complete and costly primaliy test can usually be relinquished.

3.10 Chapter summary

In this chapter, the properties of variable-to-variable length codes are studied for binary
i.i.d. sources. It is shown that the redundancy of a V2V code cannot be zero for a
binary i.i.d. source except for the case where the probability of one of the source is 0.5.
Furthermore, by analyzing the properties of the average code length of V2V codes, a
canonical representation for source trees, code trees, and finally for V2V codes is
defined. The prefix merge algorithm was developed in order to be able to construct a
source tree from a canonical representation. It is based on merging particular source
words by their prefix.

One important observation of this chapter is that V2V codes can be composed
of other V2V codes. This lead to the concept of composite and prime V2V codes.
Moreover, it was possible to show that if a V2V code is composite, its average code
length lies between the average code lengths of the V2V codes it is composed of.
This property can be useful for finding minimum redundancy V2V codes. For example,
composite V2V codes can be removed from a candidate set when the optimal codes
are known to be prime, which is often the case.

Several aspects of primality testing for V2V codes were discussed. It turned out
that a simple primality test could not be found. In particular, primality testing of canon-
ical V2V code seems to be a difficult task. However, it was possible to derive a simple
procedure for primality testing from the prefix merge algorithm. It can detect for some
canonical V2V codes that there exists a corresponding V2V code that is surely com-
posite. Canonical V2V codes and the concept of prime and composite V2V codes are
the basis for the V2V code design algorithms of Ch. 4 and Ch. 5.

38

4

Joint V2V code and probabiltiy
interval design

The main focus of the current chapter lies on the design of code trees for a given
source tree S. A binary i.i.d. random process {X} is assumed, which shall be en-
coded with the source tree. This constitutes an i.i.d. random process {S} over S.
In general, all the well-known techniques for encoding non-binary i.i.d. sources with
variable-length codes can be used, like Huffman coding [21] or the package merge
algorithm [53]. Most such algorithms construct a prefix-free code based on a se-
quence of decisions by comparing sums of leaf node probabilities pS(σi). The intuitive
approach is to select a predefined pmf pX for the binary i.i.d. source {X}, which de-
termines the source word pmf pS and e.g. a Huffman code can be generated. The
solution found in this way is optimal for the predefined pmf pX . For a different pmf
of the binary source {X}, the procedure needs to be repeated, potentially yielding a
different V2V code. In order to yield a set of V2V codes, many different binary pmfs
must be evaluated while it remains unclear, whether the found V2V codes are optimal
for further, untested pmfs. To overcome this problem, a technique is developed, which
use pX(1) as variable. Consequently, the source word probabilities are polynomials in
pX(1). As stated above, the Huffman and package merge algorithm are based on the
comparison of sums of source word probabilities. It turns out that all these operations
can also be done with polynomials where decisions automatically yield probability in-
tervals for which the decisions are valid. When e.g. used with the Huffman algorithm,
the result is a set of subintervals and associated Huffman codes that are optimal for
the subintervals. This also yields the exact number of optimal code trees that exist for
a given source tree. The same idea can be applied to Tunstall codes, where the code

39

4. JOINT V2V CODE AND PROBABILTIY INTERVAL DESIGN

tree is given in advance and a source tree is derived.
For Huffman coding, a related concept is introduced by Longo and Galasso [54]

where so-called attraction regions are defined. Attraction regions are source symbol
probabilities that share the same Huffman code. Longo and Galasso prove that at-
traction regions are always convex by employing the sibling property [55] of Huffman
codes. Analogously, in [56] so-called Tunstall regions are defined and it is shown that
a Tunstall code is always optimal for one single uninterrupted probability interval.

4.1 Basic principle of polynomial-based algorithms

Before discussing polynomial-based versions of the various algorithms for code gen-
eration, the basic principle of making an algorithm polynomial-based is described. For
this purpose, it is sufficient to analyze which operations are applied to symbol proba-
bilities and whether these operations can be carried out when the symbol probabilities
are polynomials. Fortunately, most of the algorithms for code generation apply very
few and simple operations on symbol probabilities.

Summation and multiplication

Obviously, for polynomials, summation and multiplication can be carried out yielding
as a result a new polynomial.

Comparison

The Huffman algorithm is based on repeatedly finding the two smallest probabilities
of a set of probabilities. For the package merge algorithm, a set of probabilities must
be sorted as described in Sec. 4.5. For the Tunstall algorithm, the highest probability
out of a set of probabilities needs to be derived. All these operations can be reduced
to one or more ‘larger than’ or ‘smaller than’ comparison operations where for two
probabilities, it is decided which of both is larger or smaller. When these probabilities
are given as polynomials Pa and Pb in p, a decision, which of both is larger is only
valid for particular values of p (except if Pa a nd Pb are identical polynomials). More
precisely, whenever polynomials Pa and Pb intersect, the decision changes. The other
way around, in between two intersections, the decision is the same. Consequently,
an interval can be specified for which a decision is valid. Boundaries of such intervals
can only reside at values of p where the polynomials intersect. I.e., at the roots of

40

4.1 Basic principle of polynomial-based algorithms

Pa − Pb = 0.

In the following, a procedure is described how an algorithm is made polynomial-based
when it applies no other operations than summation, multiplication, and ‘larger than’
or ‘smaller than’ comparisons to symbol probabilities.

An initial probability interval needs to be defined for which results of the algorithm
are of interest. E.g., I =]0, 0.5[. The algorithm is assumed to be prepared in a way
such that sorting operations are translated into sequences of comparisons. Whenever,
in the algorithm, a comparison is required, the following steps are applied.

1. For the requested comparison, the two involved polynomials shall be Pa and Pb
and the comparison shall be Pa < Pb.

2. Find all real roots of Pa − Pb = 0 which are in the interval I and subdivide I at
the real roots.

3. For each subinterval derive for an arbitrary value in the subinterval, whether Pa
is smaller than Pb.

4. Continue the algorithm for each of the subintervals separately and independently
with the subinterval being used as interval I.

The above procedure is carried out whenever a comparison is required and each time,
the probability interval may be subdivided into further subintervals and the algorithm
is continued for each of the subintervals with the associated decision results.

4.1.1 Finite-state machine-based algorithms

The procedure described in the previous section, although simple to explain, may be
complicated to implement in software because of step 4 where the state of the whole
program must be duplicated a number of times and for each duplicate, the program has
to continue independently. A way to address this problem is to implement the algorithm
as a finite-state machine. This corresponds to creating a number of state transitions,
each consisting of a portion of the algorithm so that decisions are carried out between
state transitions. Furthermore, a state variable is maintained, which contains the whole
state of the algorithm, i.e., all variables required to carry out the algorithm, since state
transitions cannot store variables. A so-called state processor maintains a queue of
state transitions that need to be processed and for each state transition, a copy of
the state variable. To start the algorithm, the state transition that corresponds to the

41

4. JOINT V2V CODE AND PROBABILTIY INTERVAL DESIGN

beginning of the algorithm is queued and a state variable is initialized and associated

with this state transition. The operation of the state processor is as follows. From the

queue, it removes one state transition and calls it with the associated state variable

as parameter. When this state transition returns, it either signals that the algorithm is

finished, or it specifies a state transition to be processed next. In the latter case, the

state transition may have requested a decision. If so, the state processor carries out

the decision and passes the decision result to the next state transition to be processed

and queues the next state transition.

This is the point where an algorithm can be made polynomial-based. The result of

the polynomial-based decision is a number of subintervals, each one being associated

with a decision result. The state processor creates duplicates of the next state transi-

tion and of the state variable so that one copy of each is available for each subinterval.

The decision results and subintervals are stored in the state variable so that the next

state transition can evaluate the decision result. All state transitions created in this way

are queued along with the associated state variables, which effectively corresponds to

the forking of the program flow as it is required for polynomial-based algorithms. The

state processor sequentially continues the processing of the queued items, which may

lead to further duplications. The results of the algorithm for the different subintervals

are returned by the terminating states.

An advantage of this concept is that forking of the program flow doesn’t need to be

kept in mind when implementing an algorithm since the algorithm always receives only

one result for a decision. On the other hand, the state processor doesn’t need to know

anything about the algorithm, since it only needs to process queued state transitions,

evaluate decisions, and create duplicates of the transition states if necessary. The

difficulty in this concept lies in the conversion of an algorithm to a number of state

transitions so that all decisions happen between state transitions. Apart from this,

nothing more needs to be done to make any algorithm polynoial-based.

For rather simple algorithms, polynomial-based versions are often easy to achieve

without the finite-state machine concept. However, for more complicated algorithms,

like a polynomial-based implementation of the extremely complex lazy reverse run-

length package merge algorithm [57, p. 201] as derived in Sec. 4.5, the concept is

very useful.

42

4.1 Basic principle of polynomial-based algorithms

4.1.2 Grouping of identical polynomials

Sometimes it is helpful to know whether two polynomials are identical. E.g. for a
polynomial-based sorting algorithm, the number of elements involved in the actual
sorting can be reduced when identical polynomials are treated as one polynomial be-
cause all of them will anyway appear in an uninterrupted sequence in the sorted result.
It is easy to decide whether two polynomials are identical by comparing the polyno-
mials coefficients. More generally, a sort key can be defined for polynomials as e.g.
the list of the polynomials coefficients or a hash of it. It allows all the well-known tech-
niques for determining identical items as e.g. by sorting or by employing a hash table.
This concept is used in the runlength extension of the package merge algorithm in
Sec. 4.5.

4.1.3 Precise polynomial root handling

Real roots of a polynomial may be irrational numbers which don’t have a closed-form
expression. Using a rational approximation of such a root is usually sufficient for practi-
cal applications but the results are not exact. However, it is possible to circumvent this
problem. Instead of storing polynomial roots as as rational approximations, they can be
stored as polynomial along with a so-called isolation interval with rational boundaries
(see [58, 59]) such that the interval only contains the one real root of the associated
polynomial. Having polynomial roots stored in this form, it is always possible to cor-
rectly judge whether two roots are identical or which of them is lower or higher. More
precisely, assume two polynomial roots stored in this way, i.e., given as polynomial Pa
with isolation interval Ia and polynomial Pb with isolation interval Ib. When the iso-
lation intervals do not overlap, it is clear which of the roots must be smaller. If they
overlap, the roots of PaPb in the intersection of both intervals are derived. If there is
only one root with multiplicity equal to the sum of the multiplicities of both roots, the
roots are identical. If not, isolation interval refinement is carried out on Ia and Ib until
the intervals are disjoint.

4.1.4 Implementation

A handy way of operating with polynomials in a software implementation is to use a
symbolic computation software platform. The algorithms described in the following are
implemented in the programming language Python [60] by using the symbolic math-
ematics framework SymPy [61]. It provides functionality for working with polynomials

43

4. JOINT V2V CODE AND PROBABILTIY INTERVAL DESIGN

1

01

00

1

0

Figure 4.1: Left: Source tree, Right: Probability polynomials of source words

and also implementations of polynomial root isolation algorithms according to [58, 59].

4.2 Polynomial-based Huffman algorithm

Huffman’s algorithm constructs a prefix-free code based on the order of symbol prob-
abilities and of sums of symbol probabilities. The subsequent discussion assumes
a non-binary i.i.d. source {S} as created by a source tree S when parsing a binary
i.i.d. source {X} into source words. The symbol probabilities are then source word
probabilities which are polynomials in pX(1). For notational convenience, pX(1) is ab-
breviated with p and pS(σi) is abbreviated with pi. As stated in the previous section,
deriving an order of a set of polynomials by value is only possible in intervals of p
where the order of the values of the polynomials doesn’t change. I.e., whenever the
graphs of any two polynomials in the set intersect, these two polynomials switch their
order. An example for this is given in Fig. 4.1. Here, the graphs of source word poly-
nomials for the depicted source tree are given. In this case, source word probabilities
of source words ”1” and ”00” intersect inside of the interval [0, 0.5]. The value p of the
intersection is given as root of the difference of both polynomials p and (1− p)2 which
is located at p = (3−√

5)/2 ≈ 0.382. Furthermore, the polynomials of code words ”00”
and ”01” intersect at p = 1/2. This is, in general, also a relevant root. However, the

44

4.2 Polynomial-based Huffman algorithm

current example shall be restricted to the interval [0, 0.5] as it would be appropriate for
the use in the PIPE coding system. The intersection at p = 1/2 is thus located at the
interval boundary and can be neglected. Two subintervals are spanned in this way.
I1 = [0, 0.382[and I2 = [0.382, 0.5]. For any value of p in such an interval, the order
of source word probabilities is the same and the first decision in Huffman’s algorithm,
which of the symbols to merge is also the same. In the example of Fig. 4.1, Huffman’s
algorithm merges source words ”00” and ”1” for values of p ∈ I1 and the source words
”00” and ”01” for values of p ∈ I2.

After merging two source words, their polynomials graphs are replaced with their
sum and the procedure is repeated for each subinterval which may involve further
subdivisions until for every interval, a Huffman code is completed.

The detailed description of the algorithm is as follows:

1. Start with a set of symbols for which the Huffman codes and intervals shall be
derived with each symbol having an associated probability polynomial. Create
an empty list that represent the progress of Huffman’s algorithm, able to store
binary trees.

2. Initialize the list of trees with one tree for each symbol, only consisting of a single
node which represents the symbol. Associate an initial interval, e.g., [0, 0.5] with
the list of trees.

3. Derive the probability polynomials pi for each of the trees in the list of trees by
summing over the trees leaf node probability polynomials.

4. Derive all values of p where any two of the trees polynomials have the same
value and which are in the interval I. These are the roots of all differences of the
trees polynomials pi − pk ∀ i 6= k in I.

5. Subdivide the interval I into non-overlapping subintervals according to the roots
found in step 4 neglecting intervals of zero width. Associate with each subinter-
val, a copy of the list of trees which belongs to the original interval I.

6. For each subinterval, find the two trees with the two lowest polynomial values pi
and pk for an arbitrary value of p in the subinterval. In the list associated with the
subinterval, merge the two trees by making their root nodes children of a newly
created root node.

45

4. JOINT V2V CODE AND PROBABILTIY INTERVAL DESIGN

1

0

1

0

Source tree Code tree

Figure 4.2: The two minimum redundancy V2V codes for the given source tree and their
redundancy. The red line shows the position pX(1) = (3 − √

5)/2 ≈ 0.382 where the
probability interval is split into two subintervals.

7. For each subinterval separately, continue at step 3 until the Huffman tree is com-

plete. I.e., the list of trees contains only one tree.

The above algorithm yields a set of disjoint intervals, each being associated with a

Huffman code. It can, however, happen that the Huffman trees of two neighboring

subintervals differ from each other, but assign the same code word lengths to the

source symbols. I.e., the average code word length polynomials (3.5) are equal for

both Huffman codes. In this case, the intervals are merged, keeping an arbitrary one

of the two Huffman codes. This ensures that the algorithm yields the exact number

of Huffman codes with distinct average code word length that exist for a source with

polynomial-based symbol probabilities. In the case of V2V codes, this yields a uinque

optimal set of code trees for a given source tree. Fig. 4.2 shows the two V2V codes

that result from running the polynomial-based Huffman algorithm for the source tree of

Fig. 4.1 as well as their redundancy according to (3.17). The two probability intervals

are [0, (3−√
5)/2[and [(3−√

5)/2, 0.5].

46

4.3 Merging V2V codes with probability intervals

4.3 Merging V2V codes with probability intervals

The polynomial-based Huffman algorithm as presented in the previous section
derives a set of intervals with associated code trees for one predefined source tree.
For finding the optimal V2V codes for a set of source trees, the outcome of the
polynomial-based Huffman algorithm for all source trees needs to be merged. In
other words, select from all V2V codes yielded from applying the polynomial-based
Huffman algorithm to all source trees, the codes that have minimum average code
length for some probability interval and specify these intervals. The selected V2V
codes and their intervals correspond to the envelope of the redundancy (3.15) of all
V2V codes of the set and deriving it basically corresponds to intersecting the average
code length of all V2V codes, deriving intersection points and selecting minimum
redundancy codes along with intervals.

An algorithmic description of such a merging procedure is given as follows:

1. Create a set, denoted candidate set, containing all intervals with associated V2V
codes to be merged together.

2. Create an empty set, denoted currently best set, for storing intervals with associ-
ated V2V codes. Remove a number of non-overlapping and contiguous intervals
with associated V2V codes1 from the candidate set and add them to the currently
best set.

3. Remove an arbitrary interval and associated V2V code from the candidate set.
The interval shall be denoted current interval.

4. Subdivide each interval in the currently best set that partly overlaps with the
current interval, so that the resulting subintervals either don’t overlap with the
current interval, or they are fully covered by it. When an interval is subdivided,
its associated V2V code is associated with each of the subintervals.

5. Subdivide the current interval so that the resulting subintervals are congruent
with these intervals in the currently best set that fall inside the current interval.
The subintervals created in this way are denoted current subintervals.

1This can e.g. be the set of intervals and associated V2V codes yielded by one execution of the
polynomial-based Huffman algorithm.

47

4. JOINT V2V CODE AND PROBABILTIY INTERVAL DESIGN

6. For each pair of congruent intervals (one interval from the currently best set and
the congruent interval from the current subintervals), find these values of p in
the interval for which the average code length (3.6) of both associated V2V code
equals. If such values of p exist, both congruent intervals are subdivided at these
values.

7. For each pair of congruent intervals, calculate the average code length for an
arbitrary value of p in the interval for both associated V2V codes. If the calculated
average code length of the V2V code associated with the current subinterval is
the smaller one of both values, flip the association of the two V2V codes (so that
the V2V code with lower average code length is located in the currently best set).

8. Merge all neighboring subintervals whose associated V2V codes have the same
canonical representation keeping an arbitrary one of the associated V2V codes.
Discard the current subintervals.

9. Continue with step 3 until the candidate set is empty. The currently best set
contains the merged V2V codes.

Remark: Finding values of p for which the average code length of two V2V codes va
and vb is identical (as required in step 6) corresponds to finding solutions for

¯̀
va(X)− ¯̀

vb(X) = 0

⇐⇒
¯̀(Ca)
¯̀(Sa)

−
¯̀(Cb)
¯̀(Sb)

= 0

⇐⇒
¯̀(Ca)¯̀(Sb)− ¯̀(Cb)¯̀(Sa)

¯̀(Sa)¯̀(Sb)
= 0

⇐⇒ ¯̀(Ca)¯̀(Sb)− ¯̀(Cb)¯̀(Sa) = 0 (4.1)

where Sx and Cx are random variables associated with source and code tree of V2V
code vx. As can be seen from (4.1), the problem is a polynomial root finding problem,
which can be treated as discussed in Sec. 4.1.

The above algorithm derives a number disjoint subintervals and selects for each
interval the V2V code of minimum redundancy out of all candidate V2V codes.

4.4 Polynomial-based Tunstall algorithm

The idea of using polynomials in p instead of constant values can also be applied to
Tunstall’s algorithm [23]. Tunstall codes are so-called variable-to-fixed-length (V2F)

48

4.4 Polynomial-based Tunstall algorithm

2p0

3p1

3p2

p3

∑

p0+
p1+
p2

p0+p1+p2+p3 p
1+p

2

∑

Figure 4.3: Example for rewriting the average source word length as sum of internal node
probabilities.

codes, which means that all code words are of the same length. I.e., the code tree is
a perfect binary tree.

Review of Tunstall codes

Tunstall’s algorithm yields optimal V2F codes in an elegant way and with low compu-
tational complexity as follows. When the code tree is a perfect binary tree of a given
depth d, the average code length according to (3.6) can be written as

¯̀
v(X) =

d
¯̀(S)

(4.2)

and an optimal V2F code is found by maximizing the average source word length (3.2).
In order to yield an intuitive view of Tunstall’s algorithm, ¯̀(S) shall first be rewritten as
the sum of the probabilities of all internal nodes of the source tree including the root
node. An example for this is given in Fig. 4.3. The average source word length
is the weighted sum of the source word length with the weights being the leaf node
probabilities. I.e., the sum over the terms in the left-hand box in Fig. 4.3. Each of the
source word probabilities appears with the multiplicity equal to the length of the source
words. When rewriting each term as sum of leaf node probabilities (e.g., p1 + p1 + p1

instead of 3p1), there are as many summands for each term as nodes are visited when
traversing from the leaf node to the root node (including the root node). When moving
a summand to each of these internal nodes, each internal node yields exactly one
summand of each leaf node connected via its child branches. Thus, the summands
of an internal node equal the probability of the internal node. And since there were
no summands added or removed, the sum over all terms must still equal the average
source word length. An example of this is given on the right-hand side of Fig. 4.3.

49

4. JOINT V2V CODE AND PROBABILTIY INTERVAL DESIGN

Tunstall codes can be derived by making use of this representation of the average
source word length in a source tree growing approach. When starting with a root
node with two connected leaf nodes for growing a source tree, a sequence of tree
growing steps can be carried out until the source tree has as many leaf nodes as the
perfect binary code tree of the predefined depth d. If the right tree growing decisions
are made, the result will yield a source tree with maximum expected source word
length. From the observation that the expected source word length equals the sum of
the internal nodes probabilities follows that a particular source tree growing step will
increase the expected source word length by the probability of this leaf node because
it becomes an internal node. Consequently, the leaf node with the highest increase
of the expected source word length, when extended, is the one with the highest leaf
node probability. An extension step corresponds to replacing the largest value from
the set of leaf node probabilities with two smaller values. Consequently, extension
decisions cannot become incorrect because of subsequent extension decisions and
the resulting source tree must have maximum average code word length.

Polynomial-based Algorithm

As discussed above, Tunstall codes are grown by repeatedly extending the source
words with the highest probability yielding an optimal V2F code. When the source
word probabilities are polynomials in p, the source word with the hightst probability
may change depending on p. As in the polynomial-based Huffman algorithm, proba-
bility intervals can be derived such that for each interval, one particular source word
has a higher probability than all other source words for any value of p in the interval.

An algorithmic description for jointly deriving Tunstall codes and intervals for
which they are optimal V2F codes is as follows:

1. Start with a binary tree of height 1 and associate with it an interval I for which a
set of Tunstall codes shall be derived, e.g., I = [0, 0.5].

2. Derive the probability polynomials pi for each leaf node of the tree.

3. Derive all values of p where any two probability polynomials have the same value
and which are in the interval I. These are the roots of all differences of the
probability polynomials pi − pk ∀ i 6= k in I.

4. Subdivide the interval I into non-overlapping subintervals according to the roots

50

4.5 Polynomial-based package merge algorithm

found in step 3 neglecting intervals of zero width. Associate with each subinter-
val, a copy of the binary tree which belongs to the original interval I.

5. For each subinterval, find the leaf node whose probability polynomial pi has the
highest value for an arbitrary value of p in the subinterval. Extend this leaf node
by adding two branches with two new leaf nodes.

6. For each subinterval separately, continue at step 2 until the binary tree has as
many leaf nodes as desired. E.g., for a Tunstall code with length k code words,
stop when the binary tree has 2k leaf nodes.

7. Merge all neighboring subintervals whose binary trees have identical average
source word length polynomials when used as source tree. Associate with the
merged interval an arbitrary one of the original intervals binary trees.

The above algorithm yields a set of binary trees with associated intervals which are
the source trees of Tunstall codes.

Using the example of Tunstall codes, the property that polynomial-based algo-
rithms yield a unique number of results (with intervals) for a given algorithm is demon-
strated. Tab. 4.1 shows the counts of possible canonical1 Tunstall codes for given

Code word length 2 3 4 5 6

Number of codes 2 5 12 28 61

Table 4.1: Counts of possible canonical Tunstall codes for given code word lengths.

fixed code word length ranging from 2 to 6. This results from the polynomial-based im-
plementation but is an intrinsic property of Tunstall codes. No other canonical Tunstall
codes exist for the given code word lengths.

4.5 Polynomial-based package merge algorithm

The package merge algorithm [53] by Larmore and Hirschberg can be understood
as generalization of the Huffman algorithm. For an i.i.d. source {S} over S, it finds
an optimal prefix-free code when the maximum code word length is restricted to a
predefined value d with dlog2(|S|)e ≤ d ≤ H whereH is the height of the corresponding
Huffman code. When d = H, the resulting code is a Huffman code.

1With canonical Tunstall code, the canonical representation as defined for V2V codes is meant.

51

4. JOINT V2V CODE AND PROBABILTIY INTERVAL DESIGN

Although it is possible to make the package merge algorithm polynomial-based,
it turns out to have by far more computational complexity than the polynomial-based
Huffman algorithm. However, many effort has been spent to reduce the complexity
of package merge [62, 63, 64, 65, 66, 57]. An in-depth discussion about the differ-
ences between the several package merge variants can be found in [57] and in [66].
Basically, the variants can be categorized into two types. The ones based on the
original package merge and the ones based on the so-called reverse package merge
approach [63]. The variants based on original package merge have particularly low
complexity when d ≈ H while the variants based on reverse package merge perform
best when d ≈ dlog2(|S|)e [66]. Since it is usually of interest to have code (and source)
trees of strongly limited height (as discussed in the next chapter), the reverse pack-
age merge variants seem to be the more attractive ones in the context of this work.
Furthermore, several optimizations can be applied which lead to the lazy reverse run-
length package merge algorithm [57, p. 201] for which a polynomial-based version is
derived. However, any of the variants yields identical results.

Review of the reverse package merge algorithm

In the following, the reverse package merge algorithm is shortly reviewed based on
the presentation in [57]. Any of the package merge variants derives as output for each
source symbol an optimal code word length, given the length constraint d. These code
word lengths represent a canonical code tree, which can be converted into a code tree
as described in [13, Sec. 5.2]. The reverse package merge algorithm initially assigns
the maximum allowed code word length d to each source symbol. These code word
lengths are then interatively shortened in a greedy manner until the Kraft inequality
[13] is fulfilled with equality. For an i.i.d. source {S} over S = {σ1, σ2, ..., σn} with each
σi having an associated code word length `i, which is initially set to `i = d∀σi ∈ S, the
sum in the Kraft inequality K0 is initially given as

K0 =

|S|∑
i=1

2−`i = |S|2−d. (4.3)

|S| may not exceed 2d in order to ensure that K0 doesn’t exceed 1. If |S| = 2d, the sum
in the Kraft inequality is 1 and no code word can be shortened. The interesting case
is, when |S| < 2d and consequently K0 < 1. Here, code words can be shortened until
K0 equals 1. Shortening a code word from length x to x − 1 increases the Kraft sum
by 2−x. I.e., shortening a length d code word by 1 adds 2−d to the Kraft sum while

52

4.5 Polynomial-based package merge algorithm

shortening a length d − 1 code word by 1 adds 2 · 2−d to the Kraft sum which is twice
as much. In general, each length-one code word shortening increases the Kraft sum
by a power of 2 times 2−d and consequently, the total required Kraft sum increase can
be expressed as an integer multiple of 2−d. More precisely, let

K̃0 = λ 2−d = 1−K0 (4.4)

be the value required to increase the Kraft sum to 1 where λ is the integer multiplier
for 2−d. Then

λ = 2d − |S|. (4.5)

Carrying out the reverse package merge algorithm corresponds to successively short-
ening code words and decreasing λ to 0. Shortening a length x code word by 1 reduces
λ by 2d−x, i.e., a power of 2. λ can be interpreted as money which can buy code word
shortenings. The optimal shortening steps minimize the average code length (3.6).
Since the average source word length ¯̀(S) is fixed, the average code word length

¯̀(C) =

|S|∑
i=1

pS(σi)`i (4.6)

can be minimized instead of (3.6). From (4.6) can be seen that shortening a code
word length `i by 1 decreases ¯̀(C) by pS(σi) independently of the length `i. The de-
crease of λ, however depends on the current length of a code word. Interpreting λ as
money to buy code word shortenings, the ‘price‘ of shortening a code word doubles
with each shortening step already applied to this code word. The reverse package
merge algorithm selects the code words to shorten by maximizing the associated de-
crease of ¯̀(C) for a given price. Furthermore, it has to ensure that exactly all of the
money is spent in the end. I.e., λ has to reduce to 0. To accomplish this, the binary
representation of λ is derived where the bits shall be given as b1, b2, · · · , bk with b1

being the LSB and bk being the MSB. Bits of value 1 can buy code word shortenings.
E.g., b1 = 1 could buy a shortening of a length d code word while b2 = 1 could buy
a shortening of a length d − 1 code word or, alternatively, two length d code words.
Conversely, b1 = 1 cannot buy a length d − 1 shortening. For this reason, bits of λ
are spent starting from the LSB. E.g. if b1 = 1, out of all length d code words, the one
with the hightest associated source word probability is shortened by 1. Next, if b2 = 1,
it can either shorten the length d − 1 code word with highest associated source word
probability, or the two length d code words with highest associated source word proba-
bilities, depending of which leads to the larger decrease of ¯̀(C). The reverse package

53

4. JOINT V2V CODE AND PROBABILTIY INTERVAL DESIGN

merge algorithm maintains for each bit bi of λ, a row ri of purchasable items, ordered
by the decrease of ¯̀(C) which the item would lead to (the so-called item probability) in
decreasing order. A purchasable item contains either a shortening of a length d+ 1− i
code word or two items of the previous row ri−1. The algorithmic description of the
whole reverse package merge algorithm is as follows:

1. Initialize two empty rows r̃ and r1. Initialize a bit index j with 1.

2. For each source word σi, create an item consisting of a list of indexes and an
item probability where the list of indexes is initialized with index i and the item
probability is set to the source word probability pS(σi). Add all items to the list r̃
and sort list r̃ by the item probability of the items in descending order.

3. Add a copy of all items in list r̃ to list rj such that list rj is sorted afterwards (this
corresponds to interleaving elements of two sorted lists such that the resulting
list is sorted).

4. When bit bj = 1, remove the first item of row rj and for each index i in the list of
indexes, shorten the code word associated with source word σi by 1. Note that
the list of indexes may contain a particular index more than once. In this case,
the associated code word is shortened by 1 for each occurrence of the index.

5. If bj is the MSB of λ, terminate. Otherwise, increase the bit index j by 1 and
initialize an empty row rj (the next row).

6. Remove the first two items of row rj−1 and merge them by summing their item
probability and by concatenating their lists of indexes. Add the merged item
to row rj (a merged item is also denoted package where the package merge
algorithm is named after).

7. If row rj−1 contains more than one item, continue with step 6. Otherwise proceed
with step 3.

Several optimizations can be applied to the reverse package merge algorithm in order
to reduce the computational complexity.

Lazy and runlength extension of reverse package merge

The probably most relevant reduction of computational complexity can be achieved
with the so-called lazy technique [57]. Instead of computing all items of all rows rj ,

54

4.5 Polynomial-based package merge algorithm

the creation of items is done on demand. I.e., when a requests to remove items
occurs in step 4, this item is derived, including the generation of all possibly related
items. To accomplish this, for each row a copy of row r̃ is maintained in order to be
able to track for which row, items stemming from row r̃ have already been removed.
This row is denoted r̃j . Whenever a request to remove the first item of row rj occurs
(without having precomputed row rj), the question arises what the first item of row rj

can be. It is either a package of the first two items of row rj−1 or the first item of row
r̃j , depending on which of both has the higher item probability. This involves deriving
(but not yet removing) the first two packages of row rj−1 which is done by recursively
repeating this procedure.

The resulting algorithm is the lazy reverse package merge algorithm and it avoids
the creation of a large number of items which are not needed. A further improvement
which can be applied is the so-called runlength concept. Roughly speaking, it can be
seen as an improved sorting technique where source symbols which have identical
probability are treated together for sorting since such symbols will always appear in
an uninterrupted sequence in the sorted result. This, however, requires to determine
the groups of symbols of the same probability in advance. As discussed in the next
section, this is a beneficial improvement for a polynomial-based implementation of
reverse package merge.

Polynomial-based implementation

The lazy reverse runlength package merge algorithm can be made polynomial-based
by implementing it as finite-state machine according to the concept in Sec. 4.1.1. The
resulting implementation is very extensive and a detailed description of it would go
beyond the scope of this work. Instead, a number of specific aspects is discussed.

Firstly, a concept for sorting source word probability polynomials pS(σi) as required
in step 2 of the algorithm is described. Before carrying out the actual sorting, identical
polynomials are determined according to the runlength concept as described in Sec.
4.1.2. The yielded identical polynomials can be treated as a group during the subse-
quent sorting algorithm. This happens without subdividing intervals. The runlength
extension is particularly useful in the case of source trees. For a length k source word,
only k+ 1 different probability polynomials exist and consequently, for a source tree of
height h, the number of different source word polynomials is upper-bounded by

N̂h =

h∑
n=1

n+ 1 = h+

h∑
n=1

n =
h2 + 3h

2
. (4.7)

55

4. JOINT V2V CODE AND PROBABILTIY INTERVAL DESIGN

The number of possible different source words of length h is 2h and consequently, for
a source tree of height h, the number of different source words is upper-bounded by

Ñh =

h∑
n=1

2n = 2h+1 − 2. (4.8)

However, for a single source tree of height h, the number of source words cannot
exceed

N̄h = 2h, (4.9)

which is a much better upper bound. When comparing N̂k with N̄k, it becomes clear
that the runlength extension can greatly reduce the complexity of the reverse package
merge algorithm for source trees (for k > 3).

The lazy concept corresponds to only requiring a few of the largest polynomials out
of a number of polynomials. For the remaining polynomials, their order is unimportant.
To take advantage of this property, an appropriate sorting algorithm must be used.
The so-called heap sort algorithm seems perfectly suited for this purpose. It is known
to be asymptotically optimal in terms of computational complexity and furthermore,
the sorted items are derived in descending order. In the case where only a number
of largest items is required, the heap sort algorithm can be terminated after sufficient
items are derived.

4.6 Chapter summary

In this chapter, a concept for jointly deriving V2V codes and associated probability
intervals is presented. It is based on the idea to use a variable probability of one of
the binary source to be encoded instead of a fixed value. It turned out that many
algorithms for code tree design can also be carried out when the probability of one of
the binary source is a variable. The main difference to conventional algorithms is that
probabilities occur as polynomials in the probability of one and that polynomial roots
need to be evaluated whenever a comparison of two probabilities is required by the
algorithm.

An interesting property of polynomial-based algorithms is that they partition the
probability interval into a set of disjoint and contiguous subintervals for which analytical
exact interval boundaries are also yielded by the algorithm. Such a set of intervals and
associated codes could directly be used in a P coder.

56

4.6 Chapter summary

For some algorithms, like the Huffman algorithm or the Tunstall algorithm, a
polynomial-based version is relatively simple to achieve while for some other algo-
rithms this is much more complicated. For this purpose, the concept of finite-state
machine-based algorithms was introduced. The algorithm, from which a polynomial-
based version shall be desired, a finite-state machine-based implementation with par-
ticular properties is created. Such an implementation can transparently be converted
into a polynomial-based version. This idea is applied to the very complex lazy reverse
runlength package merge algorithm in order to obtain a polynomial-based implemen-
tation. The algorithms derived in this chapter are the basis for the derivation of V2V
codes in the next chapter.

57

5

Design of limited size V2V codes

The concept of systematic V2V codes as presented in Sec. 5.5.2 is already published
in [67, 68, 69].

As discussed in Ch. 3, V2V codes can be arbitrarily large and approach the source
entropy arbitrarily close. For practical applications, restrictions may be introduced to
the properties of the V2V codes to be used. These could be of various kinds as
a limited source or code tree height, a limited number of leaf nodes for source and
code tree, a minimum number of source symbols per code word and so forth. Given
such constraints, the target of V2V code design is to find minimum redundancy codes.
For the most types of V2V codes, efficient algorithms for finding optimal codes are
not known. The literature related to V2V code design usually deals with efficient but
suboptimal algorithms. In contrast to this, the design of optimal codes is addressed
in this chapter, employing exhaustive search wherever necessary. Particularly for the
PIPE coding system, a set of appropriate V2V codes needs to be designed only once,
covering the whole probability interval. Therefore, designing V2V codes by exhaustive
search is a one-time effort which is worth to invest since the resulting coding system
is more efficient than a system with suboptimal V2V codes.

In the following, the polynomial-based algorithms as presented in the previous
chapter are used to derive the different kinds of limited size V2V codes along with
associated probability intervals.

5.1 The set of all possible V2V codes

In order to discuss the various types of restrictions which can apply to V2V codes, the
set of all possible V2V codes without any restrictions shall be defined first. For this

59

5. DESIGN OF LIMITED SIZE V2V CODES

purpose, let P be the set of all possible full binary trees and for i ∈ N, let Pi be the set
of all full binary trees with exactly i leaf nodes. Then

P =
⋃
i∈N

Pi+1. (5.1)

Note that P0 = P1 = ∅. As described in Ch. 3, a V2V code consists of a source tree
S ∈ Pi and a code tree C ∈ Pi, which are full binary trees with the same number i of
leaf nodes, and a bijective mapping implemented by a permutation function π ∈ Πi,
where

Πi = {π1, π2, . . . , πi!} (5.2)

is the set of all possible permutations of i items. Thus, the set of all V2V codes with i
leaf nodes is defined as

Vi = Pi ×Πi × Pi (5.3)

with each element of Vi being a triple of the form

v = (S, π,C). (5.4)

The set of all possible V2V codes V is then given as

V =
⋃
i∈N

Vi+1. (5.5)

Given S ∈ Pi and C ∈ Pi, one can find a (not necessarily unique) π ∈ Πi, such that
the average code length, defined as in (3.6), of the triple (S, π,C) is less or equal than
the average code length of any triple (S, π′,C), π′ ∈ Πi: Simply sort the source words
by their probabilities and the code words by their lengths and assign source words
with higher probabilities to code words with shorter lengths. Designing V2V codes of
limited size (in some sense), can be seen as defining a finite subset of V, denoted V′,
which contains all V2V codes that meet the size criteria. Optimal V2V codes are then
found by minimizing the average code length over V′ for a given p, i.e., by solving

vopt(X) = arg min
v∈V′

¯̀
v(X). (5.6)

This concept is basically an exhaustive search. While it is also possible to define
infinite subsets of V, for infinite subsets V′ ⊆ V a code v ∈ V ′ with minimal redundancy
does not need to exist. An example for this phenomenon is the set of all so-called fixed-
to-variable length (F2V) codes, defined in Sec. 5.4.1, since, as argued in Sec. 3.4, the
infimum of the redundancies of all F2V codes is zero. A way to deal with infinite sets

60

5.2 V2V codes with Huffman or package-merge code trees

of V2V codes (i.e., subsets of V) is to split them into finite subsets by introducing some
parameter as, e.g. the source tree height in the case of F2V codes. When an efficient
algorithm for deriving optimal codes for these finite subsets is found, it is commonly
referred to as optimal algorithm for the associated infinite subset. An example for this
is the Tunstall algorithm which finds optimal variable-to-fixed-length (V2F) codes as
discussed in 5.4.2.

5.2 V2V codes with Huffman or package-merge code trees

Finding optimal V2V codes in a finite set V′ of V2V codes (i.e., a subset of V) can be
carried out by solving (5.6). Huffman’s algorithm, or the more general package merge
algorithm may be beneficial in solving (5.6) when V′ has particular properties. Let

St : V→ P, (S, π,C) 7→ S (5.7)

yield the source tree of a V2V code. Consequently, St(V′) is the set of all source trees
occurring in V2V codes in V′. Let Hu(S, X) yield a V2V code with a Huffman code as
code tree for a given source tree S and binary random variable X. Analogously, let
Pm(S, X, d) be a V2V code with a code tree derived by the package merge algorithm
with maximum code tree height d for a given source tree S and binary random variable
X. The set

V′H(X) = Hu(St(V′), X) (5.8)

contains all V2V codes constructed by combining each source tree in V2V codes of
V′ with the corresponding Huffman code tree for a given binary random variable X.
When

Hu(St(V′), X) ⊆ V′, (5.9)

(5.6) can be written as
v′opt(X) = arg min

v∈Hu(St(V′),X)

¯̀
v(X), (5.10)

since it is well-known that for a given source tree S, Huffman’s algorithm [21] leads to
a minimum redundancy V2V code. In other words, instead of solving (5.6) over V′, it
is solved over a subset of V′ containing only V2V codes that have Huffman codes as
code trees. When

|Hu(St(V′), X)| � |V′|, (5.11)

solving (5.10) is much less complex than solving (5.6) while still yielding an optimal
result. I.e., (5.10) can be seen as an algorithmic optimization over (5.6) which is

61

5. DESIGN OF LIMITED SIZE V2V CODES

Name S3 1 S3 2 S3 3 S3 4 S3 5

Ik (0, 0.25] (0.25, 0.29] (0.29, 0.33] (0.33, 0.43] (0.43, 0.5]

M(σi) 3 2 2 2 1 1 0 2 1 0 2 2 2 1 1 0 3 2 1 1 0 1 0

N(σi) 0 1 1 1 2 2 2 0 1 1 0 1 1 2 2 2 0 1 1 1 2 0 1

`(k(σi)) 1 3 3 3 5 5 4 1 2 2 1 3 3 4 4 3 2 3 2 2 3 1 1

Table 5.1: Descriptive names, intervals Ik, and canonical source and code words of opti-
mal V2V codes with maximum source tree height 3.

applicable only if the property defined by (5.9) holds. This property on subsets of V
will be referred to as Huffman property of a set of V2V codes. Following the same
argumentation for the package merge algorithm, the package-merge property can be
defined.

5.3 Evaluation method

When the optimal codes are derived for a set of V2V codes using polynomial-based al-
gorithms according to Ch. 4, each of the codes is associated with a probability interval.
A common way to evaluate the compression performance of the codes is to compare
their redundancy. To give an example, the optimal V2V codes where the source tree
height doesn’t exceed 3 are evaluated. They are listed in Tab. 5.1 and their redun-
dancy is depicted in Fig. 5.1. The different graphs can unambiguously be associated
with the intervals in Tab. 5.1. Since a graph belongs to the interval where it has the
lowest redundancy (amongst all graphs), the interval boundaries must be located at
probabilities where two neighboring graphs intersect. In the following diagrams, only
the envelope of the graphs belonging to the optimal codes of a particular set of V2V
codes are depicted. In this way, a comparison of two or more sets of V2V codes is
possible without making the diagrams too confusing. The canonical representations
of many V2V codes presented in the following sections are listed in Appendix A where
also the associated interval boundaries can be looked up.

5.4 Selected sets of V2V codes

In the following, selected subsets of the set of all possible V2V codes V are discussed.
The target is to derive and evaluate codes that are particularly suitable for the use in

62

5.4 Selected sets of V2V codes

Figure 5.1: Redundancy of optimal V2V codes with maximum source tree height 3.

the PIPE coding concept. The canonical representations of the V2V codes discussed
in this section are listed in Appendix A.1 together with the associated probability inter-
vals.

5.4.1 Fixed-to-variable length codes

A widely known set of V2V codes is the set of fixed-to-variable length codes for which
source trees must be perfect binary trees. Optimal F2V codes are determined by
applying Huffman’s algorithm to a given perfect binary source tree. The redundancy
of optimal F2V codes approaches zero when the source tree height goes to infinity.
Such codes may be beneficial in applications where encoder complexity shall be low
because the number of symbols that are used to form a code word is fixed. I.e., given
a sequence of input symbols, it can be determined in advance which of them will be
used for a code word, independently of the values of the symbols. Fig. 5.2 shows
the redundancy envelopes of optimal F2V codes derived by the polynomial Huffman
algorithm. It is interesting to see that the redundancy of F2V codes with source tree
height k is not always smaller than the redundancy of F2V codes of smaller source
tree height. I.e., it may sometimes be beneficial to use a shorter source tree height
than the maximum allowed.

63

5. DESIGN OF LIMITED SIZE V2V CODES

Figure 5.2: Envelopes of the redundancy of F2V codes of source tree height 2 to 5.

5.4.2 Variable-to-fixed length codes

Variable-to-fixed length (V2F) codes have code trees which are perfect binary trees.
Optimal V2F codes are known as Tunstall codes after an algorithm by Tunstall [23].
They are also asymptotically optimal [70, 39]. Fixed-length code words may be ad-
vantageous because the length of the code words is fixed and it can be determined
in advance at which position in the bit stream a particular code word is located. The
redundancy envelope of Tunstall (V2F) codes with code word length ranging from 2 to
6 is depicted in Fig. 5.3. Note that, as expected, the interval boundaries associated
with Tunstall codes with code tree height 2 and 3 as depicted in Fig. 5.3 and as listed
in Tab. A.10 and Tab. A.11 match the Tunstall regions in [56, Fig. 4] for j = 2 and
j = 6, respectively.

The redundancy of V2F codes tends to be higher than of F2V codes with compa-
rable size. Particularly, V2F codes seem to have a systematic redundancy peak which
moves from around p = 0.2 towards p = 0 for increasing code tree height.

5.4.2.1 Redundancy drawback of V2F and F2V codes

V2F and F2V codes have a systematic disadvantage in terms of redundancy com-
pared to V2V codes. More precisely, from a V2F code which has an average code

64

5.4 Selected sets of V2V codes

Figure 5.3: Envelopes of the redundancy of V2F (Tunstall) codes with code tree height
ranging from 2 to 6.

length �̄v(X) < 1, a V2V code with smaller average code length can be derived. This
works as follows. Any source tree has (at least) two source words σa and σb where
the associated leaf nodes are siblings. Since all code words are of the same length,
the two source words can always be associated with two code words where the leaf
nodes are siblings as well. Consequently, the siblings in the source tree and the sib-
lings in the code tree form an inner V2V code according to Sec. 3.9. This shows that
canonical V2F codes are always composite (except the trivial V2F code with source
and code tree height equal to 1). Since the average code length of this inner V2V
code equals 1, the average code length of the corresponding outer V2V code must be
smaller than of the original V2F code according to Lemma 3.5. For F2V codes, the
same argumentation can be used with source and code tree exchanged.

5.4.3 Leaf-limited V2V codes

The next subset of V to be discussed contains all possible V2V codes with the number
of leaf nodes |S| (of source tree and code tree) not exceeding a predefined maximum
count x. V2V codes in this set

Ṽx = V2 ∪ V3 ∪ · · · ∪ Vx (5.12)

65

5. DESIGN OF LIMITED SIZE V2V CODES

are denoted leaf-limited variable-to-variable length (LV2V) codes. This class of codes
is addressed in the most of the literature related to V2V codes [39, 22, 40, 38, 43, 37].
When analyzing the definition of LV2V codes, it becomes clear that each source tree
occurring in LV2V codes in Ṽx can be combined with any applicable code tree and any
applicable permutation. Thus, Ṽx has the Huffman property (i.e., (5.9) holds for Ṽx)
and optimal LV2V codes with maximum number of leaf nodes x are found by solving
(5.10) over Hu(St(Ṽx), X) for a given binary i.i.d. source X.

Optimal leaf-limited V2V codes

To the authors best knowledge, an efficient algorithm for finding leaf-limited V2V codes
with minimum redundancy is unknown. For finding optimal codes in Ṽx, an exhaustive
search is applied to the different source trees P̃x = St(Ṽx) in Ṽx since code trees are
Huffman codes. Consequently, the count of different source trees P̃x is most relevant
for the complexity of the exhaustive search. For n ∈ N let

Cn =
2n!

n!(n+ 1)!
,

the so called Catalan number, see [71, p. 114]. Then it is well-known that the number
of full binary trees with n leaf nodes equals Cn−1 [71, p. 127]. The number of distinct
source trees in Ṽx is thus given as

|P̃x| =
x−1∑
n=1

Cn =

x−1∑
n=1

(2n)!

(n+ 1)!n!
. (5.13)

Tab. 5.2 shows the numbers of source trees in P̃x for 2 < x < 14. Canonical source

|P̃3| |P̃4| |P̃5| |P̃6| |P̃7| |P̃8| |P̃9| |P̃10| |P̃11| |P̃12| |P̃13|
3 8 22 64 196 625 2055 6917 23713 82499 290511

Table 5.2: Counts of source trees with the number of leaf nodes not exceeding x with
1 < x < 10.

trees can be used here in order to further reduce complexity of the exhaustive search.
However, it turned out, that on a modern computer, an exhaustive search over a set
of source trees whose cardinality is approximately |P̃13| can be carried out easily. The
redundancy envelopes for codes with a maximum number of leaf nodes ranging from
3 to 9 are depicted in Fig. 5.4. Since Ṽx ⊂ Ṽx+1, all optimal LV2V codes in Ṽx are in
Ṽx+1 as well and thus the redundancy is a monotonically decreasing function of x.

66

5.4 Selected sets of V2V codes

Figure 5.4: Envelopes of the redundancy of LV2V codes with the maximum number of
leaf nodes ranging from 3 to 9.

5.4.4 Height-limited V2V codes

Two further parameters of V2V codes, for which it may be desirable to limit them, are
the maximum height of the source and code tree. V2V codes with limited maximum
source tree height are defined as

V̂x = {(S, π,C) ∈ V | ∀s ∈ S : �(s) ≤ x}. (5.14)

V2V codes of this type shall be denoted source-height-limited variable-to-variable
length (SV2V) codes. Analogously, V2V codes with limited code word length are given
as

V̄x = {(S, π,C) ∈ V | ∀c ∈ C : �(c) ≤ x} (5.15)

and these are denoted code-height-limited variable-to-variable length (CV2V) codes.

5.4.4.1 Optimal SV2V codes

Again, it is obvious that V̂x has the Huffman property (i.e., (5.9) holds for V̂x) and opti-
mal SV2V codes with maximum source tree height k are found by solving (5.10) over
Hu(St(V̂x), X) for a given binary i.i.d. source X. In order to evaluate the complexity of

67

5. DESIGN OF LIMITED SIZE V2V CODES

solving (5.10) over V̂x, the number of different source trees in

P̂x = St(V̂x) = {y ∈ P | ∀z ∈ y : `(z) ≤ x}, (5.16)

i.e., |P̂x| turns out to be most relevant. P̂x can be derived from P̂x−1 using the concept
found in [72, p. 717]. The argumentation is as follows. A full binary tree y of height
h with h > 0 can be split into two sub trees y0 and y1 by removing the root node and
making the two connected child nodes the root nodes of the sub trees. The heights
h1,2 of the two sub trees y1,2 then fulfill 0 ≤ h1,2 < h. When a tree in P̂x+1 is split in this
way, the resulting sub trees must be in

P̂∗x = P̂x ∪ {P ∗} (5.17)

where P ∗ shall be a tree only consisting of a root node. Consequently, a tree in P̂x+1

can be represented as the two subtrees which result from splitting, i.e., an ordered
pair of trees in P̂∗x. This leads to

|P̂x+1| = |P̂∗x|2 = (1 + |P̂x|)2. (5.18)

With the number of full binary trees |P̂1| of height 1 set to 1, the first six iterations
of (5.18) are given in Tab. 5.3. A lower bound on |P̂x| can be defined using the

|P̂1| |P̂2| |P̂3| |P̂4| |P̂5| |P̂6| |P̂7|
1 4 25 676 458329 210066388900 44127887745906175987801

Table 5.3: Count of full binary trees |P̂k| with 1 ≤ k ≤ 7.

approximation
|P̂x| = (1 + |P̂x−1|)2 > |P̂x−1|2. (5.19)

Starting with |P̂2| = 4, the lower bound is given as

|P̂x| > 22x−1
(5.20)

for x > 2. (5.20) shows that |P̂x| has at least double-exponential growth O(22n) which
makes solving of (5.10) practically infeasible for large x. For source trees of height not
exceeding x = 6, it may however be feasible to derive the optimal V2V codes.

As discussed in Sec. 3.6, for the redundancy of a V2V code it is sufficient to
only regard one of multiple equivalent source trees in a set of source trees. For source
trees of SV2V codes, it is thus sufficient to regard the set Eq(P̂x) with the same canon-
ical representations as P̂x. However, it is difficult to calculate the number |Eq(P̂x)| of

68

5.4 Selected sets of V2V codes

|Eq(P̂1)| |Eq(P̂2)| |Eq(P̂3)| |Eq(P̂4)| |Eq(P̂5)| |Eq(P̂6)|
1 4 21 253 12360 4450860

Table 5.4: Counts of distinct full binary trees |Eq(P̂x)| with 1 ≤ x ≤ 6.

source trees with distinct multisets of leaf node probabilities. Tab. 5.4 shows these
numbers which are derived by simulation. Since a simple closed-form expression for
deriving |Eq(P̂x)| is not known, few can be said about the order with which the size
of |Eq(P̂x)| grows in x. However, when comparing the cardinality of P̂x and Eq(P̂x)

for maximum source tree height x = 6, the number of elements is reduced by a fac-
tor of more than 47196 which makes the problem of finding optimal V2V codes for P̂6

much easier. For x > 6 it can be guessed that already |Eq(P̂7)| may be to large for
exhaustive search since |P̂7| > 4.4 · 1022.

The recursive code construction scheme described above can also be applied to
canonical source trees. Joining two source trees at their roots (creating a new root)
corresponds to prefixing all source words of the one source tree with a 0 and all source
words of the other source tree with a 1. This operation can be applied to canonical
source trees by appropriately increasing counts of ones or zeros. Consequently, a
better approximation of |Eq(P̂7)| is given as

|Eq(P̂7)| ≤ (1 + |Eq(P̂6)|)2 = 44508612 > 1.9 · 1013 (5.21)

which still seems too big for an exhaustive search.
The redundancy envelopes of optimal SV2V codes with maximum source tree

height ranging from 2 to 5 are depicted in Fig. 5.5. These codes tend to have a higher
redundancy than LV2V codes for probabilities close to 0, which makes sense because
a source word may be longer for an LV2V code than for an SV2V code that performs
similarly good for higher probabilities. E.g., when comparing the SV2V codes of max-
imum depth 4 with the LV2V codes with up to 7 leafs, they perform similarly good (in
terms of redundancy) for probabilities greater than 0.15 while the LV2V codes perform
much better at lower probabilities. Assuming the case where p = 0, the cheapest way
of encoding symbols is to map as many zeros as possible to a code word of length
1. For the SV2V codes of maximum depth 3, this would mean, three zeros can be
encoded with a 1 bit code word, yielding a redundancy of 1/3 bit while with an LV2V
code of up to 7 leafs a code word of six zeros can be realized which corresponds to
1/6 bit redundancy.

It is interesting to see that F2V codes of a particular source tree height mostly have

69

5. DESIGN OF LIMITED SIZE V2V CODES

Figure 5.5: Envelopes of the redundancy of SV2V codes with maximum source tree
height 2 to 5.

a higher redundancy than SV2V codes of the same maximum source tree height.
This can be observed when comparing the redundancy charts of SV2V codes of a
maximum depth k in Fig. 5.5 with the corresponding F2V codes of Fig. 5.2. I.e., in
some cases it may reduce the redundancy when shorter source words than these of
the maximum allowed length are used.

5.4.4.2 Optimal CV2V codes

CV2V codes are created by using the package merge algorithm instead of the Huffman
algorithm for code tree generation. The source tree height is only limited by the number
of code words and the number of code words is only limited by the maximum code
tree height. More precisely, for a maximum code tree height d, the maximum possible
number of leaf nodes (of source and code tree) is 2d. Obviously, when a code tree of
height d has 2d leaf nodes, all of them must be at the same level, which corresponds
to a perfect binary code tree. In this case, the optimal source tree can be derived
using Tunstall’s algorithm and the exhaustive search only needs to be applied to all
possible source trees with up to 2d−1 leafs. According to (5.13) the valid source trees
for CV2V codes of maximum code tree height d are P̃2d−1. The cardinalities of P̃2d−1

70

5.4 Selected sets of V2V codes

Figure 5.6: Envelopes of the redundancy of CV2V codes with maximum code tree height
1 to 3.

grow much faster in d than source trees for SV2V codes as can be seen in Tab. 5.5
for 1 < d < 7. Consequently, only very small optimal CV2V codes can be derived

|P̂3| |P̂7| |P̂15| |P̂31| |P̂63|
3 196 3707851 5175497420902740 > 3.2 · 1034

Table 5.5: Counts of source trees |P̂2d−1| for code trees of maximum height 1 < d < 7.

by exhaustive search. Fig. 5.6 shows CV2V codes with maximum code tree height
ranging from 1 to 3.

5.4.4.3 Optimal SCV2V codes

Next, V2V codes with limited source and code tree height are discussed. Such codes
shall be denoted SCV2V codes. Limiting source and code tree height of a V2V code
is of particular interest for an implementation of a V2V encoder or decoder that is
based on a lookup table. For example, a V2V encoder may use k input symbols to
access an array of size 2k. The addressed element stores the corresponding code
word and the length of the source word. Then it removes the source word from the

71

5. DESIGN OF LIMITED SIZE V2V CODES

Max. code tree height c
2 3 4 5 6

M
ax

.
so

ur
ce

tre
e

he
ig

ht
s 2 3 4 x x x

3 3 20 21 21 21

4 x 67 252 253 253

5 x 127 4369 12359 12360

6 x 159 31865 2167044 4450859

Table 5.6: Counts of distinct canonical source trees that can occur in SCV2V codes for
given maximum source and code tree height.

input sequence and outputs the code word. Using this approach, an array of size
2k is able to implement all V2V codes with maximum source tree height of k. The
same concept can be used for a decoder implementation when source and code tree
are exchanged. In a practical coding application, it is usually desired to have a good
trade-off between lookup table sizes in encoder and decoder and the corresponding
redundancy.

Limiting source and code tree height reduces the counts of applicable source trees
for exhaustive search compared to limiting only one of the two parameters. The counts
of distinct (canonical) source trees that can occur in SCV2V codes are given in Tab.
5.6. They are derived by intersecting sets of canonical source trees for SV2V codes
and CV2V codes. Not all of the s and c combinations make sense. A code tree of
height c has at least c+1 leaf nodes which requires a source tree of height dlog2(c+1)e
or more. Analogously, source trees of height s require code trees of height dlog2(s+1)e
or more. Fields for which these relationships are not fulfilled in Tab. 5.6 are marked
with an ‘x’. Figs. 5.7 and 5.8 show redundancy envelopes of a variety of different
SCV2V codes. They are derived by applying the polynomial-based lazy reverse run-
length package merge algorithm to the sets of source trees, which is, in the case of
maximum source and code tree height equal to 6, a substantial computational effort.
However, these codes (with maximum source and code tree height of 6) show a re-
markably low redundancy which makes them interesting for practical applications.

Memory requirements of SCV2V codes

The memory required to implement a particular SCV2V encoder with maximum source
tree height s and maximum code tree height c can be derived as follows. For each

72

5.4 Selected sets of V2V codes

Figure 5.7: Envelopes of the redundancy of SCV2V codes with maximum source and
code tree height S and C.

element in the table, a code word, its length and the source word length needs to be
stored. The length of a code word can be stored by using only one additional bit. This
is done by storing the code word left-aligned in the lookup table and adding a 1 bit
to it. The remaining bits up to c + 1 in total are filled with 0 bits. To unambiguously
determine a code word represented in this way, from the first c+1 bits of a lookup table
element, as many bits are removed from the right until a 1 is removed. The remaining
bits are the code word. Furthermore, the length of the source word requires �log2(s)�
bits. This amounts to

Menc = 2s(c+ 1 + �log2(s)�) (5.22)

bits. A decoder works in the same way, but with source and code tree exchanged.
Consequently, the memory for a decoder implementation is given as

Mdec = 2c(s+ 1 + �log2(c)�). (5.23)

Memory requirements for SCV2V encoders is listed in Tab. 5.7. For the decoder,
the same values apply with s and c exchanged. As in Tab. 5.6, combinations of s
and c which don’t make sense are marked with in ‘x’ in Tab. 5.7 as well. In summary,
SCV2V codes seem to be most suitable for lookup table-based encoding and decoding
applications.

73

5. DESIGN OF LIMITED SIZE V2V CODES

Figure 5.8: Envelopes of the redundancy of SCV2V codes with maximum source and
code tree height S and C.

Max. code tree height c
2 3 4 5 6

M
ax

.
so

ur
ce

tre
e

he
ig

ht
s 2 2 2.5 x x x

3 5 6 7 8 9

4 x 12 14 16 18

5 x 28 32 36 40

6 x 56 64 72 80

Table 5.7: Memory required for implementing a lookup table-based SCV2V encoder for
given maximum source and code tree heights in bytes.

5.5 Particular V2V codes

Several further types of V2V codes can be found in the recent literature. In the fol-

lowing, two kinds of V2V codes, which appear in the context of the standardization

of H.265/HEVC, are evaluated and compared to the size-limited V2V codes of the

previous sections.

74

5.5 Particular V2V codes

Figure 5.9: Envelopes of the redundancy of the 12 TMuC V2V codes.

5.5.1 HEVC-related V2V codes

The PIPE coding system, as originally proposed [29] as entropy coding engine for the

video compression standard H.265/HEVC, uses twelve V2V-based binary coders. The

algorithms for the design of these V2V codes is described in [9] and it is similar to the

exhaustive search for LV2V codes. The PIPE coding system and the set of 12 V2V

codes are included in the so-called Test Model under Consideration (TMuC) version

0.2 [73] as used during the standardization process of H.265/HEVC. This set of V2V

codes shall be denoted TMuC V2V codes in this text and its redundancy envelope

is depicted in Fig. 5.9. The canonical representations and associated probability

intervals are listed in Appendix A.2.1. When compared to the SCV2V codes with

maximum source and code tree height of 6, the TMuC V2V codes have a very similar

redundancy for pX(1) > 0.1. However, they have source tree heights of up to 12 and

code tree heights of up to 11 to achieve this. For pX(1) ≤ 0.1, SCV2V codes are not

satisfactory.

75

5. DESIGN OF LIMITED SIZE V2V CODES

5.5.2 Systematic V2V codes

Next, the so-called systematic V2V codes [69] are discussed which have a more or
less simple construction rule. The idea behind such codes is to implement them using
a simple logic and to avoid the requirement of a lookup table. However, since these
codes are still V2V codes, an implementation based on a lookup table is still possi-
ble if desired. Systematic V2V codes in combination with the PIPE coding concept
are proposed [67, 68] as a replacement of the CABAC entropy coding engine of the
H.265/HEVC standard. They are less complex than the TMuC V2V codes, but have a
slightly increased redundancy as discussed later. Furthermore, having only 8 instead
of 12 V2V codes is also a reduction of the complexity.

The systematic V2V codes of [69] are mainly based on two construction rules. The
so-called unary-to-rice codes and the bin-pipe codes. These codes are inspired by an
analysis of the structure of exhaustively derived V2V codes. It turns out that for the two
extreme cases pX(1) = 0 and pX(1) = 0.5, the V2V codes tend to develop a particular
structure. This is, for pX(1) = 0, a string of ones of maximum length, mapped to a
code word of length 1, leading to the unary-to-rice codes and for pX(1) = 0.5, most of
the source and code words are of same length. Only two source words are associated
with code words of a by 1 differing length.

Unary-to-rice codes

A unary-to-rice code of degree k has a truncated unary source tree with 2k + 1 leaf
nodes. The code word of the truncated source word (only consisting of ones) is of
length 1, all other code words are of length k + 1. Unary-to-rice codes are a special
case of the so-called block MELCODE1 by Ono et al. [24], which has a Golomb code
[75] as code tree. Furthermore, unary-to-rice codes appear in [34] and [35] where
they are denoted truncated run-length (TRL) codes. An example is given in Tab. 5.8.
A decoder implementation of such a code becomes relatively simple and could be
according to the following rule:

If the first symbol is 1, decode 2k ones. Otherwise, if the first symbol is 0, in-
terpret the next k symbols as binary representation of integer j and decode j ones
followed by one zero.

1The name “MELCODE” is presumably derived from “Mitsubishi Electric Company” (see Ch. 20.3.1
of [74]).

76

5.5 Particular V2V codes

Source word Code word
0 0000
10 0001
110 0010
1110 0011
11110 0100
111110 0101
1111110 0110
11111110 0111
11111111 1

Table 5.8: Unary-to-rice code of degree k = 3.

An encoder implementation could be similarly simple by maintaining a counter
which counts occurrences of ones until a zero occurs or until k ones are received.
Particularly for large k, unary-to-rice codes are very big and a counter-based encoder
or decoder as outlined above is very memory-efficient. A detailed discussion of a
counter-based implementation is given in [67].

An interesting property of unary-to-rice codes is that they are optimal for pX(1)→ 0

because the length of the source word consisting of only ones is maximized and the
length of the associated code word is minimized [40, Sec. 7.1.3]. Consequently, the
redundancy of a unary-to-rice code for a binary random variable X0 with pX0(1) → 0

is given as

Rv(X0) =
1

2k
. (5.24)

Fig. 5.10 shows the redundancy of unary-to-rice codes for k = 0, ..., 6. These codes
are the ideal supplement to SCV2V codes because they close the gap for pX(1) < 0.1.

Bin-pipe codes

While unary-to-rice codes are particularly suitable for probabilities close to zero, bin-
pipe codes have a low redundancy for probability around 1/2.

The source tree of a bin-pipe code of degree k has a source word consisting of k
ones and an associated code word consisting of k − 1 zeros. Furthermore, it has a
source word consisting of k − 1 zeros which has as associated code word consisting
of k ones. All other source words are of minimum possible length such that the soruce
tree is a full binary tree and the associated code words equal the source word. An

77

5. DESIGN OF LIMITED SIZE V2V CODES

Figure 5.10: Redundancy of unary-to-rice codes.

1

0

Figure 5.11: Source and code tree of bin-
pipe 4.

Source word Code word
0000 111
0001 0001
001 001
01 01
10 10
110 110
111 0000

Table 5.9: Bin-pipe 4 source
and code words.

example for this is given in Fig. 5.11 and Tab. 5.9. The redundancy of bin-pipe codes

is depicted in Fig. 5.12. The double truncated unary structure also allows for efficient,

counter-based implementations in the encoder and the decoder as described in [67].

Furthermore, note that bin-pipe code with k = 2 equals the unary-to-rice code with

k = 1.

78

5.5 Particular V2V codes

Figure 5.12: Redundancy of bin-pipe codes.

Proposed setup of systematic V2V codes

In this section, an exemplary PIPE coding setup using systematic V2V codes is dis-
cussed. In principle, with unary-to-rice codes, it is possible to cover the whole proba-
bility interval as can be seen from Fig. 5.10.

Since the smallest occurring probability in H.265/HEVC is p ≈ 0.02, the unary-to-
rice V2V codes with k < 6 shall be used. Only using these codes, however, results in a
relatively high overall redundancy. Consequently, for some of the ’redundancy peaks’
between unary-to-rice codes with 0 ≤ k ≤ 2, further V2V codes are added. In order
to also have systematic V2V codes to fill these gaps, and to not add too many further
codes, the bin-pipe code with k = 3 is selected for reducing the redundancy peak
between unary-to-rice codes with k = 0 and k = 1. For the second-largest redundancy
gap, unfortunately, no bin-pipe code is able to fill it. Instead, a F2V code with source
word length 3 is selected, which is denoted three bin code with source and code word
table according to Tab. 5.10. The three bin code is in fact one of the optimal F2V
codes and turns out to also have a structure that follows a simple construction rule.
The length of a code word equals one plus two times the number of ones of a source
word. This property can be used in encoder or decoder implementations to avoid the
use of lookup tables. More detail about a simple algorithmic implementation of the

79

5. DESIGN OF LIMITED SIZE V2V CODES

Source word Code word
000 0
001 100
010 101
100 110
011 11100
101 11101
110 11110
111 11111

Table 5.10: Source and code words of the ’three bin code’.

three bin code can be found in [67].
Fig. 5.13 shows the redundancy envelope of the set of six unary-to-rice codes1

plus the bin-pipe code with k = 3 and the three bin code. The redundancy peaks in

Figure 5.13: Redundancy envelope of the systematic V2V codes.

between two neighboring V2V codes redundancy curves are now relatively balanced
such that a further V2V code would not contribute much to a redundancy reduction.
This configuration is designed to have low redundancy over the whole probability in-

1Two of the unary-to-rice codes are also bin-pipe codes.

80

5.6 Chapter summary

terval and is proposed to the H.265/HEVC video compression standard [67, 68]. The
canonical representations of the systematic V2V codes of Fig. 5.13 and the associated
probability intervals are listed in Appendix A.2.2.

5.6 Chapter summary

In this chapter, V2V codes with minimum redundancy for several constraints are de-
rived. The basic principle is to determine a candidate set of canonical source trees
and to derive associated code trees using the polynomial-based algorithms of the pre-
vious chapter. From the set of V2V codes found in this way, the ones with minimum
redundancy are selected.

The investigated constraints are a limited number of leaf nodes of source and code
tree, a limited maximum source tree height, a limited maximum code tree height, and
combinations of them. It was shown that each particular class of codes has its own
complexity, primarily determined by the cardinality of the associated candidate set of
source trees. However, by exploiting the insights gained in Ch. 3, the cardinality
of some candidate sets of source trees could greatly be reduced. Furthermore, it
was pointed out that a limited source and code tree height is of particular interest for
lookup table-based implementations of V2V codes. Consequently, a wide variety of
such codes was derived.

The analysis of exhaustively derived V2V codes reveals several structural proper-
ties from which construction rules for V2V codes can be derived. This leads to the
concept of systematic V2V codes. Of particular interest amongst the systematic V2V
codes are the unary-to-rice codes, which appear several times in the related literature.
It was shown that they are almost the only option for sources with a particularly small
probability of one. To derive a P coder with a low redundancy, it makes sense to com-
bine V2V codes that are found by exhaustive search with unary-to-rice codes as will
be shown in the next chapter.

81

6

Application of PIPE coding to
H.265/HEVC

The concept of complexity-scalable entropy coding of Sec. 6.3 is already published in
[68, 76, 77].

In this chapter, various PIPE coding configurations are designed for the video coding
standard H.265/HEVC in order to explore strengths and weaknesses of the concept.
The focus lies on redundancy, complexity, and throughput. In Sec. 6.1, the V2V
codes designed in Ch. 5 are used to create a PIPE coding setup with low redundancy.
Various strategies for the selection of V2V codes for a P coder setup are presented.
Furthermore, the redundancy of the M coder of CABAC is analyzed and compared
to the various P coders. The aspects of complexity and throughput are discussed in
Sec. 6.2 for CABAC and PIPE coding. The focus lies on the differences between the
M and P coder with respect to the capabilities for parallelization and joint processing
of consecutive bins. Based on this, an exemplary complexity-scalable configuration is
presented in Sec. 6.3, where the trade-off between compression efficiency and com-
plexity can be configured according to the needs of the coding application. Techniques
for increasing the throughput of PIPE coding are discussed in Sec. 6.4.

6.1 P coder design

In this section, the aspects of selecting appropriate V2V codes for a P coder are dis-
cussed. One possible strategy for P coder design is to first preassign the number of
desired bin coders and then select appropriate V2V codes for them out of a candidate

83

6. APPLICATION OF PIPE CODING TO H.265/HEVC

set. The statistical properties of the coding bins {Gi} are given as conditional pmfs
pGi(·|gi−1) during encoding or decoding in the P coder. The coding bins are distributed
to the individual V2V codes according to their conditional probabilities of one so that
each V2V coder receives symbols with similar conditional pmfs. This is an important
aspect since the V2V codes of the previous chapters are optimized for i.i.d. sources.
Moreover, the calculation of the average code length of a V2V code according to (3.6),
which is the basis for the most algorithms of the previous chapters, requires (3.1) to
hold. An example for a situation where (3.1) does not hold is a stationary Markov
source where the source word probabilities differ from (3.1) as shown by Wiegand and
Schwarz in [8, Sec. 3.3.2].

A typical P coder is usually designed to operate close to the entropy rate (2.6). I.e.,
the average code length per symbol (2.7) of the coding bins {Gi} encoded with a P
coder shall be minimized. For this purpose, the average code length per symbol shall
be derived for PIPE coding in the following. In CABAC and PIPE coding, the values
that the conditional probability of one pGi(1|gi−1) of a coding bin gi can attain are in
the set

Q = {ωk|k ∈ {0, 1, . . . , 62}} (6.1)

with

ωk =
1

2
αk (6.2)

and where α = 63
√

3/80 ≈ 0.949 is a parameter of the probability estimator [5]. Let Bk
be a bin coder and let `Bk

({Gi}, (g1, g2, . . . , gn)) be the encoded length of a sequence
g1, g2, . . . , gn from random process {Gi} when encoded with bin coder Bk. Moreover,
assume a P coder B′ that employs a separate bin coder Bk for each ωk so that the
encoded length `B′({Gi}, (g1, g2, . . . , gn)) of a sequence of coding bins g1, g2, . . . , gn

can be expressed as

`B′({Gi}, (g1, g2, . . . , gn)) =
62∑
k=0

`Bk
(ζ({Gi}, (g1, g2, . . . , gn), ωk)) (6.3)

where ζ({Gi}, (g1, g2, . . . , gn), ωk) shall be defined as the subsequence of coding bins
in the sequence g1, g2, . . . , gn for that the associated conditional probability of one
pG1(1), pG2(1|g1), . . . , pGn(1|gn−1) equals ωk. The average code length per symbol

84

6.1 P coder design

(2.7) that P coder B′ produces when encoding {Gi} is given as

L̄({Gi}, B′)

= lim
n→∞

1

n

∑
(g1,g2,··· ,gn)∈Bn

p{Gi}(g1, g2, . . . , gn)

62∑
k=0

`Bk
(ζ({Gi}, (g1, g2, . . . , gn), ωk)).

(6.4)

Note that the limit does not need to exist.
Next, let B̃ be a P coder for that ideal binary arithmetic coders are used as bin

coders Bk. More precisely, bin coder Bk shall be an ideal binary arithmetic coder
B̂(Yk) for a random variable Yk. Substituting (2.9) in (6.3) yields

`B̃({Gi}, (g1, g2, . . . , gn)) = −
62∑
k=0

(
M(ζ({Gi}, (g1, g2, . . . , gn), ωk)) log2 pYk(1)

+N(ζ({Gi}, (g1, g2, . . . , gn), ωk)) log2 pYk(0)
)
, (6.5)

which is the encoded length of sequence g1, g2, . . . , gn when encoded with the ideal
binary arithmetic P coder B̃. The average code length per symbol (6.4) for encoding
{Gi} with P coder B̃ is given as

L̄({Gi}, B̃) =

−
62∑
k=0

lim
n→∞

1

n

∑
(g1,··· ,gn)∈Bn

p{Gi}(g1, . . . , gn)M(ζ({Gi}, (g1, . . . , gn), ωk)) log2 pYk(1)

−
62∑
k=0

lim
n→∞

1

n

∑
(g1,··· ,gn)∈Bn

p{Gi}(g1, . . . , gn)N(ζ({Gi}, (g1, . . . , gn), ωk)) log2 pYk(0).

(6.6)

Let WM ({Gi}, ωk) be defined as

WM ({Gi}, ωk) = lim
n→∞

1

n

∑
(g1,··· ,gn)∈Bn

p{Gi}(g1, . . . , gn)M(ζ({Gi}, (g1, . . . , gn), ωk))

(6.7)
and let WN ({Gi}, ωk) be defined as

WN ({Gi}, ωk) = lim
n→∞

1

n

∑
(g1,··· ,gn)∈Bn

p{Gi}(g1, . . . , gn)N(ζ({Gi}, (g1, . . . , gn), ωk)).

(6.8)
(6.7) and (6.8) can be interpreted as the average relative frequency of ones and zeros
respectively, that occur in coding bins of {Gi} for that the conditional probability of one

85

6. APPLICATION OF PIPE CODING TO H.265/HEVC

equals ωk. Substituting (6.7) and (6.8) in (6.6) yields

L̄({Gi}, B̃) = −
62∑
k=0

(
WM ({Gi}, ωk) log2 pYk(1) + WN ({Gi}, ωk) log2 pYk(0)

)
. (6.9)

Let

W`({Gi}, ωk) = WM ({Gi}, ωk) + WN ({Gi}, ωk) (6.10)

= lim
n→∞

1

n

∑
(g1,··· ,gn)∈Bn

p{Gi}(g1, . . . , gn)`(ζ({Gi}, (g1, . . . , gn), ωk)) (6.11)

which can be interpreted as the average relative frequency of coding bins in {Gi} for
that the conditional probability of one equals ωk. Using (6.10) to expand (6.9) yields

L̄({Gi}, B̃)

= −
62∑
k=0

W`({Gi}, ωk)
(
WM ({Gi}, ωk)
W`({Gi}, ωk)

log2 pYk(1) +
WN ({Gi}, ωk)
W`({Gi}, ωk)

log2 pYk(0)

)
(6.12)

Let RV(x) be a binary random variable with pmf pRV(x)(1) = x and let

J({Gi}, ωk) = RV

(
WM ({Gi}, ωk)
W`({Gi}, ωk)

)
(6.13)

be a binary random variable so that (6.12) can be written as a weighted cross entropy

L̄({Gi}, B̃) = −
62∑
k=0

W`({Gi}, ωk)
(
pJ({Gi},ωk)(1) log2 pYk(1) + pJ({Gi},ωk)(0) log2 pYk(0)

)
=

62∑
k=0

W`({Gi}, ωk)H(J({Gi}, ωk);Yk). (6.14)

Note that H(X;Y) shall denote the cross entropy of a random variable Y with respect
to a random variable X. When, for a particular ωk, (6.7) and (6.8) are nonzero, the
question arises whether

WM ({Gi}, ωk)
W`({Gi}, ωk)

= ωk (6.15)

holds. It may be a reasonable assumption because of the following argumentation. A
coding bin with conditional probability of one equal to ωk occurs with relative frequency
W`({Gi}, ωk) in {Gi}. Since its probability of one equals ωk, a coding bin of value one
and with conditional probability of one equal to ωk occurs with relative frequency of

86

6.1 P coder design

ωk ·W`({Gi}, ωk), which equals WM ({Gi}, ωk). Therefore, it shall be assumed, that
(6.15) holds. Consequently, (6.14) can be written as

L̄({Gi}, B̃) =

62∑
k=0

W`({Gi}, ωk)H(Ωk;Yk). (6.16)

A function Q(·) shall be defined that derives a random variable Q({Gi}) over Q with
pmf

pQ({Gi})(ωk) = W`({Gi}, ωk) (6.17)

from the random process {Gi}. Note that

62∑
k=0

pQ({Gi})(ωk) =
62∑
k=0

lim
n→∞

1

n

∑
(g1,··· ,gn)∈Bn

p{Gi}(g1, . . . , gn)`(ζ({Gi}, (g1, . . . , gn), ωk))

= lim
n→∞

1

n

∑
(g1,··· ,gn)∈Bn

p{Gi}(g1, . . . , gn)

62∑
k=0

`(ζ({Gi}, (g1, . . . , gn), ωk))

= lim
n→∞

1

n

∑
(g1,··· ,gn)∈Bn

p{Gi}(g1, . . . , gn)n = 1 (6.18)

and therefore pQ({Gi}) can be seen as pmf of a random variable. Q({Gi}) can be in-
terpreted as the distribution of the conditional probabilities of one of {Gi}. Substituting
(6.17) in (6.16) yields

L̄({Gi}, B̃) = L̄B̃(Q({Gi})) =
62∑
k=0

pQ({Gi})(ωk)H(Ωk;Yk). (6.19)

Interestingly, the average code length per symbol of random process {Gi} for P coder
B̃ can be expressed as function of random variable Q({Gi}) and random variables Yk.
When Yk = Ωk, (6.19) becomes

H̄({Gi}) = H̄(Q({Gi})) =
62∑
k=0

pQ({Gi})(ωk)H(Ωk), (6.20)

which is the entropy rate (2.6) of {Gi}. Note, that (6.19) only holds when ideal binary
arithmetic bin coders are used. When V2V codes shall be employed as bin coders, it
turns out that the situation is more complicated. This is because the encoded length
of a sequence g1, g2, . . . , gn that is encoded with a V2V code cannot be expressed as
a function of the number of ones and zeros in the sequence because the order of ones
and zeros has an influence on the resulting encoded length. However, notice that the
cross entropy in (6.19) is also the average code length

¯̀
B̂(Yk)(Ωk) = H(Ωk;Yk) (6.21)

87

6. APPLICATION OF PIPE CODING TO H.265/HEVC

of an ideal binary arithmetic coder. Consequently, the average code length per sym-
bol can be seen as weighted average code lengths per symbol of the ideal binary
arithmetic coders.

The bin sequences that occur for a particular ωk in practical applications are very
likely not distinguishable from a realization of a binary i.i.d. source. Therefore, a
reasonable approximation of (6.19) for bin coders of arbitrary kind (e.g. ideal binary
arithmetic bin coders or V2V codes) may be obtained by replacing the cross entropy
with the average code length ¯̀

Bk
(Ωk) of bin codes Bk for Ωk. I.e., for a P coder B′ with

bin coders Bk, the approximation of (6.19) is given as

L̄({Gi}, B′) = L̄B′(Q({Gi})) =

62∑
k=0

pQ({Gi})(ωk)
¯̀
Bk

(Ωk). (6.22)

For applications like H.264/AVC or H.265/HEVC Q({Gi}) can usually not exactly be
derived, since it reflects all details of binarization, context modeling and probability
estimation. As an alternative, an estimated version of Q({Gi}) shall be derived, based
on selected realizations of {Gi}. These realizations shall be extracted from a training
set of bit streams that are encoded with H.265/HEVC. By properly selecting this train-
ing set, the resulting P coder can be tuned to particular properties of the bit streams
to be encoded. These properties could be resolution, picture quality, prediction struc-
tures, etc., insofar as they produce different characteristics in the distribution of the
conditional pmfs.

A typical encoder employs rate-distortion optimization and needs to know the ex-
pected encoded lengths of coding bins. The exact code lengths depend on the binary
coding engine employed. However, an encoder usually calculates the code lengths
directly from the estimated conditional pmfs of the coding bins and therefore they
don’t depend on the binary coding engine. This is a reasonable strategy since the
divergence of the exact code lengths from the ones derived from the conditional pmfs
is usually very low. Therefore, the P coder design can be carried out based on bit
streams that are derived using a conventional H.265/HEVC encoder.

The design strategy shall be as follows. From the training set of bit streams, real-
izations of {Gi} are extracted. E.g., one realization per slice or one realization per bit
stream. In the simplest case, only one realization g1, g2, . . . , gn is used to calculate an
estimate for Q({Gi}) that shall be denoted Q({Gi}, (g1, g2, . . . , gn)). This corresponds
to the relative frequencies of ωk in all conditional pmfs of the realization, i.e.,

pQ({Gi},(g1,g2,...,gn))(ωk) =
`(ζ({Gi}, (g1, g2, . . . , gn), ωk))

n
. (6.23)

88

6.1 P coder design

Figure 6.1: Exemplary estimated pmf, derived from test sequence ‘Traffic’ at QP 22 with
hierarchical B frames (with pQ({Gi},(g1,g2,...,gn))(ω0) ≈ 0.283).

An example for an estimated pmf according to (6.23) is depicted in Fig. 6.1. Note that

pQ({Gi},(g1,g2,...,gn))(0.5) ≈ 0.283 lies outside of the chart because of its large value. This

is caused by the so-called bypass bins, which are by the design of binarization and

context modeling of H.265/HEVC very frequent. Analogously, for the smallest occur-

ring value ω62 ≈ 0.02, the probability pQ({Gi},(g1,g2,...,gn))(ω62) ≈ 0.043 is also relatively

large, which can be interpreted as a clipping effect in the probability estimation [5].

89

6. APPLICATION OF PIPE CODING TO H.265/HEVC

Combining (6.17), (6.23), and (6.11) yields

pQ({Gi})(ωk) = lim
n→∞

∑
(g1,g2,··· ,gn)∈Bn

p{Gi}(g1, g2, . . . , gn)pQ({Gi},(g1,g2,...,gn))(ωk), (6.24)

which reveals that pQ({Gi}) is a weighted sum of pQ({Gi},(g1,g2,...,gn)) of all realizations
in Bn. To derive an approximation for pQ({Gi}), only the realizations that are extracted
from the training set shall be used. Furthermore, a weight shall also be specified
for each realization. Assume that n different realizations for {Gi} are extracted from
the training set. Let pQj be a pmf according to (6.23) derived from realization j with
j = 1, . . . , n and let τj be the weight associated with it so that

n∑
j=1

τj = 1. (6.25)

The resulting estimated pmf shall be given as

pQ̄(ωk) =

n∑
j=1

τjpQj (ωk) (6.26)

and it shall be denoted weighted pmf. The average code length per symbol (6.22) for
a P coder B′ with bin coders Bk becomes

L̄B′(Q̄) =
62∑
k=0

pQ̄(ωk)¯̀
Bk

(Ωk). (6.27)

Note that (6.22) and (6.27) are based on the assumption that for each ωk with k =

0, 1, . . . , 62, a separate PIPE code Bk is used. However, in an actual P coder, several
consecutive k are usually associated with one bin coder. I.e., such a bin coder receives
a sequence of coding bins that have varying conditional pmfs. Depending on the
occurrence order of the different conditional pmfs, one or another conditional pmf may
dominate for different sections of a sequence of coding bins. To simplify matters, it
shall be assumed that (6.27) also holds when one bin coder is associated with several
ωk. In particular, when a bin coder is associated with a narrow probability interval, the
assumption should not lead to a noticeable error.

In the following, an exemplary weighted pmf shall be described and used for the
design of a P coder for H.265/HEVC. The training set consists of bit streams encoded
with the H.265/HEVC reference software HM 16.2 [78] under the common test condi-
tions as specified in [79]. They specify

• 24 different test sequences, which are categorized in 6 classes A-F characteriz-
ing different resolutions and content types

90

6.1 P coder design

• 8 different test conditions based on ‘Intra’, ‘Random access’, and ‘Low delay’
prediction structures

• 4 different quality settings corresponding to quantization parameter (QP) values
22, 27, 32, and 37

From the 24 · 8 · 4 = 768 possible combinations 680 are specified as test bit streams.
One realization {gi} is extracted for each bit stream by concatenating the sequences
of coding bins of all frames in the bit stream. For each of these realization, a pmf pQj is
derived and an associated weight τj is assigned to it. If weighted equally, the derived
pmfs pQj have equal influence regardless of the resolution, frame rate, bit rate and
sequence length of the underlying bit stream. I.e., longer realizations {gi} have the
same influence as shorter ones. If it is desired to have a larger influence for particular
aspects like e.g. resolution or QP, this can be achieved by adjusting the weights. In
the following, an exemplary set of weights shall be derived where the influence of the
various aspects reflected in the training set are balanced. Let a subset weight be
defined as the sum of the weights that are associated with bit streams in a subset of
the training set. The weights are derived as follows:

1. Six first level subsets are formed by distinguishing the classes A-D. Each of these
subsets shall have equal subset weight.

2. Each first level subset is subdivided into two or three1 second-level subsets by
distinguishing the test conditions ‘Intra’, ‘Random access’, and ‘Low delay’. The
weight of a first level subset is evenly distributed to its second-level subsets.

3. The weight of a second level subset is evenly distributed to the bit streams in the
subset.

The weights produced by this procedure are given in Tab. 6.1 and the resulting
weighted pmf pQ̄(ωk) is depicted in Fig. 6.2. It shall be the basis for designing a
P coder by minimizing (6.27). Although the optimization is based on average code
length per symbol, the redundancy is a useful quantity to select a candidate set of
V2V codes because it reveals how close a code operates at the entropy. The average
code length can easily be derived by adding the entropy according to (3.15).

1For class A, no ‘Low delay’ bit streams, and for class E, no ‘Random access’ bit streams exist.

91

6. APPLICATION OF PIPE CODING TO H.265/HEVC

Class
Class
weight

Test
condition

Test condition
weight

Number of
sequences

Sequence
Weight

A 1/6
Intra 1/12 32 1/384

Random access 1/12 32 1/384

B 1/6

Intra 1/18 40 1/720

Random access 1/18 40 1/720

Low delay 1/18 80 1/1440

C 1/6

Intra 1/18 32 1/576

Random access 1/18 32 1/576

Low delay 1/18 64 1/1152

D 1/6

Intra 1/18 32 1/576

Random access 1/18 32 1/576

Low delay 1/18 64 1/1152

E 1/6
Intra 1/12 24 1/288

Low delay 1/12 48 1/576

F 1/6

Intra 1/18 32 1/576

Random access 1/18 32 1/576

Low delay 1/18 64 1/1152

Table 6.1: Exemplary weight configuration for the training set according to the common
test conditions [79].

92

6.1 P coder design

Figure 6.2: Weighted pmf according to Tab. 6.1 with pQ̄(ω0) ≈ 0.302 and pQ̄(ω62) ≈ 0.055.

93

6. APPLICATION OF PIPE CODING TO H.265/HEVC

6.1.1 V2V code selection strategies

In this section, strategies for selecting V2V codes for a P coder are discussed. Let
VC = {v1, v2, . . . , vn} be the initial candidate set of n V2V codes from which m codes
shall be selected for a P coder. I.e., a P coder is unambiguously associated with a
subset of VC . The

(
n
m

)
possible different subsets of VC that have cardinality m shall be

denoted Vim with i = 1, 2, . . . ,
(
n
m

)
. Note that given Vim, for each ωk ∈ Q, we can choose

a V2V code v ∈ Vim that has minimal average code length for ωk. The resulting P coder
corresponding to subset Vim shall be denoted P im. Its associated average code length
¯̀
P i
m

(X) equals the envelope of the average code lengths of the involved V2V codes.
The optimal P coder P ioptm with m bin coders is found by minimizing (6.27) over all Vim
with i = 1, 2, . . . ,

(
n
m

)
and for a given weighted pmf pQ̄(ωk). This corresponds to an

exhaustive search and depending on m and n, the procedure may have a high com-
putational complexity. For m close to n or m close to 0, the number of P coders to test
is low and can usually be carried out. For m close to n

2 , the number of combinations
has its maximum and the above minimization is much more complex.

6.1.1.1 Proposed algorithm

A less complex, but suboptimal alternative to the exhaustive minimization approach of
the previous section is as follows. For each k with 0 ≤ k < 63, the V2V code with the
lowest average code length for ωk is selected out of the candidate set of V2V codes
VC . This yields a number of V2V codes which already could be used as P coder.
However, it will likely have an undesirably large number of V2V codes. Note that this
step doesn’t require the weighted pmf pQ̄(ωk). The idea behind the algorithm is to
successively remove individual V2V codes until the desired number of V2V codes is
reached. In each removal step, the increase of the average code length per symbol
(6.27) shall be minimized. This is done as follows:

1. Select for each k with 0 ≤ k < 63 the V2V code out of VC that minimizes the
average code length for Ωk. These V2V codes form the initial set of V2V codes
V̂m with m elements (which corresponds to a P coder with m bin coders).

2. Derive V̂m−1 by removing from V̂m the V2V code that causes the smallest in-
crease of (6.27) for the weighted pmf pQ̄(ωk) when removed.

3. Continue with step 2 with m reduced by 1 until the desired number of V2V codes
is achieved.

94

6.1 P coder design

The algorithm is referred to as successive removal algorithm.

6.1.2 Evaluation

To compare the exhaustive search to the successive removal algorithm, several exem-
plary P coders are derived and evaluated. The 24 optimal SCV2V codes with maxi-
mum source and code tree height of 6 (see Sec. 5.4.4.3) and the unary-to-rice codes
of degree 3 ≤ k ≤ 5 (see Sec. 5.5.2) shall be used as candidate set of V2V codes.
It is referred to as S6C6+UR. The SCV2V codes are used because they are a good
trade-off between size and redundancy and the unary-to-rice codes provide a low re-
dundancy for particularly small ωk. As can be seen in Fig. 5.10, the probability where a
unary-to-rice-code has minimum redundancy decreases with increasing degree k (ex-
cept for k = 0). Furthermore, when comparing Fig. 5.10 with Fig. 6.2, it can be seen
that the unary-to-rice code of degree k = 5 has the lowest redundancy for the smallest
occurring probability ω62 ≈ 0.2 so that codes of larger degree can be disregarded in
advance. Similarly, codes of degree k < 3 can also be neglected since they clearly
have a larger redundancy than the SCV2V codes of maximum source and code tree
height of 6 (cf. Fig. 5.7 and Fig. 5.10).

Applying step 1 of the successive removal algorithm yields 20 V2V codes as de-
picted in Tab. 6.2 along with the associated probabilities. In order to evaluate the
compression efficiency of a P coder for a given weighted pmf, the overhead of (6.22)
over (6.20) is of interest. Let Q′ be a random variable over Q like e.g. the distribution of
conditional probabilities of one Q({Gi}) of random process {Gi}. For Q′, the overhead
shall be defined as

ηP (Q′) = 100% ·
(
L̄P (Q′)

H̄(Q′)
− 1

)
(6.28)

and it describes the percentaged overhead of the average code length per symbol for
a given P coder P (6.22) relative to the entropy rate (6.20). For the weighted pmf Q̄
and for the codes listed in Tab. 6.2 it amounts to remarkably low 0.189%. The over-
head of the P coders derived by the successive removal algorithm is depicted in Fig.
6.3 together with several P coders derived by exhaustive search. Additionally, one P
coder that uses optimal binary arithmetic bin coders is also depicted, for which optimal
probability intervals are derived with dynamic programming according to Greene et al.
[19]. Note that the overhead for P coders with one, two, and three V2V codes are
listed in Tab. 6.3 because they are outside of the chart. The associated codes are
listed in Appendix B.2. Although the overhead increases with each step, this increase

95

6. APPLICATION OF PIPE CODING TO H.265/HEVC

UR 5 ω55 − ω62

UR 4 ω42 − ω54

UR 3 ω32 − ω41

S6C6 1 ω30 − ω31

S6C6 2 ω28 − ω29

S6C6 3 ω24 − ω27

S6C6 4 ω20 − ω23

S6C6 6 ω18 − ω19

S6C6 7 ω17

S6C6 8 ω16

S6C6 9 ω15

S6C6 10 ω12 − ω14

S6C6 13 ω9 − ω11

S6C6 14 ω8

S6C6 15 ω7

S6C6 16 ω6

S6C6 17 ω4 − ω5

S6C6 20 ω3

S6C6 22 ω2

S6C6 24 ω0 − ω1

Table 6.2: V2V codes after step 1 of the successive removal algorithm.

Number of V2V codes 1 2 3

S6C6+UR (successive removal) 25.79% 4.16% 2.50%

S6C6+UR 13.43% 3.67% 1.77%

Systematic V2V codes 15.12% 4.51% 1.96%

TMuC V2V codes 13.43% 3.83% 1.68%

Optimal arithmetic bin coders 13.80% 3.49% 1.42%

Table 6.3: Overhead values that are outside of the chart in Fig. 6.3.

96

6.1 P coder design

Figure 6.3: Percentaged overhead ηP (Q̄) of the different P coders (P coders with one,
two, and tree codes are outside of the chart and have an overhead as given in Tab. 6.3).

is negligible for P coders with 12 to 20 V2V codes. Consequently, P coders with more

than 12 V2V codes are of limited interest for practical implementations.

Exhaustive search is applied to S6C6+UR codes, to the 12 TMuC V2V codes of

Fig. 5.9, and to the 8 systematic V2V codes of Fig. 5.13. The maximum number of

V2V codes per P coder is limited to 12 for the S6C6+UR codes since no noticable

reduction of the redundancy can be expected as the results of the successive removal

algorithm show. Codes derived by exhaustive search are listed in Appendix B.3.

When comparing the P coders derived from the S6C6+UR codes, the successive

removal algorithm yields almost as good results as exhaustive search for P coders with

6 or more V2V codes. For P coders with less V2V codes, the exhaustive search yields

much better results. When comparing the three different types of P coders derived by

exhaustive search (S6C6+UR, systematic, and TMuC), the following can be observed:

97

6. APPLICATION OF PIPE CODING TO H.265/HEVC

With an increasing number of V2V codes of a P coder, the overhead shows an almost
exponential decay. An overhead of less than 1% is rather easy to achieve with only 4

V2V codes. An increase to 8 V2V codes allows an overhead of approximately 0.3%.
The addition of further V2V codes up to a total number of 12 reduces the overhead
to approximately 0.2%. A further reduction cannot be achieved with S6C6+UR codes,
which suggests that longer maximum source and code word lengths may be required.
The TMuC-based P coders with 4 to 12 V2V codes show overhead values that are
constantly lower by approximately 0.03% than the corresponding S6C6+UR-based P
coders. This seems to be a relatively small advantage of the TMuC-based P coders
over the S6C6+UR-based coders although the TMuC codes are allowed to have much
longer source and code words. The P coders based on systematic V2V codes have a
substantially larger overhead than the other types but still stay below 0.5% for 8 V2V
codes.

6.1.3 Comparison to the M coder

The overhead of the various P coders derived in the previous sections shall be com-
pared to the M coder as used in CABAC of H.264/AVC or H.265/HEVC. Let X be a
binary random variable for which symbol 1 shall be the LPS with pLPS = pX(1) and
for which symbol 0 is the MPS with pMPS = pX(0). Binary arithmetic coding can be
considered redundancy-free1 when the coding interval subdivision is carried out ex-
actly in proportion to the probability values of the pmf pX(1) and pX(0) of the binary
source X to be encoded. In practical implementations (like the M coder) the interval
subdivision position differs slightly from the desired exact position so that the coder
has zero redundancy for a slightly different pmf pX̃ (according to the ratio of the actual
subintervals). Consequently, the redundancy of encoding an individual symbol with a
binary arithmetic coder equals the relative entropy D(X‖X̃). Note that the pmf of X̃
usually changes from symbol to symbol.

In the M coder, the multiplication, which is required for the interval subdivision, is
replaced with a table-lookup. The resulting redundancy is studied in [80, Sec. 6.3] for
various configurations. In the configuration used in H.264/AVC and H.265/HEVC, the
coding interval width is represented as the range value r, which is an integer in the
interval [256, 510]. For the interval subdivision, r is quantized to four cells with the cell
index given as

ridx = (r >> 6)&3, (6.29)

1Bits required to terminate an arithmetic code word are neglected.

98

6.1 P coder design

which is an integer in the interval [0, 3]. The exact subinterval width rLPS = r · pX(1)

of the LPS is approximated with a precalculated value r̃LPS that is read from a lookup
table using ridx. I.e., all values of r for which (6.29) yields the same index ridx use the
same value r̃LPS . The pmf pX̃ is then given as

pX̃(1) =
r̃LPS
r

. (6.30)

The average code length of encoding a symbol from X is the cross entropy

`′M (X, r) =H(X; X̃) (6.31)

=D(X‖X̃) +H(X)

= − pX(1) log2

r̃LPS
r
− pX(0) log2

(
1− r̃LPS

r

)
. (6.32)

After encoding a symbol, one of the two subintervals becomes the coding interval,
potentially also being renormalized (i.e. multiplied with a power of 2) to ensure that r
remains an integer in the interval [256, 510]. Consequently, the value of r fluctuates in
the interval [256, 510].

Let ri be the range value before encoding coding bin gi and let Rn(·) be a function
that unambiguously derives ri = Rn(gi−1) from the sequence of previous coding bins
gi−1 = gi−1, gi−2, . . . , g1. As in H.264/AVC and H.265/HEVC, r1 shall be 510. Fur-
thermore, let ϑ({Gi}, (g1, g2, . . . , gn), ωk, r) be the subsequence of coding bins in the
sequence g1, g2, . . . , gn for that both of the following conditions are fulfilled:

1. The conditional probability of one pGi(1|gi−1) for coding bin gi equals ωk

2. The range value ri = Rn(gi−1) as present before encoding gi equals r

Next, the average code length per symbol (2.7) of the M coder shall be studied. Let
LM (r, ωk) represents the lookup table of the M coder that stores the precalculated
LPS range values for probability ωk and range value r as used in H.264/AVC and
H.265/HEVC. For n → ∞, the encoded length that the M coder produces for a se-
quence of coding bins g1, . . . , gn can be expressed as

`M ({Gi}, (g1, . . . , gn)) =−
510∑
r=256

62∑
k=0

(
M(ϑ({Gi}, (g1, . . . , gn), ωk, r)) log2

LM (r, ωk)

r

+N(ϑ({Gi}, (g1, . . . , gn), ωk, r)) log2

r − LM (r, ωk)

r

)
. (6.33)

99

6. APPLICATION OF PIPE CODING TO H.265/HEVC

Substituting (6.33) in (2.7) yields

L̄({Gi},M) = −
510∑
r=256

62∑
k=0(

lim
n→∞

∑
(g1,··· ,gn)∈Bn

p{Gi}(g1, . . . , gn)
M(ϑ({Gi}, (g1, . . . , gn), ωk, r))

n
log2

LM (r, ωk)

r
+

lim
n→∞

∑
(g1,··· ,gn)∈Bn

p{Gi}(g1, . . . , gn)
N(ϑ({Gi}, (g1, . . . , gn), ωk, r))

n
log2

r − LM (r, ωk)

r

)
,

(6.34)

which is the average code length per symbol that the M coder produces when encoding
{Gi}. Note that the limit does not need to exist. Let UM ({Gi}, ωk, r) be defined as

UM ({Gi}, ωk, r) = lim
n→∞

∑
(g1,··· ,gn)∈Bn

p{Gi}(g1, . . . , gn)
M(ϑ({Gi}, (g1, . . . , gn), ωk, r))

n

(6.35)
and let UN ({Gi}, ωk, r) be defined as

UN ({Gi}, ωk, r) = lim
n→∞

∑
(g1,··· ,gn)∈Bn

p{Gi}(g1, . . . , gn)
N(ϑ({Gi}, (g1, . . . , gn), ωk, r))

n
.

(6.36)
(6.35) and (6.36) can be interpreted as the average relative frequency of ones and
zeros respectively, that occur in coding bins of {Gi} for that the conditional proba-
bility of one equals ωk and for that the range value before encoding equals r. Let
U`({Gi}, ωk, r) be defined as the sum

U`({Gi}, ωk, r) =UM ({Gi}, ωk, r) + UN ({Gi}, ωk, r)

= lim
n→∞

∑
(g1,··· ,gn)∈Bn

p{Gi}(g1, . . . , gn)
`(ϑ({Gi}, (g1, . . . , gn), ωk, r))

n
.

(6.37)

Substituting (6.36) and (6.35) in (6.34) and expanding it with (6.37) yields

L̄({Gi},M)

= −
510∑
r=256

62∑
k=0

(
UM ({Gi}, ωk, r) log2

LM (r, ωk)

r
+ UN ({Gi}, ωk, r) log2

r − LM (r, ωk)

r

)

= −
510∑
r=256

62∑
k=0

U`({Gi}, ωk, r)·(
UM ({Gi}, ωk, r)
U`({Gi}, ωk, r)

log2

LM (r, ωk)

r
+

UN ({Gi}, ωk, r)
U`({Gi}, ωk, r)

log2

r − LM (r, ωk)

r

)
. (6.38)

100

6.1 P coder design

Following the same argumentation as for (6.15), it shall be assumed that

UM ({Gi}, ωk, r)
U`({Gi}, ωk, r)

= ωk (6.39)

holds. Consequently, (6.38) can be rewritten as

L̄({Gi},M)

= −
510∑
r=256

62∑
k=0

U`({Gi}, ωk, r)
(
ωk log2

LM (r, ωk)

r
+ (1− ωk) log2

r − LM (r, ωk)

r

)

=

510∑
r=256

62∑
k=0

U`({Gi}, ωk, r)H
(

Ωk; RV

(
LM (r, ωk)

r

))
, (6.40)

which reveals that the average code length per symbol of the M coder can be written
as a sum of weighted cross entropies.

A function Rg(·) shall be defined that yields a random variable Rg({Gi}) over I =

{256, 257, . . . , 510}. In a similar way as Q({Gi}) for the conditional probabilities of one,
random variable Rg({Gi}) shall describe the distribution of range values that occur for
{Gi} as follows. Random variable Q({Gi}) as defined in (6.17) and random variable
Rg({Gi}) shall have the joint pmf

pQ({Gi}),Rg({Gi})(ωk, r) = U`({Gi}, ωk, r). (6.41)

When Rg({Gi}) is marginalized out, (6.41) equals the distribution of conditional prob-
abilities of one (6.17) of {Gi}. By marginalizing out Q({Gi}) in (6.41), the pmf

pRg({Gi})(r) = lim
n→∞

1

n

∑
(g1,··· ,gn)∈Bn

p{Gi}(g1, . . . , gn)
62∑
k=0

`(ϑ({Gi}, (g1, . . . , gn), ωk, r)).

(6.42)
is derived. Note that

510∑
r=256

pRg({Gi})(r)

= lim
n→∞

1

n

∑
(g1,··· ,gn)∈Bn

p{Gi}(g1, . . . , gn)

62∑
k=0

510∑
r=256

`(ϑ({Gi}, (g1, . . . , gn), ωk, r))

= lim
n→∞

1

n

∑
(g1,··· ,gn)∈Bn

p{Gi}(g1, . . . , gn)n = 1 (6.43)

101

6. APPLICATION OF PIPE CODING TO H.265/HEVC

and therefore pRg({Gi}) can be seen as pmf of a random variable. Substituting (6.41)
in (6.40) yields

L̄({Gi},M) =
510∑
r=256

62∑
k=0

pQ({Gi}),Rg({Gi})(ωk, r)H

(
Ωk; RV

(
LM (r, ωk)

r

))
, (6.44)

which reveals that the average code length per symbol of the M coder can be calcu-
lated through the joint pmf of Q({Gi}) and Rg({Gi}). When Q({Gi}) and Rg({Gi})
are statistically independent, (6.44) becomes

L̄({Gi},M) =

510∑
r=256

62∑
k=0

pQ({Gi})(ωk)pRg({Gi})(r)H

(
Ωk; RV

(
LM (r, ωk)

r

))

=
510∑
r=256

pRg({Gi})(r)
62∑
k=0

pQ({Gi})(ωk)H

(
Ωk; RV

(
LM (r, ωk)

r

))
. (6.45)

Due to the fluctuation of the range values r, it may be justified to assume statistical
independence. However, this depends on the coding application.

Next, the fluctuation of the range values shall be studied for independent Q({Gi})
and Rg({Gi}). For this purpose, the coding bins shall be assumed to come from
an artificial source as follows. Assume a random variable Q′ over Q like e.g. the
distribution of conditional probabilities of one Q({Gi}) of random process {Gi}. Let
K(Q′) be a random variable over

Q×B = {(ω0, 0), (ω0, 1), (ω1, 0), (ω1, 1), (ω2, 0), (ω2, 1), . . .} (6.46)

with pmf

pK(Q′)((ωk, g)) =

pQ
′(ωk)ωk if g = 1

pQ′(ωk)(1− ωk) otherwise.
(6.47)

To use K(Q′) for evaluating a binary coding engine (like the M coder), a pair (ωk, g) is
drawn from K(Q′). Then, ωk is used as conditional pmf and g is used as coding bin to
be encoded. This is equivalent to first drawing a pmf from Q′ and then using it to draw
a coding bin. The average code length of encoding a bin from K(Q′) with a binary
coding engine B is given as

L̄(K(Q′), B) =

62∑
k=0

pQ′(ωk)¯̀
B(Ωk). (6.48)

(6.48) equals the average code length per symbol (6.22) of the random process from
that Q′ is derived. I.e., the conditional pmfs occur in the same proportion as in a ran-
dom process from which Q′ is derived while no dependencies exist between consecu-
tive coding bins. This is a useful property because coding bins from K(Q({Gi})) can

102

6.1 P coder design

be encoded instead of encoding random process {Gi} when dependencies between
coding bins are not relevant or shall not be present. Apart from this, the statistical
properties of K(Q′) are rather simple since a sequence of ωk and a sequence of b
extracted from a sequence of pairs drawn from K(Q′) both behave like realizations of
an i.i.d. process.

K(Q({Gi})) shall be used for analyzing the fluctuation of the range values r of the
M coder since no dependencies exist between consecutive coding bins that could dis-
turb the fluctuation. It can be observed that the values that occur for r when encoding
source K(Q({Gi})) with the M coder can be modeled as a Markov chain where the
allowed values for r are the states. Each element in Q × B corresponds to a state
transition. I.e., for a given starting state r, an unambiguous target state can be derived
for each element in Q × B. An intermediate state T ′(r, (ωk, g)) for starting state r and
(ωk, g) ∈ Q×B shall be defined as

T ′(r, (ωk, g)) =

LM (r, ωk) if g = 1

r − LM (r, ωk) otherwise.
(6.49)

T ′(r, (ωk, g)) is the range value after encoding (ωk, g) prior to renormalization. To
derive the target state T (r, (ωk, g)), the intermediate state T ′(r, (ωk, g)) doubled until it
is in the interval [256, 510]. Note that several elements in Q × B may have the same
target state so that they contribute to the same state transition. Based on the weighted
pmf Q̄, a distribution of the range values shall be derived by simulation from K(Q̄).
Since it is the equivalent to Rg({Gi}) for {Gi}, it shall be described as random variable
over I = {256, 257, . . . , 510}, denoted Rg(K(Q̄)). Its pmf corresponds to the steady-
state probabilities of the Markov chain. Fig. 6.4 shows such a pmf that is derived
by simulation for the weighted average pmf pQ̄ as depicted in Fig. 6.2. A sequence
of 10 million pairs is drawn from K(Q̄) (using a pseudo-random number generator).
The coding bins g are encoded with the M coder, using the ωk as conditional pmfs.
The occurring range values are tracked and a relative frequency is calculated for each
possible value of r.

Note that the bypass bins are neglected since the M coder encodes them with
zero redundancy and since they don’t alter r. The pmf is decomposed into 9 lines1

according to the multiplicity of prime factor 2 in r in order to try an explanation of
the behavior of the pmf. It is interesting to see that odd values for r (line 0) almost
always have a lower probability than all other values. Furthermore, with increasing

1The lines between the points shall only improve the readability.

103

6. APPLICATION OF PIPE CODING TO H.265/HEVC

Figure 6.4: Pmf pRg(K(Q̄)) derived (by simulation) from the weighted pmf of Fig. 6.2
(excluding bypass bins), decomposed into 9 categories according to the power of prime
factor 2 in r. Note that pRg(K(Q̄))(256) = 0.0375 is outside of the chart.

r, the probability of the odd values decreases. In order to explain this behavior, the
question arises, how a particular value of r can occur. The two possiblities are either
by interval subdivision or by renormalization. Since renormalization is a multiplication
with a power of 2, odd values of r cannot occur after a renormalization. Instead, odd
values are the result of a subdivision of an even larger value of r. The larger the odd
value is, the less values of r are available that are even larger. Higher multiplicities of
prime factor 2 in r, however, don’t seem to reveal a clear behavior so that other effects
may be relevant here. An exception is pRg(K(Q̄))(256) = 0.0375, which has a much
larger probability than all other values of r.

The average code length of encoding K(Q′) with the M coder can be calculated
from Q′ as follows. Using (6.31), the average code length of the coding bins for that

104

6.1 P coder design

Figure 6.5: Redundancy RM (Ωk, Q̄) of the M coder for which the range values are dis-
tributed according to pmf pRg(Q̄) of Fig. 6.4 in comparison to 12 S6C6+UR V2V codes
selected by exhaustive search (see Fig. 6.3).

a particular ωk occurs amongst all coding bins of K(Q′) is given as weighted cross
entropy

�̄M (Ωk, Q
′) =

∑
r∈I

pRg(K(Q′))(r)H

(
Ωk; RV

(
LM (r, pΩk

(1))

r

))
. (6.50)

Note that �̄M (Ωk, Q
′) is not the average code length for encoding a sequence of sym-

bols from random variable Ωk since pRg(K(Q′)) is only valid for source K(Q′). From
(6.50), a redundancy can be derived as

RM (Ωk, Q
′) = �̄M (Ωk, Q

′)−H(Ωk). (6.51)

Fig. 6.5 shows the redundancy of the M coder per state based on Q̄. The range values
are distributed according to Fig. 6.4, which is based on the weighted pmf of Fig. 6.2.

105

6. APPLICATION OF PIPE CODING TO H.265/HEVC

Additionally, the redundancy of a P coder that uses 12 bin coders from the S6C6+UR
V2V codes is depicted. The V2V codes are selected by exhaustive search (see Fig.
6.3). It can be seen that the redundancy of the M coder increases with increasing
probability ωk. In comparison to the depicted P coder, the redundancy of the M coder
is almost always lower, except for a few cases like for ω0 = 0.5. However, the distance
between the redundancies of M and P coder is relatively small so that the P coder may
be a suitable alternative to the M coder. The average code length per symbol (6.48)
for encoding K(Q′) with the M coder is given as

L̄(K(Q′),M) =
62∑
k=0

pQ′(ωk)¯̀
M (Ωk, Q

′). (6.52)

Analogously to the overhead of the P coder, a percentaged overhead of the average
code length per symbol produced by the M coder (6.52) relative to the optimal length
(6.20) can be defined as

ηM (Q′) = 100% ·
(
L̄(K(Q′),M)

H̄(Q′)
− 1

)
(6.53)

for a given distribution of conditional probabilities of one Q′. When using the weighted
average pmf pQ̄ as depicted in Fig. 6.2, it is important to properly regard the bypass
bins from pQ̄(0.5) because they are encoded with zero redundancy in the M coder while
the remaining bins for pQ̄(0.5) are not. In the case of Fig. 6.2, the bypass bins occur
with pbypass

Q̄
(0.5) = 0.267 and the non-bypass bins occur with pnon−bypass

Q̄
(0.5) = 0.035.

Counting the bypass bins with 1 bit per coding bin in (6.52), the overhead of the M
coder amounts to 0.094% for the weighted average pmf of Fig. 6.2 and the M coder of
Fig. 6.5. When comparing this value to the overhead of the various P coders given in
Fig. 6.3, the M coder has approximately only half the overhead than the best depicted
P coder. Furthermore, it has approximately the same overhead as a P coder that
uses 10 ideal binary arithmetic bin coders. To achieve a P coder with an overhead
that is comparable to the M coder, it is likely that more than 10 V2V codes of very low
redundancy are necessary. In general, the number of bin coders and the maximum
source and code word lengths are traded off against the overhead of the P coder.

6.2 Complexity and throughput considerations

Due to the large structural similarity between PIPE coding and CABAC, most of the
literature about complexity and throughput aspects of CABAC also apply to PIPE cod-
ing. Most of the known CABAC optimizations, don’t interact with the internal structure

106

6.2 Complexity and throughput considerations

of the M coder and can also be applied to the P coder of PIPE coding. Conversely,
optimizations that target the M coder usually don’t interact with the other stages of the
CABAC system.

Several approaches for efficient implementations of CABAC exist which are mainly
focused on the decoder. Some of them apply to hardware and software implementa-
tions, like the fast renormalization technique [16], while others mainly address hard-
ware implementations [81, 14, 15]. Many of these techniques evolved after the stan-
dardization of H.264/AVC and the challenges of efficiently implementing CABAC be-
came well understood. For example, hardware decoder implementations usually em-
ploy a pipelined CABAC decoder where the process of decoding a bin is divided into
several pipeline stages like e.g. context selection, context model loading, binary arith-
metic decoding, and context model update [15]. When the context selection for a
particular bin depends on the previously decoded bin, the context selection stage is
blocked until the binary arithmetic decoding of the previous bin is finished. This can
take several cycles since all pipeline stages must be passed to decode the previ-
ous bin. In H.264/AVC, many situations exist where pipeline stages are interrupted.
Without going into detail, most pipeline stalls can be traced back to dependencies be-
tween consecutive bins. Reducing these dependencies increases the throughput. In
H.265/HEVC, much care has been taken to find a good trade off between compres-
sion efficiency and the reduction of entropy coding dependencies. A comprehensive
discussion of this topic can be found in [82] and [83].

When designing a CABAC or PIPE coding system, several parameters can be
used to trade off the complexity against the compression efficiency. The most relevant
parameters which apply to both, CABAC and PIPE coding are:

Binarization rules The complexity of the rules for deriving the binarized representa-
tions of syntax elements.

Bins per syntax element The average number of bins resulting from the binarization
of a syntax element.

Context derivation rules The complexity of the derivation rules for allocating proba-
bility models to bins.

Probability model memory The total number of required probability models.

Bin-to-bin dependencies Binarization, context modeling and probability estimation
for a bin can depend on a number of immediately preceding bins. Removing

107

6. APPLICATION OF PIPE CODING TO H.265/HEVC

such dependencies allows the joint processing of numbers of bins but usually
also has the disadvantage to reduce the compression efficiency.

For the best compression efficiency, binarization, context derivation, and probability
modeling must carefully be designed to achieve the best trade-off between modeling
accuracy and context dilution. When the best trade-off is found, a further reduction of
the complexity of any of the above-mentioned parameters usually leads to a decreased
compression efficiency.

The bin-to-bin dependencies are particularly problematic for decoder implementa-
tions. In the encoder, no feedback loops exist between binarization, context modeling,
probability estimation, and bin encoding. I.e., each stage can operate independently
of the subsequent stages. This is different in the decoder where often a bin has to be
decoded completely before being able to carry out context modeling and probability
estimation of the next bin. In general, if for a sequence of consecutive bins no depen-
dencies exist amonst the bins in the entropy coding stage, this sequence can jointly
be passed from stage to stage in encoder and decoder. Depending on the stage, it
may also be possible to process the bins in parallel. In the case of CABAC, however,
there always exist bin-to-bin dependencies in the M coder which leave few options for
parallel processing. I.e., if context modeling and probability estimation are configured
to deliver sequences of jointly processable bins, the M coder still has to sequentially
process each bin. The question arises, how this throughput limiting property of the M
coder can be removed. A solution to this problem is to replace the M coder with the
P coder (see Fig. 2.1), which corresponds to using PIPE coding instead of CABAC.
When the P coder is properly configured, sequences of bins can also be jointly pro-
cessed in the P encoder and decoder. As discussed in Sec. 7.2, the chunk-based
multiplexing of PIPE coding can be configured in a way so that each bin decoder has
a guaranteed number of readily decoded bins available. The probability interval allo-
cator must then read and arrange the bins of the individual bin decoders according to
the requested bin sequence. As a proof of concept, a pipelined hardware implemen-
tation of such a P decoder is presented in [68] where the bin buffers, which contain
the readily decoded bins per bin decoder, also act as pipeline registers. The multi bin
probability interval allocator is implemented in a separate pipeline stage. For single
bin decoding, it only accounts for approximately 20% of the P coder chip area (for the
PIPE coder setup used in [68]). When extending this stage to simultaneous decoding
of N bins, the related chip area will approximately be 0.8 + 0.2N times the area of the
P decoder for single bins. I.e., the required chip area grows linearly with the number
of simultaneously decodable bins.

108

6.3 Complexity-scalable entropy coding

When dependencies between bins are not removed, speculative computation can
be used to simultaneously process multiple bins. In this case, the chip area grows
exponentially for the P and M decoder. However, speculation is required in the prob-
ability interval allocation stage of the P decoder only which should require less chip
area than a speculative multi bin M decoder [68].

6.3 Complexity-scalable entropy coding

The basic idea of complexity scalable PIPE coding is published in [68] where it is
proposed as entropy coder for the H.265/HEVC video compression standard. In
H.264/AVC, two entropy coding engines are available. CABAC and context-adaptive
variable length coding (CAVLC) which is less complex and less efficient than CABAC.
Depending on the available resources, one or another can be selected. For com-
patibility reasons, both entropy coders are often required in an encoder or decoder
implementation. Since CABAC and CAVLC have few in common, an implementation
that supports both is complex. An alternative is to use a complexity-scalable config-
uration of CABAC or PIPE coding. This can be achieved by designing two or more
coder setups with different complexity operation points so that a less complex setup
can be achieved by selectively replacing features of a more complex setup with less
complex alternatives. This simplifies implementations where more than one complex-
ity operation point is required. If a high throughput operation point is desired, it can be
achieved by configuring all stages of the entropy coder to allow the joint processing
of bin sequences by removing bin-to-bin dependencies. Since the M coder of CABAC
can hardly process sequences of bins jointly, the P coder of PIPE coding may be more
suitable for such a configuration, as discussed in the previous section.

The concept is demonstrated by a PIPE coding setup with three operation points
for H.265/HEVC video coding. The first operation point is a high efficiency (HE) mode
with good compression performance and high complexity. The second operation point
is a low complexity (LC) mode with lower coding efficiency and significantly reduced
complexity and which allows a high achievable throughput. The HE mode is optimized
to deliver a compression efficiency close to state of the art CABAC while in the LC
mode, many simplifications are introduced, as well as the ability of jointly processing
multiple bins. The third operation point is a medium complexity (MC) mode which lies
between the HE and LC mode in terms of complexity and compression efficiency.

In the following, principles for deriving an MC or LC mode from the HE mode are
discussed. They involve selective simplifications until the desired MC or LC operation

109

6. APPLICATION OF PIPE CODING TO H.265/HEVC

point is reached while as much of the compression efficiency as possible is retained.
For the LC mode, more simplifications are applied than for the MC mode. The param-
eters as listed in Sec. 6.2 can be adjusted according to the following principles:

Simplified context derivation The HE context derivation rules are simplified for the
LC mode. For most bins, the rules are disabled, which corresponds to selecting
always the same probability model for a given bin. For some bins where this
would lead to an unacceptable increase of the bit rate, more sophisticated rules
may be used.

Binarization reordering The bins are reordered so that the length of bin sequences
that don’t have bin-to-bin dependencies in the LC mode is increased. Of particu-
lar interest are reorderings that can also be applied to the HE mode without major
disadvantages. In this way, the differences between HE and LC binarization can
be minimized.

Simplified probability estimator In the HE mode, a probability model is updated af-
ter each bin encoded with it. This introduces bin-to-bin dependencies if a prob-
ability model is used for consecutive bins. Reducing the frequency of probability
model updates or fully disabling them for the LC mode reduces the complexity
and the bin-to-bin dependencies.

With the above principles, a PIPE coding setup with two or more operation points can
be derived, which are optimized to different needs like low complexity, high efficiency,
high throughput, etc.

Exemplary complexity-scalable PIPE coder

The concept of complexity-scalable entropy coding is demonstrated with the PIPE cod-
ing setup as it is proposed as entropy coder for the H.265/HEVC video coding stan-
dard [68]. It is based on the working draft 3 (WD3) of H.265/HEVC [84] which was the
current version at the time of the proposal [68]. Since then, many changes were incor-
porated into H.265/HEVC and the final standard is quite different from WD3. However,
no fundamental changes were made in the entropy coding stage and the concept of
how complexity-scalability can be implemented remains applicable. Therefore, pro-
posal [68] still gives an appropriate demonstration of a complexity-scalable entropy
coder. A software implementation, also available for download (accompanying [68]),
is used for the experimental evaluation. It is based on the HEVC Test Model 3.2 (HM

110

6.3 Complexity-scalable entropy coding

	

Figure 6.6: Luma BD-rate compared to decoding time (chart taken from Fig. 4 in [68]).

3.2) [85, 86, 87]. For details about the configuration of the HE, ME, and LC mode,
the reader is referred to [68]. An impression of the trade off between coding efficiency
and computational complexity is shown in Fig. 6.6 (which is taken from [68]). It com-
pares the decoding time and the so-called Bjøntegaard delta bit rate (BD rate) [88] for
the three complexity-scalable configurations against the HM 3.2 reference software.
Note that the HM 3.2 reference software is not strongly optimized for speed and the
decoding time may behave different in an optimized software or hardware implemen-
tation. However, it is reasonable to assume that the tendency stays the same. Each
of the depicted lines consists of three data points corresponding to the LC, MC, and
HE configuration, which belong to the lowest, medium, and highest BD rate savings,
respectively. It can be seen that complexity scalability is achieved in a BD rate range
of approximately 7%. The observed differences in the decoding time are rather low so
that the decoding time reduction seem not to justify the BD rate increase. However,
many of the complexity reductions are rather useful for parallelized hardware imple-
mentations. This is not reflected in the decoding time measurements of Fig. 6.6 since
they are based on a single-threaded software implementation.

111

6. APPLICATION OF PIPE CODING TO H.265/HEVC

6.4 Throughput optimized V2V coder setup

The work by Roth et al. [89] shows how the throughput of a software implementation

of PIPE coding can be increased by V2V code concatenation. It is based on the fact

that the optimal lookup table size for a V2V coder implementation depends on the uti-

lized software or hardware platform. By concatenating V2V codes, the average (and

maximum) source and code word length can be increased while the average code

length of the V2V code remains unchanged. Concatenation means in this context,

that a composite V2V code is created from as many copies of a given V2V code as

possible so that a predetermined maximum code tree height is not exceeded. When

encoding or decoding of a code word is a single table lookup1, the throughput is larger

if the average source and code word lengths of a V2V codes are longer and concate-

nation is one way of increasing V2V code length. An obvious alternative is to design

V2V codes with longer source and code words, which would also likely have a lower

average code length. For the effects on the throughput, it should not matter whether

concatenated or otherwise derived V2V codes are used and the runtime analysis in

[89] can be assumed to be a generally valid demonstration of the throughput behav-

ior of a lookup table-based single-threaded PIPE decoder software implementation.

Roth et al. [89] report parsing time savings of up to 15% and decoding time savings

of up to 5% compared to CABAC for the use of an 8 bit lookup table per bin decoder,

which corresponds to a maximum code word length of 8 bits. The PIPE decoder uses

the chunk-based multiplexing as discussed in Ch. 7 with 8 bit chunks. Low-dealy

control is enabled with a ring buffer size of 512 chunks. It is not stated in [89], but

the implementation is based on HEVC Test Model 7.0 (HM 7.0) [90, 91, 92], which

is also used for the CABAC reference2. Note, that CABAC in HM 7.0 contains some

speed optimizations (e.g. using the fast renormalization [16]) so that the runtime com-

parisons should be reasonably fair. These throughput improvements are remarkable,

since they are achieved without employing a parallelized software implementation. It

can be assumed that a parallelized hardware implementation may further increase the

throughput.

1Assuming that a table lookup approximately consumes a constant time.
2According to a personal communication with the authors of [89]

112

6.5 Chapter summary

6.5 Chapter summary

In this chapter, several P coders were designed. The average code length per symbol
was used as minimization criterion for P coder design in order to approach the entropy
rate of the coding bins. It turned out that a distribution of conditional probabilities of
one could be derived, which covers almost all properties of the coding bins that are
relevant for P coder design. Such a distribution was estimated based on a training
set of H.265/HEVC-encoded bit streams, which are selected to reflect a wide range of
different properties related to the video content type, the encoder settings, etc.

An algorithm for selecting V2V codes for a P coder out of a candidate set was
proposed. It is based on successively removing V2V codes from the candidate set so
that the increase of the average code length per symbol is minimized in each step.
The algorithm yields good results when the number of desired bin coders is not too
small. Furthermore, it can be used for a pre-examination in order to find out whether
exhaustive search may further improve a P coder that uses many bin coders.

It was demonstrated that a P coder with 12 V2V codes of the S6C6+UR candidate
set has a percentaged overhead of only 0.2%. When 10 ideal binary arithmetic bin
coders are used, a percentaged overhead is less than 0.1%. An analysis in this chapter
shows that this value is comparable to the percentaged overhead of the M coder as
used in H.265/HEVC.

Based on a study of complexity and throughput aspects of the PIPE coding system,
the concept of complexity-scalable entropy coding is developed. In each of the stages
of a PIPE coder, a different trade-off between complexity and coding efficiency can be
configured. In particular, the options for parallel processing can be greatly improved.
In contrast to the M coder of CABAC, the P coder allows a large degree of parallel
processing. This is an important aspect since prallelization is most efficient when all
stages of a PIPE coder allow parallel processing. This includes a highly parallelizable
multiplexing scheme, which is the topic of the next chapter.

113

7

Multiplexing in PIPE coding

The concept presented in Sec. 7.2 is already published in [28] and [93].

The PIPE coding system uses a plurality of independent bin coders. Each of the bin
encoders produces output bits, which contain the encoded bins. In the PIPE decoder,
each of the bin decoders receives the code bits, the corresponding bin encoder has
produced. This requires an appropriate multiplexing of coded bits as already outlined
in Sec. 2.6. In this chapter, various aspects of multiplexing in the PIPE coding concept
are discussed. Firstly, the decoder-synchronized encoding is shortly reviewed and
based on this, the so-called chunk-based multiplexing is developed.

7.1 Review of decoder-synchronized encoding

In PIPE encoding, the probability estimator produces a sequence of bins with proba-
bility estimates, which are distributed to the bin encoders by the probability interval al-
locator (see Fig. 2.1). Consequently, the bin encoders receive bins in some seemingly
unstructured order. Binarization, context modeling, and probability estimation is struc-
tured in a way that the decoder is always able to reproduce the probability estimate of
the next bin to be decoded. Therefore, the probability interval allocator in the decoder
receives bin decoding requests from the probability estimator in the same seemingly
unstructured order as in the encoder. Decoder-synchronized encoding interleaves the
code words of the bin encoders in a way such that the bin decoders can read them
from the bit stream when the first bin encoded in a code word is requested by the prob-
ability estimator. This technique appears several times in the related literature [24, 27,
26]. While it is probably the simplest interleaving scheme for the decoder, the encoder
is rather complicated. Basically, a bin encoder has to reserve a slot for a code word in

115

7. MULTIPLEXING IN PIPE CODING

Bin Encoder 2

Multiplexer

Pointer 2

Empty

Ring Buffer

Bit Writer
Bit

stream
Bin Encoder 3 Pointer 3

Bin Encoder 4 Pointer 4

Bin Encoder 5 Pointer 5

Bin Encoder 1 Pointer 1

Reserved

Complete

Reserved

Complete

Reserved

Reserved

Empty

Empty

Empty

Empty

Empty

1

2

3

4

5

6

7

8

9

10

11

12

Figure 7.1: Exemplary multiplexer for decoder-synchronized encoding.

the bit stream when it receives the first bin of it. At this time, the encoder cannot know

how long the code word will be and how long it takes until it receives the last bin of the

code word. A bin encoder which uses fixed-length code words can reserve a slot of the

correct length for the code word since it knows how long the code word will be. How-

ever, codes with fixed-length code words, like Tunstall codes, tend to have a higher

redundancy than V2V codes of similar size (see Sec. 5.4.2). Regardless of whether

fixed or variable-length code words are used, there is no guarantee that a code word

completes in a certain time span which means that the required code word buffer

is not limited (or only limited by other application-specific parameters like maximum

stream length, etc.). Since this is undesirable for practical encoder implementations,

low-delay techniques like e.g. the so-called fill-symbol control as proposed in [24] are

usually employed. They avoid buffer overflows by artificial code word completion. This

makes the decoder slightly more complicated as it has to detect and regard artificially

completed code words. An exemplary decoder-synchronized encoder is depicted in

Fig. 7.1. Each element of the ring buffer is in one of the three possible states Empty,

Reserved, or Complete. In Reserved state, a buffer element is also able to store an

incomplete source word and in Complete state, a buffer element is also able to store a

116

7.1 Review of decoder-synchronized encoding

code word. A bit writer points to the buffer element to be written to the bit stream next.
For each bin encoder, a pointer is maintained, which points to a buffer element where
the next code word of this bin encoder has to be placed. In the beginning of the encod-
ing process, all buffer elements are marked Empty, the pointers of the bin encoders
are set to an invalid state, and the bit writer points to an arbitrary buffer element (e.g.
the first element). During the encoding process, when a bin encoder receives the first
bin of a code word, it reserves the next free element in the ring buffer. The next free
element in the ring buffer is found by starting at the buffer element, the bit writer points
to and going down (potentially including wraparounds) until an Empty buffer element
is reached. This buffer element is marked Reserved, the bin is stored in this element,
and the Pointer associated with the corresponding bin encoder is set to this element.
Further bins that occur in the corresponding bin encoder are collected in this reserved
buffer element until the code word is complete. If this happens, the buffer element is
marked Complete and the contained source word is replaced with the corresponding
code word. The pointer of the corresponding bin encoder is invalidated. Whenever the
bit writer points to a Complete buffer element, it writes this stored code word to the bit
stream, sets the buffer element to Empty. Afterwards, the bit writer is set to point to
the next element (potentially including a wraparound) and if this element is Complete
as well, the procedure is repeated until the bit writer points to either a Reserved or an
Empty element.

Fig. 7.1 shows an exemplary state in which the multiplexer could be. A number of
buffer elements are Reserved and in-between them are Complete buffer elements. All
other buffer elements are Empty. The number of Reserved buffer elements is lower
or equal to the number of bin encoders since when a code word is finished in a bin
encoder, the corresponding pointer is invalidated (pointing nowhere). The number of
Complete code words is not limited and depends on how long it takes until the oldest
Reserved buffer element is completed. When all Empty elements are exhausted,
no new buffer element can be reserved and the procedure cannot continue. This
has to be avoided by the encoding application, e.g. by choosing the ring buffer size
appropriately.

Low-delay control (see fill-symbol control in [24]) is a concept which also addresses
this problem. It is simple to add to the described encoder but requires a substantial
modification of the decoder. Whenever a bin encoder needs to reserve a buffer el-
ement and no Empty buffer element is available, the buffer element where the bit
writer points to is completed by adding arbitrary flush bins to the corresponding bin
encoder until the source word is complete. Preferably flush bins that lead to the short-

117

7. MULTIPLEXING IN PIPE CODING

est possible code word. Then, this code word (and potentially further already complete
code words) can be written to the bit streams and the corresponding buffer elements
become Empty. In the decoder, the artificially added bins need to be detected and
discarded. This can be achieved by tracking the ring buffer index for each code word
as it occurs in the encoder. When a code word is read from the bit stream, the ring
buffer index is increased by 1 or, in the case of a wraparound, it is set to 1. Immediately
afterwards, it is checked whether one of the code words of the other bin decoders has
the same index as the currently read code word. If so, the remaining bits of this code
word are flush bits and need to be discarded.

7.1.1 Trade-off between bit rate and ring buffer size

Occasionally adding flush bins creates a bit rate overhead. The smaller the ring buffer
is, the more often flush bits are generated. Furthermore, it depends on the source
word lengths and on how the bins are distributed to the bin coders. A bin coder that
processes only a small portion of the bins takes longer (on average) to complete a
source word, which results in a higher probability of flushing bins. For a particular
source word of a bin encoder, flushing bins can only occur when between the first and
last bin of the source word, sufficient bins of other bin encoders occur in the sequence
of coding bins such that the ring buffer overflows. When flushing occurs, the buffer
element to be flushed contains an incomplete source word. This is one of all possible
prefixes of the source words of the bin encoder (not including whole source words).
Depending on the probability of a prefix, and on the length of the associated code
word (derived by flushing), each prefix may have a different overhead. However, an
exact calculation of the probability of a prefix is difficult so that it may be more suitable
to derive it by simulation.

7.1.2 Disadvantages

Decoder-synchronized encoding has a number of disadvantages, which motivate the
development of the so-called chunk-based multiplexing in the next section. The main
issues are:

Sequential decoding The decoding of bins is a sequential operation, which can
hardly be parallelized. More precisely, decoding of a code word is initiated when
the first bin of the corresponding source word is requested by the probability in-
terval allocator. While the code word is decoded, the operation of the probability

118

7.2 Chunk-based multiplexing

interval allocator is interrupted until the first bin is available. Decoding cannot
start earlier since the bin decoder cannot know where the code word is located
in the bit stream.

Ring buffer utilization A ring buffer element stores exactly one code word or an un-
ambiguous reference to it. It depends on the PIPE coder setup how this is done
in the most efficient way. For example, a unique index can be assigned to each
code word of all coders. Or, if more efficient, the code words along with their
length can also be stored directly in the ring buffer elements. In any case, the
way of identifying a code word requires much more bits than the sum of the pure
code word bits.

Variable length reading from the bit stream A decoding operation reads a variable
number of bits from the bit stream where the length depends on the actual bits
themselves. This requires a number of bit isolation and joining operations.

7.2 Chunk-based multiplexing

Chunk-based multiplexing is a technique that addresses the disadvantages of
decoder-synchronized encoding as outlined in the previous section. Instead of inter-
leaving code words, bit sequences of fixed-length (so-called chunks) are interleaved.
The basic concept is published in [28] and [93] and is related to the scheme by Boliek
et al. in [27]. The code words produced by a bin encoder are concatenated to a bit
stream, which is then split into chunks. The chunks of all bin encoders are interleaved
according to a predefined rule, similar as the code words are in decoder-synchronized
encoding. This introduces a number of changes to the encoder and decoder. The
ring buffer in the encoder operates on chunks instead of code words and each bin
encoder can have more than one reservations at the same time. Furthermore, each
bin encoder maintains a writing position that points to the next free bit inside of the re-
served chunks. When the first bin of a source word arrives at a bin encoder, it checks
the number of free bits in its reserved chunks and decides whether it reserves further
chunks. A possible rule for this check could be as follows.

• When the first bin of a code word is requested, reserve chunks until the number
of free bits is greater or equal to a predefined threshold n.

In other words, the threshold n is the minimum number of free bits available after the
rule is executed. n must be large enough so that the next code word fits in the free

119

7. MULTIPLEXING IN PIPE CODING

bits but can also be much larger. A reasonable choice is to set n to the length of the
largest code word of the bin encoder as demonstrated in the following example. Fig.

Figure 7.2: Exemplary multiplexing with chunks.

7.2 shows an exemplary chunk-based multiplexing of six code words a, . . . , f occurring
in three bin encoders or decoders. The length of a chunk is chosen to be 8 bit. The
bits of the code words are labeled with capital letters A, . . . ,F, respectively. The code
words a, . . . , f are ordered according to the occurrence of the first bins of their source
words. Code words a, c, and f occur in bin coder 1, code word b occurs in bin coder
2 and code words d and e occur in bin coder 3. The encoder operates as follows. At
the beginning of the encoding, no bin encoder has reserved chunks. Therefore, when
the first bin of a source word occurs, chunks are reserved until n free bits are available
according to the triggering rule. It is assumed that bin encoder 1 reserves chunk 1

after the first bin of code word a and bin encoder 2 reserves chunk 2 after the first bin
of code word b. When further bins occur so that code word a is complete and the first
bin of the next source word appears in bin encoder 1, the triggering rule applies. I.e.,
the number of free bits in chunk 1 is counted and compared to the threshold n, which
is set to the length of the longest possible code word of bin encoder 1. If it would fit,
no reservation is done and if not, chunks are reserved until it would fit. In the present
example, it is assumed that it wouldn’t fit and chunk 3 is reserved. Afterwards, code
words d, e, and f follow where f is partly written to chunk 1 and partly to chunk 3.
When all bits of a chunk are filled with code word bits, it is marked complete and the
ring buffer can operate exactly in the same way as for decoder-synchronized encoding.
Low-delay control can also be used with chunk-based multiplexing. When a reserved
chunk has to be flushed because of a ring buffer overflow, a potentially pending code
word in the reserved chunk is completed and written to the chunk. If further bits are

120

7.2 Chunk-based multiplexing

free in the chunk, they are filled with arbitrary bits and the chunk can be written to
the bit stream. The decoder has to detect such situations and must discard remaining
bits of a source word and also remaining bits in a chunk if present. On the one hand,
decoding is slightly more complex because each bin decoder has to maintain a number
of read chunks and a pointer to the next bit to read inside the chunks. On the other
hand, the utilization of the ring buffer and the options for parallelization are improved
as discussed in the following sections.

7.2.1 Ring buffer utilization

An advantage of chunk-based multiplexing is that each bin of the ring buffer stores
code word bits without overhead. In contrast, decoder-synchronized encoding only
stores one code word in a ring buffer element which is much more inefficient. In chunk-
based multiplexing, complete chunks can be written to the bit stream without further
processing while in decoder-synchronized encoding, the variable length code words
need to be properly concatenated first. In other words, a sequence of consecutive
complete chunks in the ring buffer is a piece of the bit stream, ready for transmis-
sion or storage. This allows to completely skip low-delay control in some cases. For
example, in a video coding application, the entropy coder encodes bins from each
frame (or slice) separately in order to be able to independently entropy decode each
frame. When the encoder operates in a way that the code bits of a frame are stored
in memory first, chunk-based multiplexing can be carried out in the final bit stream
memory directly since chunks are reserved at the position in the memory where they
finally have to be. This requires random-access writing to the bit stream memory in
the encoder. Although, it may be worthwhile to accept this increased complexity in the
encoder because the bit rate overhead associated with low delay control is avoided
and the decoder does not need to handle low-delay control.

7.2.2 Parallel bin decoding

Increasing the threshold n for triggering chunks creates room for parallel code word
decoding. When n is e.g. set to two times the length of the longest code word, at least
two code words can be decoded. While the first bin of the first code word is required
immediately, the bins of the second code word are needed sometime later. The bin
decoder can decode the second code word independently of the further operation of
the probability interval allocator, so to say, in the background. Consequently, it can
carry out background decoding to always have readily decoded bins available and will

121

7. MULTIPLEXING IN PIPE CODING

be able to immediately answer bin requests. This is of particular interest for hardware
implementations of PIPE coding. In software, it is difficult to realize background decod-
ing of code words because communication between threads of a multi-threaded im-
plementation rather slow. For an in-depth discussion of hardware aspects, the reader
is referred to [28].

7.2.3 Experimental evaluation

An evaluation of the bit rate overhead that is associated with chunk-based multiplex-
ing is given in [28, Sec. 3.3.2]. The BD rate increase amounts to 0.21% for a P coder
that uses the 8 systematic V2V codes as depicted in Fig. 5.13 with a chunk size of
8 bit and a ring buffer size of 512 chunks. The triggering threshold n is set to the
smallest possible value, which is different for each bin coder. Note that the BD rate
increase is measured relative to a PIPE coder which uses decoder-synchronized en-
coding without low delay constraint instead of chunk-based multiplexing. This should
have virtually the same compression efficiency as chunk-based multiplexing without
low-delay control, since the same code words are contained in the bit stream in both
cases. This allows, however, a comparison of the decoding time of chunk-based mul-
tiplexing to decoder-synchronized encoding. A small speedup can be observed for
chunk-based multiplexing. As discussed in Sec. 6.4, a more recent study by Roth et
al. [89] demonstrates that substantial decoding time reductions can be achieved with
chunk-based multiplexing when the average code word lengths of the V2V codes are
high enough.

7.3 Chapter summary

In this chapter, a chunk-based multiplexing scheme for bin coder output was pre-
sented. It is a further development of the decoder-synchronized encoding. Instead
of interleaving individual code words of the bin coders, bit sequences of fixed length
are formed by each bin coder independently, which are then multiplexed.

Furthermore, chunk-based multiplexing allows to control when a bin decoder re-
ceives new chunks from the bit stream by employing a triggering threshold n. This
is an important technique for allowing uninterrupted parallelized decoding on a large
scale. When the triggering threshold is increased, the number of bins that can be
present readily decoded in a bin decoder is increased as well. In other words, such a
bin decoder is able to provide multiple bins in a single operation if required.

122

7.3 Chapter summary

It was shown that interleaving of bit sequences of fixed length is also advantageous
in an encoder implementation. The ring buffer is utilized in the best possible way since
it stores portions of the bit stream. Moreover, in applications where a PIPE coder is
terminated in manageable time intervals so that the resulting bit stream portion fits into
memory, the ring buffer can completely be avoided. In this case, no bit rate overhead
is caused by low-delay control. Furthermore, the demultiplexer is also less complex
since it doesn’t have to regard low-delay control.

123

8

Conclusions and Future Work

This work addresses the problem of designing V2V codes for the PIPE coding con-
cept. Redundancy and parallelization capabilities are the main parameters of inter-
est in this context. While many well-known algorithms are available for constructing
code trees for minimum redundancy V2V codes with various constraints, the design
of corresponding source trees is mainly based on exhaustive search. The concept
of canonical V2V codes allows to reduce the complexity of this problem by eliminat-
ing equivalent source trees in the exhaustive search. Moreover, the classification into
prime and composite V2V codes can further improve the efficiency of the search for
minimum redundancy V2V codes by early termination.

The PIPE coding system requires a number of V2V codes that cover the probability
interval (0, 0.5], which leads to the idea of jointly deriving a set of such V2V codes. One
handy way to achieve this is to use the probability as variable p, which leads to the
concept of polynomial-based algorithms. Such an algorithm yields a set of contiguous
subintervals of (0, 0.5] with each subinterval having an associated V2V code that is
the result of the algorithm for the subinterval. Less complex algorithms, like Huffman’s
or Tunstall’s algorithm, can be made polynomial-based by small modifications. For
more complex algorithms, like the lazy reverse runlength package merge algorithm,
a finite-state machine-based implementation is much more manageable than directly
introducing polynomials in the algorithm.

Since V2V codes can be arbitrarily large, their size needs to be constrained in de-
sign algorithms. Most literature about V2V code design limits the number of leaf nodes
of source and code trees. However, for a lookup table-based implementation, codes
for which only the source and code tree height is limited, utilize the lookup table in
the best possible way. Since the complexity of searching minimum redundancy V2V

125

8. CONCLUSIONS AND FUTURE WORK

codes mainly depends on the cardinality of the candidate set of source trees, only the
maximum height of a source tree cannot be increased arbitrarily. With an estimated
number of up to 1.9 · 1013 different canonical source trees, an exhaustive search for a
maximum source tree height of 7 already seems unfeasible. While minimum redun-
dancy V2V codes with a maximum source and code tree height of 6 already show
a remarkably low redundancy for p > 0.1, they are not satisfactory for p ≤ 0.1. In
general, V2V codes seem to develop a particular structure for p → 0, which leads to
unary-to-rice codes. From a redundancy perspective, they seem to be the only option
for very small p. Fortunately, they have a very systematic structure so that even very
large codes can be implemented with low complexity. It turns out that also for larger
values of p, V2V codes with a systematic structure can be found, which leads to the
concept of systematic V2V codes.

The polynomial-based V2V code design algorithms tend to yield a strongly frag-
mented probability interval and a large number of V2V codes. It is intuitively clear that
the envelope of the redundancy of these V2V codes cannot increase strongly when
one of the V2V codes with a very narrow associated subinterval is removed. Conse-
quently, it makes sense to only use a skillfully selected subset of V2V codes for a PIPE
coder setup. In general, the size of the subset is traded of against the redundancy of
the resulting PIPE coder, depending on the requirements of the application. Since the
redundancy of a PIPE coder is given as a function of the probability, a minimization
criterion needs to be defined like the average code length of the resulting PIPE coder
for a given source. In practical applications, the properties of such a source is usually
best described through a set of realizations like e.g. a set of H.265/HEVC-encoded bit
streams. By appropriately weighting the encoded lengths of the individual realizations,
the PIPE coder can be optimized to particular source characteristics.

A high degree of parallelization can be realized with a PIPE coder when each ele-
ment in the processing chain is prepared for it. This is a difference to CABAC where
the M coder withstands any attempts of large-scale parallelization. For allowing a high
degree of parallel processing in the P coder, the individual bin coders must be able to
run in parallel. This is mainly a question of the synchronization between bin coders,
which is controlled by the multiplexing technique. Chunk-based multiplexing ensures
that the bin decoders always have a sufficient amount of code bits available so that
they can always have a sufficient amount of decoded bins available for the next pro-
cessing stage. Consequently, requests for multiple bins can be answered immediately.
Fortunately, chunk-based multiplexing is possible without introducing a noteworthy bit
rate increase so that it is an option when the highest compression efficiency is needed.

126

8.1 Future Work

8.1 Future Work

The problem of efficiently designing minimum redundancy V2V codes remains un-
solved. The approach followed in this work is based on simplifying the exhaustive
search and it may be interesting to advance this idea. One important tools for this
purpose is the canonical representation of source trees, which greatly reduces the
search space. The observation that minimum redundancy V2V codes cannot be com-
posite, can be used for early termination. It could, however, also be useful for further
reductions of the search space. For example, if two canonical source words that can
be siblings are associated with the same code word lengths, a composite V2V code
can be constructed from this canonical representation. Such source trees can be ex-
cluded from the search space. Moreover, consider the proportion of prime V2V codes
amongst all V2V codes of a given source and code tree height. It can be specu-
lated that the proportion of prime V2V codes decreases with increasing source and
code tree height. This is because the number of possible leaf nodes increases expo-
nentially with the source and code tree height, while the number of possible different
source and code word lengths linearly increases. Consequently, the number of source
and code words of the same length must strongly increase. If a test can be constructed
for whether a V2V code is composite, based on the availability of sufficient source and
code words of the same length, the size of the search space can be further reduced.

Several PIPE coder setups with a low overhead are presented in this work. The
chunk-based multiplexing scheme enables the uninterrupted and parallelized decod-
ing flow of bins. While this is possible without notably increasing the overhead, the
question remains, whether this is also possible in the other stages of PIPE coding, like
binarization, context modeling, and probability estimation. The ever-increasing video
quality and associated data rates may in future create a need for parallel processing
inside of the entropy coding engine.

127

Appendix A

Canonical V2V code tables

A.1 Optimal canonical V2V codes of limited size

A.1.1 Fixed-to-variable length codes

Name F2V2 1 F2V2 2

Ik (0, 0.38] (0.38, 0.5]

M(σi) 2 1 1 0 2 1 1 0

N(σi) 0 1 1 2 0 1 1 2

`(k(σi)) 1 2 3 3 2 2 2 2

Table A.1: Optimal F2V codes with source word length of 2.

Name F2V3 1 F2V3 2 F2V3 3

Ik (0, 0.2929] (0.2929, 0.3333] (0.3333, 0.4302]

M(σi) 3 2 2 2 1 1 1 0 3 2 2 2 1 1 1 0 3 2 2 2 1 1 1 0

N(σi) 0 1 1 1 2 2 2 3 0 1 1 1 2 2 2 3 0 1 1 1 2 2 2 3

`(k(σi)) 1 3 3 3 5 5 5 5 2 2 3 3 4 4 4 4 2 3 3 3 3 3 4 4

Name F2V3 4

Ik (0.4302, 0.5]

M(σi) 3 2 2 2 1 1 1 0

N(σi) 0 1 1 1 2 2 2 3

`(k(σi)) 3 3 3 3 3 3 3 3

Table A.2: Optimal F2V codes with source word length of 3.

129

A. CANONICAL V2V CODE TABLES

Name F2V4 1

Ik (0, 0.1311]

M(σi) 4 3 3 3 3 2 2 2 2 2 2 1 1 1 1 0

N(σi) 0 1 1 1 1 2 2 2 2 2 2 3 3 3 3 4

`(k(σi)) 1 3 3 3 4 6 7 7 7 7 7 9 9 9 10 10

Name F2V4 2

Ik (0.1311, 0.191]

M(σi) 4 3 3 3 3 2 2 2 2 2 2 1 1 1 1 0

N(σi) 0 1 1 1 1 2 2 2 2 2 2 3 3 3 3 4

`(k(σi)) 1 3 3 4 4 5 6 6 6 6 6 8 8 8 9 9

Name F2V4 3

Ik (0.191, 0.2]

M(σi) 4 3 3 3 3 2 2 2 2 2 2 1 1 1 1 0

N(σi) 0 1 1 1 1 2 2 2 2 2 2 3 3 3 3 4

`(k(σi)) 1 3 3 4 4 6 6 6 6 6 6 7 7 7 8 8

Name F2V4 4

Ik (0.2, 0.2076]

M(σi) 4 3 3 3 3 2 2 2 2 2 2 1 1 1 1 0

N(σi) 0 1 1 1 1 2 2 2 2 2 2 3 3 3 3 4

`(k(σi)) 1 3 4 4 4 5 5 5 5 6 6 7 7 7 8 8

Name F2V4 5

Ik (0.2076, 0.3177]

M(σi) 4 3 3 3 3 2 2 2 2 2 2 1 1 1 1 0

N(σi) 0 1 1 1 1 2 2 2 2 2 2 3 3 3 3 4

`(k(σi)) 2 3 3 3 3 5 5 5 5 5 5 6 6 6 7 7

Name F2V4 6

Ik (0.3177, 0.3333]

M(σi) 4 3 3 3 3 2 2 2 2 2 2 1 1 1 1 0

N(σi) 0 1 1 1 1 2 2 2 2 2 2 3 3 3 3 4

`(k(σi)) 2 3 3 3 4 4 5 5 5 5 5 5 6 6 6 6

Table A.3: Optimal F2V codes with source word length of 4 (part 1).

130

A.1 Optimal canonical V2V codes of limited size

Name F2V4 7

Ik (0.3333, 0.382]

M(σi) 4 3 3 3 3 2 2 2 2 2 2 1 1 1 1 0

N(σi) 0 1 1 1 1 2 2 2 2 2 2 3 3 3 3 4

`(k(σi)) 3 3 3 4 4 4 4 4 4 4 4 5 5 5 6 6

Name F2V4 8

Ik (0.382, 0.4142]

M(σi) 4 3 3 3 3 2 2 2 2 2 2 1 1 1 1 0

N(σi) 0 1 1 1 1 2 2 2 2 2 2 3 3 3 3 4

`(k(σi)) 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5

Name F2V4 9

Ik (0.4142, 0.4503]

M(σi) 4 3 3 3 3 2 2 2 2 2 2 1 1 1 1 0

N(σi) 0 1 1 1 1 2 2 2 2 2 2 3 3 3 3 4

`(k(σi)) 3 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5

Name F2V4 10

Ik (0.4503, 0.5]

M(σi) 4 3 3 3 3 2 2 2 2 2 2 1 1 1 1 0

N(σi) 0 1 1 1 1 2 2 2 2 2 2 3 3 3 3 4

`(k(σi)) 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Table A.4: Optimal F2V codes with source word length of 4 (part 2).

Name F2V5 1

Ik (0, 0.0836]

M(σi) 5 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1

N(σi) 0 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4

`(k(σi)) 1 3 3 4 4 4 7 7 7 7 7 8 8 8 8 8 11 11 11 11 11 12 12 12 12 12 14

M(σi) 1 1 1 1 0

N(σi) 4 4 4 4 5

`(k(σi)) 14 15 15 15 15

Table A.5: Optimal F2V codes with source word length of 5 (part 1).

131

A. CANONICAL V2V CODE TABLES

Name F2V5 2

Ik (0.0836, 0.0871]

M(σi) 5 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1

N(σi) 0 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4

`(k(σi)) 1 3 4 4 4 4 6 6 6 6 6 7 7 7 7 7 10 10 10 10 10 11 11 11 11 11 13

M(σi) 1 1 1 1 0

N(σi) 4 4 4 4 5

`(k(σi)) 13 14 14 14 14

Name F2V5 3

Ik (0.0871, 0.1185]

M(σi) 5 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1

N(σi) 0 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4

`(k(σi)) 1 3 4 4 4 4 6 6 6 6 7 7 7 7 7 7 9 9 9 9 9 10 10 10 10 10 12

M(σi) 1 1 1 1 0

N(σi) 4 4 4 4 5

`(k(σi)) 12 13 13 13 13

Name F2V5 4

Ik (0.1185, 0.1615]

M(σi) 5 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1

N(σi) 0 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4

`(k(σi)) 1 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 8 8 8 8 8 9 9 9 9 9 11

M(σi) 1 1 1 1 0

N(σi) 4 4 4 4 5

`(k(σi)) 11 12 12 12 12

Name F2V5 5

Ik (0.1615, 0.1943]

M(σi) 5 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1

N(σi) 0 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4

`(k(σi)) 1 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 8 8 8 8 9 9 9 9 9 9 10

M(σi) 1 1 1 1 0

N(σi) 4 4 4 4 5

`(k(σi)) 10 11 11 11 11

Table A.6: Optimal F2V codes with source word length of 5 (part 2).

132

A.1 Optimal canonical V2V codes of limited size

Name F2V5 6

Ik (0.1943, 0.2]

M(σi) 5 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1

N(σi) 0 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4

`(k(σi)) 2 3 3 3 4 4 5 5 5 6 6 6 6 6 6 6 8 8 8 8 8 8 8 8 8 8 9

M(σi) 1 1 1 1 0

N(σi) 4 4 4 4 5

`(k(σi)) 9 10 10 10 10

Name F2V5 7

Ik (0.2, 0.2219]

M(σi) 5 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1

N(σi) 0 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4

`(k(σi)) 2 3 4 4 4 4 5 5 5 5 5 5 5 5 5 6 7 7 7 7 7 7 7 7 8 8 9

M(σi) 1 1 1 1 0

N(σi) 4 4 4 4 5

`(k(σi)) 9 10 10 10 10

Name F2V5 8

Ik (0.2219, 0.2358]

M(σi) 5 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1

N(σi) 0 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4

`(k(σi)) 2 3 4 4 4 4 5 5 5 5 5 5 5 5 6 6 7 7 7 7 7 7 7 7 7 7 8

M(σi) 1 1 1 1 0

N(σi) 4 4 4 4 5

`(k(σi)) 8 9 9 9 9

Name F2V5 9

Ik (0.2358, 0.2957]

M(σi) 5 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1

N(σi) 0 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4

`(k(σi)) 2 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 6 6 6 7 7 7 7 7 7 7 8

M(σi) 1 1 1 1 0

N(σi) 4 4 4 4 5

`(k(σi)) 8 8 8 8 8

Table A.7: Optimal F2V codes with source word length of 5 (part 3).

133

A. CANONICAL V2V CODE TABLES

Name F2V5 10

Ik (0.2957, 0.3141]

M(σi) 5 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1

N(σi) 0 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4

`(k(σi)) 3 3 4 4 4 4 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 7

M(σi) 1 1 1 1 0

N(σi) 4 4 4 4 5

`(k(σi)) 7 8 8 8 8

Name F2V5 11

Ik (0.3141, 0.3333]

M(σi) 5 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1

N(σi) 0 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4

`(k(σi)) 3 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 7

M(σi) 1 1 1 1 0

N(σi) 4 4 4 4 5

`(k(σi)) 7 7 7 7 7

Name F2V5 12

Ik (0.3333, 0.382]

M(σi) 5 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1

N(σi) 0 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4

`(k(σi)) 3 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6

M(σi) 1 1 1 1 0

N(σi) 4 4 4 4 5

`(k(σi)) 6 6 6 7 7

Name F2V5 13

Ik (0.382, 0.3865]

M(σi) 5 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1

N(σi) 0 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4

`(k(σi)) 3 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6

M(σi) 1 1 1 1 0

N(σi) 4 4 4 4 5

`(k(σi)) 6 6 6 6 6

Table A.8: Optimal F2V codes with source word length of 5 (part 4).

134

A.1 Optimal canonical V2V codes of limited size

Name F2V5 14

Ik (0.3865, 0.4142]

M(σi) 5 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1

N(σi) 0 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4

`(k(σi)) 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6

M(σi) 1 1 1 1 0

N(σi) 4 4 4 4 5

`(k(σi)) 6 6 6 6 6

Name F2V5 15

Ik (0.4142, 0.4425]

M(σi) 5 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1

N(σi) 0 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4

`(k(σi)) 4 4 4 5 6

M(σi) 1 1 1 1 0

N(σi) 4 4 4 4 5

`(k(σi)) 6 6 6 6 6

Name F2V5 16

Ik (0.4425, 0.4614]

M(σi) 5 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1

N(σi) 0 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4

`(k(σi)) 4 5

M(σi) 1 1 1 1 0

N(σi) 4 4 4 4 5

`(k(σi)) 5 5 5 6 6

Name F2V5 17

Ik (0.4614, 0.5]

M(σi) 5 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1

N(σi) 0 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4

`(k(σi)) 5

M(σi) 1 1 1 1 0

N(σi) 4 4 4 4 5

`(k(σi)) 5 5 5 5 5

Table A.9: Optimal F2V codes with source word length of 5 (part 5).

135

A. CANONICAL V2V CODE TABLES

A.1.2 Tunstall (variable-to-fixed length) codes

Name V2F2 1 V2F2 2

Ik (0, 0.38] (0.38, 0.5]

M(σi) 3 2 1 0 2 1 1 0

N(σi) 0 1 1 1 0 1 1 2

`(k(σi)) 2 2 2 2 2 2 2 2

Table A.10: Optimal Tunstall codes (V2F) with code word length of 2.

Name V2F3 1 V2F3 2 V2F3 3

Ik (0, 0.2219] (0.2219, 0.2755] (0.2755, 0.3177]

M(σi) 7 6 5 4 3 2 1 0 6 5 4 3 2 1 1 0 5 4 3 2 2 1 1 0

N(σi) 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 2 0 1 1 1 1 1 2 2

`(k(σi)) 3

Name V2F3 4 V2F3 5

Ik (0.3177, 0.4302] (0.4302, 0.5]

M(σi) 4 3 2 2 2 1 1 0 3 2 2 2 1 1 1 0

N(σi) 0 1 1 1 1 2 2 2 0 1 1 1 2 2 2 3

`(k(σi)) 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Table A.11: Optimal Tunstall codes (V2F) with code word length of 3.

Name V2F4 1

Ik (0, 0.1338]

M(σi) 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

N(σi) 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

`(k(σi)) 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Name V2F4 2

Ik (0.1338, 0.1474]

M(σi) 14 13 12 11 10 9 8 7 6 5 4 3 2 1 1 0

N(σi) 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2

`(k(σi)) 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Table A.12: Optimal Tunstall codes (V2F) with code word length of 4 (part 1).

136

A.1 Optimal canonical V2V codes of limited size

Name V2F4 3

Ik (0.1474, 0.1556]

M(σi) 13 12 11 10 9 8 7 6 5 4 3 2 2 1 1 0

N(σi) 0 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2

`(k(σi)) 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Name V2F4 4

Ik (0.1556, 0.1757]

M(σi) 12 11 10 9 8 7 6 5 4 3 2 2 2 1 1 0

N(σi) 0 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2

`(k(σi)) 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Name V2F4 5

Ik (0.1757, 0.1883]

M(σi) 11 10 9 8 7 6 5 4 3 3 2 2 2 1 1 0

N(σi) 0 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2

`(k(σi)) 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Name V2F4 6

Ik (0.1883, 0.2035]

M(σi) 10 9 8 7 6 5 4 3 3 3 2 2 2 1 1 0

N(σi) 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2

`(k(σi)) 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Name V2F4 7

Ik (0.2035, 0.2451]

M(σi) 9 8 7 6 5 4 3 3 3 3 2 2 2 1 1 0

N(σi) 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2

`(k(σi)) 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Name V2F4 8

Ik (0.2451, 0.2755]

M(σi) 8 7 6 5 4 4 3 3 3 3 2 2 2 1 1 0

N(σi) 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2

`(k(σi)) 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Table A.13: Optimal Tunstall codes (V2F) with code word length of 4 (part 2).

137

A. CANONICAL V2V CODE TABLES

Name V2F4 9

Ik (0.2755, 0.3177]

M(σi) 7 6 5 4 4 4 3 3 3 3 2 2 2 1 1 0

N(σi) 0 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

`(k(σi)) 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Name V2F4 10

Ik (0.3177, 0.382]

M(σi) 6 5 4 4 4 3 3 3 3 2 2 2 1 1 1 0

N(σi) 0 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3

`(k(σi)) 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Name V2F4 11

Ik (0.382, 0.4503]

M(σi) 5 4 3 3 3 3 2 2 2 2 2 2 1 1 1 0

N(σi) 0 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3

`(k(σi)) 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Name V2F4 12

Ik (0.4503, 0.5]

M(σi) 4 3 3 3 3 2 2 2 2 2 2 1 1 1 1 0

N(σi) 0 1 1 1 1 2 2 2 2 2 2 3 3 3 3 4

`(k(σi)) 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Table A.14: Optimal Tunstall codes (V2F) with code word length of 4 (part 3).

138

A.1 Optimal canonical V2V codes of limited size

Name V2F5 1

Ik (0, 0.0805]

M(σi) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5

N(σi) 0 1

`(k(σi)) 5

M(σi) 4 3 2 1 0

N(σi) 1 1 1 1 1

`(k(σi)) 5 5 5 5 5

Name V2F5 2

Ik (0.0805, 0.0845]

M(σi) 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4

N(σi) 0 1

`(k(σi)) 5

M(σi) 3 2 1 1 0

N(σi) 1 1 1 1 2

`(k(σi)) 5 5 5 5 5

Name V2F5 3

Ik (0.0845, 0.0866]

M(σi) 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3

N(σi) 0 1

`(k(σi)) 5

M(σi) 2 2 1 1 0

N(σi) 1 1 1 2 2

`(k(σi)) 5 5 5 5 5

Name V2F5 4

Ik (0.0866, 0.0913]

M(σi) 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

N(σi) 0 1

`(k(σi)) 5

M(σi) 2 2 1 1 0

N(σi) 1 1 2 2 2

`(k(σi)) 5 5 5 5 5

Table A.15: Optimal Tunstall codes (V2F) with code word length of 5 (part 1).

139

A. CANONICAL V2V CODE TABLES

Name V2F5 5

Ik (0.0913, 0.0939]

M(σi) 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 3 2

N(σi) 0 1

`(k(σi)) 5

M(σi) 2 2 1 1 0

N(σi) 1 2 2 2 2

`(k(σi)) 5 5 5 5 5

Name V2F5 6

Ik (0.0939, 0.0966]

M(σi) 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 3 3 2

N(σi) 0 1

`(k(σi)) 5

M(σi) 2 2 1 1 0

N(σi) 2 2 2 2 2

`(k(σi)) 5 5 5 5 5

Name V2F5 7

Ik (0.0966, 0.1027]

M(σi) 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 3 3 3 2

N(σi) 0 1 2

`(k(σi)) 5

M(σi) 2 2 1 1 0

N(σi) 2 2 2 2 2

`(k(σi)) 5 5 5 5 5

Name V2F5 8

Ik (0.1027, 0.1061]

M(σi) 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 4 3 3 3 3 2

N(σi) 0 1 2 2

`(k(σi)) 5

M(σi) 2 2 1 1 0

N(σi) 2 2 2 2 2

`(k(σi)) 5 5 5 5 5

Table A.16: Optimal Tunstall codes (V2F) with code word length of 5 (part 2).

140

A.1 Optimal canonical V2V codes of limited size

Name V2F5 9

Ik (0.1061, 0.1098]

M(σi) 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 4 4 3 3 3 3 2

N(σi) 0 1 2 2 2

`(k(σi)) 5

M(σi) 2 2 1 1 0

N(σi) 2 2 2 2 2

`(k(σi)) 5 5 5 5 5

Name V2F5 10

Ik (0.1098, 0.1138]

M(σi) 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 4 4 4 3 3 3 3 2

N(σi) 0 1 2 2 2 2

`(k(σi)) 5

M(σi) 2 2 1 1 0

N(σi) 2 2 2 2 2

`(k(σi)) 5 5 5 5 5

Name V2F5 11

Ik (0.1138, 0.1228]

M(σi) 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 4 4 4 4 3 3 3 3 2

N(σi) 0 1 2 2 2 2 2

`(k(σi)) 5

M(σi) 2 2 1 1 0

N(σi) 2 2 2 2 2

`(k(σi)) 5 5 5 5 5

Name V2F5 12

Ik (0.1228, 0.128]

M(σi) 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 5 4 4 4 4 4 3 3 3 3 2

N(σi) 0 1 2 2 2 2 2 2

`(k(σi)) 5

M(σi) 2 2 1 1 0

N(σi) 2 2 2 2 2

`(k(σi)) 5 5 5 5 5

Table A.17: Optimal Tunstall codes (V2F) with code word length of 5 (part 3).

141

A. CANONICAL V2V CODE TABLES

Name V2F5 13

Ik (0.128, 0.1338]

M(σi) 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 5 5 4 4 4 4 4 3 3 3 3 2

N(σi) 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2

`(k(σi)) 5

M(σi) 2 2 1 1 0

N(σi) 2 2 2 2 2

`(k(σi)) 5 5 5 5 5

Name V2F5 14

Ik (0.1338, 0.1402]

M(σi) 18 17 16 15 14 13 12 11 10 9 8 7 6 5 5 5 5 4 4 4 4 4 3 3 3 3 2

N(σi) 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

`(k(σi)) 5

M(σi) 2 2 1 1 0

N(σi) 2 2 2 2 2

`(k(σi)) 5 5 5 5 5

Name V2F5 15

Ik (0.1402, 0.1474]

M(σi) 17 16 15 14 13 12 11 10 9 8 7 6 5 5 5 5 5 4 4 4 4 4 3 3 3 3 2

N(σi) 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2

`(k(σi)) 5

M(σi) 2 2 1 1 0

N(σi) 2 2 2 2 2

`(k(σi)) 5 5 5 5 5

Name V2F5 16

Ik (0.1474, 0.1649]

M(σi) 16 15 14 13 12 11 10 9 8 7 6 5 5 5 5 5 5 4 4 4 4 4 3 3 3 3 2

N(σi) 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 5

M(σi) 2 2 1 1 0

N(σi) 2 2 2 2 2

`(k(σi)) 5 5 5 5 5

Table A.18: Optimal Tunstall codes (V2F) with code word length of 5 (part 4).

142

A.1 Optimal canonical V2V codes of limited size

Name V2F5 17

Ik (0.1649, 0.1757]

M(σi) 15 14 13 12 11 10 9 8 7 6 6 5 5 5 5 5 5 4 4 4 4 4 3 3 3 3 2

N(σi) 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 5

M(σi) 2 2 1 1 0

N(σi) 2 2 2 2 2

`(k(σi)) 5 5 5 5 5

Name V2F5 18

Ik (0.1757, 0.1883]

M(σi) 14 13 12 11 10 9 8 7 6 6 6 5 5 5 5 5 5 4 4 4 4 4 3 3 3 3 2

N(σi) 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 5

M(σi) 2 2 1 1 0

N(σi) 2 2 2 2 2

`(k(σi)) 5 5 5 5 5

Name V2F5 19

Ik (0.1883, 0.2035]

M(σi) 13 12 11 10 9 8 7 6 6 6 6 5 5 5 5 5 5 4 4 4 4 4 3 3 3 3 2

N(σi) 0 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 5

M(σi) 2 2 1 1 0

N(σi) 2 2 2 2 2

`(k(σi)) 5 5 5 5 5

Name V2F5 20

Ik (0.2035, 0.2219]

M(σi) 12 11 10 9 8 7 6 6 6 6 6 5 5 5 5 5 5 4 4 4 4 4 3 3 3 3 2

N(σi) 0 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 5

M(σi) 2 2 1 1 0

N(σi) 2 2 2 2 2

`(k(σi)) 5 5 5 5 5

Table A.19: Optimal Tunstall codes (V2F) with code word length of 5 (part 5).

143

A. CANONICAL V2V CODE TABLES

Name V2F5 21

Ik (0.2219, 0.2451]

M(σi) 11 10 9 8 7 6 6 6 6 6 6 5 5 5 5 5 5 4 4 4 4 4 3 3 3 3 2

N(σi) 0 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 5

M(σi) 2 2 1 1 0

N(σi) 2 2 2 2 2

`(k(σi)) 5 5 5 5 5

Name V2F5 22

Ik (0.2451, 0.2755]

M(σi) 10 9 8 7 6 6 6 6 6 6 5 5 5 5 5 5 4 4 4 4 4 3 3 3 3 2 2

N(σi) 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 5

M(σi) 2 1 1 1 0

N(σi) 2 2 2 2 3

`(k(σi)) 5 5 5 5 5

Name V2F5 23

Ik (0.2755, 0.3177]

M(σi) 9 8 7 6 6 6 6 5 5 5 5 5 5 4 4 4 4 4 3 3 3 3 2 2 2 2 2

N(σi) 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 5

M(σi) 2 1 1 1 0

N(σi) 2 3 3 3 3

`(k(σi)) 5 5 5 5 5

Name V2F5 24

Ik (0.3177, 0.346]

M(σi) 8 7 6 5 5 5 5 5 5 4 4 4 4 4 3 3 3 3 3 3 3 3 2 2 2 2 2

N(σi) 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3

`(k(σi)) 5

M(σi) 2 1 1 1 0

N(σi) 3 3 3 3 3

`(k(σi)) 5 5 5 5 5

Table A.20: Optimal Tunstall codes (V2F) with code word length of 5 (part 6).

144

A.1 Optimal canonical V2V codes of limited size

Name V2F5 25

Ik (0.346, 0.382]

M(σi) 7 6 5 5 5 5 5 5 4 4 4 4 4 3 3 3 3 3 3 3 3 3 2 2 2 2 2

N(σi) 0 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3

`(k(σi)) 5

M(σi) 2 1 1 1 0

N(σi) 3 3 3 3 3

`(k(σi)) 5 5 5 5 5

Name V2F5 26

Ik (0.382, 0.4302]

M(σi) 6 5 5 5 5 5 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2

N(σi) 0 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3

`(k(σi)) 5

M(σi) 1 1 1 1 0

N(σi) 3 3 3 3 4

`(k(σi)) 5 5 5 5 5

Name V2F5 27

Ik (0.4302, 0.4614]

M(σi) 6 5 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2

N(σi) 0 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3

`(k(σi)) 5

M(σi) 1 1 1 1 0

N(σi) 4 4 4 4 4

`(k(σi)) 5 5 5 5 5

Name V2F5 28

Ik (0.4614, 0.5]

M(σi) 5 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1

N(σi) 0 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4

`(k(σi)) 5

M(σi) 1 1 1 1 0

N(σi) 4 4 4 4 5

`(k(σi)) 5 5 5 5 5

Table A.21: Optimal Tunstall codes (V2F) with code word length of 5 (part 7).

145

A. CANONICAL V2V CODE TABLES

Name V2F6 1

Ik (0, 0.0478]

M(σi) 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37

N(σi) 0 1

`(k(σi)) 6

M(σi) 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

N(σi) 1

`(k(σi)) 6

M(σi) 9 8 7 6 5 4 3 2 1 0

N(σi) 1 1 1 1 1 1 1 1 1 1

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Name V2F6 2

Ik (0.0478, 0.049]

M(σi) 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36

N(σi) 0 1

`(k(σi)) 6

M(σi) 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9

N(σi) 1

`(k(σi)) 6

M(σi) 8 7 6 5 4 3 2 1 1 0

N(σi) 1 1 1 1 1 1 1 1 1 2

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Name V2F6 3

Ik (0.049, 0.0496]

M(σi) 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35

N(σi) 0 1

`(k(σi)) 6

M(σi) 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

N(σi) 1

`(k(σi)) 6

M(σi) 7 6 5 4 3 2 2 1 1 0

N(σi) 1 1 1 1 1 1 1 1 2 2

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Table A.22: Optimal Tunstall codes (V2F) with code word length of 6 (part 1).

146

A.1 Optimal canonical V2V codes of limited size

Name V2F6 4

Ik (0.0496, 0.0509]

M(σi) 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34

N(σi) 0 1

`(k(σi)) 6

M(σi) 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7

N(σi) 1

`(k(σi)) 6

M(σi) 6 5 4 3 2 2 2 1 1 0

N(σi) 1 1 1 1 1 1 1 2 2 2

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Name V2F6 5

Ik (0.0509, 0.0516]

M(σi) 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33

N(σi) 0 1

`(k(σi)) 6

M(σi) 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6

N(σi) 1

`(k(σi)) 6

M(σi) 5 4 3 3 2 2 2 1 1 0

N(σi) 1 1 1 1 1 1 2 2 2 2

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Name V2F6 6

Ik (0.0516, 0.0523]

M(σi) 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

N(σi) 0 1

`(k(σi)) 6

M(σi) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5

N(σi) 1

`(k(σi)) 6

M(σi) 4 3 3 3 2 2 2 1 1 0

N(σi) 1 1 1 1 1 2 2 2 2 2

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Table A.23: Optimal Tunstall codes (V2F) with code word length of 6 (part 2).

147

A. CANONICAL V2V CODE TABLES

Name V2F6 7

Ik (0.0523, 0.0537]

M(σi) 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31

N(σi) 0 1

`(k(σi)) 6

M(σi) 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4

N(σi) 1

`(k(σi)) 6

M(σi) 3 3 3 3 2 2 2 1 1 0

N(σi) 1 1 1 1 2 2 2 2 2 2

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Name V2F6 8

Ik (0.0537, 0.0544]

M(σi) 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30

N(σi) 0 1

`(k(σi)) 6

M(σi) 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 4

N(σi) 1

`(k(σi)) 6

M(σi) 3 3 3 3 2 2 2 1 1 0

N(σi) 1 1 1 2 2 2 2 2 2 2

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Name V2F6 9

Ik (0.0544, 0.0552]

M(σi) 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29

N(σi) 0 1

`(k(σi)) 6

M(σi) 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 4 4

N(σi) 1

`(k(σi)) 6

M(σi) 3 3 3 3 2 2 2 1 1 0

N(σi) 1 1 2 2 2 2 2 2 2 2

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Table A.24: Optimal Tunstall codes (V2F) with code word length of 6 (part 3).

148

A.1 Optimal canonical V2V codes of limited size

Name V2F6 10

Ik (0.0552, 0.056]

M(σi) 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28

N(σi) 0 1

`(k(σi)) 6

M(σi) 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 4 4 4

N(σi) 1

`(k(σi)) 6

M(σi) 3 3 3 3 2 2 2 1 1 0

N(σi) 1 2 2 2 2 2 2 2 2 2

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Name V2F6 11

Ik (0.056, 0.0577]

M(σi) 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27

N(σi) 0 1

`(k(σi)) 6

M(σi) 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 4 4 4 4

N(σi) 1

`(k(σi)) 6

M(σi) 3 3 3 3 2 2 2 1 1 0

N(σi) 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Name V2F6 12

Ik (0.0577, 0.0586]

M(σi) 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26

N(σi) 0 1

`(k(σi)) 6

M(σi) 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 5 4 4 4 4 4

N(σi) 1 2

`(k(σi)) 6

M(σi) 3 3 3 3 2 2 2 1 1 0

N(σi) 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Table A.25: Optimal Tunstall codes (V2F) with code word length of 6 (part 4).

149

A. CANONICAL V2V CODE TABLES

Name V2F6 13

Ik (0.0586, 0.0595]

M(σi) 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25

N(σi) 0 1

`(k(σi)) 6

M(σi) 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 5 5 4 4 4 4 4

N(σi) 1 2 2

`(k(σi)) 6

M(σi) 3 3 3 3 2 2 2 1 1 0

N(σi) 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Name V2F6 14

Ik (0.0595, 0.0604]

M(σi) 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24

N(σi) 0 1

`(k(σi)) 6

M(σi) 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 5 5 5 4 4 4 4 4

N(σi) 1 2 2 2

`(k(σi)) 6

M(σi) 3 3 3 3 2 2 2 1 1 0

N(σi) 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Name V2F6 15

Ik (0.0604, 0.0614]

M(σi) 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23

N(σi) 0 1

`(k(σi)) 6

M(σi) 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 5 5 5 5 4 4 4 4 4

N(σi) 1 2 2 2 2

`(k(σi)) 6

M(σi) 3 3 3 3 2 2 2 1 1 0

N(σi) 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Table A.26: Optimal Tunstall codes (V2F) with code word length of 6 (part 5).

150

A.1 Optimal canonical V2V codes of limited size

Name V2F6 16

Ik (0.0614, 0.0635]

M(σi) 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22

N(σi) 0 1

`(k(σi)) 6

M(σi) 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 5 5 5 5 5 4 4 4 4 4

N(σi) 1 2 2 2 2 2

`(k(σi)) 6

M(σi) 3 3 3 3 2 2 2 1 1 0

N(σi) 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Name V2F6 17

Ik (0.0635, 0.0646]

M(σi) 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21

N(σi) 0 1

`(k(σi)) 6

M(σi) 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 6 5 5 5 5 5 5 4 4 4 4 4

N(σi) 1 2 2 2 2 2 2

`(k(σi)) 6

M(σi) 3 3 3 3 2 2 2 1 1 0

N(σi) 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Name V2F6 18

Ik (0.0646, 0.0658]

M(σi) 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20

N(σi) 0 1

`(k(σi)) 6

M(σi) 19 18 17 16 15 14 13 12 11 10 9 8 7 6 6 6 5 5 5 5 5 5 4 4 4 4 4

N(σi) 1 2 2 2 2 2 2 2

`(k(σi)) 6

M(σi) 3 3 3 3 2 2 2 1 1 0

N(σi) 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Table A.27: Optimal Tunstall codes (V2F) with code word length of 6 (part 6).

151

A. CANONICAL V2V CODE TABLES

Name V2F6 19

Ik (0.0658, 0.067]

M(σi) 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19

N(σi) 0 1

`(k(σi)) 6

M(σi) 18 17 16 15 14 13 12 11 10 9 8 7 6 6 6 6 5 5 5 5 5 5 4 4 4 4 4

N(σi) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

`(k(σi)) 6

M(σi) 3 3 3 3 2 2 2 1 1 0

N(σi) 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Name V2F6 20

Ik (0.067, 0.0682]

M(σi) 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18

N(σi) 0 1

`(k(σi)) 6

M(σi) 17 16 15 14 13 12 11 10 9 8 7 6 6 6 6 6 5 5 5 5 5 5 4 4 4 4 4

N(σi) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2

`(k(σi)) 6

M(σi) 3 3 3 3 2 2 2 1 1 0

N(σi) 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Name V2F6 21

Ik (0.0682, 0.0695]

M(σi) 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17

N(σi) 0 1

`(k(σi)) 6

M(σi) 16 15 14 13 12 11 10 9 8 7 6 6 6 6 6 6 5 5 5 5 5 5 4 4 4 4 4

N(σi) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6

M(σi) 3 3 3 3 2 2 2 1 1 0

N(σi) 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Table A.28: Optimal Tunstall codes (V2F) with code word length of 6 (part 7).

152

A.1 Optimal canonical V2V codes of limited size

Name V2F6 22

Ik (0.0695, 0.0723]

M(σi) 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

N(σi) 0 1

`(k(σi)) 6

M(σi) 15 14 13 12 11 10 9 8 7 6 6 6 6 6 6 6 5 5 5 5 5 5 4 4 4 4 4

N(σi) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6

M(σi) 3 3 3 3 2 2 2 1 1 0

N(σi) 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Name V2F6 23

Ik (0.0723, 0.0738]

M(σi) 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15

N(σi) 0 1

`(k(σi)) 6

M(σi) 14 13 12 11 10 9 8 7 7 6 6 6 6 6 6 6 5 5 5 5 5 5 4 4 4 4 4

N(σi) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6

M(σi) 3 3 3 3 2 2 2 1 1 0

N(σi) 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Name V2F6 24

Ik (0.0738, 0.0754]

M(σi) 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14

N(σi) 0 1

`(k(σi)) 6

M(σi) 13 12 11 10 9 8 7 7 7 6 6 6 6 6 6 6 5 5 5 5 5 5 4 4 4 4 4

N(σi) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6

M(σi) 3 3 3 3 2 2 2 1 1 0

N(σi) 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Table A.29: Optimal Tunstall codes (V2F) with code word length of 6 (part 8).

153

A. CANONICAL V2V CODE TABLES

Name V2F6 25

Ik (0.0754, 0.077]

M(σi) 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13

N(σi) 0 1

`(k(σi)) 6

M(σi) 12 11 10 9 8 7 7 7 7 6 6 6 6 6 6 6 5 5 5 5 5 5 4 4 4 4 4

N(σi) 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6

M(σi) 3 3 3 3 2 2 2 1 1 0

N(σi) 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Name V2F6 26

Ik (0.077, 0.0787]

M(σi) 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12

N(σi) 0 1

`(k(σi)) 6

M(σi) 11 10 9 8 7 7 7 7 7 6 6 6 6 6 6 6 5 5 5 5 5 5 4 4 4 4 4

N(σi) 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6

M(σi) 3 3 3 3 2 2 2 1 1 0

N(σi) 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Name V2F6 27

Ik (0.0787, 0.0805]

M(σi) 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11

N(σi) 0 1

`(k(σi)) 6

M(σi) 10 9 8 7 7 7 7 7 7 6 6 6 6 6 6 6 5 5 5 5 5 5 4 4 4 4 4

N(σi) 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6

M(σi) 3 3 3 3 2 2 2 1 1 0

N(σi) 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Table A.30: Optimal Tunstall codes (V2F) with code word length of 6 (part 9).

154

A.1 Optimal canonical V2V codes of limited size

Name V2F6 28

Ik (0.0805, 0.0825]

M(σi) 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

N(σi) 0 1

`(k(σi)) 6

M(σi) 9 8 7 7 7 7 7 7 7 6 6 6 6 6 6 6 5 5 5 5 5 5 4 4 4 4 4

N(σi) 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6

M(σi) 3 3 3 3 2 2 2 1 1 0

N(σi) 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Name V2F6 29

Ik (0.0825, 0.0866]

M(σi) 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9

N(σi) 0 1

`(k(σi)) 6

M(σi) 8 7 7 7 7 7 7 7 7 6 6 6 6 6 6 6 5 5 5 5 5 5 4 4 4 4 4

N(σi) 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6

M(σi) 3 3 3 3 2 2 2 1 1 0

N(σi) 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Name V2F6 30

Ik (0.0866, 0.0889]

M(σi) 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

N(σi) 0 1

`(k(σi)) 6

M(σi) 8 7 7 7 7 7 7 7 7 6 6 6 6 6 6 6 5 5 5 5 5 5 4 4 4 4 4

N(σi) 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6

M(σi) 3 3 3 3 2 2 2 1 1 0

N(σi) 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Table A.31: Optimal Tunstall codes (V2F) with code word length of 6 (part 10).

155

A. CANONICAL V2V CODE TABLES

Name V2F6 31

Ik (0.0889, 0.0913]

M(σi) 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 8

N(σi) 0 1

`(k(σi)) 6

M(σi) 8 7 7 7 7 7 7 7 7 6 6 6 6 6 6 6 5 5 5 5 5 5 4 4 4 4 4

N(σi) 1 1 1 1 1 1 1 2

`(k(σi)) 6

M(σi) 3 3 3 3 2 2 2 1 1 0

N(σi) 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Name V2F6 32

Ik (0.0913, 0.0939]

M(σi) 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 8 8

N(σi) 0 1

`(k(σi)) 6

M(σi) 8 7 7 7 7 7 7 7 7 6 6 6 6 6 6 6 5 5 5 5 5 5 4 4 4 4 4

N(σi) 1 1 1 1 1 1 2

`(k(σi)) 6

M(σi) 3 3 3 3 2 2 2 1 1 0

N(σi) 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Name V2F6 33

Ik (0.0939, 0.0966]

M(σi) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 8 8 8

N(σi) 0 1

`(k(σi)) 6

M(σi) 8 7 7 7 7 7 7 7 7 6 6 6 6 6 6 6 5 5 5 5 5 5 4 4 4 4 4

N(σi) 1 1 1 1 1 2

`(k(σi)) 6

M(σi) 3 3 3 3 2 2 2 1 1 0

N(σi) 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Table A.32: Optimal Tunstall codes (V2F) with code word length of 6 (part 11).

156

A.1 Optimal canonical V2V codes of limited size

Name V2F6 34

Ik (0.0966, 0.0996]

M(σi) 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 8 8 8 8

N(σi) 0 1

`(k(σi)) 6

M(σi) 8 7 7 7 7 7 7 7 7 6 6 6 6 6 6 6 5 5 5 5 5 5 4 4 4 4 4

N(σi) 1 1 1 1 2

`(k(σi)) 6

M(σi) 3 3 3 3 2 2 2 1 1 0

N(σi) 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Name V2F6 35

Ik (0.0996, 0.1027]

M(σi) 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 8 8 8 8 8

N(σi) 0 1

`(k(σi)) 6

M(σi) 8 7 7 7 7 7 7 7 7 6 6 6 6 6 6 6 5 5 5 5 5 5 4 4 4 4 4

N(σi) 1 1 1 2

`(k(σi)) 6

M(σi) 3 3 3 3 2 2 2 1 1 0

N(σi) 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Name V2F6 36

Ik (0.1027, 0.1061]

M(σi) 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 8 8 8 8 8 8

N(σi) 0 1

`(k(σi)) 6

M(σi) 8 7 7 7 7 7 7 7 7 6 6 6 6 6 6 6 5 5 5 5 5 5 4 4 4 4 4

N(σi) 1 1 2

`(k(σi)) 6

M(σi) 3 3 3 3 2 2 2 1 1 0

N(σi) 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Table A.33: Optimal Tunstall codes (V2F) with code word length of 6 (part 12).

157

A. CANONICAL V2V CODE TABLES

Name V2F6 37

Ik (0.1061, 0.1138]

M(σi) 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 8 8 8 8 8 8 8

N(σi) 0 1

`(k(σi)) 6

M(σi) 8 7 7 7 7 7 7 7 7 6 6 6 6 6 6 6 5 5 5 5 5 5 4 4 4 4 4

N(σi) 1 2

`(k(σi)) 6

M(σi) 3 3 3 3 2 2 2 1 1 0

N(σi) 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Name V2F6 38

Ik (0.1138, 0.1181]

M(σi) 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 9 8 8 8 8 8 8 8 8

N(σi) 0 1

`(k(σi)) 6

M(σi) 8 7 7 7 7 7 7 7 7 6 6 6 6 6 6 6 5 5 5 5 5 5 4 4 4 4 4

N(σi) 2

`(k(σi)) 6

M(σi) 3 3 3 3 2 2 2 1 1 0

N(σi) 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Name V2F6 39

Ik (0.1181, 0.1228]

M(σi) 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 9 9 8 8 8 8 8 8 8 8

N(σi) 0 1 2

`(k(σi)) 6

M(σi) 8 7 7 7 7 7 7 7 7 6 6 6 6 6 6 6 5 5 5 5 5 5 4 4 4 4 4

N(σi) 2

`(k(σi)) 6

M(σi) 3 3 3 3 2 2 2 1 1 0

N(σi) 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Table A.34: Optimal Tunstall codes (V2F) with code word length of 6 (part 13).

158

A.1 Optimal canonical V2V codes of limited size

Name V2F6 40

Ik (0.1228, 0.128]

M(σi) 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 9 9 9 8 8 8 8 8 8 8 8

N(σi) 0 1 2 2

`(k(σi)) 6

M(σi) 8 7 7 7 7 7 7 7 7 6 6 6 6 6 6 6 5 5 5 5 5 5 4 4 4 4 4

N(σi) 2

`(k(σi)) 6

M(σi) 3 3 3 3 2 2 2 1 1 0

N(σi) 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Name V2F6 41

Ik (0.128, 0.1338]

M(σi) 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 9 9 9 9 8 8 8 8 8 8 8 8

N(σi) 0 1 2 2 2

`(k(σi)) 6

M(σi) 8 7 7 7 7 7 7 7 7 6 6 6 6 6 6 6 5 5 5 5 5 5 4 4 4 4 4

N(σi) 2

`(k(σi)) 6

M(σi) 3 3 3 3 2 2 2 1 1 0

N(σi) 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Name V2F6 42

Ik (0.1338, 0.1402]

M(σi) 22 21 20 19 18 17 16 15 14 13 12 11 10 9 9 9 9 9 9 8 8 8 8 8 8 8 8

N(σi) 0 1 2 2 2 2

`(k(σi)) 6

M(σi) 8 7 7 7 7 7 7 7 7 6 6 6 6 6 6 6 5 5 5 5 5 5 4 4 4 4 4

N(σi) 2

`(k(σi)) 6

M(σi) 3 3 3 3 2 2 2 1 1 0

N(σi) 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Table A.35: Optimal Tunstall codes (V2F) with code word length of 6 (part 14).

159

A. CANONICAL V2V CODE TABLES

Name V2F6 43

Ik (0.1402, 0.1474]

M(σi) 21 20 19 18 17 16 15 14 13 12 11 10 9 9 9 9 9 9 9 8 8 8 8 8 8 8 8

N(σi) 0 1 2 2 2 2 2

`(k(σi)) 6

M(σi) 8 7 7 7 7 7 7 7 7 6 6 6 6 6 6 6 5 5 5 5 5 5 4 4 4 4 4

N(σi) 2

`(k(σi)) 6

M(σi) 3 3 3 3 2 2 2 1 1 0

N(σi) 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Name V2F6 44

Ik (0.1474, 0.1556]

M(σi) 20 19 18 17 16 15 14 13 12 11 10 9 9 9 9 9 9 9 9 8 8 8 8 8 8 8 8

N(σi) 0 1 2 2 2 2 2 2

`(k(σi)) 6

M(σi) 8 7 7 7 7 7 7 7 7 6 6 6 6 6 6 6 5 5 5 5 5 5 4 4 4 4 4

N(σi) 2

`(k(σi)) 6

M(σi) 3 3 3 3 2 2 2 1 1 0

N(σi) 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Name V2F6 45

Ik (0.1556, 0.1649]

M(σi) 19 18 17 16 15 14 13 12 11 10 9 9 9 9 9 9 9 9 9 8 8 8 8 8 8 8 8

N(σi) 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2

`(k(σi)) 6

M(σi) 8 7 7 7 7 7 7 7 7 6 6 6 6 6 6 6 5 5 5 5 5 5 4 4 4 4 4

N(σi) 2

`(k(σi)) 6

M(σi) 3 3 3 3 2 2 2 1 1 0

N(σi) 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Table A.36: Optimal Tunstall codes (V2F) with code word length of 6 (part 15).

160

A.1 Optimal canonical V2V codes of limited size

Name V2F6 46

Ik (0.1649, 0.1818]

M(σi) 18 17 16 15 14 13 12 11 10 9 9 9 9 9 9 9 9 9 9 8 8 8 8 8 8 8 8

N(σi) 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

`(k(σi)) 6

M(σi) 8 7 7 7 7 7 7 7 7 6 6 6 6 6 6 6 5 5 5 5 5 5 4 4 4 4 4

N(σi) 2

`(k(σi)) 6

M(σi) 3 3 3 3 2 2 2 1 1 0

N(σi) 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Name V2F6 47

Ik (0.1818, 0.1955]

M(σi) 17 16 15 14 13 12 11 10 9 9 9 9 9 9 9 9 9 9 8 8 8 8 8 8 8 8 8

N(σi) 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2

`(k(σi)) 6

M(σi) 7 7 7 7 7 7 7 7 6 6 6 6 6 6 6 5 5 5 5 5 5 4 4 4 4 4 3

N(σi) 2

`(k(σi)) 6

M(σi) 3 3 3 2 2 2 1 1 1 0

N(σi) 2 2 2 2 2 2 2 2 2 3

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Name V2F6 48

Ik (0.1955, 0.2035]

M(σi) 16 15 14 13 12 11 10 9 9 9 9 9 9 9 9 9 9 8 8 8 8 8 8 8 8 8 7

N(σi) 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6

M(σi) 7 7 7 7 7 7 7 6 6 6 6 6 6 6 5 5 5 5 5 5 4 4 4 4 4 3 3

N(σi) 2

`(k(σi)) 6

M(σi) 3 3 2 2 2 2 1 1 1 0

N(σi) 2 2 2 2 2 2 2 2 3 3

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Table A.37: Optimal Tunstall codes (V2F) with code word length of 6 (part 16).

161

A. CANONICAL V2V CODE TABLES

Name V2F6 49

Ik (0.2035, 0.2219]

M(σi) 15 14 13 12 11 10 9 9 9 9 9 9 9 9 9 8 8 8 8 8 8 8 8 8 7 7 7

N(σi) 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6

M(σi) 7 7 7 7 7 6 6 6 6 6 6 6 5 5 5 5 5 5 4 4 4 4 4 3 3 3 3

N(σi) 2

`(k(σi)) 6

M(σi) 2 2 2 2 2 2 1 1 1 0

N(σi) 2 2 2 2 2 2 3 3 3 3

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Name V2F6 50

Ik (0.2219, 0.2451]

M(σi) 14 13 12 11 10 9 9 9 9 8 8 8 8 8 8 8 8 8 7 7 7 7 7 7 7 7 6

N(σi) 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6

M(σi) 6 6 6 6 6 6 5 5 5 5 5 5 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3

N(σi) 2

`(k(σi)) 6

M(σi) 2 2 2 2 2 2 1 1 1 0

N(σi) 3 3 3 3 3 3 3 3 3 3

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Name V2F6 51

Ik (0.2451, 0.2592]

M(σi) 13 12 11 10 9 8 8 8 8 8 8 8 8 8 7 7 7 7 7 7 7 7 6 6 6 6 6

N(σi) 0 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6

M(σi) 6 6 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3

N(σi) 2 3 3 3 3

`(k(σi)) 6

M(σi) 2 2 2 2 2 2 1 1 1 0

N(σi) 3 3 3 3 3 3 3 3 3 3

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Table A.38: Optimal Tunstall codes (V2F) with code word length of 6 (part 17).

162

A.1 Optimal canonical V2V codes of limited size

Name V2F6 52

Ik (0.2592, 0.2755]

M(σi) 12 11 10 9 8 8 8 8 8 8 8 8 8 7 7 7 7 7 7 7 7 6 6 6 6 6 6

N(σi) 0 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6

M(σi) 6 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3

N(σi) 2 3 3 3 3 3

`(k(σi)) 6

M(σi) 2 2 2 2 2 2 1 1 1 0

N(σi) 3 3 3 3 3 3 3 3 3 3

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Name V2F6 53

Ik (0.2755, 0.2947]

M(σi) 11 10 9 8 8 8 8 8 7 7 7 7 7 7 7 7 6 6 6 6 6 6 6 5 5 5 5

N(σi) 0 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6

M(σi) 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3

N(σi) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3

`(k(σi)) 6

M(σi) 2 2 2 2 2 2 1 1 1 0

N(σi) 3 3 3 3 3 3 3 3 3 3

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Name V2F6 54

Ik (0.2947, 0.3177]

M(σi) 11 10 9 8 8 8 8 7 7 7 7 7 7 7 7 6 6 6 6 6 6 6 5 5 5 5 5

N(σi) 0 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6

M(σi) 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 2

N(σi) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3

`(k(σi)) 6

M(σi) 2 2 2 2 2 1 1 1 1 0

N(σi) 3 3 3 3 3 3 3 3 3 4

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Table A.39: Optimal Tunstall codes (V2F) with code word length of 6 (part 18).

163

A. CANONICAL V2V CODE TABLES

Name V2F6 55

Ik (0.3177, 0.346]

M(σi) 10 9 8 7 7 7 7 7 7 7 7 6 6 6 6 6 6 6 5 5 5 5 5 5 4 4 4

N(σi) 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6

M(σi) 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2

N(σi) 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

`(k(σi)) 6

M(σi) 2 2 2 2 2 1 1 1 1 0

N(σi) 3 3 3 3 3 4 4 4 4 4

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Name V2F6 56

Ik (0.346, 0.382]

M(σi) 9 8 7 7 7 7 7 7 7 7 6 6 6 6 6 6 6 5 5 5 5 5 5 5 4 4 4

N(σi) 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6

M(σi) 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2

N(σi) 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

`(k(σi)) 6

M(σi) 2 2 2 2 2 1 1 1 1 0

N(σi) 3 3 3 3 3 4 4 4 4 4

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Name V2F6 57

Ik (0.382, 0.4123]

M(σi) 8 7 6 6 6 6 6 6 6 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4

N(σi) 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6

M(σi) 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2

N(σi) 2 2 2 3 4 4 4 4

`(k(σi)) 6

M(σi) 2 2 2 2 1 1 1 1 1 0

N(σi) 4 4 4 4 4 4 4 4 4 5

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Table A.40: Optimal Tunstall codes (V2F) with code word length of 6 (part 19).

164

A.1 Optimal canonical V2V codes of limited size

Name V2F6 58

Ik (0.4123, 0.4302]

M(σi) 7 6 6 6 6 6 6 6 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4

N(σi) 0 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6

M(σi) 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2

N(σi) 2 2 3 4 4 4 4 4

`(k(σi)) 6

M(σi) 2 2 2 2 1 1 1 1 1 0

N(σi) 4 4 4 4 4 4 4 4 4 5

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Name V2F6 59

Ik (0.4302, 0.4503]

M(σi) 7 6 6 6 6 6 6 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4

N(σi) 0 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 6

M(σi) 4 3 2 2 2 2 2 2

N(σi) 2 3 4 4 4 4 4 4

`(k(σi)) 6

M(σi) 2 2 2 2 1 1 1 1 1 0

N(σi) 4 4 4 4 4 4 4 4 4 5

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Name V2F6 60

Ik (0.4503, 0.4684]

M(σi) 7 6 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3

N(σi) 0 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3

`(k(σi)) 6

M(σi) 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2

N(σi) 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4

`(k(σi)) 6

M(σi) 2 2 2 2 1 1 1 1 1 0

N(σi) 4 4 4 4 5 5 5 5 5 5

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Table A.41: Optimal Tunstall codes (V2F) with code word length of 6 (part 20).

165

A. CANONICAL V2V CODE TABLES

Name V2F6 61

Ik (0.4684, 0.5]

M(σi) 6 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3

N(σi) 0 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3

`(k(σi)) 6

M(σi) 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2

N(σi) 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4

`(k(σi)) 6

M(σi) 2 2 2 1 1 1 1 1 1 0

N(σi) 4 4 4 5 5 5 5 5 5 6

`(k(σi)) 6 6 6 6 6 6 6 6 6 6

Table A.42: Optimal Tunstall codes (V2F) with code word length of 6 (part 21).

A.1.3 Leaf-limited V2V codes

Name L3 1 L3 2

Ik (0, 0.38] (0.38, 0.5]

M(σi) 2 1 0 1 0

N(σi) 0 1 1 0 1

`(k(σi)) 1 2 2 1 1

Table A.43: Optimal LV2V codes with up to 3 source/code words.

Name L4 1 L4 2 L4 3

Ik (0, 0.25] (0.25, 0.38] (0.38, 0.5]

M(σi) 3 2 1 0 2 1 0 1 0

N(σi) 0 1 1 1 0 1 1 0 1

`(k(σi)) 1 3 3 2 1 2 2 1 1

Table A.44: Optimal LV2V codes with up to 4 source/code words.

166

A.1 Optimal canonical V2V codes of limited size

Name L5 1 L5 2 L5 3 L5 4 L5 5

Ik (0, 0.181] (0.18, 0.25] (0.25, 0.32] (0.318, 0.43] (0.43, 0.5]

M(σi) 4 3 2 1 0 3 2 1 0 2 1 0 3 2 1 1 0 1 0

N(σi) 0 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 2 0 1

`(k(σi)) 1 3 3 3 3 1 3 3 2 1 2 2 2 3 2 2 3 1 1

Table A.45: Optimal LV2V codes with up to 5 source/code words.

Name L6 1 L6 2 L6 3 L6 4 L6 5

Ik (0, 0.1433] (0.143, 0.181] (0.18, 0.25] (0.25, 0.29] (0.2929, 0.3333]

M(σi) 5 4 3 2 1 0 4 3 2 1 0 3 2 1 0 2 1 0 2 2 2 1 1 0

N(σi) 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 0 1 1 2 2 2

`(k(σi)) 1 4 4 3 3 3 1 3 3 3 3 1 3 3 2 1 2 2 1 3 3 4 4 3

Name L6 6 L6 7

Ik (0.333, 0.43] (0.43, 0.5]

M(σi) 3 2 1 1 0 1 0

N(σi) 0 1 1 1 2 0 1

`(k(σi)) 2 3 2 2 3 1 1

Table A.46: Optimal LV2V codes with up to 6 source/code words.

Name L7 1 L7 2 L7 3 L7 4

Ik (0, 0.1187] (0.1187, 0.1433] (0.143, 0.156] (0.1561, 0.1814]

M(σi) 6 5 4 3 2 1 0 5 4 3 2 1 0 4 3 2 1 0 4 4 3 2 1 1 0

N(σi) 0 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 2 1 1 1 2

`(k(σi)) 1 4 4 4 4 3 3 1 4 4 3 3 3 1 3 3 3 3 1 4 5 3 3 3 5

Name L7 5 L7 6 L7 7 L7 8

Ik (0.1814, 0.235] (0.235, 0.2755] (0.28, 0.29] (0.2929, 0.3333]

M(σi) 3 2 2 2 1 1 0 5 4 3 2 2 1 0 2 1 0 2 2 2 1 1 0

N(σi) 0 1 1 1 2 2 2 0 1 1 1 1 2 1 0 1 1 0 1 1 2 2 2

`(k(σi)) 1 3 3 3 5 5 4 2 4 3 3 3 4 2 1 2 2 1 3 3 4 4 3

Table A.47: Optimal LV2V codes with up to 7 source/code words (part 1).

167

A. CANONICAL V2V CODE TABLES

Name L7 9 L7 10 L7 11

Ik (0.333, 0.399] (0.3992, 0.4503] (0.45, 0.5]

M(σi) 3 2 1 1 0 4 3 2 1 1 1 0 1 0

N(σi) 0 1 1 1 2 0 1 1 1 1 2 3 0 1

`(k(σi)) 2 3 2 2 3 3 4 3 2 2 3 4 1 1

Table A.48: Optimal LV2V codes with up to 7 source/code words (part 2).

Name L8 1 L8 2 L8 3

Ik (0, 0.1013] (0.1013, 0.1187] (0.1187, 0.1383]

M(σi) 7 6 5 4 3 2 1 0 6 5 4 3 2 1 0 5 4 3 2 1 0

N(σi) 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1

`(k(σi)) 1 4 4 4 4 4 4 3 1 4 4 4 4 3 3 1 4 4 3 3 3

Name L8 4 L8 5 L8 6

Ik (0.1383, 0.1823] (0.1823, 0.2048] (0.2048, 0.2314]

M(σi) 5 4 4 3 2 1 1 0 3 3 2 2 2 1 1 0 3 2 2 2 1 1 0

N(σi) 1 0 2 2 1 1 1 2 0 1 1 1 2 2 2 2 0 1 1 1 2 2 2

`(k(σi)) 4 1 6 6 3 3 3 5 1 3 3 3 5 5 5 5 1 3 3 3 5 5 4

Name L8 7 L8 8 L8 9

Ik (0.2314, 0.2431] (0.2431, 0.266] (0.266, 0.2752]

M(σi) 5 5 4 3 2 2 1 0 5 4 3 2 2 1 0 3 3 2 2 2 1 1 0

N(σi) 0 1 2 1 1 1 2 1 0 1 1 1 1 2 1 1 1 0 2 2 2 2 2

`(k(σi)) 2 4 5 3 3 3 5 2 2 4 3 3 3 4 2 3 3 1 5 5 4 4 4

Name L8 10 L8 11 L8 12 L8 13

Ik (0.2752, 0.314] (0.314, 0.3262] (0.3262, 0.339] (0.339, 0.399]

M(σi) 3 2 2 2 1 1 1 0 2 2 2 1 1 0 5 4 3 2 2 1 1 0 3 2 1 1 0

N(σi) 1 0 1 2 2 2 2 3 0 1 1 2 2 2 0 1 1 1 1 1 2 2 0 1 1 1 2

`(k(σi)) 3 1 3 5 4 4 4 5 1 3 3 4 4 3 3 4 3 3 3 2 4 3 2 3 2 2 3

Name L8 14 L8 15

Ik (0.3992, 0.4503] (0.45, 0.5]

M(σi) 4 3 2 1 1 1 0 1 0

N(σi) 0 1 1 1 1 2 3 0 1

`(k(σi)) 3 4 3 2 2 3 4 1 1

Table A.49: Optimal LV2V codes with up to 8 source/code words.

168

A.1 Optimal canonical V2V codes of limited size

Name L9 1 L9 2 L9 3

Ik (0, 0.0884] (0.0884, 0.1013] (0.1013, 0.1187]

M(σi) 8 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 6 5 4 3 2 1 0

N(σi) 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1

`(k(σi)) 1 4 4 4 4 4 4 4 4 1 4 4 4 4 4 4 3 1 4 4 4 4 3 3

Name L9 4 L9 5 L9 6

Ik (0.1187, 0.1373] (0.1373, 0.1428] (0.1428, 0.1823]

M(σi) 5 4 3 2 1 0 6 5 4 4 3 2 1 1 0 5 4 4 3 2 1 1 0

N(σi) 0 1 1 1 1 1 1 2 0 2 2 1 1 1 2 1 0 2 2 1 1 1 2

`(k(σi)) 1 4 4 3 3 3 4 6 1 6 6 3 3 3 6 4 1 6 6 3 3 3 5

Name L9 7 L9 8 L9 9

Ik (0.1823, 0.2048] (0.2048, 0.2266] (0.2266, 0.2681]

M(σi) 3 3 2 2 2 1 1 0 3 2 2 2 1 1 0 5 5 4 3 2 2 2 1 0

N(σi) 0 1 1 1 2 2 2 2 0 1 1 1 2 2 2 0 1 2 1 1 1 2 3 1

`(k(σi)) 1 3 3 3 5 5 5 5 1 3 3 3 5 5 4 2 4 6 3 3 3 5 6 2

Name L9 10 L9 11 L9 12

Ik (0.2681, 0.2921] (0.2921, 0.2941] (0.2941, 0.3223]

M(σi) 3 3 2 2 2 1 1 1 0 3 2 2 2 1 1 1 0 4 3 2 2 2 1 1 1 0

N(σi) 1 2 0 1 3 2 2 2 3 1 0 1 2 2 2 2 3 1 2 0 1 2 2 2 2 3

`(k(σi)) 3 5 1 3 6 4 4 4 6 3 1 3 5 4 4 4 5 4 5 1 3 4 4 4 4 5

Name L9 13 L9 14 L9 15

Ik (0.3223, 0.346] (0.346, 0.382] (0.382, 0.4253]

M(σi) 5 4 4 3 2 1 1 1 0 3 2 1 1 0 4 4 3 2 2 1 1 1 0

N(σi) 0 1 1 2 1 1 1 2 3 0 1 1 1 2 0 1 2 1 2 1 1 3 3

`(k(σi)) 3 4 4 5 3 2 2 4 5 2 3 2 2 3 3 4 5 3 4 2 2 5 4

Name L9 16 L9 17 L9 18

Ik (0.4253, 0.4334] (0.4334, 0.4614] (0.46, 0.5]

M(σi) 4 3 2 1 1 1 0 5 4 3 2 1 1 1 1 0 1 0

N(σi) 0 1 1 1 1 2 3 0 1 1 1 1 1 2 3 4 0 1

`(k(σi)) 3 4 3 2 2 3 4 4 5 4 3 2 2 3 4 5 1 1

Table A.50: Optimal LV2V codes with up to 9 source/code words.

169

A. CANONICAL V2V CODE TABLES

A.1.4 Source-height-limited V2V codes

Name S2 1 S2 2

Ik (0, 0.38] (0.38, 0.5]

M(σi) 2 1 0 1 0

N(σi) 0 1 1 0 1

`(k(σi)) 1 2 2 1 1

Table A.51: Optimal SV2V codes with maximum source tree height of 2.

Name S3 1 S3 2 S3 3 S3 4 S3 5

Ik (0, 0.2541] (0.25, 0.29] (0.2929, 0.3333] (0.333, 0.43] (0.43, 0.5]

M(σi) 3 2 2 2 1 1 0 2 1 0 2 2 2 1 1 0 3 2 1 1 0 1 0

N(σi) 0 1 1 1 2 2 2 0 1 1 0 1 1 2 2 2 0 1 1 1 2 0 1

`(k(σi)) 1 3 3 3 5 5 4 1 2 2 1 3 3 4 4 3 2 3 2 2 3 1 1

Table A.52: Optimal SV2V codes with maximum source tree height of 3.

Name S4 1 S4 2

Ik (0, 0.0864] (0.086, 0.153]

M(σi) 4 3 3 3 3 2 2 2 1 1 0 4 3 2 1 0

N(σi) 0 1 1 1 1 2 2 2 2 2 2 0 1 1 1 1

`(k(σi)) 1 3 3 3 4 7 7 7 6 7 6 1 3 3 3 3

Name S4 3 S4 4

Ik (0.1528, 0.1739] (0.1739, 0.191]

M(σi) 4 3 2 2 2 2 2 2 1 1 1 0 3 3 2 2 2 1 1 0

N(σi) 0 1 1 1 1 2 2 2 3 3 3 3 0 1 1 1 2 2 2 2

`(k(σi)) 1 4 3 3 3 6 6 6 8 8 8 8 1 3 3 3 5 5 5 5

Name S4 5 S4 6

Ik (0.191, 0.2419] (0.2419, 0.2485]

M(σi) 3 2 2 2 2 2 2 1 1 1 0 3 2 2 2 2 2 1 1 1 0

N(σi) 0 1 1 1 2 2 2 3 3 3 3 0 1 1 1 2 2 2 3 3 3

`(k(σi)) 1 3 3 3 5 5 5 7 7 7 7 1 3 3 3 5 5 5 7 7 6

Table A.53: Optimal SV2V codes with maximum source tree height of 4 (part 1).

170

A.1 Optimal canonical V2V codes of limited size

Name S4 7 S4 8

Ik (0.2485, 0.2526] (0.2526, 0.2752]

M(σi) 4 3 3 3 3 2 2 2 2 2 1 1 0 3 3 2 2 2 1 1 0

N(σi) 0 1 1 1 1 2 2 2 2 2 3 3 2 1 1 0 2 2 2 2 2

`(k(σi)) 2 3 3 3 3 5 5 5 5 5 6 6 4 3 3 1 5 5 4 4 4

Name S4 9 S4 10 S4 11

Ik (0.2752, 0.314] (0.314, 0.3333] (0.333, 0.382]

M(σi) 3 2 2 2 1 1 1 0 2 2 2 1 1 0 3 2 1 1 0

N(σi) 1 0 1 2 2 2 2 3 0 1 1 2 2 2 0 1 1 1 2

`(k(σi)) 3 1 3 5 4 4 4 5 1 3 3 4 4 3 2 3 2 2 3

Name S4 12 S4 13 S4 14

Ik (0.382, 0.4073] (0.4073, 0.4503] (0.45, 0.5]

M(σi) 3 2 2 2 2 1 1 1 0 4 3 2 1 1 1 0 1 0

N(σi) 0 1 1 2 2 1 3 3 3 0 1 1 1 1 2 3 0 1

`(k(σi)) 2 3 3 4 4 2 5 5 4 3 4 3 2 2 3 4 1 1

Table A.54: Optimal SV2V codes with maximum source tree height of 4 (part 2).

Name S5 1

Ik (0, 0.0616]

M(σi) 5 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 1 1 1 0

N(σi) 0 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3

`(k(σi)) 1 3 3 4 4 4 7 7 7 7 7 8 8 8 8 8 11 11 12 12 12 12 11 11 11 11

Name S5 2

Ik (0.0616, 0.0713]

M(σi) 5 4 4 4 3 3 3 3 3 3 3 3 2 2 2 2 2 2 1 1 1 0

N(σi) 0 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3

`(k(σi)) 1 4 4 4 3 3 7 7 7 7 7 8 7 7 11 11 11 11 11 11 11 11

Name S5 3

Ik (0.0713, 0.0899]

M(σi) 5 4 4 4 3 3 3 3 3 3 3 3 2 2 2 2 2 2 1 1 1 0

N(σi) 0 1 1 1 1 2 2 2 2 2 2 2 1 3 3 3 3 3 3 3 3 3

`(k(σi)) 1 4 4 4 3 7 7 7 7 7 7 7 3 10 10 10 11 11 10 10 10 10

Table A.55: Optimal SV2V codes with maximum source tree height of 5 (part 1).

171

A. CANONICAL V2V CODE TABLES

Name S5 4

Ik (0.0899, 0.0923]

M(σi) 5 4 4 4 3 3 3 3 3 3 3 2 2 2 2 2 2 1 1 1 0

N(σi) 0 1 1 1 1 2 2 2 2 2 2 1 2 3 3 3 3 3 3 3 3

`(k(σi)) 1 4 4 4 3 7 7 7 7 7 7 3 7 10 10 10 10 10 10 10 10

Name S5 5

Ik (0.0923, 0.0942]

M(σi) 5 4 4 4 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 0

N(σi) 0 1 1 1 2 2 2 2 2 1 1 2 3 3 3 3 3 3 3 4 4 4 4 4

`(k(σi)) 1 4 4 4 7 7 7 7 7 3 3 6 10 10 10 10 10 10 10 12 12 13 13 12

Name S5 6

Ik (0.0942, 0.1005]

M(σi) 5 4 4 4 3 3 3 3 3 2 2 2 2 2 1 1 1 0

N(σi) 0 1 1 1 2 2 2 2 2 1 1 3 3 3 2 3 3 3

`(k(σi)) 1 4 4 4 7 7 7 7 7 3 3 10 10 10 6 9 10 9

Name S5 7 S5 8

Ik (0.1005, 0.1107] (0.1107, 0.145]

M(σi) 5 4 4 4 3 3 2 2 1 1 0 5 4 4 4 3 3 2 1 1 0

N(σi) 0 1 1 1 2 2 1 2 1 2 2 0 1 1 1 2 2 2 1 1 2

`(k(σi)) 1 4 4 4 7 7 3 6 3 6 6 1 4 4 4 6 6 6 3 3 6

Name S5 9 S5 10

Ik (0.145, 0.1575] (0.1575, 0.1735]

M(σi) 4 4 3 3 3 2 2 2 2 1 1 1 0 4 4 3 3 2 2 2 2 1 1 1 0

N(σi) 0 1 2 2 2 1 1 3 3 1 3 3 3 0 1 2 2 1 1 2 3 1 3 3 3

`(k(σi)) 1 4 6 6 6 3 3 9 9 3 8 8 8 1 4 6 6 3 3 6 8 3 8 8 8

Name S5 11 S5 12

Ik (0.1735, 0.1811] (0.1811, 0.1867]

M(σi) 4 4 4 3 3 3 3 3 3 2 2 2 2 2 2 1 1 1 0 3 3 2 2 2 1 1 0

N(σi) 0 1 1 2 2 2 2 2 2 1 1 3 3 3 3 3 3 3 3 0 1 1 1 2 2 2 2

`(k(σi)) 1 4 4 6 6 6 6 6 6 3 3 8 8 8 8 8 8 8 8 1 3 3 3 5 5 5 5

Name S5 13 S5 14

Ik (0.1867, 0.192] (0.192, 0.2324]

M(σi) 3 3 3 2 2 2 1 1 1 0 3 2 2 2 2 2 2 1 1 1 0

N(σi) 0 1 2 1 1 3 2 2 2 3 0 1 1 1 2 2 2 3 3 3 3

`(k(σi)) 1 3 6 3 3 7 5 5 5 7 1 3 3 3 5 5 5 7 7 7 7

Table A.56: Optimal SV2V codes with maximum source tree height of 5 (part 2).

172

A.1 Optimal canonical V2V codes of limited size

Name S5 15

Ik (0.2324, 0.2355]

M(σi) 3 2 2 2 2 2 2 2 2 1 1 1 1 0

N(σi) 0 1 1 1 2 2 3 3 3 2 4 4 4 4

`(k(σi)) 1 3 3 3 5 5 7 7 7 5 9 9 9 9

Name S5 16

Ik (0.2355, 0.2375]

M(σi) 5 4 3 3 3 3 2 2 2 2 2 2 2 2 2 1 1 1 0

N(σi) 0 1 1 1 2 2 1 1 2 2 3 3 3 3 3 4 4 4 3

`(k(σi)) 2 4 3 3 5 5 3 3 5 5 7 7 7 7 7 8 9 9 6

Name S5 17 S5 18

Ik (0.2375, 0.2564] (0.2564, 0.2603]

M(σi) 5 4 3 3 3 2 2 2 2 2 2 2 1 1 0 5 4 4 3 3 3 3 2 2 2 1 0

N(σi) 0 1 1 1 2 1 1 2 2 3 3 3 4 4 2 0 1 1 1 2 2 2 1 3 3 3 1

`(k(σi)) 2 4 3 3 5 3 3 5 5 7 7 7 8 8 4 2 4 4 3 5 5 5 3 7 7 6 2

Name S5 19

Ik (0.2603, 0.2707]

M(σi) 3 3 3 3 3 3 2 2 2 2 2 1 1 0

N(σi) 1 1 2 2 2 2 0 3 3 3 3 3 3 2

`(k(σi)) 3 3 5 5 5 5 1 7 7 7 7 6 6 4

Name S5 20 S5 21

Ik (0.2707, 0.2764] (0.2764, 0.2819]

M(σi) 4 3 3 3 3 3 2 2 2 2 1 1 1 1 0 3 3 2 2 2 1 1 1 1 0

N(σi) 1 1 2 2 2 2 0 3 3 3 2 2 3 3 4 1 2 0 1 3 2 2 2 3 4

`(k(σi)) 4 3 5 5 5 5 1 7 7 7 4 4 6 6 7 3 5 1 3 7 4 4 4 6 7

Name S5 22

Ik (0.2819, 0.3177]

M(σi) 4 4 3 3 3 3 2 2 2 1 1 1 0

N(σi) 1 1 2 2 2 2 0 3 3 2 2 2 3

`(k(σi)) 4 4 5 5 5 5 1 6 6 4 4 4 5

Name S5 23

Ik (0.3177, 0.3258]

M(σi) 4 4 4 4 4 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 1 1 1 0

N(σi) 0 1 1 1 1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 2 4 4 3

`(k(σi)) 2 4 4 4 4 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 4 7 7 5

Table A.57: Optimal SV2V codes with maximum source tree height of 5 (part 3).

173

A. CANONICAL V2V CODE TABLES

Name S5 24

Ik (0.3258, 0.3421]

M(σi) 5 4 4 4 4 3 3 3 3 3 3 3 2 2 2 2 2 2 1 1 1 1 0

N(σi) 0 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 3 1 3 4 4 4

`(k(σi)) 3 4 4 4 4 5 5 5 5 5 5 5 6 6 6 6 6 6 2 5 7 7 6

Name S5 25

Ik (0.3421, 0.3586]

M(σi) 5 4 4 4 4 4 3 3 3 3 3 3 3 3 2 2 2 2 2 1 1 0

N(σi) 0 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 2

`(k(σi)) 3 4 4 4 4 4 5 5 5 5 5 5 5 5 4 6 6 6 6 5 5 3

Name S5 26 S5 27

Ik (0.3586, 0.382] (0.382, 0.4173]

M(σi) 4 4 3 3 3 3 3 2 2 2 1 1 0 4 4 3 2 2 1 1 1 0

N(σi) 1 1 0 2 2 2 2 2 3 3 1 3 2 0 1 2 1 2 1 1 3 3

`(k(σi)) 4 4 2 5 5 5 5 4 6 6 2 5 3 3 4 5 3 4 2 2 5 4

Name S5 28 S5 29 S5 30

Ik (0.4173, 0.4413] (0.4413, 0.4614] (0.46, 0.5]

M(σi) 4 3 2 2 2 2 1 1 1 1 0 5 4 3 2 1 1 1 1 0 1 0

N(σi) 0 1 1 2 3 3 1 1 4 4 4 0 1 1 1 1 1 2 3 4 0 1

`(k(σi)) 3 4 3 4 5 5 2 2 6 6 5 4 5 4 3 2 2 3 4 5 1 1

Table A.58: Optimal SV2V codes with maximum source tree height of 5 (part 4).

A.1.5 Code-height-limited V2V codes

Name C2 1 C2 2

Ik (0, 0.38] (0.38, 0.5]

M(σi) 2 1 0 1 0

N(σi) 0 1 1 0 1

`(k(σi)) 1 2 2 1 1

Table A.59: Optimal CV2V codes with maximum code tree height of 2.

174

A.1 Optimal canonical V2V codes of limited size

Name C3 1 C3 2 C3 3 C3 4 C3 5

Ik (0, 0.181] (0.18, 0.25] (0.25, 0.32] (0.318, 0.43] (0.43, 0.5]

M(σi) 4 3 2 1 0 3 2 1 0 2 1 0 3 2 1 1 0 1 0

N(σi) 0 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 2 0 1

`(k(σi)) 1 3 3 3 3 1 3 3 2 1 2 2 2 3 2 2 3 1 1

Table A.60: Optimal CV2V codes with maximum code tree height of 3.

A.1.6 Source-and-code-height-limited V2V codes

Name S6C6 1 S6C6 2

Ik (0, 0.1056] (0.1056, 0.1187]

M(σi) 6 5 4 3 2 1 0 6 5 4 4 3 3 3 2 2 1 0

N(σi) 0 1 1 1 1 1 1 0 1 1 1 1 1 2 2 2 2 1

`(k(σi)) 1 4 4 4 4 3 3 1 4 4 4 4 4 6 6 6 6 3

Name S6C6 3 S6C6 4

Ik (0.1187, 0.1433] (0.1433, 0.1771]

M(σi) 5 5 4 4 4 3 3 2 1 0 5 4 4 3 2 1 1 0

N(σi) 0 1 1 1 2 2 2 2 1 1 1 0 2 2 1 1 1 2

`(k(σi)) 1 4 4 4 6 6 6 6 3 3 4 1 6 6 3 3 3 5

Name S6C6 5 S6C6 6

Ik (0.1771, 0.1828] (0.1828, 0.1961]

M(σi) 5 5 5 4 4 4 4 3 3 3 2 2 1 1 0 3 3 2 2 2 1 1 0

N(σi) 1 1 1 0 2 2 2 2 2 2 2 2 1 2 2 0 1 1 1 2 2 2 2

`(k(σi)) 4 4 4 1 6 6 6 6 6 6 6 6 3 5 5 1 3 3 3 5 5 5 5

Name S6C6 7 S6C6 8

Ik (0.1961, 0.2168] (0.2168, 0.2248]

M(σi) 6 5 5 4 3 2 2 2 1 1 1 0 3 2 2 2 1 1 0

N(σi) 0 1 1 2 1 1 1 1 2 2 2 3 0 1 1 1 2 2 2

`(k(σi)) 2 4 4 6 3 3 3 3 5 5 5 6 1 3 3 3 5 5 4

Table A.61: Optimal SCV2V codes with maximum source tree height of 6 and maximum
code tree height of 6 (part 1).

175

A. CANONICAL V2V CODE TABLES

Name S6C6 9

Ik (0.2248, 0.2296]

M(σi) 5 5 5 5 5 4 4 4 4 3 3 3 2 2 1 0

N(σi) 0 1 1 1 1 2 2 2 2 2 2 2 2 2 2 1

`(k(σi)) 2 4 4 4 4 6 6 6 6 5 5 5 5 5 5 2

Name S6C6 10

Ik (0.2296, 0.2676]

M(σi) 5 5 5 5 4 4 4 3 3 2 2 2 1 0

N(σi) 0 1 1 1 2 2 2 2 2 1 2 2 3 1

`(k(σi)) 2 4 4 4 6 6 6 5 5 3 5 5 6 2

Name S6C6 11

Ik (0.2676, 0.2755]

M(σi) 5 5 4 4 3 3 3 3 2 2 2 1 1 0

N(σi) 1 1 2 2 2 2 2 2 0 3 3 2 2 2

`(k(σi)) 4 4 6 6 5 5 5 5 1 6 6 4 4 4

Name S6C6 12 S6C6 13

Ik (0.2755, 0.2815] (0.2815, 0.3254]

M(σi) 5 4 4 3 3 3 3 2 2 2 1 1 1 0 4 4 3 3 3 3 2 2 2 1 1 1 0

N(σi) 1 1 2 2 2 2 2 0 3 3 2 2 2 3 1 1 2 2 2 2 0 3 3 2 2 2 3

`(k(σi)) 4 4 6 5 5 5 5 1 6 6 4 4 4 6 4 4 5 5 5 5 1 6 6 4 4 4 5

Name S6C6 14

Ik (0.3254, 0.3327]

M(σi) 5 4 4 4 4 3 3 3 3 3 3 3 2 2 2 2 1 1 1 0

N(σi) 0 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 1 3 3 3

`(k(σi)) 3 4 4 4 4 5 5 5 5 5 5 5 6 6 6 6 2 5 5 5

Name S6C6 15

Ik (0.3327, 0.3586]

M(σi) 5 4 4 4 4 4 3 3 3 3 3 3 3 3 2 2 2 2 2 1 1 0

N(σi) 0 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 2

`(k(σi)) 3 4 4 4 4 4 5 5 5 5 5 5 5 5 4 6 6 6 6 5 5 3

Name S6C6 16 S6C6 17

Ik (0.3586, 0.382] (0.382, 0.4116]

M(σi) 4 4 3 3 3 3 3 2 2 2 1 1 0 5 5 4 4 4 3 3 2 2 1 1 1 0

N(σi) 1 1 0 2 2 2 2 2 3 3 1 3 2 1 1 0 2 2 2 2 2 2 1 1 3 3

`(k(σi)) 4 4 2 5 5 5 5 4 6 6 2 5 3 5 5 3 6 6 5 5 4 4 2 2 5 4

Table A.62: Optimal SCV2V codes with maximum source tree height of 6 and maximum
code tree height of 6 (part 2).

176

A.1 Optimal canonical V2V codes of limited size

Name S6C6 18 S6C6 19

Ik (0.4116, 0.4156] (0.4156, 0.4207]

M(σi) 5 4 4 3 2 2 2 1 1 1 0 5 5 5 5 4 4 4 3 3 2 2 2 1 1 1 0

N(σi) 1 0 2 2 1 2 3 1 1 4 3 0 1 1 1 2 2 2 2 2 2 2 3 1 1 4 3

`(k(σi)) 5 3 6 5 3 4 5 2 2 6 4 4 5 5 5 6 6 6 5 5 4 4 5 2 2 6 4

Name S6C6 20 S6C6 21

Ik (0.4207, 0.4462] (0.4462, 0.4493]

M(σi) 5 5 5 4 4 3 2 2 2 2 1 1 1 1 0 5 5 4 3 2 2 1 1 1 1 0

N(σi) 0 1 1 2 2 2 1 2 3 3 1 1 4 4 4 0 1 2 1 1 3 1 1 2 4 4

`(k(σi)) 4 5 5 6 6 5 3 4 5 5 2 2 6 6 5 4 5 6 4 3 5 2 2 3 6 5

Name S6C6 22 S6C6 23 S6C6 24

Ik (0.4493, 0.4511] (0.4511, 0.4684] (0.47, 0.5]

M(σi) 5 4 3 2 1 1 1 1 0 6 5 4 3 2 1 1 1 1 1 0 1 0

N(σi) 0 1 1 1 1 1 2 3 4 0 1 1 1 1 1 1 2 3 4 5 0 1

`(k(σi)) 4 5 4 3 2 2 3 4 5 5 6 5 4 3 2 2 3 4 5 6 1 1

Table A.63: Optimal SCV2V codes with maximum source tree height of 6 and maximum
code tree height of 6 (part 3).

Name S6C4 1 S6C4 2 S6C4 3 S6C4 4

Ik (0, 0.1187] (0.1187, 0.1433] (0.143, 0.181] (0.18, 0.22]

M(σi) 6 5 4 3 2 1 0 5 4 3 2 1 0 4 3 2 1 0 3 2 1 0

N(σi) 0 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1

`(k(σi)) 1 4 4 4 4 3 3 1 4 4 3 3 3 1 3 3 3 3 1 3 3 2

Name S6C4 5 S6C4 6 S6C4 7 S6C4 8

Ik (0.2205, 0.2755] (0.28, 0.29] (0.2929, 0.3262] (0.3262, 0.339]

M(σi) 5 4 3 2 2 1 0 2 1 0 2 2 2 1 1 0 5 4 3 2 2 1 1 0

N(σi) 0 1 1 1 1 2 1 0 1 1 0 1 1 2 2 2 0 1 1 1 1 1 2 2

`(k(σi)) 2 4 3 3 3 4 2 1 2 2 1 3 3 4 4 3 3 4 3 3 3 2 4 3

Table A.64: Optimal SCV2V codes with maximum source tree height of 6 and maximum
code tree height of 4 (part 1).

177

A. CANONICAL V2V CODE TABLES

Name S6C4 9 S6C4 10 S6C4 11

Ik (0.339, 0.399] (0.3992, 0.4503] (0.45, 0.5]

M(σi) 3 2 1 1 0 4 3 2 1 1 1 0 1 0

N(σi) 0 1 1 1 2 0 1 1 1 1 2 3 0 1

`(k(σi)) 2 3 2 2 3 3 4 3 2 2 3 4 1 1

Table A.65: Optimal SCV2V codes with maximum source tree height of 6 and maximum
code tree height of 4 (part 2).

Name S6C3 1 S6C3 2 S6C3 3 S6C3 4 S6C3 5

Ik (0, 0.181] (0.18, 0.25] (0.25, 0.32] (0.318, 0.43] (0.43, 0.5]

M(σi) 4 3 2 1 0 3 2 1 0 2 1 0 3 2 1 1 0 1 0

N(σi) 0 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 2 0 1

`(k(σi)) 1 3 3 3 3 1 3 3 2 1 2 2 2 3 2 2 3 1 1

Table A.66: Optimal SCV2V codes with maximum source tree height of 6 and maximum
code tree height of 3.

Name S5C5 1 S5C5 2 S5C5 3 S5C5 4

Ik (0, 0.1433] (0.143, 0.156] (0.1561, 0.1754] (0.1754, 0.2048]

M(σi) 5 4 3 2 1 0 4 3 2 1 0 4 4 3 2 1 1 0 3 3 2 2 2 1 1 0

N(σi) 0 1 1 1 1 1 0 1 1 1 1 0 1 2 1 1 1 2 0 1 1 1 2 2 2 2

`(k(σi)) 1 4 4 3 3 3 1 3 3 3 3 1 4 5 3 3 3 5 1 3 3 3 5 5 5 5

Name S5C5 5 S5C5 6 S5C5 7

Ik (0.2048, 0.2324] (0.2324, 0.2414] (0.2414, 0.266]

M(σi) 3 2 2 2 1 1 0 5 4 3 3 2 2 1 0 5 4 3 2 2 1 0

N(σi) 0 1 1 1 2 2 2 0 1 1 1 1 2 2 1 0 1 1 1 1 2 1

`(k(σi)) 1 3 3 3 5 5 4 2 4 3 3 3 5 5 2 2 4 3 3 3 4 2

Name S5C5 8 S5C5 9 S5C5 10

Ik (0.266, 0.2752] (0.2752, 0.2941] (0.2941, 0.32]

M(σi) 3 3 2 2 2 1 1 0 3 2 2 2 1 1 1 0 4 3 2 2 2 1 1 1 0

N(σi) 1 1 0 2 2 2 2 2 1 0 1 2 2 2 2 3 1 2 0 1 2 2 2 2 3

`(k(σi)) 3 3 1 5 5 4 4 4 3 1 3 5 4 4 4 5 4 5 1 3 4 4 4 4 5

Table A.67: Optimal SCV2V codes with maximum source tree height of 5 and maximum
code tree height of 5 (part 1).

178

A.1 Optimal canonical V2V codes of limited size

Name S5C5 11

Ik (0.32, 0.3303]

M(σi) 5 4 4 4 4 3 3 3 2 2 1 1 1 0

N(σi) 0 1 1 1 1 2 2 2 2 2 1 2 2 3

`(k(σi)) 3 4 4 4 4 5 5 5 4 4 2 4 4 5

Name S5C5 12

Ik (0.3303, 0.3522]

M(σi) 5 4 4 4 4 4 3 3 3 3 2 2 2 1 1 0

N(σi) 0 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2

`(k(σi)) 3 4 4 4 4 4 5 5 5 5 4 4 4 4 4 3

Name S5C5 13 S5C5 14

Ik (0.3522, 0.382] (0.382, 0.4253]

M(σi) 4 4 3 3 3 2 2 2 2 2 1 1 0 4 4 3 2 2 1 1 1 0

N(σi) 1 1 0 2 2 1 2 2 2 2 3 3 2 0 1 2 1 2 1 1 3 3

`(k(σi)) 4 4 2 5 5 3 4 4 4 4 5 5 3 3 4 5 3 4 2 2 5 4

Name S5C5 15 S5C5 16 S5C5 17

Ik (0.4253, 0.4334] (0.4334, 0.4614] (0.46, 0.5]

M(σi) 4 3 2 1 1 1 0 5 4 3 2 1 1 1 1 0 1 0

N(σi) 0 1 1 1 1 2 3 0 1 1 1 1 1 2 3 4 0 1

`(k(σi)) 3 4 3 2 2 3 4 4 5 4 3 2 2 3 4 5 1 1

Table A.68: Optimal SCV2V codes with maximum source tree height of 5 and maximum
code tree height of 5 (part 2).

Name S4C4 1 S4C4 2 S4C4 3 S4C4 4 S4C4 5

Ik (0, 0.181] (0.18, 0.25] (0.245, 0.293] (0.2929, 0.3333] (0.333, 0.399]

M(σi) 4 3 2 1 0 3 2 1 0 3 2 2 1 0 2 2 2 1 1 0 3 2 1 1 0

N(σi) 0 1 1 1 1 0 1 1 1 1 0 2 2 1 0 1 1 2 2 2 0 1 1 1 2

`(k(σi)) 1 3 3 3 3 1 3 3 2 3 1 4 4 2 1 3 3 4 4 3 2 3 2 2 3

Table A.69: Optimal SCV2V codes with maximum source tree height of 4 and maximum
code tree height of 4 (part 1).

179

A. CANONICAL V2V CODE TABLES

Name S4C4 6 S4C4 7

Ik (0.3992, 0.4503] (0.45, 0.5]

M(σi) 4 3 2 1 1 1 0 1 0

N(σi) 0 1 1 1 1 2 3 0 1

`(k(σi)) 3 4 3 2 2 3 4 1 1

Table A.70: Optimal SCV2V codes with maximum source tree height of 4 and maximum
code tree height of 4 (part 2).

180

A.2 HEVC-related V2V codes

A.2 HEVC-related V2V codes

A.2.1 TMuC V2V codes

Name TMuC 1

Ik (0, 0.0288]

M(σi) 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6

N(σi) 0 1

`(k(σi)) 1 6

M(σi) 5 4 3 2 1 0

N(σi) 1 1 1 1 1 1

`(k(σi)) 6 6 6 6 6 6

Name TMuC 2

Ik (0.0288, 0.0578]

M(σi) 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

N(σi) 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

`(k(σi)) 1 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

Name TMuC 3

Ik (0.0578, 0.1189]

M(σi) 11 10 10 9 9 8 8 8 7 7 6 5 4 3 3 2 2 2 1 1 0

N(σi) 1 1 2 2 2 0 2 2 2 2 2 1 1 1 1 1 1 2 2 2 2

`(k(σi)) 5 5 8 8 8 1 8 8 8 8 8 4 4 4 4 4 4 7 7 7 7

Name TMuC 4

Ik (0.1189, 0.1849]

M(σi) 6 6 5 5 5 5 4 4 4 3 3 3 3 3 2 2 2 2 1 1 1 0

N(σi) 2 2 1 1 3 3 0 3 3 2 2 2 2 2 1 3 3 3 1 3 3 3

`(k(σi)) 7 7 4 4 9 9 1 9 9 6 6 6 6 6 3 8 8 8 3 8 8 8

Name TMuC 5

Ik (0.1849, 0.2338]

M(σi) 5 4 4 3 3 3 2 2 2 2 2 2 1 1 1 1 0

N(σi) 2 3 3 0 3 4 1 1 1 2 2 4 3 3 3 3 4

`(k(σi)) 6 8 8 1 8 10 3 3 3 5 5 10 7 7 7 7 9

Table A.71: TMuC V2V codes (part 1).

181

A. CANONICAL V2V CODE TABLES

Name TMuC 6

Ik (0.2338, 0.2775]

M(σi) 7 7 7 6 5 5 5 5 5 5 5 4 4 4 3 3 3 2 2 2 1 0

N(σi) 0 1 2 3 1 1 1 1 2 2 2 3 3 3 2 2 2 1 2 3 3 1

`(k(σi)) 3 5 7 8 4 4 4 4 6 6 6 8 8 8 5 5 5 3 5 7 6 2

Name TMuC 7

Ik (0.2775, 0.3265]

M(σi) 4 4 3 3 3 3 2 2 2 1 1 1 0

N(σi) 1 1 2 2 2 2 0 3 3 2 2 2 3

`(k(σi)) 4 4 5 5 5 5 1 6 6 4 4 4 5

Name TMuC 8

Ik (0.3265, 0.3763]

M(σi) 5 4 4 4 4 4 3 3 3 3 3 3 3 3 2 2 2 2 2 1 1 0

N(σi) 0 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 2

`(k(σi)) 3 4 4 4 4 4 5 5 5 5 5 5 5 5 4 6 6 6 6 5 5 3

Name TMuC 9

Ik (0.3763, 0.4201]

M(σi) 7 7 6 6 5 5 5 4 4 4 4 3 3 3 2 2 2 1 1 1 0

N(σi) 3 4 2 5 1 4 5 0 3 4 6 2 3 6 1 2 5 1 1 4 3

`(k(σi)) 9 10 7 11 5 9 10 3 7 8 11 5 6 10 3 4 8 2 2 6 4

Name TMuC 10

Ik (0.4201, 0.4369]

M(σi) 6 5 5 5 5 4 4 3 3 3 2 2 2 2 1 1 1 1 0

N(σi) 2 0 1 1 3 2 3 2 3 4 1 2 3 5 1 1 4 4 4

`(k(σi)) 7 4 5 5 8 6 7 5 6 7 3 4 5 8 2 2 6 6 5

Name TMuC 11 TMuC 12

Ik (0.4369, 0.4638] (0.46, 0.5]

M(σi) 6 6 6 6 5 5 5 4 4 3 3 3 2 2 2 2 1 1 1 1 1 0 1 0

N(σi) 0 1 1 1 2 2 2 2 2 2 4 4 1 3 5 5 1 1 2 5 5 5 0 1

`(k(σi)) 5 6 6 6 7 7 7 6 6 5 7 7 3 5 8 8 2 2 3 7 7 6 1 1

Table A.72: TMuC V2V codes (part 2).

182

A.2 HEVC-related V2V codes

A.2.2 Systematic V2V codes

Name SYS 1

Ik (0, 0.0296]

M(σi) 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6

N(σi) 0 1

`(k(σi)) 1 6

M(σi) 5 4 3 2 1 0

N(σi) 1 1 1 1 1 1

`(k(σi)) 6 6 6 6 6 6

Name SYS 2 SYS 3

Ik (0.0296, 0.0584] (0.0584, 0.1133]

M(σi) 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 0

N(σi) 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1

`(k(σi)) 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 4 4 4 4 4 4 4 4

Name SYS 4 SYS 5 SYS 6 SYS 7 SYS 8

Ik (0.113, 0.182] (0.1816, 0.2473] (0.25, 0.32] (0.318, 0.43] (0.43, 0.5]

M(σi) 4 3 2 1 0 3 2 2 2 1 1 1 0 2 1 0 3 2 1 1 0 1 0

N(σi) 0 1 1 1 1 0 1 1 1 2 2 2 3 0 1 1 0 1 1 1 2 0 1

`(k(σi)) 1 3 3 3 3 1 3 3 3 5 5 5 5 1 2 2 2 3 2 2 3 1 1

Table A.73: Systematic V2V codes.

183

Appendix B

Miscellaneous

B.1 Mediant inequality

The following Lemma is known as mediant inequality and can be found in the related
literature. See [52] for details.

Lemma B.1. Let a, b, c, d be real and positive. The mediant inequality states that if
a/b ≤ c/d, then

a

b
≤ a+ c

b+ d
≤ c

d
(B.1)

where (a+ c)/(b+ d) is denoted mediant of a/b and c/d.

Proof. (B.1) can be transformed into

a+ c

b+ d
− a

b
≥ 0 (B.2)

and
c

d
− a+ c

b+ d
≥ 0. (B.3)

(B.2) can be rewritten as

bc− ad
b(b+ d)

≥ 0 (B.4)

⇐⇒ d

b+ d

(c
d
− a

b

)
≥ 0. (B.5)

Since d/(b+ d) is always greater 0, (B.5) holds if

c

d
≥ a

b
(B.6)

185

B. MISCELLANEOUS

holds, which is fulfilled by definition. Analogously, (B.3) can be rewritten as

bc− ad
d(b+ d)

≥ 0 (B.7)

⇐⇒ b

b+ d

(c
d
− a

b

)
≥ 0. (B.8)

Since b/(b+ d) is always greater 0, (B.8) holds if (B.6) holds. Consequently, both (B.5)
and (B.8) hold and the Lemma is proven.

B.2 P coders derived by the successive removal algorithm

UR 5 ω55 − ω62

UR 4 ω42 − ω54

UR 3 ω32 − ω41

S6C6 1 ω30 − ω31

S6C6 2 ω28 − ω29

S6C6 3 ω24 − ω27

S6C6 4 ω20 − ω23

S6C6 6 ω18 − ω19

S6C6 7 ω16 − ω17

S6C6 9 ω15

S6C6 10 ω12 − ω14

S6C6 13 ω9 − ω11

S6C6 14 ω8

S6C6 15 ω7

S6C6 16 ω6

S6C6 17 ω4 − ω5

S6C6 20 ω3

S6C6 22 ω2

S6C6 24 ω0 − ω1

UR 5 ω55 − ω62

UR 4 ω42 − ω54

UR 3 ω32 − ω41

S6C6 1 ω30 − ω31

S6C6 2 ω28 − ω29

S6C6 3 ω24 − ω27

S6C6 4 ω20 − ω23

S6C6 6 ω18 − ω19

S6C6 7 ω16 − ω17

S6C6 10 ω12 − ω15

S6C6 13 ω9 − ω11

S6C6 14 ω8

S6C6 15 ω7

S6C6 16 ω6

S6C6 17 ω4 − ω5

S6C6 20 ω3

S6C6 22 ω2

S6C6 24 ω0 − ω1

UR 5 ω55 − ω62

UR 4 ω42 − ω54

UR 3 ω32 − ω41

S6C6 2 ω28 − ω31

S6C6 3 ω24 − ω27

S6C6 4 ω20 − ω23

S6C6 6 ω18 − ω19

S6C6 7 ω16 − ω17

S6C6 10 ω12 − ω15

S6C6 13 ω9 − ω11

S6C6 14 ω8

S6C6 15 ω7

S6C6 16 ω6

S6C6 17 ω4 − ω5

S6C6 20 ω3

S6C6 22 ω2

S6C6 24 ω0 − ω1

Table B.1: P coders with 19, 18, and 17 V2V codes derived by applying the successive
removal algorithm to S6C6+UR codes.

186

B.2 P coders derived by the successive removal algorithm

UR 5 ω55 − ω62

UR 4 ω42 − ω54

UR 3 ω32 − ω41

S6C6 2 ω28 − ω31

S6C6 3 ω24 − ω27

S6C6 4 ω20 − ω23

S6C6 6 ω18 − ω19

S6C6 7 ω16 − ω17

S6C6 10 ω12 − ω15

S6C6 13 ω9 − ω11

S6C6 15 ω7 − ω8

S6C6 16 ω6

S6C6 17 ω4 − ω5

S6C6 20 ω3

S6C6 22 ω2

S6C6 24 ω0 − ω1

UR 5 ω55 − ω62

UR 4 ω42 − ω54

UR 3 ω32 − ω41

S6C6 2 ω28 − ω31

S6C6 3 ω24 − ω27

S6C6 4 ω20 − ω23

S6C6 7 ω16 − ω19

S6C6 10 ω12 − ω15

S6C6 13 ω9 − ω11

S6C6 15 ω7 − ω8

S6C6 16 ω6

S6C6 17 ω4 − ω5

S6C6 20 ω3

S6C6 22 ω2

S6C6 24 ω0 − ω1

UR 5 ω55 − ω62

UR 4 ω42 − ω54

UR 3 ω32 − ω41

S6C6 2 ω28 − ω31

S6C6 3 ω24 − ω27

S6C6 4 ω20 − ω23

S6C6 7 ω16 − ω19

S6C6 10 ω12 − ω15

S6C6 13 ω9 − ω11

S6C6 15 ω6 − ω8

S6C6 17 ω4 − ω5

S6C6 20 ω3

S6C6 22 ω2

S6C6 24 ω0 − ω1

Table B.2: P coders with 16, 15, and 14 V2V codes derived by applying the successive
removal algorithm to S6C6+UR codes.

UR 5 ω55 − ω62

UR 4 ω42 − ω54

UR 3 ω32 − ω41

S6C6 2 ω28 − ω31

S6C6 3 ω24 − ω27

S6C6 4 ω20 − ω23

S6C6 7 ω16 − ω19

S6C6 10 ω12 − ω15

S6C6 13 ω9 − ω11

S6C6 15 ω6 − ω8

S6C6 17 ω4 − ω5

S6C6 20 ω2 − ω3

S6C6 24 ω0 − ω1

UR 5 ω55 − ω62

UR 4 ω42 − ω54

UR 3 ω32 − ω41

S6C6 2 ω26 − ω31

S6C6 4 ω20 − ω25

S6C6 7 ω16 − ω19

S6C6 10 ω12 − ω15

S6C6 13 ω9 − ω11

S6C6 15 ω6 − ω8

S6C6 17 ω4 − ω5

S6C6 20 ω2 − ω3

S6C6 24 ω0 − ω1

UR 5 ω55 − ω62

UR 4 ω42 − ω54

UR 3 ω32 − ω41

S6C6 2 ω26 − ω31

S6C6 4 ω20 − ω25

S6C6 7 ω16 − ω19

S6C6 10 ω12 − ω15

S6C6 13 ω9 − ω11

S6C6 15 ω5 − ω8

S6C6 20 ω2 − ω4

S6C6 24 ω0 − ω1

Table B.3: P coders with 13, 12, and 11 V2V codes derived by applying the successive
removal algorithm to S6C6+UR codes.

187

B. MISCELLANEOUS

UR 5 ω55 − ω62

UR 4 ω42 − ω54

UR 3 ω32 − ω41

S6C6 2 ω26 − ω31

S6C6 4 ω18 − ω25

S6C6 10 ω12 − ω17

S6C6 13 ω9 − ω11

S6C6 15 ω5 − ω8

S6C6 20 ω2 − ω4

S6C6 24 ω0 − ω1

UR 5 ω55 − ω62

UR 4 ω42 − ω54

UR 3 ω29 − ω41

S6C6 4 ω18 − ω28

S6C6 10 ω12 − ω17

S6C6 13 ω9 − ω11

S6C6 15 ω5 − ω8

S6C6 20 ω2 − ω4

S6C6 24 ω0 − ω1

UR 5 ω47 − ω62

UR 3 ω29 − ω46

S6C6 4 ω18 − ω28

S6C6 10 ω12 − ω17

S6C6 13 ω9 − ω11

S6C6 15 ω5 − ω8

S6C6 20 ω2 − ω4

S6C6 24 ω0 − ω1

Table B.4: P coders with 10, 9, and 8 V2V codes derived by applying the successive
removal algorithm to S6C6+UR codes.

UR 5 ω47 − ω62

UR 3 ω29 − ω46

S6C6 4 ω18 − ω28

S6C6 10 ω11 − ω17

S6C6 15 ω5 − ω10

S6C6 20 ω2 − ω4

S6C6 24 ω0 − ω1

UR 5 ω47 − ω62

UR 3 ω29 − ω46

S6C6 4 ω18 − ω28

S6C6 10 ω11 − ω17

S6C6 15 ω4 − ω10

S6C6 24 ω0 − ω3

UR 5 ω47 − ω62

UR 3 ω29 − ω46

S6C6 4 ω14 − ω28

S6C6 15 ω4 − ω13

S6C6 24 ω0 − ω3

Table B.5: P coders with 7, 6, and 5 V2V codes derived by applying the successive
removal algorithm to S6C6+UR codes.

UR 5 ω39 − ω62

S6C6 4 ω14 − ω38

S6C6 15 ω4 − ω13

S6C6 24 ω0 − ω3

UR 5 ω39 − ω62

S6C6 4 ω9 − ω38

S6C6 24 ω0 − ω8

S6C6 4 ω9 − ω62

S6C6 24 ω0 − ω8

Table B.6: P coders with 4, 3, and 2 V2V codes derived by applying the successive
removal algorithm to S6C6+UR codes.

S6C6 24 ω0 − ω62

Table B.7: P coder with 1 V2V code derived by applying the successive removal algorithm
to S6C6+UR codes.

188

B.3 P coders derived by exhaustive search

B.3 P coders derived by exhaustive search

S6C6 13 ω0 − ω62

S6C6 2 ω14 − ω62

S6C6 20 ω0 − ω13

UR 3 ω24 − ω62

S6C6 10 ω7 − ω23

S6C6 24 ω0 − ω6

Table B.8: P coders with 1, 2, and 3 V2V codes derived by applying exhaustive search to
S6C6+UR codes.

UR 4 ω34 − ω62

S6C6 4 ω16 − ω33

S6C6 13 ω5 − ω15

S6C6 24 ω0 − ω4

UR 4 ω36 − ω62

S6C6 3 ω20 − ω35

S6C6 10 ω11 − ω19

S6C6 15 ω4 − ω10

S6C6 24 ω0 − ω3

UR 5 ω47 − ω62

UR 3 ω29 − ω46

S6C6 4 ω18 − ω28

S6C6 10 ω11 − ω17

S6C6 15 ω4 − ω10

S6C6 24 ω0 − ω3

Table B.9: P coders with 4, 5, and 6 V2V codes derived by applying exhaustive search to
S6C6+UR codes.

UR 5 ω47 − ω62

UR 3 ω29 − ω46

S6C6 4 ω18 − ω28

S6C6 10 ω12 − ω17

S6C6 13 ω7 − ω11

S6C6 17 ω3 − ω6

S6C6 24 ω0 − ω2

UR 5 ω47 − ω62

UR 3 ω29 − ω46

S6C6 4 ω18 − ω28

S6C6 10 ω12 − ω17

S6C6 13 ω8 − ω11

S6C6 16 ω5 − ω7

S6C6 20 ω2 − ω4

S6C6 24 ω0 − ω1

UR 5 ω55 − ω62

UR 4 ω42 − ω54

UR 3 ω29 − ω41

S6C6 4 ω18 − ω28

S6C6 10 ω12 − ω17

S6C6 13 ω8 − ω11

S6C6 16 ω5 − ω7

S6C6 20 ω2 − ω4

S6C6 24 ω0 − ω1

Table B.10: P coders with 7, 8, and 9 V2V codes derived by applying exhaustive search
to S6C6+UR codes.

189

B. MISCELLANEOUS

UR 5 ω55 − ω62

UR 4 ω42 − ω54

UR 3 ω32 − ω41

S6C6 2 ω26 − ω31

S6C6 4 ω18 − ω25

S6C6 10 ω12 − ω17

S6C6 13 ω8 − ω11

S6C6 16 ω5 − ω7

S6C6 20 ω2 − ω4

S6C6 24 ω0 − ω1

UR 5 ω55 − ω62

UR 4 ω42 − ω54

UR 3 ω32 − ω41

S6C6 2 ω26 − ω31

S6C6 4 ω20 − ω25

S6C6 7 ω16 − ω19

S6C6 10 ω12 − ω15

S6C6 13 ω8 − ω11

S6C6 16 ω5 − ω7

S6C6 20 ω2 − ω4

S6C6 24 ω0 − ω1

UR 5 ω55 − ω62

UR 4 ω42 − ω54

UR 3 ω32 − ω41

S6C6 2 ω26 − ω31

S6C6 4 ω20 − ω25

S6C6 7 ω16 − ω19

S6C6 10 ω12 − ω15

S6C6 13 ω9 − ω11

S6C6 15 ω6 − ω8

S6C6 17 ω4 − ω5

S6C6 20 ω2 − ω3

S6C6 24 ω0 − ω1

Table B.11: P coders with 10, 11, and 12 V2V codes derived by applying exhaustive
search to S6C6+UR codes.

SYS 7 ω0 − ω62

SYS 4 ω10 − ω62

SYS 8 ω0 − ω9

SYS 3 ω22 − ω62

SYS 6 ω6 − ω21

SYS 8 ω0 − ω5

Table B.12: P coders with 1, 2, and 3 V2V codes derived by applying exhaustive search
to systematic V2V codes.

SYS 2 ω31 − ω62

SYS 5 ω11 − ω30

SYS 7 ω3 − ω10

SYS 8 ω0 − ω2

SYS 1 ω47 − ω62

SYS 3 ω26 − ω46

SYS 5 ω11 − ω25

SYS 7 ω3 − ω10

SYS 8 ω0 − ω2

SYS 1 ω47 − ω62

SYS 3 ω29 − ω46

SYS 4 ω17 − ω28

SYS 6 ω9 − ω16

SYS 7 ω3 − ω8

SYS 8 ω0 − ω2

Table B.13: P coders with 4, 5, and 6 V2V codes derived by applying exhaustive search
to systematic V2V codes.

190

B.3 P coders derived by exhaustive search

SYS 1 ω47 − ω62

SYS 3 ω29 − ω46

SYS 4 ω20 − ω28

SYS 5 ω14 − ω19

SYS 6 ω9 − ω13

SYS 7 ω3 − ω8

SYS 8 ω0 − ω2

SYS 1 ω55 − ω62

SYS 2 ω42 − ω54

SYS 3 ω29 − ω41

SYS 4 ω20 − ω28

SYS 5 ω14 − ω19

SYS 6 ω9 − ω13

SYS 7 ω3 − ω8

SYS 8 ω0 − ω2

Table B.14: P coders with 7 and 8 V2V codes derived by applying exhaustive search to
systematic V2V codes.

TMuC 7 ω0 − ω62

TMuC 4 ω11 − ω62

TMuC 11 ω0 − ω10

TMuC 3 ω23 − ω62

TMuC 6 ω6 − ω22

TMuC 12 ω0 − ω5

Table B.15: P coders with 1, 2, and 3 V2V codes derived by applying exhaustive search
to the TMuC V2V codes.

TMuC 2 ω34 − ω62

TMuC 4 ω16 − ω33

TMuC 7 ω5 − ω15

TMuC 12 ω0 − ω4

TMuC 1 ω47 − ω62

TMuC 3 ω25 − ω46

TMuC 5 ω12 − ω24

TMuC 8 ω4 − ω11

TMuC 12 ω0 − ω3

TMuC 1 ω47 − ω62

TMuC 3 ω28 − ω46

TMuC 4 ω17 − ω27

TMuC 6 ω10 − ω16

TMuC 8 ω4 − ω9

TMuC 12 ω0 − ω3

Table B.16: P coders with 4, 5, and 6 V2V codes derived by applying exhaustive search
to the TMuC V2V codes.

191

B. MISCELLANEOUS

TMuC 1 ω47 − ω62

TMuC 3 ω28 − ω46

TMuC 4 ω20 − ω27

TMuC 5 ω13 − ω19

TMuC 7 ω7 − ω12

TMuC 9 ω3 − ω6

TMuC 12 ω0 − ω2

TMuC 1 ω55 − ω62

TMuC 2 ω42 − ω54

TMuC 3 ω28 − ω41

TMuC 4 ω20 − ω27

TMuC 5 ω13 − ω19

TMuC 7 ω7 − ω12

TMuC 9 ω3 − ω6

TMuC 12 ω0 − ω2

TMuC 1 ω55 − ω62

TMuC 2 ω42 − ω54

TMuC 3 ω28 − ω41

TMuC 4 ω20 − ω27

TMuC 5 ω15 − ω19

TMuC 6 ω12 − ω14

TMuC 7 ω7 − ω11

TMuC 9 ω3 − ω6

TMuC 12 ω0 − ω2

Table B.17: P coders with 7, 8, and 9 V2V codes derived by applying exhaustive search
to the TMuC V2V codes.

TMuC 1 ω55 − ω62

TMuC 2 ω42 − ω54

TMuC 3 ω28 − ω41

TMuC 4 ω20 − ω27

TMuC 5 ω15 − ω19

TMuC 6 ω12 − ω14

TMuC 7 ω9 − ω11

TMuC 8 ω6 − ω8

TMuC 9 ω3 − ω5

TMuC 12 ω0 − ω2

TMuC 1 ω55 − ω62

TMuC 2 ω42 − ω54

TMuC 3 ω28 − ω41

TMuC 4 ω20 − ω27

TMuC 5 ω15 − ω19

TMuC 6 ω12 − ω14

TMuC 7 ω9 − ω11

TMuC 8 ω6 − ω8

TMuC 9 ω3 − ω5

TMuC 11 ω2

TMuC 12 ω0 − ω1

TMuC 1 ω55 − ω62

TMuC 2 ω42 − ω54

TMuC 3 ω28 − ω41

TMuC 4 ω20 − ω27

TMuC 5 ω15 − ω19

TMuC 6 ω12 − ω14

TMuC 7 ω9 − ω11

TMuC 8 ω6 − ω8

TMuC 9 ω4 − ω5

TMuC 10 ω3

TMuC 11 ω2

TMuC 12 ω0 − ω1

Table B.18: P coders with 10, 11, and 12 V2V codes derived by applying exhaustive
search to the TMuC V2V codes.

192

B.3 P coders derived by exhaustive search

193

Glossary

Acronyms

AVC Advanced Video Coding

BCE Binary Coding Engine

BP Bin-Pipe

CABAC Context-based Adaptive Binary Arithmetic Coding

CV2V Code tree height-limited Variable-to-Variable length

F2V Fixed-to-Variable length

HEVC High Efficiency Video Coding

IEC International Electrotechnical Commission

ISO International Organization for Standardization

ITU-T International Telecommunication Union - Telecommunication
Standardization Sector

LPS Less Probable Symbol

LSB Least Significant Bit

LV2V Leaf-limited Variable-to-Variable length

MPS More Probable Symbol

MSB Most Significant Bit

PIPE Probability Interval Partitioning Entropy

195

GLOSSARY

pmf Probability Mass Function

SCV2V Source and Code tree height-limited Variable-to-Variable length

SV2V Source tree height-limited Variable-to-Variable length

TMuC Test Model under Consideration

UR Unary-to-Rice

V2F Variable-to-Fixed length

V2V Variable-to-Variable length

Symbols

α Constant of the probability estimator of CABAC with value 63
√

3/80

B̂(X) Bin encoder that is capable of optimally encoding random variable X

B The binary alphabet {0, 1}

B̃ P coder that uses ideal binary arithmetic bin coders

C Interchangeably used to refer to a code tree as well as to the set of code
words of a code tree

C Random variable over code words C

ci Code word i

{Gi} Binary random process that produces the coding bins

gi Coding bin associated with random variable Gi

Ik Probability interval associated with bin coder k

I The set of all integers in the interval [256, 510]

Ωk Binary random variable with pmf pΩk
(1) = ωk

ωk Possible values of the probability of the LPS in CABAC

P The set of all possible prefix-free codes

196

GLOSSARY

Pi The set of all possible prefix-free codes with i leaf nodes

P̂i The set of all possible prefix-free codes of height i or less

P̃i The set of all possible prefix-free codes with up to i leaf nodes

Πx The set of all possible permutations of x items

Q Set of probability values ωk that the states of CABAC can attain

Q′ Random variable over Q describing the distribution of conditional
probabilities of one of a random process

ri Range value as present in the M coder before encoding coding bin gi

Ŝ Random variable over S that can be encoded with zero redundancy with
code tree C

S Interchangeably used to refer to a source tree as well as to the set of
source words of a source tree

σi Source word i

S Random variable over source words S

ui Value of the MPS associated with coding bin gi

V The set of all possible V2V codes

v Variable-to-variable length code

V̄i The set of all possible V2V codes with a code tree height of i or less

V̂i The set of all possible V2V codes with a source tree height of i or less

Vi The set of all possible V2V codes with i leaf nodes

Ṽi The set of all possible V2V codes with up to i leaf nodes

{Wi} Binary random process describing modeled bins

wi Modeled bin associated with random variable Wi

X0 Binary random variable with pX0(1)→ 0

197

GLOSSARY

Functions

Cc(C) Canonical representation of code tree C

Cs(S) Canonical representation of source tree S

Cv(v) Canonical representation of a V2V code v

Cw(σ) Canonical representation of source word σ

D(X||Y) Kullback-Leibler divergence of Y from X

Eq(X) Canonical representation of a set of source trees X

ηM (Q′) Percentaged overhead of the average code length per symbol of the M
coder relative to the entropy rate of a random process with distribution of
conditional probabilities of one according to Q′

ηP (Q′) Percentaged overhead of the average code length per symbol of the P
coder relative to the entropy rate of a random process with distribution of
conditional probabilities of one according to Q′

H̄({Xi}) Entropy rate of random process {Xi}

H(X) Entropy of random variable X

H(X;Y) Cross entropy of Y with respect to X

H̄(Q′) Entropy rate of a random process for that the conditional probabilities of
one are distributed according to Q′

Hu(·) V2V code with a code tree derived by the Huffman algorithm

k(σ) Code word associated with source word σ of a V2V code

K(Q′) Random variable over Q×B, derived from the distribution of conditional
probabilities of one of a random process

¯̀(X) Average length of words produced by a source X that has binary words
as alphabet

¯̀
B(X) Average code length of encoding random variable X with coder B

`(x) Length of binary word x

198

GLOSSARY

`B({Gi}, (g1, g2, . . . , gn)) Encoded length of the sequence g1, g2, . . . , gn of random
process {Gi} produced by binary coding engine B

L̄(K(Q′), B) Average code length per symbol of encoding K(Q′) with binary coding
engine B

LM (r, ωk) Lookup table of the M coder that stores the precalculated LPS range
values for probability ωk and range r as specified in H.264/AVC and
H.265/HEVC

¯̀
M (Ωk, Q

′) Average code length produced by the M coder when encoding coding
bins for that a particular ωk occurs amongst all coding bins of K(Q′)

`′M (X, r) Average code length of the M coder for encoding random variable X
when the range value is r

L̄({Gi}, B) Average code length per symbol of encoding random process {Gi} with
binary coding engine B

L̄B(Q′) Average code length per symbol of encoding a random process for that
the conditional probabilities of one are distributed according to Q′ with
binary coding engine B

M(g1, g2, . . . , gn) Numbers of ones in the sequence of coding bins g1, g2, . . . , gn

M(x) Numbers of ones in binary word x

N(g1, g2, . . . , gn) Numbers of zeros in the sequence of coding bins g1, g2, . . . , gn

N(x) Numbers of zeros in binary word x

p̄{Xi}(·) Average of conditional probability mass functions of random process
{Xi}

pXi(·|xi−1) Conditional probability mass function pXi(·|xi−1, ..., x1)

π(·) Permutation function

pX(·) Probability mass function of random variable X

p{Xi}(·) Joint probability mass function of random process {Xi}

Pm(·) V2V code with a code tree derived by the package merge algorithm

199

GLOSSARY

Q({Gi}) Random variable that describes the distribution of the conditional
probabilities of one of random process {Gi}

Q({Gi}, (g1, g2, . . . , gn)) Random variable that describes the distribution of the
conditional probabilities of one pG1(1), pG2(1|g1), . . . , pGn(1|gn−1) that
occur for the sequence g1, g2, . . . , gn of random process {Gi}

R(C) Redundancy of code tree C

RB(X) Redundancy of encoding random variable X with coder B

Rg({Gi}) Random variable over I that describes the distribution of the range
values that occur for random process {Gi}

Rg(K(Q′)) Random variable over I that describes the distribution of the range
values that occur when encoding K(Q′)

Rn(gi−1) Range value as present in the M coder before encoding coding bin gi

Rs(·) Source tree generated with the prefix merge algorithm from a canonical
representation

RV(x) Binary random variable with pmf pRV(x)(1) = x

St(v) Source tree of V2V code v

ϑ({Gi}, (g1, g2, . . . , gn), ωk, r) Subsequence of coding bins in the sequence
g1, g2, . . . , gn for that the associated conditional probability of one equals
ωk and for that the associated range value equals r

T (r, (ωk, g)) State transition of the Markov chain over the range values of the M coder

U`({Gi}, ωk, r) Average relative frequency of coding bins of {Gi} for that the
conditional probability of one equals ωk and for that the range value of
the M coder prior to encoding equals r

UM ({Gi}, ωk, r) Average relative frequency of ones that occur in coding bins of {Gi}
for that the conditional probability of one equals ωk and for that the range
value of the M coder prior to encoding equals r

UN ({Gi}, ωk, r) Average relative frequency of zeros that occur in coding bins of {Gi}
for that the conditional probability of one equals ωk and for that the range
value of the M coder prior to encoding equals r

200

GLOSSARY

W`({Gi}, ωk) Average relative frequency of coding bins of {Gi} for that the
conditional probability of one equals ωk

WM ({Gi}, ωk) Average relative frequency of ones that occur in coding bins of {Gi}
for that the conditional probability of one equals ωk

WN ({Gi}, ωk) Average relative frequency of zeros that occur in coding bins of {Gi}
for that the conditional probability of one equals ωk

ζ({Gi}, (g1, g2, . . . , gn), ωk) Subsequence of coding bins in the sequence
g1, g2, . . . , gn for that the associated conditional probability of one pG1(1),

pG2(1|g1), . . . , pGn(1|gn−1) equals ωk

Notation

xi The sequence of symbols xi, xi−1, · · · , x1

An n-fold Cartesian power of set A

|A| Number of elements in set or multiset A

{·}b A multiset

x_y Concatenation of two binary words x and y

201

Bibliography

[1] “Cisco Visual Networking Index: Forecast and Methodology, 2015-2019”. Cisco
White Paper. May 2015.

[2] ITU-T. “Rec. H.264: Advanced video coding for generic audiovisual services
(AVC)”. International Telecommunication Union. Mar. 2009.

[3] ITU-T. “Rec. H.265: High efficency video coding (HEVC)”. International
Telecommunication Union. Apr. 2013.

[4] H. Schwarz, T. Schierl, and D. Marpe. “Block Structures and Parallelism Fea-
tures in HEVC”. in High Efficiency Video Coding: Algorithms and Architectures.
Ed. by V. Sze, M. Budagavi, and G. J. Sullivan. Integrated Circuits and Systems.
Springer, 2014. Chap. 3, pp. 49–90. DOI: 10.1007/978-3-319-06895-4_3.

[5] D. Marpe, H. Schwarz, and T. Wiegand. “Context-based adaptive binary arith-
metic coding in the H.264/AVC video compression standard”. IEEE Transactions
on Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 620–636, July
2003. ISSN: 1051-8215. DOI: 10.1109/TCSVT.2003.815173.

[6] D. Marpe, H. Schwarz, T. Wiegand, and H. Kirchhoffer. “Entropy coding”. US
Patent 8,907,823. Dec. 2014.

[7] D. Marpe, H. Schwarz, and T. Wiegand. “Entropy coding in video compres-
sion using probability interval partitioning”. in Proceedings of the Picture Coding
Symposium (PCS 2010), Nagoya, Japan. Dec. 2010, pp. 66–69. DOI: 10.1109/
PCS.2010.5702580.

[8] T. Wiegand and H. Schwarz. “Source Coding: Part I of Fundamentals of Source
and Video Coding”. now publishers Inc., 2011. DOI: 10.1561/2000000010.

[9] D. Marpe, H. Schwarz, and T. Wiegand. “Novel entropy coding concept”. Joint
Collaborative Team on Video Coding. JCTVC-A032, Dresden, Germany, 1st
Meeting, Mar. 2010.

203

http://dx.doi.org/10.1007/978-3-319-06895-4_3
http://dx.doi.org/10.1109/TCSVT.2003.815173
http://dx.doi.org/10.1109/PCS.2010.5702580
http://dx.doi.org/10.1109/PCS.2010.5702580
http://dx.doi.org/10.1561/2000000010

BIBLIOGRAPHY

[10] E. Meron and M. Feder. “Finite-memory universal prediction of individual se-
quences”. IEEE Transactions on Information Theory, vol. 50, no. 7, pp. 1506–
1523, July 2004. ISSN: 0018-9448. DOI: 10.1109/TIT.2004.830749.

[11] C. C. Holt. “Forecasting seasonals and trends by exponentially weighted moving
averages”. International Journal of Forecasting, vol. 20, no. 1, pp. 5–10, 2004.
DOI: 10.1016/j.ijforecast.2003.09.015.

[12] E. Belyaev, M. Gilmutdinov, and A. Turlikov. “Binary Arithmetic Coding Sys-
tem with Adaptive Probability Estimation by ”Virtual Sliding Window””. in 2006
IEEE Tenth International Symposium on Consumer Electronics. ISCE ’06. 2006,
pp. 1–5. DOI: 10.1109/ISCE.2006.1689517.

[13] T. Cover and J. A. Thomas. “Elements of Information Theory”. Ed. by D. L.
Schilling. Wiley Series in Telecommunications. John Wiley & Sons, Inc., 1991.
DOI: 10.1002/0471200611.

[14] P. Zhang. “Fast CABAC decoding architecture”. Electronics Letters, vol. 44,
no. 24, pp. 1394–1395, Nov. 2008. ISSN: 0013-5194. DOI: 10 . 1049 / el :

20082126.

[15] Y. Yi and I.-C. Park. “High-Speed H.264/AVC CABAC Decoding”. IEEE Transac-
tions on Circuits and Systems for Video Technology, vol. 17, no. 4, pp. 490–494,
Apr. 2007. ISSN: 1051-8215. DOI: 10.1109/TCSVT.2007.893831.

[16] D. Marpe, H. Kirchhoffer, and G. Marten. “Fast Renormalization for H.264/AVC
Arithmetic Coding”. in Proceedings of the 14th European Signal Processing
Conference (EUSIPCO 2006), Florence, Italy. Sept. 2006.

[17] S. Lloyd. “Least squares quantization in PCM”. IEEE Transactions on Information
Theory, vol. 28, no. 2, pp. 129–137, Mar. 1982. ISSN: 0018-9448. DOI: 10.1109/
TIT.1982.1056489.

[18] J. Max. “Quantizing for minimum distortion”. IRE Transactions on Information
Theory, vol. 6, no. 1, pp. 7–12, Mar. 1960. ISSN: 0096-1000. DOI: 10.1109/TIT.
1960.1057548.

[19] D. Greene, F. Yao, and T. Zhang. “A linear algorithm for optimal context clustering
with application to bi-level image coding”. in International Conference on Image
Processing (ICIP 98). Vol. 1. Oct. 1998, 508–511 vol.1. DOI: 10.1109/ICIP.
1998.723548.

204

http://dx.doi.org/10.1109/TIT.2004.830749
http://dx.doi.org/10.1016/j.ijforecast.2003.09.015
http://dx.doi.org/10.1109/ISCE.2006.1689517
http://dx.doi.org/10.1002/0471200611
http://dx.doi.org/10.1049/el:20082126
http://dx.doi.org/10.1049/el:20082126
http://dx.doi.org/10.1109/TCSVT.2007.893831
http://dx.doi.org/10.1109/TIT.1982.1056489
http://dx.doi.org/10.1109/TIT.1982.1056489
http://dx.doi.org/10.1109/TIT.1960.1057548
http://dx.doi.org/10.1109/TIT.1960.1057548
http://dx.doi.org/10.1109/ICIP.1998.723548
http://dx.doi.org/10.1109/ICIP.1998.723548

BIBLIOGRAPHY

[20] S. Forchhammer, X. Wu, and J. Andersen. “Optimal context quantization in loss-
less compression of image data sequences”. IEEE Transactions on Image Pro-
cessing, vol. 13, no. 4, pp. 509–517, 2004. ISSN: 1057-7149. DOI: 10.1109/TIP.
2003.822613.

[21] D. Huffman. “A Method for the Construction of Minimum-Redundancy Codes”.
Proceedings of the IRE, vol. 40, no. 9, pp. 1098–1101, 1952. ISSN: 0096-8390.
DOI: 10.1109/JRPROC.1952.273898.

[22] G. Freeman. “Asymptotic convergence of dual-tree entropy codes”. in Proceed-
ings of the Data Compression Conference. DCC ’91. 1991, pp. 208–217. DOI:
10.1109/DCC.1991.213360.

[23] B. P. Tunstall. “Synthesis of noiseless compression codes”. PhD thesis. Georgia
Institute of Technology, 1967. URL: http://hdl.handle.net/1853/15041.

[24] F. Ono, S. Kino, M. Yoshida, and T. Kimura. “Bi-level image coding with
MELCODE-comparison of block type code and arithmetic type code”. in IEEE
Global Telecommunications Conference and Exhibition ’Communications Tech-
nology for the 1990s and Beyond’ (GLOBECOM). IEEE, 1989, pp. 255–260. DOI:
10.1109/GLOCOM.1989.63977.

[25] D. Marpe, H. Kirchhoffer, M. Siekmann, and C. Bartnik. “Binary arithmetic coding
scheme”. WO Patent App. PCT/EP2013/051,045. Aug. 2013.

[26] P. G. Howard. “Interleaving entropy codes”. in Compression and Complexity of
Sequences. 1997, pp. 45–55. DOI: 10.1109/SEQUEN.1997.666902.

[27] M. Boliek, J. Allen, E. Schwartz, and M. Gormish. “Very high speed entropy
coding”. in IEEE International Conference on Image Processing (ICIP 1994),
Austin, TX, USA. Vol. 3. Nov. 1994, pp. 625–629. DOI: 10.1109/ICIP.1994.
413814.

[28] H. Kirchhoffer, B. Bross, A. Henkel, D. Marpe, T. Nguyen, M. Preiss, M. Siek-
mann, J. Stegemann, and T. Wiegand. “CE1: Report of test results related to
PIPE-based Unified Entropy Coding”. Joint Collaborative Team on Video Cod-
ing. JCTVC-G633, Geneva, Switzerland, 7th Meeting, Nov. 2011.

[29] M. Winken, S. Bosse, B. Bross, P. Helle, T. Hinz, H. Kirchhoffer, H. Lakshman,
D. Marpe, S. Oudin, M. Preiss, H. Schwarz, M. Siekmann, K. Sühring, and T.
Wiegand. “Description of video coding technology proposal by Fraunhofer HHI”.
Joint Collaborative Team on Video Coding. JCTVC-A116, Dresden, Germany,
Apr. 2010.

205

http://dx.doi.org/10.1109/TIP.2003.822613
http://dx.doi.org/10.1109/TIP.2003.822613
http://dx.doi.org/10.1109/JRPROC.1952.273898
http://dx.doi.org/10.1109/DCC.1991.213360
http://hdl.handle.net/1853/15041
http://dx.doi.org/10.1109/GLOCOM.1989.63977
http://dx.doi.org/10.1109/SEQUEN.1997.666902
http://dx.doi.org/10.1109/ICIP.1994.413814
http://dx.doi.org/10.1109/ICIP.1994.413814

BIBLIOGRAPHY

[30] R. M. Fano. “Transmission of Information: A Statistical Theory of Communica-
tion”. The M.I.T. Press, 1961.

[31] A. Kiely and M. Klimesh. “A new entropy coding technique for data compres-
sion”. The Interplanetary Network Progress Report, vol. 42-146, 2001.

[32] A. Kiely and M. Klimesh. “Memory-efficient recursive interleaved entropy cod-
ing”. The Interplanetary Network Progress Report, vol. 42-146, 2001.

[33] A. Kiely and M. Klimesh. “An adaptable binary entropy coder”. in Proceedings
of the Data Compression Conference. DCC 2001. 2001, pp. 391–400. DOI: 10.
1109/DCC.2001.917170.

[34] B. Macq, X. Marichal, and M. P. Queluz. “Entropy Coding of Segmentations
Trees”. in 15th Symposium on Information Theory in the Benelux. 1994, pp. 282–
289.

[35] X. Marichal, B. Macq, and M. P. Queluz. “Generic coder for binary sources: the
M-coder”. Electronics Letters, vol. 31, no. 7, p. 544, 1995. ISSN: 00135194. DOI:
10.1049/el:19950358.

[36] K. Nguyen-Phi and H. Weinrichter. “A new binary source coder and its applica-
tion in bi-level image compression”. in IEEE Global Telecommunications Confer-
ence (GLOBECOM’96). Vol. 3. IEEE, 1996, pp. 1483–1487. ISBN: 0-7803-3336-
5. DOI: 10.1109/GLOCOM.1996.591888.

[37] J. Abrahams. “Code and parse trees for lossless source encoding”. in Compres-
sion and Complexity of Sequences. 1997, pp. 145–171. DOI: 10.1109/SEQUEN.
1997.666911.

[38] F. Fabris. “Variable-length-to-variable length source coding: a greedy step-
by-step algorithm”. IEEE Transactions on Information Theory, vol. 38, no. 5,
pp. 1609–1617, 1992. ISSN: 0018-9448. DOI: 10.1109/18.149517.

[39] G. Freeman. “Divergence and the construction of variable-to-variable-length
lossless codes by source-word extensions”. in Proceedings of the Data Com-
pression Conference. DCC ’93. 1993, pp. 79–88. DOI: 10.1109/DCC.1993.
253142.

[40] P. R. Stubley. “Adaptive data compression using tree codes”. PhD thesis. Uni-
versity of Waterloo, 1992.

[41] P. R. Stubley. “On the redundancy of optimum fixed-to-variable length codes”.
in Proceedings of the Data Compression Conference. DCC ’94. 1994, pp. 90–
97. DOI: 10.1109/DCC.1994.305916.

206

http://dx.doi.org/10.1109/DCC.2001.917170
http://dx.doi.org/10.1109/DCC.2001.917170
http://dx.doi.org/10.1049/el:19950358
http://dx.doi.org/10.1109/GLOCOM.1996.591888
http://dx.doi.org/10.1109/SEQUEN.1997.666911
http://dx.doi.org/10.1109/SEQUEN.1997.666911
http://dx.doi.org/10.1109/18.149517
http://dx.doi.org/10.1109/DCC.1993.253142
http://dx.doi.org/10.1109/DCC.1993.253142
http://dx.doi.org/10.1109/DCC.1994.305916

BIBLIOGRAPHY

[42] P. R. Stubley. “Adaptive variable-to-variable length codes”. in Proceedings of the
Data Compression Conference. DCC ’94. 1994, pp. 98–105. DOI: 10.1109/DCC.
1994.305917.

[43] J. Senecal, M. Duchaineau, and K. Joy. “Length-limited variable-to-variable
length codes for high-performance entropy coding”. in Proceedings of the Data
Compression Conference. DCC 2004. 2004, pp. 389–398. DOI: 10.1109/DCC.
2004.1281484.

[44] N. M. Blachman. “Minimum cost coding of information”. Transactions of the IRE
Professional Group on Information Theory, vol. PGIT-3, no. 3, pp. 139–149, Mar.
1954. DOI: 10.1109/IREPGIT.1954.6373407.

[45] R. S. Marcus. “Discrete Noiseless Coding”. MA thesis. Massachusetts Institute
of Technology, Dept. of Electrical Engineering, Cambridge, 1957. URL: http:
//hdl.handle.net/1721.1/35438.

[46] M. Golin and J. Li. “More Efficient Algorithms and Analyses for Unequal Letter
Cost Prefix-Free Coding”. IEEE Transactions on Information Theory, vol. 54,
no. 8, pp. 3412–3424, Aug. 2008. ISSN: 0018-9448. DOI: 10.1109/TIT.2008.
926326.

[47] I. Boreico. “Linear Independence of Radicals”. The Harvard College Mathemat-
ics Review, vol. 2, no. 1, pp. 87–92, 2008.

[48] E. S. Schwartz and B. Kallick. “Generating a Canonical Prefix Encoding”. Com-
munications of the ACM, vol. 7, no. 3, pp. 166–169, Mar. 1964. ISSN: 0001-0782.
DOI: 10.1145/363958.363991.

[49] J. Connell. “A Huffman-Shannon-Fano code”. Proceedings of the IEEE, vol. 61,
no. 7, pp. 1046–1047, July 1973. ISSN: 0018-9219. DOI: 10.1109/PROC.1973.
9200.

[50] D. S. Hirschberg and D. A. Lelewer. “Efficient Decoding of Prefix Codes”. Com-
munications of the ACM, vol. 33, no. 4, pp. 449–459, Apr. 1990. ISSN: 0001-
0782. DOI: 10.1145/77556.77566.

[51] L. G. Kraft. “A device for quantizing, grouping, and coding amplitude-modulated
pulses”. MA thesis. Massachusetts Institute of Technology. Dept. of Electrical
Engineering, 1949. URL: http://hdl.handle.net/1721.1/12390.

[52] S. B. Guthery. “A Motif of Mathematics: History and Application of the Mediant
and the Farey Sequence”. CreateSpace Independent Publishing Platform, 2010.

207

http://dx.doi.org/10.1109/DCC.1994.305917
http://dx.doi.org/10.1109/DCC.1994.305917
http://dx.doi.org/10.1109/DCC.2004.1281484
http://dx.doi.org/10.1109/DCC.2004.1281484
http://dx.doi.org/10.1109/IREPGIT.1954.6373407
http://hdl.handle.net/1721.1/35438
http://hdl.handle.net/1721.1/35438
http://dx.doi.org/10.1109/TIT.2008.926326
http://dx.doi.org/10.1109/TIT.2008.926326
http://dx.doi.org/10.1145/363958.363991
http://dx.doi.org/10.1109/PROC.1973.9200
http://dx.doi.org/10.1109/PROC.1973.9200
http://dx.doi.org/10.1145/77556.77566
http://hdl.handle.net/1721.1/12390

BIBLIOGRAPHY

[53] L. L. Larmore and D. S. Hirschberg. “A fast algorithm for optimal length-limited
Huffman codes”. J. ACM, vol. 37, no. 3, pp. 464–473, July 1990. ISSN: 0004-
5411. DOI: 10.1145/79147.79150.

[54] G. Longo and G. Galasso. “An application of informational divergence to Huff-
man codes”. IEEE Transactions on Information Theory, vol. 28, no. 1, pp. 36–43,
Jan. 1982. ISSN: 0018-9448. DOI: 10.1109/TIT.1982.1056452.

[55] R. Gallager. “Variations on a theme by Huffman”. IEEE Transactions on Infor-
mation Theory, vol. 24, no. 6, pp. 668–674, Nov. 1978. ISSN: 0018-9448. DOI:
10.1109/TIT.1978.1055959.

[56] F. Fabris, A. Sgarro, and R. Pauletti. “Tunstall adaptive coding and miscoding”.
IEEE Transactions on Information Theory, vol. 42, no. 6, pp. 2167–2180, Nov.
1996. ISSN: 0018-9448. DOI: 10.1109/18.556605.

[57] A. Moffat and A. Turpin. “Compression and Coding Algorithms”. Kluwer Aca-
demic Publishers, 2002. DOI: 10.1007/978-1-4615-0935-6.

[58] A. G. Akritas and A. W. Strzebonski. “A Comparative Study of Two Real Root
Isolation Methods”. Nonlinear Analysis: Modelling and Control, vol. 10, no. 4,
pp. 297–304, 2005.

[59] A. G. Akritas, A. W. Strzebonski, and P. S. Vigklas. “Improving the Performance
of the Continued Fractions Method Using New Bounds of Positive Roots”. Non-
linear Analysis: Modelling and Control, vol. 13, no. 3, pp. 265–279, 2008.

[60] Python programming language, Version 2.6.6. http://www.python.org.

[61] SymPy symbolic mathematics framework, Version 0.7.5. http://www.sympy.
org.

[62] J. Katajainen, A. Moffat, and A. Turpin. “A fast and space-economical algorithm
for length-limited coding”. in 6th International Symposium on Algorithms and
Computation, (ISAAC ’95), Cairns, Australia. 1995, pp. 12–21. DOI: 10.1007/
BFb0015404.

[63] A. Turpin and A. Moffat. “Practical Length-Limited Coding for Large Alphabets”.
The Computer Journal, vol. 38, no. 5, pp. 339–347, 1995. DOI: 10.1093/comjnl/
38.5.339.

[64] A. Turpin. “Efficient prefix coding”. PhD thesis. University of Melbourne, Dept. of
Computer Science, 1998. URL: http://trove.nla.gov.au/work/32551427.

208

http://dx.doi.org/10.1145/79147.79150
http://dx.doi.org/10.1109/TIT.1982.1056452
http://dx.doi.org/10.1109/TIT.1978.1055959
http://dx.doi.org/10.1109/18.556605
http://dx.doi.org/10.1007/978-1-4615-0935-6
http://www.python.org
http://www.sympy.org
http://www.sympy.org
http://dx.doi.org/10.1007/BFb0015404
http://dx.doi.org/10.1007/BFb0015404
http://dx.doi.org/10.1093/comjnl/38.5.339
http://dx.doi.org/10.1093/comjnl/38.5.339
http://trove.nla.gov.au/work/32551427

BIBLIOGRAPHY

[65] A. Moffat and A. Turpin. “Efficient construction of minimum-redundancy codes
for large alphabets”. IEEE Transactions on Information Theory, vol. 44, no. 4,
pp. 1650–1657, July 1998. ISSN: 0018-9448. DOI: 10.1109/18.681345.

[66] M. Liddell and A. Moffat. “Incremental Calculation of Minimum-Redundancy
Length-Restricted Codes”. Communications, IEEE Transactions on, vol. 55,
no. 3, pp. 427–435, 2007. ISSN: 0090-6778. DOI: 10.1109/TCOMM.2007.892446.

[67] H. Kirchhoffer, D. Marpe, H. Schwarz, C. Bartnik, A. Henkel, M. Siekmann,
J. Stegemann, and T. Wiegand. “Reduced complexity PIPE coding using sys-
tematic v2v codes”. Joint Collaborative Team on Video Coding. JCTVC-D380,
Daegu, Korea, 4th Meeting, Jan. 2011.

[68] D. Marpe, H. Kirchhoffer, B. Bross, V. George, T. Nguyen, M. Preiss, M. Siek-
mann, J. Stegemann, and T. Wiegand. “Unified PIPE-based Entropy Coding for
HEVC”. Joint Collaborative Team on Video Coding. JCTVC-F268, Torino, Italy,
6th Meeting, July 2011.

[69] H. Kirchhoffer, D. Marpe, C. Bartnik, A. Henkel, M. Siekmann, J. Stegemann,
H. Schwarz, and T. Wiegand. “Probability interval partitioning entropy coding
using systematic variable-to-variable length codes”. in 18th IEEE International
Conference on Image Processing (ICIP 2011), Brussels, Belgium. Sept. 2011,
pp. 333–336. DOI: 10.1109/ICIP.2011.6116387.

[70] F. Jelinek and K. Schneider. “On variable-length-to-block coding”. IEEE Trans-
actions on Information Theory, vol. 18, no. 6, pp. 765–774, Nov. 1972. ISSN:
0018-9448. DOI: 10.1109/TIT.1972.1054899.

[71] J. G. Michaels and K. H. Rosen. “Applications of discrete mathematics”.
McGraw-Hill, Inc., 1991.

[72] R. R. Coifman and M. V. Wickerhauser. “Entropy-based algorithms for best basis
selection”. IEEE Transactions on Information Theory, vol. 38, no. 2, pp. 713–718,
1992. ISSN: 0018-9448. DOI: 10.1109/18.119732.

[73] JCT-VC. “Test Model under Consideration (TMuC) 0.2”. Joint Collaborative Team
on Video Coding. Sept. 2010. URL: http://hevc.hhi.fraunhofer.de/svn/
svn_HEVCSoftware/tags/0.2.

[74] D. Taubman and M. W. Marcellin. “JPEG2000: Image compression fundamen-
tals, standards and practice”. Boston: Kluwer Academic Publishers, 2002. DOI:
10.1007/978-1-4615-0799-4.

209

http://dx.doi.org/10.1109/18.681345
http://dx.doi.org/10.1109/TCOMM.2007.892446
http://dx.doi.org/10.1109/ICIP.2011.6116387
http://dx.doi.org/10.1109/TIT.1972.1054899
http://dx.doi.org/10.1109/18.119732
http://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/0.2
http://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/0.2
http://dx.doi.org/10.1007/978-1-4615-0799-4

BIBLIOGRAPHY

[75] S. W. Golomb. “Run-length encodings (Corresp.)” IEEE Transactions on Infor-
mation Theory, vol. 12, no. 3, pp. 399–401, July 1966. ISSN: 0018-9448. DOI:
10.1109/TIT.1966.1053907.

[76] M. Preiss, D. Marpe, B. Bross, V. George, H. Kirchhoffer, T. Nguyen, M. Siek-
mann, J. Stegemann, and T. Wiegand. “A unified and complexity scalable en-
tropy coding scheme for video compression”. in 19th IEEE International Confer-
ence on Image Processing (ICIP 2012), Orlando, FL, USA. Sept. 2012, pp. 729–
732. DOI: 10.1109/ICIP.2012.6466963.

[77] T. Nguyen, D. Marpe, B. Bross, V. George, H. Kirchhoffer, M. Preiss, M. Siek-
mann, J. Stegemann, and T. Wiegand. “A complexity scalable entropy coding
scheme for video compression”. in Proceedings of the Picture Coding Sympo-
sium (PCS 2012), Kraków, Poland. May 2012, pp. 421–424. DOI: 10.1109/PCS.
2012.6213377.

[78] K. McCann, C. Rosewarne, B. Bross, M. Naccari, K. Sharman, and G. J. Sulli-
van. “High Efficiency Video Coding (HEVC) Test Model 16 (HM16) Improved En-
coder Description”. Joint Collaborative Team on Video Coding. JCTVC-S1002,
Strasbourg, France, 19th Meeting, Oct. 2014.

[79] F. Bossen. “Common test conditions and software reference configurations”.
Joint Collaborative Team on Video Coding. JCTVC-L1100, Geneva, Switzerland,
12th Meeting, Jan. 2013.

[80] D. Marpe. “Adaptive Context-Based and Tree-Based Algorithms for Image Cod-
ing and Denoising”. PhD thesis. University of Rostock, 2004.

[81] J. Hahlbeck and B. Stabernack. “A 4k capable FPGA based high throughput
binary arithmetic decoder for H.265/MPEG-HEVC”. in IEEE International Con-
ference on Consumer Electronics (ICCE 2014), Berlin, Germany. Sept. 2014,
pp. 388–390. DOI: 10.1109/ICCE-Berlin.2014.7034335.

[82] V. Sze, M. Budagavi, and G. J. Sullivan. “High Efficiency Video Coding: Algo-
rithms and Architectures”. Springer, 2014. DOI: 10.1007/978-3-319-06895-4.

[83] V. Sze and M. Budagavi. “High Throughput CABAC Entropy Coding in HEVC”.
IEEE Transactions on Circuits and Systems for Video Technology, vol. 22,
no. 12, pp. 1778–1791, Dec. 2012. ISSN: 1051-8215. DOI: 10.1109/TCSVT.
2012.2221526.

210

http://dx.doi.org/10.1109/TIT.1966.1053907
http://dx.doi.org/10.1109/ICIP.2012.6466963
http://dx.doi.org/10.1109/PCS.2012.6213377
http://dx.doi.org/10.1109/PCS.2012.6213377
http://dx.doi.org/10.1109/ICCE-Berlin.2014.7034335
http://dx.doi.org/10.1007/978-3-319-06895-4
http://dx.doi.org/10.1109/TCSVT.2012.2221526
http://dx.doi.org/10.1109/TCSVT.2012.2221526

BIBLIOGRAPHY

[84] T. Wiegand, W.-J. Han, B. Bross, J.-R. Ohm, and G. J. Sullivan. “WD3: Working
Draft 3 of High-Efficiency Video Coding”. Joint Collaborative Team on Video
Coding. JCTVC-E603, Geneva, Switzerland, 5th Meeting, Mar. 2011.

[85] K. McCann, B. Bross, S.-i. Sekiguchi, and W.-J. Han. “HM3: High Efficiency
Video Coding (HEVC) Test Model 3 Encoder Description”. Joint Collaborative
Team on Video Coding. JCTVC-E602, Geneva, Switzerland, 5th Meeting, Mar.
2011.

[86] F. Bossen. “Common test conditions and software reference configurations”.
Joint Collaborative Team on Video Coding. JCTVC-E700, Geneva, Switzerland,
5th Meeting, Mar. 2011.

[87] “HEVC Test Model Software 3.2”. Joint Collaborative Team on Video Coding.
https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-3.2,
July 2011.

[88] G. Bjøntegaard. “Calcuation of average PSNR differences between RD-curves”.
ITU-T Q6/16, Video Coding Experts Group (VCEG). VCEG-M33, Austin, TX,
USA, 2-4 April 2001, 2001.

[89] A. Roth, H. Kirchhoffer, D. Marpe, and T. Wiegand. “Increasing data throughput
in PIPE coding using extended v2v-codes”. in IEEE International Conference on
Consumer Electronics (ICCE 2012), Berlin, Germany. Sept. 2012, pp. 56–60.
DOI: 10.1109/ICCE-Berlin.2012.6336524.

[90] I.-K. Kim, K. McCann, K. Sugimoto, B. Bross, and W.-J. Han. “HM7: High Effi-
ciency Video Coding (HEVC) Test Model 7 Encoder Description”. Joint Collabo-
rative Team on Video Coding. JCTVC-I1002, Geneva, Switzerland, 9th Meeting,
Apr. 2012.

[91] F. Bossen. “Common test conditions and software reference configurations”.
Joint Collaborative Team on Video Coding. JCTVC-I1100, Geneva, Switzerland,
9th Meeting, Apr. 2012.

[92] “HEVC Test Model Software 7.0”. Joint Collaborative Team on Video Coding.
https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-7.0,
May 2012.

[93] H. Schwarz, D. Marpe, T. Wiegand, H. Kirchhoffer, A. Henkel, C. Bartnik, M.
Siekmann, and J. Stegemann. “Probability interval partitioning encoder and de-
coder”. WO Patent App. PCT/EP2011/055,528. Oct. 2011.

211

https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-3.2
http://dx.doi.org/10.1109/ICCE-Berlin.2012.6336524
https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-7.0

Theses

1. The redundancy of a V2V codes cannot be zero for an i.i.d. binary source X for
which 0 < pX(1) < 0.5 with p ∈ R.

2. A canonical representation for V2V codes can be defined from which the asso-
ciated redundancy can unambiguously be derived.

3. From the canonical representation of a V2V code, an actual V2V code can be
derived with the so-called prefix merge algorithm.

4. It can be shown that a V2V code may be composed of other V2V codes, which
leads to the concept of prime and composite V2V codes.

5. A composite V2V code has a unique multiset of prime V2V codes from which it
can be composed.

6. The redundancy of composite V2V codes always lies between the redundancies
of the prime V2V codes which the composite V2V code consists of.

7. Any algorithm for code tree design that is based on summation, multiplication,
and comparison of source word probabilities only, can also be carried out when
the source word probabilities are polynomials in pX(1).

8. An algorithm for code tree design that allows the source word probabilities to
be polynomials in pX(1) yields a number of results with associated contiguous,
non-overlapping probability intervals with analytical exact interval boundaries.

9. From the canonical representation of a Tunstall code, an actual Tunstall code
can always be derived that is composite.

10. For finding minimum redundancy V2V codes by exhaustive search over source
trees, it is sufficient to only consider a set of canonical source trees.

11. There exist V2V codes that can be described by a simple construction rule and
that have a relatively low redundancy, which leads to the concept of systematic
V2V codes.

12. V2F and F2V codes have a systematic disadvantage in terms of redundancy
when compared to V2V codes.

213

13. Minimum redundancy V2V codes with the source and code tree height limited to
6 have a low redundancy for pX(1) > 0.1.

14. For pX(1)→ 0, unary-to-rice codes are minimum redundancy V2V codes.

15. By combining unary-to-rice codes with minimum redundancy V2V codes for
which the source and code tree height is limited to 6, a P coder can be de-
signed for the H.265/HEVC video compression standard that has a percentaged
overhead of only 0.3% when 8 bin coders are used.

16. When ideal binary arithmetic bin coders are used for PIPE coding in
H.265/HEVC, the overhead is less than 0.3% for 6 bin coders and less than 0.1%

for 10 bin coders.

17. The redundancy of the M coder of CABAC, as it is used in H.265/HEVC for non-
bypass bins, has its highest value at pLPS = 0.5 and it decreases with decreasing
pLPS .

18. The M coder of CABAC, as it is used in H.265/HEVC, has a percentaged over-
head of approximately 0.094%.

19. The distribution of the range values of the M coder depends on the multiplicity of
prime factor 2 in the range value.

20. The chunk-based multiplexing technique introduces numerous options for in-
creasing the achievable throughput by parallel processing.

21. With the combination of chunk-based multiplexing and V2V codes, a nonparal-
lelized software implementation of a decoder can run faster than an optimized
implementation of the M coder.

214

	1 Introduction
	1.1 Main contributions
	1.2 Organization of the thesis

	2 Probability interval partitioning entropy coding
	2.1 Overview
	2.2 Average code length per symbol
	2.3 Ideal binary arithmetic bin coders
	2.4 Optimal probability interval derivation
	2.5 Bin coders based on variable-length codes
	2.6 Multiplexing
	2.7 State of the art PIPE coding
	2.8 Chapter Summary

	3 Variable-to-variable length codes
	3.1 State of the art V2V coding
	3.2 Average code length and redundancy of V2V codes
	3.3 Nonzero redundancy of finite size V2V codes
	3.4 Asymptotic optimal V2V codes
	3.5 Negated source trees
	3.6 Canonical source trees
	3.7 Prefix merge algorithm
	3.8 Canonical V2V codes
	3.9 Prime and composite V2V codes
	3.9.1 Suboptimality of composite V2V codes
	3.9.2 Primality test for V2V codes
	3.9.3 Primality of canonical V2V codes

	3.10 Chapter summary

	4 Joint V2V code and probabiltiy interval design
	4.1 Basic principle of polynomial-based algorithms
	4.1.1 Finite-state machine-based algorithms
	4.1.2 Grouping of identical polynomials
	4.1.3 Precise polynomial root handling
	4.1.4 Implementation

	4.2 Polynomial-based Huffman algorithm
	4.3 Merging V2V codes with probability intervals
	4.4 Polynomial-based Tunstall algorithm
	4.5 Polynomial-based package merge algorithm
	4.6 Chapter summary

	5 Design of limited size V2V codes
	5.1 The set of all possible V2V codes
	5.2 V2V codes with Huffman or package-merge code trees
	5.3 Evaluation method
	5.4 Selected sets of V2V codes
	5.4.1 Fixed-to-variable length codes
	5.4.2 Variable-to-fixed length codes
	5.4.3 Leaf-limited V2V codes
	5.4.4 Height-limited V2V codes

	5.5 Particular V2V codes
	5.5.1 HEVC-related V2V codes
	5.5.2 Systematic V2V codes

	5.6 Chapter summary

	6 Application of PIPE coding to H.265/HEVC
	6.1 P coder design
	6.1.1 V2V code selection strategies
	6.1.2 Evaluation
	6.1.3 Comparison to the M coder

	6.2 Complexity and throughput considerations
	6.3 Complexity-scalable entropy coding
	6.4 Throughput optimized V2V coder setup
	6.5 Chapter summary

	7 Multiplexing in PIPE coding
	7.1 Review of decoder-synchronized encoding
	7.1.1 Trade-off between bit rate and ring buffer size
	7.1.2 Disadvantages

	7.2 Chunk-based multiplexing
	7.2.1 Ring buffer utilization
	7.2.2 Parallel bin decoding
	7.2.3 Experimental evaluation

	7.3 Chapter summary

	8 Conclusions and Future Work
	8.1 Future Work

	Appendix A Canonical V2V code tables
	A.1 Optimal canonical V2V codes of limited size
	A.1.1 Fixed-to-variable length codes
	A.1.2 Tunstall (variable-to-fixed length) codes
	A.1.3 Leaf-limited V2V codes
	A.1.4 Source-height-limited V2V codes
	A.1.5 Code-height-limited V2V codes
	A.1.6 Source-and-code-height-limited V2V codes

	A.2 HEVC-related V2V codes
	A.2.1 TMuC V2V codes
	A.2.2 Systematic V2V codes

	Appendix B Miscellaneous
	B.1 Mediant inequality
	B.2 P coders derived by the successive removal algorithm
	B.3 P coders derived by exhaustive search

	Glossary
	Theses

