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Abstract 

The dissertation deals with the synthesis of fused-heterocycle-ring-system which are potential 

candidates for applications in organic materials and pharmacology. Site-selective Suzuki 

reactions of polyhalogenated substrates with o-bromophenylboronic acid followed by two-

fold C-N cross-coupling reactions afforded the final products. The physical properties were 

investigated and explained based on DFT theoretical calculations. Most compounds exhibit 

high quantum yields and narrow band gaps.  

Moreover, biscarbazoles were synthesized via C-N coupling and C-H bond activation as key 

steps. A highly efficient strategy is developed requiring only four steps from simple starting 

materials to afford both 3,9’- and 2,9’-biscarbazoles. 

 

Zusammenfassung 

Diese Arbeit behandelt die Synthese von kondensierten, heterozyklischen Ringsystemen, die 

potentiell für Anwendungen in den Materialwissenschaften sowie der Pharmazie in Frage 

kommen. Positionsselektive Suzuki Reaktionen an polyhalogenierten Startmaterialien 2-

Bromphenyl Boronsäure, gefolgt von einer zweifachen C-N- Kupplungsreaktion lieferte das 

Zielprodukt. Die physikalischen Eigenschaften wurden untersucht und durch theoretische 

DFT-Rechnungen unterstützt. Viele Verbindungen besitzen hohe Quantenausbeuten und 

geringe HOMO-LUMO-Abstände. 

Weiterhin wurden Dicarbazole mittels C-N-Kupplung und einer C-H-Aktivierung als 

Schlüsselreaktion synthetisiert. Eine sehr effiziente Methodik wurde entwickelt, welche in 

nur 4 Stufen, ausgehend von einfachen Ausgangsverbindungen, zu den gewünschten 3,9‘- 

und 2,9‘-Dicarbazolen führt. 
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1 General introduction 

1.1 Pd-Catalyzed Cross-coupling reactions  

Since Palladium catalyzed cross-coupling reactions were firstly applied in organic synthesis 

over last 40 years, they have played important roles in synthesis of pharmaceuticals, natural 

products and novel materials.
1
 Located in the second row of transition metals and belonging 

to the Ni triad, Pd has the tendency of transferring two electrons to afford complexes in 

oxidative state 0 and 2
+
. Due to the important feature of quite high electronegativity (2.2 

according to Pauling scale)
2
, the Pd-C bond is relatively stable, non-polar and useful for 

synthetic processes. Due to the interactive ability of Pd with non-polar π-bonds, heteroatom 

containing lone pair electrons readily get involved in the oxidative addition, transmetalation 

and reductive elimination processes, which make Pd become an optimal metal to be used in 

organic transformations.
3
  

 

Figure 1.1 Timeline of discovery and development of cross-coupling reaction
3
 (This picture 

was copied from Angew. Chem. Int. Ed. 2012, 51, 5062–5085) 

Notably, for their very important contributions, Heck, Suzuki and Negishi were pioneers in 

the development of palladium catalyzed cross-coupling reactions and received the Nobel 

Prize in 2010. In addition, many efforts of chemists have been made to investigate the 

mechanism and broaden the scope of substrates in this field over the last decade. The term of 
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cross coupling implies reactions between two different partners with the aid of metal catalyst. 

The general cross coupling reactions are depicted in figure 1.2. 

 

Figure 1.2. Palladium-catalyzed cross coupling reactions in organic synthesis  

 

 

Figure 1.3. The development of cross-coupling reactions in the number of publications and 

patents
1
 (This picture was copied from Angew. Chem. Int. Ed. 2012, 51, 5062–5085)  
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1.1.1 General mechanism of cross-coupling reactions  

 

Figure 1.4. General mechanism of cross coupling reactions 

 

A palladium(0) complex containing 18 electrons in the outer shell (stable state) is in situ 

activated to afford a Pd(0) species with 14 electrons in the outer shell by a dissociation 

process of ligands. Once the active Pd(0) is formed, the combination with electrophile R-X in 

the oxidative addition stage affords the complex LnR-Pd(II)-X. This stage is slow and 

regarded as rate determinating of the reaction. The oxidative addition followed three general 

mechanisms including concerted (for non-polar substrate), nucleophile displacement (for 

polar substrate) and radical (for both polar and non-polar substrate) mechanism. 

Subsequently, the organic group R
2
, derived from on organometallic compound, is transferred 

to palladium (II) center with no change in the oxidation state, namely the transmetalation 

stage. The last stage, reductive elimination, affords the corresponding product and 

regenerates the Pd(0) complex for a new catalytic cycle.  

The electrophilic substrates have significant influence on the rate and selectivity of the 

reaction. The activity of halides in cross-coupling reactions follows the rule: R-I > ROTf ≈ R-

Br >> R-Cl >>> R-F (nearly unreactive). The bond dissociation energy of C-I, C-Br, C-Cl is 

65±1, 80.4 ± 1.5, 95 ± 1.5 kcal/mol, respectively.
4
  

When inactive palladium precursor (Pd (II) salts) such as Pd(OAc)2, PdCl2, Na2PdCl4 is 

employed, reduction of Pd(II) to Pd(0) is required prior to enter the catalytic cycle.
5
 The 
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reduction mechanism is still unclear in some reactions. Some general mechanism involving 

reduction of the Pd(II) reagent may include tertiary aliphatic amines, phosphines (using as 

ligand), ethylene reagents,
6
 or the action of solvents, such as 1,4-dioxane, THF, DMF, 

DMSO, toluene, etc. Alternatively, Pd nanoparticles,
7
 palladium supported on solid supports 

could become highly active catalysts in some cases.
8
  

 

Figure 1.5. Mechanism of reduction from Pd(II) to Pd(0) 

 

The employment of ligands in combination with Pd is believed to stabilize the Pd complex 

center. Moreover, electron rich phosphine ligands promote the oxidative addition stage. 

Conversely, stericilly hindered ligands accelerate the reductive elimination stage by their 

large cone angle effect.
9
 Because of competition with β-hydride elimination, faster reductive 

elimination processes minimize side-products in these reactions. Triphenyl phosphine is 

known as the most common ligand in cross-coupling reactions.
10

 As early as 1979, Dppf was 

used by Kumada and gave benefit.
11

 It is noteworthy that monodentate biaryl phosphine 
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ligands developed by Buchwald and coworkers showed significant advantages in Pd 

catalyzed cross-coupling reactions. Until now, a lot of efficient monodentate and bidentate 

ligands were invented and successfully applied in Pd-catalyzed cross coupling reactions 

under mild condition.
5b,12

 It showed advantages in cross-coupling reactions of inactive aryl 

chlorides, highly steric substrates and heterocycles. The features of dialkylbiarylphosphine 

ligands are depicted in figure 1.5. According to theory, the ratio of metal and ligand is 

expected to be 1:1. But in case of inactive substrates, difficult and slow reactions, an excess 

amount of ligand is required. Additionally, an additional amount of ligand assists to activate 

catalyst and stabilizes the Pd metal center to give high turn-over-numbers (TON).
13

 Besides, 

Fu’s ligands, including PCy3, P(tBu)3, also proved beneficial in some reactions. Especially in 

the case of less active aryl chlorides, these ligands give high yield and show high 

selectivity.
12f

 Notably, Beller et al. developed diadamantylalkylphosphanes CataCXium A 

which showed highly efficient catalytic activity with very low catalyst loading and resulting 

in high yield.
8a

 In addition to phosphine ligands, N-heterocyclic carbenes (NHCs) exhibit a 

wide range of application in cross coupling reactions under mild condition and allow the 

usage of water as solvent.
4,14

 NHCs, regarding as tertiary phosphine mimics, have improved 

catalyst performance (depicted in figure 1.5). NHCs in salt form and phosphines share the 

point of easy handling. However, in the case of NHCs∙HX, the use of a base is required to 

liberate free NHC to the reaction. Comparing to phosphine ligands, NHCs are binding to 

metal, forming more stable NHC-Metal complexes.  

 

Figure 1.6. Feature of dialkylbiarylphosphane ligands structure.
5b

 (This picture was copied 

from Chem. Sci. 2011, 2, 27–50) 
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(S) denotes saturated imidazolium backbone 

Figure 1.7. Common NHC ligands and feature. 

 

In cross coupling reactions, the solvent plays dual roles. Firstly, the solvent choice bases on 

high solubility of components in reaction, low solubility of inorganic by-product and 

effectively allows respective temperature range of reactions. Secondly, it stabilizes 

intermediates in the catalytic cycle. Both single solvent and mixture of two solvents in 

homogenous or heterogeneous phase (monophase or biphase) are employed in various 

reactions.
1e,15

 The most common solvents include toluene, 1,4-dioxane, THF, DMF, DMA, 

DMSO. Water is the ideal solvent, but until now the applications are still limited.
16

 Solvents 

have to be deoxygenated to avoid impact on the catalyst system. 

Temperature influences on the rate of the reaction and formation of side products. Ideal 

conditions can be obtained by optimization of some factors, such as, Pd source, ligand, base, 

solvent and temperature in order to achieve the highest yield of desired product. 

1.1.2 Suzuki-Miyaura Cross-coupling reactions 

Beginning with the first report of Miyaura
17

 in 1979, palladium-catalyzed cross-coupling 

reactions between aryl halide and 1-alkenylboranes, Suzuki-Miyaura reactions (SMR), had 

become extremely popular in the last decade (depicted in figure 1.3).
1b,g,18

 Today, the Suzuki-

Myaura reaction concept is the cross-coupling reaction of alkenyl, aryl halides (or pseudo-

halides) with a variety of organoboron reagents (boranes, boronic acids, boronic esters).  

Many papers and patents regarding the Suzuki-Myaura reaction were reported to improve 

site-selectivity, chemo-selectivity, low catalyst loading, expansion of substrates scope and 

applications of greener process-conditions (green solvent, low catalyst loading, recycling 

catalyst, low temperature, minimizing site-products).
14c,19
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The boron electronegativity is relative small (2.0 according to Pauling scale)
2
 and make the 

C-B bond rather unpolar and more stable as compared to the bond of other metal-C bonds, 

such as Mg, Li, Zr, Al, Cu, Si, Sn. Thereby, oganoboranes are nontoxic, air and moisture 

stable and easy to handle. With such advantages of mild and convenient conditions, tolerance 

to functional groups and facile removal of toxic inorganic by-products, SMR became the 

most useful and versatile method in industrial applications.
20

  

Initially, alkenylboranes, as starting materials for SMR, were synthesized by reaction of 

terminal alkynes with catecholborane. The reaction of Grignard or Lithium reagents with 

boronic ester is also widely employed to construct organoboranes.
21

 In 1993, Miyaura and 

Suzuki reported a novel method to add boron ester to triple bond via Platinum catalysis under 

convenient condition. Two years later, Miyaura found that the B2(pin)2 

(bis(pinacolato)diboron) reagent undergoes coupling with aryl halide in the present of 

[Pd(dppf)Cl2] as catalyst.
22

 Nowadays, B2(pin)2 or HB(pin) are widely employed to form 

organoboranes.
21a,23

  

 

Figure 1.8. General mechanism of Suzuki-Myaura cross-coupling reaction and role of base in 

SMR
24

 

Similar to the mechanism of other cross coupling reactions, the SMR mechanism begins with 

the oxidative addition step, followed by the transmetalation step and finishes with the 
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reductive elimination step. Here, the role of the base is of importance. In most organoboron 

species, the carbon-boron bond is highly covalent. Therefore, the complex does not readily 

involve a transmetalation. It is noteworthy that the role of the base in SMR activates the 

organoboron derivative by forming a hypervalent, anionic boron-“ate” complex which 

represents a better leaving-group and readily undergoes transmetalation. An alternatively 

proposed mechanism involves the displacement of halide in the [PdXR
1
L2] complex by base 

to form a [Pd(OR
2
)R

1
L2] complex. The most common employed bases in SMR are K2CO3, 

K3PO4, Na2CO3, NaOH, NaHCO3. In some substrates containing fragile functional groups 

and large molecular weight, SMR cannot occur without the presence of TlOH.
25

  

The most common catalysts used in SMR are Pd(PPh3)4, PdCl2, Pd(OAc)2, Pd2dba3 in 

combination with various phosphine ligands. The Pd(PPh3)4 catalyst, known as “Tetrakis”, is 

cheap and easy to handle but exhibits low activity and is unstable under air. Using Pd(OAc)2 

in the combination with phosphine ligands could significantly improve selectivity and 

activity.
12f,24d

 Pd nanoparticles, Pd supported on inorganic solid materials or polymers 

showed many advantages in various cases.
26

 

SMR can be performed in various solvents. Solvents influences on the activity and the 

selectivity of the reaction. Toluene, 1,4-dioxane, benzene, DMF, THF, MeCN are the most 

common solvents.
1b,18a

 A mixture of organic solvent and water was used to improve the yield 

of coupling product and its high selectivity in SMR.
27

 The biphasic media (organic/aqua) 

affords high solubility of both boron partner and inorganic salt. Additionally, the mixture of 

organic solvents is an alternative choice to make reaction occur faster. These mixture 

generally include two organic solvents with very different in polarities such as toluene-EtOH, 

toluene-MeOH, dioxane-toluene.
28

 Recently, PEG,
7a,29

 neat water,
16a,30

 or ionic liquids
26b

 

were used instead of classical  solvents. The advantages of these solvents are low cost, non-

toxic, thermal stability and feasible to recycle.  

SMR plays an important role in the synthesis of many natural products, drugs such as 

Crizotinib (a potent anti-cancer agent),
31

 Yuehchukene (bisindole alkaloid isolated from 

Murraya paniculata (L.)),
32

 Michellamine B (strong anti-HIV-1, anti-HIV-2 agent),
33

 

Ribisins A, B and D (bioactive polyoxygenerated benzofuranes),
34

 Diazonamide A,
35

 Vitamin 

A
36

 (figure 1.8) and many others. 
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Figure 1.9. SMR as key step in natural product and drug synthesis. 

 

1.1.3 Buchwald-Hartwig amination reactions (BHAR) 

Buchwald-Hartwig amination is one of most important reactions in modern organic synthesis, 

in which C-N bonds formed by Pd-catalyzed cross-coupling of amines with aryl halides. This 

reaction was independently developed by the group of Stephen L. Buchwald and John F. 

Hartwig in 1994.
37

 The development of the BHAR shows many advantages in the efficient 

synthesis of aryl amines, replacing the conventional methods (the Goldberg reaction, 

nucleophilic aromatic substitution, reductive amination, etc.) while significantly expanding 

substrate scope and functional groups tolerance. 

http://en.wikipedia.org/wiki/Palladium
http://en.wikipedia.org/wiki/Catalysis
http://en.wikipedia.org/wiki/Palladium-catalyzed_coupling_reactions
http://en.wikipedia.org/wiki/Goldberg_reaction
http://en.wikipedia.org/wiki/Nucleophilic_aromatic_substitution
http://en.wikipedia.org/wiki/Reductive_amination
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Figure 1.10. Mechanism of Buchwald-Hartwig reaction
5b,12d,38

 

Initially, the formation of active catalytic species is required. In the case of monodentate 

ligands, for example P(tBu)3, the active monophosphine complex Pd[P(tBu)3] is formed 

(depicted in Figure 1.11).
38

 In the case of bidentate ligands, such as BINAP, the active 

complex form of Pd
0
L is generated from the Pd

0
L2 precusor via ligand dissociation. 

 

Figure 1.11. Forming of active actalytic species of monodentate 
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In the first stage, the active catalytic species PdL readily enters the catalytic cycle via 

oxidative addition with an aryl halide as in all cross-coupling reactions. Then, the amine 

binds to this Pd(II) species to form an coordination bond. The deprotonation with the aid of 

base results in the formation of [PdLAr((NCH2R1)R2)]. Alternatively, the replacement of 

halide by base, subsequent with amine binding afford [PdLAr((NCH2R1)R2)]. At the end of 

the catalytic cycle, the reductive elimination step completes the catalytic cycle to regenerate 

the Pd(0) species. Besides, if amines possess hydrogen atom at the α-position to nitrogen 

atom, the [PdLAr((NCH2R1)R2)] complex can undergo a β-hydride elimination reaction to 

generate an imine as side-product.  

When palladium salts, as Pd(OAc)2 is employed, reduction of Pd(II) to Pd(0) is required. 

Amines containing α-hydrogen atoms may reduce Pd(II) to Pd(0) to enter catalytic cycle, by a 

β-hydride elimination reaction. Besides, primary amines, primary amides need a reductant 

such as a phosphine ligand, a tertiary amine (NEt3). Because of difficulties in the reduction 

from Pd(II) to Pd(0), the employment of Pd(0) stable complexes can directly coordinate to 

dialkylbiaryl ligands generating  active LPd complex to enter the catalytic cycle.  

 

Figure 1.12. Precatalyst of Buchwald-Hartwig amination reaction 

For BHAR media, toluene and 1,4-dioxane solvents are commonly used because of their high 

boiling point and the solubility property of many organic compounds in these solvents. 

Moreover, ethereal solvents such as THF and Bu2O are alternative choices.
5b,12b

 Some 

reactions require more polar solvents, such as DMSO, DMF and DMA.
4b,11b,39

 The solvent 

plays the role of dissolving components in reaction, accelerating reaction by poor solubility 

of inorganic by-products, eliminating side-products. The solvent must be dried and 

deoxygenated. A mixture of two solvents (polar mixing with unpolar solvent) has also known 

as good idea for BHAR.
 4b,11b

 

Strong bases are generally employed in BHAR. The choice of base may influence on reaction 

rate, functional groups tolerance and side products formation. Because of significant pKa 

changing of nucleophile by binding with Pd, the choice of base is not merely based on pKa.
 4b
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NaOtBu or KOtBu in toluene are generally employed in BHAR to afford high yields, high 

reaction rates and low catalyst loadings. Due to the application of relatively strong bases (pKa 

≈ 17.0), reactions with electrophilic groups, such as ketones and esters, may occur as side 

reactions. Some weaker bases, such as NaOMe, NaOH, KOH showed benefit in functional 

groups tolerance. In the case that substrates contain sensitive functional groups, weak 

inorganic bases such as Cs2CO3, K2CO3, K3PO4 are alternative choices.  

BHARs found many applications in the synthesis of natural products, bioactive compounds 

and drugs. For example, A-366833, a selective neuronal nicotinic receptor agonist was 

prepared by C-N coupling as the key step.
40

 Federsel et al. successfully synthesized 5-HT1B 

receptor antagonist using Pd(dba)2/BINAP.
41

 Many important drugs were synthesized using 

BHAR. Imatinib, a tyrosine kinase inhibitor, is used for treatment of chronic myeloid 

leukaemia and gastrointestinal stromal tumors and was developed by Norvartis AG in 2003
42

 

Chida et al. finished the total synthesis of Murrayayoline (a carbazole alkaloid isolated from 

genus Murraya) using two-fold BHAR as key step.
43

 Very recently, Piersanti used 

intramolecular BHAR for the total synthesis of (-)-epi-Indolactam V.
44

  

 

 

Figure 1.13. Some total synthesis natural products and bioactive compounds used BHAR as 

key step 
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1.2 Pd-catalyzed C-H bond activation reactions 

Recently, C-H bond activation reactions have been receiving much attention. C-H activation 

provides many direct routes to form C-C and C-Heteroatom bonds without need of 

prefunctionalization of starting materials leading to low cost and environmentally friendlier 

procedures.  

1.2.1 C-X/C-H coupling reactions 

Over the last decade, C-X/C-H bond activations have been proven to be one of the the most 

efficient methodologies to functionalize and construct polycyclic (hetero)aromatic 

compounds.
45

  

Even though, the efficiency of C-H activation reactions has been dramatically improved in 

recent years. The mechanism of C-H bond activation reactions is still unclear to date. They 

are divided into three general mechanisms: electrophilic substitution, σ-bond metathesis, 

oxidative addition (Figure 1.14). The catalytic cycle is believed to undergo in three main 

steps: firstly, Pd(0) coordinates to an aryl halide in a oxidative addition step resulting in the 

formation of ArPd(II)X complex, followed by C-H bond activation of Ph-H to form 

PhPd(II)Ar species and subsequently finishing with a reductive elimination step to afford the 

product and regenerate Pd(0). Recent research showed that caboxylates assist the C-H 

activation in many cases and are involved in several steps of the catalytic cycle.
46

 The 

mechanism of carboxylate-assisted C-H bond activation is also proposed with assisting by 

pivalic acid.
47
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Figure 1.14. Proposed C-H bond activation reaction mechanism (this picture was copied 

from Chem. Rev. 2011, 111, 1315–1345)
46

 

The C-H activations have been applied in the synthesis of natural products and drugs as well 

as advanced organic materials.
48

 One of the most notable examples is the formation of 

heterocycles including, pyrroles, indoles, carbazoles, quinazolines, etc.
45b,49

 One interesting 

example includes synthesis of Kibdelone, a potent nematocidal, antibiotic and anticancer 

reagent by intramolecular C-I/C-H annulations by Pd-catalysis.
50

 Functionalization of 

cyclobutane in the total synthesis of Piperarborenine B and D, using C-H activation, is 

another important example. The reaction could give desired products in high stereo-

selectivity.
51

  

 

Figure 1.15. Some total synthesis of natural products and bioactive compounds using C-X/C-

H coupling reactions as key step 
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1.2.2 C-H/C-H coupling reactions (Oxidative CH bond activation) 

The direct C-C bond formation by oxidative C-H/C-H coupling using non-toxic and 

inexpensive oxidants is an ideal strategy in the development of green and sustainable 

processes. One of the most important applications in C-H/C-H coupling reaction is to form 

the C-C bond with heteroaromatic compounds.
45b

  

 

 

Figure 1.16. Proposed catalytic cycle of oxidative C-H bond activation reaction
52

 

The catalytic cycle of C-H/C-H coupling is assumed to proceed in three steps including two 

C-H activation steps to afford a Pd(II) intermediate species followed by a reductive 

elimination step to form the product and generate a Pd(0) species (Figure 1.16). With the aid 

of oxygen or any other oxidants (such as Cu(OAc)2, AgOAc, Ag2O), this Pd(0) species is 

reoxidized to Pd(II) and begins a new catalytic cycle.   

Many natural carbazoles were synthesized in the employment of Pd(OAc)2 in the 

combination with Cu(OAc)2 or oxygen as oxidant reagent in acetic acid media.
49,53

 It is 
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noteworthy that pivalic acid, a convenient solvent could accelerate to give higher yields of 

cyclized products.
46,54

 Many natural carbazoles, for examples, Mukonine
54

 and Clausine L
52

 

were successfully synthesized. Dragmacidin D, an important drug for treating Pakinson’s and 

Alzheimer’s deseases, was synthesized by C-I/C-H coupling and C-H/C-H coupling.
55

  

 

 

Figure 1.17. Some total synthesis of natural products and drugs used C-X/C-H coupling 

reactions as key step 

In 2009, Watanabe et al. proposed some possible oxidative coupling mechanisms in detail by 

trapping and deuterium experiments (Figure 1.16).
52

 The first C-H coupling may undergo by 

three different mechanisms including electrophilic substitution, σ-bond metathesis or 

oxidative addition, followed by reductive elimination to afford complex A or B. Afterward, 

the second C-H coupling may occur by four different possibilities including the three 

mechanisms mentioned above or carbopalladation followed by β-hydride elimination to give 

the cyclized product. 
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Figure 1.18. Possible mechanism of oxidative C-H bond activation in detail
52

 

 

1.3 Ligands employed in this dissertation 

Monodentate and bidentate phosphine ligands were utilized in the combination with 

palladium precursors such as Pd(OAc)2, Pd2(dba)3  during the optimizations of Buchwald-

Hartwig reactions. In most cases, bidentate ligands with large bite angles, such as BINAP, 

XantPhos, DPEPhos or Dppf, efficiently influent on Buchwald-Hartwig amination reactions. 

It can be explained by the rigid five membered ring complex of two phosphines coordinating 

to Pd and diphosphine backbond influences. The wider backbone results in the larger angle of 

P-Pd-P and it influents on steric and electronic properties of bidentate ligands. Wide bite 

angles increase steric bulk and favor or disfavor certain geometries of transition metal 

complex. For example, square planar complexes stabilize bite angle around 90º. The wider 

bite angles favor zero-valent complexes and trigonal or tetrahedral geometries. Those ligands 

accelerate reductive elimination and hence reduce β-hydride elimination which leads to by-

products in Buchwald-Hartwig aminations.
38

  



General introduction  18 

 

 

The utility of tetrakis(triphenylphosphine)palladium(0) (Pd(PPh3)4) is successfully 

demonstrated in Suzuki reaction with heterocyclic substrates such as thiophene, indole, 

pyridine, quinoxaline. The using of other Pd precursors, such as Pd(OAc)2, Pd[Cl2(MeCN)2], 

Pd[Cl2(PPh3)2], accompanying other phosphine ligands gave lower yield and complex 

reaction mixtures.  

 

Figure 1.19. Monodentate and bidentate phosphine ligands. 
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2 Synthesis of thieno[3,2-b:4,5-b’]diindoles and benzothieno[3,2-

b]indoles  

 

2.1 Introduction 

Thiophene-containing fused acenes have found many applications in organic field-effect 

transistors (OFETs) as well as organic light-emitting diodes (OLEDs).
56

 Especially, great 

effort has been devoted to study of pentacenes, their heterocyclic derivatives and π-extended 

ladder-type analogues due to their excellent charge carrier mobility.
57

 Some heteroatom-

containing pentacenes play an important role in OFETs applications, such as 

anthradithiophene,
58

 tetraceno[2,3-b]thiophene,
59

 indole[3,2-b]carbazole,
60 

5,7,12,14-

tetraazapentacene,
61

  pentathieoacene,
62 

and dibenzo[d,d′]thieno[3,2-b:4,5-b′]dithiophene.
63

 

The first introduction of both sulphur and nitrogen atoms to multi-cycle-structures was 

developed by Liu and co-workers.
64

 5,6-Disubstituted thieno[3,2-b:4,5-b’]diindoles 3, 

containing one thiophene ring and two pyrrole rings, were synthesized from the 

corresponding indoles. Later, Liu et al. developed the synthesis of dibenzothieno[b,d]pyrroles 

4 from benzothiophene.
65

 The electronic transport increased due to intermolecular sulfur-

sulfur interactions between two neighbouring molecules. In 2009, Balaji and Valiyaveettil 

reported the synthesis of symmetrical and unsymmetrical dibenzothieno-pyrroles 2 and 3.
66

 

Their studies showed that intermolecular sulfur-sulfur interactions, 𝜋-𝜋 stacking and van der 

Waals interactions play an important role to provide high intermolecular charge mobility. 
66

 

In 2010, with the same method, they synthesized a molecule with seven fused rings affording 

diindolodithienopyrroles 4.
66

 These compounds exhibited lower HOMO energy level and 

larger band gap affording environmental stability. 
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Figure 2.1. Organic semiconductors based on fused pentacenes 

Likewise, tetracenes and their heterocyclic analogues were broadly applied in material 

chemistry,
56,67

 but also in medicinal chemistry. In 2005, Wang et al. synthesized a series of 

estrogen receptor ligands, a benzothieno[3,2-b]indole scaffold, which showed a high binding 

affinity for estrogen receptor subtypes (ERα and ERβ) in comparison with the Raloxifene 

drug.
68 

Due to the interesting properties of 5,6-disubstituted thieno[3,2-b:4,5-b’]diindoles and 

benzothieno-[3,2-b]indoles in material and medicinal chemistry, I was interested in 

developing an independent and efficient strategy for their syntheses. In fact, current synthetic 

approaches are often complicated and require several steps. Recently, the group of Prof. 

Langer reported the synthesis of tetrasubstituted thiophenes by site-selective Suzuki-Miyaura 

reactions of tetrabromo-thiophene.
27,69 

During my thesis, I studied a concise and efficient 

two-step synthesis of thieno[3,2-b:4,5-b’]diindoles and benzothieno[3,2-b]indoles by site-

selective Suzuki-Miyaura reactions of tetrabromo-thiophene and 2,3-dibromobenzothiophene, 

respectively, and subsequent palladium catalyzed twofold C-N coupling
5b,12d,19c,70

 with 

amines.
71

 
 

 

2.2 Results and Discussion 

The site-selective Suzuki-Miyaura reaction of tetrabromothiophene (5) with 2.2 equivalents 

of o-bromophenylboronic acid 6, in the presence of 5 mol% of Pd[PPh3]4, afforded the 
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tetrabrominated compound 7 in 91% yield. The Pd-catalyzed two-fold cyclization reactions 

of 7 with amines 8a-s gave the desired thieno[3,2-b:4,5-b’]diindoles 2a-s (Scheme 2.1).  

 

Scheme 2.1. Synthesis of 5,6-disubstituted thieno[3,2-b:4,5-b’]diindoles 2a-s.  

Conditions: i, 2.2 equiv. of 6, 5 mol% of Pd(PPh3)4 catalyst, Na2CO3 (2 M, 10 mL), dioxane 110 °C, 6h. ii, 3 

equiv. of 8, 6 equiv. of NaOtBu, 5 mol% of Pd2(dba)3, ligand (method A: 10 mol% of P(tBu)3·HBF4, method B: 

5 mol% BINAP). 

The cycliczation reaction of 7 with 4-methoxyaniline 8b was chosen for optimizations using 

1,4-dioxane as an internal standard (Table 2.1). The bidentate ligands, such as Dppe and 

DPEPhos, gave excellent yield of 88% and 93%, respectively (entries 10 and 11). Some 

bulky monodentate phosphine ligands, e. g. SPhos and P(tBu)3, also exhibited suitable 

ligands for this reaction (entries 1-6).
15

 Up to 98% yield of 2b was achieved by employment 

of P(tBu)3 as the ligand in combination with Pd2(dba)3 as the catalyst (method A). The yield 

was significant decreased when Pd(OAc)2 instead of Pd2(dba)3 was used as palladium 

precursor 
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.Table 2.1. Optimization for the synthesis of 2b 

Entry Catalyst Ligand Base Yield (%)
a
 

1 Pd2(dba)3 P(tBu)3·HBF4 NaOtBu 98 

2 Pd(OAc)2 P(tBu)3·HBF4 NaOtBu 58 

3 Pd2(dba)3 P(tBu)3·HBF4 KOtBu 63 

4 Pd2(dba)3 P(Cy)3·HBF4 NaOtBu 52 

5 Pd2(dba)3 SPhos NaOtBu 92 

6 Pd2(dba)3 XPhos NaOtBu 61 

7 Pd2(dba)3 DavePhos NaOtBu 76 

8 Pd2(dba)3 BINAP NaOtBu 12 

9 Pd2(dba)3 XantPhos NaOtBu 52 

10 Pd2(dba)3 DPEPhos NaOtBu 88 

11 Pd2(dba)3 Dppe NaOtBu 93 

12 Pd2(dba)3 Dppf NaOtBu 73 

a
 Yields were calculated by 

1
H-NMR of the crude product using dioxane as internal standard. 

With optimized conditions in hand, I studied the scope of the cyclization reaction of 7 with 

different amines. The employment of various anilines afforded the corresponding products 

2a-m in good to excellent yields (Table 2.2). The method A has failed to apply with alkyl 

amines. Only very low yields of the desired products were obtained. With further 

optimization, I found that the use of the bidentate ligand BINAP allowed the synthesis of 

products 2n-s in acceptable yields (method B). The structures of the products were 

established by spectroscopic methods. The structures of 2i, 2k and 2p were independently 

confirmed by X-ray crystal structure analysis. 

 

  



Synthesis of thieno[3,2-b:4,5-b’]diindoles and benzothieno[3,2-b]indoles 23 

 

 

Table 2.2. Synthesis of 2a-r 

2 R Conditions Time (hours) Yield (%)
a
 

a Ph A 14 83 

b 4-(MeO)C6H4 A 14 94 

c 4-MeC6H4 A 14 90 

d 3,5-Me2C6H4 A 14 89 

e 3,5-(MeO)2C6H3 A 14 95 

f 3,4,5-(MeO)3C6H2 A 14 92 

g 4-FC6H4 A 14 94 

h 4-ClC6H4  A 14 86 

i 4-t-BuC6H4  A 14 86 

j 3-CF3C6H4  A 14 88 

k 4-(Et2N)C6H4  A 14 59 

l  
A 14 90 

m 4-(MeS)C6H4 A 14 91 

n n-C3H7 B 14 46 

o n-C5H11 B 14 45 

p n-C7H15 B 14 44 

q PhCH2CH2 B 14 62 

r Bn B 14 53 

s c-Pr B 14 33 

a
 Isolated yields 
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Figure 2.2. Ortep plot of 2i 

 

 

Figure 2.3. Ortep plot of 2k 
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Figure 2.4. Ortep plot of 2p 

 

Besides, benzothieno[3,2-b]indole 9 showed a highly binding affinity to ERα (IC50 = 2.84 

nmol) and made a strong increase of the bone mineral density of ovariectomized mice (Figure 

2.3).
68

 Therefore, I applied my methodology for the synthesis of benzothieno[3,2-b]indoles 

from 2,3-dibromobenzothiophene 10. During the preparation of this thesis, the Suzuki 

reaction of 10 to give 11 was reported for the synthesis of S,P-bridged trans-stilbenes.
72

  The 

Pd-catalyzed cyclization of 11 with amines has not been reported so far. Products 12a-c were 

synthesized in excellent yields using either method A or method B.  

 

Figure 2.5. Potent estrogen receptor ligand 9 
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Scheme 2.2. Synthesis of 5,6-disubstituted thieno[3,2-b:4,5-b’]diindoles 12a-c.  

Conditions: i, 2.2 equiv. of 2, 5 mol% of Pd(PPh3)4 catalyst, Na2CO3 (7 mL, 2M), dioxane, 110 °C, 6h. ii, 3 

equiv. of 8, 6 equiv. of NaOtBu, 5 mol% of Pd2(dba)3, ligand (method A: 10 mol% of P(tBu)3∙HBF4, method B: 

5 mol% BINAP). 

 

Table 2.3. Synthesis of tetracenes 12a-c  

12 R Conditions Time (hours) Yield (%)
a
 

a 4-MeOC6H4 A 8 96 

b n-C7H15 B 8 92 

c Bn B 8 95 

a
 Isolated yields 

 

2.3 Conclusions 

I described a highly efficient and convenient procedure for the synthesis of substituted 

thieno[3,2-b:4,5-b’]diindoles and benzothieno[3,2-b]indoles based on  a new two-step 

strategy which involves Pd-catalyzed C-C and C-N coupling reactions. These results are of 

considerable interest for applications in material sciences and medicinal chemistry. 
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3 Synthesis and physical properties of 5-methyl-5,10-

dihydroindolo[3,2-b]indoles  

 

 

 

3.1 Introduction 

Acenes and heteroacenes are widely known for their applications in organic light-emitting 

diodes (OLEDs), organic field-effect transistors (OFETs) and organic photovoltaic cells.
56,73

 

Tetracene, which represents a p-type semiconductor, is one of the most studied acenes. This 

molecule in the form of single crystal devices possesses hole mobilities as high as 1.3 cm
2
V

-

1
s

-1
.
74

 The introduction of heteroatoms into acenes significantly modifies the electronic 

properties and crystal packing of the molecules as well as improving the stability of the 

materials.
73a

 Therefore, the preparation of new heterotetracenes are atracting much attention. 

In 2009, Liu and coworkers reported that tetrathienoacenes (TTAs) could be used in potential 

OFETs applications, due to their high hole mobilities and on/off current ratio.
75

 Recently, 

Takimiya and co-workers prepared and investigated the synthesis and interesting electronic 

properties of naphthodithiophenes (NDTs) and other chalcogenotetracenes.
76

 The synthesis 

and physical properties of a series of highly substituted benzothieno[3,2-b]benzothiophenes 

and benzoselenopheno[3,2-b]benzoselenophenes were reported by Takimiya’s group.
77

 

Recently, parent 5,10-dihydroindolo[3,2-b]indole was found to be a promising candidate for 

OFET applications.
78

 Functionalized 5,10-dihydroindolo[3,2-b]indoles are known as 



Synthesis of 5-methyl-5,10-dihydroindolo[3,2-b]indoles 28 

 

 

important heterotetracenes which represent core building blocks in OLED polymers and 

high-spin organic polymers.
79  

 

Figure 3.1. Molecular structures of tetracene and heterotetracenes for OFET applications 

 

Several synthetic approaches to 5,10-dihydroindolo[3,2-b]indoles have been reported so far. 

Most of the conventional methods base on a C-N bond formation as the key step.
80

 Heller 

reported the first synthesis of 5,10-dihydroindolo[3,2-b]indole by reduction of o,o’-

dinitrobenzil with zinc in the present of acetic acid.
81

 Reduction of 2-(o-nitrophenyl)indole 

with P(OEt)3 was described to give the product in moderate yields.
82

 Then, Grinyov et al. 

reported an efficient synthesis of 5,10-dihydroindolo[3,2-b]indoles by Fischer condensation 

of indolones with hydrazine derivatives.
83

 Recently, Liu et al. reported an interesting method 

for the preparation of 5,10-dihydroindolo[3,2-b]indoles by reduction of 6,12-

dichlorodibenzo[b,f][1,5]diazocines by using an excess of zinc under acidic conditions.
78

 

Generally, most of the reported syntheses of highly functionalized 5,10-dihydroindolo[3,2-

b]indoles are difficult to perform, low yielding or require many synthetic steps. Because of 

their potential application of material science, I was interested in developing a new and 

convernient two-step strategy for the synthesis of highly functionalized 5,10-

dihydroindolo[3,2-b]indoles. My strategy bases on the first site-selective Pd-catalyzed 

Suzuki-Miyaura reaction of N-methyl-2,3-dibromoindole and subsequent cyclization by Pd-

catalyzed two-fold C-N coupling with amines. Site-selective Suzuki-Miyaura reactions of o-

bromophenylboronic acid with several substrates, for examples 2,3-dibromopyridine, 2,3-
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dibromothiophene, 2,3,5-tribromothiophene, 2,3-dibromobenzothiophene, 3'-bromo-4'-iodo-

2-nitro-1,1'-biphenyl, have been previously reported.
72,84

 

3.2 Result and discussion 

2,3-Dibromo-N-methylindole 13 was prepared from N-methylindole in 72% yield by 

bromination of N-methylindole with bromine at -78 ºC.
85

 The site-selective Suzuki-Miyaura 

reaction of 2,3-dibromo-N-methylindole 13 with o-bromophenylboronic acid 6 using  a 

reported procedure of the group of Prof. Langer,
85

 gave 2-aryl-3-bromoindole 14 in 72 % 

yield.  

 

Scheme 3.1. Synthesis of 5,10-dihydroindolo[3,2-b]indoles 5a-o.  

Condition: (i) 1.2 equiv. of 6, 5 mol% of Pd(PPh3)4 catalyst, 3 equiv. of NaOH, THF, H2O, 70 ºC, 4h. (ii) 3 

equiv. of 8, 3 equiv. of NaOtBu, 5% mol of Pd2(dba)3, 10 mol% of XantPhos, toluene, 90 ºC, 6-10h. 

For the optimization of this step, I chose the reaction of 14 with p-toluidine 8b (Table 3.1). 

Some important parameters, which can affect the reaction, including ligand, palladium 

source, solvent and temperature, were examined. Interestingly, up to 89% yield of 15b was 

achieved when XantPhos as ligand, in combination with Pd2(dba)3, was employed. The yields 

decreased when Pd(OAc)2 was used as the palladium source and when the solvents were 

changed. When the temperature was decreased to 90 °C, the yield increased to 91% and the 

reaction mixture contained a smaller amount of side products. 
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Table 3.1. Optimizations for the synthesis of 15b 

Entry Catalyst Ligand Solvent Temperature (ºC) Yield (%)
a
 

1 Pd2(dba)3 BINAP Tol 100 11 

2 Pd2(dba)3 XantPhos Tol 100 89 

3 Pd2(dba)3 DPEPhos Tol 100 - 

4 Pd2(dba)3 Dppe Tol 100 7 

5 Pd2(dba)3 Dppf Tol 100 - 

6 Pd2(dba)3 PCy3.HBF4 Tol 100 - 

7 Pd2(dba)3 PBu3.HBF4 Tol 100 4 

8 Pd2(dba)3 XPhos Tol 100 79 

9 Pd2(dba)3 XPhos.tBu2 Tol 100 - 

10 Pd2(dba)3 SPhos Tol 100 72 

11 Pd2(dba)3 DavePhos Tol 100 4 

12 Pd2(dba)3 RuPhos Tol 100 11 

13 Pd(OAc)2 XantPhos Dioxane 100 57 

14 Pd2(dba)3 XantPhos DMF 100 20 

15 Pd2(dba)3 XantPhos Tol 90 91 

16 Pd2(dba)3 XantPhos Tol 80 82 

a
Yield was calculated by 

1
H-NMR of the crude product using 4-nitroacetophenone as an internal standard 

With the optimized conditions in hand, I studied the scope of the two-fold C-N coupling 

reaction of 14 with various aniline derivatives. The products 15a-o were obtained in good to 

excellent yields with different anilines (Table 3.2). Very good yields were achieved for both 

aniline derivatiarves bearing electron donating and withdrawing substituents. On the other 

hand, the cyclization of 3 with aliphatic amines afforded lower yields (products 15j-o, Table 

3.2).  
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Table 3.2. Synthesis of 15a-t 

15 R Time (h) Temperature (°C) Yield (%)
a
 

a Ph 6 90 80 

b 4-(t-Bu)C6H4 6 90 84 

c 4-MeC6H4 6 90 81 

d 4-FC6H4 6 90 82 

e 3-(CF3)C6H4 6 90 84 

f 4-(MeO)C6H4 6 90 76 

g 4-(MeS)C6H4 6 90 83 

h (4-CN)C6H4 6 90 82 

i n-C3H7 10 90 86 

j Allyl 10 90 84 

k Bn 10 90 72 

l 4-(MeO)C6H4CH2 10 90 79 

m (4-FC6H4)CH2 10 80 64 

n 3-(CF3)C6H4CH2 10 80 60 

o PhCH2CH2 10 90 83 

a
Yield of isolated products 

 

The structures of products 15a-o were determined by spectroscopic methods. The structure of 

15b was independently confirmed by X-ray crystal structure analysis (Figure 3.2). As 

expected, the heterocyclic core structure is planar. The aryl group is twisted out of plane. 
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Figure 3.2. Ortep plot of 15b 

 

3.3 Absorption and Fluorescence Properties 

Some selected 5,10-dihydroindolo[3,2-b]indoles 15 which bear different types of substituents 

located at the nitrogen atom, were investigated by UV-VIS and fluorescence analysis. The 

measurements were performed in acetonitrile as shown in Figure 3.3. The corresponding 

spectral data are summarized in Table 3.3. The UV-VIS absorption spectra of the compounds 

show three absorption bands around 361, 351, 324, and 261 nm with increasing absorption 

strength. The spectra of all derivatives 15 are quite similar indicating that the substituent 

located at the nitrogen atom has only a weak influence. Due to the conjugative effect, the 

bands of derivative 15i shift a little to the longer wavelenghs. Derivative 15a, containing a 

phenyl group at N-position, exhibits a small blue-shift. 
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Table 3.3. Spectroscopic data characterizing the absorption and emission properties of 15 

Comp. 

𝝀𝟏𝒂𝒃𝒔
𝒎𝒂𝒙   

[nm] 

Logε 𝝀𝟏𝒂𝒃𝒔
𝒎𝒂𝒙  

 

𝝀𝟐𝒂𝒃𝒔
𝒎𝒂𝒙   

[nm] 

Logε 𝝀𝟐𝒂𝒃𝒔
𝒎𝒂𝒙  

 

𝝀𝟑𝒂𝒃𝒔
𝒎𝒂𝒙   

[nm] 

Logε  𝝀𝟑𝒂𝒃𝒔
𝒎𝒂𝒙  

 

𝝀𝟒𝒂𝒃𝒔
𝒎𝒂𝒙   

[nm] 

Logε 𝝀𝟒𝒂𝒃𝒔
𝒎𝒂𝒙  

 

15a 361 4.49 349 4.51 324 4.86 260 5.23 

15b 363 3.56 351 3.57 324 3.93 260 4.33 

15d 362 3.34 351 3.35 324 3.73 261 4.15 

15f 363 3.65 352 3.64 324 4.02 261 4.47 

15g 363 3.43 351 4.05 323 4.08 259 3.62 

15i 365 3.34 354 3.35 325 3.83 263 3.28 

15j 363 3.41 351 3.42 325 3.89 262 4.33 

15k 363 3.24 351 4.10 323 4.10 259 4.02 

15l 362 4.29 351 4.28 325 4.75 262 5.18 

15m 363 3.49 351 3.53 325 4.02 262 3.57 

  

The fluorescence spectra were again measured in actonitrile with excitation at 340 nm. The 

fluorescence quantum yields were determined by comparison to the standard quinine 

hemisulfate salt monohydrate (in 0.05M H2SO4) which exhibits a fluorescence yield of 

52%.
86

 All emission spectra have their maximum around 400 nm and exhibit a shoulder at 

around 363 nm.  Derivatives 15a and 15b containing an aromatic substituent located at the 

nitrogen atom exhibit the most blue-shifted emission with a maximum at 398 nm, while 15l, 

containing a 4-methoxybenzyl group, exhibits a slight red-shift (404 nm). The Stokes shift is 

similar for all compounds and varies only in the range of 19 nm and 25 nm. It is important to 

note that the quantum yields of the 5,10-dihydroindolo[3,2-b]indoles 15 are quite high. The 

highest quantum yield (47%) was observed for 15m.  

The band gaps, determined from the crossing of the absorption and fluorescence spectra, vary 

again only slightly among the studied compounds. Derivative 15a, containing a phenyl group, 

has the largest band gap of 3.344 eV, while the smallest band gap of 3.313 eV is observed for 

15l which contains a 4-methoxybenzyl group as the substituent. 
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Figure 3.3. Normalized absorption and emission spectra of selected compounds 15 measured 

in acetonitrile. Emission spectra were recorded with excitation at 340 nm. 

 

Table 3.4. Spectroscopic data characterizing the absorption and emission properties of 15 

Comp. 

𝝀𝟏𝒂𝒃𝒔
𝒎𝒂𝒙   

[nm] 

𝝀𝟏𝒆𝒎
𝒎𝒂𝒙  

[nm] 

𝝀𝟐𝒆𝒎
𝒎𝒂𝒙  

[nm] 

Stokes shift 

[nm] 

λ00
a 

[nm] 

Band gaps
b
 

(eV) 

ϕfluo 

Quantum yield 

15a 361 382 398 21 370.8 3.344 46% 

15b 363 383 398 20 372.6 3.328 46% 

15d 362 382 400 20 372.6 3.328 44% 

15f 363 387 403 24 374.0 3.315 43% 

15g 363 382 399 19 372.8 3.326 30% 

15i 365 388 403 23 377.0 3.289 41% 

15j 363 385 400 22 374.0 3.315 42% 

15k 363 383 399 20 372.6 3.328 31% 

15l 362 387 404 25 374.2 3.313 43% 

15m 363 386 403 23 373.4 3.320 47% 

a
 λ00 is determined from the crossing point of the normalized absorption and emission spectra.

87
 

b
 optical band gaps were calculated from λ00. 

87
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3.4 Conclusions 

In conclusion, I reported a concise, practical and efficient strategy to prepare highly 

functionalized 5,10-dihydroindolo[3,2-b]indoles in very good yields. The reactions 

proceeded with very good site-selectivity in favour of positions 2 and 6. The site-selectivity 

of the reaction of the 2-bromophenylboronic acid with N-methyl-2,3-dibromoindole can be 

explained by the fact that position 2 is less electron rich than position 3. It has been 

previously reported that the oxidative addition of Pd(0) catalysed cross-coupling reactions of 

polyhalogenated substrates proceed by predominant attack at the more electron poor 

position.
88 

Absorption and fluorescence properties of the 5,10-dihydroindolo[3,2-b]indoles 

were studied. Although the substituents have only a small influence on the absorption and 

fluorescence, very good quantum yields were generally observed.  
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4 Synthesis of α- and δ-carbolines  

 

4.1 Introduction 

Carbolines (pyridoindoles) are widely spread in many natural products and synthetic 

bioactive molecules.
89

 Among the class of carbolines, especially β-carbolines and γ-

carbolines are the most present in nature. A smaller number of α-carbolines were also isolated 

as natural alkaloids. Examples of α-carbolines include Grossularine 1 and 2, anticancer 

compounds isolated from Dendrodoa grossularia,
90

 and Mescengricin which exhibit an 

inhibitor of L-glutamate excitotoxicity isolated from Streptomyces griseoflavu.
91

  A few 

researches reported on δ-carbolines, such as Quindoline, Cryptolepine, Cryptoquindoline, 

Cryptomisrine and Jusbetonin.
92

 All of these alkaloids were isolated from Cryptolepis 

sanguinolenta and Justica bentonica which have been traditionally used for the treatment of 

malaria and several infectious diseases in Central and West Africa.
93

 Previous researches in 

medicinal chemistry demonstrated that  α- and δ-carboline derivatives possessed important 

biological properties, such as antitumor,
94

 antimalarial,
95

 antimicrobial,
96

 antiviral,
97

 and anti-

inflammatory
98

 activities. In the context of drug discovery, Implitapide, a potential drug 

containing an α-carboline moiety, was used for the treatment of atherosclerosis in clinical 

trials.
99 
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Figure 4.1. Some bioactive compounds containing α- and δ-carboline substructures. 

Current research indicates that carbolines not only play an important role in many 

applications in medicinal chemistry, but also in material sciences. For example, carbolines 

and their derivatives were commonly employed as electron transport unit in bipolar host 

materials.
100

 The introduction of a carboline unit instead of the carbazole improved the 

electron carrier mobility.
100

 In 2013, CzBPCb and CbBPCb, which were synthesized by Lee 

et al.,  reached above 30% external quantum efficiency in blue phosphorescence organic light 

emitting diodes.
101

 The trimer TATA exhibited a 200 times longer life-time than the analogue 

carrying three carbazole units.
102
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Figure 4.2. Some organic materials contain α-carbolines structure. 

 

Due to the importance of carbolines in both medicinal chemistry and material sciences, the 

synthesis of carbolines has been attracted much attention in developing new synthetic 

methodologies. α-Carbolines were synthesized by various classic methods, including 

intramolecular Diels-Alder reactions,
103

 Graebe-Ullmann reactions of triazoles,
104 

annulations 

of azaindoles
105

 and multi-component reactions.
106

 In 2011, Kumar and Nagarajan prepared 

α-carbolines via two-step Pd-catalyzed amidation of 3-acetyl-2-chloroindoles followed by a 

Vilsmeier-Haack reaction.
107  Recently, several syntheses of carbolines in one-pot procedures 

based on Pd-catalyzed aryl aminations and subsequent intramolecular arylations were 

reported.
108

 In 2013, Moody et al. developed a new method for the synthesis of α-carbolines 

by 6π-electrocyclizations of indole-3-alkenyl oximes.
109

 Very recently, Yang et al. described 

a convenient approach to α-carbolines by a one-pot tandem reaction of α,β-unsaturated 

ketones with 2-nitrophenylacetonitriles in the presence of zinc dust.
110

 

In contrast to α-, β-, and γ-carbolines, only a few procedures for the synthesis of δ-carbolines 

have been developed so far. In 1997, Yang et al. synthesized δ-carboline derivatives from α-

(o-bromoanilino)alkenenitriles by domino Pd-catalyzed cyclizations.
111

 Dupas et al. 

successfully synthesized 3,4-disubtituted δ-carbolines by  cyclizations of indole amines with 

1,3-dicarbonyl compounds.
112

 In the effort to synthesize bioactive analogues of Eudistomin 

D, Kobayashi and coworkers developed the photocyclizations of N-(4-methoxy-3,5-

dimethylphenyl)pyridin-3-amine which gave mixtures of regioisomeric β- and δ–

carbolines.
113

 In 2011, Ablordeppey et al. described a short pathway for the formation of δ-
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carboline derivatives in moderate yields by another Pd-catalyzed intramolecular arylation of 

N-aryl-3-aminopyridine.
114

  Recently, Kundu et al. synthesized δ-carbolines in good yields by 

an efficient one-pot multicomponent reation using N-Boc-3-amido indoles, aryl aldehydes 

and terminal alkynes under microwave conditions.
115

 δ-Carbolines could also be prepared by 

intramolecular reductive ring closure of 3-nitro-2-phenylpyridines using phosphine 

reagents.
116

 In 2012, the group of Detert synthesized δ-carboline in 6 steps starting from 2-

chloro-3-nitropyridine.
117

 Very recently, Cao et al. reported an interesting synthesis of δ-

carbolines by a Pd-catalyzed cascade reaction of 2-iodoanilines and N-tosyl-enynamines.
118

 

Although, all four types of carbolines can be prepared by general methods, but these methods 

still have limitations in the preparation of starting materials and the tolerance of substrates 

scope. Sakamoto and coworkers firstly reported  a very convenient and general method to 

access all four regioisomeric carbolines in 31-61% yield by Pd-catalyzed intramolecular 

arylation of ortho-bromo-substituted anilinopyridines.
119

 Recently, Cuny and coworkers 

describe a general method for the selective synthesis of α-, β-, γ-, and δ–carbolines in good 

yields employing photostimulated cyclization of anilinohalopyridines.
120

 

In fact, the current synthetic methods are often complicated, low yielding or require many 

synthetic steps to prepare the starting materials. During my thesis, I studied a new and 

efficient two-step strategy for the chemoselective synthesis of α- and δ- carbolines from 

readily available starting materials. My synthesis is based on what are, to the best of my 

knowledge, the first site-selective Suzuki reactions of o-bromophenylboronic acid with 2,3-

dihalopyridines (1-chloro-2-bromopyridine or 2,3-dibromopyridine) and subsequent two-fold 

C-N coupling reactions.  

 

4.2 Results and discussion 

The chemoselective Suzuki-Miyaura reaction of commercially available 2-chloro-3-

bromopyridine 16a with 1.2 equivalents of o-bromophenylboronic acid 6 in the presence of 

5% mol of Pd(PPh3)4 as catalyst afforded product 17a in 85% isolated yield. The reaction 

proceeded chemoselectively at position 3 of bromide atom which is a better leaving group 

than chloride. The subsequent cyclization of 17a with different amines 4, by two-fold Pd-

catalyzed C-N coupling, resulted in the formation of the desired α- carbolines 18 (Scheme 

4.1). 
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Scheme 4.1. Synthesis of of α-carbolines.  

Conditions: (i) 1.2 equiv. of 6, 5.0 mol% of Pd(PPh3)4 catalyst, 3 equiv. of NaOH, THF, H2O, 70 ºC, 4h. (ii) 1.5 

equiv. of 8, 3 equiv. of NaOt-Bu, 5 mol%  of Pd2(dba)3, ligand (method A: 10% of Dppf, method B: 10% of 

DPEPhos), toluene, 100 ºC, 7h. 

The cyclization of 17a with tert-butylaniline 8c was chosen for optimizations using 4-

nitroacetophenone as an internal standard (Table 4.1). Important factors including palladium 

source, ligand, solvent and temperature were examined in detail. The screening of different 

monodentate phosphine ligands, for example, XPhos, XPhos(tBu)2, SPhos, DavePhos, PCy3, 

P(tBu)3 gave 18c in up to 93% yield (Entries 6-11). In order to investigate the effect of 

bidentate ligands in this cyclization, I carried out some further optimizations using bidentate 

phosphine ligands, such as XantPhos, DPEPhos and Dppf. Under optimized condition, using 

Dppf as ligand in combination with Pd2dba3 (method A), afforded up to 97% yield. The 

replacement of Pd(OAc)2 as palladium precursor resulted in a lower yield (85%). During the 

optimizations, toluene was the most suitable solvent for this cyclization. 
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Table 4.1. Optimizations for the synthesis of 18c 

Entry Catalyst Ligand Solvent Time (h) Temperature (ºC) Yield (%)
a 

1 Pd2(dba)3 BINAP Tol 7 100 56 

2 Pd2(dba)3 XantPhos Tol 7 100 93 

3 Pd2(dba)3 DPEPhos Tol 7 100 95 

4 Pd2(dba)3 Dppe Tol 7 100 81 

5 Pd2(dba)3 Dppf Tol 7 100 97 

6 Pd2(dba)3 PCy3·HBF4 Tol 7 100 64 

7 Pd2(dba)3 P(t-Bu)3·HBF4 Tol 7 100 79 

8 Pd2(dba)3 XPhos Tol 7 100 87 

9 Pd2(dba)3 XPhos·tBu2 Tol 7 100 35 

10 Pd2(dba)3 SPhos Tol 7 100 93 

11 Pd2(dba)3 DavePhos Tol 7 100 88 

12 Pd(OAc)2
 

Dppf Tol 7 100 85
b 

13 Pd2(dba)3 Dppf Dioxane 7 100 87 

14 Pd2(dba)3 Dppf DMF 7 100 53 

15 Pd2(dba)3 Dppf Tol 7 110 82 

16 Pd2(dba)3 Dppf Tol 7 80 77 

a 
Yield was calculated by 

1
H-NMR of crude product using 4-nitroacetophenone as an internal standard. 

b
 10 

mol% of Pd(OAc)2 was used. 

 

With the optimized conditions in hand (method A), I was interested in extending the 

substrates scope of the cyclization of 17a with a various amines. The cyclization products 

18a-h, depicted in Table 4.2, were isolated in 83-98% yields. The reaction showed 

compatibility with a variety of functional groups. All the products were proven by 

spectroscopic method. The structure of 18d was independently confirmed by single-crystal 

X-ray diffraction (Figure 4.3).
121

 Unfortunately, the Pd-catalyzed cyclization of 17a with 

aliphatic amines using method A resulted in unsatisfactory yields, due to the formation of 

side products. After some optimization studies, using different conditions, I found that the 

employment of the DPEPhos as the ligand (method B) allowed improvement the yield. Up to 

90% isolated yields of the cyclization products were achieved (products 18i-l).  
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Figure 4.3. Ortep plot of 18d 

 

Table 4.2. Synthesis of α-carbolines 18a-l 

18 R Method
 a
 Yield (%)

a
 

a 
Ph A 92 

b 
4-MeC6H4 A 95 

c 
4-(t-Bu)C6H4 A 94 

d 
4-FC6H4 A 89 

e 
3-(CF3)C6H4 A 88 

f 
4-(MeO)C6H4 A 98 

g 
4-(MeS)C6H4 A 92 

h 
4-(CN)C6H4 A 83 

i 
Bn B 88 

j 
(4-FC6H4)CH2 B 87 

k 
3-(CF3)C6H4CH2 B 90 

l 
n-C3H7 B 91 

a
 Isolated yields 
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With an optimal procedure in hand, I was interested to extending  the synthesis to 

bis(carbolines). Products 20a and 20b were prepared in 46 and 50% yields, respectively, by 

the Pd-catalyzed cyclization of 17a with diamines 19a and 19b. It is noteworthy that product 

20b represents an analogue of the recently developed dNinp ligand.
33

 Thus, my method 

allows for a convenient access to this type of molecule. 

 

 

Scheme 4.2. Synthesis of bis(carbolines) 20a,b.  

Conditions: 2.2 equiv. of 17a, 1 equiv. of 19a (19b), 6 equiv. of NaOtBu, 5% mol of Pd2(dba)3, 10% of Dppf, 

toluene, 110 ºC, 10h. 

My next goal was to apply my methodology to the synthesis of δ-carbolines. The Suzuki-

Miyaura coupling of o-bromophenylboronic acid 6 with 2,3-dibromopyridine 16b proceeded, 

following my optimized procedure, with very good regioselectivity at the more electron-

deficient 2-position of the pyridine ring and afforded product 17b in 96% isolated yield. With 

intermediate 17b in hand, I prepared a series of δ-carbolines 21a-j, using either method A or 

method B, in moderate to excellent yields. The yields were moderate in case of less 

nucleophilic amines carrying an electron withdrawing substituent located at the aryl group. 

The structure of 21b was independently confirmed by X-ray crystal structure analysis (Figure 

4.4).
122
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Scheme 4.3. Synthesis of δ-carbolines 21a-i 

Conditions: (i) 1.2 equiv. of 6, 5% of Pd(PPh3)4 catalyst, 3 equiv. of NaOH, THF, H2O, 70 ºC, 4h. (ii) 3 equiv. of 

8, 6 equiv. of NaOtBu, 5% mol of Pd2(dba)3, ligand (method A: 10 mol% of Dppf, method B: 10 mol% of 

DPEPhos), toluene, 100 ºC, 7h. 

 

Table 4.3. Synthesis of δ-carbolines 21a-i 

21 R Conditions Yield (%) 

a Ph A 83 

b 4-FC6H4 A 73 

c 3-(F3C)C6H4 A 64 

d 4-(MeO)C6H4 A 94 

e 3,5-(MeO)2C6H4 A 75 

f 4-(NC)C6H4 B 42 

g Bn B 92 

h 4-(MeO)C6H4CH2 B 65 

i PhCH2CH2 B 77 
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Figure 4.4. Ortep plot of 21b. 

 

The bis(carboline) 22 was synthesized in 40% isolated yield by the cyclization of 17b with 

diamine 19a (Scheme 4.4). 

 

Scheme 4.4. Synthesis of bis(carboline) 22.  

Condition: 2.5 equiv. of  17b, 1 equiv. of 19a, 6 equiv. of NaOtBu, 5% mol of Pd2(dba)3, 10% of Dppf, toluene, 

100 ºC, 10h. 

 

4.3 Conclusion 

In conclusion, I have successfully developed an efficient two-step synthesis of α- and δ-

carbolines from readily available chemicals. The success of syntheses bases on site-selective 

Suzuki-Miyaura reaction and subsequent two-fold C-N coupling reactions. My results would 

be interesting for further applications in both medicinal chemistry and materials science. 
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5 Synthesis and physical properties of 5,7-Dihydropyrido[3,2-b:5,6-

b']diindoles  

 

 

 

5.1 Introduction 

Carbolines (pyridoindoles) and their derivatives are employed as electronic transport units in 

host materials.
100,102,123

 The replacement of the carbazole unit by a carboline improves the 

electron mobility. The carbazole ring is assumed to accelerate the electron-accepting 

properties owing to its electron deficient ring system. 
100b,c,101-102

 The high quantum efficiency 

was achieved by the combination of the carbazole and carboline unit which improves the 

triplet energy. The materials containing carboline moieties have been studied for the 

development of novel bipolar host materials. In 2013, Lee et al. prepared bi- and triphenyl 

derivatives which contain carbazole and carboline moieties (via the nitrogen atom). These 

compounds exhibit 30% external quantum efficiency and high triplet energy (2.90 eV) in blue 

phosphorescence organic light emitting diodes.
100b,101

 Kwon et al. reported the synthesis of 

the novel compounds, containing three α-carbolinyl substituents attached to a triphenylamine 

moiety, which show a longer life-time than related derivatives containing three carbazole 

moieties.
102

 Recently, Lee et al. demonstrated that related α- and β-carbolines possess a 

higher quantum efficiency and a higher triplet energy than isomeric γ-carbolines.
100d

  The 

quantum efficiency are up to 22.1 %.
100a
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The organic materials containing acenes and heteroacenes have found many applications in 

organic photovoltaic cells,
73b

  light-emitting diodes (OLEDs),
56a

 and especially in organic 

field-effect transitors (OFETs) due to their optical properties.
56b,73a,124

 In this context, 

pentacene and its heterocyclic derivatives atracted much attention in current research, due to 

their excellent charge mobility. In fact, pentacene-based OFETs exhibit very high charge 

mobilities in the range of 5-40 cm
2
/(Vs).

73a
 However, pentacene derivatives are easily 

oxidized by air,
124

 which limits their practical applications. The replacement of heteroatoms 

in pentacenes results in tuning the electronic properties like solubility, stability and molecular 

packing.
56b,73a,124

 For example, indolocarbazoles,
60

 pentathienoacenes,
62

 

dibenzothienopyrroles,
66a

 tetraazapentacenes,
125

 N-heteropentacenes,
56b,73a,124

  and thiophene-

benzene annulated pentacenes
56b,63,73a,124

 offer excellent OFET properties.  

Due to the importance of both N-heteropentacenes and carbolines in the field of organic 

materials, I was interested in developing a novel class of N-heteropentacenes (5,7-

dihydropyrido[3,2-b:5,6-b']diindoles) which combine the core structures of indoles and δ-

carbolines. My approach to 5,7-dihydropyrido[3,2-b:5,6-b']diindoles relies on the Pd-

catalyzed two-fold C-N coupling of 3,5-dibromo-2,6-bis(2-bromophenyl)pyridine with 2 

equivalents of corresponding amines. Groups of Nozaki, Chida and Verkade published the 

preparation of carbazoles from 2,2’-dihalobiphenyl derivatives and amines (Scheme 5.1).
126

 

My work herein based on the first site-selective Suzuki reaction of 2,3,5,6-

tetrabromopyridine with ortho-(bromophenyl)boronic acid and subsequent cyclization by 

two-fold palladium catalyzed C-N coupling which is, to the best of my knowledge, not 

reported so far. The products show excellent fluorescence properties with good quantum 

yields. The photophysical and electronic properties were studied in detail experimentally and 

theoretically by DFT calculations. 



Synthesis and properties of 5,7-Dihydropyrido[3,2-b:5,6-b']diindoles 48 

 

 

 

Scheme 5.1. Retrosynthetic analysis of 5,7-dihydropyrido[3,2-b:5,6-b']diindoles 

The 5,7-dihydropyrido[3,2-b:5,6-b']diindole core structure is rather new. To the best of my 

knowledge, only the N-hydrogen substituted parent molecule, 5,7-dihydropyrido[3,2-b:5,6-

b']diindoles, has been reported so far. The compounds were published in a patent in Korean 

language using a different and more complicated synthetic methodology.
127

 However, 

compound characterization, details of the synthesis and the physical properties were not 

provided in the patent which is, therefore, of limited utility for the chemical community.   

5.2 Result and discussion 

2,3,5,6-Tetrabromopyridine (23) was synthesized from 2,6-diaminopyridine according to 

Flower’s procedure. 
128

  The site-selective Suzuki-Miyaura reaction of 2,3,5,6-

tetrabromopyridine with 2.2 equivalents of o-bromophenylboronic acid 6, using 5% mol 

Pd(PPh3)4 as catalyst, gave adduct 24 in 80% isolated yield. The site-selectivity of the 

reaction is excellent. The twofold C-N coupling cyclization of 24 with different amines 8a-t 

afforded the desired 5,7-dihydropyrido[3,2-b:5,6-b']diindoles in good to excellent yields 

(Scheme 5.2). 
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Scheme 5.2. Synthesis of 5,7-disubstituted 5,7-dihydropyrido[3,2-b:5,6-b']diindoles 25a-t.  

Conditions: (i) 2.2 equiv. of 6, 5% of Pd(PPh3)4, 3 equiv. of NaOH, THF, H2O, 70 ºC, 4 h. (ii) 3 equiv. of 8, 6 

equiv. of NaOtBu, 5% mol of Pd2(dba)3, ligand (method A: 10% of Dppf, method B: 10% of DPEPhos), 

toluene, 100 ºC, 7h. 

The conditions of the annulation reaction of 24 with tert-butylaniline 8c  were optimized 

(Table 5.1). The ligand, palladium precursor, solvent and temperature were examined. The 

monodentate phosphine ligands, such as XPhos, XPhos·tBu2, SPhos, DavePhos, RuPhos, 

PCy3·HBF4, or P(tBu)3·HBF4 afforded 25c in unsatisfactory yields. The optimization 

indicated that the employment of bidentate phosphine ligands, such as BINAP, XantPhos, 

DPEPhos, Dppe, or Dppf, give significantly improved yields. The bidentate ligands with bite 

angles higher than 90º gave the best yields. For example, when Dppf was employed as the 

ligand in combination with Pd2dba3 (method A), product 25c was isolated in up to 90% yield. 

The change to Pd(OAc)2 as the palladium source resulted in lower yields. Toluene was 

demonstrated to be the best solvent. The success of BINAP, XantPhos, DPEPhos, Dppe or 

Dppf can be assumed by their rigid structure and their bidentate character
129

 and the influence 

of diphosphane back-bonding.
130

 The dissociation of one P-Pd bond (arm-off mechanism) has 

been previously reported which leads to an acceleration of the reductive elimination with 

respect to β-hydride emilination. 
131
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Table 5.1. Optimization for the synthesis of 25c 

Entry Catalyst Ligand Solvent Time (h) Temperature (ºC) Yield (%) 

1 Pd2(dba)3 BINAP Tol 7 100 73 

2 Pd2(dba)3 XantPhos Tol 7 100 84 

3 Pd2(dba)3 DPEPhos Tol 7 100 52 

4 Pd2(dba)3 Dppe Tol 7 100 40 

5 Pd2(dba)3 Dppf Tol 7 100 90 

6 Pd2(dba)3 PCy3·HBF4 Tol 7 100 13 

7 Pd2(dba)3 P(tBu)3·HBF4 Tol 7 100 35 

8 Pd2(dba)3 XPhos Tol 7 100 31 

9 Pd2(dba)3 XPhos·tBu2 Tol 7 100 37 

10 Pd2(dba)3 SPhos Tol 7 100 12 

11 Pd2(dba)3 DavePhos Tol 7 100 45 

12 Pd2(dba)3 RuPhos Tol 7 100 32 

13 Pd(OAc)2 Dppf Tol 7 100 34 

14 Pd2(dba)3 Dppf Dioxane 7 100 25 

15 Pd2(dba)3 Dppf DMF 7 100 0 

16 Pd2(dba)3 Dppf Tol 7 110 82 

17 Pd2(dba)3 Dppf Tol 7 80 77 

a
Yield calculated by 

1
H-NMR of crude product using 1,4-dioxane as an internal standard 

 

With the optimized conditions (method A) in hand, I studied the scope of substrates. The 

reaction of 24 with different aniline derivatives afforded products 25a-h in good to excellent 

yields (Table 5.2). Generally, the electron rich (more nucleophilic) anilines gave higher 

yields of corresponding products compared to electron poor anilines. An exception was the 

use of 4-(N,N-diethylaminoaniline), presumably due to interaction of the diethylamino group 

with the catalyst.  
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Table 5.2. Synthesis of 25a-t 

25 R Method Yield (%) 

a Ph A 83 

b 4-tBuC6H4 A 84 

c 3,5-Me2C6H4 A 85 

d 4-FC6H4 A 66 

e 3-(CF3)C6H4 A 70 

f 4-(MeO)C6H4 A 93 

g 3,5-(MeO)2C6H4 A 95 

h 4-(Et2N)C6H4 A 69 

i n-C7H15 B 80 

j n-C3H7 B 86 

k n-C12H25 B 71 

l Allyl B 84 

m Bn B 70 

n 4-(MeO)C6H4CH2 B 60 

o (4-FC6H4)CH2 B 53 

p 3-(CF3)C6H4CH2 B 52 

q PhCH2CH2 B 75 

r 3,4-(MeO)2C6H4CH2CH2 B 56 

s PhCH2CH2CH2 B 68 

t Cyclohexyl B 55 

a
 compounds 25j-o were prepared by my colleague Ngo Ngoc Thang. 

Encouraged by the the successful result above, I applied the method A to alkyl amines and 

only obtained in low yields. Therefore, further optimization for the synthesis of derivative 25l 

was carried out (Table 5.3). Among different tested ligands, DPEPhos gave the best yields of 

alkyl substituted products when it used in combination with Pd2dba3 (method B, Table 5.3). 

Only bidentate ligands catalyzed these reactions, but no obvious correlation between their 

bite angle and yields was observed. 
131-132

 The application of method B allowed the synthesis 

of desired products 25i-t in good yields (Table 5.2). 
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Table 5.3. Optimization for the synthesis of 25l 

Entry Catalyst Ligand Solvent Time (h) Temperature (ºC) Yield (%) 

1 Pd2(dba)3 BINAP Tol 7 100 11 

2 Pd2(dba)3 XantPhos Tol 7 100 17 

3 Pd2(dba)3 DPEPhos Tol 7 100 74 

4 Pd2(dba)3 Dppe Tol 7 100 58 

5 Pd2(dba)3 Dppf Tol 7 100 41 

6 Pd2(dba)3 PCy3·HBF4 Tol 7 100 0 

7 Pd2(dba)3 PBu3·HBF4 Tol 7 100 6 

8 Pd2(dba)3 XPhos Tol 7 100 4 

9 Pd2(dba)3 XPhos·tBu2 Tol 7 100 7 

10 Pd2(dba)3 SPhos Tol 7 100 8 

11 Pd2(dba)3 DavePhos Tol 7 100 7 

12 Pd2(dba)3 RuPhos Tol 7 100 5 

 a
Yield calculated by 

1
H-NMR of crude product using 1,4-dioxane as an internal standard 

 

The structures of product 25a-t were determined by spectroscopic methods. The structures of 

25g and 25j were independently confirmed by X-ray crystal structure analyses (Figures 5.1 

and 5.2).
133

 Moreover, DFT calculations were performed to compare the geometric 

parameters of theoretical and experimental structures. The experimental and calculated 

results indicate that the heterocyclic core structure is planar. Some important calculated bond 

lengths and bond angles of 25j (as an example) are compared with those of the crystal 

structure (Table 5.4). A maximum difference of 0.008Å in bond lengths is observed between 

theoretical and experimental structures, whereas the difference in bond angles reaches to a 

maximum of 0.7 degrees. A good correlation between the theoretical and experimental 

geometric parameters illustrates the validity of the applied computational method.  
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Figure 5.1. Ortep plot of 25g 

 

 

Figure 5.2. Ortep plot of 25j 
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Table 5.4. Comparison of bond lengths and bond angles of 25j based on DFT calculations 

and X-ray crystal structure analysis 

Bond length Experimental Theoretical Bond Angle Experimental Theoretical 

N1-C1 1.335 1.335 N1-C1-C8 124.7 124.3 

C1-C8 1.427 1.433 N1-C1-C2 128.31 129.08 

N2-C8 1.387 1.386 N2-C2-C6 128.82 129.37 

N1-C17 1.339 1.338 N2-C7-C2 109.55 109.30 

N3-C10 1.380 1.386 C9-C8-N2 130.42 130.12 

C16-C17 1.444 1.447 C12-C10-N3 108.46 108.85 

C9-C10 1.387 1.395 N3-C11-C12 128.56 129.30 

N2-C7 1.392 1.397 N3-C11-C16 109.78 109.31 

 

5.3 Electrochemical properties 

Electrochemical properties of some δ-carbolines with three different concentrations (1 x 10
-3

; 

3 x 10
-3

; 6 x 10
-3

 mol·L
-1

) using DMF as solvent were studied including Cyclic Voltammetry 

(CV) and Differential Pulse Voltammetry (DPV), (Figure 5.3). Tetrabutylammonium 

hexafluorophosphate (TBAPF6) was used as supporting electrolyte in 0.01 mol·L
-1

 of 

concentration. All potentials were calibrated with the ferrocene/ferrocenium couple (Fc/Fc
+
) 

as internal standard. Oxidation and reduction energy levels were determined from the better-

resolved DPV measurements (Table 5.5). The formal potential of Fc/Fc
+ 

vs. vacuum was 

assumed to be -4.8 eV. 

  



Synthesis and properties of 5,7-Dihydropyrido[3,2-b:5,6-b']diindoles 55 

 

 

 

   

  

    

Figure 5.3. Cyclic Voltammograms and Differential Pulse Voltammograms of 25 
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Table 5.5. Cyclic Voltammetry and Differential Pulse Voltammetry parameters and 

calculated energy values of 25 

Comp. 𝑬𝒓𝒆𝒅𝒐𝒙
𝟏/𝟐

 (V vs 

Fc/Fc+)
a
 

𝑬𝒐𝒙
𝟏/𝟐

 (V) (V vs 

Fc/Fc+)
b
 

𝑬𝑯𝑶𝑴𝑶 

(eV)
c
 

𝑬𝑳𝑼𝑴𝑶 (eV)
d
 ∆Eg (eV)

e
 ∆Egcal. (eV)

f
 

25a -2.167 1.4 -6.250 -2.683 3.567 4.107 

25b -2.171 1.407 -6.207 -2.629 3.578 4.096 

25c -2.143 1.376 -6.176 -2.657 3.519 4.057 

25d -2.056 1.421 -6.221 -2.744 3.477 4.112 

25g -2.07 1.37 -6.170 -2.730 3.440 4.117 

25i -2.268 1.263 -6.063 -2.532 3.531 4.103 

25k -2.35 1.265 -6.065 -2.450 3.615 4.102 

25l -2.197 1.312 -6.112 -2.603 3.509 4.124 

25m -2.003 1.657 -6.457 -2.797 3.660 4.132 

25n -2.256 1.312 -6.112 -2.544 3.568 4.123 

25q -2.254 1.267 -6.067 -2.546 3.521 4.107 

25r -2.264 1.241 -6.041 -2.536 3.505 4.07 

25s -2.299 1.254 -6.054 -2.501 3.553 4.105 

25t -2.191 1.304 -6.104 -2.609 3.495 4.105 

CBP   -5.91 -2.51 3.40  

a𝐸𝑟𝑒𝑑𝑜𝑥
1/2

 = Eredox + (Eampli /2). Eampli = 0.0501 (V). Eredox values were determined by DPV in Acetonitrile. 

b𝐸𝑜𝑥
1/2

= Eox + (Eampli /2).Eox values were determined by DPV in Acetonitrile.V vsFc/Fc
+
 in 0.1 M TBABF6.  

c
The HOMO levels were estimated from 𝐸𝐻𝑂𝑀𝑂 = -(𝐸𝑜𝑥

1/2
 +4.8) (eV).  

d
The LUMO levels were estimated from 𝐸𝐿𝑈𝑀𝑂  = - (𝐸𝑟𝑒𝑑𝑜𝑥

1/2
 +4.8) (eV).  

e
Electrochemical band gaps ∆Eg were estimated from ∆Eg = 𝐸𝐿𝑈𝑀𝑂  - 𝐸𝐻𝑂𝑀𝑂 .  

f
The band gaps ∆Egcal.were estimated from computational DFT calculation method. 

 

Figure 5.3 depicts voltammograms of 25 with reversible and well-defined redox peaks around 

-2.2 V for the formation and re-oxidation of the reduced forms of 25. However, 

corresponding redox-peaks for the oxidized form are hardly visible in the CVs due to the 

overlapping background current. Therefore, the DPV method was chosen for electrochemical 
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investigations and revealed the redox signals of the oxidized forms of 25 at ca. +1.3 V. The 

results indicated that the band gaps were independent from the structure. It suggest that the 

5,7-dihydropyrido[3,2-b:5,6-b']diindole core plays the key role for the electrochemical 

properties. Compared to 4,4'-bis(N-carbazolyl)-1,1'-biphenyl (CBP), which is commonly 

used in the host material, 25 possess lower HOMO and lower LUMO levels and slightly 

bigger band gaps. Phenyl substituted derivatives 25a and 25d show the lowest HOMO energy 

levels and band gaps. In contrast, the highest HOMO level and highest LUMO level were 

found in the case of substrates 25r and 25s, presumably cause by thier aliphatic subtituents. 

The band gaps of phenyl substituted groups located in the N-position show smaller band gaps 

than those of derivatives containing aliphatic substituents. Most likely this fact is attributed to 

some electronic interaction of the central heterocyclic core with the phenyl substituents. 

However, it can be anticipated that this interaction is small because of orthogonal twisting of 

the aryl groups.  
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Figure 5.4. Isodensity plot of HOMO and LUMO orbitals of 25a, 25j and 25m 

Density functional theory (DFT) calculations have also been caried out for the determination 

of HOMO-LUMO band gaps.
134

 The difference of theoretical and experimental values is 

given in Table 5.5 (vide supra). The calculated band gaps are slightly higher than the 

experimental values. The comparation between theoretical and experimental band gaps has 

already been discussed in the literature.
135

 The energy of the virtual orbitals (LUMO) is not 
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properly captured by DFT methods, which leads to over-estimated theoretical band gaps. The 

results shown in Table 5.5 demontrate that theoretical and experimental band gaps are only 

slightly influenced by structural modifications. The substituents at nitrogen position can be 

mainly categorized as aliphatic, benzylic and phenyl moieties. HOMO-LUMO gaps have no 

significant differences among various substituents which can conclude that HOMOs and 

LUMOs are not much influenced by the substituents. Towards this end, the HOMO and 

LUMOs of 25a, 25j and 25m were analyzed and the orbital diagrams are depited in Figure 

5.4. As expected, the HOMOs and LUMOs are not extended to the nitrogen substituents and 

only spread over the pyrido-diindole skeleton. The highest calculated HOMO-LUMO band 

gap is for 25m (4.132 eV) which correlate with the highest experimental band gap for the 

same compound (3.66 eV).  

Molecular orbitals and iso density plots of HOMO-2 and LUMO+2 for N-phenyl pyrido-

diindoles 25a are shown as a representative example in Figure 5.5. The HOMO-1, and 

HOMO-2 are almost equal in energy and lie about 0.13 eV lower in energy relative to the 

HOMO. The HOMO-1 and HOMO-2 are mainly centered on the pyrido-diindole skeleton. 

LUMO+1 and LUMO+2 orbitals, on the other hand, have iso densities mostly located on the 

N-phenyl substituents. They are located about 0.36 eV and 0.66 eV higher in energy, 

respectively, than the respective LUMOs.  

 

 

 

 

 

 

 

 



Synthesis and properties of 5,7-Dihydropyrido[3,2-b:5,6-b']diindoles 60 

 

 

 

Figure 5.5. Iso density plot of HOMO-2 to LUMO+2 of 25a 

 

5.4 Absorption and Fluorescence Properties 

The optical properties were investigated by UV-VIS and fluorescence spectroscopy in 

acetonitrile and the data is sumarized in Table 5.6. The UV-VIS spectra of various 5,7-
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dihydropyrido[3,2-b:5,6-b']diindoles 25 as main chromophores are shown in Figure 5.6. The 

UV-VIS spectra possess three absorption bands around 290, 310 and 380 nm. No significant 

influence, caused by the substituent located at the nitrogen atom, was observed. The 

absorption band of the compounds 25j, 25k and 25t, containing aliphatic subtituents, are 

slightly red-shifted, presumably due to the positive inductive effect of the alkyl group. For the 

compounds, containing electron withdrawing groups, for example  25d, the absorption bands 

are somewhat shifted to shorter wavelengths.  

 

  

Figure 5.6. Normalized absorption and emission spectra of 25 measured in acetonitrile. 

Emission spectra were recorded at an excitation of 360 nm. 

 

The fluorescence spectra were measured in acetonitrile (excitation at 360 nm) using standard 

quinine hemisulfate salt monohydrate in 0.05M H2SO4 which has a fluorescence yield of 

52%.
86

 The spectra showed emission bands around 400 nm. The Stokes shifts are in the range 

of 20 nm. The UV-VIS and fluorescence spectra show a similar pattern, but the quantum 

yields vary depending on the type of substituents. Derivatives 25i and 25k exhibit the largest 

Stokes shifts, but lowest quantum yield. Compounds 25o and 25p, containing fluorine or 

trifluoromethyl substituents, possess the highest quantum yields 44% and 47%, respectively.  
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Table 5.6. Absorption and emission spectroscopic data of 25 

25 𝝀𝟏𝒂𝒃𝒔
𝒎𝒂𝒙  

[nm] 

Logε 

𝝀𝟏𝒂𝒃𝒔
𝒎𝒂𝒙  

𝝀𝟐𝒂𝒃𝒔
𝒎𝒂𝒙  

[nm] 

Logε 

𝝀𝟐𝒂𝒃𝒔
𝒎𝒂𝒙  

𝝀𝟑𝒂𝒃𝒔
𝒎𝒂𝒙  

[nm] 

Logε 𝝀𝟑𝒂𝒃𝒔
𝒎𝒂𝒙  

 

𝝀𝒆𝒎
𝒎𝒂𝒙 

[nm] 

Stockes 

shift [nm] 

ϕfluo 

(%) 

a 290 4.557 310 4.569 379 4.381 402 23 42 

c 291 4.743 311 4.764 380 4.568 403 23 37 

d 288 4.694 310 4.684 378 4.500 402 24 39 

g 290 4.712 311 4.700 379 4.519 402 23 39 

j 291 4.674 311 4.648 382 4.471 407 25 33 

k 291 4.649 312 4.629 382 4.413 407 25 31 

l 288 4.649 310 4.633 380 4.488 404 24 35 

n 289 4.390 311 4.335 381 4.184 404 23 34 

o 288 4.413 310 4.381 379 4.232 402 23 44 

p 288 4.753 310 4.716 380 4.575 402 22 47 

t 292 4.511 312 4.496 383 4.245 407 24 34 

 

5.5 Conclusion 

In conclusion, I successfully synthesized a novel series of N-heteropentacenes (5,7-

dihydropyrido[3,2-b:5,6-b']diindoles) using Pd-catalyzed site-selective Suzuki reaction and 

two-fold C-N coupling annulations. During the optimization of the reaction condition, the 

employment of bidentate ligands proved to be important. The electrochemical and optical 

properties of the products were studied in detail. The results of DFT calculations and the 

experimental studies demonstrate that N-phenyl-substituted derivatives possess smaller band 

gaps as compared to N-alkyl-substituted derivatives. The smallest band gaps were observed 

for compound 25d. All studied compounds 25a-t exhibited high quantum yields 25a-t (ϕfluo = 

31-47%). The Stokes shifts of 25a-t are not much dependent on the substituents (variation in 

the range of only 22-25 nm). Besides the new and interesting synthesis developed, the 

electronic, optical and electrochemical properties herein might be used as an interesting basis 

for further applications.  
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6 Synthesis and physical properties of Indolo[2,3-b]quinoxalines 

 

 

 

 

6.1 Introduction 

Indolo[2,3-b]quinoxalines found many applications in organic light-emitting diodes 

(OLEDs)
136

 and excitonic solar cells.
137

 Due to their ability to harvest both singlet and triplet 

energy for emission, the device efficiency was improved. In 2010, Thomas et al. reported that 

indolo[2,3-b]quinoxalines 26 lead to a red-shift in absorption and emission spectra as well as 

larger Stokes shifts.
137

 The thermal stability was increased by introduction of indolo[2,3-

b]quinoxaline segments which resulted in a higher glass transition temperature. The 

introduction of bulky and nonplanar structural segments instead of tertiary amine groups 

reduced π-π stacking interactions, which was assumed to decrease luminescence and 

propensity for crystal forming in the solid state,.
136b

 These novel materials exhibited good 

quantum yields in solution and remarkable fluorescence in solid state. Thomas et al. also 

fabricate electronic devices with electron transporting (ETL) and emitting layers (EML) 
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containing compound 27b. These devices exhibited a maximum luminescence of 3910 cd/m
2
 

and maximum external quantum efficiency of 0.46%. In 2011, the novel host material BIQS 

28 was prepared by Cheng et al. for deep-red PhOLEDs.
136c

 The BIQS material possess a 

relatively low LUMO energy that facilitates electron injection allowing a significantly lower 

voltage operation and higher current density. Due to singlet and triplet energies, this material 

provided an efficient energy transfer to deep-red emitting layers,. Two years later, three new 

host materials BIQF, BIQTP, BIQMCz with two indoloquinoline moieties were prepared by 

Cheng et al.
136a

 The host layers in deep-red devices containing these materials exhibited 

EQEmax over 20%. The operational lifetimes were also increased and much longer than in the 

CBP-based devices. 

 

Figure 6.1. Some materials based on indolo[2,3-b]quinoxaline moieties. 

 

Indolo[2,3-b]quinoxalines not only find many important applications in material sciences, but 

also in medicinal chemistry. Many reports show that indolo[2,3-b]quinoxaline derivatives 

exhibit a wide range of interesting biological activities, such as antivirus,
138

 anticancer,
139
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antimicrobial,
140

 and antibacterial activities
141

 A series of indolo[2,3-b]quinoxaline 

derivatives were investigated for bioactivity against Herpes virus. These results indicated that 

B-220 exhibited potent antiviral activity against herpes simplex virus type 1 (HSV-1), 

varicella-zoster virus (VZV) and cytomegalovirus (CMV) (Figure 6.2).
138

 In 2010, 6-(2-

aminoethyl)-6H-indolo[2,3-b]quinoxalines 29 (Figure 6.2) were synthesized by Shibinskaya 

et al. 
142

 The bioactive test showed that these compounds act as potent interferon inducers and 

antiviral agents with low toxicity. Furthermore, 7H-benzo[4,5]indolo[2,3-b]quinoxalines 30, 

modificated from the structure of 29, bind to DNA more strongly (lgKa = 6.23-6.87) than 29 

(lgKa = 5.57-5.89).
143

 The antiviral activity is significantly reduced by the presence of an 

annulated benzene ring present in compound 30. In the antitumor research, Deady et al. 

indicated that quinoxaline derivatives exhibited a broad range of cytotoxic activities 

comparing to tetracyclic quinoline.
139b

 In 2001, Hirata et al. reported that compounds 

NCA0424 and NCA0465 possesses antitumor activity toward various types of blood cancer 

(leukemia), fibrosarcoma sand melanomas.
139a

 Recently, indolo[2,3-b]quinoxaline derivatives 

31 were synthesized and examined against three human cancer cell lines, namely cervical, 

prostate and lung using an MTT assay by Kanugula et al.
144

 The results indicate that 9-

fluoroindolo[2,3-b]quinoxalines, containing CF3, Cl, H substituents located at the 3-position 

of the arene attached to the triazole ring, promoted their bioactivity. 

 

Figure 6.2. Some bioactive compounds containing the indolo[2,3-b]quinoxaline moiety 
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Due to the importance of indolo[2,3-b]quinoxalines in both material sciences and medicinal 

chemistry, I was interested in developing a new and efficient strategy for the synthesis of 

indolo[2,3-b]quinoxalines. Until now, synthetic approaches to these molecules are often 

complicated, low yielding and require several steps. Most of the reported syntheses of 

indolo[2,3-b]quinoxalines base on the cyclocondensation of isatin with o-phenylenediamine 

derivatives. In 1895, Marchlewski firstly synthesized of indolo[2,3-b]quinoxaline by 

condensation of isatin with o-phenylenediamine in the present of AcOH.
145

 In 1980, 

Reisenauer and coworkers described the cyclization of carbodiimide compounds by 

rearrangement of nitrenes to give indolo[2,3-b]quinoxalines in good yields.
146 

Indolo[2,3-

b]quinoxalines could also be synthesized by cyclization of o-phenylenediamine with 1-acetyl-

2-bromo-3-indolinone.
147

 Generally, the synthesis of highly functionalized indolo[2,3-

b]quinoxalines is still limited, because starting materials are not readily available. During my 

thesis, I approached to synthesize indolo[2,3-b]quinoxalines by a one-pot Pd-catalyzed 

domino reaction of 1,2-dibromoquinoxaline with secondary aromatic amines. These reactions 

also gave indolo[2,3-b]quinoxaline derivatives in good yields, but with some limitations with 

regard to the substrates scope. I also want to introduce a second approach by practical and 

efficient two-step synthesis of indolo[2,3-b]quinoxalines based on a Pd-catalyzed Suzuki-

Miyaura reaction of 2,3-dibromoquinoxaline and subsequent Pd-catalyzed two-fold C-N 

coupling annulation with amines.  

6.2 Results and discussion 

I envisaged to synthesize the indolo[2,3-b]quinoxaline scaffold relying on two retrosynthetic 

strategies depicted in Scheme 6.1. My first approach bases on Ackermann’s procedure for the 

one-pot Pd-catalyzed domino synthesis of carbazole derivatives from aryl 1,2-dihalides.
148

 

This approach directly provides the indolo[2,3-b]quinoxaline core structure. The second 

approach is based on a two-step synthesis using a Pd-catalyzed Suzuki reaction and 

subsequent two-fold C-N coupling annulation.
149
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Scheme 6.1. Retrosynthetic analysis of the synthesis of indolo[2,3-b]quinoxalines 

I first started to study the one-pot reaction of 2,3-dibromoquinoxaline (32) with secondary 

aromatic amines using Pd(OAc)2/PCy3·HBF4 as catalyst applying Ackermann’s protocol 

developed for other heterocyclic substrates.
148

 I was pleased to find that the reaction of 32, 

synthesized in two steps from 1,2-diaminobenzene using Li’s procedure,
150

 with 

diphenylamine afforded indolo[2,3-b]quinoxalines 35a in 90% yield (Scheme 6.2). The 

preparative scope was studied (Table 6.1). The results showed that indolo[2,3-b]quinoxalines 

derived from sterically less bulky amines afforded good yields. The unsymmetrical 

diarylamine, including 33a, could be successfully prepared, albeit, in only moderate yield. In 

contrast, the synthesis of 33e is unsuccessful. In general, sterically encumbered anilines 

containing substituents located at the ortho-position provided low yields or the reactions 

completely failed (formation of complex mixtures). The bis(adduct) 33d instead of the 

desired cyclization product was formed in case of 2-(methoxy)aniline. In addition, all the 

reaction of 32 with amines such as N-alkylanilines or simple anilines ArNH2 failed. The 

failure in case of N-alkylanilines was already reported by Ackermann for cyclization 

reactions with other aromatic dihalides.
16

 I have tried to vary the conditions to optimize the 

yields by changing the palladium precursors in combination with various ligands, but I was 

not able to isolate the products in good yields.  
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Scheme 6.2. Synthesis of indolo[2,3-b]quinoxaline 33a.  

Conditions: (i) 1.5 equiv. of 7, 1 equiv. of secondary amine, 3 equiv. of NaOtBu, 5% mol of Pd(OAc)2, 10% of 

PCy3·HBF4, toluene, 105 ºC, 18h.  

 

Table 6.1. Synthesis of products 33a-f and 35a following the domino C-N/C-H bond 

activation pathway 

Entry Amine Product Yield (%)
a
 

1 
H
N

 

 

90 

2 
H
N

Me  

 

47 

3 
H
N

OMeMeO  

 

54 

 

4 H
N

MeMe

 
 

0
b
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Entry Amine Product Yield (%)
a
 

5 H
N

MeOOMe

 

 

30 

6 H
N

MeO  

 

0
 b
 

7 
H
N

 
 

0
 b
 

a
 Isolated yields; 

b 
formation of a complex mixture 

 

In order to improve the yields and to develop a more efficient procedure for the synthesis of 

indolo[2,3-b]quinoxalines, I studied a second approach relying on a two-step synthesis. In the 

first step, a Suzuki-Miyaura reaction is performed, followed by a twofold C-N coupling 

annulation (Scheme 6.3). The Suzuki-Miyaura reaction of 32 with 2-bromophenylboronic 

acid in the presence of catalytic amounts of Pd(PPh3)4 gave intermediate 34 in 87% isolated 

yield. The Pd-catalyzed twofold C-N coupling annulation of 34 with various amines 8a-t 

afforded the desired products 35a-t in good to excellent yields (Table 6.3).  

 

Scheme 6.3. Synthesis of indolo[2,3-b]quinoxalines 35a-t. 



Synthesis and physical properties of Indolo[2,3-b]quinoxalines 70 

 

 

Conditions: (i) 1.2 equiv. of 2-bromophenylboronic acid 6, 2.5 % of Pd(PPh3)4 catalyst, 3 equiv. of NaOH, THF, 

H2O, 70 ºC, 4h. (ii) 3 equiv. of 8, 3 equiv. of NaOtBu, 5% mol of Pd2(dba)3, ligand (method A: 10 mol% of 

Dppf, toluene, 100 ºC, 6 h; or method B: 10 mol% of DPEPhos, toluene, 100 ºC, 6h). 

My optimizations started with the annulation reaction of adduct 34 with p-toluidine 8b was 

using 4-nitroacetophenone as an internal standard (Table 6.2). Some important parameters, 

which can influence the reaction outcome including ligand, Pd precursor, solvent and 

temperature, were investigated. The results show that bidentate ligands proved to be better 

ligands than monodentate ligands in this annulation reaction. In fact, up to 92% yield of 35b 

was achieved by employment of Dppf as ligand in combination with Pd2(dba)3 as the Pd 

source (method A).  

Table 6.2. Optimization for the synthesis of 35b 

Entry Pd precursor Ligand Solvent Temperature (ºC) Yield (%)
a
 

1 Pd2(dba)3 BINAP Tol 100 67 

2 Pd2(dba)3 XantPhos Tol 100 84 

3 Pd2(dba)3 DPEPhos Tol 100 76 

4 Pd2(dba)3 Dppe Tol 100 62 

5 Pd2(dba)3 Dppf Tol 100 92 

6 Pd2(dba)3 PCy3·HBF4 Tol 100 52 

7 Pd2(dba)3 PBu3·HBF4 Tol 100 61 

8 Pd2(dba)3 XPhos Tol 100 36 

9 Pd2(dba)3 XPhos·tBu2 Tol 100 40 

10 Pd2(dba)3 SPhos Tol 100 24 

11 Pd2(dba)3 DavePhos Tol 100 15 

12 Pd2(dba)3 RuPhos Tol 100 5 

13 Pd(OAc)2 Dppf Tol 100 52 

14 Pd2(dba)3 Dppf 1,4-Dioxane 100 85 

15 Pd2(dba)3 Dppf DMF 100 14 

16 Pd2(dba)3 Dppf Tol 110 83 

17 Pd2(dba)3 Dppf Tol 80 75 

a
Yield calculated by 

1
H-NMR of the crude product using 4-nitroacetophenone as an internal standard 

 

With the optimized conditions in hand, I studied the scope of the twofold C-N annulation 

reaction of 34 with various amines. The employment of different anilines afforded the 

corresponding products 35a-i in good to excellent yields in 6 hours reaction time only (Table 
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6.3). The results showed that the annulations gave high yields for substrates bearing both 

electron-withdrawing and -donating substituents. In contrast, the reactions of 34 with alkyl 

amines, using my optimized conditions (method A), resulted in the formation of side products 

which were difficult to separate from the main product. Therefore, further optimization for 

the synthesis of derivative 35n, derived from benzyl amine, was carried out. The optimized 

condition obtained with the employment of DPEPhos as ligand in combination with Pd2dba3 

(method B), resulted in the formation of product 35n in up to 96% yield (Table 6.4). The 

application of these conditions allowed for the synthesis of products 35j-t, derived from 

aliphatic amines, in very good yields (Table 6.3). 

Table 6.3. Synthesis of 35a-t 

35 R Method Yield (%)
a
 

a Ph A 83 

b 4-MeC6H4 A 86 

c 4-FC6H4 A 80 

d 3-(CF3)C6H4 A 90 

e 4-(MeO)C6H4 A 98 

f 3,5-(MeO)2C6H4 A 95 

g 4-(MeS)C6H4 A 94 

h 4-(Et2N)C6H4 A 75 

i (4-NC)C6H4 A 83 

j n-C3H7 B 96 

k n-C5H11 B 93 

l n-C7H15 B 85 

m Allyl B 73
 b
 

n Bn B 94 

o 4-(MeO)C6H4CH2 B 92 

p (4-FC6H4)CH2 B 87 

q 3-(CF3)C6H4CH2 B 84 

r PhCH2CH2 B 89 

s PhCH2CH2CH2 B 91 

t Cyclohexyl B 74 

a
Isolated yields  

b
the product was 6-(prop-1-en-1-yl)-6H-indolo[2,3-b]quinoxaline 

formed by isomerization of the allylic double bond. 

c
compounds 35j-o were prepared by my colleague Do Huy Hoang.  
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Table 6.4. Optimization for the synthesis of 35n 

Entry Pd precursor Ligand Solvent Temperature (ºC) Yield (%)
a
 

1 Pd2(dba)3 BINAP Tol 100 51 

2 Pd2(dba)3 XantPhos Tol 100 63 

3 Pd2(dba)3 DPEPhos Tol 100 96 

4 Pd2(dba)3 Dppe Tol 100 14 

5 Pd2(dba)3 Dppf Tol 100 73 

6 Pd2(dba)3 PCy3·HBF4 Tol 100 - 

7 Pd2(dba)3 PBu3·HBF4 Tol 100 15 

8 Pd2(dba)3 XPhos Tol 100 61 

9 Pd2(dba)3 XPhos·tBu2 Tol 100 59 

10 Pd2(dba)3 SPhos Tol 100 25 

11 Pd2(dba)3 DavePhos Tol 100 34 

12 Pd2(dba)3 RuPhos Tol 100 39 

a
Yield calculated by 

1
HNMR of the crude product using 4-nitroacetophenone as an internal standard 

 

The structures of products 35a-t were proved by spectroscopic methods. The structures of 

35e and 35r were independently confirmed by X-ray crystal structure analyses (Figure  6.3 

and 6.4).
151

 The geometric parameters of the X-ray structure for compound 35e were also 

compared with those derived from the DFT calculations. The optimized geometry of 

compound 35e (from DFT calculations) shows a good correlation with the X-ray structure. 

The quinoxaline scaffold is planar, whereas the methoxy phenyl ring has a dihedral angle of 

52.3 degrees from the quinoxaline plane. A few important calculated bond lengths and bond 

angles are compared with the experimental values (Table 6.5). The differences between 

theoretical and experimental bond lengths and bond angles are in the range of 0.015Å and 2.1 

degrees, respectively. 

Table 6.5. Comparison of experimental bond lengths and bond angles with theoretical values, 

calculated at B3LYP/6-31G* 

Bond Length Experimental Theoretical Bond Angle Experimental Theoretical 

N3-C15 1.433 1.425 C1-N1-C5 113.1 114.0 

N1-C5 1.380 1.370 C2-N2-C10 114.57 115.09 

N2-C10 1.373 1.367 C1-N3-C3 108.15 108.09 

N2-C2 1.314 1.314 C1-N3-C15 127.67 125.63 
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Bond Length Experimental Theoretical Bond Angle Experimental Theoretical 

N1-C1 1.306 1.308 C3-N3-C15 124.18 126.25 

N3-C3 1.401 1.407 C18-O1-C21 116.93 118.29 

O-C18 1.369 1.363 N1-C1-N3 126.22 126.59 

O-C21 1.433 1.419 N1-C1-C2 125.21 124.60 

N3-C1 1.379 1.389 N2-C2-C4 130.76 130.98 

 

Figure 6.3. Ortep plot of 35e 

 

Figure 6.4. Ortep plot of 35r 
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6.3 Electrochemical properties 

Electrochemical properties of some compounds were evaluated by Cyclic Voltammetry (CV) 

and Differential Pulse Voltammetry (DPV) measurements with three different concentrations 

(1 x 10
-3

; 3 x 10
-3

; 6 x 10
-3

 mol·L
-1

) in DMF. These solutions also contained 0.01 mol·L
-1

 

tetrabutylammonium hexafluorophosphate (TBAPF6) as supporting electrolyte. All potentials 

were calibrated with the ferrocene/ferrocenium couple (Fc/Fc
+
) as internal standard. 

Oxidation and reduction energy levels were determined from the better-resolved DPV 

measurement (Table 6.6). The formal potential of Fc/Fc
+
 vs. vacuum was assumed to be -4.8 

eV. 

 

    

Cyclic Voltammograms of 35 

    

Differential Pulse Voltammograms of 35 

Figure 6.5. Electrochemical properties of some quinoxaline derivatives. 
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Table 6.6. Electrochemical properties of some synthesized quinoxaline derivatives 

Comp. 𝑬𝒓𝒆𝒅𝒐𝒙
𝟏/𝟐

 (V 

vs Fc/Fc
+
)

a
 

𝑬𝒐𝒙
𝟏/𝟐

 (V) (V vs 

Fc/Fc
+
)

b
 

𝑬𝑯𝑶𝑴𝑶 

(eV)
c
 

𝑬𝑳𝑼𝑴𝑶 

(eV)
d
 

∆Eg (eV)
e
 ∆Egcal. (eV)

f
 

35a -1.395 1.872 -6.672 -3.405 3.267 3.707 

35b -1.488 1.779 -6.579 -3.312 3.267 3.670 

35c -1.456 1.910 -6.710 -3.344 3.366 3.704 

35e -1.456 1.666 -6.466 -3.344 3.122 3.605 

35j -1.496 1.819 -6.619 -3.304 3.315 3.637 

35l -1.508 1.813 -6.613 -3.292 3.321 3.750 

35m -1.545 1.787 -6.587 -3.255 3.332  

35n -1.512 1.874 -6.674 -3.288 3.386 3.784 

35t -1.512 1.813 -6.613 -3.288 3.325 3.744 

CBP   -5.91 -2.51 3.40  

a 𝑬𝒓𝒆𝒅𝒐𝒙
𝟏/𝟐

 = Eredox + (Eampli /2). Eampli = 0.0501 (V). Eredox values were determined by DPV in DMF. 
b𝑬𝒐𝒙

𝟏/𝟐
= Eox + 

(Eampli /2).Eox values were determined by DPV in DMF.V vs Fc/Fc
+
 in 0.1 M TBABF6.  

c 
The HOMO levels were estimated from 𝑬𝑯𝑶𝑴𝑶 = -(𝑬𝒐𝒙

𝟏/𝟐
 +4.8) (eV). 

d
The LUMO levels were estimated from 

𝑬𝑳𝑼𝑴𝑶 = - (𝑬𝒓𝒆𝒅𝒐𝒙
𝟏/𝟐

 +4.8) (eV). 
e 
Electrochemical band gaps ∆Eg were estimated from ∆Eg = 𝑬𝑳𝑼𝑴𝑶 - 𝑬𝑯𝑶𝑴𝑶. 

d 
The band gaps ∆Egcal.were estimated from computational DFT calculation method.

 

 

The voltammograms of compound 35 showed a reversible cycle and well-defined redox 

peaks around -1.4 V for the formation and re-oxidation of the reduced forms of 35 (Figure 

6.5). However, corresponding redox-peaks for the oxidized form are hardly visible in the 

CVs, due to the overlapping background current. Thus, the DPV method was chosen for the 

investigation of the electrochemical properties. The experiments showed that the band gaps 

were independent from the exact substitution pattern. It suggests that the quinoxaline core 

plays the key role. Quinoxaline derivatives gave lower HOMO and LUMO levels and slightly 

smaller band gaps compared to 4,4'-bis(N-carbazolyl)-1,1'-biphenyl (CBP), which is 

commonly used as host material. Among derivatives bearing a phenyl substituent located at 

the nitrogen atom, compound 35c, containing an electron withdrawing group, possesses a 

HOMO energy level lower than compound 35a. In contrast, compound 35e, containing an 

electron donating group, provided a shift to a higher HOMO level yielding a smaller band 

gap. Compound 35e, containing a 4-methoxyphenyl substituent, displayed the smallest band 

gap and highest HOMO energy level. It is noteworthy that compounds 35c and 35n, 
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containing a 4-fluorophenyl and a benzyl substituent located at the nitrogen atom, 

respectively, were found to exhibit the lowest HOMO as well as the biggest band gap. 

Density functional theory (DFT) calculations have also been carried out for the determination 

of HOMO-LUMO band gaps.
152

 Table 6.6 describe the difference of theoretical and 

experimental values. The results show the correlation between theoretical and experimental 

band gaps. The comparation of theoretical and experimental band gaps has already been 

discussed in the literature.
135

 The difference between theoretical and experimental HOMO-

LUMO gaps decreases with the increase in the size of the hydrocarbon.
153

  

The results shown in Table 6.6 indicate that structural modifications insignificantly affected 

the band gaps. N-alkylindolo[2,3-b]quinoxalines possess higher HOMO-LUMO band gaps 

compared to their N-phenyl analogues. The highest HOMO-LUMO band gap was calculated 

for 35n (3.78 eV) which correlates with the highest experimental band gap for this compound 

(3.38 eV). N-phenylindolo[2,3-b]quinoxalines exhibit lower band gaps, probably due to 

extended conjugation. The electron delocalization in N-phenylindolo[2,3-b]quinoxalines 

reduces the band gaps. Among N-phenylindolo[2,3-b]quinoxalines, 35a and 35c have 

comparable bands gaps which indicate that the introduction of a fluorine atom has a 

negligible effect. This might be explained by attribution to the high electronegativity of 

fluorine which prevents its lone pairs to delocalize over the organic π frame. The introduction 

of a methyl group at the para position of the N-phenyl group resulting in a decrease of the 

band gap by 0.037 eV whereas a methoxy group at the same position also reduce the band 

gap by 0.1 eV. 

Molecular orbitals and iso density plots of HOMO-2 and LUMO+2 for N-phenylindolo[2,3-

b]quinoxalines are shown in Figure 6.6 as a representative example. The HOMO-1 and 

HOMO-2 are situated at 0.5 and 1.0 eV, respectively.  The HOMO-1 and HOMO-2 are 

mainly centered on the indolo[2,3-b]quinoxaline skeleton whereas the HOMO is also 

extended to the N-phenyl substituent. LUMO+1 and LUMO+2 orbitals are at 1.374 eV and 

1.548 eV higher in energy, respectively. HOMOs and LUMOs of quinoxalines 35a, 35l and 

35t were also analyzed and are depicted in Figure 6.7. The replacement of the phenyl ring of 

35a with an aliphatic heptyl chain in 35l and an alicyclic fragment (cyclohexyl) in 35t does 

not affect the iso densities of the LUMOs, however, a small effect on the HOMO is observed. 

In 35l and 35t, HOMOs are centered on the quinoxaline core whereas in 35a it has some 

density on the N-phenyl ring as well. 
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Figure 6.6. HOMO-2 to LUMO+2 molecular orbitals of quinoxaline 35a 
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Figure 6.7. HOMO and LUMO of 35a, 35l and 35t calculated at B3LYP/6-31G* 
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6.4 Absorption and Fluorescence Properties 

UV-VIS and fluorescence spectra of some selected indolo[2,3-b]quinoxalines 35 were 

performed in acetonitrile (Figure 6.8) and the corresponding spectral data are summarized in 

Table 6.7. The UV-VIS absorption spectra of the compounds possess three bands around 

400 nm, 350 nm, and 270 nm with increasing absorption strength. The subtituent groups at 

nitrogen insignificantly affect the absoption spectra due to the similar UV-VIS band in all 

quinoxalines 35. The compound 35i exhibits a band around 270 nm which seems to be splited 

into two well separated contributions. The absorptions spectra of compounds 35j, 35l and 

35t, bearing an aliphatic group located at the nitrogen atom, are slightly shifted to longer 

wavelength due to the positive inductive effect. In contrast, the absoption bands are blue-

shifted in the case of compounds 35d and 35i, containing electron withdrawing groups.  

  

Figure 6.8. Normalized absorption and emission spectra of selected compounds 35 measured 

in acetonitrile. Emission spectra were recorded with excitation at 350 nm. 

The emission spectra were measured using again acetonitrile as solvent and an excitation 

wavelength of 350 nm. The fluorescence quantum yields were determined by comparison to 

the standard quinine hemisulfate salt monohydrate in 0.05M H2SO4 which has a fluorescence 

yield of 0.52.
86

 The spectra provide emission bands around 480 nm. The bluest emission was 

observed  at 471 nm for the compound 35d, containing a trifluormethyl group In contrast, the 

compound 35e, containing a methoxy group, exhibit the stronglest red-shifted to 538 nm. The 

Stokes shifts show in medium size and in the range of 80 nm to 90 nm. However, the 

compound 35e exhibits a large Stokes shift of 140 nm. The quantum yields of the indolo[2,3-

b]quinoxalines 35 are in the order of a few percent with the highest yield of 8.6% observed 
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for 35l. It is noteworthy that compound 35e shows also an exceptionally low yield of only 

1.1% which seems to correlate with the large red shift of its fluorescence. 

The weak dependence of the absorption and fluorescence spectra on the substituent are in line 

with the small variation of the electrochemical properties and the band gap of the compounds 

(see above). Only 35e exhibits a significant higher HOMO level and smaller band gap than 

the other compounds which correlate to its red shifted fluorescence. The general behavior can 

be explained by the involved orbitals. As shown in Figure 6.7 HOMO and LUMO, which 

determine the fluorescence and the first absorption band, are more or less completely 

restricted to the indolo[2,3-b]quinoxaline core and therefore only little affected by the 

substitution pattern on the nitrogen. Since the energy differences between the HOMO and 

HOMO-1 and HOMO-2 are smaller than those between the LUMO and LUMO+1 and 

LUMO+2 the next higher lying electronically excited states should dominantly contain 

configurations with excitations from HOMO-1 and HOMO-2 to the LUMO. Since the former 

two orbitals are again restricted to the indolo[2,3-b]quinoxaline core (see Fig. 6.6), the 

corresponding absorption bands around 350 nm and 270 nm are also rather insensitive to the 

substituent. 
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Table 6.7. Spectroscopic data characterizing the absorption and emission properties of 35 

Comp. 𝝀𝟏𝒂𝒃𝒔
𝒎𝒂𝒙  

[nm] 

Lgε 

𝝀𝟏𝒂𝒃𝒔
𝒎𝒂𝒙  

𝝀𝟐𝒂𝒃𝒔
𝒎𝒂𝒙  

[nm] 

Lgε 

𝝀𝟐𝒂𝒃𝒔
𝒎𝒂𝒙  

𝝀𝟑𝒂𝒃𝒔
𝒎𝒂𝒙  

[nm] 

Lgε 

𝝀𝟑𝒂𝒃𝒔
𝒎𝒂𝒙  

𝝀𝒆𝒎
𝒎𝒂𝒙 

[nm] 

Stokes shift 

[nm] 

ϕfluo 

Quantum yield 

35a 395 3.616 351 4.353 270 4.696 484 89 5.9 

35b 396 3.738 351 4.491 269 4.848 490 94 5.2 

35c 394 3.809 351 4.547 268 4.903 482 88 5.9 

35d 389 3.684 350 4.338 269 4.642 471 82 4.3 

35e 398 3.954 351 4.795 269 5.188 538 140 1.1 

35f 394 3.387 351 4.078 270 4.451 485 91 4.8 

35i 389 3.463 350 4.133 262 4.500 474 85 4.6 

35j 403 2.827 352 3.728 269 4.126 484 81 6.7 

35l 404 3.952 352 4.939 269 5.334 483 79 8.6 

35n 398 4.220 351 4.934 269 5.322 477 79 7.1 

35p 396 3.615 351 4.278 269 4.672 475 79 7.4 

35t 404 4.144 352 5.005 270 5.402 486 82 7.7 

 

6.5 Conclusion 

In conclusion, I developed two strategies for the synthesis of indolo[2,3-b]quinoxalines. 

The one-pot approach, using domino Pd-catalyzed two-fold C-N coupling and C-H activation 

reactions, afforded indolo[2,3-b]quinoxalines in good yields. However, the substrates 

scope were limited. A two-step approach, relying on a Suzuki coupling reaction followed by 

an annulation by Pd-catalyzed two-fold C-N coupling, afforded indolo[2,3-b]quinoxalines in 

very good yields. The physical properties of indolo[2,3-b]quinoxalines, including 

electronic, electrochemical and optical properties, were examined experimentally and by 

DFT calculations. It turned out that the electronic and spectroscopic properties are quite 

insensitive to the substituents since the relevant orbitals are restricted to the indolo[2,3-

b]quinoxaline core. The substituent might therefore be used to control and optimize the 

solubility, the interaction with the environment, and the crystallization behavior in the solid 

state without changing the electronic properties of the core.    
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7 Synthesis of biscarbazoles  

 

7.1 Introduction 

Carbazoles are presented in a number of alkaloids which possess various biological 

properties, such as anti-tumor, antibiotic, anti-inflammatory, anti-viral, and anti-malarial 

activity.
49,154

 Due to the interesting biological activities of carbazoles, many efforts for their 

synthesis have been undertaken.
49,154

 The literature on carbazoles synthesis shows a variety of 

approaches. A representative classic method for the synthesis of carbazoles represent the 

Fischer-Borsche reaction, which relies on the dehydrogenation of 1,2,3,4-

tetrahydrocarbazoles.
155

 The Diels-Alder reaction of pyrano[3,4-b]indoles with alkynes also 

give a simple access to carbazole derivatives.
156

 In addition, carbazoles are available by 

metal-free cyclizations, for example, the deoxygenative cyclization of o-nitrobiphenyls in the 

presence of triethyl phosphate
157

 and the electrocyclization
158

 of 2,3-divinyl indoles. Knölker 

et al. reported an efficient method to construct carbazoles by iron-mediated oxidative 

cyclizations.
159

  In recent years, the synthesis of carbazoles based on palladium-catalyzed 

cyclizations has attracted much attention and a number of methods have been 

developed.
49,148,154,160,126b

 Nozaki et al. described Pd-catalyzed twofold C-N coupling 

reactions of biphenyls containing leaving groups located at C-2 and C-2´.
126b

 A one-pot 

tandem synthesis of carbazoles, based on Pd-catalyzed cross coupling reactions of 

iodoanilines with silylated aryl triflates, was reported by Larock and coworker.
161

 The group 

of Prof. Langer have reported the synthesis of carbazoles by domino ‘twofold Heck / 6π-

electrocyclization’ reactions of 2,3-dibromoindoles.
85,162 

Carbazoles have also been 

synthesized  by C-H activation reactions. For example, carbazoles are prepared by oxidative 
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Pd-catalyzed cyclizations of diaryl amines. The synthesis of carbazoles from aniline and 1,2-

dihalobenzene derivatives by application of a domino N-H/C-H activation strategy was 

developed by the group of Ackermann.
148

 

 

 

Figure 7.1. Structures of biscarbazoles 

 

Four different core structures of biscarbazoles linked by a carbon and a nitrogen atom are 

theoretically possible, which includes 3,9’- and 2,9’-biscarbazoles as most important 

subgroups (Figure 7.1). Biscarbazoles are present in natural products. For example, the 3,9’-

biscarbazole alkaloids Murastifoline A and B and the 2,9’-biscarbazole Murastifoline F were 

isolated from the plant species Murraya euchrestifolia and M. koenigii, which belong to the 

Rutaceae family (Figure 7.2).
154

 3,9’- and 2,9’-Biscarbazoles have been reported to possess a 

wide range of pharmacological properties.
49,126c,154,163

 In addition, 3,9’-biscarbazoles are also 

reported as potential molecules in material science, due to their photoemission properties.
164

 

Biscarbazoles BCz1 and BCz2 exhibit high quantum efficiencies along with low voltages and 

provide maximum brightness values (Figure 7.2).
165

 Previously, biscarbazoles preparation 

was based on methods developed for the synthesis of simple carbazoles.
1
 For example, 

Bringmann et al. described the total synthesis of Murastifoline F by oxidative dimerization of 

the readily available carbazole alkaloid Murrayafoline A.
163a

 In 2005, total synthesis of 

Murrastifoline A was reported by an efficient Pd-catalyzed reaction based on twofold C-N 

coupling of a 2,2’-dibromobiphenyl derivative with 3-aminocarbazole by the group of 

Chida.
126c,163b

 Very recently, Knölker et al. efficiently synthesized Murrastifoline using an 

Ullmann reaction of the mono-carbazol Murrayafoline A with a 3-bromocarbazole 

derivative.
163c
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Figure 7.2. Some natural products and materials containing a 3,9’-biscarbazole moiety 

 

Syntheses of 3,9’-biscarbazoles, despite their great usefulness and applicability, are not 

general. The syntheses are either complicated and require many synthetic steps or access to 

highly functionalized derivatives is difficult to achieve. In addition, some syntheses are 

limited by not readily available starting materials. The method of oxidative dimerization is 

limited to the production of dimers with identical substitution pattern. During my thesis, I 

developed a new and convenient strategy which can be applied to the synthesis of both 3,9’- 

and 2,9’-biscarbazoles. My strategy takes advantage of known palladium catalyzed C-N and 

C-C coupling reactions which were previously applied to the synthesis of simple carbazoles, 

but not for the synthesis of biscarbazoles.  

 

7.2 Results and Discussion 

The synthesis of carbazoles by twofold Pd catalyzed C-N coupling of 1,1'-biphenyl-2,2'-diyl 

bis(trifluoromethanesulfonate) (36) with anilines was described by Nozaki et al.
70a

 At the 

beginning, I was pleased to apply this methodology to the synthesis of biscarbazoles. The 

double C-N coupling reaction of 36 with p-diaminobenzene afforded carbazole 37, albeit, in 

only 34% yield (Scheme 7.1).  Unfortunately, all attempts to synthesize biscarbazole 38a 

using Ackermann´s method (i.e., the Pd-catalyzed domino C-N/C-C coupling reaction of 37 

with various 1,2-dihalobenzene derivatives) failed.  
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Scheme 7.1. Unsuccessful attempt for the synthesis of 3,9’-biscarbazole 38a  

 

In order to solve this problem, I had to change my strategy. The twofold C-N coupling of 

bistriflate 36 with anisidine, in the employment of Pd2(dba)3 and XantPhos as catalyst, 

afforded carbazole 39a in 95% yield (Scheme 7.2). Treatment of 39a with BBr3 gave 

demethylated product 40a. The hydroxyl group in 40a was converted into a triflate group in 

high yield by using trifluoromethanesulfonic anhydride. Afterwards, I attempted the synthesis 

of biscarbazole 38a by C-N coupling of 41a with 2-iodo-, 2-bromo and 2-chloro-1-

aminobenzene and subsequent cyclization by C-H activation.
160,166

 However, all these 

experiments were unsuccessful. Therefore, I decided to performed a Buchwald-Hartwig 

amination of 41a with aniline (C-N coupling). In the presence of Pd(OAc)2 combinating with 

XPhos, afforded intermediate A in a clean transformation. Subsequently, intermediate A was 

successfully transformed to the desired biscarbazole 38a by Pd-catalyzed oxidative 

intramolecular C-H activation (using air as the oxidant). The transformation of 41a to 38a 

could be successfully performed in a one-pot reaction which gave 86% yield.
167

 The 

employment of pivalic acid as the solvent proved to be important as employment of acetic 

acid resulted in a significant decrease of the yield to 61%.
52,168

 During the optimization, I 

studied the employment of several other oxidants, such as Cu(OAc)2 and Ag2O, but these 

reactions resulted in complex mixtures. Likewise, the simple uncatalyzed reaction of A with 

molecular oxygen under microwave conditions failed.  
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Scheme 7.2. Synthesis of 3,9’-biscarbazole 38a.  

Conditions: i, 4-anisidine (1.2 equiv.), Pd2(dba)3 (2.5 mol %), XantPhos (5 mol %), K3PO4 (2.8 equiv.), toluene, 

100 °C, 5 h; ii, 1) BBr3 (4.0 equiv.), CH2Cl2, -78 ºC to 20 °C, 2) H2O, NaHCO3; iii, pyridine, Tf2O, 0 °C; iv, 

aniline (1.1 equiv.), Pd(OAc)2 (5 mol%), XPhos (10 mol %), Cs2CO3 (1.5 equiv.), toluene, 110 
o
C, 6 h; v, 

Pd(OAc)2 (5 mol%), K2CO3 (1.0 equiv.), pivalic acid, 110 
o
C, air, 72 h. 

 

With the optimized conditions in hand, I studied the scope of substrates (Scheme 7.2). The 

reaction of 41a with different aniline derivatives afforded 3,9’-biscarbazoles 38a-e and 38g, 

38h and 38j in moderate to high yields. No clear correlation of the yields and the substitution 

pattern was observed. The employment of 4-hydroxyaniline and of 4-chloroaniline failed in 

this reaction (formation of complex mixtures). It is assumed that the interaction of the free 

hydroxyl group with the catalyst might be the reason for the failure. The failure of reaction 

with 4-chloroaniline is assumed by a competing oxidative addition and coupling reaction of 

the carbon atom attached to the chlorine atom, although, I cannot provide experimental 

evidence for this assumption.  
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Scheme 7.3. Structures of 3,9’-biscarbazoles 38b-j 

 

The structures of products were determined by spectroscopic methods. The structure of 38b 

was independently confirmed by X-ray crystal structure analysis (Figure 7.3).
169

 The two 

carbazole moieties are twisted out of plane, due to steric reasons. 
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Figure 7.3. Ortep plot of 38b 

 

With the successful strategy outlined above for the synthesis of 3,9’-biscarbazoles, I was 

interested in applying it this methodology to the synthesis of isomeric 2,9’-biscarbazoles. 

Firstly, carbazole 39b was obtained  in 95% yield by the Pd-catalyzed twofold C-N coupling 

of 36 with m-methoxyaniline (Scheme 7.4). Subsequently, the transformation of methoxy 

group in 39b into triflate group in 41b was produced via two steps in high yield. The reaction 

of 41b with aniline by Buchwald-Hartwig amination and subsequent oxidative Pd-catalyzed 

cyclization afforded 2,9’-biscarbazole 42a in 77% yield. I was also able to perform the 

reaction again in a one-pot process. The cyclization proceeded with excellent regioselectivity. 

Interestingly, regioisomeric product 42a’ was not observed as a side-product (NMR of the 

crude product). The reaction of 39b with different anilines gave 2,9’-biscarbazoles 42a-e and 

42g-j in moderate to good yields (except for 42i) (Scheme 7.4). No clear correlation of the 

substitution pattern and the yields of the products were observed. The structures of products 

were determined by spectroscopic methods. The structure of 42c was independently 

confirmed by X-ray crystal structure analysis (Figure 7.4).
170
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Scheme 7.4. Synthesis of 2,9’-biscarbazole 42a.  

Conditions: i, 3-anisidine (1.2 equiv.), Pd2(dba)3 (2.5 mol %), XantPhos (5 mol %), K3PO4 (2.8 equiv.), toluene, 

100 °C, 5 h; ii, 1) BBr3 (4.0 equiv.), CH2Cl2, -78 ºC to 20 ºC, 2) H2O, NaHCO3; iii, pyridine, Tf2O, 0 °C; iv, 

aniline (1.1 equiv.), Pd(OAc)2 (5 mol%), XPhos (10 mol %), Cs2CO3 (1.5 equiv.), toluene, 110 ºC, 6 h; v, 

Pd(OAc)2 (5 mol%), K2CO3 (1.0 equiv.), pivalic acid, 110 ºC, air, 72 h. 
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Scheme 7.5. Structures of 2,9’-biscarbazoles 42b-j 

 

 

Figure 7.4. Ortep plot of 42c 

 

7.3 Conclusions 

In conclusion, I developed a new and efficient strategy for the synthesis of 3,9’- and 2,9’-

biscarbazoles. My strategy bases on the cyclization of 1,1'-biphenyl-2,2'-diyl 

bis(trifluoromethanesulfonate) with 4- or 3-anisidine, transformation of the methoxy to a 

triflate group and subsequent oxidative Pd-catalyzed cyclization with different anilines. The 

strategy is highly efficient as it only requires four steps from simple starting materials and it 

can be applied to the synthesis of both 3,9’- and 2,9’-biscarbazoles. 
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APPENDIX 

8 Experimental section 

8.1 General Remarks 

The coupling reactions were carried out in pressure tubes or Schlenck flask under inert 

atmosphere (Argon 4.6). The back-filled technique was applied to exclude oxygen. The 

solvents for the reactions were purchased from Merck, Sigma Aldrich, Acros Organics. The 

solvents for column chromatography and reaction work-up were distilled prior use.  

 

8.2 Methods for Compound Characterization and Analysis 

8.2.1 Melting Points 

Micro heating table HMK 67/1825 Kuestner (Büchi apparatus); Melting points are 

uncorrected. 

8.2.2 Nuclear Magnetic Reasonance Spectroscopy (NMR) 

Bruker: AM 250, (62.9 MHz); Bruker: ARX 300, (75.4 MHz), Bruker: ARX 500, (125 

MHz). The chemical shifts are given in parts per million (ppm). Coupling constants are given 

in Hz.  

References for 
1
H NMR: TMS(δ = 0.00) or residual deuterated solvent (CDCl3 (δ = 7.26), 

C6D6  (δ = 7.16), (CD3)2CO (δ = 2.05), (CD3)2SO (δ = 2.50)), for 
13

C NMR TMS(δ = 0.00) or 

residual deuterated solvent (CDCl3 (δ = 77.16), C6D6  (δ = 128.06), (CD3)2CO (δ = 29.84; 

206.26), (CD3)2SO (δ = 39.52)) were taken as internal standard. The splitting pattern were 

characterized by s: singlet, d: doublet, t: triplet, q: quartet, quin: quintet, sex: sextet, m: 

multiplet. More complicate coupling peaks are represented by combinations of the respective 

symbol. For example, dt indicate to doublet of triplet. Distortionless enhancement 

polarization transfer (DEPT) spectra were taken to determine the types of carbon signals. 
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8.2.3 Mass Spectroscopy (MS) 

AMD MS40, Varian MAT CH 7, MAT 731 (EI, 70 eV), Intecta AMD 402 (EI, 70 eV and 

CI).  

8.2.4 High Resolution Mass Spectroscopy (HRMS) 

Finnigan MAT 95 or Varian MAT 311; Bruker FT CIR, AMD 402 (AMD Intectra). 

8.2.5 Infrared Spectroscopy (IR) 

Bruker IFS 66 (FT IR), Nicolet 205 FT IR; Nicolet Protege 460, Nicolet 360 Smart Orbit 

(ATR); KBr, KAP, Nujol, and ATR; Peaks were characterized with abbreviation: w = weak, 

m = medium, s = strong, br = broad 

8.2.6 X-ray Crystal Structure Analysis 

Bruker X8Apex diffractometer with CCD camera (Mo Kαradiation and graphite 

monochromator, λ= 0.71073 Å). The  structures  were  solved  by  direct methods  and  

refined  by  full-matrix  least-squares  procedures  on  F
2 

with  the  SHELXTL software 

package 

8.2.7 UV/Vis spectroscopy 

Lambda 5 (Perkin Elmer) and Analytic Jena Specord 50 UV/VIS spectrometer in acetonitril.  

8.2.8 Fluorescence  spectroscopy 

Fluoromax4P-0759D-0311-FM. The samples were dissolved in acetonitrile. The quinine 

hemisulfate salt monohydrate in 0.05M H2SO4 which has a fluorescence yield of 0.52, was 

used as standard for the fluorescent quantum yield determination.   

8.2.9 Electrochemical properties 

Cyclic Voltammetry (CV) and Differential Pulse Voltammetry (DPV) measurement were 

performed by mean of µAutolab III potentiostat (Ecochemie, Utrecht, The Netherlands in 

three different concentrations (1 x 10
-3

; 3 x 10
-3

; 6 x 10
-3

 mol·L
-1

) in DMF. All potentials 

were calibrated with the ferrocene/ferrocenium couple (Fc/Fc
+
) as internal standard. The 

formal potential of Fc/Fc
+
 vs. vacuum was assumed to be -4.8 eV. 
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8.3 Chromatographic Methods 

8.3.1 Thin Layer Chromatography (TLC) 

Merck Silica 60 F254 on aluminum aluminum foil from Macherey-Nagel. Detection under 

UV light at 254 nm and/or 365 nm of wavelength and visualize by dipping in TLC stains 

solution including conc. H2SO4/vaniline, Cerium-ammonium-molybdate (CAM), ceric sulfate 

and dragendorff reagent. 

8.3.2 Column  chromatography 

Column chromatography was performed over Merck silica gel (63-200 µm) as nomal column 

and (40-63 µm) as flash column. All the solvent were distilled prior of use.  

 

8.4 Computational Methods 

DFT calculations were performed with the Gaussian 09Revision C.01.
171

 The 

visualization of the results was performed with GaussView. The geometries of indolo[2,3-

b]quinoxalines were optimized using the hybrid functional B3LYP method, which 

consists of Becke’s three-parameter
172

 (B3) hybrid exchange functional in conjunction 

with the correlation functional of LeeYang and Parr (LYP)
173

 method using 6-31G* basis 

set.
174

 The B3LYP/6-31G* method of DFT has been reliable for the prediction of 

geometric and electronic properties of neutral
135a

 and charged species
175

 ranging from 

simple molecular to polymer structures
176

. Frequency calculations were performed at the 

same method in order to confirm these structures as true minima (absence of an imaginary 

frequency). Molecular orbital calculations are also performed at the B3LYP/6-31G* level 

of theory.   
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8.5 General Procedures and spectroscopic data 

8.5.1 Synthesis of thieno[3,2-b:4,5-b’]diindoles and Benzothieno[3,2-b]indoles  

General procedure 1 for preparation of 3,4-dibromo-2,5-di-(2-bromophenyl)thiophene  7. 

 

2,3,4,5-Tetrabromothiophene (1.00 g, 2.5 mmol), (2-bromophenyl)boronic acid (1.10 g, 5.5 

mmol) and Pd(PPh3)4 (5 mol%, 144 mg, 125 μmol) were dissolved in 1,4-dioxane (40 mL) 

under argon atmosphere. Then, a degassed aqueous solution of 2M Na2CO3 (10 mL) was 

added. The reaction mixture was heated under reflux for 6 h. The solvent was removed in 

vacuo. The residue was extracted with dichloromethane and water. The organic layer was 

dried over MgSO4, filtered, and the solvent was evaporated. The yellow residue was purified 

by column chromatography (silica gel, heptane) to give 7 as a white solid (1.26 g, 91%); mp 

132 C; 
1
H NMR (250 MHz, CDCl3) δ = 7.68 – 7.59 (m, 2H), 7.41 – 7.16 (m, 6H); 

13
C NMR 

(63 MHz, CDCl3) δ = 137.6, 133.6, 133.1, 132.6, 130.8, 127.3, 124.8, 114.2; IR (ATR, cm
-1

): 

ν = 602 (m), 627 (m), 648 (s), 673 (m), 708 (m), 731 (s), 739 (vs), 985 (m), 1026 (m), 1055 

(m), 1284 (m), 1417 (m), 1431 (m), 1456 (m), 3055 (w); GC-MS (EI, 70 eV): m/z (%) = 552 

(100), 392 (67), 232 (68), 187 (37), 116 (35); HRMS (EI): calcd. for C16H8Br4S ([M]
+
): 

547.70747; found: 547.708302; calcd. for C16H8Br3
81

BrS ([M]
+
): 549.70543; found: 

549.705972; calcd. for C16H8Br2
81

Br2S ([M]
+
): 553.70133; found: 553.701289; calcd. for 

C16H8
81

Br4S ([M]
+
): 555.69929; found: 555.699282. 

3-bromo-2-(2-bromophenyl)benzo[b]thiophene 11 was prepared 

following general procedure 1. 2,3-Dibromobenzo[b]thiophene (500 

mg, 1.7 mmol), 2-bromophenyl boronic acid (412.6 mg, 2.0 mmol) and 

(5 mol%) Pd(PPh3)4 (99 mg, 85 μmol) were dissolved in 1,4-dioxane (30 mL) under argon 

atmosphere. Then, a degassed aqueous solution of 2M Na2CO3 (7 mL) was added. The 

reaction mixture was heated under reflux for 6 hrs. The solvent was removed in vacuo. The 

residue was extracted with dichloromethane and water. The organic layer was dried over 

MgSO4, filtered, and the solvent was evaporated. The yellow residue was purified by column 

chromatography (silica gel, heptane) to give 11 as white solid (592 mg, 94 %); mp 76-78 C; 
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1
H NMR (300 MHz, CDCl3) δ = 7.83 – 7.73 (m, 2H), 7.65 (dd, J = 7.9, 0.8 Hz, 1H), 7.46 – 

7.21 (m, 5H); 
13

C NMR (75 MHz, CDCl3) δ = 138.4, 137.9, 137.3, 134.1, 133.0, 132.5, 

130.6, 127.2, 125.7, 125.2, 124.6, 123.6, 122.3, 108.5; IR (ATR, cm
-1

): ν = 559  (w), 602 (m), 

625 (m), 648 (s), 671 (m), 708 (m), 731 (s), 742 (vs), 856 (m), 872 (m), 943 (m), 984 (m), 

1026 (s), 1053 (m), 1119 (w), 1161 (w), 1228 (m), 1261 (m), 1284 (m), 1302 (m), 1417 (m), 

1431 (m), 1456 (s), 1560 (w), 1562 (m), 1587 -(w), 1888 (w), 1925 (w), 1957 (w), 3055 (m), 

3109 (w); GC-MS (EI, 70 eV): m/z (%) = 368 (87), 208 (100), 163 (25), 104 (23); HRMS 

(EI): calcd. for C14H8Br2S ([M]
+
): 365.87080; found: 365.87074; calcd. for C14H8Br

81
BrS 

([M]
+
): 367.86875; found: 367.86875; calcd. for C14H8

81
Br2S ([M]

+
): 369.86670; found: 

369.86651. 

General procedure 2 for double C-N coupling with aniline derivatives, exemplified by: 

5,6-diphenyl-5,6-dihydrothieno[3,2-b:4,5-b']diindole 2a 

 

Sodium tert-butoxide (105 mg, 1.1 mmol) was added to a pressure tube charged with 

Pd2(dba)3 (16.7 mg, 0.02 mmol) and ligand PtBu3·HBF4 (5.3 mg, 0.2 mmol) under argon 

atmosphere. Compound 7 (100 mg, 0.18 mmol) and aniline (0.1 mL, 1.1 mmol) were added 

to the mixture and the tube was backfilled with argon several times. The mixture was stirred 

at 120 °C in anhydrous toluene (5 mL) for 14 hours. After cooling, the reaction mixture was 

diluted with dichloromethane (5 mL), filtered through a celite pad, and washed with 

dichloromethane (20 mL). The filtrate was concentrated in vacuo. The product was purified 

by flash chromatography (silica gel, dichloromethane/heptane = 1:10) to yield  2a (63 mg, 

84%) as white crystals; mp 266 C; 
1
H NMR (300 MHz, CDCl3) δ = 7.76 – 7.67 (m, 2H), 

7.22 – 7.03 (m, 10H), 6.99 – 6.92 (m, 6H); 
13

C NMR (75 MHz, CDCl3) δ = 142.3, 138.9, 

130.2, 129.0, 127.2, 126.5, 123.3, 123.0, 121.6, 120.7, 118.2, 111.3. IR (ATR, cm
-1

): ν = 

565(m), 615 (m), 660 (s), 677 (s), 690 (vs), 729 (vs), 744 (s), 760 (m), 810 (m), 835 (m), 849 

(m), 903 (m), 926 (m), 962 (m), 1003 (m), 1014 (m), 1072 (m), 1115 (m), 1149 (m), 1159 

(m), 1215 (m), 1290 (s), 1308 (s), 1323 (s), 1363 (m), 1385 (m), 1450 (s), 1495 (m), 1516 

(m), 1593 (m), 1878 (w), 1886 (w), 1915 (w), 1942 (w), 1963 (w), 3034 (w), 3057 (w); GC-
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MS (EI, 70 eV): m/z (%) = 414 (100), 308 (5), 207 (11); HRMS (EI): calcd. for C28H18N2S 

([M]
+
): 414.11852; found: 414.118357. 

5,6-Bis(4-methoxyphenyl)-5,6-dihydrothieno[3,2-b:4,5-

b']diindole 2b was prepared following general procedure 2 using 

compound 7 (100 mg, 0.18 mmol) and 4-methoxyaniline (135 mg, 

1.1 mmol). The product was purified by flash chromatography 

(slica gel, ethylacetate/heptane = 1:10) to yield 2b (81 mg, 94 %) 

as white crystals; mp 251 C; 
1
H NMR (250 MHz, CDCl3) δ = 

7.88 – 7.56 (m, 2H), 7.20 – 7.01 (m, 6H), 7.00 – 6.88 (m, 4H), 6.56 – 6.39 (m, 4H), 3.75 (s, 

6H); 
13

C NMR (63 MHz, CDCl3) δ = 158.3, 142.6, 131.6, 130.6, 128.3, 122.9, 122.7, 120.7, 

120.3, 118.0, 114.2, 111.2, 55.1; IR (ATR, cm
-1

): ν = 563 (m), 580 (s), 592 (m), 650 (m), 658 

(w), 741 (vs), 746 (s), 812 (s), 835 (s), 1014 (m), 1030 (s), 1105 (m), 1169 (m), 1182 (m), 

1225 (m), 1250 (vs), 1290 (m), 1300 (m), 1327 (m), 1362 (w), 1406 (w), 1444 (m), 1456 (m), 

1510 (s), 1529 (s), 1606 (w), 1873 (vw), 1894 (vw), 1934 (vw), 2839 (w), 2914 (w), 2964 

(w), 2995 (w), 3016 (w), 3047 (w); GC-MS (EI, 70 eV): m/z (%) = 474 (100), 458 (8), 237 

(6); HRMS (EI): calcd. for C30H22O2N2S ([M]
+
): 474.13965; found: 474.139083. 

5,6-Di-p-tolyl-5,6-dihydrothieno[3,2-b:4,5-b']diindole 2c was 

prepared following general procedure 2 using compound 7 (100 

mg, 0.18 mmol) and 4-methylaniline (117 mg, 1.1 mmol). The 

product was purified by flash chromatography (silica gel, 

dichloromethane/heptane = 1:10) to yield   2c (73 mg, 92 %) as 

white crystals; mp 211-213 C; 
1
H NMR (250 MHz, CDCl3) δ = 7.78 – 7.65 (m, 2H), 7.22 – 

7.08 (m, 6H), 6.98 – 6.86 (m, 4H), 6.77 (d, J = 8.0 Hz, 4H), 2.25 (s, 6H); 
13

C NMR (63 MHz, 

CDCl3) δ = 142.4, 136.7, 136.3, 130.4, 129.5, 126.6, 123.1, 122.7, 121.1, 120.4, 118.1, 111.3, 

21.1; IR (ATR, cm
-1

): ν = 559 (m), 586 (m), 640 (m), 658 (m), 681 (m), 710 (s), 729 (vs), 806 

(s), 831 (m), 964 (m), 1001 (m), 1016 (m), 1107 (m), 1213 (s), 1321 (s), 1389 (s), 1450 (s), 

1506 (s), 1514 (s), 1605 (w), 1867 (w), 1878 (w), 1905 (w), 2351 (w), 2727 (w), 2856 (m), 

2918 (m), 3030 (m), 3053 (w); GC-MS (EI, 70 eV): m/z (%) = 442 (100), 221 (10); HRMS 

(EI): calcd. for C30H22N2S ([M]
+
): 442.14982; found: 442.149965. 
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5,6-Bis(3,5-dimethylphenyl)-5,6-dihydrothieno[3,2-b:4,5-

b']diindole 2d was prepared following general procedure 2 

using compound 7 (100 mg, 0.18 mmol) and 3,5-

dimethylaniline (0.14 mL, 1.1 mmol). The product was 

purified by flash chromatography (silica gel, 

dichloromethane/heptane = 1:10) to yield the indole 2d (77 mg, 91 %) as white crystals; mp 

258-260 C; 
1
H NMR (300 MHz, CDCl3) δ = 7.77 – 7.63 (m, 2H), 7.26 (dd, J = 6.8, 2.0 Hz, 

2H), 7.20 – 7.05 (m, 4H), 6.73 (s, 4H), 6.56 (s, 2H), 2.10 (s, 12H); 
13

C NMR (75 MHz, 

CDCl3) δ = 142.3, 139.0, 138.4, 130.3, 128.5, 123.8, 123.4, 122.8, 121.4, 120.6, 118.2, 111.4, 

21.2; IR (ATR, cm
-1

): ν = 544 (m), 650 (m), 685 (s), 725 (vs), 729 (vs), 744 (s), 827 (m), 839 

(s), 1012 (m), 1036 (m), 1115 (m), 1219 (m), 1284 (m), 1298 (m), 1323 (s), 1377 (m), 1392 

(m), 1454 (s), 1464 (m), 1525 (m), 1593 (m), 1867 (vw), 1907 (vw), 1934 (vw), 2854 (w), 

2912 (w), 2943 (w), 3030 (w), 3049 (w); GC-MS (EI, 70 eV): m/z (%) = 470 (100), 235 (7); 

HRMS (EI): calcd. for C32H26N2S ([M]
+
): 470.18112; found: 470.181420. 

5,6-Bis(3,5-dimethoxyphenyl)-5,6-dihydrothieno[3,2-

b:4,5-b']diindole  2e was prepared following general 

procedure 2 using compound 7 (100 mg, 0.18 mmol) and 

3,5-dimethoxyaniline (167 mg, 1.1 mmol). The product was 

purified by flash chromatography (silica gel, 

ethylacetate/heptane = 1:5) to yield 2e (93 mg, 97 %) as 

white crystals; mp 232 C; 
1
H NMR (500 MHz, CDCl3) δ = 7.75 – 7.66 (m, 2H), 7.30 (dd, J 

= 7.0, 1.8 Hz, 2H), 7.19 – 7.09 (m, 4H), 6.31 (d, J = 2.3 Hz, 4H), 6.09 (t, J = 2.3 Hz, 2H), 

3.64 (s, 12H); 
13

C NMR (126 MHz, CDCl3) δ = 160.6, 141.9, 140.8, 130.0, 123.2, 123.0, 

121.4, 120.7, 118.2, 111.5, 104.8, 99.8, 55.0; IR (ATR, cm
-1

): ν = 534 (m), 634 (m), 656 (m), 

663 (m), 681 (s), 704 (m), 731 (s), 744 (vs), 814 (m), 825 (s), 849 (m), 877 (m), 928 (m), 970 

(m), 987 (w), 1012 (m), 1038 (s), 1063 (s), 1155 (s), 1198 (s), 1203 (s), 1286 (s), 1319 (m), 

1358 (m), 1371 (m), 1431 (m), 1452 (s), 1477 (m), 1529 (m), 1593 (s), 1842 (vw), 1859 (vw), 

1894 (vw), 1932 (vw), 2897 (w), 2935 (w), 2953 (w), 2993 (w), 3012 (w), 3049 (w); GC-MS 

(EI, 70 eV): m/z (%) = 534 (100), 267 (4); HRMS (EI): calcd. for C32H26O4N2S ([M]
+
): 

534.16078; found: 534.160294. 
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5,6-Bis(3,4,5-trimethoxyphenyl)-5,6-dihydrothieno[3,2-

b:4,5-b']diindole 2f was prepared following general 

procedure 2 using 7 (100 mg, 0.18 mmol) and 3,4,5-

trimethoxyaniline (201 mg, 1.1 mmol). The product was 

separated via flash chromatography (elutant: 20 % 

ethylacetate – heptane) to yield  2f (99 mg, 92 %) as white 

crystals; mp 214-217 C; 
1
H NMR (500 MHz, CDCl3) δ = 7.72 (dd, J = 6.0, 2.6 Hz, 2H), 7.31 

(dd, J = 6.3, 2.7 Hz, 2H), 7.21-7.15 (m, 4H), 6.37 (s, 4H), 3.76 (s, 6H), 3.68 (s, 12H). 
13

C 

NMR (126 MHz, CDCl3) δ = 152.9, 142.6, 136.6, 134.9, 130.2, 123.4, 123.2, 121.8, 121.0, 

118.4, 111.4, 103.8, 60.8, 55.9; IR (ATR, cm
-1

): ν = 567 (m), 611 (m), 627 (m), 656 (m), 667 

(m), 677 (m), 698 (s), 715 (s), 729 (vs), 771 (m), 829 (m), 910 (m), 999 (s), 1080 (m), 1124 

(vs), 1225 (s), 1290 (s), 1323 (m), 1371 (m), 1417 (s), 1433 (m), 1454 (s), 1504 (s), 1591 (s), 

1842 (vw), 1905 (vw), 2835 (w), 2931 (w), 2951 (w), 2995 (w), 3051 (w); GC-MS (EI, 70 

eV): m/z (%) = 594 (100), 297 (15), 69 (16); HRMS (EI): calcd. for C34H30O6N2S ([M]
+
): 

594.18191; found: 594.182214. 

5,6-Bis(4-fluorophenyl)-5,6-dihydrothieno[3,2-b:4,5-b']diindole 

2g was prepared following general procedure 2 using compound 7 

(100 mg, 0.18 mmol) and 4-fluoroaniline (0.104 mL, 1.1 mmol). 

The product was purified by flash chromatography (silica gel, 

dichloromethane/heptane = 1:10) to yield  2g (77 mg, 95 %) as 

white crystals; mp 298-230 C; 
1
H NMR (500 MHz, CDCl3) δ = 

7.72 (d, J = 6.9 Hz, 2H), 7.18-7.01 (m, 10H), 6.75 (t, J = 8.5 Hz, 4H); 
13

C NMR (75 MHz, 

CDCl3) δ = 161.5 (d, J = 247.8 Hz), 142.5, 135.0, 130.2, 128.7 (d, J = 8.7 Hz), 123.2, 121.7, 

120.9, 118.3, 116.0 (d, J = 22.8 Hz), 111.1.
19

F NMR (282 MHz, CDCl3) δ = 114.11; IR 

(ATR, cm
-1

): ν = 569 (s), 586 (m), 644 (m), 712 (s), 733 (v), (s), 758 (m), 779 (m), 818 (s), 

837 (m), 847 (m), 1001 (m), 1007 (m), 1011 (m), 1092 (m), 1113 (m), 1151 (s), 1209 (s), 

1225 (s), 1267 (m), 1300 (m), 1323 (s), 1367 (m), 1392 (m), 1452 (m), 1506 (s), 1533 (m), 

1606 (w), 1882 (w), 3064 (w), 3115 (w); GC-MS (EI, 70 eV): m/z (%) = 450 (100), 225 (9), 

60 (6); 43 (6);  HRMS (EI): calcd. for C28H16N2F2S ([M]
+
): 450.09968; found: 450.09984. 
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5,6-Bis(4-chlorophenyl)-5,6-dihydrothieno[3,2-b:4,5-b']diindole 

2h was prepared following general procedure 2 using compound 7 

(100 mg, 0.18 mmol) and 4-chloroaniline (140 mg, 1.1 mmol). The 

product was purified by flash chromatography (silica gel, 

dichloromethane/heptane = 1:10) to yield  2h (75 mg, 86 %) as 

white crystals; mp 308 C; 
1
H NMR (250 MHz, CDCl3) δ = 7.76 – 

7.68 (m, 2H), 7.24 – 7.10 (m, 6H), 7.08 – 6.96 (m, 8H); 
13

C NMR (63 MHz, CDCl3) δ = 

142.20, 137.53, 133.48, 129.87, 129.33, 128.00, 123.35, 122.13, 121.11, 118.42, 111.09; IR 

(ATR, cm
-1

): ν = 569 (m), 615 (w), 634 (w), 652 (w), 679 (m), 723 (m), 737 (vs), 798 (s), 839 

(s), 1014 (m), 1090 (s), 1221 (m), 1269 (m), 1286 (m), 1302 (m), 1323 (s), 1390 (s), 1454 (s), 

1493 (s), 1520 (m), 1591 (w), 1890 (vw), 1900 (vw), 2322 (vw), 2351 (vw), 3053 (w), 3091 

(w); GC-MS (EI, 70 eV): m/z (%) = 482 (100), 335 (7), 241 (10), 205 (9); HRMS (EI): calcd. 

for C28H16N2Cl2S ([M]
+
): 482.04058; found: 482.040632; calcd. for C28H16N2Cl

37
ClS ([M]

+
): 

484.03763; found: 484.038435; calcd. for C28H16N2
37

Cl2S ([M]
+
): 486.03468; found: 

486.034440. 

5,6-Bis(4-(tert-butyl)phenyl)-5,6-dihydrothieno[3,2-b:4,5-

b']diindole 2i was prepared following general procedure 2 using 

compound 7 (100 mg, 0.18 mmol) and 4-(tert-butyl)aniline (0.17 

mL, 1.1 mmol). The product was purified by flash chromatography 

(silica gel, dichloromethane/heptane = 1:10) to yield  2i (83 mg, 87 

%) as white crystals; mp 287 C; 
1
H NMR (250 MHz, CDCl3) δ = 

7.73 – 7.67 (m, 2H), 7.22 – 7.05 (m, 6H), 7.05 – 6.98 (m, 4H), 6.95 – 6.89 (m, 4H), 1.21 (s, 

18H).
13

C NMR (63 MHz, CDCl3) δ = 149.2, 144.0, 136.9, 131.4, 125.7, 125.6, 124.1, 122.9, 

122.2, 120.9, 118.3, 111.8, 34.4, 31.3; IR (ATR, cm
-1

): ν = 544 (s), 557 (m), 573 (m), 584 

(m), 625 (w), 640 (w), 658 (w), 688 (m), 708 (m), 733 (vs), 800 (m), 839 (m), 922 (w), 958 

(w), 995 (m), 1014 (m), 1109 (m), 1194 (m), 1221 (m), 1265 (m), 1279 (m), 1290 (m), 1313 

(s), 1362 (m), 1402 (m), 1450 (m), 1512 (s), 1547 (m), 1574 (w), 1601 (w), 1842 (vw), 1900 

(vw), 2864 (w), 2901 (w), 2928 (w), 2958 (m), 3036 (w), 3053 (w); GC-MS (EI, 70 eV): m/z 

(%) = 526 (100), 494 (13), 454 (15); HRMS (EI): calcd. for C36H34N2S ([M]
+
): 526.24372; 

found: 526.243665. 
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5,6-Bis(3-(trifluoromethyl)phenyl)-5,6-dihydrothieno[3,2-b:4,5-

b']diindole 2j was prepared following general procedure 2 using 

compound 7 (100 mg, 0.18 mmol) and 3-(trifluoromethyl)aniline 

(0.14 mL, 1.1 mmol). The product was purified by flash 

chromatography (silica gel, dichloromethane/heptane = 1:10) to 

yield  2j (88 mg, 89 %) as white crystals; mp 203-205 C; 
1
H NMR (250 MHz, CDCl3) δ = 

7.76 – 7.68 (m, 2H), 7.36 (s, 2H), 7.33 – 7.26 (m, 2H), 7.25 – 7.08 (m, 10H); 
13

C NMR (75 

MHz, CDCl3) δ = 142.3, 139.8, 131.5 (q, J = 33.0 Hz), 130.1, 129.6, 129.5, 124.0 (q, J = 2.0 

Hz), 123.7, 123.3 (q, J = 272.5 Hz), 123.2 (q, J = 1.6 Hz),123.1, 121.6, 118.6, 110.9.
19

F 

NMR (282 MHz, CDCl3) δ = 62.73; IR (ATR, cm
-1

): ν = 563 (m), 619 (m), 658 (s), 675 (s), 

700 (v), (s), 735 (v), (s), 798 (s), 843 (w), 899 (m), 1011 (m), 1051 (s), 1068 (s), 1093 (s), 

1117 (v), (s), 1165 (s), 1219 (m), 1263 (s), 1302 (s), 1317 (s), 1335 (s), 1392 (m), 1454 (s), 

1495 (m), 1525 (w), 1593 (w), 1886 (v), (w), 1929 (v), (w), 3032 (w), 3055 (w); GC-MS (EI, 

70 eV): m/z (%) = 550 (100), 275 (14); HRMS (EI): calcd. for C30H16N2F6S ([M]
+
): 

550.09329; found: 550.093522. 

4,4'-(Thieno[3,2-b:4,5-b']diindole-5,6-diyl)bis(N,N-

diethylaniline) 2k was prepared following general procedure 2 

using compound 7 (100 mg, 0.18 mmol) and N
1
,N

1
-

diethylbenzene-1,4-diamine (0.18 mL, 1.1 mmol). The product 

was purified by flash chromatography (silica gel, 

dichloromethane/heptane = 1:2) to yield  2k (60 mg, 60 %) as 

white crystals; mp 256 C; 
1
H NMR (300 MHz, CDCl3) δ = 7.68 (dd, J = 6.9, 1.6 Hz, 2H), 

7.17 – 7.01 (m, 6H), 6.81 (d, J = 8.9 Hz, 4H), 6.21 (d, J = 8.9 Hz, 4H), 3.22 (q, J = 7.0 Hz, 

8H), 1.09 (t, J = 7.0 Hz, 12H).
13

C NMR (75 MHz, CDCl3) δ = 146.6, 143.3, 131.3, 127.9, 

126.8, 122.9, 122.3, 119.9, 117.8, 111.7, 111.3, 44.3, 12.8; IR (ATR, cm
-1

): ν = 565 (m), 580 

(m), 617 (m), 636 (m), 644 (m), 652 (m), 727 (s), 744 (vs), 787 (s), 798 (s), 822 (m), 1009 

(s), 1080 (s), 1159 (m), 1184 (s), 1198 (s), 1267 (s), 1323 (s), 1352 (s), 1375 (s), 1387 (s), 

1408 (m), 1450 (s), 1516 (vs), 1608 (m), 1842 (w), 1857 (w), 1888 (w), 1932 (w), 2868 (m), 

2891 (m), 2928 (m), 2966 (m), 3024 (w), 3047 (w), 3076 (w); GC-MS (EI, 70 eV): m/z (%) = 

556 (100), 512 (8), 97 (11), 83 (11), 57 (19); HRMS (EI): calcd. for C36H36N4S ([M]
+
): 

556.26552; found: 556.264565. 
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5,6-Bis(2,3-dihydro-1H-inden-5-yl)-5,6-dihydrothieno[3,2-b:4,5-

b']diindole 2l was prepared following general procedure 2 using 

compound 7 (100 mg, 0.18 mmol) and 2,3-dihydro-1H-inden-5-

amine (145 mg, 1.1 mmol). The product was purified by flash 

chromatography (silica gel, dichloromethane/heptane = 1:10) to 

yield  2l (81 mg, 91%) as white crystals; mp 246 C; 
1
H NMR 

(300 MHz, CDCl3) δ = 7.75 – 7.64 (m, 2H), 7.31 – 7.19 (m, 2H), 7.17 – 7.05 (m, 4H), 7.02 – 

6.75 (m, 6H), 2.71 (t, J = 7.3 Hz, 4H), 2.58 (s, 4H), 1.94 (p, J = 7.5 Hz, 4H); 
13

C NMR (75 

MHz, CDCl3) δ = 145.0, 142.5, 142.3, 137.3, 130.4, 124.0, 123.9, 123.3, 122.8, 122.4, 121.2, 

120.5, 118.1, 111.4, 32.6, 32.5, 25.3; IR (ATR, cm
-1

): ν = 542 (m), 575 (m), 619 (m), 690 

(m), 729 (vs), 781 (m), 820 (m), 918 (m), 1009 (m), 1115 (m), 1155 (m), 1215 (m), 1296 (m), 

1321 (s), 1363 (m), 1390 (m), 1435 (m), 1452 (s), 1489 (m), 1520 (m), 1583 (w), 1605 (w), 

1867 (w), 1888 (w), 2839 (w), 2929 (w), 3014 (w), 3043 (w); GC-MS (EI, 70 eV): m/z (%) = 

494 (100), 464 (20); HRMS (EI): calcd. for C34H26N2S ([M]
+
): 494.18112; found: 

494.180637. 

5,6-Bis(4-(methylthio)phenyl)-5,6-dihydrothieno[3,2-b:4,5-

b']diindole 2m was prepared following general procedure 2 using 

compound 7 (100 mg, 0.18 mmol) and 4-(methylthio)aniline (0.14 

mL, 1.1 mmol). The product was purified by flash chromatography 

(silica gel, ethylacetate/heptane = 1:10) to yield  2m (82 mg, 90 %) 

as white crystals; mp 262 C; 
1
H NMR (300 MHz, CDCl3) δ = 

7.75 – 7.66 (m, 2H), 7.22 – 7.07 (m, 6H), 7.01 – 6.90 (m, 4H), 6.90 – 6.80 (m, 4H), 2.47 (s, 

6H); 
13

C NMR (75 MHz, CDCl3) δ = 142.5, 137.9, 135.7, 130.2, 127.2, 126.3, 123.2, 123.0, 

121.5, 120.7, 118.2, 111.3, 15.6; IR (ATR, cm
-1

): ν = 569 (m), 638 (m), 648 (m), 692 (m), 

717 (s), 739 (vs), 795 (s), 835 (m), 918 (w), 958 (m), 1014 (m), 1095 (m), 1151 (w), 1176 

(m), 1217 (m), 1292 (m), 1304 (m), 1319 (m), 1392 (s), 1454 (m), 1495 (s), 1531 (m), 1842 

(vw), 1878 (vw), 2848 (w), 2918 (w), 2951 (w), 3047 (w); GC-MS (EI, 70 eV): m/z (%) = 

506 (100), 458 (11); HRMS (EI): calcd. for C30H22N2S3 ([M]
+
): 506.09396; found: 

506.09362. 
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General procedure 3 for double C-N coupling with aniline derivatives, exemplified by: 

5,6-dipropyl-5,6-dihydrothieno[3,2-b:4,5-b']diindole 2n 

 

Sodium tert-butoxide (105 mg, 1.1 mmol) was added to a pressure tube charged with 

Pd2(dba)3 (16.7 mg, 0.02 mmol) and BINAP (5.7 mg, 0.009 mmol) under argon atmosphere. 

Compound 7 (100 mg, 0.18 mmol) and n-propylamine (0.09 mL, 1.1 mmol) were added to 

this mixture and the tube was backfilled with argon several times. The mixture was heated at 

120 °C in anhydrous toluene (5 mL) for 14 hours. After cooling, the reaction mixture was 

diluted with dichloromethane (5 mL), filtered through a celite pad, and washed with 

dichloromethane (20 mL). The filtrate was concentrated in vacuo. The product was purified 

by flash chromatography (silica gel, dichloromethane/heptane = 1:10) to yield 2n (29 mg, 

46%) as white crystals; mp 162-164 C; 
1
H NMR (300 MHz, CDCl3) δ = 7.67 (d, J = 7.7 Hz, 

2H), 7.37 (d, J = 8.3 Hz, 2H), 7.30 – 7.03 (m, 4H), 4.49 – 4.31 (t, J = 7.7 Hz, 4H), 2.00 – 

1.80 (m, 4H), 0.94 (t, J = 7.4 Hz, 6H); 
13

C NMR (63 MHz, CDCl3) δ = 141.1, 130.1, 123.0, 

122.3, 119.9, 119.6, 118.3, 110.1, 47.9, 23.9, 11.3; IR (ATR, cm
-1

): ν = 563 (m), 615 (m), 

658 (m), 723 (vs), 812 (m), 845 (w), 881 (m), 897 (m), 974 (m), 1012 (m), 1111 (m), 1153 

(m), 1292 (m), 1319 (m), 1367 (m), 1381 (m), 1456 (m), 1520 (w), 1867 (vw), 1915 (vw), 

2850 (w), 2872 (w), 2924 (m), 2953 (w); GC-MS (EI, 70 eV): m/z (%) =  346 (100), 317 

(14), 275 (17); HRMS (EI): calcd. for C22H22N2S ([M]
+
): 346.14982; found: 346.15023. 

5,6-Dipentyl-5,6-dihydrothieno[3,2-b:4,5-b']diindole 2o was 

prepared following general procedure 3 using compound 7 (100 

mg, 0.18 mmol) and n-pentylamine (0.13 ml, 1.1 mmol). The 

product was purified by flash chromatography (silica gel, 

dichloromethane/heptane = 1:10) to yield  2o (33 mg, 45 %) as 

white crystals; mp 105-107 C; 
1
H NMR (300 MHz, CDCl3) δ = 

7.71 – 7.61 (m, 2H), 7.36 (d, J = 8.3 Hz, 2H), 7.18 (m, 4H), 4.41 (t, J = 7.8 Hz, 4H), 1.94 – 

1.75 (m, 4H), 1.38 – 1.20 (m, 8H), 0.82 (t, J = 7.0 Hz, 6H); 
13

C NMR (75 MHz, CDCl3) δ = 

141.1, 130.1, 123.0, 122.3, 119.9, 119.6, 118.3, 110.1, 46.4, 30.4, 29.2, 22.5, 13.9; IR (ATR, 



General procedures and spectroscopic data  103 

 

 

cm
-1

): ν = 565 (w), 586 (w), 609 (m), 617 (m), 654 (m), 690 (m), 731 (vs), 916 (w), 976 (w), 

1014 (m), 1111 (m), 1138 (m), 1155 (m), 1173 (m), 1232 (m), 1321 (s), 1362 (m), 1377 (m), 

1387 (m), 1456 (s), 1471 (m), 1520 (m), 1606 (w), 1747 (vw), 1790 (vw), 1834 (vw), 1867 

(vw), 1907 (vw), 2858 (m), 2866 (m), 2922 (m), 2949 (m), 3026 (vw), 3055 (w), 3078 (vw); 

GC-MS (EI, 70 eV): m/z (%) =  402 (100), 275 (15); HRMS (EI): calcd. for C26H30N2S 

([M]
+
): 402.21242; found: 402.21232. 

5,6-Diheptyl-5,6-dihydrothieno[3,2-b:4,5-b']diindole 2p was 

prepared following general procedure 3 using compound 7 (100 

mg, 0.18 mmol) and n-heptylamine (0.16 mL, 1.1 mmol). The 

product was purified by flash chromatography (silica gel, 

dichloromethane/heptane = 1:10) to yield 2p (37 mg, 45 %) as 

white crystals; mp 127-129 C; 
1
H NMR (250 MHz, CDCl3) δ = 

7.66 (d, J = 7.2 Hz, 2H), 7.35 (d, J = 8.2 Hz, 2H), 7.29 – 7.06 (m, 

4H), 4.40 (t, J = 7.9 Hz, 4H), 1.96 – 1.68 (m, 4H), 1.41 – 1.02 (m, 16H), 0.79 (t, J = 6.7 Hz, 

6H); 
13

C NMR (63 MHz, CDCl3) δ = 141.1, 130.1, 123.0, 122.3, 119.9, 119.6, 118.3, 110.1, 

46.5, 31.6, 30.7, 29.0, 27.0, 22.5, 14.0; IR (ATR, cm
-1

): ν = 550 (vw), 567 (w), 588 (w), 609 

(w), 621 (w), 656 (w), 729 (vs), 756 (m), 808 (w), 837 (w), 916 (w), 970 (w), 1012 (m), 1115 

(m), 1157 (m), 1169 (m), 1221 (m), 1321 (s), 1373 (m), 1389 (m), 1458 (s), 1471 (m), 1522 

(w), 1608 (w), 1790 (vw), 1830 (vw), 1867 (vw), 1907 (vw), 2852 (m), 2922 (s), 2947 (m), 

3030 (vw), 3057 (w), 3074 (vw); GC-MS (EI, 70 eV): m/z (%) = 458 (100), 275 (16); HRMS 

(ESI): calcd. for C30H39N2S ([M + H]
+
): 459.28285; found: 459.28189. 

5,6-Diphenethyl-5,6-dihydrothieno[3,2-b:4,5-b']diindole 2q was 

prepared following general procedure 3 using compound 7 (100 

mg, 0.18 mmol) and 2-phenylethanamine (0.14 mL, 1.1 mmol). 

The product was purified by flash chromatography (silica gel, 

dichloromethane/heptane = 1:7) to yield 2q (53 mg, 62 %) as dark 

brown crystals; mp 141 C; 
1
H NMR (300 MHz, CDCl3) δ = 7.68 

(dd, J = 7.3, 1.0 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 7.25 – 7.09 (m, 10H), 6.96 (dd, J = 6.5, 

3.0 Hz, 4H), 4.66 (t, J = 8.0 Hz, 4H), 3.07 (t, J = 8.0 Hz, 4H); 
13

C NMR (75 MHz, CDCl3) δ 

= 140.9, 137.5, 130.0, 128.7, 128.5, 126.8, 123.2, 122.5, 120.3, 119.8, 118.4, 110.1, 47.7, 

36.5; IR (ATR, cm
-1

): ν = 538 (m), 557 (m), 567 (w), 590 (w), 615 (m), 633 (m), 696 (vs), 

731 (vs), 845 (w), 904 (w), 974 (w), 1014 (m), 1026 (m), 1076 (w), 1084 (w), 1159 (m), 1232 
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(m), 1284 (m), 1315 (m), 1352 (m), 1387 (m), 1456 (s), 1495 (m), 1516 (w), 1531 (m), 1867 

(vw), 1882 (vw), 2854 (w), 2872 (w), 2924 (w), 2966 (w), 3024 (w), 3055 (w); GC-MS (EI, 

70 eV): m/z (%) = 470 (100), 379 (24), 346 (10), 287(23), 275 (74), 207 (10); HRMS (EI): 

calcd. for C32H26N2S ([M]
+
): 470.18112; found: 470.180791. 

5,6-Dibenzyl-5,6-dihydrothieno[3,2-b:4,5-b']diindole 2r was 

prepared following general procedure 3 using compound 7 (100 

mg, 0.18 mmol) and 2-benzylamine (0.12 mL, 1.1 mmol). The 

product was purified by flash chromatography (silica gel, 

dichloromethane/heptane = 1:7) to yield 2r (43 mg, 53 %) as dark 

crystals; mp 227-229 C; 
1
H NMR (300 MHz, CDCl3) δ = 7.75 – 7.67 (m, 2H), 7.26 – 7.08 

(m, 12H), 6.93 – 6.81 (m, 4H), 5.27 (s, 4H); 
13

C NMR (63 MHz, CDCl3) δ = 141.4, 137.2, 

130.4, 129.0, 127.5, 125.1, 123.0, 122.8, 120.2, 120.0, 118.3, 110.1, 48.7; IR (ATR, cm
-1

): ν 

= 557 (s), 592 (m), 609 (m), 652 (s), 690 (vs), 719 (vs), 737 (vs), 758 (m), 843 (m), 904 (m), 

926 (m), 964 (m), 1014 (m), 1032 (m), 1072 (m), 1157 (m), 1167 (m), 1188 (m), 1259 (m), 

1315 (s), 1321 (s), 1346 (s), 1381 (s), 1450 (s), 1495 (m), 1520 (m), 1605 (w), 1886 (w), 

1927 (w), 2848 (w), 2918 (w), 3028 (m), 3063 (w), 3080 (w); GC-MS (EI, 70 eV): m/z (%) = 

442 (100), 365 (12), 351 (60), 260 (7), 91 (9); HRMS (EI): calcd. for C30H22N2S ([M]
+
): 

442.14982; found: 442.14992. 

5,6-Dicyclopropyl-5,6-dihydrothieno[3,2-b:4,5-b']diindole 2s was 

prepared following general procedure 3 using compound 7 (100 

mg, 0.18 mmol) and cyclopropylamine (0.08 mL, 1.1 mmol). The 

product was purified by flash chromatography (silica gel, 

dichloromethane/heptane = 1:7) to yield 2s (20 mg, 33 %) as a yellow solid; mp 222-224 C; 

1
H NMR (300 MHz, CDCl3) δ = 7.67 – 7.53 (m, 4H), 7.28 – 7.08 (m, 4H), 3.86 – 3.75 (m, 

2H), 1.29 – 1.12 (m, 8H); 
13

C NMR (63 MHz, CDCl3) δ = 142.2, 130.6, 122.9, 122.3, 119.8, 

119.5, 118.2, 112.1, 28.0, 10.1; IR (ATR, cm
-1

): ν = 546 (m), 571 (m), 646 (m), 696 (m), 735 

(vs), 760 (m), 804 (m), 829 (m), 874 (m), 926 (m), 976 (m), 1011 (m), 1024 (s), 1055 (m), 

1113 (m), 1151 (m), 1186 (m), 1223 (m), 1259 (m), 1309 (s), 1348 (s), 1394 (s), 1454 (s), 

1531 (m), 1537 (m), 1606 (w), 1807 (w), 1849 (w), 1884 (w), 1921 (w), 2850 (m), 2920 (m), 

3003 (w), 3022 (w), 3049 (w), 3076 (w); GC-MS (EI, 70 eV): m/z (%) = 342 (100), 313 (11), 

299 (17), 268 (8); HRMS (EI): calcd. for C22H18N2S ([M]
+
): 342.11852; found: 342.11827. 
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10-(4-Methoxyphenyl)-10H-benzo[4,5]thieno[3,2-b]indole 12a was 

prepared following general procedure 1 using compound 11 (200 mg, 

0.54 mmol) and 4-methoxyaniline (401 mg, 3.3 mmol). The product 

was purified by flash chromatography (silica gel, ethylacetate/heptane 

= 1:10) to yield 12a (172 mg, 96 %) as white crystals; mp 158-160 

C; 
1
H NMR (300 MHz, CDCl3) δ = 7.77 (m, 2H), 7.40 (d, J = 6.8 

Hz, 2H), 7.26 – 7.00 (m, 8H), 3.86 (s, 3H); 
13

C NMR (75 MHz, CDCl3) δ = 158.8, 142.5, 

142.3, 137.4, 129.9, 128.4, 126.2, 123.7, 123.3, 123.3, 122.6, 121.3, 119.8, 119.6, 118.6, 

115.5, 114.2, 110.3, 55.0; IR (ATR, cm
-1

): ν = 575 (m), 596 (s), 642 (m), 710 (m), 742 (vs), 

806 (m), 827 (m), 858 (m), 1018 (s), 1028 (s), 1057 (m), 1103 (m), 1165 (m), 1182 (m), 1213 

(s), 1248 (s), 1298 (m), 1346 (s), 1421 (m), 1437 (m), 1450 (s), 1512 (s), 1583 (w), 1591 (w), 

1606 (w), 1867 (w), 1894 (w), 2833 (w), 2928 (w), 2955 (w), 3014 (w), 3049 (w); GC-MS 

(EI, 70 eV): m/z (%) = 329 (100), 314 (17), 286 (13), 165 (7), 142 (6); HRMS (EI): calcd. for 

C21H15ONS ([M]
+
): 329.08689; found: 329.08677. 

10-Heptyl-10H-benzo[4,5]thieno[3,2-b]indole 12b was prepared 

following general procedure 3 using compound  11 (200 mg, 0.54 

mmol) and n-heptylamine (0.16 mL, 3.3 mmol). The product was 

purified by flash chromatography (silica gel, dichloromethane/heptane 

= 1:10) to yield 12b (160 mg, 92 %) as a colorless liquid; 
1
H NMR 

(300 MHz, CDCl3) δ = 7.94 – 7.78 (m, 2H), 7.69 (dd, J = 7.8, 0.9 Hz, 

1H), 7.43 – 7.19 (m, 4H), 7.91-7.82 (m, 1H), 4.46 (t, J = 7.5 Hz, 2H), 

1.92 – 1.82 (m, 2H), 1.41 – 1.09 (m, 8H), 0.78 (t, J = 6.8 Hz, 3H); 
13

C NMR (75 MHz, 

CDCl3) δ = 143.2, 141.4, 137.4, 127.0, 124.6, 124.2, 123.7, 122.8, 121.6, 119.9, 119.4, 119.3, 

115.3, 109.9, 45.0, 31.7, 30.5, 29.1, 27.0, 22.6, 14.0; IR (ATR, cm
-1

): ν = 586 (w), 619 (w), 

663 (m), 723 (vs), 731 (vs), 752 (m), 825 (w), 920 (w), 982 (w), 1020 (m), 1072 (m), 1115 

(m), 1155 (w), 1171 (m), 1252 (w), 1271 (w), 1323 (m), 1346 (m), 1429 (m), 1454 (m), 1491 

(m), 1591 (vw), 1608 (vw), 2852 (m), 2924 (m), 2953 (m), 3026 (vw), 3053 (w); GC-MS (EI, 

70 eV): m/z (%) = 321 (100), 236 (94), 222 (14), 165 (7); HRMS (ESI): calcd. for C21H24NS 

([M + H]
+
): 322.1624; found: 322.1623. 
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10-Benzyl-10H-benzo[4,5]thieno[3,2-b]indole 12c was prepared 

following general procedure 3 using compound 11 (200 mg, 0.54 

mmol) and benzylamine (0.36 mL, 3.3 mmol). The product was 

purified by flash chromatography (silica gel, dichloromethane/heptane 

= 1:7) to yield 12c (162 mg, 95 %) as white crystals; mp 150-152 C; 

1
H NMR (300 MHz, CDCl3) δ = 7.85 – 7.77 (m, 1H), 7.77 – 7.66 (m, 2H), 7.34 (d, J = 8.2 

Hz, 1H), 7.28 – 7.10 (m, 7H), 7.08 (dd, J = 4.6, 3.5 Hz, 2H), 5.70 (s, 2H); 
13

C NMR (75 

MHz, CDCl3) δ = 143.25, 141.89, 137.75, 137.39, 128.98, 127.61, 126.91, 126.08, 124.53, 

124.30, 123.91, 123.25, 121.91, 120.00, 119.92, 119.50, 115.88, 110.14, 48.41; IR (ATR, cm
-

1
): ν = 555 (m), 586 (m), 613 (m), 633 (s), 694 (vs), 719 (vs), 731 (vs), 737 (vs), 804 (m), 833 

(m), 847 (m), 926 (m), 968 (m), 1018 (m), 1068 (m), 1119 (m), 1153 (m), 1174 (m), 1201 

(m), 1257 (m), 1271 (m), 1321 (m), 1348 (s), 1427 (s), 1452 (m), 1495 (m), 1583 (w), 1605 

(w), 1888 (w), 1923 (w), 3022 (w), 3053 (w); GC-MS (EI, 70 eV): m/z (%) = 313 (93), 222 

(100), 91 (23); HRMS (EI): calcd. for C21H15NS ([M]
+
): 313.09197; found: 313.09228. 

 

8.5.2 Synthesis of 5-methyl-5,10-dihydroindolo[3,2-b]indole  

Procedure for prepared of 2,3-dibromo-1-methyl-1H-indole 13 

 

To solution of 1-methyl-1H-indole (1 mL, 8 mmol) in 20 mL THF was added wisely NBS 

(3.14 g, 17.6 mmol) at -78 ºC. Then the mixture was stirred for 5h at this temperature. The 

reaction mixture was treated with water (20 mL). The solvent THF was reduced by 

evaporator in vacuo and then extracted with dihloromethane (3 x 20 mL). The combined 

organic layers were washed with saturated aqueous NaHCO3, dried over MgSO4 and then 

evaporated in vacuo affording yellow syrup. The mixture was separated over column 

chromatography (silica gel, heptane) to yield 2,3-dibromo-1-methyl-1H-indole 13 (2 g, 86%) 

as white solid; m.p. 38-40 ºC; 
1
H NMR (300 MHz, CDCl3) δ = 7.41 (dt, J = 7.6, 1.1 Hz, 1H), 

7.15 (dd, J = 4.9, 1.2 Hz, 2H), 7.13 – 7.02 (m, 1H), 3.66 (s, 3H); 
13

C NMR (75 MHz, CDCl3) 

δ = 136.34, 126.96, 122.91, 120.81, 118.86, 114.90, 109.63, 92.68, 32.34; GC/MS (EI, 
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70eV): m/z (%) = 289 (100), 291 (50), 288 (20), 274 (18), 129 (15), 114 (23), 88 (12); 

HRMS (EI): calculated for C9H7Br2N1 ([M
+
]): 286.89398; found: 286.89391, calculated for 

C9H7Br1
81

Br1N1 ([M
+
]): 288.89193; found: 288.89183, calculated for C9H7

81
Br2N1 ([M

+
]): 

290.88988; found: 290.88980. 

Procedure for prepared of 3-bromo-2-(2-bromophenyl)-1-methyl-1H-indole 14.  

 

 

2,3-dibromoindole 13 (1 g, 3.46 mmol), 2-bromophenyl boronic acid 6 (0.83 g, 4.15 mmol), 

Pd(PPh3)4 (200 mg, 173 µmol) and sodium hydroxide (415 mg, 10.38 mmol) were added to 

500 mL Schlenk flask. The mixture was back-filled several times with Argon. To the mixture 

70 mL THF and 10 mL distilled water were added, then, back-filled several times. The 

reaction was heated at 70 ºC for 4h. The solvent was evaporated in vacuo. The residue was 

extracted with dichloromethane and water. The organic layer was dried over MgSO4, filtered 

and the solvent was evaporated in vacuo. The yellow residue was purified by column 

chromatography (silica gel, Heptane/ethylacetate/dichloromethane 3:1:1) to yield 3-bromo-2-

(2-bromophenyl)-1-methyl-1H-indole 14 (0.91 g, 72 %) as white solid; m.p. 83-85 ᵒC; 
1
H 

NMR (300 MHz, CDCl3) δ 7.71 – 7.66 (m, 1H), 7.59 – 7.52 (m, 1H), 7.44 – 7.12 (m, 6H), 

3.50 (s, 3H); 
13

C NMR (75 MHz, CDCl3) δ = 137.12, 136.30, 133.29, 132.95, 132.20, 130.90, 

127.43, 126.80, 125.52, 122.95, 120.48, 119.46, 109.71, 90.75, 31.26; IR (ATR, cm
-1

): ν = 

3053  (m), 3018  (w), 2939  (w), 2875  (w), 2833  (w), 1498  (m), 1473  (m), 1460  (s), 1427  

(m), 1412  (m), 1356  (m), 1325  (s), 1319  (s), 1230  (s), 1201  (m), 1173  (w), 1153  (s), 

1126  (m), 1105  (m), 1084  (m), 1009  (m), 947  (m), 922  (m), 808  (w), 729  (vs), 606  (m), 

546  (m); GC-MS (EI, 70 eV): m/z (%) = 365 (100), 204 (82), 176 (22), 102 (26), 88 (13); 

HRMS (EI): calcd. for C15H11Br2N1 ([M
+
]): 362.92528; found: 362.92484, calculated for 

C15H11Br1
81

Br1N1 ([M
+
]): 364.92323; found: 364.92292, calculated for C15H11

81
Br2N1 ([M

+
]): 

366.92118; found: 366.92109. 
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General procedure 4 for double C-N coupling with aniline derivatives, exemplified by: 

5-methyl-10-phenyl-5,10-dihydroindolo[3,2-b]indole 15a 

 

 

Aniline (75 µL, 0.82 mmol) was added to pressure tube charged with 14 (100 mg, 0.27 

mmol), Pd2(dba)3 (12.5 mg, 14 µmol), ligand Xantphos (15.9 mg, 28 µmol) and sodium tert-

butoxide (79 mg, 0.82 mmol) under Argon. The mixture was back-filled with Argon several 

times. The mixture was dissolved in anhydrous toluene (10 mL) and heated to 90 ºC for 6 h. 

After cooling, the reaction mixture was diluted with dichloromethane (20 mL) and filtered 

through a celite pad, washing with dichloromethane (40 mL). The filtrate was evaporated in 

vacuo. The product was separated via flash chromatography (silica gel, 

heptane/dichloromethane 5:1) to yield 15a (65 mg, 80 %) as a white solid; m.p. 130-131 ºC; 

1
H NMR (300 MHz, CDCl3) δ = 7.88 – 7.81 (m, 1H), 7.66 – 7.41 (m, 6H), 7.37 – 7.26 (m, 

2H), 7.24 – 7.08 (m, 3H), 6.97 (ddd, J = 8.0, 7.1, 1.0 Hz, 1H), 4.03 (s, 3H); 
13

C NMR (75 

MHz, CDCl3) δ = 141.32, 140.72, 139.16, 129.64, 127.89, 126.44, 125.53, 125.25, 122.56, 

121.96, 119.65, 118.46, 118.24, 117.63, 116.05, 114.67, 110.99, 109.57, 31.65; IR (ATR, cm
-

1
): ν = 3047  (w), 2928  (w), 1593  (m), 1576  (m), 1500  (s), 1471  (s), 1460  (s), 1435  (m), 

1423  (m), 1398  (s), 1365  (m), 1340  (m), 1323  (m), 1309  (m), 1282  (m), 1267  (w), 1232  

(s), 1174  (m), 1151  (m), 1126  (m), 1103  (m), 1076  (m), 1061  (m), 1028  (m), 1014  (m), 

987  (w), 966  (w), 949  (m), 918  (w), 910  (m), 883  (w), 831  (w), 823  (m), 779  (w), 729  

(vs), 700  (vs), 677  (s), 650  (s), 617  (m), 596  (m), 588  (s), 565  (m), 542  (m); GC-MS (EI, 

70 eV): m/z (%) =  296 (100), 281 (45); HRMS (EI): calculated for C21H16N2 ([M
+
]): 

296.13080; found: 296.13042. 
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5-(4-(tert-butyl)phenyl)-10-methyl-5,10-dihydroindolo[3,2-b]indole 

15b was prepared following general procedure 4 using compound  14 

(100 mg, 0.27 mmol) and 4-(tert-butyl)aniline (131 µL, 0.82 mmol). 

The product was purified by flash chromatography (silica gel, 

heptane/dichloromethane 5:1) to yield 15b (81 mg, 84%) as a white 

solid; m.p. 210-213 ºC;  
1
H NMR (250 MHz, C6D6) δ = 7.99 – 7.89 

(m, 2H), 7.84 – 7.75 (m, 1H), 7.73 – 7.65 (m, 2H), 7.48 – 7.33 (m, 

5H), 7.33 – 7.18 (m, 2H), 3.56 (s, 3H), 1.36 (s, 9H); 
13

C NMR (63 MHz, C6D6) δ = 149.25, 

141.81, 141.43, 137.08, 127.84, 126.67, 125.43, 122.80, 122.22, 119.85, 118.92, 118.62, 

117.99, 116.63, 115.39, 111.46, 109.82, 34.59, 31.46, 30.98; IR (ATR, cm
-1

): ν = 3057  (w), 

2960  (m), 2929  (w), 2901  (w), 2864  (w), 1516  (s), 1495  (m), 1471  (s), 1441  (m), 1423  

(m), 1402  (s), 1365  (m), 1329  (m), 1309  (w), 1265  (w), 1234  (s), 1200  (m), 1184  (m), 

1161  (w), 1151  (w), 1136  (m), 1111  (m), 1030  (w), 1022  (w), 1012  (m), 955  (w), 922  

(w), 833  (m), 823  (m), 775  (w), 729  (vs), 712  (m), 685  (m), 665  (w), 607  (w), 590  (m), 

571  (w), 561  (w), 550  (m); GC/MS (EI, 70eV): m/z (%) = 352 (100), 337 (22), 322 

(19),155 (20); HRMS (EI): calculated for C25H24N2 ([M
+
]): 352.19340; found: 352.19295. 

5-methyl-10-(p-tolyl)-5,10-dihydroindolo[3,2-b]indole 15c was 

prepared following general procedure 4 using compound  14 (100 

mg, 0.27 mmol) and p-toluidine (88 mg, 0.82 mmol). The product 

was purified by flash chromatography (silica gel, 

heptane/dichloromethane 5:1) to yield 15c (69 mg, 81 %) as a white 

solid; m.p. 140-141 ºC;  
1
H NMR (300 MHz, Acetone) δ = 7.92 – 

7.85 (m, 1H), 7.48 – 7.29 (m, 7H), 7.14 – 7.00 (m, 3H), 6.87 (ddd, J = 8.0, 7.1, 1.0 Hz, 1H), 

4.02 (s, 3H), 2.31 (s, 3H); 
13

C NMR (63 MHz, Acetone) δ = 142.29, 141.63, 137.35, 137.20, 

131.14, 128.45, 126.07, 125.85, 123.39, 122.75, 120.40, 118.99, 118.78, 118.71, 116.86, 

115.37, 111.50, 110.69, 31.81, 21.15; IR (ATR, cm
-1

): ν = 3057  (w), 3036  (w), 2918  (w), 

1514  (s), 1487  (m), 1473  (m), 1454  (m), 1441  (m), 1421  (m), 1402  (m), 1365  (m), 1325  

(m), 1304  (w), 1232  (m), 1174  (w), 1153  (m), 1126  (m), 1109  (m), 1063  (w), 1032  (m), 

1012  (m), 968  (w), 951  (m), 918  (m), 822  (m), 796  (w), 760  (w), 748  (m), 727  (vs), 683  

(m), 665  (w), 640  (w), 615  (w), 590  (m), 563  (m), 542  (w); GC/MS (EI, 70eV): m/z (%) 

= 310 (100), 295 (40); HRMS (EI): calculated for C22H18N2 ([M
+
]): 310.14645; found: 

310.14704. 



General procedures and spectroscopic data  110 

 

 

5-(4-fluorophenyl)-10-methyl-5,10-dihydroindolo[3,2-b]indole 15d 

was prepared following general procedure 4 using compound  14 

(100 mg, 0.27 mmol) and 4-fluoroaniline (78 µL, 0.82 mmol). The 

product was purified by flash chromatography (silica gel, heptane/ 

dichloromethane 4:1) to yield 15d (71 mg, 82 %) as a white solid; 

m.p. 106-108 ºC; 
1
H NMR (300 MHz, CDCl3) δ = 7.82 (dd, J = 7.2, 

1.4 Hz, 1H), 7.57 – 7.46 (m, 2H), 7.48 – 7.28 (m, 3H), 7.23 – 7.08 

(m, 5H), 6.96 (ddd, J = 8.0, 7.1, 1.0 Hz, 1H), 4.01 (s, 3H); 
13

C NMR (75 MHz, CDCl3) δ = 

161.11 (d, J = 246.0 Hz), 141.28, 140.91, 135.18 (d, J = 3.0 Hz), 127.75, 127.24 (d, J = 8.4 

Hz), 125.34, 122.62, 122.03, 119.72, 118.32, 118.12, 117.67, 116.53 (d, J = 22.8 Hz), 116.00, 

114.49, 110.69, 109.64, 31.63; IR (ATR, cm
-1

): ν = 3055  (w), 2922  (w), 1504  (s), 1471  (s), 

1439  (m), 1423  (m), 1398  (s), 1367  (m), 1323  (m), 1281  (w), 1230  (s), 1217  (s), 1153  

(m), 1134  (m), 1124  (m), 1095  (m), 1061  (m), 1032  (m), 1016  (m), 949  (m), 918  (m), 

872  (m), 841  (m), 827  (s), 808  (s), 785  (m), 760  (m), 725  (vs), 710  (s), 679  (m), 636  

(m), 611  (m), 588  (s), 565  (s), 542  (m); GC/MS (EI, 70eV): m/z (%) = 314 (100), 299 (48),  

157 (10); HRMS (EI): calculated for C21H15F1N2 ([M
+
]): 314.12138; found: 314.12142. 

5-methyl-10-(3-(trifluoromethyl)phenyl)-5,10-dihydroindolo[3,2-

b]indole 15e was prepared following general procedure 4 using 

compound  14 (100 mg, 0.27 mmol) and 3-(trifluoromethyl)aniline 

(103 µL, 0.82 mmol). The product was purified by flash 

chromatography (silica gel, heptane/dichloromethane 4:1) to yield 

15e (84 mg, 84 %) as a white solid; m.p. 86-87 ºC;  
1
H NMR (300 

MHz, CDCl3) δ = 7.90 (s, 1H), 7.88 – 7.74 (m, 2H), 7.64 – 7.46 (m, 3H), 7.35 (dd, J = 15.7, 

8.2 Hz, 2H), 7.22 – 7.12 (m, 3H), 6.99 (ddd, J = 8.0, 7.1, 1.0 Hz, 1H), 4.00 (s, 3H); 
19

F NMR 

(282 MHz, CDCl3) δ = -62.54 (s); 
13

C NMR (75 MHz, CDCl3) δ = 141.29, 140.50, 139.84, 

132.26 (q, J = 32.7 Hz), 130.29, 128.40 (d, J = 0.9 Hz), 128.33, 124.63, 123.03, 122.79 (q, J 

= 3.8 Hz), 122.53 (q, J = 272.7 Hz ), 122.52 (d, J = 272.7 Hz), 122.17, 122.09 (q, J = 7.8, 4.1 

Hz), 120.33, 118.59, 117.85, 116.55, 114.43, 110.61, 109.75, 31.60; IR (ATR, cm
-1

): ν = 

3061  (w), 2931  (w), 1612  (w), 1595  (m), 1574  (w), 1514  (w), 1495  (s), 1471  (s), 1441  

(s), 1421  (m), 1396  (m), 1373  (m), 1335  (s), 1321  (s), 1308  (s), 1286  (s), 1263  (m), 1232  

(s), 1176  (s), 1163  (s), 1113  (vs), 1095  (s), 1066  (s), 1034  (m), 1020  (m), 1001  (m), 968  

(m), 957  (m), 924  (m), 916  (m), 899  (m), 872  (w), 839  (s), 802  (s), 729  (vs), 706  (vs), 

696  (s), 679  (m), 665  (s), 650  (m), 638  (m), 596  (m), 588  (m), 569  (m), 542  (m); 
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GC/MS (EI, 70eV): m/z (%) = 364 (100), 349 (39); HRMS (EI): calculated for C22H15F3N2 

([M
+
]): 364.11818; found: 364.11786. 

 5-(4-methoxyphenyl)-10-methyl-5,10-dihydroindolo[3,2-b]indole  

15f was prepared following general procedure 4 using compound  14 

(100 mg, 0.27 mmol) and p-anisidine (101 mg, 0.82 mmol). The 

product was purified by flash chromatography (silica gel, 

heptane/ethylacetate 5:1) to yield 15f (68 mg, 76 %) as a white solid; 

m.p. 114-116 ºC; 
1
H NMR (300 MHz, Acetone) δ = 7.91 – 7.81 (m, 

1H), 7.49 – 7.41 (m, 2H), 7.40 – 7.32 (m, 2H), 7.31 – 7.26 (m, 1H), 

7.14 – 7.00 (m, 5H), 6.86 (m, 1H), 4.01 (s, 3H), 3.75 (s, 3H); 
13

C NMR (75 MHz, Acetone) δ 

= 159.43, 142.28, 141.93, 132.64, 128.18, 127.70, 126.24, 123.28, 122.73, 120.23, 118.97, 

118.65, 116.65, 115.78, 115.36, 111.40, 110.67, 55.95, 31.82; IR (ATR, cm
-1

): ν = 3057  (m), 

2955  (m), 2926  (m), 2912  (m), 2835  (m), 1510  (s), 1473  (s), 1464  (s), 1441  (s), 1421  

(m), 1400  (s), 1367  (m), 1331  (m), 1296  (m), 1284  (m), 1234  (s), 1182  (m), 1169  (m), 

1161  (m), 1151  (m), 1132  (m), 1124  (m), 1107  (s), 1065  (m), 1030  (s), 1018  (m), 968  

(m), 953  (m), 947  (m), 931  (m), 914  (m), 870  (m), 827  (s), 806  (m), 795  (m), 756  (m), 

742  (m), 723  (vs), 685  (m), 675  (m), 665  (m), 640  (m), 613  (m), 590  (s), 573  (s), 542  

(m); GC/MS (EI, 70eV): m/z (%) = 326 (100), 311 (25), 268 (12); HRMS (EI): calculated for 

C21H15N2O1 ([M
+
]): 326.14136; found: 326.14118. 

 5-methyl-10-(4-(methylthio)phenyl)-5,10-dihydroindolo[3,2-

b]indole 15g was prepared following general procedure 4 using 

compound  14 (100 mg, 0.27 mmol) and 4-(methylthio)aniline (102 

µL, 0.82 mmol). The product was purified by flash chromatography 

(silica gel, heptane/ethylacetate 5:1) to yield 15g (78 mg, 83 %) as a 

white solid; m.p. 107-108 ºC; 
1
H NMR (250 MHz, CDCl3) δ = 8.04 – 

7.95 (m, 1H), 7.75 – 7.58 (m, 4H), 7.58 – 7.46 (m, 3H), 7.43 – 7.24 (m, 3H), 7.15 (t, J = 7.5 

Hz, 1H), 4.17 (s, 3H), 2.64 (s, 3H); 
13

C NMR (63 MHz, CDCl3) δ = 141.28, 140.71, 136.48, 

136.32, 127.79, 125.92, 125.16, 122.57, 121.98, 119.68, 118.37, 118.28, 117.64, 116.03, 

114.59, 110.90, 109.59, 31.62, 16.23; IR (ATR, cm
-1

): ν = 3057  (w), 2916  (m), 1495  (s), 

1468  (s), 1439  (s), 1419  (m), 1396  (s), 1365  (m), 1323  (s), 1302  (m), 1284  (m), 1265  

(m), 1228  (s), 1180  (m), 1161  (m), 1153  (m), 1132  (m), 1090  (s), 1065  (m), 1030  (m), 

1011  (m), 962  (m), 957  (m), 949  (m), 924  (m), 916  (m), 870  (w), 835  (w), 822  (s), 773  



General procedures and spectroscopic data  112 

 

 

(m), 735  (vs), 727  (vs), 700  (s), 687  (s), 679  (s), 634  (m), 602  (m), 588  (s), 569  (m), 544  

(m); GC/MS (EI, 70eV): m/z (%) = 342 (100), 327 (35), 171 (8); HRMS (EI): calculated for 

C22H18N2S1 ([M
+
]): 342.11852; found: 342.11846.  

5-methyl-10-(4-cyanophenyl)-5,10-dihydroindolo[3,2-b]indole 15h 

was prepared following general procedure 4 using compound  14 

(100 mg, 0.27 mmol) and 4-aminobenzonitrile (97 mg, 0.82 mmol). 

The product was purified by flash chromatography (silica gel, 

Heptane/ethylacetate 4:1) to yield 15h (72 mg, 82 %) as a white 

solid; m.p. 158-160 ºC; 
1
H NMR (250 MHz, CDCl3) δ = 7.84 – 7.77 

(m, 1H), 7.76 – 7.59 (m, 4H), 7.58 – 7.48 (m, 1H), 7.39 – 7.31 (m, 

2H), 7.26 – 7.13 (m, 3H), 7.00 (ddd, J = 8.0, 7.1, 1.0 Hz, 1H), 3.98 (s, 3H); 
13

C NMR (63 

MHz, CDCl3) δ = 143.01, 141.20, 140.10, 133.63, 128.80, 124.97, 123.86, 123.27, 122.27, 

120.85, 118.73, 118.66, 118.24, 117.98, 117.01, 114.32, 110.73, 109.85, 108.87, 31.55; IR 

(ATR, cm
-1

): ν = 3055  (w), 2929  (w), 2218  (m), 1601  (m), 1508  (s), 1470  (s), 1441  (s), 

1423  (m), 1396  (s), 1373  (m), 1346  (m), 1325  (s), 1308  (m), 1279  (w), 1230  (m), 1200  

(w), 1174  (m), 1163  (m), 1155  (m), 1134  (m), 1059  (w), 1034  (m), 1024  (m), 949  (w), 

872  (w), 843  (m), 831  (m), 741  (s), 729  (vs), 687  (w), 681  (w), 673  (w), 646  (w), 607  

(w), 590  (m), 567  (w), 548  (m); GC/MS (EI, 70eV): m/z (%) = 321 (100), 306 (36), 219 

(12), 161 (10); HRMS (EI): calculated for C22H15N3 ([M
+
]): 321.12605; found: 321.12595. 

 5-methyl-10-propyl-5,10-dihydroindolo[3,2-b]indole 15i was 

prepared following general procedure 4 using compound  14 (100 

mg, 0.27 mmol) and n-propylamine (68 µL, 0.82 mmol). The product 

was purified by flash chromatography (silica gel, 

heptane/dichloromethane 5:1) to yield 15i (54 mg, 86 %) as a white 

solid; m.p. 121-122 ºC; 
1
H NMR (250 MHz, CDCl3) δ = 7.81 – 7.71 (m, 2H), 7.36 – 7.02 (m, 

6H), 4.33 (s, 2H), 3.98 (s, 3H), 1.89 (sex, J = 7.3 Hz, 2H), 0.86 (t, J = 7.4 Hz, 3H); 
13

C NMR 

(63 MHz, CDCl3) δ = 141.23, 140.63, 126.54, 125.81, 121.61, 118.15, 117.99, 117.66, 

117.51, 114.73, 109.78, 109.53, 46.80, 31.59, 23.65, 11.68; IR (ATR, cm
-1

): ν = 3053  (w), 

2960  (w), 2931  (m), 2874  (w), 1497  (m), 1475  (s), 1466  (m), 1439  (m), 1423  (m), 1406  

(m), 1381  (m), 1363  (s), 1298  (m), 1267  (m), 1246  (w), 1225  (s), 1188  (m), 1151  (m), 

1132  (m), 1119  (m), 1014  (m), 951  (w), 920  (m), 899  (m), 841  (m), 729  (vs), 675  (m), 

660  (m), 644  (m), 590  (m), 575  (m), 567  (m), 544  (m); GC/MS (EI, 70eV): m/z (%) = 
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262 (100), 233 (89), 219 (48); HRMS (EI): calculated for C18H18N2 ([M
+
]): 262.14645; 

found: 262.14588. 

 5-methyl-10-allyl-5,10-dihydroindolo[3,2-b]indole 15j was prepared 

following general procedure 4 using compound  14 (100 mg, 0.27 

mmol) and allylamine (62 µL, 0.82 mmol). The product was purified 

by flash chromatography (silica gel, heptane/dichloromethane 5:1) to 

yield 15j (60 mg, 84 %) as a white solid; m.p. 125-126 ºC; 
1
H NMR 

(250 MHz, CDCl3) δ = 8.08 – 7.65 (m, 2H), 7.62 – 6.95 (m, 6H), 6.17 – 5.90 (m, 1H), 5.20 – 

4.95 (m, 4H), 4.03 (s, 3H); 
13

C NMR (63 MHz, CDCl3) δ = 141.15, 140.60, 133.49, 126.68, 

125.76, 121.75, 121.67, 118.35, 118.16, 117.79, 117.47, 116.67, 115.03, 114.62, 109.84, 

109.47, 47.49, 31.60; IR (ATR, cm
-1

): ν = 3063  (w), 2920  (m), 2852  (w), 1643  (w), 1497  

(m), 1475  (s), 1448  (m), 1433  (m), 1406  (s), 1367  (m), 1352  (m), 1294  (w), 1273  (m), 

1246  (m), 1221  (s), 1174  (m), 1149  (m), 1132  (m), 1119  (m), 1061  (w), 1041  (w), 1016  

(m), 993  (m), 976  (m), 953  (w), 943  (w), 924  (m), 914  (m), 904  (m), 841  (m), 831  (m), 

771  (w), 741  (m), 721  (vs), 663  (m), 598  (m), 584  (s), 565  (m), 544  (m); GC/MS (EI, 

70eV): m/z (%) = 260 (47), 219 (100); HRMS (EI): calculated for C18H16N2 ([M
+
]): 

260.13080; found: 260.13081. 

5-methyl-10-benzyl-5,10-dihydroindolo[3,2-b]indole 15k was 

prepared following general procedure 4 using compound  14 (100 

mg, 0.27 mmol) and benzylamine (90 µL, 0.82 mmol). The product 

was purified by flash chromatography (silica gel, 

heptane/dichloromethane 3:1) to yield 15k (61 mg, 72 %) as a white 

solid; m.p. 151-152 ºC; 
1
H NMR (250 MHz, CDCl3) δ = 7.89 – 7.80 

(m, 1H), 7.55 – 7.52 (m, 1H), 7.39 – 7.29 (m, 2H), 7.26 – 7.06 (m, 8H), 7.05 – 6.94 (m, 1H), 

5.61 (s, 2H), 4.05 (s, 3H); 
13

C NMR (63 MHz, CDCl3) δ = 141.16, 140.87, 137.99, 128.77 (x 

2C), 127.42, 126.53 (x 2C), 121.90, 121.67, 118.49, 118.20, 115.10, 114.67, 109.99, 109.46, 

48.82, 31.62; IR (ATR, cm
-1

): ν = 3055  (w), 3030  (w), 2935  (w), 1603  (w), 1579  (w), 

1495  (m), 1475  (s), 1448  (m), 1431  (m), 1406  (m), 1387  (m), 1360  (m), 1346  (m), 1340  

(m), 1317  (m), 1300  (m), 1288  (m), 1273  (m), 1246  (m), 1223  (m), 1171  (m), 1149  (w), 

1132  (m), 1122  (m), 1099  (w), 1074  (w), 1028  (w), 1014  (m), 978  (m), 849  (w), 766  

(w), 731  (vs), 694  (s), 658  (m), 594  (w), 584  (m), 569  (w), 536  (w); GC/MS (EI, 70eV): 
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m/z (%) = 310 (49), 219 (100); HRMS (EI): calculated for C22H18 N2 ([M
+
]): 310.14645; 

found: 310.14720. 

 5-methyl-10-(4-methoxybenzyl)-5,10-dihydroindolo[3,2-b]indole 

15l was prepared following general procedure 4 using compound  

14 (100 mg, 0.27 mmol) and 4-methoxybenzylamine (107 µL, 0.82 

mmol). The product was purified by flash chromatography (silica 

gel, heptane/ethylacetate 5:1) to yield 15l (74 mg, 79 %) as a white 

solid; m.p. 161-162 ºC; 
1
H NMR (300 MHz, CDCl3) δ = 7.86 – 

7.78 (m, 1H), 7.54 (d, J = 7.9 Hz, 1H), 7.32 (dd, J = 8.3, 4.0 Hz, 2H), 7.25 – 6.95 (m, 6H), 

6.74 – 6.62 (m, 2H), 5.49 (s, 2H), 4.00 (s, 3H), 3.60 (s, 3H); 
13

C NMR (75 MHz, CDCl3) δ = 

158.98, 141.22, 140.86, 130.15, 128.44, 127.85, 121.91, 121.70, 118.48, 118.26, 117.77, 

117.54, 115.14, 114.75, 114.20, 114.07, 110.09, 109.51, 55.26, 48.32, 31.63; IR (ATR, cm
-1

): 

ν = 3047  (w), 2928  (w), 1610  (w), 1512  (m), 1497  (m), 1475  (m), 1450  (m), 1437  (m), 

1421  (w), 1404  (m), 1363  (m), 1342  (m), 1311  (w), 1300  (w), 1294  (w), 1271  (m), 1252  

(m), 1221  (m), 1171  (m), 1149  (m), 1132  (m), 1120  (m), 1109  (m), 1030  (m), 1014  (m), 

984  (w), 957  (w), 926  (w), 843  (m), 831  (w), 823  (w), 810  (m), 768  (w), 752  (m), 742  

(s), 727  (vs), 665  (w), 656  (w), 642  (m), 629  (w), 592  (m), 577  (w), 565  (w), 534  (m); 

GC/MS (EI, 70eV): m/z (%) = 340 (53), 219 (100), 121 (32); HRMS (EI): calculated for 

C23H20N2O1 ([M
+
]): 340.15701; found: 340.15763. 

5-methyl-10-(4-fluorobenzyl)-5,10-dihydroindolo[3,2-b]indole 15m 

was prepared following general procedure 4 using compound  14 (100 

mg, 0.27 mmol) and 4-fluorobenzylamine (94 µL, 0.82 mmol). The 

product was purified by flash chromatography (silica gel, 

heptane/dichloromethane 3:1) to yield 15m (58 mg, 64 %) as a white 

solid; m.p. 153-154 ºC; 
1
H NMR (300 MHz, CDCl3) δ = 7.80 (d, J = 

7.6 Hz, 1H), 7.46 (d, J = 7.9 Hz, 1H), 7.28 (t, J = 8.5 Hz, 2H), 7.22 – 6.92 (m, 6H), 6.83 – 

6.77 (m, 2H), 5.44 (s, 2H), 3.95 (s, 3H); 
19

F NMR (282 MHz, CDCl3) δ = -115.08 (s); 
13

C 

NMR (75 MHz, CDCl3) δ = 162.20 (d, J = 245.5 Hz), 141.21, 140.81,
 
133.82 (d, J = 3.1 Hz), 

128.22 (d, J = 8.1 Hz), 126.89, 125.71, 122.06, 121.82, 118.70, 118.36, 117.65, 117.58, 

115.72 (d, J = 21.6 Hz), 115.25, 114.64, 109.94, 109.62, 48.11, 31.61; IR (ATR, cm
-1

): ν = 

3055  (w), 2926  (w), 1606  (m), 1508  (s), 1497  (m), 1473  (s), 1448  (m), 1433  (m), 1423  

(m), 1406  (s), 1360  (m), 1340  (m), 1296  (w), 1288  (m), 1271  (m), 1244  (m), 1221  (s), 
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1171  (m), 1157  (s), 1132  (m), 1122  (m), 1092  (m), 1049  (w), 1014  (m), 978  (m), 957  

(w), 930  (w), 920  (w), 843  (m), 814  (s), 779  (w), 729  (vs), 681  (m), 650  (m), 623  (m), 

592  (m), 580  (m), 567  (m), 542  (w); GC/MS (EI, 70eV): m/z (%) = 328 (44), 219 (100), 

109 (9); HRMS (EI): calculated for C22H17N2F1 ([M
+
]): 328.13703; found: 328.13740. 

5-methyl-10-(3-(trifluoromethyl)benzyl)-5,10-dihydroindolo[3,2-

b]indole 15n was prepared following general procedure 4 using 

compound  14 (100 mg, 0.27 mmol) and 3-

(trifluoromethyl)benzylamine (118 µL, 0.82 mmol). The product was 

purified by flash chromatography (silica gel, 

heptane/dichloromethane 3:1) to yield 15n (62 mg, 60 %) as a white 

solid; m.p. 153-154 ºC; 
1
H NMR (300 MHz, CDCl3) δ = 7.90 – 7.84 (m, 1H), 7.56 – 7.45 (m, 

2H), 7.45 – 7.09 (m, 8H), 7.01 (ddd, J = 8.0, 7.1, 1.0 Hz, 1H), 5.63 (s, 2H), 4.05 (s, 3H); 
19

F 

NMR (282 MHz, CDCl3) δ = -62.55 (s); 
13

C NMR (75 MHz, CDCl3) δ = 141.18, 140.83, 

139.12, 131.12 (d, J = 32.3 Hz), 129.81, 129.47, 126.96, 125.65, 124.44 (q, J = 3.8 Hz), 

123.99 (q, J = 274.3 Hz), 123.28 (q, J = 3.8 Hz), 122.17, 121.85, 118.87, 118.39, 117.67, 

117.35, 115.36, 114.51, 109.80, 109.63, 48.46, 31.64; IR (ATR, cm
-1

): ν = 3055  (w), 2926  

(w), 1579  (w), 1497  (m), 1473  (m), 1446  (m), 1433  (m), 1406  (m), 1363  (w), 1346  (w), 

1327  (s), 1288  (m), 1271  (m), 1246  (m), 1221  (m), 1186  (m), 1161  (s), 1153  (s), 1117  

(vs), 1092  (s), 1072  (s), 1049  (m), 1014  (m), 1003  (m), 989  (m), 980  (m), 957  (w), 947  

(w), 920  (m), 893  (m), 872  (w), 841  (m), 827  (m), 793  (s), 737  (s), 727  (vs), 700  (s), 

677  (m), 665  (m), 648  (m), 613  (m), 602  (m), 586  (m), 567  (m), 552  (m), 540  (m); 

GC/MS (EI, 70eV): m/z (%) = 378 (52), 219 (100), 159 (8); HRMS (EI): calculated for 

C23H17N2F3 ([M
+
]): 378.13383; found: 378.13375. 

5-methyl-10-phenethyl-5,10-dihydroindolo[3,2-b]indole 15o was 

prepared following general procedure 4 using compound  14 (100 mg, 

0.27 mmol) and phenethylamine (104 µL, 0.82 mmol). The product 

was purified by flash chromatography (silica gel, 

heptane/dichloromethane 4:1) to yield 15o (74 mg, 83 %) as a white 

solid; m.p. 138-139 ºC; 
1
H NMR (250 MHz, CDCl3) δ = 7.98 – 7.88 

(m, 2H), 7.62 – 6.96 (m, 11H), 4.83 – 4.59 (m, 2H), 4.15 (s, 3H), 3.34 

– 3.15 (m, 2H); 
13

C NMR (63 MHz, CDCl3) δ = 141.22, 140.46, 138.76, 128.87, 128.71, 

126.78, 126.66, 125.39, 121.74, 121.69, 118.32, 118.23, 117.53, 117.46, 114.94, 114.73, 
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109.65, 109.59, 47.13, 36.74, 31.63; IR (ATR, cm
-1

): ν = 3026  (w), 2929  (m), 1495  (m), 

1477  (s), 1450  (m), 1439  (m), 1423  (m), 1406  (s), 1362  (m), 1348  (s), 1281  (m), 1228  

(s), 1203  (m), 1167  (m), 1155  (m), 1132  (m), 1122  (m), 1082  (w), 1016  (m), 999  (m), 

850  (w), 829  (w), 742  (s), 727  (vs), 694  (vs), 646  (m), 596  (m), 580  (m), 569  (w), 532  

(m); GC-MS (EI, 70 eV): m/z (%) =  324 (54), 233 (100), 218 (42); HRMS (ESI): calcd. for 

C23H20N2 ([M]
+
): 324.16265; found: 324.16235. 

 

8.5.3 Synthesis of α-,δ-Carbolines  

Procedure for preparation of 3-(2-bromophenyl)-2-chloropyridine   17a.  

 

3-bromo-2-chloropyridine 16a (1 g, 5.2 mmol), 2-bromophenyl boronic acid 2 (1.25 g, 6.2 

mmol), Pd(PPh3)4 (300 mg, 260 µmol) and sodium hydroxide (624 mg, 15.6 mmol) were 

added to 500 mL Schlenk flask. The mixture was back-filled several times with Argon. To 

the mixture 70 mL THF and 10 mL distilled water were added, then, back-filled with argon 

several times. The reaction was heated at 70 ºC for 4h. The solvent was evaporated in vacuo. 

The residue was extracted with dichloromethane and water. The organic layer was dried over 

MgSO4, filtered and the solvent was evaporated in vacuo. The yellow residue was purified by 

column chromatography (silica gel, Heptane/ethylacetate 4:1) to yield 3-(2-bromophenyl)-2-

chloropyridine    17a  (1.19 g, 85 %) as colorless syrup; 
1
H NMR (300 MHz, CDCl3) δ = 8.38 

(dd, J = 4.8, 1.9 Hz, 1H), 7.66 – 7.59 (m, 1H), 7.54 (dd, J = 7.5, 2.0 Hz, 1H), 7.33 (td, J = 

7.6, 1.3 Hz, 1H), 7.29 – 7.13 (m, 3H); 
13

C NMR (75 MHz, CDCl3) δ = 150.36, 149.18, 

139.84, 138.41, 136.39, 132.88, 130.95, 130.07, 127.42, 123.40, 122.16; IR (ATR, cm
-1

): ν = 

3051 (w), 1576 (m), 1558 (m), 1479 (w), 1441 (m), 1427 (m), 1390 (vs), 1300 (w), 1255 (w), 

1242 (w), 1207 (m), 1122 (m), 1103 (s), 1063 (s), 1053 (m), 1026 (m), 997 (s), 945 (w), 802 

(m), 781 (m), 748 (vs), 723 (s), 694 (s), 654 (s), 615 (m), 569 (m), 553 (m); GC-MS (EI, 70 

eV): m/z (%) = 269 (59), 188 (100), 153 (58), 126(29); HRMS (EI): calcd. for C11H7N1Br1Cl1 
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([M]
+
): 266.94449; found: 266.94495; calcd. for C11H7N1

81
Br1Cl1 ([M]

+
): 268.94244; found: 

268.94288; calcd. for C11H7N1Br1
37

Cl1 ([M]
+
): 270.93949; found: 270.94012.  

General procedure 5 for double C-N coupling with aniline derivatives, exemplified by: 

9-phenyl-9H-pyrido[2,3-b]indole 18a 

 

Aniline (52 µL, 0.56 mmol) was added to pressure tube charged with 17a (100 mg, 0.37 

mmol), Pd2(dba)3 (17 mg, 19 µmol), ligand Dppf (21 mg, 37 µmol) and sodium tert-butoxide 

(107 mg, 1.12 mmol) under Argon. The mixture was back-filled with Argon several times. 

The mixture was dissolved in anhydrous Toluene (10 mL) and heated at 110 ºC for 7 h. After 

cooling, the reaction mixture was diluted with dichloromethane (20 mL) and filtered through 

a celite pad, washing with dichloromethane (40 mL). The filtrate was reduced in vacuo. The 

product was separated via flash chromatography (silica gel, heptane/ethylacetate 3:1) to yield 

9-phenyl-9H-pyrido[2,3-b]indole 18a (84 mg, 92%) as a white solid; m.p. 110-111 ºC; 
1
H 

NMR (250 MHz, CDCl3) δ = 8.42 (dd, J = 4.9, 1.6 Hz, 1H), 8.31 (dd, J = 7.7, 1.6 Hz, 1H), 

8.05 (dt, J = 7.7, 0.9 Hz, 1H), 7.63 – 7.48 (m, 4H), 7.47 – 7.33 (m, 3H), 7.33 – 7.22 (m, 1H), 

7.20 – 7.10 (m, 1H); 
13

C NMR (63 MHz, CDCl3) δ = 151.93, 146.47, 140.11, 136.26, 129.65, 

128.28, 127.64, 127.38, 126.93, 120.91, 120.81, 120.71, 116.36, 116.04, 110.41; IR (ATR, 

cm
-1

): ν = 3037 (m), 1591 (s), 1568 (m), 1504 (s), 1473 (s), 1452 (s), 1414 (vs), 1377 (m), 

1354 (m), 1335 (s), 1309 (m), 1290 (s), 1228 (s), 1176 (m), 1167 (m), 1115 (s), 1074 (m), 

1051 (m), 1026 (m), 997 (m), 970 (m), 958 (m), 951 (m), 937 (m), 766 (s), 756 (s), 748 (s), 

735 (vs), 715 (m), 692 (vs), 636 (s), 617 (s), 579 (s), 569 (m); GC-MS (EI, 70 eV): m/z (%) =  

243 (100), 122 (17); HRMS (ESI): calcd. for C17H12N2 ([M + H]
+
): 245.10732; found: 

245.10756. 
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9-(p-tolyl)-9H-pyrido[2,3-b]indole 18b was prepared following general 

procedure 5 using 17a (100 mg, 0.37 mmol) and 4-toluidine (60 mg, 0.56 

mmol). The product was purified by flash chromatography (silica gel, 

heptane/ethylacetate 3:1) to yield 18b (91 mg, 95 %) as a white solid; m.p. 

102-103 ºC; 
1
H NMR (250 MHz, CDCl3) δ = 8.40 (dd, J = 4.9, 1.6 Hz, 

1H), 8.29 (dd, J = 7.7, 1.6 Hz, 1H), 8.04 (d, J = 7.7 Hz, 1H), 7.48 – 7.29 

(m, 6H), 7.28 – 7.19 (m, 1H), 7.18 – 7.09 (m, 1H), 2.39 (s, 3H); 
13

C NMR (63 MHz, CDCl3) 

δ = 152.10, 146.50, 140.28, 137.60, 133.56, 130.30, 128.21, 127.25, 126.85, 120.87, 120.71, 

120.54, 116.24, 115.87, 110.39, 21.26; IR (ATR, cm
-1

): ν = 3039 (w), 2920 (w), 1589 (m), 

1568 (m), 1514 (s), 1475 (m), 1456 (s), 1412 (vs), 1377 (m), 1354 (m), 1336 (s), 1311 (m), 

1290 (s), 1228 (s), 1219 (s), 1200 (m), 1182 (m), 1169 (m), 1155 (w), 1120 (m), 1109 (m), 

1051 (w), 1038 (w), 1018 (m), 997 (m), 966 (w), 951 (w), 941 (w), 924 (m), 841 (w), 812 (s), 

798 (m), 771 (vs), 744 (s), 735 (vs), 714 (s), 702 (s), 646 (m), 633 (s), 617 (m), 577 (s), 571 

(s);  GC-MS (EI, 70 eV): m/z (%) =  258 (100), 242 (17), 128 (9); HRMS (ESI): calcd. for 

C18H14N2 ([M + H]
+
): 259.12297; found: 259.12331. 

9-(4-(tert-butyl)phenyl)-9H-pyrido[2,3-b]indole 18c was prepared 

following general procedure 5 using 17a (100 mg, 0.37 mmol) and 4-tert-

butylaniline (83 mg, 0.56 mmol). The product was purified by flash 

chromatography (silica gel, heptane/ethylacetate 3:1) to yield 18c (105 

mg, 94 %) as a white solid; m.p. 147-148 ºC; 
1
H NMR (250 MHz, CDCl3) 

δ = 8.41 (dd, J = 4.9, 1.6 Hz, 1H), 8.29 (dd, J = 7.7, 1.6 Hz, 1H), 8.06 – 

7.99 (m, 1H), 7.58 – 7.32 (m, 6H), 7.23 (ddd, J = 8.1, 6.7, 1.6 Hz, 1H), 7.19 – 7.08 (m, 1H), 

1.32 (s, 9H); 
13

C NMR (63 MHz, CDCl3) δ = 152.01, 150.43, 146.50, 140.26, 133.51, 128.22, 

126.84, 126.77, 126.63, 120.84, 120.72, 120.56, 116.31, 115.87, 110.55, 34.76, 31.42; IR 

(ATR, cm
-1

): ν = 2960 (m), 2902 (w), 2868 (w), 1587 (m), 1568 (m), 1520 (s), 1475 (m), 

1454 (s), 1414 (vs), 1360 (m), 1335 (s), 1288 (s), 1269 (m), 1228 (s), 1186 (m), 1169 (m), 

1153 (w), 1119 (m), 1097 (w), 1018 (m), 997 (m), 930 (m), 833 (m), 825 (m), 800 (w), 769 

(vs), 748 (s), 739 (vs), 687 (m), 638 (s), 617 (m), 580 (m), 569 (m), 552 (s); GC-MS (EI, 70 

eV): m/z (%) = 300 (45),  285 (100), 128 (13); HRMS (EI): calcd. for C21H20N2 ([M]
+
): 

300.16210; found: 300.16183. 
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9-(4-fluorophenyl)-9H-pyrido[2,3-b]indole 18d was prepared following 

general procedure 5 using 17a (100 mg, 0.37 mmol) and 4-fluoroaniline 

(53 µL, 0.56 mmol). The product was purified by flash chromatography 

(silica gel, heptane/ethylacetate 3:1) to yield 18d (87 mg, 89 %) as a white 

solid; m.p. 156-157 ºC; 
1
H NMR (300 MHz, CDCl3) δ = 8.38 (dd, J = 4.9, 

1.6 Hz, 1H), 8.27 (dt, J = 5.0, 2.5 Hz, 1H), 8.02 (d, J = 7.8 Hz, 1H), 7.55 – 

7.46 (m, 2H), 7.42 – 7.29 (m, 2H), 7.28 – 7.10 (m, 4H) ; 
19

F NMR (282 MHz, CDCl3) δ = -

112.83 (s); 
13

C NMR (75 MHz, CDCl3) δ = 161.79 (d, J = 247.2 Hz), 152.02, 146.54, 140.17, 

132.23 (d, J = 3.1 Hz), 129.23 (d, J = 8.6 Hz), 128.39, 127.08, 121.04, 120.89, 120.83, 

116.66 (d, J = 22.8 Hz), 116.35, 116.22, 110.19; IR (ATR, cm
-1

): ν = 3061 (w), 1589 (m), 

1570 (m), 1510 (s), 1475 (s), 1456 (s), 1416 (s), 1356 (m), 1336 (s), 1294 (s), 1228 (s), 1213 

(s), 1173 (s), 1151 (s), 1119 (s), 1092 (s), 1053 (m), 1020 (m), 1012 (m), 997 (m), 964 (m), 

953 (m), 941 (m), 931 (m), 924 (m), 899 (w), 870 (w), 856 (w), 833 (s), 816 (s), 798 (m), 769 

(vs), 762 (s), 746 (s), 737 (vs), 715 (s), 704 (s), 665 (m), 644 (m), 629 (m), 617 (m), 579 (s), 

569 (s); GC-MS (EI, 70 eV): m/z (%) =  261 (100), 131 (9); HRMS (ESI): calcd. for 

C17H11F1N2 ([M + H]
+
): 263.0979; found: 263.09813. 

9-(3-(trifluoromethyl)phenyl)-9H-pyrido[2,3-b]indole 18e was prepared 

following general procedure 5 using 17a (100 mg, 0.37 mmol) and 4-

fluoroaniline (53 µL, 0.56 mmol). The product was purified by flash 

chromatography (silica gel, heptane/ethylacetate 3:1) to yield 18e (87 mg, 

89 %) as a white solid; m.p. 71-72 ºC; 
1
H NMR (300 MHz, CDCl3) δ = 

8.38 (dd, J = 4.9, 1.6 Hz, 1H), 8.28 (dd, J = 7.7, 1.6 Hz, 1H), 8.02 (dt, J = 7.8, 0.9 Hz, 1H), 

7.87 (s, 1H), 7.84 – 7.76 (m, 1H), 7.68 – 7.59 (m, 2H), 7.41 – 7.35 (m, 2H), 7.26 (ddd, J = 

8.2, 5.4, 2.9 Hz, 1H), 7.20 – 7.13 (m, 1H) ; 
19

F NMR (282 MHz, CDCl3) δ = -62.70 (s); 
13

C 

NMR (75 MHz, CDCl3) δ = 151.71, 146.56, 139.59, 136.99, 132.14 (q, J = 32.8 Hz), 130.73 

(d, J = 1.0 Hz), 130.25, 128.49, 127.28, 124.47 – 123.68 (m, 2xC), 123.83 (q, J = 272.6 Hz), 

121.31, 121.17, 121.14, 116.66, 116.57, 110.10; IR (ATR, cm
-1

): ν = 3051 (w), 1612 (w), 

1591 (m), 1574 (m), 1497 (m), 1477 (m), 1458 (s), 1410 (s), 1358 (m), 1338 (m), 1321 (s), 

1306 (s), 1290 (s), 1275 (s), 1228 (s), 1178 (m), 1167 (s), 1155 (s), 1119 (vs), 1103 (s), 1093 

(s), 1068 (s), 1020 (m), 999 (m), 972 (s), 937 (m), 931 (m), 914 (m), 889 (m), 852 (m), 810 

(s), 796 (s), 771 (s), 760 (m), 744 (s), 737 (vs), 715 (m), 694 (vs), 661 (s), 642 (s), 619 (s), 

582 (m), 565 (m), 528 (s); GC-MS (EI, 70 eV): m/z (%) =  311 (100), 243 (11); HRMS 

(ESI): calcd. for C18H11F3N2 ([M + H]
+
): 313.09471; found: 313.09460. 
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9-(4-methoxyphenyl)-9H-pyrido[2,3-b]indole 18f was prepared 

following general procedure 5 using 17a (100 mg, 0.37 mmol) and p-

anisidine (69 mg, 0.56 mmol). The product was purified by flash 

chromatography (silica gel, heptane/ethylacetate 2:1) to yield 18f (100 

mg, 98 %) as a white solid; m.p. 137-138 ºC; 
1
H NMR (250 MHz, 

CDCl3) δ = 8.40 (dd, J = 4.9, 1.6 Hz, 1H), 8.30 (dd, J = 7.7, 1.6 Hz, 1H), 

8.04 (d, J = 7.7 Hz, 1H), 7.51 – 7.41 (m, 2H), 7.40 – 7.30 (m, 2H), 7.29 – 7.19 (m, 1H), 7.18 

– 7.09 (m, 1H), 7.09 – 7.01 (m, 2H), 3.82 (s, 3H); 
13

C NMR (63 MHz, CDCl3) δ = 159.00, 

152.24, 146.51, 140.55, 128.90, 128.73, 128.22, 126.86, 120.86, 120.60, 120.49, 116.17, 

115.81, 115.00, 110.30, 55.58; IR (ATR, cm
-1

): ν = 3057 (w), 2960 (w), 2935 (w), 2908 (w), 

2835 (w), 1589 (m), 1570 (m), 1512 (s), 1477 (m), 1456 (s), 1441 (m), 1416 (s), 1358 (m), 

1336 (m), 1298 (m), 1288 (s), 1230 (vs), 1190 (m), 1174 (s), 1149 (m), 1117 (s), 1103 (s), 

1053 (w), 1028 (s), 999 (m), 962 (m), 951 (m), 939 (m), 930 (m), 918 (m), 847 (w), 827 (s), 

814 (m), 798 (m), 769 (vs), 744 (s), 735 (vs), 721 (s), 702 (m), 646 (s), 631 (s), 617 (m), 586 

(s), 579 (s), 571 (m), 530 (vs); GC-MS (EI, 70 eV): m/z (%) = 274 (100),  259 (55), 231 (25), 

168 (10), 115 (9); HRMS (EI): calcd. for C18H14O1N2 ([M]
+
): 274.11006; found: 274.10996. 

9-(4-(methylthio)phenyl)-9H-pyrido[2,3-b]indole 18g was prepared 

following general procedure 5 using 17a (100 mg, 0.37 mmol) and 4-

(methylthio)aniline (69 µL, 0.56 mmol). The product was purified by 

flash chromatography (silica gel, heptane/ethylacetate 2:1) to yield 18g 

(99 mg, 92 %) as a white solid; m.p. 136-137 ºC;
 1

H NMR (250 MHz, 

CDCl3) δ = 8.40 (dd, J = 4.9, 1.6 Hz, 1H), 8.30 (dd, J = 7.7, 1.6 Hz, 1H), 

8.04 (dt, J = 7.7, 1.0 Hz, 1H), 7.52 – 7.36 (m, 6H), 7.31 – 7.21 (m, 1H), 7.15 (dd, J = 7.6, 4.8 

Hz, 1H), 2.48 (s, 3H); 
13

C NMR (63 MHz, CDCl3) δ = 150.92, 145.46, 139.03, 137.06, 

132.25, 127.27, 126.70 (x2C), 125.94, 119.92, 119.78, 119.73, 115.32, 115.05, 109.30, 

15.00; IR (ATR, cm
-1

): ν = 3039 (w), 2960 (m), 2920 (m), 1626 (w), 1589 (m), 1568 (m), 

1500 (s), 1475 (m), 1452 (m), 1437 (m), 1414 (s), 1356 (m), 1335 (m), 1309 (m), 1300 (m), 

1290 (s), 1259 (m), 1228 (s), 1182 (m), 1169 (m), 1151 (m), 1117 (m), 1103 (m), 1090 (s), 

1049 (m), 1014 (s), 997 (s), 980 (m), 970 (m), 953 (m), 933 (m), 924 (m), 858 (m), 814 (s), 

798 (s), 769 (vs), 735 (vs), 714 (s), 679 (m), 642 (s), 629 (s), 617 (m), 580 (m), 569 (m); GC-

MS (EI, 70 eV): m/z (%) = 290 (100), 275 (50), 243 (24); HRMS (EI): calcd. for C18H14N2S1 

([M]
+
): 290.08722; found: 290.08702. 
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9-(4-cyanophenyl)-9H-pyrido[2,3-b]indole 18h was prepared following 

general procedure 5 using 17a (100 mg, 0.37 mmol) and 4-

aminobenzonitrile (66 mg, 0.56 mmol). The product was purified by flash 

chromatography (silica gel, heptane/ethylacetate 1.5:1) to yield 18h (83 

mg, 83 %) as a white solid; m.p.  179-180 ºC; 
1
H NMR (250 MHz, 

CDCl3) δ = 8.38 (dd, J = 4.9, 1.6 Hz, 1H), 8.29 (dd, J = 7.7, 1.6 Hz, 1H), 

8.03 (d, J = 7.7 Hz, 1H), 7.48 – 7.16 (m, 8H); 
13

C NMR (63 MHz, CDCl3) δ = 151.32, 

146.45, 140.52, 138.85, 133.45, 128.58, 127.37, 127.28, 121.74, 121.45, 121.28, 118.52, 

117.11, 116.85, 110.41, 110.23; IR (ATR, cm
-1

): ν = 3057 (w), 2227 (m), 1603 (m), 1591 

(m), 1574 (m), 1512 (m), 1487 (w), 1475 (w), 1450 (m), 1410 (s), 1356 (m), 1336 (m), 1311 

(w), 1286 (m), 1228 (m), 1217 (m), 1184 (w), 1169 (m), 1155 (w), 1119 (m), 1103 (w), 1057 

(w), 1020 (w), 1001 (w), 960 (w), 953 (w), 945 (w), 928 (w), 856 (m), 833 (m), 823 (m), 800 

(w), 789 (w), 773 (m), 766 (s), 744 (m), 735 (vs), 694 (m), 656 (w), 631 (m), 619 (w), 577 

(m), 569 (m), 550 (s), 532 (m); GC-MS (EI, 70 eV): m/z (%) = 268 (100), 134 (7); HRMS 

(EI): calcd. for C18H10N3 ([M]
+
): 268.08692; found: 268.08700. 

General procedure 6 for double C-N coupling with chain amine derivatives, exemplified 

by: 5-benzyl-5H-pyrido[3,2-b]indole 18i 

 

To pressure tube charged with 17a (100 mg, 0.37 mmol), Pd2(dba)3 (17 mg, 19 µmol), ligand 

DPEPhos (21 mg, 37 µmol) and sodium tert-butoxide (107 mg, 0.12 mmol) under Argon. 

The mixture was back-filled with argon several times. The mixture was dissolved in 

anhydrous toluene (10 mL). Benzylamine (61 µL, 0.56 mmol) was added to the mixture and 

heated at 100 ºC for 7 h. After cooling, the reaction mixture was diluted with 

dichloromethane (20 mL) and filtered through a celite pad, washing with dichloromethane 

(40 mL). The filtrate was reduced in vacuo. The product was separated via flash 

chromatography (silica gel, heptane/ethylacetate 3:1) to yield 18i (85 mg, 88 %) as a white 

solid; m.p. 98-99 ºC; 
1
H NMR (250 MHz, CDCl3) δ = 8.41 (dd, J = 4.9, 1.6 Hz, 1H), 8.20 

(dd, J = 7.7, 1.6 Hz, 1H), 7.99 – 7.92 (m, 1H), 7.36 – 7.20 (m, 2H), 7.19 – 7.01 (m, 7H), 5.58 
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(s, 2H) ; 
13

C NMR (63 MHz, CDCl3) δ = 150.65, 145.10, 138.49, 136.25, 127.55, 127.08, 

126.26, 125.88, 125.68, 119.92, 119.56, 118.93, 114.79, 114.24, 108.80, 43.87; IR (ATR, cm
-

1
): ν = 3028 (w), 2960 (w), 2918 (w), 1626 (w), 1589 (m), 1568 (m), 1483 (s), 1466 (s), 1452 

(m), 1431 (s), 1412 (s), 1356 (m), 1348 (m), 1333 (m), 1315 (w), 1292 (m), 1259 (s), 1211 

(s), 1194 (m), 1155 (m), 1128 (m), 1119 (m), 1092 (m), 1078 (m), 1065 (m), 1053 (m), 1030 

(s), 1020 (s), 995 (s), 970 (m), 947 (m), 928 (w), 906 (w), 870 (w), 850 (m), 839 (m), 800 (s), 

791 (s), 773 (vs), 748 (s), 729 (vs), 694 (s), 652 (s), 619 (m), 606 (m), 582 (m), 569 (m), 555 

(s), 528 (s); GC-MS (EI, 70 eV): m/z (%) =  257 (100), 181 (34), 91 (45); HRMS (ESI): 

calcd. for C18H14N2 ([M + H]
+
): 259.12297; found: 259.12298. 

5-(4-fluorobenzyl)-5H-pyrido[3,2-b]indole 18j was prepared 

following general procedure 6 using 17a (100 mg, 0.37 mmol) and 

4-fluorobenzylamine (61 µL, 0.56 mmol). The product was purified 

by flash chromatography (silica gel, heptane/ethylacetate 3:1) to 

yield 18j (90 mg, 87 %) as a white solid; m.p. 103-104 ºC; 
1
H NMR 

(300 MHz, CDCl3) δ = 8.43 (dd, J = 4.9, 1.6 Hz, 1H), 8.25 (dd, J = 7.7, 1.6 Hz, 1H), 8.02 – 

7.96 (m, 1H), 7.36 (ddd, J = 8.3, 7.2, 1.2 Hz, 1H), 7.28 – 7.07 (m, 5H), 6.89 – 6.79 (m, 2H), 

5.57 (s, 2H) ; 
19

F NMR (282 MHz, CDCl3) δ = -115.23 (s); 
13

C NMR (75 MHz, CDCl3) δ = 

161.07 (d, J = 245.4 Hz), 150.56, 145.15, 138.33, 132.02 (d, J = 3.2 Hz), 127.62 (d, J = 8.1 

Hz), 127.20, 125.77, 120.05, 119.63, 119.09, 114.85, 114.47 (d, J = 21.6 Hz), 114.39, 108.65, 

43.24; IR (ATR, cm
-1

): ν = 3053 (w), 3034 (w), 2935 (w), 1624 (w), 1587 (m), 1572 (m), 

1508 (s), 1481 (m), 1464 (s), 1439 (m), 1416 (s), 1383 (w), 1354 (m), 1335 (m), 1294 (m), 

1252 (m), 1217 (s), 1207 (s), 1163 (m), 1128 (m), 1119 (m), 1101 (m), 1061 (m), 1049 (m), 

1030 (w), 1020 (m), 1001 (w), 987 (m), 966 (w), 928 (w), 862 (m), 849 (m), 823 (m), 800 

(m), 791 (m), 777 (vs), 762 (s), 746 (s), 735 (vs), 704 (m), 665 (w), 638 (m), 629 (s), 619 

(m), 609 (m), 580 (m), 565 (m); GC-MS (EI, 70 eV): m/z (%) =  276 (100), 181 (30), 109 

(73); HRMS (ESI): calcd. for C18H13F1N2 ([M + H]
+
): 277.11355; found: 277.11394. 

5-(3-(trifluoromethyl)benzyl)-5H-pyrido[3,2-b]indole 18k was 

prepared following general procedure 6 using 17a (100 mg, 0.37 

mmol) and 3-(trifluoromethyl)benzylamine (80 µL, 0.56 mmol). 

The product was purified by flash chromatography (silica gel, 

heptane/ethylacetate 3:1) to yield 18k (109 mg, 90 %) as a white 

solid; m.p. 81-82 ºC; 
1
H NMR (300 MHz, CDCl3) δ = 8.39 (dd, J 
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= 4.9, 1.6 Hz, 1H), 8.21 (dd, J = 7.7, 1.6 Hz, 1H), 7.96 (d, J = 7.8 Hz, 1H), 7.49 (s, 1H), 7.39 

– 7.30 (m, 2H), 7.21 – 7.17 (m, 4H), 7.12 – 7.03 (m, 1H), 5.60 (s, 2H); 
19

F NMR (282 MHz, 

CDCl3) δ = -62.51 (s); 
13

C NMR (75 MHz, CDCl3) δ = 151.65, 146.29, 139.36, 138.47, 

131.04 (q, J = 32.3 Hz), 130.30, 129.26, 128.36, 126.99, 124.38 (q, J = 3.8 Hz), 124.06 (q, J 

= 272.4 Hz), 123.89 (q, J = 3.8 Hz), 121.23, 120.81, 120.37, 115.99, 115.68, 109.55, 44.61; 

IR (ATR, cm
-1

): ν = 3053 (w), 1628 (w), 1591 (m), 1572 (m), 1483 (m), 1466 (m), 1450 (w), 

1433 (m), 1416 (s), 1325 (vs), 1296 (m), 1281 (m), 1261 (m), 1217 (m), 1205 (m), 1186 (m), 

1157 (s), 1117 (vs), 1097 (s), 1072 (vs), 1022 (m), 1011 (m), 993 (m), 966 (m), 937 (m), 922 

(m), 903 (m), 868 (m), 852 (m), 800 (s), 791 (s), 771 (s), 744 (s), 735 (s), 702 (vs), 671 (m), 

646 (s), 619 (m), 600 (m), 575 (m), 559 (m); GC-MS (EI, 70 eV): m/z (%) =  326 (100), 181 

(62), 159 (20), 140 (13), 109 (13); HRMS (ESI): calcd. for C19H13F3N2 ([M + H]
+
): 

327.11036; found: 327.11066. 

5-propyl-5H-pyrido[3,2-b]indole 18l was prepared following general 

procedure 6 using 17a (100 mg, 0.37 mmol) and n-propylamine (46 µL, 

0.56 mmol). The product was purified by flash chromatography (silica 

gel, heptane/ethylacetate 3:1) to yield 18l (71 mg, 91 %) as a white liquid; 

1
H NMR (300 MHz, CDCl3) δ = 8.38 (dd, J = 4.9, 1.6 Hz, 1H), 8.16 (dd, 

J = 7.6, 1.6 Hz, 1H), 7.97 – 7.89 (m, 1H), 7.43 – 7.29 (m, 2H), 7.14 (ddd, J = 8.0, 6.9, 1.4 Hz, 

1H), 7.01 (dd, J = 7.6, 4.9 Hz, 1H), 4.37 – 4.26 (m, 2H), 1.90 – 1.73 (m, 2H), 0.86 (t, J = 7.4 

Hz, 3H); 
13

C NMR (75 MHz, CDCl3) δ = 151.61, 145.94, 139.71, 128.03, 126.61, 121.03, 

120.44, 119.62, 115.83, 114.86, 109.38, 43.16, 22.32, 11.65; IR (ATR, cm
-1

): ν = 3049 (w), 

2962 (m), 2929 (m), 2874 (w), 1626 (w), 1589 (m), 1570 (m), 1481 (s), 1466 (s), 1443 (m), 

1414 (vs), 1381 (m), 1371 (m), 1360 (m), 1342 (s), 1333 (s), 1313 (w), 1290 (s), 1255 (m), 

1219 (s), 1157 (m), 1138 (m), 1128 (m), 1119 (s), 1090 (w), 1068 (m), 1049 (w), 1018 (w), 

997 (m), 960 (w), 926 (w), 893 (w), 845 (w), 800 (w), 771 (vs), 748 (s), 733 (vs), 712 (m), 

633 (m), 619 (m), 580 (m), 561 (m); GC-MS (EI, 70 eV): m/z (%) = 210 (32), 181 (100), 168 

(82), 140 (12), 127 (14); HRMS (EI): calcd. for C14H14N2 ([M]
+
): 210.11515; found: 

210.11500. 
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General procedure 7 for double C-N coupling with diamine derivatives, exemplified by: 

1,4-bis(9H-pyrido[2,3-b]indol-9-yl)benzene 7a 

 

 

To pressure tube was charged with 17a (200 mg, 0.75 mmol), 1,4-diaminobenzen (37 mg, 

0.34 mmol), Pd2(dba)3 (15 mg, 17 µmol), ligand Dppf (19 mg, 34 µmol) and sodium tert-

butoxide (195 mg, 2.0 mmol) under Argon. The mixture was back-filled with Argon several 

times. The mixture was dissolved in anhydrous Toluene (10 mL) and heated at 110 ºC for 10 

h. After cooling, the reaction mixture was diluted with dichloromethane (20 mL) and filtered 

through a celite pad, washing with dichloromethane (40 mL). The filtrate was reduced in 

vacuo. The product was separated via flash chromatography (silica gel, 

heptane/dichloromethane/ethylacetate 1:1:1) to yield 1,4-bis(9H-pyrido[2,3-b]indol-9-

yl)benzene 20a (64 mg, 46 %) as a white solid; m.p. 307-308 ºC; 
1
H NMR (300 MHz, 

CDCl3) δ = 8.46 (dd, J = 4.8, 1.4 Hz, 2H), 8.34 (dt, J = 9.4, 4.7 Hz, 2H), 8.09 (d, J = 7.7 Hz, 

2H), 7.87 (s, 4H), 7.62 (d, J = 8.2 Hz, 2H), 7.50 – 7.37 (m, 2H), 7.30 (t, J = 7.5 Hz, 2H), 7.25 

– 7.16 (m, 2H). 
13

C NMR (75 MHz, CDCl3) δ = 151.90 (x2C), 146.48 (x2C), 139.94 (x2C), 

135.34 (x2C), 128.42 (x2C), 128.32 (x4C), 127.14 (x2C), 121.02 (x4C), 116.61 (x2C), 

116.37 (x2C), 110.73 (x2C); IR (ATR, cm
-1

): ν = 3045 (m), 2922 (m), 1591 (m), 1572 (m), 

1518 (s), 1481 (m), 1450 (s), 1406 (s), 1356 (m), 1338 (s), 1317 (m), 1290 (s), 1228 (s), 1173 

(m), 1128 (m), 1120 (m), 1111 (m), 1051 (m), 1018 (m), 999 (m), 928 (m), 918 (m), 827 (m), 

762 (s), 742 (s), 727 (vs), 700 (s), 642 (s), 619 (m), 579 (m), 567 (m), 534 (s); GC-MS (EI, 

70 eV): m/z (%) = 410 (100), 242 (24), 205 (23), 191 (12); HRMS (EI): calcd. for C28H18N4 

([M]
+
): 410.15260; found: 410.15147. 
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9-(6-(9H-indeno[2,1-b]pyridin-9-yl)pyridin-2-yl)-9H-

pyrido[2,3-b]indole 20b was prepared following general 

procedure 7 using 17a (200 mg, 0.75 mmol) and 2,6-

diaminopyridine (37 mg, 0.34 mmol). The product was 

purified by flash chromatography (silica gel, 

heptane/dichloromethane/ethylacetate 1:1:1) to yield 20b (70 mg, 50 %) as a white solid; 

m.p. 236-237 ºC; 
1
H NMR (300 MHz, CDCl3) δ = 8.51 (dd, J = 4.8, 1.5 Hz, 2H), 8.43 – 8.29 

(m, 4H), 8.29 – 8.21 (m, 2H), 8.13 (dd, J = 8.8, 7.1 Hz, 1H), 8.00 (t, J = 9.9 Hz, 2H), 7.38 – 

7.14 (m, 6H); 
13

C NMR (75 MHz, CDCl3) δ = 151.36, 149.76, 146.01, 140.02, 139.02, 

128.26, 127.54, 121.79, 121.57, 120.37, 117.76, 117.15, 116.61, 114.34; IR (ATR, cm
-1

): ν = 

3047 (w), 2922 (w), 1599 (m), 1591 (s), 1570 (m), 1485 (w), 1450 (vs), 1414 (m), 1400 (vs), 

1362 (m), 1340 (m), 1331 (s), 1286 (s), 1242 (m), 1223 (m), 1209 (m), 1180 (s), 1165 (m), 

1155 (m), 1120 (m), 1105 (m), 1095 (m), 1057 (m), 1039 (m), 1026 (m), 999 (m), 985 (w), 

974 (w), 968 (w), 957 (w), 943 (m), 933 (m), 922 (m), 849 (w), 796 (m), 764 (vs), 744 (s), 

727 (vs), 700 (m), 683 (m), 658 (m), 634 (m), 619 (m), 611 (m), 579 (m), 567 (w), 559 (m); 

GC-MS (EI, 70 eV): m/z (%) = 410 (100), 244 (28), 206 (89); HRMS (EI): calcd. for 

C27H16N5 ([M]
+
): 410.14002; found: 410.13958. 

Procedure for preparation of 3-bromo-2-(2-bromophenyl)pyridine 17b.  

 

2,3-dibromopyridine 1b (1 g, 4.2 mmol), 2-bromophenyl boronic acid 2 (1.0 g, 5.1 mmol), 

Pd(PPh3)4 (244 mg, 211 µmol) and sodium hydroxide (507 mg, 12.7 mmol) were added to 

500 mL Schlenk flask. The mixture was back-filled several times with Argon. To the mixture 

70 mL THF and 10 mL distilled water were added, then, back-filled with argon several times. 

The reaction was heated at 70 ºC for 4h. The solvent was evaporated in vacuo. The residue 

was extracted with dichloromethane and water. The organic layer was dried over MgSO4, 

filtered and the solvent was evaporated in vacuo. The yellow residue was purified by column 

chromatography (silica gel, Heptane/dichloromethane/ethylacetate 4:1:1) to yield 3-bromo-2-

(2-bromophenyl)pyridine  17b  (1.27 g, 96 %) as colorless syrup; 
1
H NMR (300 MHz, 
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CDCl3) δ = 8.57 (dd, J = 4.7, 1.5 Hz, 1H), 7.93 (dd, J = 8.1, 1.5 Hz, 1H), 7.63 – 7.58 (m, 1H), 

7.39 – 7.32 (m, 1H), 7.29 – 7.13 (m, 7H); 
13

C NMR (75 MHz, CDCl3) δ = 147.84, 140.99, 

140.46, 132.69, 130.23, 130.08, 127.34, 124.13, 122.46, 121.35; IR (ATR, cm
-1

): ν = 3053 

(w), 2920 (w), 2850 (w), 1593 (m), 1568 (m), 1549 (m), 1479 (m), 1437 (m), 1412 (s), 1298 

(w), 1269 (w), 1252 (m), 1230 (w), 1211 (w), 1201 (w), 1159 (w), 1124 (m), 1093 (m), 1055 

(m), 1024 (s), 1011 (vs), 943 (m), 793 (s), 777 (m), 748 (vs), 723 (s), 694 (m), 681 (s), 650 

(m), 615 (s), 561 (m); GC-MS (EI, 70 eV): m/z (%) = 313 (37), 234 (99), 233 (100), 153 

(82), 126 (28), 99 (10), 75 (14), 63 (10), 50 (12); HRMS (EI): calcd. for C11H7N1Br2 ([M]
+
): 

310.89398; found: 310.89479; calcd. for C11H7N1Br1
81

Br1 ([M]
+
): 312.89193; found: 

312.89233; calcd. for C11H7N1
81

Br2 ([M]
+
): 314.88988; found: 314.89073. 

 

General procedure 8 for double C-N coupling with aniline derivatives, exemplified by: 

5-phenyl-5H-pyrido[3,2-b]indole 21a 

 

Aniline (44 µL, 479 µmol) was added to pressure tube charged with 17b (100 mg, 0.32 

mmol), Pd2(dba)3 (15 mg, 16 µmol), ligand Dppf (18 mg, 32 µmol) and sodium tert-butoxide 

(92 mg, 0.96 mmol) under Argon. The mixture was back-filled with Argon several times. The 

mixture was dissolved in anhydrous Toluene (10 mL) and heated at 100 ºC for 4 h. After 

cooling, the reaction mixture was diluted with dichloromethane (20 mL) and filtered through 

a celite pad, washing with dichloromethane (40 mL). The filtrate was reduced in vacuo. The 

product was separated via flash chromatography (silica gel, 

heptane/dichloromethane/ethylacetate 10:1:1) to yield 5-phenyl-5H-pyrido[3,2-b]indole 21a 

(65 mg, 83%) as a white solid; m.p. 99-101 ºC; 
1
H NMR (250 MHz, CDCl3) δ = 8.50 (dd, J = 

4.7, 1.3 Hz, 1H), 8.40 – 8.30 (m, 1H), 7.60 – 7.12 (m, 11H); 
13

C NMR (63 MHz, CDCl3) δ = 

142.54, 142.26, 141.54, 136.84, 134.31, 130.04, 127.95, 127.80, 126.79, 122.45, 120.87, 

120.83, 120.18, 116.72, 110.04; IR (ATR, cm
-1

): ν = 3053 (m), 1622 (m), 1593 (s), 1574 (m), 

1502 (s), 1481 (s), 1452 (s), 1412 (vs), 1371 (m), 1340 (m), 1315 (m), 1304 (s), 1282 (m), 
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1234 (m), 1209 (s), 1178 (m), 1167 (m), 1147 (m), 1119 (m), 1107 (m), 1072 (m), 1026 (m), 

1011 (m), 931 (m), 906 (m), 787 (m), 777 (s), 762 (s), 744 (vs), 727 (vs), 698 (vs), 665 (m), 

642 (m), 633 (s), 615 (s), 582 (m), 567 (m), 534 (m); GC-MS (EI, 70 eV): m/z (%) =  244 

(100), 216 (4), 189 (3), 167 (3), 152 (3), 140 (4), 122 (9), 88 (3), 77 (4), 63 (3), 51 (5), 39 (4); 

HRMS (EI): calcd. for C17H12N2 ([M]
+
): 244.09950; found: 244.09922.  

5-(4-fluorophenyl)-5H-pyrido[3,2-b]indole 21b was prepared following 

general procedure 8 using 17b (100 mg, 0.32 mmol) and 4-fluoroaniline 

(45 µL, 0.48 mmol). The product was purified by flash chromatography 

(silica gel, heptane/dichloromethane/ethylacetate 8:1:1) to yield 21b (61 

mg, 73 %) as a white solid; m.p. 115-117 ºC;  
1
H NMR (250 MHz, 

CDCl3) δ = 8.49 (dd, J = 4.7, 1.3 Hz, 1H), 8.39 – 8.29 (m, 1H), 7.53 – 

7.32 (m, 4H), 7.31 – 7.11 (m, 3H), 6.78 – 6.65 (m, 1H), 6.48 (ddd, J = 6.7, 5.2, 2.9 Hz, 1H); 

19
F NMR (282 MHz, CDCl3) δ = -112.83 (s); 

13
C NMR (63 MHz, CDCl3) δ = 161.79 (d, J = 

248.2 Hz), 142.62, 141.69, 134.45, 132.77, 128.73 (d, J = 8.6 Hz), 128.06, 122.38, 120.94, 

120.27, 117.24, 116.88, 116.50, 115.61 (d, J = 22.4 Hz), 109.80; IR (ATR, cm
-1

): ν = 3055 

(m), 3037 (m), 1620 (m), 1587 (m), 1506 (vs), 1477 (s), 1452 (s), 1412 (s), 1354 (m), 1342 

(m), 1311 (s), 1294 (m), 1281 (m), 1215 (s), 1207 (s), 1169 (s), 1151 (s), 1119 (m), 1105 (m), 

1093 (s), 1049 (m), 1034 (m), 1028 (m), 1011 (m), 937 (m), 912 (s), 845 (s), 833 (s), 816 (s), 

781 (s), 764 (m), 742 (vs), 727 (vs), 715 (s), 700 (s), 646 (m), 627 (m), 617 (s), 575 (s), 534 

(s); GC-MS (EI, 70 eV): m/z (%) = 262 (100), 261 (29), 131 (10); HRMS (EI): calcd. for 

C17H11F1N2 ([M]
+
): 262.09008; found: 262.08948. 

5-(3-(trifluoromethyl)phenyl)-5H-pyrido[3,2-b]indole 21c was 

prepared following general procedure 8 using 17b (100 mg, 0.32 

mmol) and 3-(trifluoromethyl)aniline (60 µL, 0.48 mmol). The 

product was purified by flash chromatography (silica gel, 

heptane/dichloromethane/ethylacetate 8:1:1) to yield 21c (64 mg, 64 

%) as a white solid; m.p. 144-146 ºC;  
1
H NMR (250 MHz, CDCl3) δ 

= 8.54 (dd, J = 4.7, 1.3 Hz, 1H), 8.47 – 8.29 (m, 1H), 7.84 – 7.53 (m, 5H), 7.52 – 7.14 (m, 

4H); 
19

F NMR (282 MHz, CDCl3) δ = -62.70 (s); 
13

C NMR (63 MHz, CDCl3) δ = 143.08, 

142.52, 141.17, 137.65, 133.96, 132.76 (q, J = 33.2 Hz), 130.80, 130.03, 128.26, 124.44 (q, J 

= 3.6 Hz), 123.61 (q, J = 3.6 Hz), 122.75, 121.41, 121.09, 120.39, 116.43, 109.66; IR (ATR, 

cm
-1

): ν = 3055 (w), 3041 (w), 1622 (m), 1606 (w), 1595 (m), 1579 (w), 1498 (m), 1481 (m), 
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1456 (s), 1412 (s), 1362 (m), 1356 (m), 1333 (m), 1309 (s), 1292 (m), 1275 (m), 1232 (m), 

1217 (m), 1207 (m), 1182 (s), 1163 (s), 1155 (s), 1117 (vs), 1095 (s), 1074 (s), 1028 (m), 

1014 (m), 1001 (m), 966 (m), 945 (m), 935 (m), 928 (m), 918 (m), 906 (m), 854 (w), 810 

(m), 802 (s), 791 (m), 781 (s), 760 (w), 744 (vs), 727 (s), 715 (s), 706 (vs), 673 (m), 663 (s), 

638 (m), 621 (m), 607 (m), 582 (w), 563 (w), 536 (m); GC-MS (EI, 70 eV): m/z (%) = 312 

(100), 242 (8); HRMS (EI): calcd. for C18H11F3N2 ([M]
+
): 312.08688; found: 312.08662. 

5-(4-methoxyphenyl)-5H-pyrido[3,2-b]indole 21d was prepared 

following general procedure 8 using 17b (100 mg, 0.32 mmol) and p-

anisidine (59 mg, 0.48 mmol). The product was purified by flash 

chromatography (silica gel, heptane/dichloromethane/ethylacetate 5:1:1) 

to yield 21d (88 mg, 94 %) as a white solid; m.p. 128-130 ºC; 
1
H NMR 

(250 MHz, CDCl3) δ = 8.53 (dd, J = 4.7, 1.3 Hz, 1H), 8.43 – 8.30 (m, 

1H), 7.55 (dd, J = 8.3, 1.4 Hz, 1H), 7.50 – 7.21 (m, 6H), 7.11 – 6.99 (m, 2H), 3.85 (s, 3H); 

13
C NMR (63 MHz, CDCl3) δ = 159.13, 142.22, 142.06, 134.81, 129.36, 128.30, 127.90, 

122.13, 120.85, 120.59, 120.12, 116.68, 115.22, 109.97, 55.62; IR (ATR, cm
-1

): ν = 2955 

(w), 2929 (w), 2837 (w), 1620 (m), 1510 (vs), 1479 (m), 1454 (s), 1441 (m), 1414 (s), 1385 

(w), 1342 (m), 1313 (s), 1300 (m), 1286 (m), 1242 (s), 1209 (s), 1176 (s), 1149 (m), 1120 

(m), 1107 (s), 1066 (m), 1028 (s), 1012 (m), 937 (m), 912 (m), 860 (w), 829 (s), 812 (m), 791 

(s), 748 (vs), 729 (vs), 700 (s), 667 (m), 646 (m), 629 (m), 617 (s), 584 (s), 536 (s); GC-MS 

(EI, 70 eV): m/z (%) = 274 (100), 259 (55), 231 (13), 230 (15), 229 (14), 115 (9); HRMS 

(EI): calcd. for C18H14O1N2 ([M]
+
): 274.11006; found: 274.11009. 

55-(3,5-dimethoxyphenyl)-5H-pyrido[3,2-b]indole 21e was prepared 

following general procedure 8 using 17b (100 mg, 0.32 mmol) and 

3,5-dimethoxyaniline (73 mg, 0.48 mmol). The product was purified 

by flash chromatography (silica gel, 

heptane/dichloromethane/ethylacetate 3:1:1) to yield 21d (88 mg, 94 

%) as a white solid; m.p. 150-152  ºC; 
1
H NMR (250 MHz, CDCl3) δ 

= 8.58 – 8.41 (m, 1H), 8.33 (dd, J = 7.7, 0.7 Hz, 1H), 7.64 (dd, J = 8.3, 1.3 Hz, 1H), 7.53 – 

7.12 (m, 4H), 6.57 (d, J = 2.2 Hz, 2H), 6.45 (t, J = 2.2 Hz, 1H), 3.71 (s, J = 9.9 Hz, 6H); 
13

C 

NMR (63 MHz, CDCl3) δ = 161.82, 142.55, 142.26, 141.37, 138.46, 134.17, 127.95, 122.48, 

120.82, 120.20, 116.99, 110.33, 104.96, 99.76, 93.72, 55.59; IR (ATR, cm
-1

): ν = 3051 (m), 

3007 (m), 2970 (m), 2945 (m), 2916 (m), 2841 (m), 1620 (m), 1605 (s), 1583 (s), 1495 (m), 
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1475 (m), 1452 (s), 1425 (s), 1416 (s), 1367 (m), 1342 (m), 1331 (m), 1313 (s), 1296 (s), 

1282 (s), 1252 (m), 1223 (m), 1194 (s), 1147 (vs), 1057 (s), 1009 (s), 991 (m), 928 (m), 906 

(m), 868 (m), 852 (m), 833 (s), 823 (s), 783 (s), 773 (s), 741 (s), 723 (vs), 696 (s), 690 (s), 

675 (s), 660 (s), 621 (s), 607 (s), 573 (s), 557 (m), 532 (m); GC-MS (EI, 70 eV): m/z (%) = 

304 (100), 261 (8), 245 (10), 218 (7); HRMS (EI): calcd. for C19H16O2N2 ([M]
+
): 304.12063; 

found: 304.12015. 

5-(4-cyanophenyl)-5H-pyrido[3,2-b]indole 21f was prepared following 

general procedure 8 using 17b (100 mg, 0.32 mmol) and 4-

aminobenzonitrile (56 mg, 0.48 mmol). The product was purified by 

flash chromatography (silica gel, heptane/dichloromethane/ethylacetate 

4:1:1) to yield 21f (36 mg, 42 %) as a white solid; m.p. 162-164 ºC; 
1
H 

NMR (250 MHz, CDCl3) δ = 8.57 (dd, J = 4.7, 1.3 Hz, 1H), 8.41 – 8.33 

(m, 1H), 7.90 – 7.81 (m, 2H), 7.71 – 7.60 (m, 3H), 7.52 – 7.23 (m, 4H), 
13

C NMR (63 MHz, 

CDCl3) δ = 143.51, 142.86, 141.21, 140.63, 134.10, 133.45, 128.42, 126.86, 123.12, 121.88, 

121.23, 120.49, 118.10, 116.59, 111.02, 109.77; IR (ATR, cm
-1

): ν = 3051 (w), 3007 (w), 

2226 (m), 1616 (w), 1601 (s), 1587 (m), 1558 (w), 1506 (s), 1489 (w), 1479 (m), 1454 (m), 

1412 (s), 1373 (w), 1354 (m), 1340 (m), 1315 (s), 1290 (m), 1246 (w), 1234 (m), 1221 (m), 

1207 (s), 1182 (m), 1169 (m), 1153 (m), 1136 (m), 1128 (m), 1117 (m), 1107 (m), 1053 (w), 

1028 (w), 1014 (m), 978 (w), 968 (w), 953 (w), 935 (w), 916 (m), 885 (w), 841 (s), 783 (s), 

748 (vs), 731 (vs), 723 (s), 667 (m), 656 (m), 631 (m), 619 (s), 582 (w), 567 (m), 552 (s), 528 

(m); GC-MS (EI, 70 eV): m/z (%) = 269 (100), 270 (25), 75 (7), 39 (7); HRMS (EI): calcd. 

for C18H11N3 ([M]
+
): 269.09475; found: 269.09432. 

General procedure 9 for double C-N coupling with chain amine derivatives, exemplified 

by: 5-benzyl-5H-pyrido[3,2-b]indole 21g 

 

To pressure tube charged with 17b (100 mg, 0.32 mmol), Pd2(dba)3 (15 mg, 16 µmol), ligand 

DPEPhos (17 mg, 32 µmol) and sodium tert-butoxide (92 mg, 0.96 mmol) under Argon. The 
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mixture was back-filled with argon several times. The mixture was dissolved in anhydrous 

toluene (10 mL). Benzylamine 4i (52 µL, 0.48 mmol) was added to the mixture and heated at 

100 ºC for 7 h. After cooling, the reaction mixture was diluted with dichloromethane (20 mL) 

and filtered through a celite pad, washing with dichloromethane (40 mL). The filtrate was 

reduced in vacuo. The product was separated via flash chromatography (silica gel, 

heptane/dichloromethane/ethylacetate 5:1:1) to yield 21g (76 mg, 92 %) as a white solid; m.p.  

137-139 ºC; 
1
H NMR (250 MHz, CDCl3) δ = 8.43 (dd, J = 4.7, 1.2 Hz, 1H), 8.32 (d, J = 7.7 

Hz, 1H), 7.45 – 7.30 (m, 2H), 7.28 – 7.01 (m, 6H), 6.93 (dd, J = 6.7, 2.6 Hz, 2H), 5.26 (s, 

2H); 
13

C NMR (63 MHz, CDCl3) δ = 140.82, 140.75, 140.27, 135.40, 132.91, 127.78, 

126.80, 126.62, 125.25, 121.08, 119.82, 119.07, 118.93, 114.75, 108.14, 45.35; IR (ATR, cm
-

1
): ν = 3051 (w), 3028 (w), 2926 (w), 1622 (m), 1603 (w), 1589 (m), 1576 (w), 1558 (w), 

1495 (m), 1483 (m), 1458 (s), 1450 (s), 1414 (s), 1373 (m), 1356 (w), 1335 (s), 1319 (s), 

1281 (w), 1263 (w), 1242 (m), 1211 (m), 1194 (s), 1178 (m), 1149 (m), 1132 (m), 1117 (m), 

1080 (m), 1057 (w), 1047 (w), 1028 (m), 1012 (m), 999 (w), 972 (w), 962 (w), 937 (w), 912 

(w), 845 (m), 802 (w), 789 (m), 781 (s), 742 (vs), 731 (vs), 721 (vs), 694 (s), 644 (m), 621 

(m), 600 (m), 584 (m), 567 (m), 557 (m), 536 (m);  GC-MS (EI, 70 eV): m/z (%) = 258 (88), 

181 (5), 167 (8), 91 (100), 39 (9); HRMS (EI): calcd. for C18H14N2 ([M]
+
): 258.11515; found: 

258.11534. 

5-(4-methoxybenzyl)-5H-pyrido[3,2-b]indole 21h was prepared 

following general procedure 9 using compound  17b (100 mg, 0.32 

mmol) and 4-methoxybenzylamine (63 µL, 0.48 mmol). The 

product was purified by flash chromatography (silica gel, 

heptane/dichloromethane/ethylacetate 3:1:1) to yield 21h (60 mg, 

65 %) as a white solid; m.p. 124-126 ºC; 
1
H NMR (300 MHz, CDCl3) δ = 8.42 (dd, J = 4.7, 

1.3 Hz, 1H), 8.36 – 8.28 (m, 1H), 7.48 – 7.31 (m, 2H), 7.30 – 7.07 (m, 3H), 6.88 (t, J = 5.8 

Hz, 2H), 6.68 – 6.58 (m, 2H), 5.22 (s, 2H), 3.57 (s, 3H); 
13

C NMR (75 MHz, CDCl3) δ = 

159.15, 141.92, 141.77, 141.37, 134.01, 128.51, 127.90, 127.71, 122.17, 120.94, 120.12, 

120.02, 115.94, 114.27, 109.30, 55.24, 46.00; IR (ATR, cm
-1

): ν = 2931 (w), 2835 (w), 1624 

(m), 1610 (m), 1583 (m), 1512 (s), 1485 (s), 1460 (s), 1443 (m), 1412 (s), 1377 (m), 1354 

(w), 1323 (s), 1308 (s), 1246 (vs), 1211 (m), 1203 (m), 1194 (s), 1178 (s), 1155 (m), 1134 

(m), 1113 (s), 1059 (w), 1034 (s), 1009 (m), 984 (m), 962 (m), 939 (w), 864 (w), 845 (s), 837 

(m), 820 (m), 791 (s), 775 (s), 746 (vs), 727 (vs), 708 (s), 665 (m), 640 (m), 625 (s), 600 (s), 

582 (m), 565 (m), 540 (s); GC-MS (EI, 70 eV): m/z (%) = 288 (29), 242 (3), 167 (8), 140 (5), 
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121 (100), 91 (7), 78 (10), 77 (9); HRMS (EI): calcd. for C19H16N2O1 ([M]
+
): 288.12571; 

found: 288.12541. 

5-phenethyl-5H-pyrido[3,2-b]indole 21i was prepared following general 

procedure 9 using compound  17b (100 mg, 0.32 mmol) and 2-

phenylethylamine (60 µL, 0.48 mmol). The product was purified by flash 

chromatography (silica gel, heptane/dichloromethane/ethylacetate 5:1:1) 

to yield 21j (67 mg, 77 %) as a white solid; m.p. 61-63 ºC; 
1
H NMR (300 

MHz, CDCl3) δ = 8.38 (dd, J = 4.7, 1.3 Hz, 1H), 8.29 (d, J = 7.7 Hz, 1H), 

7.38 (ddd, J = 8.2, 7.1, 1.2 Hz, 1H), 7.28 – 7.13 (m, 3H), 7.13 – 6.96 (m, 4H), 6.96 – 6.82 (m, 

2H), 4.30 (t, J = 7.2 Hz, 2H), 2.93 (t, J = 7.2 Hz, 2H); 
13

C NMR (63 MHz, CDCl3) δ = 

141.61, 141.46, 140.80, 138.37, 133.73, 128.73, 128.66, 127.66, 126.76, 122.05, 120.91, 

119.88, 119.75, 115.45, 108.91, 44.82, 35.27; IR (ATR, cm
-1

): ν = 3051 (w), 3041 (w), 3026 

(w), 3001 (w), 2964 (w), 2939 (w), 2922 (w), 1622 (m), 1603 (w), 1587 (m), 1562 (w), 1483 

(s), 1462 (s), 1452 (s), 1414 (vs), 1377 (m), 1360 (m), 1342 (s), 1319 (s), 1248 (w), 1223 (s), 

1200 (m), 1186 (s), 1151 (m), 1132 (m), 1122 (m), 1080 (m), 1065 (w), 1049 (w), 1028 (m), 

1009 (m), 974 (w), 962 (w), 939 (w), 926 (w), 881 (w), 856 (w), 839 (w), 791 (m), 777 (m), 

764 (w), 742 (vs), 727 (vs), 696 (vs), 642 (w), 623 (m), 613 (m), 606 (m), 590 (m), 582 (w), 

565 (w), 548 (m), 540 (m); GC-MS (EI, 70 eV): m/z (%) = 272 (23),  181 (100), 154 (5), 127 

(12), 91 (5), 78 (5); HRMS (EI): calcd. for C19H16N2 ([M]
+
): 272.13080; found: 272.13063. 

Synthesis of 1,4-bis(5H-pyrido[3,2-b]indol-5-yl)benzene 22 

 

 

A pressure tube was charged with 17b (200 mg, 0.64 mmol), 1,4-diaminobenzene (34 mg, 

0.32 mmol), Pd2(dba)3 (12 mg, 13 µmol), ligand Dppf (14 mg, 26 µmol) and sodium tert-



General procedures and spectroscopic data  132 

 

 

butoxide (147 mg, 1.53 mmol) under Argon. The mixture was back-filled with Argon several 

times. The mixture was dissolved in anhydrous toluene (10 mL) and heated at 100 ºC for 10 

h. After cooling, the reaction mixture was diluted with dichloromethane (20 mL) and filtered 

through a celite pad, washing with dichloromethane (40 mL). The filtrate was reduced in 

vacuo. The product was separated via flash chromatography (silica gel, 

heptane/dichloromethane/ethylacetate 1:1:1) to yield 1,4-bis(5H-pyrido[3,2-b]indol-5-

yl)benzene 22 (52 mg, 40 %) as a white solid; m.p. 277-279 ºC; 
1
H NMR (250 MHz, CDCl3) 

δ = 8.76 – 8.33 (m, 4H), 7.96 – 7.06 (m, 14H); 
13

C NMR (63 MHz, CDCl3) δ = 142.02, 

141.51, 140.20, 137.74, 132.99, 127.24, 124.84, 121.75, 120.36, 120.12, 119.37, 115.61, 

108.83; IR (ATR, cm
-1

): ν = 3053 (w), 1620 (w), 1595 (m), 1585 (m), 1576 (m), 1497 (s), 

1475 (m), 1450 (s), 1408 (s), 1373 (w), 1362 (w), 1340 (m), 1315 (s), 1306 (s), 1288 (m), 

1263 (m), 1238 (w), 1215 (m), 1203 (s), 1178 (m), 1155 (m), 1120 (m), 1111 (m), 1101 (m), 

1090 (m), 1049 (m), 1026 (m), 1012 (m), 968 (w), 922 (m), 903 (w), 877 (w), 850 (w), 810 

(m), 800 (m), 779 (s), 742 (vs), 727 (vs), 700 (s), 671 (m), 648 (m), 631 (m), 619 (s), 584 

(m), 567 (m), 536 (m); GC-MS (EI, 70 eV): m/z (%) =  410 (100), 242 (28), 205 (11); HRMS 

(ESI): calcd. for C28H18N4 ([M + H]
+
): 411.16042; found: 411.15977.  

 

8.5.4 Synthesis and Properties of 5,7-Dihydropyrido[3,2-b:5,6-b']diindoles 

Procedure for preparation of 2,3,5,6-tetrabromopyridine  

 

 

To solution of pyridine-2,6-diamine (10.9 g, 100 mmol) in 200 mL glacial acetic acid was 

dropwised added 11.4 mL bromine (220 mmol)at 0 ºC. Then the temperature was raised to 

room temperature and the mixture was stirred for 5h. The reaction mixture was treated with 

aqueous Na2SO3 solution to remove residues of bromine. The mixture was neutralized with 

NaOH to pH 8-9. The brown solid (22 g, 83%) was obtained after filtering, washing with 

water and drying in vacuo.  
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To solution of 3,5-dibromopyridine-2,6-diamine (10 g, 37.5 mmol) in 30 mL 48 % HBr was 

dropwised added saturate aqueous NaNO2 (20.7 g, 300 mmol) solution at -3 ˚C. Afterwards, 

the reaction mixture was stirred at the same temperature for 2h, then, the temperature was 

raised to room temperature and kept for additional 2h. The solution was neutralized to pH 8-9 

by NaOH then extracted with ethylacetate. The organic layer was collected, dried over 

MgSO4, filtered and evaporated in vacuo. The mixture was separated over column 

chromatography (silica gel, heptane/dichloromethane 5:1) to yield 2,3,5,6-tetrabromopyridine 

23 (3 g, 20%) as white crystals, m.p. 172-174 ºC; 
1
H NMR (300 MHz, CDCl3) δ = 7.99 (s, 

1H); 
13

C NMR (63 MHz, CDCl3) δ = 145.32 (s), 140.60 (s), 123.01 (s); IR (ATR, cm
-1

): ν = 

3084 (m), 3036 (m), 1529 (m), 1502 (s), 1362 (vs), 1352 (vs), 1288 (s), 1277 (s), 1238 (m), 

1213 (m), 1149 (vs), 1136 (s), 1016 (vs), 945 (m), 931 (m), 897 (vs), 833 (m), 806 (m), 798 

(m), 781 (m), 704 (s), 656 (s), 648 (s); GC-MS (EI, 70 eV): m/z (%) = 395 (100), 314 (42), 

235 (26), 154 (13), 75 (42); HRMS (EI): calcd. for C5H1N1Br3
81

Br1 ([M]
+
): 392.6815; found: 

392.68185; calcd. for C5H1N1Br2
81

Br2 ([M]
+
): 394.67961; found: 394.67983; calcd. for 

C5H1N1Br1
81

Br3 ([M]
+
): 396.67756; found: 396.67761. 

General procedure for preparation of 3,5-dibromo-2,6-bis(2-bromophenyl)pyridine 24.  

 

2,3,5,6-tetrabromopyridine 23 (1 g, 2.5 mmol), 2-bromophenyl boronic acid 6 (1.1 g, 5.5 

mmol), Pd(PPh3)4 (73 mg, 63 µmol) and sodium hydroxide (608 mg, 15.2 mmol) were added 

to 500 mL Schlenk flask. The mixture was back-filled several times with Argon. To the 

mixture 70 mL THF and 10 mL distilled water were added, then, back-filled several times 

with argon. The reaction was heated at 70 ºC for 4h. The solvent was evaporated in vacuo. 

The residue was extracted with dichloromethane and water. The organic layer was dried over 

MgSO4, filtered and the solvent was evaporated in vacuo. The yellow residue was purified by 

column chromatography (silica gel, Heptane/ethylacetate 10:1) to yield 3,5-dibromo-2,6-

bis(2-bromophenyl)pyridine 24 (1.1 g, 80 %) as white solid; m.p. 174-175 ᵒC; 
1
H NMR (300 

MHz, CDCl3) δ = 8.24 (s, 1H), 7.58 (d, J = 8.0 Hz, 2H), 7.37 – 7.25 (m, 4H), 7.20 (dd, J = 

8.4, 7.3 Hz, 2H); 
13

C NMR (63 MHz, CDCl3) δ = 156.75, 143.78, 139.78, 132.75, 130.33 
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(x2C), 127.37, 122.50, 120.43; IR (ATR, cm
-1

): ν = 2922 (m), 2850 (m), 1562 (m), 1529 (m), 

1477 (m), 1470 (m), 1441 (m), 1427 (m), 1406 (s), 1348 (m), 1329 (m), 1284 (m), 1275 (w), 

1265 (m), 1240 (m), 1194 (m), 1117 (m), 1041 (s), 1024 (s), 1005 (s), 984 (m), 951 (m), 889 

(s), 870 (m), 850 (m), 756 (vs), 725 (s), 692 (s), 683 (s), 660 (m), 646 (m), 631 (s), 596 (m), 

532 (m); GC-MS (EI, 70 eV): m/z (%) = 547 (21), 468 (73), 227 (100), 193 (10), 113 (13), 75 

(11); HRMS (EI): calcd. for C17H9N1Br4 ([M]
+
): 542.74630; found: 542.74628; calcd. for 

C17H9N1Br3
81

Br1 ([M]
+
): 544.74425; found: 544.74445; calcd. for C17H9N1Br2

81
Br2 ([M]

+
): 

546.74221; found: 546.74277; calcd. for C17H9N1Br1
81

Br3 ([M]
+
): 548.74016; found: 

548.74086; calcd. for C17H9N1
81

Br4 ([M]
+
): 550.73811; found: 550.73897. 

General procedure 10 for double C-N coupling with aniline derivatives, exemplified by: 

5,7-diphenyl-5,7-dihydropyrido[3,2-b:5,6-b']diindole 25a 

 

Aniline (0.1 mL, 1.09 mmol) was added to a pressure tube charged with 24 (100 mg, 0.18 

mmol), Pd2(dba)3 (8 mg, 9 µmol), ligand Dppf (10 mg, 18 µmol) and sodium tert-butoxide 

(105 mg, 1.09 mmol) under Argon. The mixture was back-filled with Argon several times. 

The mixture was dissolved in anhydrous toluene (10 mL) and heated at 100 ºC for 7 h. After 

cooling, the reaction mixture was diluted with dichloromethane (20 mL) and filtered through 

a celite pad, washing with dichloromethane (40 mL). The filtrate was reduced in vacuo. The 

product was separated via flash chromatography (silica gel, 

heptane/dichloromethane/ethylacetate 10:1:1) to yield 25a (62 mg, 83%) as a white solide; 

m.p. 298-300 ºC; 
1
H NMR (300 MHz, CDCl3) δ = 8.69 (d, J = 7.2 Hz, 2H), 7.63 – 7.55   (m, 

9H), 7.50 – 7.38 (m, 8H); 
13

C NMR (75 MHz, CDCl3) δ = 142.35, 137.85, 137.31, 134.32, 

130.26, 127.86, 127.09, 126.71, 122.55, 121.08, 120.78, 109.80, 96.93; IR (ATR, cm
-1

): ν = 

3036 (m), 2926 (w), 2852 (w), 1591 (s), 1497 (s), 1479 (m), 1454 (s), 1435 (m), 1404 (s), 

1387 (s), 1313 (m), 1242 (s), 1205 (m), 1188 (s), 1178 (s), 1155 (m), 1144 (m), 1103 (m), 

1074 (m), 1039 (m), 1028 (m), 1011 (m), 939 (m), 924 (m), 847 (m), 829 (m), 760 (m), 739 

(s), 729 (s), 692 (vs), 667 (m), 638 (s), 623 (m), 615 (s), 582 (s), 567 (m), 536 (s); GC-MS 

(EI, 70 eV): m/z (%) =  409 (100), 332 (8), 204 (14); HRMS (ESI): calcd. for C29H20N3 ([M + 
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H]
+
): 410.16517; found: 41016512; calcd. for C29H20N3Na ([M + Na]

+
): 432.14712; found: 

432.14744. 

5,7-Bis(4-(tert-butyl)phenyl)-5,7-dihydropyrido[3,2-b:5,6-

b']diindole 25b was prepared following general procedure 10 

using compound  24 (100 mg, 0.18 mmol) and 4-(tert-

butyl)aniline (118 mg, 1.09 mmol). The product was purified 

by flash chromatography (silica gel, 

heptane/dichloromethane/ethylacetate 8:1:1) to yield 25b (80 

mg, 84%) as a white solide; m.p. 317-319 ºC;  
1
H NMR (300 MHz, CDCl3) δ = 8.64 (d, J = 

7.5 Hz, 2H), 7.68 – 7.59 (m, 5H), 7.56 – 7.35 (m, 10H), 1.42 (s, 18H); 
13

C NMR (63 MHz, 

CDCl3) δ = 150.65, 142.37, 138.00, 134.61, 134.27, 126.96, 126.72, 126.46, 122.68, 120.65, 

120.37, 109.76, 96.77, 34.80, 31.39; IR (ATR, cm
-1

): ν = 2958 (m), 2902 (w), 2866 (w), 1591 

(m), 1518 (m), 1479 (w), 1456 (s), 1408 (m), 1392 (m), 1363 (m), 1350 (w), 1325 (w), 1309 

(m), 1290 (w), 1261 (m), 1242 (s), 1207 (m), 1188 (m), 1169 (m), 1153 (m), 1147 (m), 1105 

(m), 1036 (m), 1011 (m), 951 (w), 937 (w), 928 (w), 893 (w), 850 (m), 841 (m), 822 (m), 800 

(m), 785 (m), 741 (vs), 729 (vs), 706 (m), 660 (m), 640 (m), 625 (m), 592 (w), 561 (s); GC-

MS (EI, 70 eV): m/z (%) = 521 (100), 491 (9), 253 (15), 217 (93), 172 (21); HRMS (EI): 

calcd. for C37H35N3 ([M]
+
): 521.28255; found: 521.28186. 

5,7-Bis(3,5-dimethylphenyl)-5,7-dihydropyrido[3,2-b:5,6-

b']diindole 25c was prepared following general procedure 

10 using compound  24 (100 mg, 0.18 mmol) and 3,5-

dimethylaniline (175 µL, 1.09 mmol). The product was 

purified by flash chromatography (silica gel, 

heptane/dichloromethane/ethylacetate 8:1:1) to yield 25c (72 mg, 85%) as a white solide; 

m.p. 306-308 ºC;  
1
H NMR (300 MHz, CDCl3) δ = 8.53 (d, J = 7.6 Hz, 2H), 7.48 (s, 1H), 

7.41 – 7.26 (m, 6H), 7.11 (s, 4H), 7.00 (s, 2H), 2.32 (s, 12H); 
13

C NMR (75 MHz, CDCl3) δ = 

142.23, 139.85, 138.03, 137.20, 134.29, 129.32, 126.73, 124.49, 122.76, 120.70, 120.38, 

109.80, 96.90, 21.37; IR (ATR, cm
-1

): ν = 3045 (w), 2914 (m), 2854 (w), 1589 (s), 1470 (s), 

1456 (s), 1435 (m), 1417 (m), 1404 (s), 1387 (m), 1373 (m), 1311 (m), 1298 (m), 1242 (s), 

1190 (s), 1153 (m), 1138 (m), 1105 (m), 1011 (m), 916 (m), 864 (m), 843 (s), 785 (m), 741 

(vs), 725 (vs), 708 (s), 698 (s), 631 (m), 588 (m), 575 (m), 557 (m); GC-MS (EI, 70 eV): m/z 
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(%) = 465 (100), 233 (12), 79 (7); HRMS (EI): calcd. for C33H27N3 ([M]
+
): 465.21995; 

found: 465.21908. 

5,7-Bis(4-fluorophenyl)-5,7-dihydropyrido[3,2-b:5,6-b']diindole 

25d was prepared following general procedure 10 using 

compound  24 (100 mg, 0.18 mmol) and 4-fluoroaniline (104 µL, 

1.09 mmol). The product was purified by flash chromatography 

(silica gel, heptane/dichloromethane/ethylacetate 8:1:1) to yield 

25d (54 mg, 66 %) as a white solide; m.p. 338-340 ºC;  
1
H NMR 

(300 MHz, CDCl3) δ = 8.53 (d, J = 7.3 Hz, 2H), 7.48 – 7.28 (m, 9H), 7.27 – 7.17 (m, 6H); 

13
C NMR (75 MHz, CDCl3) δ = 162.03 (d, J = 248.1 Hz), 142.62 , 138.39 , 134.62 , 133.36 

(d, J = 3.1 Hz), 129.20 (d, J = 8.6 Hz), 127.24 , 122.94 , 121.00 , 120.96 , 117.44 (d, J = 22.8 

Hz), 109.69 , 96.18; IR (ATR, cm
-1

): ν = 3053 (w), 2918 (w), 2848 (w), 1591 (m), 1506 (vs), 

1481 (m), 1456 (s), 1406 (s), 1390 (m), 1311 (s), 1244 (s), 1221 (s), 1192 (s), 1173 (s), 1155 

(s), 1113 (m), 1101 (s), 1041 (m), 1011 (m), 935 (m), 889 (m), 835 (s), 812 (s), 800 (m), 744 

(vs), 723 (vs), 700 (m), 671 (m), 661 (m), 640 (m), 619 (m), 573 (s), 565 (s), 536 (s); GC-MS 

(EI, 70 eV): m/z (%) = 445 (100), 222 (10), 95 (8); HRMS (EI): calcd. for C29H17N3F2 

([M]
+
): 445.13851; found: 445.13827. 

5,7-Bis(3-(trifluoromethyl)phenyl)-5,7-dihydropyrido[3,2-

b:5,6-b']diindole 25e was prepared following general 

procedure 10 using compound  24 (100 mg, 0.18 mmol) and 

3-(trifluoromethyl)aniline (137 µL, 1.09 mmol). The product 

was purified by flash chromatography (silica gel, 

heptane/dichloromethane/ethylacetate 8:1:1) to yield 25e (70 

mg, 70 %) as a white solide; m.p. 268-269 ºC;  
1
H NMR (300 MHz, CDCl3) δ = 8.49 (d, J = 

7.7 Hz, 2H), 7.81 (s, 2H), 7.71 – 7.63 (m, 6H), 7.47 – 7.26 (m, 7H); 
19

F NMR (282 MHz, 

CDCl3) δ = -62.78; 
13

C NMR (63 MHz, CDCl3) δ = 141.71, 138.69, 137.91, 133.61, 132.80 

(q, J = 33.2 Hz), 130.85, 129.97, 127.30, 124.35 (q, J = 3.6 Hz), 123.65 (q, J = 3.9 Hz), 

123.53 (q, J = 272.7 Hz), 123.01, 121.25, 120.92, 109.38, 96.01; IR (ATR, cm
-1

): ν = 3061 

(w), 2928 (w), 2854 (w), 1591 (m), 1495 (m), 1485 (m), 1460 (s), 1404 (s), 1387 (m), 1354 

(m), 1344 (m), 1323 (s), 1309 (s), 1279 (m), 1271 (m), 1244 (s), 1182 (s), 1173 (s), 1155 (s), 

1115 (vs), 1097 (s), 1070 (s), 1041 (m), 1012 (m), 1003 (m), 962 (m), 931 (w), 918 (m), 904 

(m), 854 (m), 849 (m), 800 (s), 746 (s), 727 (s), 708 (vs), 700 (vs), 669 (m), 661 (s), 646 (m), 
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609 (w), 582 (m), 538 (m); GC-MS (EI, 70 eV): m/z (%) = 545 (100), 273 (22); HRMS (EI): 

calcd. for C31H17N3 ([M]
+
): 545.13212; found: 545.13199. 

5,7-Bis(4-methoxyphenyl)-5,7-dihydropyrido[3,2-b:5,6-

b']diindole 25f was prepared following general procedure 10 

using compound  24 (100 mg, 0.18 mmol) and p-anisidine 

(135 mg, 1.09 mmol). The product was purified by flash 

chromatography (silica gel, 

heptane/dichloromethane/ethylacetate 5:1:1) to yield 25f (80 

mg, 93 %) as a white solide; m.p. 300-302 ºC;  
1
H NMR (300 MHz, CDCl3) δ = 8.67 – 8.58 

(m, 2H), 7.49 – 7.30 (m, 11H), 7.14 – 7.04 (m, 4H), 3.90 (s, 6H); 
13

C NMR (75 MHz, CDCl3) 

δ = 159.19, 142.89, 138.11, 134.99, 130.05, 128.70, 126.91, 122.84, 120.81, 120.47, 115.51, 

109.78, 96.35, 55.80; IR (ATR, cm
-1

): ν = 3047 (m), 2951 (m), 2924 (m), 2835 (m), 1614 

(w), 1589 (m), 1510 (s), 1477 (m), 1456 (s), 1441 (s), 1408 (s), 1392 (m), 1315 (m), 1298 

(m), 1279 (m), 1242 (vs), 1211 (m), 1190 (s), 1180 (s), 1144 (s), 1113 (m), 1103 (s), 1032 (s), 

1007 (m), 953 (m), 928 (m), 887 (m), 835 (s), 825 (s), 810 (m), 793 (m), 742 (vs), 733 (s), 

727 (s), 671 (m), 660 (m), 642 (m), 619 (m), 584 (s), 575 (s), 542 (s); GC-MS (EI, 70 eV): 

m/z (%) = 469 (100), 291 (27), 43 (57); HRMS (EI): calcd. for C31H23O2N3 ([M]
+
): 

469.17848; found: 469.17813. 

5,7-Bis(3,5-dimethoxyphenyl)-5,7-dihydropyrido[3,2-

b:5,6-b']diindole 25g was prepared following general 

procedure 10 using compound  24 (100 mg, 0.18 mmol) 

and 3,5-dimethoxyaniline (168 mg, 1.09 mmol). The 

product was purified by flash chromatography (silica gel, 

heptane/dichloromethane/ethylacetate 4:1:1) to yield 25f 

(92 mg, 95 %) as a white solide; m.p. 230-231 ºC;  
1
H NMR (300 MHz, CDCl3) δ = 8.66 (d, J 

= 6.6 Hz, 2H), 7.74 (s, 1H), 7.46 (dd, J = 26.3, 6.9 Hz, 6H), 6.75 (d, J = 1.9 Hz, 4H), 6.57 (s, 

2H), 3.84 (s, 12H); 
13

C NMR (75 MHz, CDCl3) δ = 161.94, 142.13, 134.11, 127.38, 121.43, 

120.89, 110.03, 105.08, 100.05, 55.67; IR (ATR, cm
-1

): ν = 3066 (w), 2999 (w), 2935 (w), 

2841 (w), 1740 (w), 1595 (vs), 1477 (s), 1462 (s), 1446 (m), 1423 (m), 1404 (m), 1346 (m), 

1311 (m), 1300 (m), 1292 (s), 1234 (s), 1201 (vs), 1190 (s), 1151 (vs), 1142 (s), 1065 (s), 

1055 (m), 827 (s), 741 (s), 733 (s), 708 (m), 690 (s), 579 (w); GC-MS (EI, 70 eV): m/z (%) = 
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529 (100), 471 (10), 207 (6); HRMS (EI): calcd. for C33H27O4N3 ([M]
+
): 529.19961; found: 

529.19898. 

5,7-Bis(4-(N,N-diethylamino)phenyl)-5,7-

dihydropyrido[3,2-b:5,6-b']diindole 25h was prepared 

following general procedure 10 using compound  24 (100 

mg, 0.18 mmol) and N
1
,N

1
-diethylbenzene-1,4-diamine 

(182 µL, 1.09 mmol). The product was purified by flash 

chromatography (silica gel, 

Heptane/dichloromethane/ethylacetate 5:1:1) to yield 25h 

(70 mg, 69 %) as a brown solid; m.p. 222-223 ºC; 
1
H NMR (300 MHz, CDCl3) δ = 8.58 – 

8.49 (m, 2H), 7.38 – 7.23 (m, 11H), 6.72 (d, J = 9.0 Hz, 4H), 3.35 (q, J = 7.0 Hz, 8H), 1.15 (t, 

J = 7.1 Hz, 12H); 
13

C NMR (75 MHz, CDCl3) δ = 147.30, 143.08, 137.58, 135.22, 128.41, 

126.38, 124.72, 122.48, 120.44, 119.79, 112.29, 109.75, 96.57, 44.50, 12.67; IR (ATR, cm
-1

): 

ν = 3043  (w), 2968  (m), 2929  (m), 2897  (w), 2864  (w), 1732  (w), 1606  (m), 1591  (m), 

1520  (vs), 1477  (m), 1460  (s), 1448  (m), 1394  (m), 1373  (m), 1354  (s), 1323  (m), 1309  

(s), 1269  (s), 1240  (s), 1192  (s), 1149  (s), 1140  (s), 1119  (m), 1109  (m), 1097  (m), 1074  

(m), 1047  (m), 1032  (m), 1007  (m), 930  (m), 922  (m), 885  (m), 841  (m), 823  (m), 812  

(s), 793  (m), 785  (m), 750  (vs), 742  (s), 731  (vs), 725  (s), 696  (m), 656  (m), 640  (m), 

621  (m), 561  (s), 536  (s); GC-MS (EI, 70 eV): m/z (%) = 551 (100), 507 (15), 463 (13), 

268 (7), 69 (20), 44 (59); HRMS (ESI): calcd. for C37H37N5 ([M + H]
+
): 552.31217; found: 

552.31208; calcd. for C37H37N5Na ([M + Na]
+
): 574.29412; found: 574.2944. 
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General procedure 11 for double C-N coupling with alkyl amine derivatives, 

exemplified by: 5,7-diheptyl-5,7-dihydropyrido[3,2-b:5,6-b']diindole 25i 

 

To pressure tube charged with 24 (100 mg, 0.18 mmol), Pd2(dba)3 (8 mg, 9 µmol), ligand 

DPEPhos (10 mg, 18 µmol) and sodium tert-butoxide (105 mg, 1.09 mmol) under Argon. 

The mixture was back-filled with Argon several times. The mixture was dissolved in 

anhydrous toluene (10 mL). n-Heptylamine (0.2 mL, 1.09 mmol) was added to the mixture 

and heated at 100 ºC for 7 h. After cooling, the reaction mixture was diluted with 

dichloromethane (20 mL) and filtered through a celite pad, washing with dichloromethane 

(40 mL). The filtrate was reduced in vacuo. The product was separated via flash 

chromatography (silica gel, heptane/dichloromethane/ethylacetate 5:1:1) to yield 25i (66 mg, 

80%) as a white solid; m.p. 162-164 ºC; 
1
H NMR (300 MHz, CDCl3) δ = 8.58 (d, J = 7.4 Hz, 

2H), 7.59 – 7.46 (m, 2H), 7.39 – 7.28 (m, 5H), 4.16 (t, J = 7.1 Hz, 4H), 1.97 – 1.78 (m, 4H), 

1.41 – 1.19 (m, 16H), 0.86 (t, J = 6.8 Hz, 6H); 
13

C NMR (63 MHz, CDCl3) δ = 141.49, 

136.62, 133.73, 126.41, 122.32, 120.76, 119.38, 108.60, 94.25, 43.08, 31.82, 29.19, 28.85, 

27.43, 22.69, 14.15; IR (ATR, cm
-1

): ν = 3061  (w), 3020  (w), 2953  (w), 2933  (w), 2877  

(w), 2852  (w), 1595  (s), 1466  (s), 1454  (m), 1441  (m), 1410  (m), 1390  (m), 1352  (s), 

1319  (s), 1257  (s), 1227  (m), 1203  (m), 1171  (s), 1124  (m), 1111  (m), 1080  (m), 1068  

(m), 1012  (m), 827  (m), 742  (vs), 729  (vs), 698  (vs), 687  (s), 648  (m), 594  (m), 579  

(m), 563  (m), 544  (s);  GC-MS (EI, 70 eV): m/z (%) = 453 (100), 368 (40), 282 (12), 269 

(25); HRMS (EI): calcd. for C31H39N3 ([M]
+
): 453.31385; found: 453.31353. 
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5,7-Bis(3-(trifluoromethyl)benzyl)-5,7-

dihydropyrido[3,2-b:5,6-b']diindole 25p was 

prepared following general procedure 11 using 

compound  24 (100 mg, 0.18 mmol) and 3-

(trifluoromethyl)benzylamine (157 µL, 1.09 mmol). 

The product was purified by flash chromatography 

(silica gel, heptane/dichloromethane/ethylacetate 5:1:1) to yield 25p (54 mg, 52 %) as a white 

solid; m.p. 229-231 ºC; 
1
H NMR (300 MHz, CDCl3) δ = 8.53 (d, J = 7.6 Hz, 2H), 7.52 – 7.28 

(m, 9H), 7.18 (m, J = 6.9 Hz, 3H), 6.96 (d, J = 8.7 Hz, 3H), 5.24 (s, 4H); 
19

F NMR (282 

MHz, CDCl3) δ = -62.70 (s); 
13

C NMR (75 MHz, CDCl3) δ = 141.50 (s), 137.49 (s), 133.54 

(s), 131.24 (q, J = 32.5 Hz), 129.46 (s), 129.42 (s), 126.95 (s), 124.55 (q, J = 3.4 Hz), 123.81 

(q, J = 272.5 Hz), 123.12 (q, J = 3.7 Hz), 122.63 (s), 120.81 (s), 120.28 (s), 108.59 (s), 94.52 

(s), 46.11 (s); IR (ATR, cm
-1

): ν = 3047 (w), 2926 (w), 1595 (m), 1466 (m), 1443 (m), 1410 

(m), 1327 (vs), 1315 (vs), 1254 (s), 1223 (m), 1182 (s), 1167 (s), 1111 (vs), 1097 (vs), 1070 

(vs), 1007 (m), 968 (m), 949 (m), 937 (m), 930 (m), 916 (m), 881 (m), 862 (m), 823 (m), 804 

(m), 789 (s), 744 (vs), 733 (s), 714 (m), 696 (vs), 661 (s), 634 (m), 615 (m), 602 (m), 582 

(m), 565 (s); GC-MS (EI, 70 eV): m/z (%) = 573 (100), 414 (42), 255 (30), 159 (10); HRMS 

(EI): calcd. for C33H21N3F6 ([M]
+
): 573.16342; found: 573.16519. 

5,7-Diphenethyl-5,7-dihydropyrido[3,2-b:5,6-b']diindole 25q 

was prepared following general procedure 11 using compound  

24 (100 mg, 0.18 mmol) and phenylethylamine (138 µL, 1.09 

mmol). The product was purified by flash chromatography 

(silica gel, heptane/dichloromethane/ethylacetate 5:1:1) to 

yield 25q (64 mg, 75 %) as a white solid; m.p. 124-126 ºC; 
1
H 

NMR (300 MHz, CDCl3) δ = 8.47 (d, J = 7.6 Hz, 2H), 7.38 (m, 2H), 7.30 – 6.79 (m, 15H), 

4.19 (t, J = 6.9 Hz, 4H), 2.93 (t, J = 6.9 Hz, 4H); 
13

C NMR (63 MHz, CDCl3) δ = 141.00, 

138.83, 136.22, 133.46, 128.87, 128.59, 126.68, 126.43, 122.10, 120.70, 119.50, 108.35, 

94.50, 44.77, 34.96; IR (ATR, cm
-1

): ν = 2951 (m), 2928 (m), 2874 (m), 2856 (m), 2845 (m), 

1591 (s), 1481 (m), 1470 (s), 1464 (s), 1412 (m), 1387 (m), 1371 (m), 1354 (m), 1319 (s), 

1250 (s), 1230 (s), 1215 (m), 1201 (m), 1186 (m), 1174 (m), 1144 (s), 1124 (m), 1113 (s), 

1070 (m), 1024 (w), 1011 (m), 903 (m), 847 (m), 744 (s), 725 (vs), 706 (s), 696 (m), 673 (m), 

596 (m), 577 (m), 565 (m); GC-MS (EI, 70 eV): m/z (%) = 465 (35), 374 (100), 282 (42); 

HRMS (EI): calcd. for C33H27N3 ([M]
+
): 465.21995; found: 465.21945. 
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5,7-Bis(3,4-dimethoxyphenethyl)-5,7-dihydropyrido[3,2-

b:5,6-b']diindole  25r was prepared following general 

procedure 11 using compound  24 (100 mg, 0.18 mmol) and 

3,4-dimethoxyphenylethylamine (185 µL, 1.09 mmol). The 

product was purified by flash chromatography (silica gel, 

heptane/dichloromethane/ethylacetate 3:1:1) to yield 25r (60 

mg, 56 %) as a white solid; m.p. 164-165 ºC; 
1
H NMR (300 

MHz, CDCl3) δ = 8.45 (s, 2H), 7.42 – 7.34 (m, 2H), 7.28 – 

7.16 (m, 4H), 6.72 – 6.50 (m, 5H), 6.19 (s, 2H), 4.29 (d, J = 6.4 Hz, 4H), 3.60 (s, 6H), 3.39 

(s, 6H), 2.92 (s, 4H); 
13

C NMR (75 MHz, CDCl3) δ = 148.94, 147.90, 141.20, 133.51, 

131.47, 126.39, 122.31, 120.71, 120.56, 119.55, 112.48, 111.26, 108.52, 94.37, 55.78, 55.67, 

45.07, 34.52; IR (ATR, cm
-1

): ν = 2955 (w), 2937 (w), 2916 (w), 2833 (w), 1597 (m), 1516 

(s), 1464 (m), 1454 (m), 1441 (w), 1435 (w), 1414 (m), 1387 (w), 1354 (m), 1327 (m), 1317 

(m), 1261 (vs), 1236 (s), 1228 (s), 1211 (m), 1198 (m), 1190 (m), 1157 (s), 1136 (s), 1122 

(m), 1041 (w), 1030 (m), 1018 (s), 860 (m), 808 (m), 764 (m), 742 (vs), 727 (vs), 683 (m), 

644 (m), 557 (m); GC-MS (EI, 70 eV): m/z (%) = 585 (45), 434 (100), 284 (27); HRMS 

(ESI): calcd. for C37H35N3O4 ([M + H]
+
): 586.26276; found: 586.2700. 

5,7-Bis(3-phenylpropyl)-5,7-dihydropyrido[3,2-b:5,6-

b']diindole  25s was prepared following general 

procedure 11 using compound  24 (100 mg, 0.18 mmol) 

and 3-phenylpropylamine (156 µL, 1.09 mmol). The 

product was purified by flash chromatography (silica 

gel, heptane/dichloromethane/ethylacetate 5:1:1) to 

yield 25s (61 mg, 68 %) as a white solid; m.p. 194-196 ºC; 
1
H NMR (300 MHz, CDCl3) δ = 

8.46 (d, J = 7.6 Hz, 2H), 7.39 (ddd, J = 8.3, 7.3, 1.2 Hz, 2H), 7.28 – 6.97 (m, 15H), 4.05 (t, J 

= 7.3 Hz, 4H), 2.58 (t, J = 7.5 Hz, 4H), 2.19 – 1.99 (m, 4H); 
13

C NMR (63 MHz, CDCl3) δ = 

141.30, 140.90, 136.80, 133.47, 128.54, 128.39, 126.34, 126.22, 122.38, 120.61, 119.41, 

108.45, 93.98, 42.10, 33.11, 29.72; IR (ATR, cm
-1

): ν = 3024 (w), 2924 (w), 1593 (s), 1497 

(m), 1464 (s), 1452 (s), 1435 (m), 1408 (m), 1387 (m), 1356 (m), 1315 (s), 1250 (s), 1227 

(m), 1207 (m), 1194 (m), 1174 (m), 1163 (m), 1149 (m), 1124 (m), 1111 (m), 1088 (m), 1070 

(m), 1028 (m), 1016 (m), 1009 (m), 928 (w), 831 (m), 768 (m), 742 (vs), 729 (vs), 694 (vs), 

615 (m), 584 (m), 575 (m), 557 (m); GC-MS (EI, 70 eV): m/z (%) = 493 (100), 388 (48), 269 
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(18), 69 (23), 44 (38); HRMS (ESI): calcd. for C35H31N3 ([M + H]
+
): 494.25907; found: 

494.25922; calcd. for C35H31N3Na ([M + Na]
+
): 516.24102; found: 516.2405. 

5,7-Dicyclohexyl-5,7-dihydropyrido[3,2-b:5,6-b']diindole  25t 

was prepared following general procedure 11 using compound  

24 (100 mg, 0.18 mmol) and cyclohexylamine (127 µL, 1.09 

mmol). The product was purified by flash chromatography (silica 

gel, heptane/dichloromethane/ethylacetate 5 :1:1) to yield 25t (42 

mg, 55 %) as a white solid; m.p. 277-279 ºC; 
1
H NMR (300 MHz, CDCl3) δ = 8.50 (d, J = 

7.7 Hz, 2H), 7.58 (s, 1H), 7.47 – 7.36 (m, 4H), 7.23 (ddd, J = 7.9, 6.0, 2.1 Hz, 2H), 5.19 – 

5.03 (m, 2H), 2.42 – 1.63 (m, 20H); 
13

C NMR (75 MHz, CDCl3) δ = 140.81, 137.05, 132.62, 

126.12, 122.85, 120.83, 119.21, 109.65, 96.35, 55.93, 28.96, 25.48; IR (ATR, cm
-1

): ν =  

2928 (m), 2854 (m), 1591 (m), 1485 (m), 1454 (m), 1416 (m), 1404 (m), 1377 (m), 1344 (m), 

1327 (m), 1304 (m), 1250 (m), 1225 (s), 1188 (s), 1155 (m), 1142 (m), 1126 (m), 1117 (m), 

1072 (m), 1057 (m), 1028 (m), 1012 (m), 968 (m), 893 (m), 837 (m), 742 (s), 729 (vs), 700 

(m), 658 (m), 594 (m), 577 (s), 532 (m); GC-MS (EI, 70 eV): m/z (%) = 421 (100), 256 (31), 

55 (22); HRMS (EI): calcd. for C29H31N3 ([M]
+
): 421.25125; found: 421.25089. 

 

8.5.5 Synthesis and Physical Properties of Indolo[2,3-b]quinoxalines 

Synthesis of 2,3-dibromoquinoxaline 

 

2,3-Dibromoquinoxaline was synthesized in 94% of overall yield using Li’s procedure by 

reflux of 1,2-phenylenediamine with diethyl oxalate, to give 1,4-dihydroquinoxaline-2,3-

dione, and subsequent reaction with PBr5.
150

 M.p. 179-180 ºC. 
1
H NMR (300 MHz, CDCl3) δ 

= 8.08 – 8.01 (m, 2H), 7.86 – 7.78 (m, 2H); 
13

C NMR (75 MHz, CDCl3) δ = 141.42, 140.97, 

131.49, 128.57; IR (ATR, cm
-1

): ν =3097 (m), 3034 (m), 1564 (m), 1549 (s), 1514 (s), 1479 

(m), 1254 (s), 1169 (s), 1126 (m), 1107 (s), 1072 (m), 1059 (m), 957 (vs), 901 (m), 883 (m), 

868 (s), 769 (vs), 692 (m), 677 (m), 621 (m), 582 (s); GC-MS (EI, 70 eV): m/z (%) = 288 
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(96), 209 (95), 128 (61), 102 (100), 75 (98), 50 (59); HRMS (EI): calcd. for C8H4N2Br2 

([M]
+
): 285.87357; found: 285.87325; calcd. for C8H4N2Br1

81
Br1 ([M]

+
): 287.87153; found: 

287.87137; calcd. for C8H4N2
81

Br2 ([M]
+
): 289.86948; found: 289.86935. 

General procedure for the preparation of 2-bromo-3-(2-bromophenyl)quinoxaline 34.  

 

2,3-Dibromoquinoxaline 32 (1 g, 3.5 mmol), 2-bromophenyl boronic acid (837 mg, 4.2 

mmol), Pd(PPh3)4 (100 mg, 87 µmol) and sodium hydroxide (417 mg, 10.4 mmol) were 

added to a 500 mL Schlenk flask. The mixture was back-filled several times with Argon. To 

the mixture 70 mL THF and 10 mL distilled water were added, then, back-filled several 

times. The reaction was heated at 70 ºC for 4h. The solvent was evaporated in vacuo. The 

residue was extracted with dichloromethane and water. The organic layer was dried over 

MgSO4, filtered and the solvent was evaporated in vacuo. The yellow residue was purified by 

column chromatography (silica gel, Heptane/ethylacetate 10:1) to yield 2-bromo-3-(2-

bromophenyl)quinoxaline 34 (1.1 g, 87 %) as white solid. M.p. 127-129 ºC; 
1
H NMR (250 

MHz, CDCl3) δ = 8.20 – 8.07 (m, 2H), 7.90 – 7.79 (m, 2H), 7.73 (dd, J = 7.9, 0.8 Hz, 1H), 

7.55 – 7.35 (m, 3H); 
13

C NMR (63 MHz, CDCl3) δ = 154.95, 142.47, 140.67, 140.11, 139.38, 

132.99, 131.46, 131.01, 130.84, 130.49, 129.58, 128.57, 127.76, 122.83; IR (ATR, cm
-1

): ν 

=3059 (w), 1610 (w), 1556 (m), 1535 (w), 1477 (m), 1433 (m), 1385 (w), 1333 (m), 1290 

(m), 1273 (w), 1252 (m), 1236 (w), 1213 (w), 1167 (w), 1147 (m), 1132 (m), 1084, 1041, 

1024 (m), 999 (w), 970, 955 (m), 943 (m), 885 (m), 870 (w), 862 (w), 752 (vs), 727, 715, 

710, 690 (m), 652 (m), 638 (m), 613 (m), 588, 571 (m), 557 (m); GC-MS (EI, 70 eV): m/z 

(%) = 364 (32), 285 (100), 102 (48), 75 (28), 50 (14); HRMS (EI): calcd. for C14H8N2Br2 

([M]
+
): 361.90488; found: 361.90467;calcd. for C14H8N2Br1

81
Br1 ([M]

+
): 363.90283; found: 

363.90277; calcd. for C14H8N2
81

Br2 ([M]
+
):365.90078; found: 365.90082. 
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General procedure 12 for double C-N coupling with aniline derivatives,exemplified by 

the synthesis of6-phenyl-6H-indolo[2,3-b]quinoxaline(35a) 

 

Aniline 8a (75 µL, 0.82 mmol) was added to a pressure tube charged with 34 (100 mg, 0.28 

mmol), Pd2(dba)3 (12 mg, 14 µmol), ligand Dppf (15mg, 27 µmol) and sodium tert-butoxide 

(79 mg, 0.82 mmol) under Argon. The mixture was back-filled with Argon several times. The 

mixture was dissolved in anhydrous Toluene (10 mL) and heated at 100 ºC for 7 h. After 

cooling, the reaction mixture was diluted with dichloromethane (20mL) and filtered through a 

celite pad, washing with dichloromethane (40 mL). The filtrate was reduced in vacuo. The 

product was separated via flashchromatography (silica gel, heptane/ethylacetate 5:1) to yield 

6-phenyl-6H-indolo[2,3-b]quinoxaline 35a (67 mg, 83%) as a yellow solid; m.p. 238-239 ºC; 

1
H NMR (300 MHz, CDCl3) δ = 8.56 (d, J = 7.7 Hz, 1H), 8.40 – 8.29 (m, 1H), 8.14 – 8.06 

(m, 1H), 7.84 – 7.59 (m, 7H), 7.59 – 7.38 (m, 3H); 
13

C NMR (75 MHz, CDCl3) δ = 146.00, 

144.90, 140.72, 140.08, 139.69, 135.50, 131.25, 129.92, 129.24, 128.99, 128.38, 128.13, 

127.27, 126.71, 122.94, 122.02, 119.83, 110.75; IR (ATR, cm
-1

): ν =3053 (m), 1608 (m), 

1597 (m), 1581 (m), 1500, 1483 (m), 1470 (m), 1458, 1402, 1390, 1354 (m), 1336 (m), 1317 

(m), 1304 (m), 1252 (m), 1227 (m), 1205, 1174 (m), 1147 (m), 1132 (m), 1126 (m), 1099 

(m), 1072 (m), 1041 (m), 1024 (m), 1014 (m), 1007 (m), 955 (m), 924 (m), 779 (m), 766 (m), 

748 (vs), 719 (m), 694, 687, 648, 590, 567 (m); GC-MS (EI, 70 eV): m/z (%) =  295 (100), 

147 (9), 90 (6), 77 (6); HRMS (ESI): calcd. for C20H14N3 ([M + H]
+
): 296.11822; found: 

296.11835. 

6-(p-Tolyl)-6H-indolo[2,3-b]quinoxaline 35b was prepared 

following general procedure 12 using compound  34 (100 mg, 0.28 

mmol) and toluidine (88 mg, 0.82 mmol). The product was 

purified by flash chromatography (silica gel, heptane/ethylacetate 

5:1) to yield 35b (73 mg, 86%) as a yellow solid; m.p. 216-217 ºC; 

1
H NMR (300 MHz, CDCl3) δ = 8.50 – 8.43 (m, 1H), 8.29 – 8.22 

(m, 1H), 8.05 – 7.99 (m, 1H), 7.68 – 7.57 (m, 2H), 7.57 – 7.49 (m, 3H), 7.45 – 7.31 (m, 4H), 
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2.43 (s, 3H); 
13

C NMR (75 MHz, CDCl3) δ = 146.01, 144.99, 140.66, 140.06, 139.62, 138.04, 

132.68, 131.06, 130.45, 129.17, 128.79, 128.27, 127.02, 126.46, 122.72, 121.73, 119.68, 

110.62, 21.35; IR (ATR, cm
-1

): ν =3057 (w), 3034 (w), 2918 (w), 1606 (m), 1585 (m), 1514, 

1485 (m), 1470 (m), 1460, 1404, 1354 (m), 1335 (m), 1317, 1304 (m), 1255 (m), 1227 (m), 

1221 (m), 1205, 1182 (m), 1169 (m), 1130 (m), 1122 (m), 1099 (m), 1043 (m), 1016 (m), 955 

(m), 924 (m), 816 (m), 764, 750 (vs), 721 (m), 710 (m), 673 (w), 633 (m), 602, 579, 567 (m), 

559 (m); GC-MS (EI, 70 eV): m/z (%) = 309 (100), 293 (8), 154 (7), 90 (5); HRMS (EI): 

calcd. for C21H15N3 ([M]
+
): 309.12605; found: 309.12523. 

6-(4-Fluorophenyl)-6H-indolo[2,3-b]quinoxaline 35c was 

prepared following general procedure 12 using compound  34 (100 

mg, 0.28 mmol) and 4-fluoroaniline (78 µL, 0.82 mmol). The 

product was purified by flash chromatography (silica gel, 

heptane/ethylacetate 5:1) to yield 35c (69 mg, 80 %) as a yellow 

solid; m.p. 219-220 ºC; 
1
H NMR (300 MHz, CDCl3) δ = 8.55 (d, J 

= 7.8 Hz, 1H), 8.37 – 8.30 (m, 1H), 8.12 – 8.04 (m, 1H), 7.78 – 7.61 (m, 5H), 7.50 – 7.41 (m, 

2H), 7.41 – 7.30 (m, 2H); 
19

F NMR (282 MHz, CDCl3) δ = -113.01; 
13

C NMR (75 MHz, 

CDCl3) δ = 162.08 (d, J = 247.9 Hz), 146.07, 144.90, 140.70, 140.01 (d, J = 18.0 Hz), 131.43 

(d, J = 3.2 Hz), 131.32, 129.38, 129.18 (d, J = 8.4 Hz), 129.12, 128.32, 126.81, 122.98, 

122.15, 119.92, 116.99 (d, J = 22.9 Hz), 110.52; IR (ATR, cm
-1

): ν =3057 (m), 1608 (m), 

1579 (m), 1574 (m), 1514, 1485, 1471 (m), 1460, 1402, 1356 (m), 1335 (m), 1313, 1292 (m), 

1259 (m), 1223, 1203, 1171 (m), 1151 (m), 1130 (m), 1122, 1099, 1043 (m), 1012 (m), 1007 

(m), 949 (m), 924 (m), 872 (m), 831, 812 (m), 800 (m), 764, 748 (vs), 723 (m), 710, 673 (m), 

638 (m), 629 (m), 602, 579, 567 (m), 557 (m), 548 (m); GC-MS (EI, 70 eV): m/z (%) = 313 

(100), 156 (12), 75 (7); HRMS (EI): calcd. for C20H12N3F1 ([M]
+
): 313.10098; found: 

313.10007. 

6-(3-(Trifluoromethyl)phenyl)-6H-indolo[2,3-b]quinoxaline 35d 

was prepared following general procedure 12 using compound  34 

(100 mg, 0.28 mmol) and 3-(trifluoromethyl)aniline (103 µL, 0.82 

mmol). The product was purified by flash chromatography (silica 

gel, heptane/ethylacetate 5:1) to yield 35d (90 mg, 90 %) as a 

yellow solid; m.p. 201-202 ºC; 
1
H NMR (300 MHz, CDCl3) δ = 

8.46 (ddd, J = 7.7, 1.2, 0.7 Hz, 1H), 8.29 – 8.19 (m, 1H), 8.03 – 7.95 (m, 2H), 7.92 (ddd, J = 
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3.7, 3.0, 1.9 Hz, 1H), 7.76 – 7.53 (m, 5H), 7.48 – 7.33 (m, 2H); 
19

F NMR (282 MHz, CDCl3) 

δ = -62.58; 
13

C NMR (75 MHz, CDCl3) δ = 145.55, 144.00, 140.39, 140.07, 136.11, 132.31 

(q, J = 33.0 Hz), 131.25, 130.40, 130.32, 130.31, 129.33, 129.11, 128.23, 126.90, 124.49 (q, 

J = 3.7 Hz), 123.85 (q, J = 3.9 Hz), 122.92, 123.74 (q, J = 272.5 Hz),122.41, 120.16, 110.31; 

IR (ATR, cm
-1

): ν =3051 (w), 3028 (w), 1608 (w), 1597 (w), 1579 (w), 1574 (w), 1495 (m), 

1464 (m), 1446 (m), 1406, 1356 (m), 1329, 1308 (m), 1279 (w), 1250 (m), 1230 (m), 1205 

(m), 1167, 1134 (m), 1126 (m), 1113, 1105, 1095, 1068, 1045 (m), 1011 (m), 987 (w), 976 

(w), 958 (m), 943 (m), 924 (w), 904 (m), 874 (w), 860 (w), 854 (w), 802 (m), 795 (m), 768 

(m), 748 (vs), 719 (m), 700, 671, 656 (m), 631 (w), 615 (w), 588 (m), 567 (w), 546 (w); GC-

MS (EI, 70 eV): m/z (%) = 363 (100), 294 (9); HRMS (ESI): calcd. for C21H12F3N3 ([M + 

H]
+
): 364.10561; found: 364.10566; calcd. for C37H37N5Na ([M + Na]

+
): 574.29412; found: 

574.2944. 

6-(4-Methoxyphenyl)-6H-indolo[2,3-b]quinoxaline 35e was 

prepared following general procedure 12 using compound  34 (100 

mg, 0.28 mmol) and p-anisidine (101 mg, 0.82 mmol). The product 

was purified by flash chromatography (silica gel, 

heptane/ethylacetate 3:1) to yield 35e (88 mg, 98 %) as a yellow 

solid; m.p. 226-228 ºC; 
1
H NMR (300 MHz, CDCl3) δ = 8.57 (d, J 

= 7.6 Hz, 1H), 8.35 (d, J = 8.9 Hz, 1H), 8.15 – 8.05 (m, 1H), 7.80 – 7.55 (m, 5H), 7.44 (m, 

2H), 7.21 – 7.13 (m, 2H), 3.94 (s, 3H); 
13

C NMR (75 MHz, CDCl3) δ = 159.42, 145.47, 

140.85, 139.42, 131.35, 129.13, 129.00, 128.72, 128.38, 128.02, 126.67, 123.02, 121.87, 

119.53, 115.27, 113.39, 110.68, 55.77; IR (ATR, cm
-1

): ν =3076 (w), 3053 (m), 3022 (m), 

2956 (m), 2933 (m), 2912 (m), 2839 (m), 1606 (m), 1585 (m), 1578 (m), 1512, 1506, 1487 

(m), 1464, 1446, 1406, 1356 (m), 1336 (m), 1313 (m), 1296, 1244, 1230, 1205, 1178, 1167, 

1136, 1128, 1103, 1041 (m), 1026, 1009 (m), 968 (m), 955 (m), 939 (m), 924 (m), 870 (m), 

852 (m), 829, 820, 804 (m), 795 (m), 768, 748 (vs), 723, 715, 669 (m), 642 (m), 629 (m), 

602, 579, 569, 550; GC-MS (EI, 70 eV): m/z (%) = 325 (100), 310 (39), 282 (18), 141 (8); 

HRMS (ESI): calcd. for C21H15N3O ([M + H]
+
): 326.12879; found: 326.12858. 
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6-(3,5-Dimethoxyphenyl)-6H-indolo[2,3-b]quinoxaline 35f was 

prepared following general procedure 12 using compound  34 

(100 mg, 0.28 mmol) and 3,5-dimethoxyaniline (126 mg, 0.82 

mmol). The product was purified by flash chromatography (silica 

gel, heptane/ethylacetate 2:1) to yield 35f (93 mg, 95 %) as a 

yellow solid; m.p. 188-189 ºC; 
1
H NMR (300 MHz, CDCl3) δ = 

8.45 (d, J = 7.6 Hz, 1H), 8.28 – 8.20 (m, 1H), 8.07 – 8.00 (m, 1H), 7.71 – 7.47 (m, 4H), 7.35 

(ddd, J = 8.1, 6.9, 1.3 Hz, 1H), 6.81 (d, J = 2.3 Hz, 2H), 6.54 (m, 1H), 3.79 (s, 6H); 
13

C NMR 

(75 MHz, CDCl3) δ = 161.59, 145.81, 144.67, 140.60, 140.16, 139.77, 136.91, 131.08, 

129.25, 128.83, 128.35, 126.55, 122.66, 121.86, 119.84, 110.92, 105.51, 100.33, 55.66; IR 

(ATR, cm
-1

): ν =2993 (w), 2956 (w), 2926 (w), 1606 (m), 1591 (m), 1508 (w), 1491 (m), 

1458, 1427 (m), 1404 (m), 1363 (w), 1325 (m), 1298 (m), 1257 (m), 1242 (m), 1207 (m), 

1194, 1153, 1134 (m), 1124 (m), 1107 (m), 1066 (m), 1051 (m), 1039 (m), 1014 (m), 1003 

(m), 993 (m), 953 (m), 933 (m), 912 (m), 877 (m), 860 (m), 847, 818 (m), 791 (m), 768, 735 

(vs), 721, 688, 667 (m), 640 (m), 631 (m), 617 (m), 607 (m), 600 (m), 584, 577 (m), 565 (m), 

534 (m); GC-MS (EI, 70 eV): m/z (%) =355 (100), 325 (13), 268 (12); HRMS (EI): calcd. for 

C22H17O2N3 ([M]
+
): 355.13153; found: 355.13066. 

6-(4-(Methylthio)phenyl)-6H-indolo[2,3-b]quinoxaline 35g was 

prepared following general procedure 12 using compound  34 (100 

mg, 0.28 mmol) and 4-(methylthio)aniline (103 µL, 0.82 mmol). 

The product was purified by flash chromatography (silica gel, 

heptane/ethylacetate 3:1) to yield 35g (88 mg, 94 %) as a white 

solid; m.p. 249-250ºC; 
1
H NMR (300 MHz, CDCl3) δ = 8.47 (d, J 

= 7.4 Hz, 1H), 8.28 – 8.20 (m, 1H), 8.06 – 7.98 (m, 1H), 7.72 – 7.53 (m, 5H), 7.51 – 7.30 (m, 

4H), 2.53 (s, 3H); 
13

C NMR (75 MHz, CDCl3) δ = 145.88, 144.73, 140.58, 140.17, 139.82, 

138.69, 132.30, 131.09, 129.28, 128.89, 128.23, 127.62, 127.52, 126.56, 122.73, 121.91, 

119.85, 110.56, 15.92; IR (ATR, cm
-1

): ν =2955 (m), 2920, 2850 (m), 1608 (m), 1579 (m), 

1498, 1483 (m), 1460, 1431 (m), 1402, 1352 (m), 1335 (m), 1311, 1296 (m), 1252 (m), 1230 

(m), 1203, 1184 (m), 1132 (m), 1124 (m), 1115 (m), 1103, 1090, 1041 (m), 1012 (m), 1003 

(m), 984 (m), 970 (m), 955 (m), 937 (m), 922 (m), 904 (w), 870 (m), 854 (w), 833 (m), 816, 

768 (vs), 748 (vs), 719, 702, 661 (m), 634 (m), 625 (m), 590, 567, 548 (m); GC-MS (EI, 70 

eV): m/z (%) = 341 (100), 326 (36), 294 (20), 102 (6); HRMS (ESI): calcd. for C24H22N4 ([M 

+ H]
+
): 342.09467; found: 342.10916. 
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5,7-Bis(4-(N,N-diethylamino)phenyl)-6H-indolo[2,3-

b]quinoxaline 35h was prepared following general procedure 12 

using compound  34 (100 mg, 0.28 mmol) and N
1
,N

1
-

diethylbenzene-1,4-diamine (137 µL, 0.82 mmol). The product 

was purified by flash chromatography (silica gel, 

Heptane/ethylacetate 3:1) to yield 35h (76 mg, 75 %) as a yellow 

solid; m.p. 228-229 ºC;  
1
H NMR (300 MHz, CDCl3) δ = 8.50 – 

8.39 (m, 1H), 8.26 – 8.19 (m, 1H), 8.05 – 8.00 (m, 1H), 7.70 – 7.50 (m, 3H), 7.45 – 7.27 (m, 

4H), 6.84 – 6.73 (m, 2H), 3.37 (q, J = 7.1 Hz, 4H), 1.17 (t, J = 7.1 Hz, 6H); 
13

C NMR (75 

MHz, CDCl3) δ = 147.61, 146.39, 145.80, 140.82, 140.23, 139.58, 130.90, 129.22, 128.57, 

128.39, 128.29, 126.09, 122.55, 122.47, 121.29, 119.45, 112.09, 110.74, 44.55, 12.69; IR 

(ATR, cm
-1

): ν =2970 (w), 2926 (w), 2866 (w), 1626 (w), 1608 (m), 1578 (w), 1522, 1489 

(m), 1462 (m), 1446 (m), 1429 (w), 1404 (m), 1371 (m), 1352 (m), 1333 (m), 1315 (m), 1279 

(m), 1259 (m), 1228 (m), 1203, 1194, 1169 (m), 1157 (m), 1149 (m), 1134 (m), 1122 (m), 

1101 (m), 1080 (m), 1041 (m), 1014 (m), 1003 (m), 978 (m), 953 (m), 924 (m), 864 (m), 849 

(m), 814, 798, 758, 735 (vs), 723, 712, 667 (m), 640 (m), 631 (m), 596, 575, 563 (m), 548 

(m), 532 (m); GC-MS (EI, 70 eV): m/z (%) = 366 (67), 351 (100), 322 (28), 294 (14), 243 

(35), 194 (13), 165 (22); HRMS (ESI): calcd. for C24H22N4 ([M + H]
+
): 367.18780; found: 

367.19184. 

5,7-Bis(4-cyanophenyl)-6H-indolo[2,3-b]quinoxaline 35i was 

prepared following general procedure 12 using compound  34 

(100 mg, 0.28 mmol) and 4-aminobenzonitrile (97 mg, 0.82 

mmol). The product was purified by flash chromatography (silica 

gel, heptane/ethylacetate 3:1) to yield 35i (73 mg, 83 %) as a 

yellow solid; m.p. 272-273 ºC; 
1
H NMR (300 MHz, CDCl3) δ = 

8.47 (d, J = 7.7 Hz, 1H), 8.28 – 8.21 (m, 1H), 8.03 – 7.97 (m, 1H), 7.96 – 7.85 (m, 4H), 7.74 

– 7.51 (m, 4H), 7.46 – 7.38 (m, 1H); 
13

C NMR (75 MHz, CDCl3) δ = 145.27, 143.33, 140.25, 

140.17, 140.11, 139.68, 133.65, 131.31, 129.34, 129.32, 128.20, 127.20, 127.02, 123.06, 

122.85, 120.49, 118.40, 110.91, 110.52; IR (ATR, cm
-1

): ν =2922 (m), 2852 (m), 2227 (m), 

1601 (s), 1583 (m), 1506 (s), 1485 (m), 1456 (s), 1400 (s), 1354 (m), 1319 (s), 1304 (m), 

1257 (m), 1238 (m), 1228 (m), 1219 (m), 1198 (s), 1169 (m), 1151 (m), 1136 (m), 1124 (s), 

1103 (s), 1043 (m), 1014 (m), 955 (m), 949 (m), 922 (m), 837 (s), 823 (m), 769 (m), 758 (s), 

746 (vs), 725 (m), 715 (m), 698 (m), 669 (m), 631 (m), 598 (s), 571 (m), 555 (s), 538 (s); 
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GC-MS (EI, 70 eV): m/z (%) = 320 (100), 160 (9), 102 (7); HRMS (EI): calcd. for C21H12N4 

([M]
+
): 320.10565; found: 320.10491. 

General procedure 13 for double C-N coupling with alkyl amine derivatives, 

exemplified by 6-(4-fluorobenzyl)-6H-indolo[2,3-b]quinoxaline 35p 

 

To a pressure tube charged with 34 (100 mg, 0.28 mmol), Pd2(dba)3 (13 mg, 14 µmol), ligand 

DPEPhos (15 mg, 27 µmol) and sodium tert-butoxide (79 mg, 0.82 mmol) under Argon. The 

mixture was back-filled with Argon several times. The mixture was dissolved in anhydrous 

toluene (10 mL). p-fluorobenzylamine (94 µL, 0.82 mmol) was added to the mixture and 

heated at 100 ºC for 7 h. After cooling, the reaction mixture was diluted with 

dichloromethane (20 mL) and filtered through a celite pad, washing with dichloromethane 

(40 mL). The filtrate was reduced in vacuo. The product was purified by flash 

chromatography (silica gel, heptane/ ethylacetate 4:1) to yield 35p (78 mg, 87 %) as a yellow 

solid; m.p. 176-177 ºC; 
1
H NMR (300 MHz, CDCl3) δ = 8.40 (d, J = 7.7 Hz, 1H), 8.24 (dd, J 

= 8.3, 1.5 Hz, 1H), 8.05 (dd, J = 8.4, 1.3 Hz, 1H), 7.72 – 7.48 (m, 3H), 7.31 – 7.17 (m, 4H), 

6.94 – 6.83 (m, 2H), 5.57 (s, 2H); 
19

F NMR (282 MHz, CDCl3) δ = -114.59;
13

C NMR (75 

MHz, CDCl3) δ = 162.30 (d, J = 246.1 Hz), 145.70, 144.08, 140.63, 140.01, 139.59, 132.30 

(d, J = 3.2 Hz), 131.05, 129.39, 129.00 (d, J = 8.2 Hz), 128.92, 127.88, 126.23, 122.82, 

121.29, 119.74, 115.74 (d, J = 21.6 Hz), 109.97, 44.36; IR (ATR, cm
-1

): ν =3057 (w), 3045 

(w), 1632 (w), 1610 (m), 1581 (m), 1508 (s), 1489 (m), 1468 (s), 1443 (w), 1435 (w), 1406 

(s), 1363 (m), 1344 (m), 1325 (m), 1309 (w), 1300 (w), 1267 (w), 1240 (m), 1230 (w), 1217 

(s), 1200 (s), 1171 (w), 1157 (m), 1140 (w), 1126 (w), 1117 (m), 1097 (m), 1066 (w), 1039 

(w), 1016 (w), 1007 (w), 984 (w), 955 (w), 939 (w), 858 (m), 850 (m), 825 (m), 768 (m), 762 

(s), 746 (vs), 729 (m), 721 (m), 712 (m), 690 (m), 640 (m), 631 (w), 617 (m), 592 (m), 571 
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(m), 557 (w), 534 (w); GC-MS (EI, 70 eV): m/z (%) = 327 (100), 232 (11), 218 (8), 109 (79), 

90 (14); HRMS (EI): calcd. for C21H14N3F1 ([M]
+
): 327.11663; found: 327.11625. 

6-(3-(Trifluoromethyl)benzyl)-6H-indolo[2,3-b]quinoxaline 

35q was prepared following general procedure 13 using 

compound  34 (100 mg, 0.28 mmol) and 

trifluoromethylbenzylamine (118 µL, 0.82 mmol). The 

product was purified by flash chromatography (silica gel, 

heptane/ethylacetate 4:1) to yield 35q (87 mg, 84 %) as a yellow solid; m.p. 161-162 ºC; 
1
H 

NMR (300 MHz, CDCl3) δ = 8.44 – 8.38 (m, 1H), 8.28 – 8.21 (m, 1H), 8.07 – 8.01 (m, 1H), 

7.72 – 7.40 (m, 5H), 7.40 – 7.19 (m, 4H), 5.65 (s, 2H);
19

F NMR (282 MHz, CDCl3) δ = -

114.59; 
13

C NMR (75 MHz, CDCl3) δ = 145.69, 143.97, 140.60, 139.99, 139.71, 137.63, 

131.22 (q, J = 32.4 Hz), 131.15, 130.48, 129.43, 129.00, 127.89, 126.35, 124.68 (q, J = 3.7 

Hz), 124.12 (q, J = 3.8 Hz), 123.93 (q, J = 272.4 Hz), 122.89, 121.48, 119.84, 109.79, 44.67; 

IR (ATR, cm
-1

): ν =3064 (w), 1612 (m), 1587 (m), 1489 (m), 1468 (s), 1452 (w), 1435 (w), 

1410 (s), 1358 (w), 1338 (s), 1325 (s), 1275 (m), 1267 (w), 1244 (m), 1196 (s), 1163 (m), 

1151 (s), 1111 (s), 1099 (vs), 1074 (s), 1043 (m), 1009 (m), 989 (m), 978 (w), 951 (w), 941 

(w), 933 (w), 914 (m), 891 (w), 864 (w), 852 (w), 804 (m), 766 (m), 746 (vs), 729 (m), 721 

(m), 704 (s), 698 (s), 675 (w), 661 (m), 648 (m), 629 (m), 607 (m), 600 (m), 592 (m), 575 

(m), 552 (m), 534 (w); GC-MS (EI, 70 eV): m/z (%) = 377 (100), 232 (25), 218 (11), 159 

(27), 90 (19); HRMS (EI): calcd. for C22H14N3F3 ([M]
+
): 377.11343; found: 377.11287. 

6-Phenethyl-6H-indolo[2,3-b]quinoxaline 35r was prepared 

following general procedure 13 using compound  34 (100 mg, 

0.28 mmol)and phenylethylamine (104 µL, 0.82 mmol). The 

product was purified by flash chromatography (silica gel, 

heptane/ethylacetate 5:1) to yield 35r (79 mg, 89 %) as a 

yellow solid; m.p. 155-156 ºC; 
1
H NMR (300 MHz, CDCl3) δ 

= 8.39 (d, J = 7.7 Hz, 1H), 8.23 (dd, J = 8.2, 1.3 Hz, 1H), 8.07 (dd, J = 8.4, 1.1 Hz, 1H), 7.74 

– 7.49 (m, 3H), 7.35 – 7.04 (m, 7H), 4.69 – 4.56 (m, 2H), 3.22 – 3.09 (m, 2H); 
13

C NMR (63 

MHz, CDCl3) δ = 145.46, 144.32, 140.63, 140.05, 139.31, 138.46, 130.86, 129.31, 128.86, 

128.69, 128.58, 127.86, 126.65, 125.97, 122.71, 120.80, 119.42, 109.35, 43.11, 34.74; IR 

(ATR, cm
-1

): ν =3055 (w), 2933 (w), 1610 (m), 1581 (m), 1487 (m), 1466 (s), 1439 (m), 1410 

(s), 1394 (m), 1360 (m), 1344 (m), 1321 (m), 1286 (w), 1259 (w), 1244 (m), 1205 (m), 1184 
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(m), 1176 (m), 1151 (m), 1138 (m), 1117 (s), 1066 (m), 1039 (m), 1032 (m), 1014 (m), 999 

(m), 982 (w), 947 (w), 930 (w), 868 (w), 766 (s), 756 (s), 742 (vs), 725 (m), 704 (s), 692 (s), 

640 (m), 619 (w), 594 (s), 571 (m), 559 (m), 532 (m); GC-MS (EI, 70 eV): m/z (%) = 323 

(16), 232 (100), 219 (61), 129 (10), 102 (10), 91 (9); HRMS (EI): calcd. for C22H17N3 ([M]
+
): 

323.14170; found: 323.14153. 

6-(3-Phenylpropyl)-6H-indolo[2,3-b]quinoxaline 35s was 

prepared following general procedure 13 using compound  

34 (100 mg, 0.28 mmol) and phenylpropylamine (117 µL, 

0.82 mmol). The product was purified by flash 

chromatography (silica gel, heptane/ethylacetate 5:1) to yield 

35s (84 mg, 91 %) as a yellow solid; m.p. 180-181 ºC; 
1
H 

NMR (300 MHz, CDCl3) δ = 
1
H NMR (300 MHz, CDCl3) δ 8.40 (d, J = 7.2 Hz, 1H), 8.23 

(dd, J = 8.2, 1.3 Hz, 1H), 8.07 (dd, J = 8.4, 1.1 Hz, 1H), 7.81 – 7.47 (m, 3H), 7.45 – 7.00 (m, 

7H), 4.46 (t, J = 7.2 Hz, 2H), 2.84 – 2.57 (m, 2H), 2.24 (dt, J = 14.7, 7.5 Hz, 2H); 
13

C NMR 

(63 MHz, CDCl3) δ = 145.68, 144.33, 141.01, 140.61, 140.01, 139.25, 130.92, 129.31, 

128.72, 128.39, 128.35, 127.79, 126.06, 125.94, 122.77, 120.82, 119.51, 109.44, 41.01, 

33.21, 29.73; IR (ATR, cm
-1

): ν =3055 (w), 2955 (w), 2931 (w), 2837 (w), 1610 (m), 1581 

(m), 1514 (s), 1489 (m), 1466 (s), 1439 (m), 1423 (w), 1408 (s), 1398 (m), 1365 (m), 1344 

(m), 1327 (m), 1304 (m), 1271 (m), 1246 (s), 1196 (s), 1184 (s), 1157 (w), 1142 (m), 1115 

(s), 1066 (m), 1032 (s), 1005 (m), 984 (w), 953 (w), 933 (w), 858 (w), 835 (m), 820 (m), 802 

(w), 762 (s), 742 (vs), 721 (m), 714 (m), 685 (s), 650 (m), 633 (m), 615 (m), 590 (s), 571 (m), 

557 (w), 540 (m); GC-MS (EI, 70 eV): m/z (%) = 337 (35), 233 (100); HRMS (ESI): calcd. 

for ([M + H]
+
): 338.16517; found: 338.16549; calcd. for C23H19N3Na ([M + Na]

+
): 

360.14712; found: 360.14751. 

6-Cyclohexyl-6H-indolo[2,3-b]quinoxaline 35t was prepared 

following general procedure 13 using compound  34 (100 mg, 0.28 

mmol) and cyclohexylamine (90 µL, 0.82 mmol). The product was 

purified by flash chromatography (silica gel, heptane/ethylacetate 

5:1) to yield 35t (61 mg, 74 %) as a yellow solid; m.p. 215-216 ºC; 

1
H NMR (250 MHz, CDCl3) δ = 8.52 (d, J = 7.7 Hz, 1H), 8.30 (dd, J = 8.2, 1.2 Hz, 1H), 8.15 

(dd, J = 8.3, 1.2 Hz, 1H), 7.81 – 7.57 (m, 4H), 7.36 (ddd, J = 8.0, 4.8, 3.4 Hz, 1H), 4.97 (m, 

1H), 2.59 (tt, J = 12.4, 6.1 Hz, 2H), 2.23 – 0.59 (m, 8H); 
13

C NMR (63 MHz, CDCl3) δ = 



General procedures and spectroscopic data  152 

 

 

145.68, 144.03, 140.60, 140.05, 139.06, 130.76, 129.29, 128.70, 128.05, 126.02, 122.96, 

120.53, 119.96, 111.27, 54.09, 30.38, 26.40, 25.71; IR (ATR, cm
-1

): ν =2931 (m), 2854 (m), 

1608 (w), 1579 (m), 1574 (m), 1485 (m), 1460 (m), 1435 (w), 1404 (s), 1383 (m), 1346 (m), 

1327 (m), 1321 (m), 1298 (m), 1263 (w), 1252 (w), 1234 (m), 1205 (s), 1124 (m), 1117 (s), 

1090 (w), 1066 (m), 1043 (m), 1009 (m), 980 (w), 945 (m), 889 (m), 862 (w), 850 (w), 804 

(w), 764 (m), 746 (vs), 717 (m), 696 (w), 638 (m), 592 (s), 569 (m), 540 (w); GC-MS (EI, 70 

eV): m/z (%) = 301 (20), 219 (100); HRMS (EI): calcd. for C20H19N3 ([M]
+
): 301.15735; 

found: 301.15679. 

General procedure 14 for C-N coupling/C-H bond activation, exemplified by: 6-phenyl-

6H-indolo[2,3-b]quinoxaline 35a 

 

To a pressure tube charged with 2,3-dibromoquinoxaline 32 (100 mg, 0.35 mmol), Pd(OAc)2 

(3 mg, 14 µmol), ligand PCy3·HBF4 (11 mg, 29 µmol) and sodium tert-butoxide (83 mg, 

0.87mmol) under Argon. The mixture was back-filled with Argon several times. The mixture 

was dissolved in anhydrous toluene (10 mL). Diphenylamine (49 mg, 0.29mmol) was added 

to the mixture and heated at 105 ºC for 18 h. After cooling, the reaction mixture was diluted 

with dichloromethane (20 mL) and filtered through a celite pad, washing with 

dichloromethane (40 mL). The filtrate was reduced in vacuo. The product was separated via 

flash chromatography (silica gel, heptane/ethylacetate 5:1) to yield 35a (77 mg, 90%) as a 

yellow solid; m.p. 230-231ºC; 
1
H NMR (300 MHz, CDCl3) δ = 8.49 – 8.41 (m, 1H), 8.27 – 

8.20 (m, 1H), 8.03 – 7.97 (m, 1H), 7.70 – 7.51 (m, 7H), 7.48 – 7.39 (m, 2H), 7.39 – 7.31 (m, 

1H); 
13

C NMR (75 MHz, CDCl3) δ = 145.86, 144.74, 140.60, 140.18, 139.82, 135.43, 

131.03, 129.80, 129.27, 128.83, 128.26, 127.99, 127.16, 126.51, 122.70, 121.86, 119.86, 

110.62; IR (ATR, cm
-1

): ν =3054 (w), 1608 (w), 1597 (w), 1581 (m), 1571 (w), 1501 (m), 

1483 (m), 1470 (m), 1458 (m), 1451 (m), 1403 (s), 1390 (m), 1354 (w), 1336 (w), 1318 (m), 

1303 (m), 1252 (m), 1226 (m), 1219 (m), 1205 (s), 1174 (m), 1166 (m), 1133 (m), 1126 (m), 

1100 (m), 1073 (w), 1042 (w), 1025 (w), 1015 (w), 1007 (w), 954 (w), 949 (w), 780 (m), 766 

(m), 758 (m), 748 (vs), 719 (w), 694 (s), 687 (s), 649 (m), 590 (s), 485 (m), 451 (s), 428 (w); 
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GC-MS (EI, 70 eV): m/z (%) = 295 (100), 147 (10); HRMS (EI): calcd. for C20H13N3 

([M]
+
):295.11040; found: 295.10963. 

6-Mesityl-9-methyl-6H-indolo[2,3-b]quinoxaline 33a was prepared 

following general procedure 14 using compound  32 (100 mg, 0.35 

mmol) and 2,4,6-trimethyl-N-(p-tolyl)aniline (65 mg, 0.29 mmol). 

The product was purified by flash chromatography (silica gel, 

heptane/ethylacetate 5:1) to yield 33a (48 mg, 47 %) as a yellow 

solid; m.p.175-176 ºC; 
1
H NMR (300 MHz, CDCl3) δ = 8.31 – 8.20 

(m, 2H), 8.03 – 7.94 (m, 1H), 7.65 – 7.53 (m, 2H), 7.36 – 7.30 (m, 

1H), 7.02 (s, 2H), 6.81 (d, J = 8.3 Hz, 1H), 2.48 (s, 3H), 2.33 (s, 3H), 1.82 (s, 6H); 
13

C NMR 

(75 MHz, CDCl3) δ = 145.80, 142.90, 141.03, 139.92, 139.52, 139.07, 137.45, 132.42, 

131.04, 130.35, 129.65, 129.30, 128.58, 128.23, 126.08, 122.74, 119.66, 110.07, 21.30, 

21.29, 17.88; IR (ATR, cm
-1

): ν =3019 (w), 2944 (w), 2913 (w), 2855 (w), 1609 (w), 1587 

(w), 1577 (w), 1483 (s), 1471 (m), 1454 (m), 1441 (m), 1394 (m), 1386 (m), 1377 (m), 1361 

(w), 1349 (m), 1326 (w), 1316 (m), 1303 (m), 1289 (m), 1251 (m), 1237 (m), 1206 (m), 1197 

(m), 1179 (m), 1143 (w), 1130 (m), 1124 (m), 1112 (m), 1044 (m), 1032 (w), 1015 (w), 960 

(w), 949 (w), 912 (m), 884 (m), 863 (w), 852 (m), 815 (w), 806 (s), 773 (w), 755 (vs), 749 

(s), 728 (m), 719 (m), 678 (w), 670 (w), 656 (w), 642 (w), 630 (m), 603 (w), 596 (m), 586 

(m), 571 (m), 565 (m), 549 (w), 540 (w), 522 (w), 516 (w), 512 (w), 508 (w), 498 (w), 485 

(m), 472 (w), 449 (vs), 428 (m), 422 (m), 409 (w), 400 (w), 396 (w), 393 (w), 389 (w), 380 

(w); GC-MS (EI, 70 eV): m/z (%) = 351 (100), 336 (20), 320 (7), 160 (11), 119 (7); HRMS 

(EI): calcd. for C24H21N3 ([M]
+
): 351.17300; found: 351.17195. 

9-Methoxy-6-(4-methoxyphenyl)-6H-indolo[2,3-b]quinoxaline 33b 

was prepared following general procedure 14 using compound  32 

(100 mg, 0.35 mmol) and bis(4-methoxyphenyl)amine (66 mg, 0.29 

mmol). The product was purified by flash chromatography (silica 

gel, heptane/ethylacetate 1:1) to yield 33b (56 mg, 54 %) as a yellow 

solid; m.p.163-164 ºC; 
1
H NMR (300 MHz, CDCl3) δ = 8.26 – 8.20 

(m, 1H), 8.03 – 7.98 (m, 1H), 7.93 (d, J = 2.5 Hz, 1H), 7.62 (m, 2H), 7.56 – 7.49 (m, 2H), 

7.30 (d, J = 8.9 Hz, 1H), 7.17 (dd, J = 8.6, 2.9 Hz, 1H), 7.11 – 7.04 (m, 2H), 3.91 (s, 3H), 

3.85 (s, 3H); 
13

C NMR (63 MHz, CDCl3) δ = 159.05, 155.31, 146.25, 140.69, 139.95, 139.84, 

139.43, 129.13, 128.70, 128.36, 128.20, 128.16, 126.24, 120.47, 119.88, 115.04, 111.51, 
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104.45, 56.12, 55.59; IR (ATR, cm
-1

): ν =3054 (w), 3017 (w), 2993 (w), 2837 (m), 1614 (w), 

1572 (w), 1512 (s), 1487 (vs), 1473 (s), 1466 (s), 1458 (s), 1454 (s), 1438 (s), 1420 (m), 1395 

(s), 1388 (s), 1293 (s), 1247 (s), 1197 (vs), 1185 (s), 1174 (vs), 1164 (s), 1138 (m), 1126 (s), 

1107 (m), 1040 (s), 1031 (s), 1024 (s), 954 (m), 925 (m), 888 (m), 827 (vs), 809 (s), 802 (m), 

793 (s), 764 (s), 756 (vs), 751 (s), 719 (m), 712 (m), 652 (m), 635 (m), 631 (m), 624 (m), 603 

(s), 590 (s), 561 (m), 555 (m), 549 (m), 525 (m), 518 (m), 489 (m), 455 (s), 435 (m), 419 (m); 

GC-MS (EI, 70 eV): m/z (%) = 355 (100), 340 (76), 269 (12), 178 (7); HRMS (EI): calcd. for 

C22H17O2N3 ([M]
+
): 355.13153; found: 355.13112. 

 

8.5.6 Synthesis of biscarbazoles 

General procedure for the preparation of 2,2’-biphenylene ditriflate 36.  

 

 

 

To a solution of 2,2’-dihydroxyl biphenyl (4.3 g, 23 mmol) in DCM was added pyridine (7.0 

mL) under Argon atmosphere. Then, Tf2O (13.0 g, 46 mmol) was slowly added at O ºC. The 

reaction was stirred at the same temperature for 3 h until the reaction completed. The reaction 

mixture was diluted by DCM and subsequently washed with 1M HCl, 1M NaHCO3 and 

brine. The organic layer was dried over MgSO4, filtered and the solvent was evaporated in 

vacuo. The colorless residue was purified by column chromatography (silica gel, 

ethylacetate/heptane = 1:10) to yield 1,1'-biphenyl]-2,2'-diyl bis(trifluoromethanesulfonate) 

36 (9.3 g, 90.3 %, white solid); mp 35-36 ºC; 
1
H NMR (300 MHz, CDCl3) δ = 7.48 – 7.26 

(m, 8H); 
19

F NMR (282 MHz, CDCl3) δ = -74.38 (s); 
13

C NMR (75 MHz, CDCl3) δ = 147.01, 

132.75, 130.90, 129.55, 128.68, 118.50 (q, J = 320.1 Hz), 121.81;  IR (ATR, cm
-1

): ν = 1504 

(w), 1473 (m), 1452 (w), 1439 (w), 1414 (vs), 1400 (s), 1277 (w), 1244 (s), 1201 (vs), 1165 

(m), 1149 (s), 1132 (vs), 1111 (s), 1084 (s), 1045 (m), 1012 (w), 991 (w), 955 (w), 935 (w), 

893 (s), 872 (vs), 779 (s), 769 (vs), 760 (s), 735 (m), 725 (s), 667 (w), 646 (w), 619 (s), 588 
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(s), 571 (vs); GC-MS (EI, 70 eV): m/z (%) =  450 (64), 317 (6), 184 (100), 168 (90), 156 

(25), 139 (20), 128 (37), 102 (19), 69 (30); HRMS (EI): calcd. for C14H8O6F6S2 ([M]
+
): 

449.96610; found: 449.96583. 

General procedure 15 for the preparation of N-(4-methoxyphenyl)carbazole 39a.  

 

To 50 mL pressure tube was added successively 2,2’-biphenylylene ditriflate 36(460 mg, 

1.021 mmol), p-anisidine (151 mg, 1.226 mmol), Pd2dba3 (23 mg, 0.026 mmol),  XantPhos 

(59 mg, 0.102 mmol), K3PO4 (650 mg, 3.062 mmol) and backfilled with argon 3 times. Then, 

the mixture was dissolved in 20 mL of toluene, subsequently, backfilled with argon 3 times. 

The reaction mixture was carried out at 100 ºC under argon atmosphere for 5 hours and 

controlled by TLC. The reaction was cooled down to ambient temperature then the solvent 

was removed by evaporating in vacuo. The crude product was extracted with EtOAc and 

water several times. The collected organic layer was dried over anhydrous MgSO4, filtered 

and concentrated under in vacuo. The residue was purified by silica gel column 

chromatography (silica gel, ethylacetate/heptane = 1:10) to give N-(4-

methoxyphenyl)carbazole 39a (265 mg, 95 %) as white solid; mp 156-157 ºC; 
1
H NMR (300 

MHz, CDCl3) δ = 8.19 – 8.10 (m, 2H), 7.48 – 7.24 (m, 9H), 7.12 (d, J = 9.0 Hz, 2H), 3.92 (s, 

3H); 
13

C NMR (75 MHz, CDCl3) δ = 159.02, 141.53, 130.47, 128.73, 125.98, 123.25, 

120.39, 119.78, 115.21, 109.83, 55.75;  IR (ATR, cm
-1

): ν = 1591 (w), 1510 (s), 1479 (m), 

1450 (s), 1336 (m), 1317 (m), 1246 (s), 1240 (s), 1228 (s), 1178 (s), 1147 (m), 1120 (m), 

1107 (m), 1028 (s), 997 (m), 908 (m), 852 (w), 829 (s), 810 (m), 798 (m), 748 (vs), 725 (s), 

698 (m), 642 (m), 621 (s), 611 (m), 584 (s), 569 (s), 532 (s); GC-MS (EI, 70 eV): m/z (%) = 

273 (100), 258 (47), 230 (12), 228 (30); HRMS (EI): calcd. for C19H15ON ([M]
+
): 273.11482; 

found: 273.11474. 
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 N-(4-methoxyphenyl)carbazole 39b was prepared following 

procedure 15 using 2,2’-biphenylylene ditriflate 36 (460 mg, 1.021 

mmol), m-anisidine (138 µL, 1.226 mmol). The crude product was 

separated via flash chromatography (silica gel, ethylacetate/heptane = 

1:10) to yield 39b (265 mg, 95 %) as colorless syrup; 
1
H NMR (300 

MHz, CDCl3) δ = 8.05 (dd, J = 7.7, 0.6 Hz, 2H), 7.46 – 7.27 (m, 5H), 7.25 – 7.12 (m, 2H), 

7.12 – 6.97 (m, 2H), 6.91 (dd, J = 8.3, 2.5 Hz, 1H), 3.76 (s, 3H); 
13

C NMR (63 MHz, CDCl3) 

δ = 160.94, 140.95, 138.96, 130.66, 126.07, 123.49, 120.41, 120.04, 119.44, 113.38, 112.80, 

110.04, 55.63;  IR (ATR, cm
-1

): ν = 3051 (w), 2955 (w), 2933 (w), 2833 (w), 1927 (w), 1890 

(w), 1861 (vw), 1593 (s), 1576 (m), 1495 (s), 1477 (s), 1450 (s), 1362 (m), 1335 (m), 1311 

(s), 1281 (s), 1250 (s), 1227 (s), 1184 (m), 1153 (s), 1119 (m), 1099 (m), 1088 (m), 1078 (m), 

1039 (s), 1003 (m), 995 (m), 984 (m), 970 (m), 918 (m), 872 (m), 845 (m), 833 (m), 825 (m), 

779 (m), 744 (vs), 721 (vs), 692 (vs), 652 (m), 636 (m), 615 (m), 588 (m), 559 (m); GC-MS 

(EI, 70 eV): m/z (%) = 273 (100), 258 (7), 241 (5), 228 (19); HRMS (EI): calcd. for 

C19H15ON ([M]
+
): 273.11484; found: 273.11482. 

General procedure 16 for the preparation of N-(4-

hydroxyphenyl)carbazole 40a. 

To a solution of 39a (265 mg, 0.970 mmol) in DCM at -78 ºC was 

dropped slowly BBr3 (367 µl, 3.880 mmol). The temperature was 

raised to ambient temperature. The reaction was controlled by TLC until the starting material 

completely disappeared. The reaction mixture was poured to ice aqua solution of NaHCO3. 

The aqueous layer was extracted with DCM three times. The organic residue was dried over 

MgSO4, filtered, and the solvent was evaporated in vacuo. The crude product was purified 

over flash silica gel column chromatography (silica gel, ethylacetate/heptane = 1:10) to give 

40a (239 mg, 95 %); mp 106-107 ºC; 
1
H NMR (300 MHz, CDCl3) δ = 8.18 – 8.11 (m, 2H), 

7.44 – 7.36 (m, 4H), 7.35 – 7.23 (m, 4H), 7.05 (d, J = 8.8 Hz, 2H). 
13

C NMR (63 MHz, 

CDCl3) δ = 155.00, 141.50, 130.72, 128.99, 126.00, 123.28, 120.40, 119.82, 116.72, 109.81; 

IR (ATR, cm
-1

): ν = 3196 (m), 3043 (w), 1622 (w), 1593 (m), 1512 (s), 1479 (m), 1450 (s), 

1363 (m), 1335 (m), 1315 (m), 1248 (m), 1228 (s), 1219 (s), 1178 (s), 1165 (m), 1147 (m), 

1099 (m), 1028 (w), 1014 (m), 1003 (w), 910 (m), 833 (s), 820 (m), 746 (vs), 723 (vs), 665 

(m), 623 (s), 611 (m), 584 (s), 567 (m), 532 (m); GC-MS (EI, 70 eV): m/z (%) = 259 (100), 
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241 (6), 228 (10); HRMS (ESI): calcd. for C18H14ON ([M + H]
+
): 260.10699; found: 

260.10686; calcd. for C18H13ONNa ([M + Na]
+
): 282.08894; found: 282.08872. 

 N-(4-hydroxyphenyl)carbazole 40b was prepared following 

procedure 16 with carbazole 39b (265 mg, 0.970 mmol) to give 40b 

(231 mg, 92 %) as colorless syrup; 
1
H NMR (250 MHz, CDCl3) δ = 

8.09 – 8.03 (m, 2H), 7.41 – 7.31 (m, 5H), 7.25 – 7.16 (m, 2H), 7.07 

(ddd, J = 7.9, 1.9, 0.9 Hz, 1H), 6.96 (m, 1H), 6.84 (ddd, J = 8.2, 2.5, 

0.9 Hz, 1H), 4.86 (s, 1H); 
13

C NMR (63 MHz, CDCl3) δ = 156.67, 140.71, 138.99, 130.79, 

125.93, 123.37, 120.26, 119.96, 119.48, 114.48, 114.06, 109.88; IR (ATR, cm
-1

): ν = 3537 

(w), 3271 (m), 3047 (w), 1599 (s), 1576 (m), 1498 (s), 1485 (m), 1471 (m), 1450 (s), 1367 

(m), 1346 (m), 1335 (m), 1321 (m), 1304 (m), 1261 (m), 1252 (m), 1230 (s), 1209 (m), 1178 

(m), 1165 (m), 1151 (s), 1124 (m), 991 (m), 920 (m), 872 (m), 849 (m), 781 (m), 748 (vs), 

742 (vs), 719 (vs), 696 (vs), 667 (m), 636 (m), 615 (m), 584 (m), 573 (m), 557 (m); GC-MS 

(EI, 70 eV): m/z (%) = 259(100), 241 (4), 228 (8), 204 (4); HRMS (EI): calcd. for C18H13ON 

([M]
+
): 259.09917; found: 259.09925. 

General procedure 17 for the preparation of N-(4- trifluoromethanesulfonate)carbazole  

41a . 

 

 

To a solution of  N-(4-hydroxyphenyl)carbazole 40a (239 mg, 0.921 mmol) in DCM was 

added pyridine (298 µL, 3.690 mmol) under Argon atmosphere. Then, Tf2O (234 µL, 1.383 

mmol) was dropwise added at 0 
º
C. The reaction was carried at same temperature in 3 h until 

starting material disappeared (controlled by TLC). The reaction mixture was diluted with 

DCM and subsequently washed with 1M HCl, 1M NaHCO3 and brine. The organic layer was 

dried over MgSO4, filtered and the solvent was evaporated in vacuo. The colorless residue 

was purified by column chromatography over silica gel (silica gel, ethylacetate/heptane = 

1:10) to yield -(4- trifluoromethanesulfonate)carbazole 41a ( 310 mg, 86 %) as white solid; 

mp 112 - 114 ºC; 
1
H NMR (300 MHz, CDCl3) δ = 8.18 – 8.12 (m, 2H), 7.72 – 7.65 (m, 2H), 
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7.57 – 7.50 (m, 2H), 7.48 – 7.36 (m, 4H), 7.36 – 7.29 (m, 2H); 
19

F NMR (282 MHz, CDCl3) 

δ = -72.65 (s); 
13

C NMR (63 MHz, CDCl3) δ = 147.99, 140.64, 138.12, 128.89, 126.40, 

123.82, 123.19, 120.72, 120.65, 109.59;  IR (ATR, cm
-1

): ν = 3063  (w), 2924  (w), 1593  

(w), 1504  (s), 1477  (m), 1452  (s), 1421  (s), 1412  (s), 1365  (w), 1335  (m), 1315  (m), 

1248  (m), 1228  (s), 1215  (vs), 1167  (m), 1134  (vs), 1101  (m), 1026  (w), 1016  (m), 1001  

(w), 916  (m), 887  (vs), 841  (s), 820  (m), 787  (m), 764  (w), 752  (vs), 725  (s), 696  (s), 

644  (m), 619  (s), 611  (vs), 602  (vs), 573  (s), 565  (m), 530  (s); GC-MS (EI, 70 eV): m/z 

(%) = 391 (51), 259 (20), 258 (100), 230 (15), 228 (28), 69 (9); HRMS (EI): calcd. for 

C19H12O3NF3S ([M]
+
): 391.04845; found: 391.04852. 

 N-(3- trifluoromethanesulfonate)carbazole  41b was prepared 

following procedure 17 with carbazole 40b (231 mg, 0.891 mmol) to 

give 41b (328 mg, 94 %) as white solid;  mp 76-78 ºC, 
1
H NMR (300 

MHz, CDCl3) δ = 7.97 (m, 2H), 7.50 (dd, J = 6.4, 4.6 Hz, 2H), 7.38 

(t, J = 2.0 Hz, 1H), 7.29 – 7.24 (m, 4H), 7.16 (m, 3H). 
19

F NMR (282 

MHz, CDCl3) δ = -72.63 (s). 
13

C NMR (75 MHz, CDCl3) δ = 150.33, 140.40, 139.83, 131.53, 

126.90, 126.51, 123.92, 120.90, 120.67, 120.32, 120.14, 109.56; IR (ATR, cm
-1

): ν = 3072  

(w), 3047  (w), 3024  (w), 1605  (m), 1585  (w), 1574  (w), 1495  (s), 1483  (s), 1454  (s), 

1417  (vs), 1404  (m), 1365  (m), 1335  (m), 1315  (m), 1250  (m), 1230  (m), 1209  (vs), 

1184  (s), 1163  (m), 1136  (s), 1119  (s), 1095  (s), 1084  (m), 1028  (m), 1003  (w), 984  (s), 

964  (w), 924  (m), 904  (m), 877  (s), 847  (m), 798  (s), 771  (m), 764  (m), 750  (vs), 741  

(s), 725  (s), 692  (s), 660  (m), 636  (m), 623  (m), 606  (s), 567  (s), 536  (m); GC-MS (EI, 

70 eV): m/z (%) = 391 (100), 258 (57), 230 (58), 228 (42), 202 (12), 69 (13); HRMS (EI): 

calcd. for C19H12O3NF3S ([M]
+
): 391.04845; found: 391.04816. 
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General procedure 18 for C-N coupling and C-H activation reaction, exemplified by 9H-

3,9'-bicarbazole (38a) 

 

Cesium carbonate (125 mg, 0.383 mmol) was added to a pressure tube charged with 

Pd(OAc)2 (3 mg, 0.013 ammol) and ligand XPhos (12 mg, 0.026 mmol) under argon 

atmosphere. N-(4- trifluoromethanesulfonate)carbazole 41a (100 mg, 0.256 mmol) and 

aniline (26 µL, 0.281 mmol) were added to the mixture and  the tube was backfilled with 

argon several times. The mixture was stirred at 110 °C in anhydrous toluene (5 mL) for 6 

hours. After cooling, the reaction mixture was diluted with dichloromethane (10 mL), filtered 

through a celite pad, and washed with dichloromethane (20 mL). The filtrate was 

concentrated in vacuo. Pivalic acid was added to the mixture of filtrate charged with 

Pd(OAc)2 (3 mg, 0.013 mmol) and potassium carbonate (35 mg, 0.256 mmol). The mixture 

was stirred at 110 °C under air atmosphere for 72 hours, controlled by TLC. The solution was 

then cooled to room temperature, diluted with DCM and washed with a saturated aqueous 

solution of sodium carbonate, dried over Magnesium sulfate, filtered and evaporated in 

vacuo. The product was purified by flash chromatography (silica gel, ethylacetate/heptane = 

1:10) to yield 38a (73 mg, 86%) as white solid; mp 211-212 °C; 
1
H NMR (250 MHz, CDCl3) 

δ = 8.07 (m, 3H), 7.90 (d, J = 7.8 Hz, 1H), 7.46 – 7.07 (m, 11H); 
13

C NMR (63 MHz, CDCl3) 

δ = 142.06, 140.30, 138.71, 129.56, 126.71, 125.99, 125.58, 124.50, 123.21, 123.14, 120.72, 

120.40, 120.05, 119.71, 111.73, 111.05, 109.99; IR (ATR, cm
-1

): ν = 3394  (m), 3076  (w), 

3051  (m), 3020  (w), 2926  (w), 1595  (m), 1574  (m), 1495  (m), 1485  (m), 1475  (s), 1462  

(s), 1448  (s), 1346  (m), 1333  (m), 1311  (s), 1273  (m), 1230  (s), 1203  (m), 1163  (m), 

1149  (m), 1126  (m), 1117  (m), 1097  (m), 1024  (m), 1011  (m), 1003  (m), 957  (m), 926  

(m), 918  (m), 845  (m), 820  (s), 742  (vs), 733  (s), 719  (vs), 660  (m), 650  (s), 631  (m), 

615  (m), 580  (m), 571  (s); GC-MS (EI, 70 eV): m/z (%) = 332 (100), 166 (14), 139 (4); 

HRMS (EI): calcd. for C24H16N2 ([M]
+
): 332.13080; found: 332.13072. 
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 6-nitro-9H-3,9'-bicarbazole 38b was prepared following general 

procedure 18 using compound 41a (100 mg, 0.256 mmol) and p-

nitroaniline (39 mg, 0.281 mmol). The product was purified by 

flash chromatography (silica gel, ethylacetate/heptane = 1:3) to 

yield 38b (96 mg, 95 %) as red solid; mp 306-308 °C;
 1

H NMR 

(300 MHz, DMSO) δ = 12.35 (s, 1H), 9.32 (d, J = 2.2 Hz, 1H), 8.72 (d, J = 1.8 Hz, 1H), 8.39 

– 8.22 (m, 3H), 7.87 (d, J = 8.5 Hz, 1H), 7.79 – 7.65 (m, 2H), 7.37 (m, 6H); 
13

C NMR (75 

MHz, DMSO) δ = 144.00, 140.97, 140.13, 140.10, 129.42, 126.29, 126.14, 123.68, 122.49, 

122.09, 121.71, 120.43, 120.34, 119.76, 118.33, 113.27, 111.50, 109.70; IR (ATR, cm
-1

): ν = 

3307  (m), 2955  (w), 2922  (w), 2850  (w), 1608  (m), 1585  (m), 1495  (s), 1475  (s), 1448  

(s), 1315  (s), 1308  (s), 1288  (s), 1228  (s), 1200  (s), 1163  (s), 1147  (m), 1128  (s), 1103  

(m), 1078  (s), 1030  (m), 1016  (m), 889  (m), 852  (m), 823  (s), 816  (s), 748  (vs), 741  (s), 

731  (s), 721  (vs), 683  (s), 654  (s), 640  (s), 625  (s), 613  (s), 590  (s), 567  (s), 557  (s), 528  

(s); GC-MS (EI, 70 eV): m/z (%) = 377 (2), 329 (51), 314 (16), 114 (14), 73 (33), 60 (45), 44 

(100); HRMS (ESI): calcd. for C24H16O2N3 ([M + H]
+
): 378.1237; found: 378.12327; calcd. 

for C24H15O2N3Na ([M + Na]
+
): 400.10565; found: 400.10522. 

 6-fluoro-9H-3,9'-bicarbazole 38c was prepared following 

general procedure 18 using compound  41a (100 mg, 0.256 mmol) 

and p-fluoroaniline (27 µL, 0.281 mmol). The product was 

purified by flash chromatography (silica gel, ethylacetate/heptane 

= 1:10) to yield 38c (90 mg, 63 %) as red solid; mp 238-240 °C;
 

1
H NMR (300 MHz, DMSO) δ = 11.62 (s, 1H), 8.41 (d, J = 2.0 

Hz, 1H), 8.26 (d, J = 7.6 Hz, 2H), 8.06 (dd, J = 9.4, 2.6 Hz, 1H), 7.76 (d, J = 8.6 Hz, 1H), 

7.57 (m, 2H), 7.42 (ddd, J = 8.2, 7.0, 1.2 Hz, 2H), 7.37 – 7.22 (m, 5H). 
13

C NMR (75 MHz, 

DMSO) δ = 156.47 (d, J = 232.6 Hz), 141.23, 139.92, 136.95, 127.70, 126.08, 125.30, 123.19 

(d, J = 4.2 Hz), 122.69 (d, J = 10.1 Hz), 122.35, 120.40, 119.71, 119.59, 113.95 (d, J = 25.6 

Hz), 112.51, 112.18 (d, J = 9.1 Hz), 109.64, 106.35 (d, J = 23.9 Hz); IR (ATR, cm
-1

): ν = 

3394  (m), 3053  (w), 2953  (w), 2920  (w), 2850  (w), 1587  (m), 1574  (m), 1495  (s), 1466  

(s), 1448  (s), 1315  (m), 1284  (m), 1244  (m), 1228  (s), 1171  (m), 1151  (s), 1140  (m), 

1124  (m), 1115  (m), 850  (m), 812  (s), 752  (vs), 744  (s), 721  (s), 656  (s), 646  (s), 615  

(m), 596  (m), 575  (s), 565  (s), 544  (s), 532  (m); GC-MS (EI, 70 eV): m/z (%) = 350 (100), 

174 (15); HRMS (ESI): calcd. for C24H16FN2 ([M + H]
+
): 351.1292; found: 351.12844; calcd. 

for C24H15OFN2Na ([M + Na]
+
): 373.11115; found: 373.11065. 
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 6-methoxy-9H-3,9'-bicarbazole 38d was prepared following 

general procedure 18 using compound  41a (100 mg, 0.256 mmol) 

and p-anisidine (35 mg, 0.281 mmol). The product was purified 

by flash chromatography (silica gel, ethylacetate/heptane = 1:5) to 

yield 38d (93 mg, 53 %) as white solid; mp 256-257 °C; 
1
H NMR 

(300 MHz, DMSO) δ = 11.46 (s, 1H), 8.36 (d, J = 1.9 Hz, 1H), 

8.26 (d, J = 7.7 Hz, 2H), 7.80 (d, J = 2.4 Hz, 1H), 7.71 (d, J = 8.5 Hz, 1H), 7.54 – 7.39 (m, 

4H), 7.35 – 7.24 (m, 4H), 7.08 (dd, J = 8.8, 2.5 Hz, 1H), 3.81 (s, 3H); 
13

C NMR (75 MHz, 

DMSO) δ = 153.17, 141.32, 139.54, 135.31, 127.23, 126.06, 124.45, 123.48, 122.64, 122.33, 

120.40, 119.52, 119.29, 115.66, 112.20, 111.95, 109.68, 103.39, 55.56; IR (ATR, cm
-1

): ν = 

3417  (m), 3045  (w), 2928  (w), 2829  (m), 1622  (m), 1589  (s), 1581  (s), 1574  (s), 1497  

(s), 1470  (m), 1464  (m), 1450  (s), 1435  (m), 1360  (s), 1335  (m), 1313  (m), 1294  (s), 

1232  (s), 1201  (s), 1173  (m), 1151  (m), 1140  (m), 1032  (m), 808  (m), 773  (s), 752  (vs), 

727  (s), 656  (m), 648  (m), 617  (m), 607  (m), 569  (s), 528  (m); GC-MS (EI, 70 eV): m/z 

(%) = 362 (100), 347 (26), 319 (16), 290 (5), 174 (14); HRMS (ESI): calcd. for C25H17N2O 

([M - H]
-
): 361.13464; found: 361.13557. 

5,7-dimethoxy-9H-3,9'-bicarbazole 38e was prepared 

following general procedure 18 using compound 41a (100 mg, 

0.256 mmol) and 3,5-dimethoxyaniline (43 mg, 0.281 mmol). 

The product was purified by flash chromatography (silica gel, 

ethylacetate/heptane = 1:4) to yield 38e (100 mg, 50 %) as 

white solid; mp 125-127 °C; 
1
H NMR (300 MHz, CDCl3) δ = 

8.32 (d, J = 2.0 Hz, 1H), 8.26 – 8.15 (m, 2H), 8.09 (s, 1H), 7.50 (dd, J = 8.4, 0.4 Hz, 1H), 

7.46 – 7.34 (m, 5H), 7.34 – 7.25 (m, 3H), 6.56 (d, J = 1.9 Hz, 1H), 6.34 (d, J = 1.9 Hz, 1H), 

3.94 (s, 3H), 3.91 (s, 3H); 
13

C NMR (75 MHz, CDCl3) δ = 160.97, 156.90, 142.35, 142.24, 

137.96, 129.65, 125.89, 124.09, 123.44, 123.09, 121.42, 120.30, 119.49, 110.65, 110.20, 

106.90, 91.59, 87.00, 55.85, 55.52; IR (ATR, cm
-1

): ν = 3400  (w), 2918  (w), 2839  (w), 

1633  (m), 1622  (m), 1614  (m), 1591  (m), 1495  (s), 1464  (s), 1450  (s), 1435  (m), 1335  

(m), 1329  (m), 1315  (m), 1290  (s), 1230  (s), 1209  (s), 1196  (s), 1149  (s), 1120  (s), 1099  

(m), 1049  (m), 918  (m), 806  (s), 750  (vs), 723  (s), 656  (s), 642  (m), 557  (m); GC-MS 

(EI, 70 eV): m/z (%) = 392 (100), 334 (22), 196 (12), 167 (7), 140 (22); HRMS (ESI): calcd. 

for C26H21N2O2 ([M + H]
+
): 393.15975; found: 393.1595; calcd. for C26H20N2O2Na ([M + 

Na]
+
): 415.1417; found: 415.14155. 
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 6-methyl-9H-3,9'-bicarbazole 38g was prepared following general 

procedure 18 using compound 41a (100 mg, 0.256 mmol) and p-

toluidine (30 mg, 0.281 mmol). The product was purified by flash 

chromatography (silica gel, ethylacetate/heptane = 1:10) to yield 38g 

(89 mg, 34 %) as white solid; mp 231-232 °C;
 1

H NMR (300 MHz, 

CDCl3) δ = 8.15 – 8.07 (m, 3H), 7.76 (d, J = 0.7 Hz, 1H), 7.46 (m, 

2H), 7.39 – 7.14 (m, 9H), 2.44 (s, 3H); 
13

C NMR (75 MHz, CDCl3) δ = 142.08, 139.05, 

138.57, 129.45, 129.38, 128.09, 125.96, 125.39, 124.38, 123.36, 123.21, 120.59, 120.38, 

119.67, 119.60, 111.69, 110.73, 110.01, 21.56; IR (ATR, cm
-1

): ν = 3410  (m), 3057  (w), 

2916  (w), 2852  (w), 2831  (w), 1593  (m), 1583  (m), 1574  (m), 1497  (s), 1479  (m), 1464  

(s), 1452  (s), 1358  (m), 1338  (m), 1317  (m), 1296  (m), 1277  (m), 1242  (m), 1230  (s), 

1153  (m), 820  (s), 806  (m), 748  (vs), 723  (vs), 658  (m), 646  (m), 575  (s), 540  (m), 528  

(m); GC-MS (EI, 70 eV): m/z (%) = 346 (100), 173 (9); HRMS (ESI): calcd. for C25H19N2 

([M + H]
+
): 347.15428; found: 347.15337; calcd. for C25H18N2Na ([M + Na]

+
): 369.13622; 

found: 369.13578. 

 6-(tert-butyl)-9H-3,9'-bicarbazole 38h was prepared following 

general procedure 18 using compound 41a (100 mg, 0.256 mmol) 

and 4-(tert-butyl)aniline (45 µL, 0.281 mmol). The product was 

purified by flash chromatography (silica gel, ethylacetate/heptane = 

1:10) to yield 38h (99 mg, 70 %) as white solid; mp 183-185 °C; 
1
H 

NMR (250 MHz, CDCl3) δ = 8.28 – 7.87 (m, 4H), 7.60 – 7.05 (m, 

10H), 1.34 (s, 9H); 
13

C NMR (63 MHz, CDCl3) δ = 143.20, 142.16, 139.18, 138.43, 129.36, 

125.94, 125.36, 124.80, 123.20, 122.90, 120.39, 119.65, 116.72, 111.67, 110.57, 110.02, 

34.86, 32.06; IR (ATR, cm
-1

): ν = 3408  (m), 3045  (w), 2953  (m), 2862  (w), 1622  (m), 

1614  (m), 1595  (m), 1574  (m), 1495  (s), 1470  (s), 1450  (s), 1362  (m), 1335  (m), 1315  

(m), 1294  (m), 1281  (m), 1242  (m), 1230  (s), 1201  (m), 1163  (m), 1138  (m), 1117  (m), 

808  (s), 746  (vs), 723  (vs), 661  (m), 648  (m), 627  (vs), 577  (m), 546  (m), 536  (m); GC-

MS (EI, 70 eV): m/z (%) = 388 (100), 373 (63), 332 (10), 207 (9), 187 (13), 173 (24); HRMS 

(ESI): calcd. for C28H25N2 ([M + H]
+
): 389.20123; found: 389.20074. 
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 8-(9H-carbazol-9-yl)-11H-benzo[a]carbazole 38j was 

prepared following general procedure 18 using compound  41a 

(100 mg, 0.256 mmol) and naphthalene-2-amine (40 mg, 0.281 

mmol). The product was purified by flash chromatography 

(silica gel, ethylacetate/heptane = 1:10) to yield 38j (98 mg, 42 

%) as white solid; mp 220-222 °C; 
1
H NMR (300 MHz, CDCl3) 

δ = 8.90 (s, 1H), 8.18 (d, J = 1.9 Hz, 1H), 8.13 – 8.10 (m, 3H), 8.00 (d, J = 8.6 Hz, 1H), 7.96 

(d, J = 7.5 Hz, 1H), 7.69 (d, J = 8.5 Hz, 1H), 7.61 (d, J = 8.7 Hz, 1H), 7.58 – 7.46 (m, 3H), 

7.36 – 7.30 (m, 4H), 7.25 – 7.19 (m, 2H); 
13

C NMR (75 MHz, CDCl3) δ = 141.95, 137.57, 

135.86, 132.74, 130.05, 129.21, 125.86, 125.68, 125.21, 124.52, 123.13, 121.15, 120.80, 

120.55, 120.28, 119.60, 119.24, 119.12, 118.30, 112.11, 109.90; IR (ATR, cm
-1

): ν = 3417  

(w), 3045  (w), 2918  (w), 2848  (w), 1593  (m), 1514  (m), 1495  (s), 1477  (m), 1464  (m), 

1450  (s), 1417  (m), 1385  (m), 1358  (m), 1335  (m), 1313  (m), 1304  (m), 1281  (m), 1230  

(s), 1205  (m), 1169  (m), 1157  (m), 1146  (m), 1117  (m), 1105  (m), 806  (s), 748  (vs), 723  

(s), 687  (m), 650  (m), 604  (m), 565  (m), 550  (m); GC-MS (EI, 70 eV): m/z (%) = 382 

(100), 216 (6), 190 (25); HRMS (ESI): calcd. for C28H19N2 ([M + H]
+
): 383.15428; found: 

383.15362; calcd. for C28H18N2Na ([M + Na]
+
): 405.13622; found: 405.13638. 

 9H-2,9'-bicarbazole 42a was prepared following general 

procedure 18 using compound 41b (100 mg, 0.256 mmol) and 

aniline (26 µL, 0.281 mmol). The product was purified by 

flash chromatography (silica gel, ethylacetate/heptane = 1:10) 

to yield 42a (65 mg, 77 %) as white solid; mp 298-300 °C; 
1
H 

NMR (300 MHz, Acetone) δ = 10.61 (s, 1H), 8.40 (d, J = 8.2 Hz, 1H), 8.29 – 8.20 (m, 3H), 

7.78 – 7.72 (m, 1H), 7.61 (m, 1H), 7.50 – 7.38 (m, 6H), 7.33 – 7.23 (m, 3H); 
13

C NMR (63 

MHz, Acetone) δ = 142.28, 141.82, 141.72, 135.91, 126.95, 126.89, 124.14, 123.66, 123.52, 

122.23, 121.18, 121.11, 120.72, 120.28, 118.82, 112.02, 110.76, 110.47; IR (ATR, cm
-1

): ν = 

3414  (m), 3053  (w), 2926  (w), 1603  (m), 1489  (m), 1460  (m), 1450  (s), 1441  (s), 1362  

(m), 1336  (m), 1321  (m), 1230  (s), 1201  (m), 1157  (m), 1095  (m), 999  (m), 978  (m), 937  

(m), 918  (m), 849  (m), 818  (m), 752  (s), 742  (s), 723  (vs), 663  (s), 631  (m), 615  (m), 

565  (s); GC-MS (EI, 70 eV): m/z (%) = 332 (100), 166 (16); HRMS (EI): calcd. for 

C24H16N2 ([M]
+
): 332.13080; found: 332.13106. 
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6-nitro-9H-2,9'-bicarbazole 42b was prepared following 

general procedure 18 using compound 41b (100 mg, 

0.256 mmol) and p-nitroaniline (39 mg, 0.281 mmol). The 

product was purified by flash chromatography (silica gel, 

ethylacetate/heptane = 1:3) to yield 42b (61 mg, 63 %) as 

red solid; mp 310-312 °C; 
1
H NMR (300 MHz, Acetone) δ 10.42 (s, 1H), 8.36 (d, J = 8.3 Hz, 

1H), 8.27 – 8.20 (m, 2H), 7.80 (d, J = 2.5 Hz, 1H), 7.71 (d, J = 1.5 Hz, 1H), 7.56 – 7.25 (m, 

8H), 7.12 (dd, J = 8.8, 2.5 Hz, 1H), 3.93 (s, 3H); 
13

C NMR (63 MHz, DMSO) δ = 144.02, 

141.82, 140.47, 140.28, 135.81, 126.29, 122.92, 122.76, 121.97, 121.82, 121.56, 120.54, 

120.10, 119.04, 117.68, 111.45, 110.14, 109.76; IR (ATR, cm
-1

): ν = 3348  (m), 3059  (w), 

2916  (w), 1610  (s), 1593  (m), 1583  (m), 1506  (s), 1477  (s), 1464  (m), 1450  (s), 1365  

(m), 1331  (s), 1319  (s), 1309  (s), 1279  (s), 1248  (s), 1228  (s), 1196  (m), 1159  (s), 1124  

(s), 1099  (s), 1084  (s), 1028  (m), 1014  (m), 1003  (m), 982  (m), 916  (m), 893  (m), 866  

(m), 849  (m), 841  (m), 823  (s), 748  (vs), 725  (vs), 692  (s), 663  (s), 636  (m), 627  (m), 

615  (m), 584  (s), 573  (s), 565  (s), 528  (m); GC-MS (EI, 70 eV): m/z (%) = 377 (100), 331 

(34), 281 (4), 189 (8), 173 (26); HRMS (ESI): calcd. for C24H15O2N3Na ([M + Na]
+
): 

400.10565; found: 400.10564. 

 6-methoxy-9H-2,9'-bicarbazole 42c was prepared 

following general procedure 18 using compound 41b 

(100 mg, 0.256 mmol) and p-anisidine (35 mg, 0.281 

mmol). The product was purified by flash 

chromatography (silica gel, ethylacetate/heptane = 1:5) to 

yield 42c (47 mg, 51 %) as white solid; mp 225-227 °C; 
1
H NMR (300 MHz, Acetone) δ = 

10.42 (s, 1H), 8.36 (d, J = 8.3 Hz, 1H), 8.27 – 8.20 (m, 2H), 7.80 (d, J = 2.5 Hz, 1H), 7.71 (d, 

J = 1.5 Hz, 1H), 7.56 – 7.25 (m, 9H), 7.12 (dd, J = 8.8, 2.5 Hz, 1H), 3.93 (s, 3H); 
13

C NMR 

(63 MHz, Acetone) δ = 155.14, 142.32, 142.25, 136.59, 135.74, 126.86, 124.11, 123.56, 

122.28, 121.10, 120.69, 118.31, 116.35, 112.71, 110.76, 110.48, 103.79, 56.15; IR (ATR, cm
-

1
): ν = 3415  (m), 3053  (w), 2993  (w), 1608  (m), 1589  (m), 1489  (s), 1471  (m), 1462  (m), 

1448  (s), 1427  (s), 1335  (m), 1319  (m), 1308  (m), 1288  (s), 1252  (m), 1225  (s), 1217  

(s), 1201  (s), 1169  (s), 1159  (s), 1126  (m), 1115  (m), 1095  (m), 1030  (s), 1012  (m), 1003  

(m), 980  (m), 914  (m), 906  (m), 895  (m), 860  (m), 850  (m), 837  (s), 822  (m), 804  (vs), 

775  (m), 754  (vs), 744  (vs), 725  (vs), 708  (s), 663  (s), 652  (m), 615  (m), 606  (s), 588  

(m), 565  (m), 553  (m), 528  (s); GC-MS (EI, 70 eV): m/z (%) = 362 (100), 347 (21), 330 
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(14), 290 (6), 207 (6), 159 (68), 145 (29), 133 (15); HRMS (EI): calcd. for C25H18N2O 

([M]
+
): 362.14136; found: 362.14150. 

8-methoxy-9H-2,9'-bicarbazole 42d was prepared following 

general procedure 18 using compound 41b (100 mg, 0.256 

mmol) and o-anisidine (32 µL, 0.281 mmol). The product 

was purified by flash chromatography (silica gel, 

ethylacetate/heptane = 1:5) to yield 42d (75 mg, 81 %) as 

white solid; mp 269-270 °C; 
1
H NMR (300 MHz, CDCl3) δ 8.40 (s, 1H), 8.24 (d, J = 8.3 Hz, 

1H), 8.20 – 8.15 (m, 2H), 7.75 (d, J = 7.9 Hz, 1H), 7.62 (d, J = 1.4 Hz, 1H), 7.51 – 7.37 (m, 

5H), 7.34 – 7.20 (m, 4H), 7.01 – 6.94 (m, 1H), 4.05 (s, 3H); 
13

C NMR (63 MHz, CDCl3) δ = 

145.75, 141.38, 139.72, 135.26, 130.49, 125.88, 123.92, 123.26, 123.04, 121.61, 120.37, 

120.25, 119.76, 118.83, 112.86, 109.93, 109.70, 106.29, 55.58; IR (ATR, cm
-1

): ν = 3412  

(m), 3055  (w), 2931  (w), 2839  (w), 1614  (w), 1579  (m), 1504  (m), 1450  (s), 1433  (s), 

1381  (m), 1365  (m), 1335  (m), 1323  (m), 1313  (m), 1306  (m), 1269  (m), 1259  (m), 1240  

(m), 1230  (s), 1188  (w), 1155  (m), 1093  (m), 1063  (w), 1016  (s), 980  (w), 931  (w), 918  

(m), 893  (w), 868  (w), 847  (m), 823  (m), 781  (m), 746  (vs), 723  (s), 685  (m), 665  (m), 

617  (m), 577  (m), 563  (m), 555  (m), 536  (m); GC-MS (EI, 70 eV): m/z (%) = 362 (100), 

347 (7), 319 (27), 181 (7), 159 (10); HRMS (ESI): calcd. for C25H19N2O ([M + H]
+
): 

363.14919; found: 363.14883; calcd. for C25H18N2O Na ([M + Na]
+
): 385.13113; found: 

385.13157. 

6-fluoro-9H-2,9'-bicarbazole 42e was prepared following 

general procedure 18 using compound 41b (100 mg, 0.256 

mmol) and 4-fluoroaniline (27 µL, 0.281 mmol). The product 

was purified by flash chromatography (silica gel, 

ethylacetate/heptane = 1:10) to yield 42e (56 mg, 63 %) as 

white solid; mp 274-276 °C;
 1

H NMR (300 MHz, DMSO) δ = 11.52 (s, 1H), 8.40 (d, J = 8.3 

Hz, 1H), 8.27 (d, J = 7.7 Hz, 2H), 8.08 (dd, J = 9.4, 2.6 Hz, 1H), 7.70 (d, J = 1.5 Hz, 1H), 

7.57 (dd, J = 8.9, 4.4 Hz, 1H), 7.49 – 7.24 (m, 8H); 
19

F NMR (282 MHz, DMSO) δ = -124.46 

(s); 
13

C NMR (63 MHz, DMSO) δ = 156.61 (d, J = 232.4 Hz), 141.35, 140.55, 136.91, 

134.71, 126.17, 122.61, 122.53 (d, J = 10.4 Hz), 122.09, 121.55 (d, J = 4.2 Hz), 120.47, 

119.89, 117.28, 113.61 (d, J = 25.1 Hz), 112.08 (d, J = 9.3 Hz), 109.72, 109.40, 105.98 (d, J 

= 23.8 Hz); IR (ATR, cm
-1

): ν = 3412  (m), 3051  (w), 2918  (w), 1610  (m), 1593  (m), 1585  
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(m), 1487  (m), 1464  (m), 1450  (s), 1362  (m), 1336  (m), 1317  (m), 1282  (m), 1271  (m), 

1248  (m), 1230  (s), 1169  (s), 1157  (s), 1122  (m), 1111  (m), 1095  (m), 1053  (m), 1024  

(m), 1014  (m), 999  (m), 978  (m), 935  (m), 912  (m), 860  (m), 849  (m), 816  (s), 800  (m), 

779  (m), 750  (vs), 723  (vs), 710  (s), 663  (s), 654  (m), 638  (m), 615  (m), 594  (s), 575  

(m), 563  (s), 540  (m), 528  (m); GC-MS (EI, 70 eV): m/z (%) = 350 (100), 175 (11), 157 

(6); HRMS (EI): calcd. for C24H15FN2 ([M]
+
): 350.12138; found: 350.12096. 

 6-(tert-butyl)-9H-2,9'-bicarbazole 42g was prepared 

following general procedure 18 using compound 41b (100 

mg, 0.256 mmol) and 4-(tert-butyl)aniline (45 µL, 0.281 

mmol). The product was purified by flash chromatography 

(silica gel, ethylacetate/heptane = 1:10) to yield 7g (60 

mg, 60 %) as white solid; mp 238-239 °C; 
1
H NMR (300 MHz, DMSO) δ = 11.36 (s, 1H), 

8.42 (d, J = 8.2 Hz, 1H), 8.29 (d, J = 7.7 Hz, 1H), 8.24 (d, J = 1.5 Hz, 1H); 7.67 (d, J = 1.6 

Hz, 1H), 7.62 – 7.40 (m, 6H), 7.38 – 7.26 (m, J = 11.4, 6.7, 2.9 Hz, 3H), 1.45 (s, 9H); 
13

C 

NMR (75 MHz, DMSO) δ = 141.59, 140.71, 140.67, 138.62, 133.89, 126.18, 123.85, 122.62, 

122.17, 121.84, 121.42, 120.50, 119.86, 117.00, 116.33, 110.65, 109.74, 109.07, 34.45, 

31.87; IR (ATR, cm
-1

): ν = 3400  (m), 3080  (w), 3051  (w), 3020  (w), 2956  (m), 2899  (w), 

2866  (w), 1608  (m), 1500  (m), 1477  (m), 1462  (m), 1450  (s), 1429  (m), 1381  (w), 1363  

(m), 1331  (m), 1313  (m), 1294  (m), 1279  (w), 1255  (m), 1246  (m), 1232  (s), 1207  (w), 

1155  (m), 1140  (m), 1117  (w), 980  (w), 928  (w), 918  (w), 889  (w), 839  (m), 812  (s), 

746  (vs), 723  (s), 702  (w), 665  (s), 634  (s), 615  (m), 565  (m); GC-MS (EI, 70 eV): m/z 

(%) = 388 (100), 373 (79), 332 (13), 207 (12), 187 (16), 172 (32), 41 (10); HRMS (EI): calcd. 

for C28H24N2 ([M]
+
): 388.19340; found: 388.19264. 

6-methyl-9H-2,9'-bicarbazole 42h was prepared following 

general procedure 18 using compound 41b (100 mg, 0.256 

mmol) and p-toluidine (31 mg, 0.281 mmol). The product was 

purified by flash chromatography (silica gel, 

ethylacetate/heptane = 1:10) to yield 42h (45 mg, 51 %) as 

white solid; mp 287-289 °C; 
1
H NMR (250 MHz, DMSO) δ = 11.36 (s, 1H), 8.29 (dd, J = 

14.4, 8.0 Hz, 3H), 8.01 (s, 1H), 7.64 (d, J = 1.6 Hz, 1H), 7.45 (dd, J = 8.4, 3.6 Hz, 5H), 7.40 

– 7.20 (m, 5H), 2.49 (s, 3H); 
13

C NMR (63 MHz, DMSO) δ = 140.70, 140.64, 138.77, 

134.06, 127.79, 127.38, 126.23, 122.65, 122.27, 121.75, 121.44, 120.53, 120.17, 119.91, 
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117.11, 110.95, 109.81, 109.15, 21.18; IR (ATR, cm
-1

): ν = 3417  (m), 3047  (w), 2916  (w), 

2850  (w), 1608  (m), 1595  (m), 1504  (m), 1489  (m), 1477  (m), 1450  (s), 1377  (m), 1362  

(m), 1335  (m), 1315  (m), 1304  (m), 1294  (m), 1277  (m), 1244  (m), 1230  (s), 1174  (m), 

1155  (m), 1146  (m), 1134  (m), 1120  (m), 1095  (m), 1039  (m), 1024  (m), 980  (m), 935  

(m), 916  (m), 876  (m), 860  (m), 847  (m), 818  (m), 804  (s), 750  (vs), 723  (vs), 663  (s), 

654  (m), 638  (m), 615  (m), 584  (s), 563  (s), 532  (m); GC-MS (EI, 70 eV): m/z (%) = 346 

(100), 330 (9), 173 (9); HRMS (EI): calcd. for C25H18N2 ([M]
+
): 346.14645; found: 

346.14639. 

  9H-[2,9'-bicarbazole]-6-carbonitrile 42i was prepared 

following general procedure 18 using compound 41b (100 

mg, 0.256 mmol) and 4-aminobenzonitrile (33 mg, 0.281 

mmol). The product was purified by flash chromatography 

(silica gel, ethylacetate/heptane = 1:5) to yield 42i (19 mg, 

21 %) as white solid; mp 297-299 °C;
 1

H NMR (300 MHz, DMSO) δ = 12.06 (s, 1H), 8.83 

(d, J = 1.1 Hz, 1H), 8.52 (d, J = 8.3 Hz, 1H), 8.27 (d, J = 7.7 Hz, 2H), 7.85 – 7.77 (m, 2H), 

7.77 – 7.69 (m, 1H), 7.55 – 7.38 (m, 5H), 7.38 – 7.25 (m, 2H); 
13

C NMR (75 MHz, DMSO) δ 

= 142.47, 141.05, 140.52, 135.54, 128.98, 126.29, 125.91, 122.74, 122.49, 122.37, 121.00, 

120.56, 120.48, 120.08, 118.74, 112.35, 109.86, 109.77, 100.84; IR (ATR, cm
-1

): ν = 3284  

(w), 3059  (w), 2918  (w), 2848  (w), 2229  (m), 1603  (s), 1477  (s), 1450  (s), 1435  (m), 

1396  (m), 1365  (m), 1335  (s), 1319  (m), 1308  (m), 1288  (m), 1254  (s), 1228  (s), 1200  

(m), 1155  (m), 1146  (m), 1132  (m), 1120  (m), 1097  (m), 1016  (m), 1003  (m), 914  (m), 

899  (m), 885  (m), 847  (m), 816  (s), 810  (s), 748  (vs), 723  (s), 663  (m), 629  (s), 615  (s), 

592  (m), 575  (m), 563  (m), 544  (m), 528  (m); GC-MS (EI, 70 eV): m/z (%) = 357 (100), 

281 (9), 253 (8), 207 (29), 191 (15), 178 (48), 164 (15), 97 (10); HRMS (EI): calcd. for 

C25H15N3 ([M]
+
): 357.12605; found: 357.12555. 

 5,7-dimethoxy-9H-2,9'-bicarbazole 42j  was prepared 

following general procedure 18 using compound 41b (100 

mg, 0.256 mmol) and 3,5-dimethoxyaniline (43 mg, 0.281 

mmol). The product was purified by flash chromatography 

(silica gel, ethylacetate/heptane = 1:4) to yield 42j (47 mg, 

47 %) as white solid; mp 282-284 °C; 
1
H NMR (300 MHz, DMSO) δ = 10.51 (s, 1H), 7.42 – 

7.35 (m, 3H), 6.73 (d, J = 1.6 Hz, 1H), 6.66 – 6.51 (m, 4H), 6.48 – 6.37 (m, 3H), 5.82 (d, J = 
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1.8 Hz, 1H), 5.55 (d, J = 1.8 Hz, 1H), 3.18 (s, 3H), 3.02 (s, 3H); 
13

C NMR (63 MHz, DMSO) 

δ = 160.12, 156.02, 142.54, 140.72, 139.47, 132.01, 126.09, 122.48, 121.97, 121.46, 120.42, 

119.72, 117.48, 109.68, 108.47, 105.32, 90.99, 87.21, 55.48, 55.42; IR (ATR, cm
-1

): ν = 3398  

(s), 3003  (w), 2968  (w), 2933  (m), 2918  (m), 2839  (m), 1628  (m), 1606  (s), 1585  (s), 

1574  (m), 1514  (m), 1502  (m), 1477  (m), 1446  (s), 1427  (s), 1360  (m), 1333  (m), 1315  

(s), 1306  (s), 1279  (s), 1234  (s), 1223  (m), 1205  (s), 1198  (s), 1147  (s), 1124  (s), 1117  

(s), 1095  (m), 1049  (s), 1020  (m), 1011  (m), 997  (m), 991  (m), 980  (m), 947  (m), 933  

(m), 920  (m), 874  (m), 850  (m), 820  (m), 804  (vs), 789  (m), 756  (vs), 744  (s), 727  (vs), 

690  (m), 665  (s), 644  (m), 633  (m), 615  (m), 598  (m), 582  (m), 569  (m), 550  (m); GC-

MS (EI, 70 eV): m/z (%) = 392 (100), 377 (17), 349 (6), 334 (22), 196 (10); HRMS (ESI): 

calcd. for C26H21N2O2 ([M + H]
+
): 393.15975; found: 393.15893; calcd. for C26H21N2O2Na 

([M + Na]
+
): 415.1417; found: 415.14089. 
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8.6 CRYSTALLOGRAPHY REPORTS 

8.6.1 Crystal data and structure refinement for compound 2p 

Identification code   av_ht1h088 

Empirical formula   C30H38N2S 

Formula weight 458.68 

Temperature  173 K 

Wavelength  0.71073 Å 

Crystal system Monoclinic 

Space group (H.-M.)   P21/c 

Space group (Hall)   -P 2ybc 

Unit cell dimensions   a = 26.9277 (11) Å α = 90.00º 

b = 8.3141 (4) Å β = 104.439 (2)° 

c = 24.3306 (10) Å γ = 90.00º 

Volume   5275.1 (4)  Å
3
 

Z   8 

Density (calculated)  1.155 Mg m
-3

 

Absorption coefficient  (mm
-1

) 0.14 mm
-1

 

F(000)   1984 

Crystal size  0.80 × 0.12 × 0.02 mm 

Θrange for data collection   5.3–55.3° 

Index ranges   h = -36→36, k = -11→11, l = -33→33 

Reflections collected   70216 

Independent reflections 14038, Rint = 0.094 

Absorption correction   multi-scan 

Max. and min. transmission   Tmin = 0.895, Tmax = 0.997 

Refinement method   Full-matrix least-squares on F2 

Data/ restraints / parameters   14038/0/599 

Goodness-of-fit on F2 0.98 
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Final R indices [I>2σ(I)]   R[F
2
 > 2σ(F

2
)] = 0.054, wR(F

2
) = 0.102 

R indices (all data)   R[F
2
 > 2σ(F

2
)] = 0.127, wR(F

2
) = 0.120 

Largest diff. peak and hole 0.26 e Å
-3 

and -0.32 e Å
-3

 

 

8.6.2 Crystal data and structure refinement for compound 2i 

Identification code   av_ht1h145 

Empirical formula   C36H34N2S·C6H12 

Formula weight 610.87 

Temperature  173 K 

Wavelength  0.71073 Å 

Crystal system Monoclinic 

Space group (H.-M.)   C2/c 

Space group (Hall)   -C 2yc 

Unit cell dimensions   a = 10.4817 (8) Å α = 90.00º 

b = 24.3518 (19) Å β = 98.238(5)º 

c = 13.6216 (11) Å γ = 90.00º 

Volume  3441.0 (5)  Å
3
 

Z   4 

Density (calculated)  1.179 Mg m
-3

 

Absorption coefficient  (mm
-1

) 0.13 mm
-1

 

F(000)   1312 

Crystal size  0.34 × 0.20 × 0.05 mm 

Θrange for data collection   4.5–43.8° 

Index ranges   h = -13→13, k = -31→27, l = -15→17 

Reflections collected   12582 

Independent reflections 3744 

Absorption correction   multi-scan 

Max. and min. transmission   Tmin = 0.959, Tmax = 0.994 
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Refinement method   Full-matrix least-squares on F2 

Data/ restraints / parameters   3744/15/227 

Goodness-of-fit on F2 1.01 

Final R indices [I>2σ(I)]   R[F
2
 > 2σ(F

2
)] = 0.057, wR(F

2
) = 0.120 

R indices (all data)   R[F
2
 > 2σ(F

2
)] = 0.120, wR(F

2
) = 0.129 

Largest diff. peak and hole 0.36 e Å
-3

 and -0.27 e Å
-3

 

 

8.6.3 Crystal data and structure refinement for compound 2k 

Identification code   ch_ht1h142 

Empirical formula   C36H36N4S 

Formula weight 556.75 

Temperature  173 K 

Wavelength  0.71073 Å 

Crystal system Triclinic 

Space group (H.-M.)   P¯1 

Space group (Hall)   -P 1 

Unit cell dimensions   a = 16.4194 (6) Å α = 84.990 (2)° 

b = 16.7949 (6) Å β = 82.485 (2)° 

c = 21.7769 (7) Å γ = 88.123 (2)° 

Volume  5929.5 (4)  Å
3
 

Z   8 

Density (calculated)  1.247 Mg m
-3

 

Absorption coefficient  (mm
-1

) 0.14 mm
-1

 

F(000)   2368 

Crystal size  0.23 × 0.18 × 0.12 mm 

Θrange for data collection   4.7–51.2° 

Index ranges   h = -21→22, k = -22→22, l = -29→26 

Reflections collected   141031 
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Independent reflections 31470 

Absorption correction   multi-scan 

Max. and min. transmission   Tmin = 0.968, Tmax = 0.983 

Refinement method   Full-matrix least-squares on F2 

Data/ restraints / parameters   31470/0/1520 

Goodness-of-fit on F2 1.01 

Final R indices [I>2σ(I)]   R[F
2
 > 2(F

2
)] = 0.050, wR(F

2
) = 0.050 

R indices (all data)   R[F
2
 > 2(F

2
)] = 0.098, wR(F

2
) = 0.119 

Largest diff. peak and hole 0.25 e Å
-3

 and  -0.35 e Å
-3

 

 

8.6.4 Crystal data and structure refinement for compound 15b 

Identification code   is_1h003 

Empirical formula   C25H24N2 

Formula weight 352.46 

Temperature (K)   173 K 

Wavelength  0.71073 Å 

Crystal system Monoclinic 

Space group (H.-M.)   P21/c 

Space group (Hall)   -P 2ybc 

Unit cell dimensions   a = 9.8957 (3) Å α = 90.00º 

b = 23.4982 (7) Å β = 103.811 (2)° 

c = 8.5844 (3) Å γ = 90.00º 

Volume   1938.43 (11)  Å
3
 

Z   4 

Density (calculated)  1.208 Mg m
-3

 

Absorption coefficient  (mm
-1

) 0.07 mm
-1

 

F(000)   752 

Crystal size  0.38 × 0.16 × 0.14 mm 
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Θrange for data collection   5.5–60.0° 

Index ranges   h = -13→13, k = -32→32, l = -12→12 

Reflections collected   27546 

Independent reflections 5629 

Absorption correction   multi-scan 

Max. and min. transmission   Tmin = 0.974, Tmax = 0.990 

Refinement method   Full-matrix least-squares on F2 

Data/ restraints / parameters   5629/80/294 

Goodness-of-fit on F2 1.03 

Final R indices [I>2σ(I)]   R[F
2
 > 2σ(F

2
)] = 0.051, wR(F

2
) = 0.051 

R indices (all data)   R[F
2
 > 2σ(F

2
)] = 0.097, wR(F

2
) = 0.133 

Largest diff. peak and hole 0.24 e Å
-3 

and -0.26 e Å
-3

 

 

8.6.5 Crystal data and structure refinement for compound 18d 

Identification code   av_ht3h114 

Empirical formula   C17H11FN2 

Formula weight 262.28 

Temperature  173 K 

Wavelength  0.71073 Å 

Crystal system Triclinic 

Space group (H.-M.)   P¯1 

Space group (Hall)   -P 1 

Unit cell dimensions   a = 6.2637 (4) Å α = 78.235 (4)° 

b = 9.6026 (6) Å β = 81.016 (4)° 

c = 11.1057 (8) Å γ = 74.565 (4)° 

Volume   626.68 (7)  Å
3
 

Z   2 

Density (calculated)  1.390 Mg m
-3
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Absorption coefficient  (mm
-1

) 0.09 mm
-1

 

F(000)   272 

Crystal size  0.16 × 0.13 × 0.09 mm 

Θrange for data collection   2.2–24.4° 

Index ranges   h = -8→8, k = -12→12, l = 0→14 

Reflections collected   2973 

Independent reflections 2973 

Absorption correction   multi-scan 

Max. and min. transmission   Tmin = 0.672, Tmax = 0.746 

Refinement method   Full-matrix least-squares on F2 

Data/ restraints / parameters   2973 /30/159 

Goodness-of-fit on F
2
 1.03 

Final R indices [I>2σ(I)]   R[F
2
 > 2σ(F

2
)] = 0.060, wR(F

2
) = 0.118 

R indices (all data)   R[F
2
 > 2σ(F

2
)] = 0.111, wR(F

2
) = 0.139 

Largest diff. peak and hole 0.25 e Å
-3

 and -0.21 e Å
-3

 

 

8.6.6 Crystal data and structure refinement for compound 21b 

Identification code   is_jj2h210 

Empirical formula   C17H11FN2 

Formula weight 262.28 

Temperature  173 K 

Wavelength  0.71073 Å 

Crystal system Monoclinic 

Space group (H.-M.)   C2/c 

Space group (Hall)   -C 2yc 

Unit cell dimensions   a = 13.9224 (7) Å α = 90.00º 

b = 11.0347 (5) Å β = 94.077 (2)° 

c = 16.4227 (9) Å γ = 90.00º 
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Volume   2516.6 (2)  Å
3
 

Z   8 

Density (calculated)  1.384 Mg m
-3

 

Absorption coefficient  (mm
-1

) 0.09 mm
-1

 

F(000)   1088 

Crystal size  0.66 × 0.23 × 0.19 mm 

Θrange for data collection   4.7–60.5° 

Index ranges   h = -18→17, k = -14→15, l = -17→21 

Reflections collected   15409 

Independent reflections 3322, Rint = 0.033 

Absorption correction   multi-scan 

Max. and min. transmission   Tmin = 0.941, Tmax = 0.983 

Refinement method   Full-matrix least-squares on F2 

Data/ restraints / parameters   3322/0/218 

Goodness-of-fit on F
2
 1.04 

Final R indices [I>2σ(I)]   R[F
2
 > 2σ(F

2
)] = 0.043, wR(F

2
) = 0.101 

R indices (all data)   R[F
2
 > 2σ(F

2
)] = 0.077, wR(F

2
) = 0.116 

Largest diff. peak and hole 0.15 e Å
-3 

and -0.20 e Å
-3

 

 

8.6.7 Crystal data and structure refinement for compound 25g 

Identification code   is_ht2h121p 

Empirical formula   C33H28ClN3O4·1.5(CHCl3) 

Formula weight 745.09 

Temperature  173 K 

Wavelength  0.71073 Å 

Crystal system Triclinic 

Space group (H.-M.)   P¯1 

Space group (Hall)   -P 1 
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Unit cell dimensions   a = 12.1069 (2) Å α = 67.635 (1)° 

b = 12.5752 (2) Å β = 64.074 (1)° 

c = 13.7247 (3) Å γ = 81.170 (1)° 

Volume   1737.68 (6)  Å
3
 

Z   2 

Density (calculated)  1.424 Mg m
-3

 

Absorption coefficient  (mm
-1

) 0.50 mm
-1

 

F(000)   766 

Crystal size  0.22 × 0.17 × 0.15 mm 

Θrange for data collection   6.0–51.1° 

Index ranges   h = -17→15, k = -17→17, l = -19→19 

Reflections collected   48893 

Independent reflections 10557, Rint = 0.045 

Absorption correction   multi-scan 

Max. and min. transmission   Tmin = 0.898, Tmax = 0.929 

Refinement method   Full-matrix least-squares on F2 

Data/ restraints / parameters   10557/0/374 

Goodness-of-fit on F
2
 0.93 

Final R indices [I>2σ(I)]   R[F
2
 > 2σ(F

2
)] = 0.055, wR(F

2
) = 0.124 

R indices (all data)   R[F
2
 > 2σ(F

2
)] = 0.104, wR(F

2
) = 0.138 

Largest diff. peak and hole 0.30 e Å
-3

and
 
-0.29 e Å

-3
 

 

8.6.8 Crystal data and structure refinement for compound 25j 

Identification code   is_ht2h167 

Empirical formula   C23H23N3·0.043(CHCl3)·0.458(C6H12) 

Formula weight 385.00 

Temperature  173 K 

Wavelength  0.71073 Å 



Crystallography reports  177 

 

 

Crystal system Triclinic 

Space group (H.-M.)   P¯1 

Space group (Hall)   -P 1 

Unit cell dimensions   a = 9.7236 (2) Å α = 92.999 (1)° 

b = 12.5815 (2) Å β = 99.527 (1)° 

c = 17.7524 (3) Å γ = 96.347 (1)° 

Volume   2123.17 (7)  Å
3
 

Z   4 

Density (calculated)  1.204 Mg m
-3

 

Absorption coefficient  (mm
-1

) 0.09 mm
-1

 

F(000)   826 

Crystal size  0.22 × 0.19 × 0.08 mm 

Θrange for data collection   5.1–60.5° 

Index ranges   h = -12→12, k = -16→16, l = -23→23 

Reflections collected   57048 

Independent reflections 10170, Rint = 0.037 

Absorption correction   multi-scan 

Max. and min. transmission   Tmin = 0.981, Tmax = 0.993 

Refinement method   Full-matrix least-squares on F2 

Data/ restraints / parameters   10170/3/560 

Goodness-of-fit on F
2
 1.01 

Final R indices [I>2σ(I)]   R[F
2
 > 2σ(F

2
)] = 0.056, wR(F

2
) = 0.127 

R indices (all data)   R[F
2
 > 2σ(F

2
)] = 0.097, wR(F

2
) = 0.151 

Largest diff. peak and hole 0.48 e Å
-3 

and -0.43 e Å
-3

 

 

8.6.9 Crystal data and structure refinement for compound 35e 

Identification code   is_ht2h182 

Empirical formula   C21H15N3O 
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Formula weight 325.36 

Temperature  173 K 

Wavelength  0.71073 Å 

Crystal system Triclinic 

Space group (H.-M.)   P¯1 

Space group (Hall)   -P 1 

Unit cell dimensions   a = 5.9259 (3) Å α = 79.323 (3)° 

b = 11.0893 (6) Å β = 78.333 (3)° 

c = 12.3340 (6) Å γ = 86.450 (3)° 

Volume   779.78 (7)  Å
3
 

Z   2 

Density (calculated)  1.386 Mg m
-3

 

Absorption coefficient  (mm
-1

) 0.09 mm
-1

 

F(000)   340 

Crystal size  0.43 × 0.07 × 0.03 mm 

Θ range for data collection   6.9–45.1° 

Index ranges   h = -7→8, k = -15→15, l = -16→16 

Reflections collected   18870 

Independent reflections 4102, Rint = 0.070 

Absorption correction   multi-scan 

Max. and min. transmission   Tmin = 0.963, Tmax = 0.997 

Refinement method   Full-matrix least-squares on F2 

Data/ restraints / parameters   4102/0/228 

Goodness-of-fit on F
2
 1.01 

Final R indices [I>2σ(I)]   R[F
2
 > 2σ(F

2
)] = 0.058, wR(F

2
) = 0.101 

R indices (all data)   R[F
2
 > 2σ(F

2
)] = 0.144, wR(F

2
) = 0.132 

Largest diff. peak and hole 0.28 e Å
-3

 and -0.23 e Å
-3
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8.6.10 Crystal data and structure refinement for compound 35r 

Identification code   is_ht3h053 

Empirical formula   C23H19N3 

Formula weight 337.41 

Temperature  173 K 

Wavelength  0.71073 Å 

Crystal system Triclinic 

Space group (H.-M.)   P¯1 

Space group (Hall)   -P 1 

Unit cell dimensions   a = 7.3149 (3) Å α = 72.116 (2)° 

b = 15.0792 (8) Å β = 88.582 (2)° 

c = 16.8977 (8) Å γ = 77.750 (2)° 

Volume   V = 1731.78 (14)  Å
3
 

Z   4 

Density (calculated)  1.294 Mg m
-3

 

Absorption coefficient  (mm
-1

) 0.08 mm
-1

 

F(000)   712 

Crystal size  0.99 × 0.23 × 0.05 mm 

Θ range for data collection   4.4–50.2° 

Index ranges   h = -10→10, k = -20→20, l = -23→23 

Reflections collected   44254 

Independent reflections 9574, Rint = 0.043 

Absorption correction   multi-scan 

Max. and min. transmission   Tmin = 0.927, Tmax = 0.996 

Refinement method   Full-matrix least-squares on F2 

Data/ restraints / parameters   9574/18/482 

Goodness-of-fit on F
2
 1.02 

Final R indices [I>2σ(I)]   R[F
2
 > 2σ(F

2
)] = 0.053, wR(F

2
) = 0.117 

R indices (all data)   R[F
2
 > 2σ(F

2
)] = 0.110, wR(F

2
) = 0.145 
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Largest diff. peak and hole 0.37 e Å
-3

 and -0.26 e Å
-3

 

 

8.6.11 Crystal data and structure refinement for compound 38b 

Identification code   is_dh1h017 

Empirical formula   C24H15N3O2 

Formula weight 377.39 

Temperature  173 K 

Wavelength  0.71073 Å 

Crystal system Monoclinic 

Space group (H.-M.)   P21/c 

Space group (Hall)   -P 2ybc 

Unit cell dimensions   a = 12.7311 (10) Å α = 90.00º 

b = 15.7373 (13) Å β = 104.025 (2)° 

c = 9.2462 (7) Å γ = 90.00º 

Volume   1797.3 (2)  Å
3
 

Z   4 

Density (calculated)  1.395 Mg m
-3

 

Absorption coefficient  (mm
-1

) 0.09 mm
-1

 

F(000)   784 

Crystal size  0.53 × 0.09 × 0.03 mm 

Θ range for data collection   5.2–53.3° 

Index ranges   h = -16→17, k = -21→21, l = -10→12 

Reflections collected   19875 

Independent reflections 5202, Rint = 0.058 

Absorption correction   multi-scan 

Max. and min. transmission   Tmin = 0.953, Tmax = 0.997 

Refinement method   Full-matrix least-squares on F2 

Data/ restraints / parameters   5202/0/266 
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Goodness-of-fit on F
2
 1.01 

Final R indices [I>2σ(I)]   R[F
2
 > 2σ(F

2
)] = 0.055, wR(F

2
) = 0.095 

R indices (all data)   R[F
2
 > 2σ(F

2
)] = 0.130, wR(F

2
) = 0.122 

Largest diff. peak and hole 0.21 e Å
-3

 and -0.25 e Å
-3

 

 

8.6.12 Crystal data and structure refinement for compound 42c 

Identification code   is_t12 

Empirical formula   C25H18N2O 

Formula weight 362.41 

Temperature  173 K 

Wavelength  0.71073 Å 

Crystal system Monoclinic 

Space group (H.-M.)   P21/c 

Space group (Hall)   -P 2ybc 

Unit cell dimensions   a = 12.6024 (5) Å α = 90.00º 

b = 7.6803 (2) Å β = 102.443 (2)° 

c = 19.0480 (7) Å γ = 90.00º 

Volume   1800.35 (11)  Å
3
 

Z   4 

Density (calculated)  1.337 Mg m
-3

 

Absorption coefficient  (mm
-1

) 0.08 mm
-1

 

F(000)   760 

Crystal size  0.24 × 0.21 × 0.20 mm 

Θ range for data collection   4.9–62.9° 

Index ranges   h = -17→19, k = -9→11, l = -25→28 

Reflections collected   25408 

Independent reflections 6521 

Absorption correction   multi-scan 
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Max. and min. transmission   Tmin = 0.981, Tmax = 0.984 

Refinement method   Full-matrix least-squares on F2 

Data/ restraints / parameters   6521/0/258 

Goodness-of-fit on F
2
 1.03 

Final R indices [I>2σ(I)]   R[F
2
 > 2σ(F

2
)] = 0.051, wR(F

2
) = 0.116 

R indices (all data)   R[F
2
 > 2σ(F

2
)] = 0.085, wR(F

2
) = 0.135 

Largest diff. peak and hole 0.34 e Å
-3

 and -0.30 e Å
-3
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8.7 Calculations 

B3LYP/6-31G* optimized geometries. The cartesian coordinates are given in Å. 

Compound  25a 

C -1.126407 -1.767076 -0.042458 
 

H 1.916335 1.964987 -1.790622 

C -1.170014 -0.337161 -0.041114 
 

C 3.849912 4.069411 0.065808 

C -0.000046 0.420361 -0.027618 
 

H 4.918466 3.501185 1.851519 

C 1.169955 -0.337165 -0.040918 
 

H 2.679072 4.3279 -1.727224 

C 1.126313 -1.767073 -0.042269 
 

H 4.195843 5.098944 0.087135 

H -0.000038 1.503976 -0.001474 
 

C -4.711415 -1.172356 -0.01231 

N -0.000057 -2.48438 -0.040317 
 

C -3.079173 -3.500412 -0.029725 

N -2.504063 0.070485 -0.016178 
 

C -4.467278 -3.60396 -0.025048 

N 2.504026 0.07046 -0.015648 
 

C -5.270104 -2.450125 -0.020251 

C -2.958994 1.416375 0.011063 
 

H -5.339614 -0.287781 -0.018493 

C -2.557971 2.313822 -0.986968 
 

H -2.446068 -4.382541 -0.043144 

C -3.807778 1.851371 1.037091 
 

H -4.93702 -4.58346 -0.029493 

C -2.995984 3.637433 -0.950014 
 

H -6.352086 -2.551733 -0.025641 

H -1.91783 1.965043 -1.791477 
 

C 4.711347 -1.172567 -0.01184 

C -4.257111 3.171451 1.055369 
 

C 5.269966 -2.450354 -0.020017 

H -4.100473 1.155746 1.817295 
 

C 4.467061 -3.604137 -0.024926 

C -3.849589 4.069509 0.066818 
 

C 3.078974 -3.500491 -0.029537 

H -2.680246 4.328076 -1.727205 
 

H 5.339594 -0.288034 -0.017928 

H -4.916708 3.501192 1.853377 
 

H 6.351939 -2.552038 -0.025501 

H -4.195421 5.099067 0.088529 
 

H 4.936719 -4.583677 -0.029589 

C 2.959044 1.416312 0.011044 
 

H 2.445844 -4.382603 -0.043002 

C 3.808749 1.851357 1.036316 
 

C -2.497844 -2.228837 -0.022272 

C 2.557217 2.313731 -0.986699 
 

C -3.31832 -1.075067 -0.004205 

C 4.258204 3.171394 1.054082 
 

C 3.318248 -1.075162 -0.00368 

H 4.102033 1.155801 1.816351 
 

C 2.497704 -2.228886 -0.021897 

C 2.995385 3.637302 -0.950226 
     

 

Compound  25b 

C -1.12618200 -3.16257800 -0.03348800  C 5.27107200 -3.84157600 0.00164600 

C -1.16974800 -1.73265300 -0.05653400  C 4.46925500 -4.99609900 0.01645600 

C 0.00007200 -0.97489600 -0.05719700  C 3.08098300 -4.89395700 0.00918700 

C 1.16997200 -1.73252800 -0.05680300  H 5.33797500 -1.67911300 -0.03429100 

C 1.12655100 -3.16245700 -0.03374400  H 6.35318500 -3.94235700 -0.00110000 

H 0.00000800 0.10903400 -0.05198200  H 4.93989800 -5.97512800 0.02950600 

N 0.00022500 -3.87986400 -0.01957300  H 2.44883500 -5.77690500 0.01109800 

N -2.50331500 -1.32428700 -0.03903800  C -2.49783000 -3.62335000 -0.00540500 



Calculations   184 

 

 

N 2.50351400 -1.32403200 -0.03964400  C -3.31755400 -2.46861500 -0.00739400 

C -2.95754200 0.02208500 -0.03226900  C 3.31786400 -2.46828800 -0.00813800 

C -2.56942300 0.90810800 -1.03995200  C 2.49824900 -3.62309800 -0.00596700 

C -3.79819500 0.48374900 0.98834800  C -4.36150900 4.16749800 0.03378500 

C -3.00646200 2.23383000 -1.01990100  C 4.36098900 4.16798200 0.03467000 

H -1.93466100 0.55546900 -1.84735300  C -3.84208800 5.00684200 -1.14879200 

C -4.24114700 1.80265500 0.98441100  H -2.74784000 5.06857700 -1.15639100 

H -4.09224700 -0.19175100 1.78581900  H -4.16969900 4.60116900 -2.11278600 

C -3.85517600 2.71474300 -0.01370400  H -4.22896900 6.02915100 -1.07309400 

H -2.68165400 2.88972900 -1.81971900  C -3.88442300 4.83538900 1.34568100 

H -4.89296100 2.12790000 1.79020000  H -4.24429800 5.87013500 1.39892300 

C 2.95759200 0.02238200 -0.03251800  H -4.25612900 4.30821600 2.23054300 

C 3.79860200 0.48375100 0.98794100  H -2.79005600 4.85263100 1.40215900 

C 2.56895800 0.90877000 -1.03968600  C -5.90837400 4.17725800 -0.01134700 

C 4.24137600 1.80271700 0.98435800  H -6.28289200 5.20739000 0.02612000 

H 4.09307300 -0.19201900 1.78502800  H -6.27733400 3.71415700 -0.93351400 

C 3.00581700 2.23454700 -1.01926400  H -6.34531300 3.63409000 0.83317300 

H 1.93394100 0.55638200 -1.84699600  C 3.88462100 4.83514400 1.34719900 

C 3.85487000 2.71516900 -0.01321500  H 4.25703400 4.30763700 2.23156500 

H 4.89348200 2.12770600 1.79001300  H 4.24429100 5.86994800 1.40070200 

H 2.68060100 2.89072700 -1.81868700  H 2.79028700 4.85210800 1.40441200 

C -4.71078200 -2.56489000 -0.01224900  C 5.90782400 4.17806500 -0.01145400 

C -3.08045300 -4.89425900 0.00990800  H 6.27628000 3.71541100 -0.93404600 

C -4.46871500 -4.99652000 0.01751300  H 6.28216500 5.20825500 0.02619100 

C -5.27063700 -3.84206700 0.00288800  H 6.34541300 3.63463800 0.83256200 

H -5.33773300 -1.67960500 -0.03303900  C 3.84065100 5.00780200 -1.14716100 

H -2.44823200 -5.77715500 0.01168300  H 4.16752400 4.60251300 -2.11156500 

H -4.93926800 -5.97559000 0.03069000  H 2.74639600 5.06952700 -1.15389300 

H -6.35274200 -3.94294500 0.00041300  H 4.22757900 6.03008500 -1.07134800 

C 4.71110100 -2.56444800 -0.01334300      

 

Compound  25c 

C -1.12631400 -2.31520400 -0.09049500 
 

H -6.35254800 -3.09719400 -0.08960100 

C -1.16997500 -0.88538500 -0.06449700 
 

C 4.71107900 -1.71895700 -0.05203600 

C 0.00002800 -0.12845800 -0.03849400 
 

C 5.27066200 -2.99593700 -0.08280600 

C 1.17005800 -0.88533300 -0.06464600 
 

C 4.46859900 -4.15012700 -0.10744000 

C 1.12647100 -2.31515600 -0.09065400 
 

C 3.08040000 -4.04725200 -0.10935300 

H 0.00001700 0.95445500 0.00424900 
 

H 5.33788300 -0.83347100 -0.04219200 

N 0.00009300 -3.03260900 -0.10098500 
 

H 6.35276300 -3.09680700 -0.09046000 

N -2.50348200 -0.47763000 -0.03301300 
 

H 4.93893300 -5.12915700 -0.12933900 

N 2.50354500 -0.47751000 -0.03342700 
 

H 2.44783400 -4.92945700 -0.13768000 

C -2.95727700 0.86929700 0.01649300 
 

C -2.49791900 -2.77657200 -0.07896300 

C -2.55585700 1.77755700 -0.96794900 
 

C -3.31772500 -1.62239400 -0.04116300 



Calculations   185 

 

 

C -3.80082100 1.28503000 1.05270000 
 

C 3.31784500 -1.62221900 -0.04165200 

C -2.98191500 3.10953200 -0.91889300 
 

C 2.49810400 -2.77644800 -0.07935200 

H -1.91899400 1.43564100 -1.77897600 
 

H 4.17797900 4.53513900 0.15956600 

C -4.25877500 2.60504500 1.10587100 
 

H -4.17837000 4.53494200 0.15833800 

H -4.08833400 0.57339900 1.82129100 
 

C 5.20079900 3.04818500 2.20197500 

C -3.83482200 3.50300800 0.11816000 
 

H 6.24850900 2.92350500 1.89737400 

C 2.95725500 0.86944300 0.01651200 
 

H 5.05831300 4.10537100 2.44947800 

C 3.80052400 1.28497300 1.05301500 
 

H 5.05648000 2.46292600 3.11603000 

C 2.55599200 1.77789800 -0.96781300 
 

C 2.51788500 4.10182100 -1.96020500 

C 4.25833800 2.60502300 1.10663000 
 

H 2.42832300 3.63479100 -2.94700100 

H 4.08793200 0.57315500 1.82147500 
 

H 1.53166200 4.51313800 -1.70538800 

C 2.98192000 3.10989900 -0.91832800 
 

H 3.21018700 4.94547500 -2.04639000 

H 1.91933700 1.43611100 -1.77905800 
 

C -2.51770200 4.10123800 -1.96089700 

C 3.83453300 3.50318600 0.11904200 
 

H -3.21016200 4.94470900 -2.04761300 

C -4.71095300 -1.71923500 -0.05139000 
 

H -1.53167400 4.51286100 -1.70581900 

C -3.08012600 -4.04741800 -0.10886400 
 

H -2.42764200 3.63392300 -2.94751200 

C -4.46831700 -4.15039300 -0.10677400 
 

C -5.20152500 3.04842200 2.20088100 

C -5.27045200 -2.99625500 -0.08207300 
 

H -5.05820900 4.10532900 2.44911900 

H -5.33783000 -0.83380300 -0.04150500 
 

H -6.24915400 2.92493400 1.89552000 

H -2.44749500 -4.92957300 -0.13726500 
 

H -5.05833900 2.46247800 3.11467000 

H -4.93858700 -5.12945500 -0.12859300 
     

 

Compound  25d 

C -1.126454 -2.139354 -0.040529 
 

C 3.842045 3.671628 0.044935 

C -1.169574 -0.709292 -0.046332 
 

H 4.845848 3.183584 1.877286 

C -0.000003 0.04879 -0.038409 
 

H 2.770109 3.949823 -1.792429 

C 1.169562 -0.7093 -0.046301 
 

C -4.711221 -1.541264 -0.012331 

C 1.126432 -2.139361 -0.0405 
 

C -3.081273 -3.871463 -0.015769 

H -0.000001 1.132887 -0.019334 
 

C -4.469579 -3.973008 -0.008256 

N -0.000013 -2.856486 -0.035187 
 

C -5.271421 -2.818462 -0.009852 

N -2.503238 -0.301662 -0.026575 
 

H -5.33835 -0.655741 -0.022644 

N 2.50323 -0.30168 -0.026497 
 

H -2.449601 -4.754657 -0.022956 

C -2.958245 1.043986 -0.00315 
 

H -4.940444 -4.951921 -0.004829 

C -2.602264 1.926072 -1.031982 
 

H -6.353448 -2.919137 -0.011909 

C -3.764103 1.496923 1.050035 
 

C 4.711203 -1.541303 -0.012206 

C -3.034941 3.250845 -1.006033 
 

C 5.271391 -2.818506 -0.009702 

H -1.994853 1.566518 -1.856536 
 

C 4.469539 -3.973045 -0.008114 

C -4.219561 2.813814 1.07236 
 

C 3.081234 -3.871486 -0.015662 

H -4.025757 0.814992 1.852681 
 

H 5.338342 -0.655787 -0.022511 

C -3.842001 3.671659 0.045105 
 

H 6.353417 -2.91919 -0.011731 

H -2.770114 3.949936 -1.792274 
 

H 4.940395 -4.951962 -0.004666 

H -4.845759 3.183534 1.87746 
 

H 2.449552 -4.754674 -0.02286 

C 2.95825 1.043965 -0.003158 
 

C -2.498298 -2.600566 -0.018439 



Calculations   186 

 

 

C 3.764144 1.496946 1.04998 
 

C -3.318235 -1.446501 -0.008649 

C 2.602252 1.926002 -1.032026 
 

C 3.318218 -1.446526 -0.00856 

C 4.219622 2.813831 1.072223 
 

C 2.498272 -2.600584 -0.018363 

H 4.025808 0.815055 1.852657 
 

F -4.271704 4.949344 0.068682 

C 3.034948 3.25077 -1.006158 
 

F 4.271769 4.949308 0.068431 

H 1.994813 1.566416 -1.856545 
     

 

Compound  25g 

C -1.12665200 2.74813700 0.07960200 
 

H -6.35111300 3.53510200 -0.01263300 

C -1.17047500 1.31766400 0.04874000 
 

C 4.70949300 2.15698900 -0.02211000 

C -0.00017500 0.55964500 0.02566900 
 

C 5.26809900 3.43446300 0.00156400 

C 1.16991300 1.31801300 0.04812900 
 

C 4.46541000 4.58780900 0.04803900 

C 1.12572100 2.74847300 0.07905400 
 

C 3.07759900 4.48401200 0.07630300 

H -0.00000700 -0.52366900 -0.02042000 
 

H 5.33507900 1.27123300 -0.05620300 

N -0.00057000 3.46538800 0.09530700 
 

H 6.34995300 3.53672000 -0.01593600 

N -2.50442400 0.91413800 0.00303000 
 

H 4.93526900 5.56722600 0.06310200 

N 2.50391700 0.91485200 0.00167300 
 

H 2.44499900 5.36572500 0.11692100 

C -2.96998900 -0.42917300 -0.06725100 
 

C -2.49712400 3.21183100 0.05505900 

C -2.67653800 -1.31117100 0.98702500 
 

C -3.31742800 2.05940400 0.00020000 

C -3.71557900 -0.83897000 -1.16572200 
 

C 3.31663300 2.06030300 -0.00139700 

C -3.15064900 -2.62178200 0.91328900 
 

C 2.49606000 3.21252900 0.05387200 

H -2.11803400 -0.94727600 1.83956300 
 

O -4.91475100 -2.47396100 -2.32877600 

C -4.19108700 -2.16042700 -1.21834400 
 

O -2.94763500 -3.56880700 1.87460800 

H -3.92681000 -0.16208900 -1.98518300 
 

O 4.91290900 -2.47445600 -2.32971600 

C -3.90820200 -3.05428800 -0.18752000 
 

O 2.95111200 -3.56615900 1.87701200 

H -4.25675500 -4.07917400 -0.19315100 
 

C -5.40701800 -3.79921400 -2.46062300 

C 2.96989400 -0.42838200 -0.06785800 
 

H -5.93932900 -3.82571300 -3.41294300 

C 3.71438900 -0.83888000 -1.16679800 
 

H -4.58969800 -4.53173400 -2.47976800 

C 2.67800200 -1.30949000 0.98758600 
 

H -6.10095700 -4.05335700 -1.64886700 

C 4.19037800 -2.16019700 -1.21874900 
 

C -2.25474600 -3.19178300 3.05323300 

H 3.92443800 -0.16262700 -1.98708300 
 

H -1.22769300 -2.87136200 2.83180700 

C 3.15261400 -2.61996000 0.91455700 
 

H -2.77493400 -2.38552700 3.58646600 

H 2.12022600 -0.94504200 1.84036700 
 

H -2.22642800 -4.08356900 3.68192900 

C 3.90906800 -3.05318200 -0.18673000 
 

C 2.25978500 -3.18819800 3.05626000 

H 4.25806800 -4.07791900 -0.19177900 
 

H 2.78038300 -2.38113600 3.58786500 

C -4.71032600 2.15577100 -0.01972300 
 

H 1.23226000 -2.86846400 2.83602600 

C -3.07894100 4.48317800 0.07783500 
 

H 2.23279700 -4.07932700 3.68594500 

C -4.46679100 4.58665100 0.05031600 
 

C 5.40556200 -3.79962800 -2.46097800 

C -5.26922400 3.43311200 0.00426600 
 

H 4.58852000 -4.53249800 -2.47849500 

H -5.33573600 1.26988000 -0.05345100 
 

H 5.93673900 -3.82676000 -3.41391300 

H -2.44651600 5.36503000 0.11815000 
 

H 6.10058100 -4.05276600 -1.64983200 

H -4.93687700 5.56595500 0.06565000 
    

 
 



Calculations   187 

 

 

Compound  25i 

C -2.92593300 -1.45014800 -0.05428800 
 

H 2.98980000 -2.52437800 1.36470800 

C -1.62241500 -1.33192100 0.53007200 
 

C 3.75373300 -3.46308100 -0.42862800 

C -1.07342000 -0.08127100 0.81531200 
 

H 3.77709900 -2.54370400 -1.03210700 

C -1.90233200 0.99538300 0.49823800 
 

H 3.45837200 -4.26904000 -1.11618700 

C -3.19440000 0.78636400 -0.08571300 
 

C 5.15979200 -3.74863300 0.11429400 

H -0.08326700 0.04412200 1.24189300 
 

H 5.45858100 -2.93789700 0.79564100 

N -3.70951400 -0.41392200 -0.36246600 
 

H 5.13601800 -4.66378900 0.72468400 

N -1.10178300 -2.60244300 0.72543400 
 

C 6.21959800 -3.90149600 -0.98440400 

N -1.69691800 2.35744000 0.65705300 
 

H 6.23929200 -2.98908000 -1.59736300 

C -1.93838500 -4.93455700 0.23314600 
 

H 5.92338700 -4.71524000 -1.66143300 

C -4.25364000 -3.59633800 -0.73249000 
 

C 7.62327400 -4.17860800 -0.43656000 

C -4.17173600 -4.98652500 -0.75645800 
 

H 8.35544900 -4.28065300 -1.24559700 

C -3.02540700 -5.64393100 -0.27826700 
 

H 7.96138000 -3.36562800 0.21786200 

H -1.05749300 -5.45739000 0.59404700 
 

H 7.64451200 -5.10510300 0.15040600 

H -5.13306900 -3.07616600 -1.10041400 
 

C -0.48692600 2.97412900 1.17283800 

H -4.99917100 -5.57065400 -1.14925900 
 

H -0.07836300 2.31737500 1.95067700 

H -2.98001700 -6.72938800 -0.30834600 
 

H -0.77079400 3.90582100 1.67547200 

C -3.05821300 4.41213400 0.10187300 
 

C 0.57687300 3.25041100 0.09905600 

C -4.27988300 4.83018100 -0.42645400 
 

H 0.82389400 2.30760500 -0.40711600 

C -5.23684000 3.90781300 -0.88289400 
 

H 0.14688600 3.90907600 -0.66679600 

C -4.98822900 2.53886900 -0.81986300 
 

C 1.84840000 3.88065600 0.68068900 

H -2.32659600 5.13836100 0.44388600 
 

H 2.26043600 3.22073800 1.45906300 

H -4.49168300 5.89442400 -0.48738100 
 

H 1.59162000 4.82279200 1.18768100 

H -6.17716500 4.26897600 -1.28970900 
 

C 2.92864400 4.15231300 -0.37449600 

H -5.71850900 1.81568700 -1.17067900 
 

H 3.18048400 3.21085600 -0.88471500 

C -3.17633000 -2.86537500 -0.22449700 
 

H 2.51956400 4.81687200 -1.14944200 

C -2.02656900 -3.54034700 0.25880900 
 

C 4.20628500 4.77290000 0.20489900 

C -2.81490600 3.03785900 0.16740000 
 

H 4.61306200 4.10897500 0.98244400 

C -3.77089900 2.09737000 -0.29434000 
 

H 3.95532700 5.71599700 0.71315200 

C 0.22953900 -2.90608200 1.22185300 
 

C 5.28960300 5.04001700 -0.84803700 

H 0.50802700 -2.12604500 1.94026700 
 

H 5.53911900 4.09817900 -1.35719200 

H 0.17341000 -3.84179600 1.79050500 
 

H 4.88435200 5.70571500 -1.62326200 

C 1.29116600 -3.01745000 0.11640700 
 

C 6.56338200 5.65563500 -0.26007200 

H 0.98718300 -3.80238700 -0.58833500 
 

H 7.01033700 4.99630600 0.49423100 

H 1.30919900 -2.07965400 -0.45473000 
 

H 7.31721400 5.83341100 -1.03543100 

C 2.68969600 -3.32138000 0.66779400 
 

H 6.35204300 6.61653200 0.22522100 

 

Compound  25k 

C -5.75656600 -1.12627100 -0.26575000 
 

H -3.16614900 3.92744800 1.78058000 

C -4.52191100 -1.17223500 0.46075900 
 

C -1.76291100 3.08819800 0.34683000 

C -3.86641700 -0.00019200 0.83994200 
 

H -1.55878300 2.10560800 -0.09927900 



Calculations   188 

 

 

C -4.52185300 1.17201300 0.46116800 
 

H -2.04706400 3.75034800 -0.48157700 

C -5.75650400 1.12633300 -0.26538700 
 

C -0.50233700 3.62367000 1.03663500 

H -2.92306200 -0.00032700 1.37684600 
 

H -0.25151700 2.98194700 1.89490100 

N -6.37487600 0.00011000 -0.62845400 
 

H -0.71115900 4.61968200 1.45474000 

N -4.17550400 -2.49811500 0.67275300 
 

C 0.71082200 3.71083100 0.10115500 

N -4.17539100 2.49780600 0.67358200 
 

H 0.93544600 2.70884700 -0.29324500 

C -5.21178700 -4.70704600 0.01532200 
 

H 0.45228600 4.32848100 -0.77142800 

C -7.23614700 -3.08864300 -1.15288700 
 

C 1.96334200 4.28515400 0.77533800 

C -7.31093600 -4.47802900 -1.21398000 
 

H 2.20886200 3.68192500 1.66223600 

C -6.30779500 -5.27411800 -0.63545200 
 

H 1.74240300 5.29611700 1.14875400 

H -4.44242100 -5.33724400 0.45163900 
 

C 3.18506900 4.34250100 -0.15092200 

H -8.00334000 -2.46186900 -1.59779400 
 

H 3.41534600 3.32826900 -0.50975600 

H -8.15000200 -4.95345000 -1.71407500 
 

H 2.93462300 4.93040000 -1.04647100 

H -6.38265800 -6.35663200 -0.69661600 
 

C 4.43146900 4.94030700 0.51429300 

C -5.21159000 4.70699500 0.01687700 
 

H 4.67451500 4.36132000 1.41782800 

C -6.30760500 5.27432300 -0.63366400 
 

H 4.20401600 5.95957500 0.86040200 

C -7.31080600 4.47846300 -1.21240700 
 

C 5.65836700 4.97990800 -0.40603100 

C -7.23607400 3.08905400 -1.15176600 
 

H 5.41284800 5.55067900 -1.31399500 

H -4.44218700 5.33702100 0.45337600 
 

H 5.89066200 3.95905400 -0.74429500 

H -6.38242700 6.35685900 -0.69447400 
 

C 6.90153600 5.58987900 0.25421200 

H -8.14986800 4.95408600 -1.71231500 
 

H 6.67082400 6.61322900 0.58600500 

H -8.00329900 2.46244800 -1.59685200 
 

H 7.14331300 5.02361300 1.16611800 

C -6.14672900 -2.49898700 -0.50598600 
 

C 8.13098600 5.62044800 -0.66275700 

C -5.14286200 -3.31294400 0.07814000 
 

H 8.36435400 4.59674100 -0.99202100 

C -5.14271600 3.31287100 0.07922800 
 

H 7.88947900 6.18400700 -1.57647400 

C -6.14663900 2.49914800 -0.50511900 
 

C 9.37350000 6.23436900 -0.00507600 

C -2.95428400 -2.96154800 1.30884900 
 

H 9.14154700 7.25809400 0.32187300 

H -2.71252500 -2.26898500 2.12443300 
 

H 9.61490400 5.67196800 0.90827500 

H -3.16652000 -3.92819600 1.77942900 
 

C 10.59669300 6.25847100 -0.92736800 

C -1.76293500 -3.08833900 0.34641000 
 

H 10.87400000 5.24558500 -1.24469100 

H -2.04681600 -3.75024600 -0.48228900 
 

H 10.39891400 6.84504800 -1.83306700 

H -1.55874100 -2.10560200 -0.09934500 
 

C 5.65850900 -4.97980900 -0.40535500 

C -0.50250000 -3.62394700 1.03637600 
 

H 5.41306500 -5.55080100 -1.31320000 

H -0.71140900 -4.62005100 1.45422200 
 

H 5.89078600 -3.95902500 -0.74384300 

H -0.25187500 -2.98240500 1.89483200 

 

C 6.90166000 -5.58957600 0.25510500 

C 0.71085500 -3.71090800 0.10113600 

 

H 6.67094800 -6.61282400 0.58721200 

H 0.93546100 -2.70887400 -0.29314500 

 

H 7.14341700 -5.02302400 1.16684000 

H 0.45255500 -4.32851800 -0.77154500 

 

C 8.13112700 -5.62044300 -0.66183700 

C 1.96330300 -4.28515800 0.77551800 

 

H 7.88960500 -6.18425600 -1.57539500 

H 2.20868000 -3.68188600 1.66242400 

 

H 8.36453100 -4.59683900 -0.99139400 

H 1.74234700 -5.29611600 1.14893900 

 

C 9.37360800 -6.23421500 -0.00396600 

C 3.18515700 -4.34249300 -0.15057900 

 

H 9.14161500 -7.25782500 0.32331700 

H 3.41536200 -3.32828700 -0.50953400 

 

H 9.61504100 -5.67152800 0.90920100 

H 2.93488800 -4.93055400 -1.04607000 

 

C 10.59679900 -6.25867600 -0.92625500 

C 4.43154500 -4.94005300 0.51487700 

 

H 11.46664500 -6.70063100 -0.42688300 

H 4.67448800 -4.36082700 1.41828500 

 

H 10.39898100 -6.84552600 -1.83176900 



Calculations   189 

 

 

H 4.20413300 -5.95925200 0.86122000 

 

H 10.87416300 -5.24590500 -1.24389700 

C -2.95400500 2.96100300 1.30954500 

 

H 11.46656400 6.70053400 -0.42813500 

H -2.71201400 2.26810200 2.12476700 

     
 

Compound  25l 

C -1.12669200 -1.03403100 -0.05520000 
 

H 4.95219300 -3.77769700 0.49975900 

C -1.17266600 0.37023600 -0.33854900 
 

H 2.46064800 -3.59725500 0.45631200 

C -0.00005600 1.11322600 -0.47899600 
 

C -2.49910900 -1.48380600 0.03941100 

C 1.17258600 0.37027100 -0.33869200 
 

C -3.31470300 -0.34651400 -0.18467400 

C 1.12667500 -1.03400200 -0.05532400 
 

C 3.31465200 -0.34646700 -0.18511200 

H -0.00008200 2.18172600 -0.67052100 
 

C 2.49911400 -1.48376700 0.03908500 

N 0.00001100 -1.73581000 0.08676900 
 

C -2.97692000 2.11297000 -0.69060900 

N -2.50040400 0.76416000 -0.42619500 
 

H -2.17200200 2.64349200 -1.21415900 

N 2.50030900 0.76418000 -0.42665700 
 

H -3.82059900 2.05944300 -1.38894400 

C -4.70844000 -0.43212500 -0.15701900 
 

C 2.97688900 2.11314000 -0.68986400 

C -3.08756400 -2.72715000 0.28653000 
 

H 2.17193800 2.64426000 -1.21278100 

C -4.47694500 -2.81980400 0.30894300 
 

H 3.82042300 2.06023100 -1.38844400 

C -5.27404100 -1.68311300 0.09024100 
 

C 3.37822100 2.86418500 0.55756900 

H -5.33483900 0.44153700 -0.30549500 
 

H 2.64098600 2.87177900 1.36003500 

H -2.46052900 -3.59729200 0.45662100 
 

C -3.37795500 2.86498800 0.55631400 

H -4.95206100 -3.77782400 0.50032100 
 

H -2.64020200 2.87392400 1.35828400 

H -6.35646600 -1.77622100 0.11867100 
 

C -4.54228900 3.49440800 0.70845500 

C 4.70840200 -0.43201700 -0.15758600 
 

H -5.29955600 3.49444400 -0.07361600 

C 5.27406400 -1.68298000 0.08964500 
 

H -4.78477400 4.03802200 1.61715500 

C 4.47702000 -2.81969700 0.30842700 
 

C 4.54219400 3.49433900 0.70952600 

C 3.08763700 -2.72709500 0.28614500 
 

H 4.78486400 4.03728500 1.61857600 

H 5.33475000 0.44166700 -0.30613400 
 

H 5.29894500 3.49565600 -0.07304300 

H 6.35649300 -1.77606200 0.11799500 
     

 

Compound  25m 

C 1.64451800 -1.85031700 -0.01490900 
 

C -2.83087500 0.42130200 -1.42405800 

C 1.50419000 -0.55241500 -0.60131700 
 

H -2.06872900 0.95270100 -2.00613200 

C 0.24923000 -0.03167500 -0.91583400 
 

H -3.56169000 0.04765000 -2.15229400 

C -0.81319700 -0.88786900 -0.62478200 
 

C 3.02541700 1.29200100 -1.38195200 

C -0.58405900 -2.17585800 -0.03709900 
 

H 2.45577800 1.35321500 -2.31853000 

H 0.11550600 0.96432900 -1.32507600 
 

H 4.08256300 1.30301300 -1.66907700 

N 0.62177200 -2.65985000 0.27041100 
 

C -3.51788400 1.38129500 -0.46186300 

N 2.76378500 0.00604500 -0.76303500 
 

C -4.66854100 2.06404800 -0.87263200 

N -2.17954200 -0.71572000 -0.80145100 
 

C -3.00228700 1.62895200 0.81527400 

C 5.11013600 -0.77754500 -0.22862500 
 

C -5.29050700 2.98447100 -0.02778300 



Calculations   190 

 

 

C 3.80711400 -3.12211500 0.71252000 
 

H -5.08364100 1.87266200 -1.86052200 

C 5.19405500 -3.00827400 0.76530500 
 

C -3.62560900 2.54519300 1.66295000 

C 5.83373400 -1.84725600 0.29931600 
 

H -2.11629300 1.09684300 1.14995100 

H 5.62239600 0.11557000 -0.57454000 
 

C -4.76984600 3.22707000 1.24412200 

H 3.29925200 -4.01241300 1.07128500 
 

H -6.18557500 3.50373000 -0.36016200 

H 5.78899000 -3.82110500 1.17197200 
 

H -3.21686200 2.72457000 2.65380700 

H 6.91675200 -1.77510700 0.35267400 
 

H -5.25542800 3.93839800 1.90673500 

C -4.20679700 -2.13582600 -0.31032800 
 

C 2.70542200 2.50010600 -0.51167400 

C -4.60367100 -3.37249700 0.19867200 
 

C 2.20459200 3.66667500 -1.10029500 

C -3.66673100 -4.30692000 0.67257800 
 

C 2.93881300 2.48331200 0.86848100 

C -2.30392400 -4.02106200 0.64824600 
 

C 1.94782000 4.80094400 -0.32805800 

H -4.94071700 -1.41408400 -0.65509400 
 

H 2.01356400 3.68902800 -2.17166400 

H -5.66282100 -3.61343700 0.23322600 
 

C 2.67873900 3.61442700 1.64236600 

H -4.01236900 -5.25937000 1.06445600 
 

H 3.31783800 1.57973300 1.33790100 

H -1.57062500 -4.73386400 1.01358100 
 

C 2.18425700 4.77701000 1.04687100 

C 3.06210200 -2.06358700 0.18582500 
 

H 1.55594700 5.69824400 -0.79968200 

C 3.71932500 -0.89812100 -0.28547800 
 

H 2.86153400 3.58669300 2.71331900 

C -2.83851700 -1.85785700 -0.33770900 
 

H 1.98024200 5.65643600 1.65163900 

C -1.88330700 -2.78874000 0.14032900 
     

 

Compound  25n 

C 2.37178200 -2.04797100 0.14949000 
 

H 2.66759600 0.85714600 -2.62419200 

C 2.01403200 -0.91141500 -0.64320600 
 

H 4.23717600 1.23128500 -1.94256200 

C 0.70143300 -0.70978900 -1.06898300 
 

C -3.32603900 -0.07606600 -0.91748900 

C -0.18869400 -1.70753100 -0.66982600 
 

C -4.62693700 0.14609500 -1.36856200 

C 0.25490300 -2.81723800 0.12361400 
 

C -2.91161700 0.57057800 0.25730800 

H 0.40087700 0.16260200 -1.63981800 
 

C -5.50559400 0.99369400 -0.68593700 

N 1.51258700 -2.99427500 0.53580100 
 

H -4.97426600 -0.34860300 -2.27372300 

N 3.14707900 -0.14216300 -0.86365400 
 

C -3.77107300 1.41074000 0.95043800 

N -1.54958700 -1.84513500 -0.90673300 
 

H -1.90705000 0.40502400 0.63687000 

C 5.56691200 -0.34270700 -0.15100500 
 

C -5.07603600 1.63126400 0.48209500 

C 4.69628600 -2.72638100 1.12975300 
 

H -6.51020000 1.13763400 -1.06668900 

C 6.02867200 -2.32695900 1.19841000 
 

H -3.45718200 1.90972700 1.86193200 

C 6.45434000 -1.14782300 0.56375900 
 

C 2.59209900 2.29720300 -1.02499300 

H 5.91332500 0.57037100 -0.62638000 
 

C 1.92307400 3.25058300 -1.80593300 

H 4.35287500 -3.63415500 1.61695200 
 

C 2.72800000 2.54240200 0.34246900 

H 6.74681300 -2.92870400 1.74820800 
 

C 1.41439000 4.41434300 -1.24282400 

H 7.49744000 -0.85044200 0.63150400 
 

H 1.79819700 3.08065700 -2.87378700 

C -3.28242500 -3.55755400 -0.24945600 
 

C 2.21801700 3.70426500 0.92690500 

C -3.45699500 -4.75782800 0.43948700 
 

H 3.23295900 1.81401700 0.97106100 

C -2.38391600 -5.39893100 1.08227200 
 

C 1.55935300 4.64997600 0.13187500 

C -1.10532200 -4.84784600 1.04981800 
 

H 0.89277300 5.15218400 -1.84437800 

H -4.12211800 -3.06078300 -0.72498100 
 

H 2.33802800 3.85726100 1.99332700 



Calculations   191 

 

 

H -4.44797900 -5.20193700 0.48294600 
 

O 1.02344500 5.81724500 0.59320100 

H -2.55728600 -6.33163800 1.61168800 
 

O -5.84002700 2.47478600 1.23587800 

H -0.26867800 -5.33266800 1.54412100 
 

C 1.13450200 6.10612700 1.97795600 

C 3.78990700 -1.93628600 0.41754800 
 

H 2.18400500 6.17984900 2.29243600 

C 4.23194800 -0.74934400 -0.22194900 
 

H 0.64667500 7.07186700 2.12199700 

C -1.99672700 -3.01287100 -0.28341500 
 

H 0.62735900 5.34919900 2.59073700 

C -0.90660800 -3.64678000 0.36316000 
 

C -7.17070300 2.72989500 0.81677000 

C -2.37833200 -0.96174500 -1.71064100 
 

H -7.58993500 3.41833900 1.55280800 

H -1.69856000 -0.35115600 -2.31579600 
 

H -7.19911100 3.19949000 -0.17562200 

H -2.95282800 -1.57156700 -2.41967600 
 

H -7.77151600 1.81086300 0.79724600 

C 3.18781600 1.05905200 -1.67836800 
     

 

Compound  25q 

C 1.12655600 1.85764800 -0.09112100 
 

C 2.94581200 -2.14427600 -1.25387200 

C 1.17258000 0.67000300 -0.89056800 
 

H 1.94825100 -2.33077200 -0.83877300 

C -0.00006900 0.04105800 -1.31266800 
 

C -2.93565600 -0.76766300 -1.96065200 

C -1.17275700 0.66995600 -0.89060400 
 

H -2.27177500 -0.81694800 -2.83334000 

C -1.12680300 1.85760900 -0.09116500 
 

H -3.93558500 -0.53301100 -2.33730300 

H -0.00004400 -0.86099200 -1.91624500 
 

C -2.94569700 -2.14441900 -1.25390100 

N -0.00014200 2.45204300 0.30941600 
 

H -1.94807600 -2.33085900 -0.83892300 

N 2.49851200 0.33786300 -1.12771100 
 

H -3.11357800 -2.90386100 -2.02901100 

N -2.49866700 0.33778000 -1.12781500 
 

H 3.11363200 -2.90369900 -2.02901400 

C 4.70882200 1.37355900 -0.45835300 
 

C -3.99286200 -2.27751300 -0.17035600 

C 3.08451300 3.30787500 0.84718700 
 

C -5.29944200 -2.67460300 -0.48905400 

C 4.47282000 3.40258500 0.88385200 
 

C -3.69211700 -1.98328400 1.16574500 

C 5.27124500 2.44329700 0.23741300 
 

C -6.28121000 -2.76774800 0.49783500 

H 5.34140600 0.62708200 -0.92796400 
 

H -5.54790000 -2.92095400 -1.51989800 

H 2.45435100 4.03965800 1.34395100 
 

C -4.67119100 -2.07489500 2.15596500 

H 4.94598800 4.22122700 1.41881300 
 

H -2.68335600 -1.67721400 1.43178400 

H 6.35357900 2.52940100 0.28447600 
 

C -5.96920200 -2.46624400 1.82499000 

C -4.70904000 1.37342300 -0.45855800 
 

H -7.28716700 -3.08184800 0.23146200 

C -5.27152100 2.44314700 0.23718200 
 

H -4.41846800 -1.84000000 3.18644900 

C -4.47315100 3.40245100 0.88366400 
 

H -6.73146700 -2.54020700 2.59591800 

C -3.08484100 3.30777200 0.84706200 
 

C 3.99311500 -2.27734000 -0.17045800 

H -5.34159200 0.62695300 -0.92822500 
 

C 5.29966800 -2.67439400 -0.48931000 

H -6.35385900 2.52922800 0.28418300 
 

C 3.69252500 -1.98311500 1.16568000 

H -4.94636400 4.22108100 1.41860400 
 

C 6.28155700 -2.76751500 0.49746200 

H -2.45471500 4.03957100 1.34385000 
 

H 5.54801500 -2.92074100 -1.52018100 

C 2.49917500 2.24566900 0.15196200 
 

C 4.67171900 -2.07470000 2.15578200 

C 3.31526600 1.28661400 -0.49945900 
 

H 2.68379000 -1.67706000 1.43183600 

C -3.31548100 1.28650100 -0.49959400 
 

C 5.96970100 -2.46602000 1.82465400 

C -2.49944700 2.24558100 0.15186300 
 

H 7.28749000 -3.08158500 0.23096300 

C 2.93560500 -0.76750500 -1.96058900 
 

H 4.41911500 -1.83981100 3.18629700 



Calculations   192 

 

 

H 2.27170800 -0.81683600 -2.83326100 
 

H 6.73205800 -2.53996500 2.59549200 

H 3.93549800 -0.53272600 -2.33726200 
     

 

Compound  25r 

C 1.12677700 3.84682800 -0.09603000 
 

H 2.19666000 -0.10037200 1.25498600 

C 1.17240000 2.43771400 -0.35349600 
 

C -3.66335000 -1.49013700 0.50792500 

C 0.00032100 1.69180000 -0.48200400 
 

C -2.79031100 -2.56931600 0.41317600 

C -1.17159200 2.43794700 -0.35343300 
 

C -5.04224700 -1.72857300 0.35054900 

C -1.12567000 3.84706100 -0.09595800 
 

C -3.26795800 -3.86393500 0.16699500 

H 0.00021900 0.62172300 -0.66369800 
 

H -1.72113800 -2.41534600 0.53946300 

N 0.00062700 4.55233600 0.03262000 
 

C -5.53424400 -3.00739700 0.10512600 

N 2.49871200 2.04047500 -0.44140500 
 

H -5.73172600 -0.89486400 0.43504100 

N -2.49800300 2.04098300 -0.44122800 
 

C -4.63097900 -4.09793300 0.00959000 

C 4.70751500 3.24192700 -0.19480100 
 

H -2.56429300 -4.68622400 0.10587900 

C 3.08959800 5.54292100 0.21730700 
 

C 3.66290500 -1.49086100 0.50851500 

C 4.47916200 5.63537500 0.23964200 
 

C 2.78966100 -2.56996800 0.41496700 

C 5.27509300 4.49538600 0.03558800 
 

C 5.04166200 -1.72957100 0.35025500 

H 5.33670700 2.36980100 -0.34702600 
 

C 3.26696100 -3.86478600 0.16912300 

H 2.46314800 6.41592900 0.37454300 
 

H 1.72060200 -2.41578600 0.54195500 

H 4.95492800 6.59568400 0.41728900 
 

C 5.53331100 -3.00857800 0.10512600 

H 6.35769700 4.58828000 0.05905100 
 

H 5.73131700 -0.89591800 0.43383900 

C -4.70653700 3.24285400 -0.19443600 
 

C 4.62982900 -4.09904800 0.01082000 

C -5.27386100 4.49640600 0.03603300 
 

H 2.56312400 -4.68700300 0.10898400 

C -4.47769600 5.63623800 0.24005800 
 

O 5.19870600 -5.31463500 -0.22660400 

C -3.08815300 5.54351900 0.21761100 
 

O 6.84891800 -3.32538700 -0.05317300 

H -5.33588200 2.37083500 -0.34663800 
 

O -6.85000600 -3.32395700 -0.05232400 

H -6.35644500 4.58951800 0.05958000 
 

O -5.20020100 -5.31332400 -0.22803300 

H -4.95325500 6.59663700 0.41777300 
 

C 4.34348000 -6.44050400 -0.31645700 

H -2.46154600 6.41642100 0.37481700 
 

H 3.62795000 -6.34136700 -1.14418300 

C 2.49966000 4.29690700 -0.01108100 
 

H 4.99524400 -7.29569200 -0.50449000 

C 3.31329800 3.15430700 -0.21952500 
 

H 3.79040400 -6.60470900 0.61841100 

C -3.31233000 3.15496300 -0.21926800 
 

C 7.80257200 -2.28137000 0.03955100 

C -2.49845400 4.29741000 -0.01086400 
 

H 7.78433900 -1.80243300 1.02787200 

C 2.96436700 0.67631500 -0.61060000 
 

H 8.77514500 -2.75211300 -0.11498400 

H 2.24801600 0.14227400 -1.24409800 
 

H 7.64335100 -1.51684200 -0.73311500 

H 3.90809100 0.70187600 -1.16552500 
 

C -7.80346700 -2.27988900 0.04188800 

C 3.15539100 -0.08242000 0.72345600 
 

H -7.64485000 -1.51491100 -0.73045300 

H 3.85219700 0.48822800 1.34935100 
 

H -8.77622400 -2.75043600 -0.11207100 

C -2.96392400 0.67695300 -0.61069800 
 

H -7.78429500 -1.80156400 1.03048500 

H -2.24759000 0.14283500 -1.24414000 
 

C -4.34523000 -6.43929500 -0.31903300 

H -3.90754500 0.70281000 -1.16579900 
 

H -4.99728000 -7.29429600 -0.50693100 

C -3.15544500 -0.08189600 0.72320500 

 

H -3.63033100 -6.33992500 -1.14727700 

H -3.85221600 0.48887600 1.34902500 

 

H -3.79145600 -6.60400600 0.61533200 



Calculations   193 

 

 

H -2.19684900 -0.10017800 1.25496500 

     
 

Compound  25s 

C 1.17175700 3.07450800 0.15053700 
 

C 3.65682400 -2.15246300 -1.32992200 

C 1.19877000 1.85759700 -0.60614600 
 

H 4.57779900 -1.91924700 -1.88125700 

C 0.01663100 1.22602200 -0.99432100 
 

H 2.90358600 -2.42024500 -2.08358800 

C -1.14539700 1.88798700 -0.59648600 
 

C -2.96593300 0.38878900 -1.50770300 

C -1.08061900 3.10290600 0.16112500 
 

H -2.24591000 0.13317100 -2.29445400 

H 0.00188700 0.29540600 -1.55289500 
 

H -3.89708900 0.65948500 -2.01970100 

N 0.05502500 3.69686200 0.53494800 
 

C -3.20027600 -0.81749500 -0.58489600 

N 2.51987000 1.50376400 -0.83769600 
 

H -2.25762600 -1.09117500 -0.09474900 

N -2.47705500 1.56856500 -0.81703400 
 

H -3.89295600 -0.52888900 0.21511500 

C 4.74440100 2.50656400 -0.18294800 
 

C -3.76415900 -2.03145600 -1.34875100 

C 3.15632800 4.51461300 1.05351500 
 

H -3.06655600 -2.31123800 -2.14975500 

C 4.54695000 4.57672100 1.09963000 
 

H -4.70068300 -1.73798600 -1.84273700 

C 5.32810700 3.58209700 0.48712700 
 

C -4.01511700 -3.22710800 -0.45375600 

H 5.36250300 1.74326200 -0.64649300 
 

C -3.05321200 -4.23532800 -0.31040900 

H 2.54128000 5.27599400 1.52397800 
 

C -5.20589100 -3.33528200 0.27767800 

H 5.03507700 5.39944500 1.61437100 
 

C -3.27124200 -5.31999400 0.54050700 

H 6.41179500 3.64735800 0.53677300 
 

H -2.12543600 -4.17237500 -0.87577700 

C -4.66936200 2.62675900 -0.14090000 
 

C -5.42889900 -4.41690100 1.12983400 

C -5.21959600 3.71517600 0.53666500 
 

H -5.96790100 -2.56523800 0.17464800 

C -4.40789400 4.68796900 1.14442900 
 

C -4.46069500 -5.41396500 1.26441500 

C -3.01975000 4.59060100 1.08562600 
 

H -2.51357000 -6.09378800 0.63409600 

H -5.31092100 1.88038200 -0.60006700 
 

H -6.36078000 -4.48344400 1.68532000 

H -6.30079500 3.80781200 0.59613000 
 

H -4.63390500 -6.25917700 1.92502600 

H -4.87024100 5.52155700 1.66544700 
 

C 3.89993300 -3.33201300 -0.41174100 

H -2.38139600 5.33498100 1.55222100 
 

C 2.85901000 -4.20877900 -0.07809500 

C 2.55028800 3.44594000 0.38750800 
 

C 5.16270300 -3.55333600 0.15373300 

C 3.34924500 2.45020200 -0.22946100 
 

C 3.07083400 -5.27395700 0.79785600 

C -3.27655000 2.53492300 -0.19999300 
 

H 1.87287100 -4.05689100 -0.51272600 

C -2.44700400 3.50861300 0.41172500 
 

C 5.38023500 -4.61715600 1.03018700 

C 2.96959300 0.30109100 -1.51550100 
 

H 5.98516600 -2.88703300 -0.09886000 

H 2.22937600 0.04936700 -2.28443300 
 

C 4.33347200 -5.48120400 1.35600900 

H 3.89767400 0.53922700 -2.04882200 
 

H 2.25067200 -5.94442000 1.04144300 

C 3.18895500 -0.89355000 -0.57404600 
 

H 6.36842300 -4.77308100 1.45514000 

H 3.93018400 -0.62212600 0.18743700 
 

H 4.50117800 -6.31194900 2.03611600 

H 2.25678200 -1.10805300 -0.03665600 
     

 

 



Calculations   194 

 

 

Compound  25t 

C -1.12593300 -1.84458200 0.00010200 
 

H -2.02076000 1.98263600 -0.00011300 

C -1.17648900 -0.41419600 -0.00016800 
 

C -4.09567500 3.26541900 -1.26770000 

C 0.00002900 0.33757100 -0.00048900 
 

H -4.62378700 1.16779600 -1.36259000 

C 1.17656700 -0.41417800 -0.00042200 
 

H -3.09898500 1.53895200 -2.15470000 

C 1.12604700 -1.84455800 -0.00010100 
 

C -4.09596500 3.26537000 1.26708700 

H 0.00001800 1.42223900 -0.00073700 
 

H -4.62407600 1.16772500 1.36178500 

N 0.00006200 -2.56123900 0.00011700 
 

H -3.09944400 1.53888100 2.15423800 

N -2.50756600 -0.00707400 -0.00016500 
 

C -4.87858800 3.64079300 -0.00038900 

N 2.50765200 -0.00702600 -0.00083300 
 

H -4.67929800 3.50559600 -2.16486900 

C -4.71323000 -1.27978300 0.00029600 
 

H -3.18129000 3.87532700 -1.32003400 

C -3.05900400 -3.58564100 0.00055100 
 

H -4.67979900 3.50550200 2.16413200 

C -4.44486400 -3.70957500 0.00068400 
 

H -3.18160200 3.87528900 1.31965700 

C -5.25736200 -2.56408000 0.00056200 
 

H -5.10867300 4.71350600 -0.00039600 

H -5.36939900 -0.41752300 0.00019100 
 

H -5.84380300 3.11334100 -0.00051000 

H -2.41209500 -4.45793200 0.00065300 
 

C 2.94367700 1.39224000 -0.00005500 

H -4.90311100 -4.69450800 0.00089900 
 

C 3.71525800 1.77521100 1.27907100 

H -6.33859500 -2.67476500 0.00067300 
 

C 3.71550000 1.77640600 -1.27869300 

C 4.71334600 -1.27972500 -0.00078500 
 

H 2.02064900 1.98264300 0.00010300 

C 5.25747400 -2.56401300 -0.00059300 
 

C 4.09552800 3.26489900 1.26829900 

C 4.44497400 -3.70951800 -0.00026300 
 

H 4.62373600 1.16724100 1.36218100 

C 3.05911800 -3.58557300 -0.00008500 
 

H 3.09891900 1.53797200 2.15447900 

H 5.36951800 -0.41745900 -0.00099800 
 

C 4.09570800 3.26612500 -1.26647900 

H 6.33870800 -2.67468700 -0.00068500 
 

H 4.62407800 1.16861200 -1.36217700 

H 4.90320400 -4.69446000 -0.00013900 
 

H 3.09937400 1.53990800 -2.15444100 

H 2.41221200 -4.45786700 0.00019400 
 

C 4.87835600 3.64100100 0.00114800 

C -2.49386400 -2.30753600 0.00029600 
 

H 4.67920300 3.50459900 2.16556100 

C -3.31851800 -1.15215000 0.00015600 
 

H 3.18114500 3.87477600 1.32103000 

C 3.31864000 -1.15208400 -0.00061300 
 

H 4.67944300 3.50682400 -2.16343500 

C 2.49398100 -2.30747000 -0.00025500 
 

H 3.18125500 3.87595400 -1.31865700 

C -2.94374500 1.39216000 -0.00021400 
 

H 5.10828600 4.71374300 0.00169400 

C -3.71531900 1.77574100 -1.27917700 
 

H 5.84365100 3.11368900 0.00096300 

C -3.71559900 1.77569500 1.27859600 
     

 

Compound 35a 

C 0.88403490 1.26867119 0.00043202 
 

C -2.75897757 3.33247501 -0.16858799 

C 0.34410298 -0.07263597 -0.02039398 
 

H -3.57076845 1.32785178 -0.19592400 

N 2.17607697 1.50438132 0.03903002 
 

H 0.55190061 4.17466637 -0.02922298 

N -1.04508013 0.00383091 -0.05028798 
 

H -1.71737766 5.22356825 -0.13747299 

C -1.93694110 -1.10595426 -0.01490698 
 

H -3.73877369 3.79837495 -0.23048500 

C -2.98019217 -1.13530835 0.91847509 
 

C 3.29726439 -2.04852785 0.06018002 

C -1.76445798 -2.17148432 -0.90565605 
 

C 4.66093448 -1.85624170 0.10054903 



Calculations   195 

 

 

C -3.85917814 -2.21788252 0.94342309 
 

C 5.20640739 -0.54817655 0.12028003 

H -3.09007626 -0.32058730 1.62721315 
 

C 4.37777623 0.55124345 0.09968003 

C -2.63791595 -3.25685248 -0.86065105 
 

H 2.85927945 -3.04194496 0.04566002 

H -0.94687992 -2.14801024 -1.61662610 
 

H 5.32767558 -2.71415171 0.11789003 

C -3.69081403 -3.28206958 0.05621102 
 

H 6.28440645 -0.41688245 0.15211003 

H -4.66814820 -2.23313459 1.66862615 
 

H 4.76755617 1.56458456 0.11428303 

H -2.49754287 -4.08311954 -1.55206010 
 

C -0.24370627 2.17380115 -0.03140898 

H -4.37259501 -4.12745171 0.08198803 
 

C -1.40721429 1.36540598 -0.06554699 

C -2.67702744 1.93952191 -0.14485499 
 

C 2.96900614 0.39027131 0.05854102 

C -0.34720441 3.56645425 -0.05516298 
 

C 2.41605822 -0.93860584 0.03823502 

C -1.61284755 4.14281317 -0.11931699 
 

N 1.06567414 -1.16325099 -0.00346998 

 

Compound 35b 

C 1.50609500 1.11363200 0.00145000 
 

H 0.15580000 5.65183700 -0.12054800 

C 0.60090600 -0.01411600 -0.02273000 
 

H -2.19061700 4.87042100 -0.21756600 

N 2.81101100 0.96508500 0.04216800 
 

C 2.85522400 -2.76044800 0.05941600 

N -0.70601100 0.46054000 -0.05518200 
 

C 4.21600700 -2.97163500 0.10259700 

C -1.88047400 -0.34514200 -0.02783500 
 

C 5.11687000 -1.87766800 0.12507900 

C -2.88538600 -0.09402100 0.91171500 
 

C 4.64209000 -0.58539800 0.10447200 

C -2.03317600 -1.39824900 -0.93605900 
 

H 2.14816600 -3.58431800 0.04261300 

C -4.03754400 -0.87896300 0.92550600 
 

H 4.60548400 -3.98596800 0.11997000 

H -2.76026200 0.70643100 1.63430000 
 

H 6.18666800 -2.06402000 0.15915000 

C -3.18174500 -2.18417500 -0.89762300 
 

H 5.30879000 0.27151700 0.12138200 

H -1.25199300 -1.59976100 -1.66004200 
 

C 0.68804600 2.30617100 -0.02879900 

C -4.20601900 -1.93999000 0.02772000 
 

C -0.65933400 1.86787600 -0.06656900 

H -4.81319600 -0.66796200 1.65798600 
 

C 3.24715300 -0.33109700 0.06075900 

H -3.28739700 -3.00020900 -1.60883200 
 

C 2.33303200 -1.44290800 0.03739200 

C -1.70982200 2.78391200 -0.14187900 
 

N 0.97551500 -1.26713000 -0.00684300 

C 0.99016200 3.66977300 -0.04636400 
 

C -5.43761500 -2.81377800 0.07212100 

C -0.05562900 4.58673400 -0.10733000 
 

H -5.25843800 -3.72349700 0.66065400 

C -1.38678400 4.14145200 -0.15917400 
 

H -6.28402500 -2.29129700 0.52971100 

H -2.74184200 2.45534400 -0.19388600 
 

H -5.73940000 -3.13297600 -0.93146400 

H 2.02630900 3.99322900 -0.01762000 
     

 

Compound 35c 

C 1.45443800 1.14565500 0.00025800 
 

H -2.83142400 2.36387200 -0.20266100 

C 0.58370100 -0.00800600 -0.02691100 
 

H 1.88982900 4.03940700 -0.01360000 

N 2.76297300 1.03483500 0.04348600 
 

H -0.02837800 5.64260300 -0.11725900 

N -0.73718500 0.42839900 -0.06236400 
 

H -2.35058600 4.79337900 -0.22000400 

C -1.88537100 -0.41185900 -0.03074200 
 

C 2.91583900 -2.68814300 0.05620900 



Calculations   196 

 

 

C -2.88935800 -0.19330900 0.92069000 
 

C 4.28213000 -2.85924100 0.10298000 

C -2.00579200 -1.46917600 -0.94084900 
 

C 5.15043800 -1.73934700 0.12931300 

C -4.01907300 -1.00929000 0.95106100 
 

C 4.63831600 -0.46143800 0.10892900 

H -2.78023000 0.60800600 1.64426700 
 

H 2.23347000 -3.53249600 0.03664900 

C -3.12255700 -2.30072700 -0.90286600 
 

H 4.70113500 -3.86168400 0.12030500 

H -1.22003800 -1.64401400 -1.66622300 
 

H 6.22508200 -1.89443900 0.16613200 

C -4.11552200 -2.05307600 0.03843500 
 

H 5.27968000 0.41449100 0.12871400 

H -4.80927200 -0.85546300 1.67824600 
 

C 0.60162100 2.31396100 -0.03043900 

H -3.23422700 -3.12824000 -1.59539700 
 

C -0.73232000 1.83708800 -0.07196200 

C -1.80916800 2.72152700 -0.14730700 
 

C 3.23667600 -0.24808100 0.06176900 

C 0.86370400 3.68580400 -0.04502500 
 

C 2.35574500 -1.38642700 0.03456200 

C -0.20854800 4.57179700 -0.10629400 
 

N 0.99358000 -1.24954700 -0.01291500 

C -1.52594900 4.08814400 -0.16138700 
 

F -5.20270300 -2.85070600 0.06898200 

 

Compound 35e 

C -1.94433515 0.98383808 -0.02813700 
 

H -1.18283809 5.65874845 0.05586200 

C -0.90287907 -0.01850100 0.03164900 
 

H 1.24037609 5.18249739 0.21706102 

N -3.21817625 0.66844905 -0.09454701 
 

C -2.78486521 -3.03214823 -0.05557000 

N 0.33034403 0.61967705 0.08954101 
 

C -4.10625331 -3.41634326 -0.12285201 

C 1.59975212 -0.02763200 0.11410101 
 

C -5.13886339 -2.44715618 -0.18070801 

C 2.57871020 0.30385802 -0.82320906 
 

C -4.83357237 -1.10456209 -0.17105601 

C 1.87351815 -1.01021707 1.07645208 
 

H -1.97891215 -3.75841128 -0.01139300 

C 3.83099429 -0.31489002 -0.79696506 
 

H -4.36253134 -4.47235734 -0.13215601 

H 2.36254618 1.04495508 -1.58656512 
 

H -6.17505647 -2.76955821 -0.23330302 

C 3.10782624 -1.64240413 1.09556808 
 

H -5.60371142 -0.34034403 -0.21478302 

H 1.11103009 -1.28005910 1.79828814 
 

C -1.28634610 2.27168917 0.00399600 

C 4.09928231 -1.29583710 0.16445401 
 

C 0.10446901 2.00872516 0.08068501 

H 4.57396035 -0.03486800 -1.53466412 
 

C -3.48393926 -0.67320405 -0.10274001 

H 3.33298426 -2.40779218 1.83128314 
 

C -2.43582119 -1.65830612 -0.04326100 

C 1.02914608 3.05086923 0.16370901 
 

N -1.11331809 -1.30969810 0.02690400 

C -1.75835613 3.58630227 -0.00704500 
 

O 5.27945540 -1.96943815 0.27979202 

C -0.83831406 4.62888735 0.06389500 
 

C 6.31737848 -1.67036613 -0.64027705 

C 0.53699904 4.35659233 0.15244001 
 

H 7.15424754 -2.31543118 -0.36699503 

H 2.09286516 2.85495922 0.24207002 
 

H 6.01555446 -1.88655514 -1.67359613 

H -2.82593422 3.77588629 -0.06539600 
 

H 6.63063951 -0.62032004 -0.56809604 

 

Compound 35j 

C 0.23248100 -1.07219400 0.01091800 
 

H 5.88253400 -0.95383400 0.31711400 

C 0.10158500 0.34902900 -0.23358700 
 

H 3.86211700 -2.41312100 0.44254600 

N 1.40163900 -1.64840000 0.17413600 
 

C -1.11106200 -1.61186300 0.02298400 



Calculations   197 

 

 

N -1.23631900 0.65923700 -0.37214500 
 

C -1.98070100 -0.51368800 -0.21052400 

C -3.36441300 -0.69000800 -0.26175900 
 

C 2.47836100 -0.80698300 0.09634300 

C -1.62970000 -2.89535300 0.20468100 
 

C 2.33067700 0.60512100 -0.14593200 

C -3.01032600 -3.07477500 0.15299800 
 

N 1.10259600 1.18956100 -0.31187300 

C -3.86122500 -1.98162100 -0.07817900 
 

C -1.75788400 2.00156200 -0.58720400 

H -4.03774000 0.14341900 -0.43609800 
 

H -0.95992100 2.57334000 -1.07009300 

H -0.95789900 -3.72982900 0.38226800 
 

H -2.59340700 1.93591800 -1.29490700 

H -3.43428300 -4.06476800 0.29250000 
 

C -2.19976900 2.70068900 0.70658200 

H -4.93557200 -2.14122700 -0.11405600 
 

H -1.33888300 2.75588100 1.38367700 

C 3.49298000 1.41339400 -0.21233700 
 

H -2.95800600 2.08751300 1.21021200 

C 4.74269500 0.85659700 -0.04851300 
 

C -2.75125500 4.10433300 0.43941500 

C 4.88921400 -0.53252500 0.18999100 
 

H -1.99796100 4.74358300 -0.03656400 

C 3.78021100 -1.34569500 0.26090300 
 

H -3.62600000 4.07215900 -0.22198900 

H 3.35998700 2.47538300 -0.39573100 
 

H -3.05805500 4.58998200 1.37170500 

H 5.62646400 1.48670500 -0.10209700 
     

 

Compound 35l 

C 2.46051500 0.72348300 -0.14027000 
 

N 1.36519100 -1.33366000 0.59817700 

C 1.35602100 -0.03862600 0.40407500 
 

C -0.98769700 0.40639000 1.19347600 

N 3.59430800 0.15916900 -0.48906900 
 

H -0.82584700 -0.53085700 1.73361800 

N 0.31192300 0.82017300 0.68210700 
 

H -1.32380200 1.15492900 1.92135800 

C -0.02624500 3.30512500 0.41561200 
 

C -2.04047200 0.20822000 0.09349800 

C 2.62954300 3.29005000 -0.60275000 
 

H -1.66921400 -0.54604800 -0.61205200 

C 1.91016700 4.47950500 -0.50903900 
 

H -2.15401900 1.14101400 -0.47515700 

C 0.59942100 4.48012600 -0.00463700 
 

C -3.39878200 -0.22766300 0.65709500 

H -1.04129200 3.32380100 0.79983600 
 

H -3.27434700 -1.16108600 1.22532600 

H 3.64394700 3.27260700 -0.98991700 
 

H -3.75533200 0.52278000 1.37866400 

H 2.36297200 5.41370600 -0.82770400 
 

C -4.46419200 -0.43254300 -0.42780700 

H 0.05404600 5.41789300 0.05978000 
 

H -4.10406400 -1.17808900 -1.15172100 

C 2.67403000 -3.33992900 0.40910700 
 

H -4.59062200 0.50267200 -0.99300700 

C 3.84365000 -3.97887200 0.05926600 
 

C -5.82350600 -0.87867700 0.12582900 

C 4.93447400 -3.24846500 -0.47419700 
 

H -5.69719200 -1.81550000 0.68875400 

C 4.83841800 -1.88603200 -0.64955600 
 

H -6.18332400 -0.13486900 0.85253200 

H 1.82724400 -3.88192800 0.81940300 
 

C -6.88897500 -1.08102600 -0.95928100 

H 3.93321200 -5.05365500 0.19268500 
 

H -6.52833300 -1.82278100 -1.68603300 

H 5.84867100 -3.76941000 -0.74476000 
 

H -7.01665100 -0.14417600 -1.52002900 

H 5.65770800 -1.30064700 -1.05598700 
 

C -8.24274800 -1.53022000 -0.39995800 

C 2.02331900 2.10295200 -0.18719900 
 

H -8.64608600 -0.79138600 0.30359500 

C 0.69743300 2.11521800 0.32146300 
 

H -8.98085900 -1.66678300 -1.19849200 

C 3.65000700 -1.19521200 -0.29952100 
 

H -8.15324800 -2.48247600 0.13731700 

C 2.54169900 -1.93871700 0.24203800 
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Compound 35m 

C 0.25237600 -0.96411700 0.01394600 
 

H 5.68033500 1.52467400 -0.06185300 

C 0.14018000 0.46427400 -0.19292100 
 

H 5.90497600 -0.92793000 0.30027000 

N 1.41461100 -1.55925200 0.15770700 
 

H 3.86580500 -2.36280000 0.40014000 

N -1.19545800 0.79625600 -0.31221500 
 

C -1.09780700 -1.48695700 0.01130400 

C -3.34056300 -0.53109300 -0.24925600 
 

C -1.95538500 -0.37336800 -0.18914700 

C -1.63045900 -2.77003500 0.15222500 
 

C 2.50239800 -0.73074900 0.09708500 

C -3.01257700 -2.93214800 0.09027200 
 

C 2.37331200 0.68835600 -0.11189000 

C -3.85082900 -1.82278100 -0.10792300 
 

N 1.15186100 1.29175200 -0.25869500 

H -4.00112800 0.31811700 -0.38446400 
 

C -1.69263500 2.14445300 -0.55964200 

H -0.96824900 -3.61699500 0.30483400 
 

H -0.80499100 2.74052500 -0.79913500 

H -3.44772000 -3.92139200 0.19715900 
 

H -2.34169100 2.13676800 -1.44434100 

H -4.92680700 -1.96947600 -0.14980200 
 

C -2.41799700 2.73953100 0.62138300 

C 3.54564800 1.48260200 -0.16520300 
 

C -3.62307800 3.30426000 0.55236600 

C 4.78837300 0.90541300 -0.01916000 
 

H -1.87963500 2.70497400 1.56800600 

C 4.91694100 -0.49057700 0.18699100 
 

H -4.18028700 3.35128300 -0.38170300 

C 3.79744300 -1.29046600 0.24368400 
 

H -4.09607500 3.75114400 1.42214200 

H 3.42632700 2.55022500 -0.32352500 
     

 

Compound 35n 

C 1.31366500 -1.17197100 0.08738200 
 

C 0.25065800 -2.15438200 0.12640200 

C 0.73540900 0.03743800 -0.46025200 
 

C -0.90513400 -1.50974700 -0.38685100 

N 2.57699400 -1.24357800 0.43987400 
 

C 3.29906800 -0.09635200 0.24966300 

N -0.59923600 -0.18875200 -0.73487000 
 

C 2.70886700 1.09786700 -0.29757900 

C -2.12129700 -2.18484400 -0.49444500 
 

N 1.38779600 1.15464200 -0.65751100 

C 0.18981900 -3.48832500 0.53489100 
 

C -1.49356200 0.77663900 -1.35970600 

C -1.02163300 -4.16731600 0.42604500 
 

H -0.85111300 1.60296700 -1.68109400 

C -2.15857700 -3.51816400 -0.08260000 
 

H -1.92812200 0.32681800 -2.26111900 

H -3.01179300 -1.69136900 -0.86883700 
 

C -2.59998600 1.28647600 -0.45127100 

H 1.07775500 -3.97572100 0.92623100 
 

C -2.30979900 1.76554600 0.83277900 

H -1.09110700 -5.20524500 0.73793000 
 

C -3.92320800 1.31927100 -0.90290400 

H -3.09540800 -4.06407200 -0.15502900 
 

C -3.32548400 2.26347400 1.64726600 

C 3.51981500 2.24745200 -0.46679300 
 

H -1.28436800 1.74731100 1.19248600 

C 4.85154500 2.22163300 -0.11347800 
 

C -4.94207400 1.82201600 -0.09026900 

C 5.43368100 1.04744900 0.42506700 
 

H -4.15963500 0.95122000 -1.89944600 

C 4.67279500 -0.08652700 0.60260800 
 

C -4.64510700 2.29372100 1.18800700 

H 3.05547400 3.13738900 -0.88093500 
 

H -3.08706300 2.63077300 2.64191800 

H 5.46364600 3.10937500 -0.24815200 
 

H -5.96554200 1.83902200 -0.45543400 

H 6.48531300 1.04582700 0.69777700 
 

H -5.43565000 2.68172900 1.82463300 

H 5.09196400 -1.00034200 1.01285700 
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Compound 35t 

C 1.18318800 1.20567400 -0.00008000 
 

C -1.10012100 1.45236600 -0.00020300 

C 0.54437000 -0.09156600 -0.00014500 
 

C 3.19790300 0.17560400 0.00000300 

N 2.48965900 1.34607500 0.00000200 
 

C 2.54867800 -1.10987600 -0.00011900 

N -0.82888700 0.07503200 -0.00032100 
 

N 1.18500100 -1.23427800 -0.00019100 

C -2.32469000 2.12789000 -0.00026500 
 

C -1.76471800 -1.05680300 -0.00021000 

C 0.11605400 3.58011500 0.00028700 
 

C -2.62268300 -1.11498800 1.27785300 

C -1.10444400 4.24942000 0.00022000 
 

C -2.62327200 -1.11488300 -1.27785100 

C -2.30586000 3.52337900 -0.00004600 
 

H -1.10788200 -1.93367900 -0.00042800 

H -3.26930700 1.59746300 -0.00044500 
 

C -3.52967500 -2.35658700 1.26817500 

H 1.05823000 4.12009400 0.00043700 
 

H -3.24225200 -0.21258800 1.35831800 

H -1.13070100 5.33503000 0.00036300 
 

H -1.96383800 -1.12442100 2.15424300 

H -3.25188000 4.05833200 -0.00009200 
 

C -3.53009600 -2.35662600 -1.26780000 

C 3.34800000 -2.28047000 -0.00011800 
 

H -3.24307400 -0.21260600 -1.35792400 

C 4.72273400 -2.18866200 -0.00001000 
 

H -1.96489000 -1.12411900 -2.15459000 

C 5.36267800 -0.92417300 0.00010200 
 

C -4.39513400 -2.41605500 0.00033400 

C 4.61536100 0.23230700 0.00011800 
 

H -4.16179200 -2.36069500 2.16468600 

H 2.83929200 -3.23983300 -0.00019900 
 

H -2.90580700 -3.26062000 1.32247100 

H 5.32491500 -3.09329500 -0.00001200 
 

H -4.16249400 -2.36091100 -2.16410900 

H 6.44784200 -0.87149200 0.00018100 
 

H -2.90611900 -3.26057800 -1.32219200 

H 5.07824200 1.21458100 0.00020800 
 

H -5.00472300 -3.32827400 0.00045300 

C 0.11914300 2.18392500 0.00005000 
 

H -5.09867200 -1.57012700 0.00042300 
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List of Abbreviations 

°
C   Degrees Celsius  

13
C   Carbon 13  

19
F   Fluorine 19 

1
H   Hydrogen, proton  

9-BBN   9-Borabicyclo[3.3.1]nonane  

Å   Angstrom, 10-8m  

Ac          Acetyl 

AcO         Acetate 

Ar   Aryl  

BINAP 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl 

Bn    Benzyl 

Boc   N-tert-butoxycarbonyl  

Buchwald-Hartwig amination reactions  BHAR  

Calcd.   Calculated  

 CAM Cerium-ammonium-molybdate 

CataCXium A       Di(1-adamantyl)-n-butylphosphine 

CI    Chemical Ionization  

cm
-1

 Wavenumber  

CMV Cytomegalovirus 

COSY   Homonuclear Correlation Spectroscopy  

CV Cyclic Voltametry 

Cy         Cyclohexane 

DavePhos 2-Dicyclohexylphosphino-2′-(N,N-dimethylamino)biphenyl 

dba         Dibenzylideneacetone  

DEPT   Distortion-less Enhancement by Polarization Transfer  

DFT         Density functional theory 

DMAc        Dimethylacetamide 

DMF   N,N-Dimethylformamide  
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DPEPhos Oxydi-2,1-phenylene)bis(diphenylphosphine 

Dppe   1,2-Bis(diphenylphosphino)ethane  

Dppf   1,1'- Bis(diphenylphosphanyl)ferrocene  

DPV         Differential Pulse Voltammetry 

EI    Electron Impact 

EI-MS   Electron impact- mass spectrometry  

Equiv.         Equivalent 

ESI   Electrospray ionization 

Et3N         Triethylamine 

GC   Gas Chromatography 

h         Hour 

HMBC   Heteronuclear multiple-bond correlation spectroscopy  

HOMO         Highest occupied molecular orbital 

HSQC   Heteronuclear single quantum coherence spectroscopy  

 HSV-1  Simplex virus type 1 

Hz   Hertz (S
-1

)  

IR    Infrared Spectroscopy 

J         Coupling constant 

L         Ligand 

LCD          Liquid crystal display 

LUMO         Lowest unoccupied molecular orbital 

m/z   Mass-to-charge ratio  

MeCN         Acetonitrile 

mp   Melting Point  

MS   Mass spectrometry  

NHC         N-heterocyclic carbene 

NMR        Nuclear magnetic resonance 

NOESY   Nuclear Overhauser Effect Spectroscopy 

Nu         Nucleophile 
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ORTEP   Oak Ridge Thermal Ellipsoid Plot 

OTf         Triflate (trifluoromethanesulfonate) 

PCy3∙HBF4 Tricyclohexylphosphine tetrafluoroborate 

PEG         Polyethylene glycol 

Ph   Phenyl  

PPh3   Triphenylphosphine  

ppm   Parts per Million  

PtBu3∙HBF4 Tri-tert-butylphosphonium tetrafluoroborate 

rt         Room temperature 

Ru-Phos   2-Dicyclohexylphosphino-2′,6′-diisopropoxybiphenyl  

SPhos   2-Dicyclohexylphosphino-2',6'-dimethoxybiphenyl  

Suzuki-Miyaura reactions SMR 

TBAPF6       Tetrabutylammonium hexafluorophosphate 

Tf2O   Trifluoromethanesulfonic anhydride  

TFA   Trifluoroacetic Acid  

THF   Tetrahydrofuran  

TLC    Thin Layer Chromatography 

TMS   Trimethylsilane  

UV/Vis         Ultraviolet and visible absorption spectroscopy 

VZV Varicella-zoster virus 

XantPhos 4,5-Bis(diphenylphosphino)-9,9-dimethylxanthene 

XPhos   2-Dicyclohexylphosphino-2′,4′,6′-triisopropylbiphenyl  

XPhos(tBu2)  2-Di-tert-butylphosphino-2′,4′,6′-triisopropylbiphenyl  

λ         Wavelength 

ϕ         Fluorescence quantum yield 
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