Virtualization System for Life Science

Automation Laboratory

Dissertation
ZUT
Erlangung des akademischen Grades
Doktor-Ingenieur (Dr.-Ing.)
der Fakultit fiir Informatik und Elektrotechnik

der Universitit Rostock

1
g 1Y -
T N
i UTRITHTE
i,

P
: BT
ST |
=

)
nn N
—— A3

Submitted by:

Yanfei Li

from Rostock, 2014

born on 25th, August 1981 in Longyou, China

urn:nbn:de:gbv:28-diss2015-0218-3

zef007
Schreibmaschinentext

zef007
Schreibmaschinentext
urn:nbn:de:gbv:28-diss2015-0218-3

Gutachter:
1. Gutachter:
Prof. Dr.-Ing. habil. Kerstin Thurow,
Institut fiir Automatisierungstechnik, Universitidt Rostock, Germany
2. Gutachter:
Prof. Dr. Hartmut Pfiiller,
Institut fiir Angewandte Mikroelektronik und Da-tentechnik,
Universitit Rostock, Germany
3. Gutachter:
Professor David Kaber,
Department of Industrial and Systems Engineering,
North Carolina State University, USA

Datum der Einreichung: 05. February 2014
Datum der Verteidigung: 28. May 2014

Acknowledgement:

There are many thanks to several persons as followings in this doctoral dissertation.

Without them, the dissertation would not be completed.

First of all, I would like to express my pretty gratitude to Prof. Thurow and Prof. Stoll
for providing such an interesting topic, and for giving me so much guidance, supports
and helps in the whole dissertation process. They are always nice, tolerant, and patient
to me when I met difficulties or had halts in the work. Without their continuous
motivation and trusts, it’s impossible for me to insist on and finish this dissertation

finally.

Besides, many thanks I would like to say to my colleagues of the Institute of
Automation and the Center for Life Science Automation (celisca). They are always so
nice to supply helps and supports when I met problems no matter in work or in daily
life. Especially I’d like to thank Dr. Steffen Junginger, Dr. Thomas Roddelkopf, Mr.
Lars Woinar and Dr. Hui Liu for their professional guidance and helps in my work.
Also sincere thanks go to Mrs. Anett Ahrens, Mr. Peter Passow and Ms. Ricarda

Lehmann for their helps in work affairs and daily life.

Specially, I would like to express my pretty appreciations to Dr. Steffen Junginger and
his family for all helps and concerns for my family. Their kindness and sincerity give

us the feeling of family members.

Last but not least, I would like to express my heartfelt gratitude and love to my family
-- my husband Dr. Hui Liu, my little boy Mr. Xing Liu, my parents Mr. Meiyou Li and
Mrs. Zhangwen Liu, and my sister Yanyu Li for their selfless love, support and

encouragement. They are always my motivations in my life.

Contents

CONLENLES....... oo I
TS o o 1 =N i
Chapter 1 INtroduction ... e ean 1
1.1 Background of this DIiSSEITAtiIONcceerureriieriiesiieiieeriierieesteesieesie et esteesteesseesseesseenseenseenseens 1
1.2 LIterature REVIEWcoiiiiiiiiiiieiesieet ettt sttt sttt 4
1.2.1 Process Control System WorkfloW...........cccuerieiiiiienienieeieeie e 4
1.2.2 WOTKfIOW VirtualiZation.........c.eeuvieieieieiecieiesiesie ettt e e een 5

1.2.3 4D VIrtUAlIZAION ...ttt ettt teste e e e e seeeneensensessesseensensens 7
1.2.4 Real-time VIrtualiZationc.coiierienienienieniectee e s 8
1.2.5 DISCUSSIONS. ¢ttt sttt ettt ettt ettt et e et b et e et sbe et ebesbesbeenb e teebeeseenaenaen 8

1.3 Virtualization Strat@ZYcceeciieriieriieriiesieeeieesteesteesteesteesseeteesseesseeseesseesseesseesseesseessesssesssanns 9
1.3.1 Virtualization IdEaScoeeiiiiiririiiiiee e 9
1.3.2 SYSLEM MOAUIES.......coouiiieiiiieiicie ettt ettt e et et s aee s eens 10

1.3.3 EXecution MethOdsc.coveiiiiriiiiiieieiesteie ettt 12
Chapter 2 Process Control Systemcccccccmmmiiiiiicssssmmnrr s ssssssss e 14
2 B 115 (e L o1 5 T) o LSRR URUPRRPRRPR 14
2.2 WOTK PIINCIPIC ..utieiieiieiieiteitetet ettt ettt sttt e st e et esabeesbeenaeenbeensaenseenseenns 16
2.3 WOIKTIOW Data......coiiiiiiiiieieieiee ettt ettt ettt sbe et nee e 17
2.4 DISCUSSIONS ..eeuvetieuieiieteeteeiteteste et e e te s bt esteteteeteestentestesteententeatesbeententeabesseenseteateeneenseneens 20
Chapter 3 Data Transfer System ... 22
3.1 Communication with the Process Control Systemcccoecueeieriienienienieiieeieeee e 22
3.2 Real-time Data Trans er........coieiiiriiiieieieseesee ettt et et 25
3.3 Virtualization Result RECEPLIONocueiriiiiiieiieiieiieceee e 29
3.4 DIISCUSSIONS ..cuvieuiientientieteeteenteesetesttenseesseesseesstesseesseesssesnsesssesssesssesnsesnsesnsesnsesnsesnsesnsesnsesnes 31
Chapter 4 Control SyStem........ccccciminiiriniir 32
4.1 Communication with the Data Transfer SyStemcccovvrrieriririenierereeieese e 33
4.2 DAta PTOCESSING ...vievieiieiieiieie et ettt ete vt eteeveeteesbeebeesbeesseesbeansessseesseenseenseesseensesnsennns 38
4.2.1 Real-time Data PrOCESSINGcoveruieriieiiiieiieeeeie ettt et s 38
4.2.2 Historical Data PrOCESSINGcccveviiriiriiiieiieseete ettt sttt 39

4.3 Control VIrtUaliZation........ cocceeriieiieieeie ettt ettt et ettt et enteeteeneeeneeenee 41
4.3.1 Link with the Virtualization Module.............cccoviiriiniininiieereeeeeeeee e 44
4.3.2 Import of the Workstation Layoutcccccveevereeriieriieriieieeiesieesieeie e seeens 45
433 List CompPONnents” NAMEScceueeeerierierieniesieeieetieiestente st stesteereereeseetenteseesseeeneens 48
4.3.4 ASSIZN DALA c..ooceiieeieieciece ettt ettt etaeetaeere e teeberaens 48
4.3.5 Data ANALYSIS....cccuieeiieiiieiiriieiieie ettt ettt sttt e e enteetenaeenee 49
4.3.6 Information Mining and ColleCtion..........cccecerieriieriiesienieiieie et 51
4.3.7 Data ASSIZNIMENT ...cccueeiiieieeiieeiieieeteeteeeteteeteetesteesteetesseesseeseeseessesssesseesesssenseens 52
4.3.8 MOUIONS SEQUETICE.cuvteeieuiieieetieeeiesteeteetestee st estesteesseesteesseentesseesseenseensesseesseensenses 56

4.3.9 SIMUIALION SETNE ...vvevieeeieiieiieie ettt ettt eteeteeteesreesteenbeeeesseesseennenes 57

4.3.10 POSE PIOCESSING ..eveuvreireeierieiisiieneresseeteestesstesseesaesssesssesseesseesseassesseesseessesssesssensennes 57

4.4 DISCUSSIONS ..euteeureeuieenteeiteeteeteeteeteeteeteenteeateenseamteenseeateenteenseenseansesnseenseenseentesnsesnsesnsesnes 58
Chapter 5 Virtualization Module..............o e nnnnnnes 60
ST B 21 (0T L1 12 o NSRS SURRR 60
5.2 MOACING......eeeieeieieeiieiieieee ettt te sttt e e st e estesse s e eseessesesseesaensensesseensensensesseensansens 62
5.3 Create COMPONENLS. ...ccuuieiuiieatieette ettt eaiteeseeeeteeeatteesaeeeaaeeeateeaaseeaanseaanseeanseeaaseeannseesnseaans 62
5.3.1 COMPONENL STIUCTUTE.eeeniiieiiieiieeiee ettt eete et eee et e et e e ee e sbte e sabeeaeeesseenaeeas 62
532 OTZANIZE GEOMECIIY ..euvvevietieerieieeeteettesteenteeteeteeteeseesessressseseensesssesssenseensesssensenns 63
533 Add DERAVIOLS ..ottt see st seenean 64
534 Make component PArametTiCeeverurerieerieeriereeeieetereeseere e sieesteeseesesseenneas 69

5.4 Teach COMPONENLS.cocuiirtieriieriieiierteeteeteest et esiee st et e et esteesseesseesseesseesseesseesseesseesnnesaees 71
54.1 TEACK SEIVO ..ttt sttt sttt s en 71
54.2 TEACK TODOLS ...cevieeiieeiieiie ettt ettt ettt e e e be e beesaeesbesbeensaeneenns 74

5.5 Creating LayOutS......ccvecieiieriierieerieesteesieesteeste et esteesteesteesseesssesssesssesseesssesseesseesssesssesssessees 84
5.6 DISCUSSIONS ...uvieutieeiieiieieeteesteeteesteesteesteesseesseesseesseesseseanseesssenssasssesseesssesssesssesssesssesssensees 85
Chapter 6 System Test and Applicationcccciiiiicciin s 86
6.1 Connections among MOAUIESccueriiriiiieiieiierieee et 86
6.2 Method in the Process Control SYSteIM.........cvuerieiierierienienieeie et 87
6.3 Data Transmission in the Data Transfer Systemcccccevovriinieniinieiceee e 90
6.4 Online Virtualization in the Control SYStem.........ccceeierierierieiieeieeie e 91
6.5 Virtualization Result TranSmiSSIONc.ecverierierierienienieeieeieetesveeveeaeeseessesnvessseenns 97
Chapter 7 Conclusion and OULIOOK...........ccoiieeeerrrceemerercsce e e 99
7 B 7031 1o] 13 3 T o WSRO RPRRRPR 99
T2 OULIOOK ...ttt ettt ettt et ettt ettt et e e e e ete e teeteeteenneens 101
ReferencCes......ccoieiiimiri i ——————— 102
N o =] 4 Lo [(== 112
[1Y o - T - 1T o 120
LI 1= 121
13 1 - L 123
ZusammMENTaSSUNGccoiciriiiiriei i 124

List of Figures

Figure 1.1:
Figure 1.2:
Figure 1.3:
Figure 1.4:
Figure 1.5:
Figure 1.6:
Figure 1.7:
Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 2.6:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 3.7:
Figure 3.8:
Figure 4.1:
Figure 4.2:
Figure 4.3:

Figure 4.4:

Figure 4.5: Workflow of the CS socket (black arrow: be called; red arrow: be nested)

Figure 4.6: Receive and process real-time data — the CS communication interface

Motoman system at celisca
Reactor System at celisca
Zymark System at celisca
Cell Culture System at celisca

Definition of “4D Virtualization”

Relationships among the integrated system modules of the VS

Working framework of the VS

SAMI EX software interfaces

Working principle of SAMI EX

Communications in the SILAS system

SILAS environment

Keeper Editor

Messages in AllWatcher

Workflow of the Data Transfer System

Workflow of the communication with PCS
Message extraction in the DTS

Communication with PCS

Workflow of data transfer between DTS and CS
The TCP/IP socket interface of the DTS
Workflow of the TCP/IP socket for Data Transfer
The Interface for virtualization result demonstration in DTS
Workflow of the TCP/IP socket for Data Transfer
Data Transfer between the server and the client
Data conversion in the CS socket

Internal functions structure of the CS socket

-111-

10
12
15
16
17
18
19
20
22
23
24
25
26
27
28
30
32
33

34

Figure 4.7: Workflow of the function TransformTime()

Figure 4.8: Historical data processing

Figure 4.9: Workflow of the module CV

Figure 4.10: Control Virtualization

Figure 4.11: Link with the VM for virtualization request

Figure 4.12: Workflow of the reaction for virtualization request
Figure 4.13: Import workstation layout

Figure 4.14: Actions contained in the workflow data (1)
Figure 4.15: Factors in the workflow data (2)

Figure 4.16: Workflow of the data assignment

Figure 4.17: Real-time data transmission and virtualization
Figure 4.18: Historical data virtualization

Figure 4.19: Virtualization result transmission

Figure 5.1: 3D manufacturing virtualization with 3DCreate
Figure 5.2: Internal frame of a component in 3DCreate
Figure 5.3: Node tree of a 6-axis robot

Figure 5.4: Behaviors of Motoman HP3JC

Figure 5.5: Articulated kinematics for a robot with 6 rotational joints
Figure 5.6: Articulated Kinematics of Motoman (Unit:mm)
Figure 5.7: Parameters created for the robot Motoman HP3JC
Figure 5.8: The statements of sequence “Open” in teaching PHER Astar
Figure 5.9: Sequences of the gripper SG0150

Figure 5.10: Frames and sequences of Biomek FX

Figure 5.11: Frames and sequences of Biomek NX Span-8
Figure 5.12: Sequences of Motoman HP3JC

Figure 5.13: Tool frame of the robot gripper

Figure 5.14: Get a labware from Cytomat

Figure 5.15: Workstation layout of Motoman system

Figure 6.1: Connection statuses of the two sockets

39
40
42
43
44
45
46
50
50
53
55
56
58
61
63
64
65
66
67
70
72
73
77
79
80
81

82-83
84

86

Figure 6.2:
Figure 6.3:
Figure 6.4:
Figure 6.5:
Figure 6.6:
Figure 6.7:
Figure A.1:
Figure A.2:
Figure A.3:
Figure A.4:
Figure A.5:
Figure B.1:
Figure B.2:
Figure B.3:
Figure B.4:

Figure B.5:

Method for one-plate assay
Data transmission in the DTS

Signs of movements generated by the VS

Comparation of realistic workstation workflow and virtualization results

Virtualization result transmission in the CS

Online feedback information from the CS

Biomek FX main components

Main components and connections of the Biomek FX towers
Bridges move in the X-axis, hold and move pod in the Y- and Z-axes
Multichannel Pod — main components

ALPs of Biomek FX

Biomek NX with Span-8 Pod and optional gripper

Span-8 Pod with gripper (detailed view)

Factory-installed gripper tool

ALPs of Biomek NX Span-8

Action commands of the Teleshake

87
90

91

92-97

98

98
112
113
114
115
116
117
118
119
119

119

List of Tables

Table 1.1 Functions and applied technologies of the VS modules 10
Table 4.1 Functions of the TCP/IP socket class in CS 37
Table 4.2 Workstations and their devices at celisca 47
Table 4.3 Parts of the workflow data of a LSA experiment 49
Table 4.4 A case of information mined from workflow data 51
Table 5.1 Comparisons of 3D simulation software 60
Table 6.1 Parts of the workflow data of the method “One Plate FX” 80-83
Table A.1 Multichannel Pod Axes Movement 115
Table B.1. Span-8 Pod Axes Movement 118

-VI-

List of Algorithms

Algorithm 3.1 The Data transfer logic for TCP/IP socket of DTS

Algorithm 4.1 A case of data assignment in CS

-VII-

29
54

List of Abbreviations

3D Three-dimensional

4D Four-dimensional

VS Virtualization System

ALP Automated Labware Positioner
API/APIs Application Program Interface/ Application Program Interfaces
CAD Computer-aided Design

CAE Computer-aided Engineering
celisca Center for Life Science Automation
COM Component Object Model

COMS Complementary Metal Oxide Semiconductor
CS Control System

Cv Control Virtualization

DDE Dynamic Data Exchange

DOF Degree of Freedom

DTS Data Transfer System

GUI Graphical User Interface

HIL Hardware-in-the-loop

1P Internet Protocol

IPC Inter Process Communication

LIN Liner

LSA Life Science Automation

OLE Object Linking and Embedding
(010).¢ OLE Control Extension

PCS Process Control System

PTP Point to Point

RSL Resource Specification Language

-VIII-

RW Realistic Workstation

SAMI EX SAMI Workstation EX Software
SDK Software Development Kit

TCP Tool Center Point

TCP/IP Transmission Control Protocol / Internet Protocol
US Unvisited Set

VM Virtualization Module

VR Virtual Reality

WBS Work Breakdown Structure
Wi-Fi Wireless Fidelity

WMS Workflow Management System
XML Extensible Markup Language

Doctoral Dissertation Introduction

Chapter 1 Introduction

1.1 Background of this Dissertation

Nowadays, highly developed automation improves the efficiency and accuracy for
industrial productions and science experiments in Life Science Automation (LSA)
[1]-[11]. It brings great convenience for scientists and engineers. Especially with
Process Control System (PCS) developing, scientists get relief from heavy experiment
works. They just need to design and schedule the workflows of experiments in PCS,
and then the PCS will realize them by controlling the workstations [12]-[17].

However, when PCS drives automation devices working, the users have to stay at the
laboratory to avoid the workflow wrong. In addition, all works about design testing,
workstation display, and laboratory showing have to be done by PCS and the
platforms set only in laboratory, other than in office or meeting rooms. That greatly
limits researchers’ works, especially when they do reports or show their automated
workstations to customers out of the laboratories. The limitation makes it impossible
to give any vivid demonstration. At the same time, running automation workstation
frequently for testing designs induces high cost and some waste for human and
materials resources. Additionally, automation laboratories have limited free area. If
there are too many visitors, most of them could just watch a part of the experiment
workflow, which makes them no comprehensive cognitive for the automation

workstation.

These problems of PCS are also occurred in the laboratories of Center for Life
Science Automation (celisca). There are many automation workstations which are also
driven by some PCS, which are shown as Fig. 1.1 ~ Fig. 1.4. For example, Figure 1.1
shows an automated workstation composed of many automated devices for life
science assays, including robot Motoman HP3JC, BiomekFX, BiomekNX-SpanS§,
CytomatHotel, Cytomat6001, PHERAstar, Fluostar, ELx405, SIGMA, etc. All these
automated devices are set in the Biomek workstation, and driven by PCS SAMI EX.

To solve the same problems as general PCS, the dissertation presents to make the
experiment workflows virtualization in real-time for LSA workstations at celisca. The
research result of the dissertation should make the experiment workflow virtualization

in screen synchronously with the workflow data generated, and integrate the

Doctoral Dissertation Introduction

virtualization steps as a whole experiment process, which could be shown wherever
and whenever. It should also work in a flexible and controllable way, which reacts

onto the control information for the workflow.

Figure 1.1: Motoman system at celisca

2-

Doctoral Dissertation Introduction

Figure 1.2: Reactor System at celisca

Figure 1.3: Zymark System at celisca

3.

Doctoral Dissertation Introduction

Figure 1.4: Cell Culture System at celisca

1.2 Literature Review

Virtualization for real-time experiment workflow of LSA refers to many fields, such
as PCS, virtual simulation, data management, three-dimensional (3D) Computer-aided
Design (CAD), four-dimensional (4D) simulation, etc. There are many relevant

contributions from these fields be referenced and learnt in this dissertation.
1.2.1 Process Control System Workflow

Workflow is a depiction of a sequence of operations, which serve as a virtual
representation of actual work [18]-[19]. In industry field and many automation
laboratories, workflow is usually managed and defined by some workflow
management system (WMS) or PCS within an organization to produce a final
outcome [20]—-[33]. The workflow data designed by the management or control

system supplies a chance for researchers to do some virtual simulation.

Process Control System for Motoman System at celisca is SAMI Workstation EX
Software (SAMI EX), which is utilized for developing scheduling, monitoring and

running assays streamline operations on Beckman Coulter integrated systems [34].

4-

Doctoral Dissertation Introduction

SAMI EX software works with Biomek software and SILAS Integration system
together for the whole workflow design and controlled operation [35]-[36].

SILAS Integration system works with SAMI EX as a communication router, which
routes commands to and from the integrated devices. It allows SAMI EX to provide
consistent dialog screen for device control, while invisibly translating commands and
data between SAMI and the individual device's software [37]. In the SILAS system,
instruments communicate with a module, which has an ActiveX software component
(SILAS OCX) to connect itself with other modules. SILAS OCX control provides the
writer of a new module with the means to communicate with other SILAS modules. It
has built-in functions to create, place, send, request and save messages for later use. In
addition, it includes an event that is triggered when a previously requested message
arrives At that time, the programmer can get information out of the message using
methods of SIALS OCX [38].

Therefore, it is feasible to register a module for a user to get the messages data from
PCS via SILAS OCX. The function supplies the virtualization resource for the
workflow virtualization of LSA experiments. That makes the virtualization possible to

be realized.
1.2.2 Workflow Virtualization

At present, with WMS and PCS development, workflow virtualization becomes more
and more popular in application fields [39]-[47], especially in business, medical and
construction. It supplies virtualization effect for complex workflows. Its function of
virtual reality saves testing and experiment cost for every application field, and brings
much convenience for users to estimate work plans and demonstrate work ideals
vividly. It is a flexible way to simulate workflow virtually in research or business

occasions.

In business field, virtualization is widely used as a tool for business processes analysis
and operational decision making [37]-[41], [44]-[48]. In the reference [49], M.
Kovacs and L. Gonczy presented a framework for the virtualization and formal
analysis of workflow models, which are transformed into dataflow network models by
BPEL language, and verified by SPIN model checker. A. Rozinat, etc., developed a
simulation system for operational decision support by combining the workflow
management system YAWL and the process mining framework ProM. [51]. In the
IEEE conference COMPSAC'09, D. Eichhorn described his 3D simulation research

-5-

Doctoral Dissertation Introduction

which added a third dimension into the graphical representation of process and data
objects. The author referred future research on 3D virtualization and animation of

other process objects (e.g. process metrics such as time, cost, etc.) [52].

In medical field, medical virtualization is a new method to facilitate skill training and
assessment [53]-[60]. G. Bruinsma et al. proposed and demonstrate a method for
simulating disasters for work and protocol optimization in disasters response (TAID),
based on the multi-agent modeling and simulation language BRAHMS [61]. In the
reference [62], the authors present a virtual imaging platform to facilitates the sharing
of object models and medical image simulators, and provides access to distributed
computing and storage resources. SA Schendel applied image fusion technology to
increase further increased the importance and accuracy of virtual treatment planning
[63]. A. W. Kushniruk et al. presented computer-based simulations that attempt to
model human behavior [64], and simulations that are developed to test specific system
components through health care information systems [65]. In clinic training programs,
virtual reality (VR) tools become important in radiotherapy training for enabling
students to simulate clinical situations without interfering with the clinical workflow,
and without the risk of making errors. Immersive tools like a 3D linear accelerator and
3D display of dose distributions have been integrated into training, together with IT-

labs with clinical software [66].

In construction filed, the technology of workflow virtualization is applied widely and
developed in the leading. The researches on construction virtualization more relate to
Computer Aided Design (CAD) and Computer Aided Engineering (CAE), which are
developed vigorously. In the reference [67], by integrating lean principles and
computer virtualization techniques, X. Mao and X. Zhang developed a construction
process reengineering framework and methodologies, which classifies activities in the
construction ~ workflow to make it more effective in modeling workflow and
virtualization. K. W. Chau presented a prototype four-dimensional site management
model (4DSMM), which applied AutoDesk AutoCAD and ObjectARX development
platform to simulate the construction process based on the scheduling data [68]. R. J.
Scherer et al. designed a distributed multi-model-based Management Information
System for virtualization and decision-making on construction projects based on
ontology framework and Building Information Modeling (BIM) technologies [69]. M.
Kugler and V. Franz developed a simulation system for the preparation work in
building construction by Visual Basic (VB). The system provides a simulation editor

which is integrated into a CAD system, and applies SQL database to manage the data

-6-

http://www.ncbi.nlm.nih.gov/pubmed?term=Kushniruk%20AW%5BAuthor%5D&cauthor=true&cauthor_uid=15016386
http://www.sciencedirect.com/science/article/pii/S0926580504001293

Doctoral Dissertation Introduction

of process model [70]. In the publication [71], the researches mentioned and
compared two approaches of virtualization techniques for construction field: one is
rooted in scheduling, and involves linking activity-based construction schedules and
3D CAD of facilities to describe discretely evolving construction product
virtualizations; the other one is rooted in discrete-event simulation, which concerns
the virtualization of not only construction products, but also operations and processes

in building courses.
1.2.3 4D Virtualization

With the development of the emerging technology Four-dimensional (4D), it is widely
applied in virtual reality for several fields. 4D technology is a new virtualization
method, which attaches time information to the traditional static 3D model, thus

allowing planners to view workflow in a 4D environment [72]-[73].

In the researches of K. W. Chau et al. [68], [74]-[77], 4D technology is applied and
extended into areas of resource management and site space utilization, in addition to
planning of building construction solely; the papers delineate the development and
implementation of a prototype 4D site management model (4DSMM) in a
construction project. The prototype links a three-dimensional model and a
construction schedule to furnish virtualization of the state of a site at any user-
specified date. The system development referred Visual C++ and AutoCAD
ObjectARX for programming, AutoCAD for 3D modeling, and the construction

software GrandSoft CAD, as well as MS Project for construction workflow designing.

W. P. Segars et al. applied 4D technology for the development and improvement of
some medical devices [85]. The excellent research achievement of the author is a 4D
extended cardiac-torso (XCAT) phantom developed for multimodality imaging, which
is a whole-body computer model of the human anatomy and physiology based on
NURBS surfaces. In the phantom development process, x-ray projections of the 4D
NCAT phantom were simulated using a cone-beam geometry and a standard x-ray

energy spectrum [86].

C. Kim et al. used a 4D graphic simulation approach for analysis and modeling in a
case study of cable-stayed bridge construction [87]. In the study, 4D CAD models
were developed at levels as activity, discrete operation, and continuous operation. In J.
Zhang’s research [88], after comparing four virtual construction approaches, the

author attempted to develop a 4D Virtual Construction and Dynamic Management

-7-

Doctoral Dissertation Introduction

System, which integrates 4D technology, BIM and virtual construction technology to

simulate and manage construction process dynamically.

In the reference [89], L. S. Kang et al. presented an information management
methodology — a 4D simulation system, which uses Work Breakdown Structure (WBS)
as an information center. In this research, the author supplies the same WBS codes for
both scheduling and drawing information. The WBS codes are used as a library file,

which is called and extracted throughout the whole process of the virtual simulation.
1.2.4 Real-time Virtualization

Real-time virtualization is related to the timeliness in the virtualization and
application. It asks for not only high-performance computers, but also high flexibility
and accuracy for virtualization tools, as well as the steady of the interface between

reality and virtualization tool.

In the reference [90], a hybrid flow-battery super capacitor energy storage system
(ESS), is studied by real-time hardware-in-the-loop (HIL) virtualization for being
coupled in a wind turbine generator to smooth wind power. The prototype controller is
embedded in one real-time simulator, while the rest of the system is implemented in

another independent simulator.

K. Manoj et al. developed a distributed architecture for off-road vehicle dynamic
models, 3D graphics virtualization and multi-rate model simulation to simulate
various system dynamics with different integration time steps. The real-time
simulation architecture includes three components: dynamic model simulator, virtual
reality simulator for 3D graphics, and an interface to the controller and input hardware
devices. Among the three components, the first one was developed by Matlab
Simulink and SimMechanics for simulating dynamic models; the second one was
realized by technologies of VR Juggler, OpensceneGraph and Extensible Markup
Language (XML) data file; and the third one was developed by Visual C++, and
applied Transmission Control Protocol / Internet Protocol (TCP/IP) socket technology

for the communication between the first and the second components [91].
1.2.5 Discussions

Based on the literatures reviews, virtualization refers to technologies about database,
CAD, programming, etc. LSA workstations at celisca have their separate PCSs. PCS

works to control the realistic workstation, and it has data interfaces which could be

-8-

Doctoral Dissertation Introduction

called by other platforms. PCS also supplies the data sources for virtualization. All the
conditions show that it is feasible to simulate the experiment workflow of LSA by 4D
virtualization. Through attaching time factors to 3D models and forming a 4D
virtualization environment, the virtualization on real-time laboratory workflow of

LSA has been realized in the dissertation.
1.3 Virtualization Strategy

1.3.1 Virtualization Ideas

“4D wvirtualization” is one of the computer-based process simulations. In the
dissertation, “4D virtualization” is different from 4D (which also called “spacetime”:
space + time) in modern physics. It is defined according to Fig.1.5. Besides of the
time factor added to 3D models, the “4D virtualization” includes 3D dynamic
trajectories for all related components in every statement, and the links among
statements to make the simulation coherent. The 4D virtualization system
demonstrates the processes synchronously with the workflow data supplied. That’s
why we call it “on-line process”. Due to the real-time data is generated with the
realistic workflow running. However, virtualization is based on the workflow data.
There is always time delayed for virtualization respect to the realistic workflow
running. So we called the virtualization for real-time workflow data and realistic

workflow as online virtualization.

3D Model

On-line process

o

4D Virtulization

Figure 1.5: Definition of “4D Virtualization”

Doctoral Dissertation Introduction

There are many ways to get workflow data from PCS, which designs and schedules
experiment then realizes it in physical workstations [92]. The dissertation should
choose suitable and strong 3D software to simulate the scheduling workflow in real
time and high quality graphic display. Between PCS and 3D software, there should be
an interface working as an intermediary to get data from PCS, assign the real-time
data to 3D software and drive it to realize the synchronous 4D virtualization. In
addition, the interface should have the function to drive the PCS to control physical
workstations working based on the virtualization results. In summary, this interface is
critical to integrate PCS, 3D simulation software and physical workstations as a whole
Virtualization System (VS) for LSA laboratories at celisca. In this whole system, we

defined the intermediary interface as Control System.
1.3.2 System Modules

Due to VS for LSA referring to various technology fields as PCS, workflow, database,
CAD, dynamic simulation and programming technologies, the system could be
mainly divided to four work modules: PCS, Control System (CS), Virtualization
Module (VM) and Realistic Workstation (RW). The relationships among the modules
are presented in Fig. 1.6. As Fig. 1.6 shows, PCS generates the scheduling data (real-
time data in the figure) for CS. Based on the scheduling data, CS drives the VM to
simulate the whole experiment process at once. Then CS receives the virtualization
result from VM, and sends it back to PCS. Finally the virtualization process will be
fully done with PCS driving RW to work.

(1) real-time data | Control System | @ drive to simulate
| (CS)

(@) feed result back (3) virtualization result

Process Control System | drive
(PCS)

Realistic Workstation

' Virtualization Module
(RW)

(VM)

Figure 1.6: Relationships among the integrated system modules of the VS

Doctoral Dissertation Introduction

As shown in Table 1.1, the dissertation applied some technologies and software to
realize corresponding module functions of VS. Every module has their separated
functions, which realize a part of the VS, and supply feasibility for other modules to
realize the integration of them. Among the four modules, CS is mostly critical part,
which connect other modules to an integration system and drives not only VM
working but also the whole system running. Between PCS and CS, there is a data-
transfer interface needed for their communication. In the dissertation, we call it as
Data Transfer System (DTS). DTS calls SILAS OCX of PCS to get the workflow data,

and applies TCP/IP Socket technology to realize communication with CS.

Table 1.1 Functions and applied technologies of the VS modules

Module Functions Applied technologies or tools
» Schedule methods/experiments;))
] SAMI EX integration system,
» Generate scheduling workflow data;)
PCS o Biomek software, SILAS
» Supply OCX for communication; OCX
» Drive RW to run as the scheduling methods.
» Connect with PCS for data sending;
» Get workflow data from PCS;
» Process and manage data: extract, classify,
save, .etc;
s » Assign data to models in 3D simulation Visual C#, TCP/IP Socket,
software; database, COM API

» Control 3D software to realize online

virtualization;

A\

Extract virtualization results from VM;
> Send virtualization results back to PCS.

» Add models with behaviors and parameters;
» Simulate components movements

COM API, Python API, Visual
synchronously based on the workflow data; .
VM . C#, Python programming
» Integrate all movements to an animation as
. L language, 3DCreate
virtualization result;

» Form fluent, nice graphics animation;

» Execute assay works for life science Biomek integration
RW automatically based on the scheduling technology, Automation and

workflow. Control technology

-11-

Doctoral Dissertation Introduction

1.3.3 Execution Methods

As Fig. 1.7 shows, to execute the virtualization idea of VS for the Biomek

workstations at celisca, some interfaces are needed to connect the modules of the

system: (1) SILAS between RW and PCS; (2) TCP/IP Socket between PCS and CS; (3)
COM API and Python API between CS and VM. For SILAS, many devices modules

in its system would be called for driving RW via PCS; for TCP/IP Socket, there are a

Server and a Client for the data communication; for COM API and Python API, they

are called to connect CS and VM for the driving and being driven in virtualization. To

process and manage huge data, database is needed for PCS and CS. The database

work could be assigned to the CS.

Virtualization System
(VS)

Data Transfer (Data Management)

A

Client
Y

Database ‘
Server

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
:
: 7 . !
i 7 1
| SAMIEX 2 zf Simulation
| (PCS) B |4 20
| -
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

software

= 1| '_M
L e 11- 201
P
Realistic 1] S : D
Workstation § " g i\dodcllill"
(RW) i

Figure 1.7: Working framework of the VS

Doctoral Dissertation Introduction

For the critical module — the Control System, its functions could be assigned to three
parts: data transfer, data management, and virtualization control. Anyone of the three
parts is indispensable. Data transfer works for calling to get experiment scheduling
data from PCS. In this part, the works for receiving data are finished by SALAS OCX,
and the works for transferring data are done by TCP/IP socket. For the TCP/IP socket
system, the interface in the PCS side works as a server, which is always waiting for
others’ calling, and prepares to send out the data; the interface at CS side works as a
client, which calls for communication with PCS for receiving data when PCS is
running. Data Management is in charge of saving and extracting important
information from the scheduling data, which is send from PCS to CS. Due to huge
amounts of experimental data especially for some complex experiments, here we use a
database to save and manage the scheduling data. Either data transfer or data
management is to make preparations for the virtualization. After CS received and
extracted the experiment scheduling data, it will control and drive the simulation

software to simulate the experiment process at once based on the data.

In the dissertation, the VS is supposed to be used for longer time periods. It should be
upgraded flexibly. Compared to other developing languages, Visual C# has all
advantages of them. What’s more, Visual C# has an integrated development
environment. It provides full COM / Platform support for integrated existing code. It
also has easy and fast developing abilities, and the characteristics of upgrading

packages. Thus C# has been used for system development in the dissertation.

The simulation software in the system is 3DCreate [93], [94], which has strong
component object model (COM) application programming interface (API) and Python
API for CS to call, and has strong 3D simulation functions as well as 3D rendering
effects. When the controlled simulation is finished, the CS gets the virtualization

result from 3DCreate and sends it to PCS. These processes are respectively finished
by calling the COM API of 3DCreate and the TCP/IP socket.

The following chapters will analyze and expound the realization processes of every

module and the integrated VS in detailed.

Doctoral Dissertation Process Control System

Chapter 2 Process Control System

2.1 Introduction

Process Control System (PCS) is very popular and important today in the Life Science
Automation (LSA) field. It does life science assays accurately and effectively, which
saves much time for scientists and laboratory assistants [95]-[99]. It frees scientists
from the heavy assays, makes more time work on data and results analysis, rather than

doing repetitive and dull experiments work [100]-[105].

At celisca, SAMI® Workstation EX (SAMI EX) software is an important PCS for its
LSA workstations, which are called Biomek Assay Workstations. Both of the Biomek
Assay Workstations and SAMI EX are developed and designed by Beckman Coulter,
Inc. for LSA assay works. The Biomek Assay Workstation is a flexible assay platform
designed to provide complete automation of heterogeneous and homogeneous
enzyme-linked immunosorbent assays (ELISAs) and cell-based assays in a walk-away
mode [106]-[112]. It is operated from the host computer using SAMI EX. SAMI EX
provides a graphical interface to scientists and technicians for developing, scheduling,
optimizing, running, and viewing automated assays on the Biomek Assay Workstation.
It makes researchers describe complex assays flexibly in a straightforward and easy-

to-understand way [107].

The SAMI EX software are shown as Fig. 2.1, which has two application interfaces
for researchers: (a) Method Editor for creating methods and schedules — it’s easy to
develop an assay by creating many graphic nodes, behind which there are some
dialogs for setting corresponding parameters; (b) RunTime for running schedules --
which has four parts for process information views: method view, device view,

system view and labware view.

Doctoral Dissertation

Process Control System

Method1* - SAMI® Workstation EX Editor

File Edt Yiew Project Schedule Help
COH D DD @ B
ol
B Labware 4
@& Transfer
@ Serial Dilution
[§ mncubate
£ change Home
@ Biomek
= Preload
& enans
& Run Virtual Device | s NOWOSEar =
it Data ¥| 422 PHERAstar
¥ Stack or Unstack +| gl Printandapnly b |
Wl Reegri
€ comment i Reari
Labware 2 <8 Roboseal
SiGMA
(L] Teleshake1
L] Teleshake2
1] Teleshake3
bl
<) I | 3

Desoiplion

Location

Task List |32 Toolbax|

Method! BiomekMX Span

(a) Method Editor

Software 4.0 - E74U 1 Pl

Fle Run View ManwslControl Window Help

e8> HB

Elapsed Time: 00:01:54 Time Remaining; 00:01:52
Estimated Completion Time: 11:58:35 AM

System Layout

B Paly {ResourcePool | 41

& Family 1, ILI54AM - 10155
& Fomiy 2, 11:54AM - 11:5...
+ Family 3, 11:55AM - 11:5.
 Famiy 4, 11:55AM - 11:5...
+ Family 5, 11:55AM - 11:5..
& Famiy 6, 11:55AM - 11:5
& Family 7, 11:5SAM - 11:5..

& Famiy 9, 11:55AM - 11:5..
Famiy 10, 11:55AM - 11; .
% Famiy 11, 11:558M - 11; .
& Famiy 12, 10:55 84 - 11:
 Pamiy 13, 11:55 AM - 11:

i Family 14, 11:5500 - 11:

Family 15, 11:56 A4 - 11;
= Famiy 16, 11:55M - 11: .

[Buomekp: Span : E74U 1 Platte_Fx |) Runing

= Famiy 17, 11:560M - 11:
Famly 18, 11:56 84 - 11:..
% Famdy 19, 10:56 81 - 11 15% |
+ Fomily 20, 11:56AM - 11 .. 11% |
vBomeEr 000052 AM [Plac labware 0n Cytomats001 A| |« Fomiy 21, 11:56 a0 115 g% |
i BlomekHi-S.. 00:00:00 AN Inbiakee Blomek BromekPX 1
o Convt 00:00:01
¥ Crtomats001 00:00:01
+ Matoman 00:00:01
PHERAsts 00:00:02 HatB001.1-1 to Cytomatedll transier Aakicn using SellGrip @ @
wISMCShattle 00:01:52
¥ Telsshaksl 00:00:01 Assaypin 1 from Cybomatb001,1-1 using Se¥Grip
7 using SelGrip
11
11 A
1 - 11:54:50 AM
11 -~ 1154:50 M BiomekF:LeftPod prepare
11:54:50 AM - 11:54:50 aM s SMCShutthe. M1 from get v >
< »
Erroe Desription

=

Rescerved Response Addressed

) 5%, (2 alaem Profle

(b) Runtime

Figure 2.1: SAMI EX software interfaces

-15-

Doctoral Dissertation Process Control System

2.2 Work Principle

To generate and receive workflow data from SAMI EX, it is necessary to know how
SAMI EX works. As a PCS, SAMI EX does not work alone for driving automation
workstation working. Behind its interface, there are Biomek software and SILAS

which interact with SAMI EX to realize its controlling for the realistic workstation.

SAMI Workstation EX is tightly integrated with Biomek Software. The Software
creates techniques, templates, labware and tip definitions in methods for SAMI EX.
Particularly precise, complex, or linear methods that require actions be executed with
rigid timing and using specific resources, such as deck positions, may be configured
in Biomek Software and then run on SAMI EX.

SILAS is designed to simplify the integration of automated laboratory systems and to
streamline the addition of new components. It works with SAMI EX as a
communication router, routing commands to and from the integrated devices. It
allows SAMI EX to provide consistent dialog screen for device control, while
invisibly translating commands and data between SAMI and the individual device’s
software [112]-[114].

Figure 2.2 shows the working principle of SAMI EX, which also illustrates the
relationship between SAMI EX and other modules. As Fig. 2.2 shows, SAMI EX acts
on top of the Biomek software and uses it to drive some devices, such as the liquid
handler. At the same time, SAMI EX uses SILAS for all of its IPC (inter process
communication), which includes the Method Editor, Transportation, Executive /

Scheduling, and all device modules.

rBiomek Software
x N -

Figure 2.2: Working principle of SAMI EX [115]

Doctoral Dissertation Process Control System

In addition, SILAS steps operate devices on a Biomek deck during a method run by
communicating between Biomek Software and the SILAS modules. In this module,
SILAS stores all the information needed by an integrated system. The SILAS OCX
provides the mechanism to attach modules to the rest of a SILAS system, and control
resides in each module in the system that needs to communicate with other modules.
So in the interface between PCS and Control System, the SILAS OCX is called to get
workflow data from the PCS module.

2.3 Workflow Data

SAMI EX applies SILAS to generate and supply workflow data. SILAS provides a
messaging protocol for laboratory integration based on ActiveX technology [38]. As
Fig. 2.3 shows, there are three primary files with four items used in a basic SILAS
system. The SILAS.exe file includes two core components of the SILAS system:
Keeper and Router. The Router works to shuttle messages to the right places, and the
Keeper tracks registration of modules in the system. The Keeper.rrg file holds the
SILAS Keeper Registry, which stores all the information needed by an integrated
system. In addition, message translations are also included in the Keeper Registry. For
the MsgCtrl.ocx file, which works in the form of SILAS OCX, provides mechanism
to attach modules to the rest of the SILAS system, and resides in every module for

communication with each other in the system [116].

Keeper.rrg

SILAS.exe ‘

Keeper }——)< Router _—g»

[Registry

MsgCtrl.ocx
‘ SILAS OCX

IVIOU UIC.CXC
SILAS Module (device, robot, data, other)

Figure 2.3: Communications in the SILAS system [116]

Doctoral Dissertation Process Control System

Figure 2.4 shows the SILAS working environment. From the Fig. 2.4, some hardware
and robot connect with the SILAS system through their corresponding device modules
in serial communication, other hardware is connected with SILAS via the third party
controller software, such as Biomek software, and the database is connected to the
Data Logger of SILAS via dynamic data exchange (DDE). Among the SILAS
modules, the communication either between the Registry and the Keeper, or between
the Router and the Keeper is internal. The SILAS modules, which are shown as mint
and ellipse in the figure, are connected with the Router by SILAS messages, which
are controlled by SILAS OCX.

The SILAS Environment

Internal
Communication

Hardware @

Device
Module
Robot
\ Robot SILAS
Module

Internal
Communication

Serial
Communication

Message s

Database

Data
Logger
DDE or Other Software
Communication
Hardware Third Party
»| Controller
Software

Figure 2.4: SILAS environment [116]

Doctoral Dissertation Process Control System

The SILAS modules, including device modules, robot modules, data logger, and
SAMI executive, are registered in the Keeper Editor, which is shown in Fig. 2.5. For
every registered module, there are many kinds of parameters and information inserted,
which define messages the system should generate and transfer. Therefore, to get
messages from the SAMI EX system, at first, there is needed to create and register a

new module in the Keeper Editor, such as the module named “Workflow” in Fig. 2.5.

~al Keeper Editor Q@El

(€] Y Undo

Key
=+{J Roct
) Allwratcher
() BRxControllern
w4 BFxcantrollert
() BFxControllerz
w4 BFxControllers

w4 CopyMsender

4 CytoHotel

+{J) Cytomats001

() Deckelstation

) EL405 Program Times
) EL40S Programs

w4) Maskassign
() Moduleversions

+(J Printandapply

) PropertyCopy

++J Rearip

++(J Reschedule

++() Robopierce

+J Roboseal

++() SaMI4 Alarm Configurations
() SAMI4 Executive

) SaMI4 InstallerTool

++() Teleshake1
++) Teleshake2
++ () Teleshake3
=) workflow

Value

4+ SAMI Ex System Simulation Toggle

"] ging Ewerything=*:***:Command.
@ Expand One Level? False
i@ High Priority? True
@ Ignore Percent? False
i@ Max Keys 1000
@ chow Options Pane? True
L@ Show Translation Pane? True

Everything=":7:7:7: Connend
#Everything=":m:T:e:®

#Everything=FluoGalexy: ®:7:7: ™
#Everything=":+:FlunGalaxy: *: +

#y#action Config Reply
#1#1hcrion Config

() BiomekF #:%:Change Hardware State Reply
+_) Biomekhx-Span :Clear Error Reply
s Comvmz i¥:Clear Error

#:%:Connand Reply

#Everything=":":Fluobalax
#Everything=Cytomat00l: *

*:7:Confiquration Dialog

w4) ELxa0s *:7:Data Query Reply
() Fluostar *17:Data uu;qt(
evice Data
+-[J Keeper
4 gLu Der *:r#:Device Error
i *:¥:Get Module Data

#i ¥ Interpret Reply
#1#:Interpret

+J Matoman #1#:Load Findshed

() Maender #1#:Load Hodule

L) MOVOstar *:#:Method Status

) Onlneis *#:#:Module Data Reply
Ti7:Module List Query

) PHERAst
=g st m:7:Module List Beply
+(J Pauing *:%:Pause Reply

*:¥:Pauge
:Progress
:*:Resume Reply
::Regune
*:%:3et Module Data Reply
*:¥:3et Module Data
*:8imple Data
1Frivatns Query
*r¥riratus
*i#:Touch
*:#:Unload Finished

- Seelt #:¥:Tnload Module
+) SiGha #:%:Tnload Reply
) SMCshtle #Everything=+:+: %1 %:Unload

&a

workflow\%Messaging

Figure 2.5: Keeper Editor

After scheduling a method in the Method Editor and running it in the Runtime of the

SAMI EX software, there are a large number of assay messages generated.

SAMI EX system, The SILAS messages depict the scheduling workflow of LSA
assays, which include all information the 4D virtualization needs. It could be shown
as AllWatcher interface of SAMI EX system.

-19-

Doctoral Dissertation

Process Control System

As Fig. 2.6 shows, the information in AllWatcher has characteristics as the followings:

(1) Tree-like structure;

(2) Messages can contain sub-messages and/or leaves;

(3) Sub-messages can contain sub-messages and/or leaves;

(4) Leaves contain strings of text or binary data.

From Fig. 2.6, it could be found that all parameters and actions of the workflow are
included, such as time, source, destination, grip and action, .etc, which is critical for
the virtualization. Every message could be accessed by calling SILAS OCX. In
addition, the SILAS messages are also shown in the Device Activity in the Runtime
interface of SAMI EX software, as Fig. 2.1 (b). In that part, the workflow data could

be saved as .csv format.

£ MWatcher EJ@@

File Options Wiew Clear Pause

- [Command] SAkdl4 Executive:* > BiomelkFx:
[Command] SAMI4 Executive:™ > SAMIZ:
[Command] SAkI4 Executive:™ --» BiomelkF::*
[Command] SAkI4 Executive:® > Cytamate001:*
[Command] 5AMI4 Executive:® --» Cytamate001:*
[Command] 5AMI4 Executive:® --» Cytamate001:*
[Command] SAMI4 Executive:® > Matoman:™
= Zhddress
FromM ame=54MI4 Executive
FromT ppe="
2T ype=Command
ToMame=Motoman
ToTppe=*
%Time Stamp=41463 5731642361
Command Mame=Move
= Parameters
Destination=Regrip. BCH
Grip=LidM arraw
Labware Types
RealTime=16800
Source=CytomatE001 ransfer station
Time=168
Replace
= Tags
Controller=54H 14
=) Executive

1) B

)

=

Action 1D=13

Family=1

Method=EZ4Ll 1 Platte_Fx
Node ID=7

+- Transports
- [Command] SAkI4 Executive:* > SMCShuttle:*
- [Command] SAkI4 Executive:* > Motoman:*
From Mame Fram Type

w

[Ignore keys starting with %
tdake this module high priority

Add Translation

Action Description=t otoman move from CytomatB001 ransfer station ta Rearip. BCR using LidM araw

Fun ID=38797BBE-8A4C-4F46-BAG0-A0681 ASTCFDE
UID=7424C008-5663-4445-BE42-41 B4348FFOBE

To Mame ToType Msg Type
" Lo |
Expand First Level of Msgs
Dl g Max Keps: (1000

*| Requested Translations:
[Command] %% -3 *=*

Unrequested Translations:

Pl = =
[] % > FluoG alamy:*

[Clear Error] =% > *%
[Command Reply] ** - **
[Eommand Feply] Cptomat&000:= - =

[Cammand Reply] FluoGalasy: -» =*

[Command] = > CytomatE00
[Command] ** > Fluol alaxy:
[Configuration Dislog Reply] =
[Configuration Dialog] *:* 3 =*

(J|
w

2.4 Discussions

To realize the 4D virtualization for a LSA workstation, the PCS should have a
tool/system to generate and export process data designed. For the PCS SAMI EX it is

possible to realize SAMI EX workstation system virtualization, because of the

Figure 2.6: Meassages in AllWatcher

-20-

Doctoral Dissertation Process Control System

followings:

(1) It has strong process data system, and adequate OCX files for managing and
supplying data. They supplies objects for 4D virtualization;

(2) It connects with the realistic workstation and has interface to control it working. It
supplies functions for other system to call its OCX files. So SAMI EX software

makes controlling the realistic workstation by other outer systems possible.

However, the SAMI EX system itself has no graphic interface to demonstrate
virtualization results. Thus it is necessary to develop such an interface at the SAMI
EX side for process designers to see the virtualization result directly. That is the Data
Transfer System (DTS) detailedly depicted in the Chapter 3.

21-

Doctoral Dissertation Data Transfer System

Chapter 3 Data Transfer System

To create communication between PCS and CS, there is an interface needed to link
them. In this dissertation, as Fig. 3.1 shows, such an interface named Data Transfer
System (DTS) is developed by Visual C#. The DTS works to get scheduling workflow
data, send the data to CS and receive the virtualization result from CS. The system
refers to technologies including SILAS OCX, Visual C# programming, and TCP/IP
socket. Corresponding to its functions, the DTS is consisted of three modules: (1)
Communication with PCS; (2) Data transfer for real-time workflow data; (3) Data

reception for virtualization result.

[T l S — I (4 L f-———- !
|
: Data Transfer System | || Virtualization result| |
| (DTS) : | ; I
|
| i | |
SILAS OCX ! | TCP/IP Socket ! r i
‘ Get workflow data + Send data : 1 + Cs :
| | | |. |
1 o |

Figure 3.1: Workflow of the Data Transfer System
3.1 Communication with the Process Control System

When the scheduling method is run in SAMI EX, the module “Workflow” gets the
workflow data one by one in the form of tree-structure as shown in the AllWatcher
interface (Fig. 2.6). In the “Workflow” module, there are many messages in one assay
project, and many sub-messages for every message. Take the message “[Command]
SAMI4 Executive.*--> Motoman.*” in Fig. 2.6 for example, there are five sub-
messages for this command, and under every sub-message, there are many sub-
messages for themselves. Not all messages are useful for the 4D virtualization. The
important ones are in types of “%Time Stamp”, “Time”, “Action Description”, and
the “Status”, .etc. In them, the sub-message "%Time Stamp" means the start time of
every process in the experiment workflow, the “Time” means the duration time for
every process, and the “Status” is generated automatically while a process is finished.

All the messages generated in SILAS system are in the form of String.

02-

Doctoral Dissertation Data Transfer System

As Fig. 3.2 shows, after running the DTS, SILAS OCX is called to connect with the
SILAS system of PCS. While the connection is successful, the module “Workflow” is
registered in the Keeper Registry by calling related commands. Then DTS calls
corresponding OCX commands to initialize the message controller, and request some
message translations for receiving the corresponding messages the virtualization
needs, such as the “Command” translation for workflow information. Once the
scheduling method is running in SAMI EX, the “Workflow” module gets the SILAS
messages. At the same time, the event called RcvMsg will occurs in DTS for
extracting messages in the “Workflow”. In this event, DTS defines the types of
messages and sub-messages’ which it would extract. To make sure there will be no
data loss in the transferring even when the link is interrupted, after the data
transmission is finished, the saving-message command is called in the RcvMsg event
for backing up the received data. Finally, the message controller is cleared for

depositing new experiment data.

RegisterModule

.

Initialize message controller

:

Request message translation

Get sub-messages

SILAS OCX [I Get workflow data
PCS |« » DTS l

Save messages to file for bakup

Clear Controller

Figure 3.2: Workflow of the communication with PCS

In this dissertation, the messages with types of "%Time Stamp", "Time", "Action
Description", and “Status” are enough to describe the experiment workflow. Therefore,
DTS extracts these data from the SILAS messages.

23-

Doctoral Dissertation Data Transfer System

Figure 3.3 shows the process of messages extraction. In the Fig. 3.3, the yellow
modules are workflow data. When the “Workflow” module is registered, its
“Command” translation is requested. Under the “Command” translation, there are
many sub-messages and parameters. DTS calls corresponding commands of SILAS
OCX to arrive at the target sub-messages and get the string of messages needed along

the tree branches.

RegisterModule Request message translation

Get

“Parameter”

“Workflow" “Command”

Submessage

5

“Executive” “Action Description

Submessage String

Figure 3.3: Message extraction in the DTS

The “Communication with PCS” module is developed as Fig. 3.4. Once SAMI EX
Runtime is working and DTS is active, the textbox will show the received workflow
data one by one. As Fig. 3.4 shows, every data has four parts of messages, which are

all in string format.

:.-- Data Transfer g'\:.l.‘:h':l'l'l ['_ |E| El

Coenresnication with PCS | Resktime Dists Transhes | Vituskeston el Recepton

Slart T imee Diwwrabion T e Actraly S tahu ~
41522 B184330671; 110 riialize Baoered: Biomak P Complats

41522 184330671 21 0irshisize Buomed. Biomek -5 pan Complele

41522 6184352715, 5P1ace labwvate on Bioered P Complate

41522 B184437263; SResume bight curtan on Bomek P Complete

41522 6184437269, B0, Ctomatbll prepars Lo move from CytomatB00 1-1 to Cytomatb00 kanshe dabon wing 5 efGp Complabs
41522 B13445; 37 CotomatB00N get Assapplatie 1 AssavplatterLid 1 from CtomstB001,1-1 using SellGrp Complete

41522 61844571 76; SA.CotormatBOlT puat As-ravplathe_ 1 Assapplaie:Lid_1 to CetcmatG00 iransder station using 5eliGip Complste
41522 B184465204; 168 Motoman mave hom CytomatB00. ransler station b Regip BCR using LidM amow Complete

41522 6184482523 20:0pen SMCShuttle M1 for put Complate

41522 B184453400; 161 Motoman mave hom Regnp BCR to SMCShultle M1 wing WideLow Complate

41522 618451 331 10 Chose SMCS huttls M1 from puk Complsbe

41522 E18451 5046: 5SMCShultie prepars to move from SHCShuttle M1 o BiomekF Shuttle using SeliGip Complste

41522 618451 875; 200per SMCShuttls M1 foe gt Complate

41522 B184520468; 20 0pen SMCShetiie B lor put:Complete

41522 6184522338; 0 0pen Bioerek P 5 butthe fior past Complets

41522 B184522338; 25.5MCShutile move from SMCShutle M1 bo BiomekFi Shultle using SeliGip Complete

41522 B184525925; 19 Biomek P LeliPod peepars Complete

41522 61845277 78; 10:.Close SMCShuttie M1 kom gat Complate

41522 6184531 365; 10.Cloge SMCShuttle B 1 froem put Complete

41522 618453321 7; 0.Chose Bromek P S huttle nom put Complete:

41522 6184533217, 20, Open SMCShutthe BT for get Complate:

41522 B134534354. 00pen BiomekFr S huttle for get Complete

41522 6184536806 33 Biomek P LeltPod get Assapplatte_ 1 Aspappdatieclid_1 Biom BiomesFe Shisths wusing Attla_Ded sultGp Complels
41522 B184562153; 10.Close SMCShuttle BT froen F{n:.mwbbe

41522 6184562153; 16 Biomek P LeltPod recve Complets

41522 B184563363; 0.0pen BimekFr P15 oo put Complate

41522 6184563889, 0Close Bicmek P 5 hutthe friom gal Complate:

41522 B1845659329; 33 BiomekFrd LeliPod put Assayplatte 1 AssepplafteLid 1 to BomekFr{ P15 wrg Altls_DedautGip Complete v

v

Figure 3.4: Communication with PCS

24-

Doctoral Dissertation Data Transfer System

3.2 Real-time Data Transfer

The works of the real-time data transfer in DTS include two factors: one is for sending
real-time workflow data to CS, the other one is for getting the data-received condition
from CS. They are realized by TCP/IP socket technology. In the data communication
with CS, the DTS socket works as a server, which always waits for being called in

some specified net port as a watchdog.

For the workflow data communication, the server socket has two functions: data
formats conversion and data transmission. On the one hand, since the data
transmission works between two computers or two different ports in one computer, it
is needed to convert data formats for users reading and computer recognizing. Due to
the workflow data gotten from PCS is in string, and the data about received conditions
from CS is in byte, there are corresponding encoder and decoder needed for data
formats conversion. The encoder converts data from strings to bytes for computer
understanding, and the decoder converts from bytes to strings for user reading. There
are many trans-coding formats for data conversion, such as ASCII, Unicode, etc. To
union the coding format in the whole data-transfer process, the dissertation applies the
Unicode format. On the other hand, the server socket transfers the encoded workflow

data and decoded data-received condition data with the client.

25-

Doctoral Dissertation Data Transfer System

Figure 3.5 depicts the workflow of data transfer between DTS and CS. As Fig. 3.5
shows, in the function “SendOutData()”, DTS creates an encoder to convert the
strings data from PCS in the format Unicode. In this function, the encoder encodes
the data in string to Binary bytes, which computer CPUs could recognize. Then the
DTS socket applies TCP/IP technology to send the bytes data in real time to the client
which requests communication through its port. Similarly, DTS applies TCP/IP
technology to get the data about received conditions from CS through its port. These
data are in byte format sent from the CS computer. To make the data readable, the
socket creates the “DataReceived()” function to convert it to strings. In this function,
the socket creates a decoder for decoding these bytes data to strings. It does just the

opposite function of the encoder in this dissertation.

SendOutData()

GetBytes() ..00110011...

ASCII

i
|
I
_ I
U fil
e (String) e }
e [
. I
I
|

CS

Received conditions
.00110011...

DTS
Socket

DataReceived() ‘F ____________________

Received
conditions

GetString()

Figure 3.5: Workflow of data transfer between DTS and CS

26-

Doctoral Dissertation Data Transfer System

Figure 3.6 shows the working interface of TCP/IP socket of DTS in two different
statuses. As Fig. 3.6 shows, the DTS socket module has three functions: showing
working status, communication test, and listing feedback information from CS. There
are three statues for the system. When the DTS socket is successfully bind to a
specified endpoint/port, the status is shown as “Waiting for a connection” at the port.
Otherwise, the system throws the information as “Socket errors”. Once the socket is
connected by a client successfully, the status box will show the connected information
as well as the calling client IP address. There is one button for testing communication
with client computer. This function aims at testing whether the data transfer process
could be executed rightly. It is helpful to check the communication between DTS and
CS before DTS gets workflow data from PCS. The textbox at the bottom of the
interface lists the communication condition which is replied from CS. As long as the
communication between DTS and CS is created, either for communication test or for

data communication, the textbox always shows the receiving information from CS.

Data Transfer System

Communication with PCS | Realtime Data Transfer | intualization Fesult Reception

Status: “waiting for a connection at poit: 7010, @

Communication Test

Communication Condition:

Data Transfer, System

Communication with PCS | Feaktime Data Transfer | intualization Fesult Reception

Communication T est

Status: Connected: 139.30.204.198:52852 ®

Commurication Condition:

9/5/2013 25352 PM:
9/5/2013 2:52:52 PM:
9/5/2013 2:53:52 PM:
9/5/2013 2:53:53 PM:
9/5/2013 2:52:53 PM:
9/5/2013 2:53:53 PM:
9/5/2013 2:52:53 PM:
9/5/2013 2:53:53 PM:
9/5/2013 2:52:53 PM:
9/5/2013 25353 PM:
9/5/2013 2:52:53 PM:
9/5/2013 2:52:54 PM:
9/5/2013 2:52:54 PM:
9/5/2013 2:52:54 PM:
9/5/2013 2:53:54 PM:
9/5/2013 2:53:54 PM:
9/5/2013 2:52:54 PM:
9/5/2013 2:52:54 PM:
9/5/2013 2:53:54 PM:
9/5/2013 2:53:54 PM:
9/5/2013 2:52:54 PM:
9/5/2013 2:52:55 PM:

Received S4MI PARAMETERS
Received S4MI PARAMETERS
Received S4MI PARAMETERS
Received S4MI PARAMETERS
Received S4MI PARAMETERS
Received S4MI PARAMETERS
Received S4MI PARAMETERS
Received S4MI PARAMETERS
Received S4M| PARAMETERS
Received S4MI PARAMETERS
Received S4MI PARAMETERS
Received S4MI PARAMETERS
Received S4MI PARAMETERS
Received S4MI PARAMETERS
Received S4MI PARAMETERS
Received S4MI PARAMETERS
Received S4MI PARAMETERS
Received S4MI PARAMETERS
Received S4MI PARAMETERS
Received S4MI PARAMETERS
Received S4MI PARAMETERS
Received S4MI PARAMETERS

Figure 3.6: The TCP/IP socket interface of the DTS

27-

Doctoral Dissertation Data Transfer System

Data transfer workflow in the DTS socket (server socket) could be presented as Fig.

3.7. At the beginning of this socket, the system binds the listening socket to a

specified port as a watchdog, which always keeps at the port for

DTS is activated, the socket begins to wait at the port for some connection requests.
An error warning is throw out if there is some problem to bind the socket to the port.
But if the socket bind course is successful, once CS calls for connection with DTS, the

socket system will start an asynchronous operation to accept the request, and send the

encoded data to CS.

any calling. When

TCP/IP Socket

:

Bind the listening socket to specified port

Yes

No

k.

Data from PCS Waiting for a connnection...

Socket errors

¥ called... -

Accept being connected

() J

[Control System] Call for connection...

Figure 3.7: Workflow of the TCP/IP socket for Data Transfer

8-

Doctoral Dissertation Data Transfer System

Algorithm 3.1 shows the running logic in sending data to CS. From Algorithm 3.1, the
waiting work for communication begins with DTS being run. When the connection
between DTS and CS is created, and the communication test is certified by the reply
information from CS, it means data transmission channel is smooth. On this condition,
DTS finishes its preparation for processing and sending workflow data to CS
synchronized with receiving data from PCS. Once PCS runs scheduling method, DTS
will receive the workflow data one by one in real time, and then encode and send the

data in bytes to CS synchronously.

Algorithm 3.1 The Data transfer logic for TCP/IP socket of the DTS

Start: Run DTS
Step #1: The DTS starts to listen.
1: Define IP address and server port.

2: Try: Bind the listening socket to the port.

3. if successful do

4 Listen...

5: Show socket status as "Waiting for a connection at port....".
6 else

7 Show socket status "Socket errors”.

Step #2: Waiting for the request of connection.
8: if connection is successful do

9: Accept the request ;

10: Show socket status "Connected” and show the Client IP
address & port.

11: else

12: Waiting...

Step #3: Wait for data from PCS

13: if data come in:

14: Encode data as bytes.

15: Send the encoded data to CS.

16: else

17: Waiting ...

3.3 Virtualization Result Reception

The Virtualization System (VS) realizes the virtualization for PCS. So the
virtualization result should be shown at the PCS side. That is also done by TCP/IP
socket technology. Due to the works of sending workflow data and receiving

virtualization result independent, there should be another TCP/IP socket for the

-29-

Doctoral Dissertation Data Transfer System

virtualization result receiving. The socket is also embedded into DTS, and works as
server in the data communication. As shown in Fig. 3.8, there is an Adobe Reader
OCX embedded into the DTS interface, which could show the virtualization result

directly for PCS workflow designers and visitors.

Data Transfer System |Z”E|r>__<|

| Communication with PCS | Realtime Data Transfer | Virtualization Result Reception |

Status: |F|ec:eiving... | [Connect] ’Disl:onnect]

& D views B r-eg -1 &

[

"\ VISUAL

JC{JMP{JMNTS

Figure 3.8: The Interface for virtualization result demonstration in DTS

In the online virtualization for real-time data, with the data being simulated one by
one in CS, the virtualization result is saved as many animation parts in .pdf format.
After the connection request from CS socket is accepted by the DTS socket, the

communication for virtualization results between DTS and CS is started.

In the process of the virtualization result reception, the DTS socket receives the data
stream of the virtualization results from CS socket one by one. The socket decodes the
data stream back to .pdf file in Unicode format. Then the .pdf files are backed up in
the DTS side and demonstrated synchronously in the DTS interface one by one. As for
the historical data virtualization, since the virtualization result is also separated to
many parts and sent to DTS in data stream, the DTS socket works as the same as the

real-time data demonstration.

-30-

Doctoral Dissertation Data Transfer System

When there is some interruption for the virtualization result communication, the DTS
socket begins to wait for being called again. However, the animation parts go on
showing in the DTS interface until there is no one left. Once the communication is
created once more, the DTS socket receives and saves the coming animation files
from the last interrupt point. At the same time, the socket shows the new files in the

GUI one by one.

As the TCP/IP socket for workflow data transmission, while the DTS socket receives
one data stream of animation from CS, the socket feeds the reception information

back to CS socket at once.
3.4 Discussions

The Data Transfer System works at the side of the PCS. It supports the PCS in
realizing the data transmission with the CS. It also supplies an institute visualization
result for process-designers to check his design, rather than to expect the designed

process could run successfully in the workstation.

Because the performance and transmission forms of workflow data are generally
different for different PCS. So within the DTS, the module for communication with
PCS has a bit difference for different PCS. For a new PCS, based on its data format,
the system developer needs to add a corresponding module into the DTS for data

processing and transmission.

31-

Doctoral Dissertation Control System

Chapter 4 Control System

In the virtualization process, the Control System (CS) is the most critical and
important module, which links PCS, DTS and 3D simulation module as a whole, and
realizes online virtualization for experiment workflows in LSA flexibly. The VS

functions are mainly reflected to users by the CS interface.
The Control System has four modules to realize its control functions:

TCP/IP socket module for the communication with DTS;
Data processing;

Virtualization control;

AW N =

Post process of the virtualization.

The relationships among these modules are shown as Fig. 4.1. The TCP&IP socket
works for communication with DTS to get the real-time workflow data, and to feed
back its data-received conditions to DTS. The socket also backs up the real-time data
for historical data virtualization. In CS, there are two data processing modules for
preparation of different type-data virtualizations. For either the real-time data or
historical data, the CS module could realize the virtualization for the experiment
workflow. That module links with the virtualization module (VM) by calling its COM
API, and assign the data to related components in VM by calling both of COM API
and Python API. CS drives the VM to create a series of movements as the data depicts,
and makes VM to form the movements to an animation. At last, the CS calls COM
API of VM to get the animation as the virtualization result, and sends the result to
DTS via TCP/IP socket.

Control System (CS)

Control virtualization

Data Transfer System
(DTS) N

N

TCP/IP Socket @ Feedback
W
J

Historical
workflow data

Feedback

[Virtualization Module (VM)]

Figure 4.1: Workflow of the TCP/IP socket for Data Transfer

-32-

Doctoral Dissertation Control System

4.1 Communication with the Data Transfer System

The TCP/IP socket in the CS works as a client to request communication with DTS.
As Fig. 4.2 shows, at first, the client CS calls the server -- DTS socket for connection
(step @). The calling has two results: accepted or failed. If it is accepted, the CS
would wait for step @); if it is failed or rejected, the CS socket will call repeatedly
until it is accepted. As for the step @), the DTS encodes the workflow data to bytes
and sends them to CS via its TCP/IP socket, and correspondingly, the CS waits for and
receives the data in byte via its own TCP/IP socket. Once the CS receives the data, its

socket would reply the data-received conditions information back to the DTS (step

®).

DTS (Server)
--gncode data

Send. ..

CS (Client)
-—decode data

Figure 4.2: Data Transfer between the server and the client

Besides of the functions for connection and data transmission, the CS socket also does
some parts of data processing works. That is for data format conversion. It is
somehow similar but in opposite direction as the functions of the DTS socket. As
described in the previous chapter, the DTS socket encodes the workflow data to bytes
for computer to recognize. So when the computer with the Control System receives

the bytes data, they should be decoded back to string format for users to read.

-33-

Doctoral Dissertation Control System

As showing in Fig. 4.3, the CS socket firstly creates a decoder, applies Unicode
format to convert the bytes data to strings. Those works are realized in the function
“ShowReceivedData()”. That is the original works for real-time data virtualization.
For the feedback step of CS socket, there is another function “SendOutData()”, which
is in charge of sending data-received conditions to the DTS computer via TCP/IP
socket. The “SendOutData()” function works oppositely with the
“ShowReceivedData()” function. It creates an encoder for converting the feedback
data in string to bytes, which could be recognized and transferred between different

computers.

CS socket

ShowReceivedData()

|
| i
‘ Unicode ||
.00110011... |—+ Decoder I—! GetSiring() .abede...
[VA |
|
TCRAP Q ____________________
Socket -9 ——"—
SendQutData()

|
1
. | 0
.00110011... GetBytes() Unicode Encoder | e
[conditions
|

|
: UTF32

&

Figure 4.3: Data conversion in the CS socket

-34-

Doctoral Dissertation Control System

Figure 4.4 shows the internal functions structure of CS socket. In the CS module,
there is a sub-class “ParameterSocket” created to realize the communication functions
of TCP&IP socket. For functions in the main class “ControlSimSystem” and the sub-
class, they call related functions from each other. The left box lists the functions of
TCP/IP socket in the main class named “ControlSimSystem”, and the right-bottom
one contains the functions of the class “ParameterSocket”, which is defined specially
for socket connection and communication. Among the functions of these two classes,
when the commands are run to some stages, some functions in one class will call

desired functions from the other class.

5. @ 4D Simulation
--{} 4D Simulation

#-“ ControlSimSystem
(#-“§ ControlSimSystem.FramePosition

#-53 ParameterSocket
. % Program \
ControlSimSystem. cs + _;.\d ControlSimSystem.HandelReceivedData

#- 34 ControlSimSystem.UpdateReceivedData

5 4 ControlSimSystem.UpdateSocketStatus

¥ 4 ControlSimSystem.UpdateTransfData
-4} _4D_Simulation,Properties

% HandelData(string)
% HandleParameter{string)

4" ReplyDemol()

¥ ShowReceivedData(string)

¥ ShowTransferedData(string)

@ SocketData(string) ParameterSocket.cs

¥ SocketStatus(string) 9 CloseSocket()
4% StartSocketClient() Call 4 Connect()
...... \-’/' 3% ConnectCallback(System JAsyncResult)
¥ TransfData(string) w9 ParameterSocket(4D_Simulation.ControlSimSystem, string, int)
¥ TransformTime(string, string) w4 ReadCallback(System [AsyncResult)

------ % SendOutData(string)

Figure 4.4: Internal functions structure of the CS socket

-35-

Doctoral Dissertation Control System

The complex nested and inter-call workflow is shown in Fig. 4.5. When the
connection request is generated, the function “StartSocketClient()” is activated to
connect with the DTS socket. In this function, the class “ParameterSocket.cs” is
visited for calling its function “Connect()”, which tries to connect the specified
address and corresponding port of the server by calling the client socket function
“BeginConnect()”. In “BeginConnect()”, the function “ConnectCallback()” is nested.
It calls “ShowConnectStatus()” from the class “ControlSimSystem” to show the
connection status. In addition, the “ConnectCallback()” calls the function
“BeginRead()” when the connection is successful. By embedding another function
“ReadCallback()”, “BeginRead()” calls three functions from “ControlSimSystem.cs”:
ShowConnectStatus(), ShowReceivedData() and HandleParameter(). As for the
function “HandleParameter()”, it calls “SendOutData()” from ParameterSocket.cs”

indirectly to feed the received conditions back to the server -- DTS.

ControlSimSystem.cs ParameterSocket.cs

StartSocketClient() » Connect()

BeginConnect()
&

ShowConnectStatus() ConnectCallback()
ShowReceivedData() « i ﬁ
BeginRead()
HandleParameter() « T
I
ReadCallback(}

HandelData()

ReplyDemo() » SendOutData()

Figure 4.5: Workflow of the CS socket (black arrow:be called; red arrow: be nested)

-36-

Doctoral Dissertation

Control System

Table 4.1 introduces the related functions of TCP/IP socket in the CS.

Table 4.1 Functions of the TCP/IP socket class in the CS

Functions Description
Connect() Try to connect with the server.
. Begin an asynchronous request for a remote connection with the
BeginConnect()
server DTS socket.
ConnectCallback() Start “BeginRead()” when the status is “Connected”.
EndConnect() Asynchronously accepts an incoming connection attempt.
Return the System.Net.Sockets.NetworkStream used to send and
GetStream() .
receive data.
. Begin an asynchronous read from the
BeginRead()
System.Net.Sockets.NetworkStream.
Decode and show the received data, feed received conditions back to
ReadCallback()
the server.
GetDecoder() Obtain a decoder that converts encoded bytes into characters.
EndRead() Handle the end of an asynchronous read.
. Decode a sequence of bytes from the specified byte array into a
GetString() .
string.
Decode bytes array in the internal buffer into the specified character
GetChars()
array.
ShowConnectStatus() Show connection status in main interface of CS.
ShowReceivedData() Show received data in CS interface after decoded.
HandleParameter() Feed received conditions back to the server.
SendOutData() Try to encode feedback data and send it to the server.
Encode all the characters in the specified System.String into a
GetBytes()
sequence of bytes.
NetworkStream. Write() Writes data to the System.Net.Sockets.NetworkStream.
Close the current stream and releases any resources associated with
CloseSocket()

the current stream.

37-

Doctoral Dissertation Control System

4.2 Data Processing

4.2.1 Real-time Data Processing

The real-time data CS originally gets is in bytes which could be recognized by
computers. The CS socket receives and converts these data to strings, and shows them
one by one with the PCS running. The converted data should as the same as the data
in Fig. 3.4. To demonstrate the data-received process more clearly, the real time for
data reception is displayed before every data. The received data with local time

information are shown as the Part I in Fig. 4.6.

In case there are some checks needed after the experiment, for the original-received
data shown one by one in the Part I of Fig. 4.6, the CS saves them as a file in .txt
format without any change. The file is named by the local time automatically. As Part
I of Fig. 4.6 shows, every data has been converted to strings. That is required for the
device activity description, rather than for the start time and run time of every activity.
In the strings, the duration time is shown in unit ms, which should be transformed to
the unit 5. So to make the received data more readable, the system converts the time
data in string to time format, and combines the data to the form as Part II in Fig. 4.6

shows. The time conversion is realized by the function TransformTime().

a5 Control System

PCS Commurication | Hitorieal Data | Cortral Virtualization

TCP/IP Socket: Connected [connext_| [DsConneat | [smuste |
Commurication Data Data Transformation: Saveas csv
ataReceive Time: Start Tme:Duration Time: Activiy: Status P R
/08/2013 1:33:21 PM; 41505 5648959838, 110, niislize Biomek Biomek FX Complete r = ctiamy Ses
/08/2013 1:33:21 PM: 41505,5648359838: 210 Intialize Biomek BiomekHX-Span Complete PartI 1:33:27 PM - 1:33:27 ... Intialize Biomek BiomekFX. Part I &=
/08/2013 1:33:21 PM: 41505,5648372454; 5 Place Iabware on BiomekFX,.Complete 13327 PM- 13327 . Intinlize Biomek BiomekNX-Span ari Complete
/08/2013 1:33:22 PM: 41505,564305023 1: 5:Resume light curtain on BiomekFX Complete i eutiicati i o)
/08/2013 1:33:22 PM: 41505.5649060231; 80.Cytomat6001 prepare to move from Cytomat6001.1-1to o OO omplee
Cytomat 6001 transfer station using SeFGrp Complete 1:33:27 PM - 1:33:27 ... Resume ight curtain on BiomekFX. Complete
P2 I8/0E/2013 13322 I 41505 848054655, 57 Cotomat6001 get Assayplatte_1 Assaypati:Lid_1 from Citomat6001.11 1:33:27 PM - 1:33:27 ... Cytomat6001 prepare to move from Cylomat6001.1-1 to Cytomat 6001 transfer st.. Complete
ing SeffGrip Complet 2 -
0872013 1:3322 PM 41505 SE49071875: 59 Cotomar6O01 pud Assyplate . Assaypat: i 1 1o Ctomat 6001 trarfer 130N 1332 ORGaGN get fsenpiotte, | Aseypitte L 1 o Cytomoll) | Limnig 5. Conpists
1 Lsing SelfGrp Complet 1:33:27 PM - 133:28 ... Cytomat6001 put Assayplatie_1 Assayplatte:Lid_1 to Cytomat6l01 ransfer statio... Complete
J08/2013 133,22 Pl 41505 5549080903; 168;Motoman meve from Cytomat00T transfer stationto Regrp.BCR using 1:33:28 PM - 1:33:28 .. Motoman move from Cytomat6001 transfer station to Regrp.BCR using LidNamow Complete | =
s 9523 P 41505 5645057222, 20 Open SMCShuttle.M1 for put,Complete e s e Compints
2 I8/08/2013 1:35.23 PM; 415055841045 14; 161 Mosoman mave fom Ragns ECRta SUCShutte M1 using TH2BEM 1 5320 o Motomen mave ko Hegip ECH1s SMCShlle:M fusng WideLow Compldta
WideLow Complet 1:33:28 PM - 1:33:28 .. Close SMCShuttle. M1 from put Complete
/08/2013 1:33:23 PM: 41505 5549124306 10 Close SMCShutle M1 from put Corpete !
//08/2013 1:33:23 PI. 41505 5643126158, 5,SMCShtle prope to move from SMCShutle M1 1o Biomek FX Shuttle o e S e San ece
SefGrp Complte 1:33:28 PN - 1:33:28 .. Open SMCShutile. M1 for get Complete
/08/2012 1:33:23 PM: 41505.5649128008; 200pen SMCShutle. M1 for get Complete L4 | 1:3328PM-1:3328 .. Open SMCShuitle. B for put Complete
/08/2013 1:23:23 PM: 41505,5643131597: 200pen SMCShuttle. B for put:Complete 1:33:28 PM- 133:28 .. Open BiomeKFX.Shuttle for put Complets
/0872013 1:33:23 PM: 41505.5649133449; 0,0pen BiomekFX. Shuttle for put:Complete . y
$515/08/2013 1:33:23 PM: 41505.5649133449. 25, SMCShuttle move from SMCShutle. M1 to Biomek FX Shutle using 1:33:28 PM - 1:33:28 .. SMCShutle mave from SMCShuitle. M1 1o BlomekFX.Shuitle using SelfGrip Complete |
SefGrip:Complete 1:33:28 PM - 1:33:28 .. BiomekFX LeftPod prepare Complete
/0872073 1:33:23 PM: 41505,5649137037; 19 Biomek FX:LeftPod prepare;Complete 1:33:28 PM- 13328 .. Close SMCShuttle. M1 from get Completed
/08/2013 1:33:23 PM: 41505.5643138773; 10.Close SMCShute M1 from gt Complete41505.5649142477; 10:Close R A 0 0 o i e it omm el Fieidin
Shuttle B1 from put.Complete . x P ¥
1/08/2013 1:33:23 PM: 41505 5649144213; 0.Close Biomek FX Shuttle from put:Complete: 1:33:28 PM - 1:33:28 .. Open SMCShuttle B1for get Completed
/08/2013 1:33:23 PM: 41505.5648144213; 20 Open SMCShutlleB1 for get:Complete41505.5648147817: 0:0pen 1:33:28 PM - 1:33:28 .. Close SMCShutle.B1 from get Complete
BomelcX Sl for ot Conplte 1505 5643147917, 1 Bomek X LefPod gsf Resaypste_1 Assayplate-L. rom . 4
e e 1:33:28 PM - 1:33:28 .. BomekFXLeftPod move Complete:
/08/2013 1:33:23 PM: 41505 5849173148; |D0use SMCShuitle B1 from get:Complete 1:3328PM-1:33:28 .. Close BiomekFX Shuttle from get Complete
/08/2013 1:33:23 PM: 41505.5643175: 16BiomekFX:LeftPod move:Complete41505 5649176852: 0:0pen BiomekFX.P15 1:33:28PM - 1:33:28 .. BomekFX LeftPod put Assaypiatte_1 Assayplatte:Lid_1 to BiomekFX P15 using .. Complets
it Complete 2
/08/2013 1:33:23 PM: 41505.5649176852; 0 Close Biomek FX. Shutle from get:Complete: : gi 5: m : gi 5: i S"e Ef;"i:ﬁ‘?sm ot E“’mglmd
/0872013 13328 P 41 05 554522176, 22 Bomel Lo s Assalats_| Acsaypsteiid_ 10 BomekFX P15 7 kol od orepanm onpleted
ing Attla_DefaukGrp: 1:33:29 PM - 1:33:29 .. Open BiomekFX.P14for put Complete
Se/30 73 495 P J605 5546207523 0 Close BomekFXP15from putComplete 1:23:29 M- 13329 .. Close BiomekPX.P15 from get Complete
1/08/2013 1:33:23 PM: 41505,5643207523; 0,BiomekFX:LeftPod prepare:Complete41505 5643209375 0.0pen i e
BiomakFX P15 for get:Complets41505.5649209375; 29:BiomekFX LeftPod get Assayplatte:Lid_1 from BiomekFX.P15 using 5 Yo ocmone ompete
_ DefauitGrip Complele 1:33:29 PM - 1:33:29 .. BiomekFX LeftPod put Assayplatte:Lid_1 to BiomekFX P14 using Attla_DefautG... Complete
706/2013 1-33.24 PM: 41505 5649212963 0:0pen Bomek X P14for put Complete 1:33:29 PM-1:33:29 .. Close BiomekFX.P14 from put Complete
/08/2013 1:33:24 PM: 41505.5643234722; 0 Close BiomekFX P15 from get:Complete -
/08/2013 1:33:24 PM: 41505 5649234722 S:Biomek FX:LeftPod move:Complete: ERDEM 18, L bad s o Tt), Compiete
/08/2013 1:33:24 PM: 41505 5649241898: 31:Biomsk FX:LeftPod put Assayplatte:Lid_1 to BiomekFX P14 using 1 BRI ..., Irmsferfor Tandercl Conglets
Atila_DefaultGrip:Complete 1:33:30 M - 1:33.30 ... Transfer for Transfer/9 Complete
1/08/2013 1:33:24 PM: 41505.5649267245: 0 Closs BiomekFX.P 14 from put:Complete % -
/0E/2012 13324 P 415055649268001. 146Lcad o or ranor/S Comita 4 IR o i R Rt Dyl
/08/2013 1:33.24 P 50 Trorsfor far Trares 1:33:31 PM- 1:33:31 .. BomekFX LeftPod prepare Complete
/0872013 13328 PM 21208 2e4373888 28 Tarwer o T CumD\e\e 1:33:31 P - 1:33:31 .. Open BiomekFX.P 14 for gt Complete
M: 41505.5649451736; 74.Tip handiing for Transfer/9,Complete 1:33:31 PM- 1:33:31 .. BiomekFX:LeftPod get Assayplatte:Lid_1 from BiomekFX P14 Atia_Defaul... Complets
/06 3017 13328 P 41508 SE4GATSEIT. 13 DoKX aiPod ramare Compiats i S R e e s STERS
1/08/2013 1-33:25 PM- 41505 5643476968, 0:0pen Biomek FX P14 for get Complete 1:33:31 PM- 1:33:31 ... Open BiomekPX.P15 for put Complete:
/08/2013 1:33:25 PM: 41505.5649482407: 31:BiomakFX-LeftPod get Assayplatte:Lid_1 from BiomekFX P14 using 1:33:31 PM - 1:33:31 .. Close BiomekFX.P14from get Complete
,Defa;?%&viwuéumu\ele T Y 1:33:31 PM- 1:33:31 . BiomekFX LeftPod move Complete
pen Biomel or put Complete: :
i M e e e ol o i 1:33:31 PM- 1:33:31 .. BiomekFX LeftPod put Assayplatte:Lid_1 to BiomekFX P15 using Attla_DefautG... Complete
/06/2013 T:3326 P 41505 5649509607, 9 Bomeld X Pod move Complete 1:33:32FM - 1:33.32 ... Close BiomekFX.P15 fom put Complete
/08/2013 1:33:25 PM: 41505. BiomokFX-LeftPod o d_1 to BiomekFX P15 using 1:33:32 PM - 1:33:32 . BiomekFX LeftPod prepare Completed
_DefauitGrip Complete 7 =
708/2013 1:33:26 PM: 41505 5649543866; 0:Close BiomekFX P15 from put:Complete = g 2 EM 133D _ Oner SMCSh e Hliorme Comoiete,

Figure 4.6: Receive and process real-time data — the CS communication interface

-38-

Doctoral Dissertation Control System

The workflow of the function is shown as Fig. 4.7. After transformed, the time factor
is converted to the time form with start time and end time. So the original-received
data is separated to three parts: Time, Activity and Status. Correspondingly, for the
processed data, the system saves it as .csv file, which is also named automatically by

the local time.

String

Start Time Duration Time

N _

~

Double

2R
N

Start Time Duration Time

b
|/

Add
b

y
Instant time \/ 7 Instant time

s

\ Start Time) End Time
\ \[_ _/

/ String \
K Start Time End Time j
— _

N (
£ String M
N, Time /

Figure 4.7: Workflow of the function TransformTime()

With the data received and transformed in real time, the CS simulates the workflow
data one by one. There is a button “Simulate” in the interface to trigger the next
function module — “Control Virtualization” (CV), which converts the data in string to
3D trajectories. At the same time, the button triggers many functions of the CV
module, including defining workstation, loading workstation layout, assigning data

and listing components’ names.

4.2.2 Historical Data Processing

Besides online virtualization for real-time data, at sometimes virtualization for
historical data is necessary. For instance, when we need to show the advanced devices
and work environments of the life science automation to customers out of the
laboratory, it will be much better to show vivid virtualization of LSA experiment

workflow in screen, other than to depict them in oral or draw in blackboard. So to

-39-

Doctoral Dissertation Control System

simulate historical workflow data (as whole data virtualization) visually is flexible

and helpful for the demonstrations of LSA laboratories.

As Chapter 2 depicts, the workflow data could be saved as .csv in PCS. As Fig. 2.1
shows, the data includes three factors: time, activity and status. The data is generated
with the scheduling method running in the Runtime module of PCS. It is complex and
lengthy. In this dissertation, not all of the activity data are necessary for the
virtualization, e.g. initializing internal parts of devices. So the “Historical Data”
module in the CS develops functions to extract and process key information from the
historical data in the .csv file (See as Part II and Part III in Fig. 4.8).

o=l Control System =
| Pcsc | Historical Data | Control
Flename: EA\Cortrol and Smulation System\PCS data\One Plate_F ~+ open | Smuate
PCS Data Received Bxiract Data
Time: Activity Status - Time: Activity Status -
§5407-85407 Placs labware on Cytomat6001 Complets §5407-85407 Placs labwars on Cytomat6001 Complete
B5407-85409 Iz Biomek BiomekNX-Span PartI 0 85412-85413 Placs labware on BiomekFX. PartIl 0.
B5407-85412 Inalize Biomek BomekX Complete B5413-85413 Resume gt cuta on BiomekFX Complete £
B5412-85413 Place labware on BiomekFX Complete B5419-8542¢ Cylomat60] get Assayplatie T from Cytomet6001. 11 using SefiGrp Complete
B5413-85419 CytomatBDO1 prepare to move from Cytomat6001 1-1 to Cytomat6001 ran . Complete B5424-85431 Cytomat6DOT put Assayplatts_ o Cytomst6001 trandfe station using SeF_ Complete
§5413-85413 Confimlabware sddiion Complete _| | 85231-85445 Moloman move from Cylomat6001 transfer staion to Fegrio.BCR using Ld... Complete
85413-85413 Resume lght cutain on BiomekFX Complete |7 | 8524585457 Wotoman move from Regnp BCRts SMCShute M1 using WideLow Complete
B5419-85424 CylomalS00] get Assayplatie_ from Cylomet6001. 1 using SefGrp Complete 8:54:57 - 85501 SMCShuttle move from SMCShule.M1 to BiomekFX. Shutlle using SefGria Complete
85424 - 95431 CytomatB001 put Assayplatte 1 to CytomatB0D1 tranfer station using SeF_ Complete B5501-85504 BomekFX:LeAPod get Assaypltte 1 from BomekFX Shutts using Atla_ Complete
B5431-85445 Moloman mave from CylomatG0DT transfer stston to Regrip.BCR using Ld... Complete 855:04-B5506 BiomekFXcLefiPod move Complete
B5440-95444 Open SMCShutle M1 forput Complete B55.06-85509 BomekPX:LeAPod put Assayplate_1to BlomekX P15 using Atla_Defau . Complete
Motoman move from Regrip BCR 1o SMCShulle, M1 using WideLow Complete 855:12-85513 BiomekFXiLefiPod move Complete
Open SMCShuttle B for put Complete 85517 - 85531 Load tps for Transfer/9 Complete
Open SMCShutle.M1 for get Complete 85517-855:17 Tip handing for Trensfer/ Complete
: Close SMCShutte M1 from put Complete B5517-85517 Prepfor Trandfer/9 Complete
B5457-85457 SMCShutle prepare to move from SMCShutle M1 to BiomekFX Shuttle us... Complete 855:31-B553 Trandferfor Tranfer/d Complete
85457 95501 SMCShuste move from SMCShutle M1 to BiomekFX Shuttle using SefGip Complate 85506-85541 Trandferfor Transfer/d Complete
B5457-85457 Open BiomekFX. Shuttle for put Complete 8:5543-85550 Tip hending for Transfer/9 Complete
85459 95501 BomekFX:LeRPod prepare Complete 85543-85541 Trandfer posttourfor Transfer/3 Complete
£55:01- 85501 Close SMCShuttle. M1 from et Complete SARAY DAL Cleanun foe Tranciar/d Cormriste i
85501 - 95501 Clese SMCSrutie B o put Complete —
85501 - 85501 Close: BiomekFX Shuttle from put Complete
B5501-85504 BomekPX:LefPod et Assayplate_1from BomekFX Shuttls using Atla_ Complete . PP — — Toal 7
i :: g: i : ::gl g“a" :MC ch‘:” "”’fgﬁ g“”“’:“ 5 Cytomat6001 ot Assaypistts_1 from Part Il 5.,
¥ o] D] e fox e ol 7 Cytomat6001 put Assayplatie_Tto Cytomat6001 transfer SelGrip
85504-85506 BomekPXLeftPod move Complete Ap Ui = £ i i
B5504-95504 Close SMCShuttle B1 from get Complete o g s st R
§55:04-85504 Closs BiomekFX Shutlle from get Complets i i b i M |
el Dpen BomeREXF] 3for pud Complet? 3 BomekFXLletPod get Assayplatte_1from Attla_DefautGrip 7
§5506-85509 BomekPX:LeftPod put Assayplate_1 to BiomekFX P15 using Altla_Defau . Complete 3 s - .
S -anm Qpen Hlamed At iblocaet Tomplete, 3 BomekFXlefPod put Assayplatte_Tto BiomekFX P15 Attla_DefaultGip
§5509-85509 Closs BomekFXP15from put Complete E At it v
8:55:09 - 8:55:09 BiomekFX:LeftPod prepare Complete 5 Bkt oo "
B2 A8, Opsen Bk EXCE 14 for il Coumlets, 3 BomekFX-LeftPod get Assayplatte_1 from Atla_DefaultGrip
Beir ol Bamampnme G g (S
s e ogmove s 4 BiomekFX:LeftPod put Assayplatie_1to BiomekFX Shuttle Mtila_DefautGiip
8:55:17 - 8:55:31 Load tips for Transfer/9 Complete 4 SMCShuttle o SMCShuttle M1 SelfGrip
§5517-85517 Tip handing for Transfer/3 Complete 2 e e Feten e
85517-85517 Cose BomekPX P14 fom e Complete Sl i oo |l
§55:17-85517 Prep for Trandfer/3 Complete 1 il o S, Sy
BXal-0i3s: TendafoiEndsd Coinpiats 5 Cytomat&00T put Assayplatie_1to Cytomat6001.1-1 SefGiio
8553685543 Trandlerfor Transfer/3 Complete . Eaet 4 e o
:g: :; 1 :55235 :" h;”d“”g oy T'E'”f” 5# . E””“’:“ 8 Cytomat&00T put Assayplatie_Tto Cytomat6001.2-1 SefGip
S rande o ko o Tratster i 10800 Incubate Assayplatte_1at Cytomat6001.2-1
gg: ‘;{') i : ::;13 Sea” :I‘;;“L’;t':“jw R E””“’:“ 5 Cytomat600T get Assayplatie_1 from SefGio
) o ot i ket - 7 Cytomat 5001 put Assayplatte_Tto CytomatB001 transfer SekGrp A
RESEN. AESED (ian RomekEX P14incost Complata

Figure 4.8: Historical data processing

As Fig. 4.8 shows, there is a drop-down box listing the names of .csv files from a
defined folder automatically while the CS is started. That is the module for users to
choose the historical data file. When the simulated file is open and loaded into the
interface, there are three parts to extract and process the imported data. Part I works
for showing the integral data in list; the Part II works for extracting useful data from
Part [; and the Part III works for extracting key words from Part II. The final key

words extraction is for simulating the workflow in shorter time. Except for useless

-40-

Doctoral Dissertation Control System

information and unimportant words, the system could save more time for data
assigned and virtualization control in VM. As shown in Part III, to meet the needs of

fast virtualization, the key words includes:

1) Time (s) —to get the action duration time (unit: s) for the working device;

2) Device — find the active device in VM directly based on its name;

3) Action: teach the device which kind of actions it need to do, such as get, put, and
move, etc;

4) Object: teach the device which object it should work on;

5) Target: teach the device where it should go in the activity (Note: the last target is
the beginning position of the next activity);

6) Tool: teach the device which tool it needs to activate and use. Owing to the above
key words, the system could easily and fast assign the data to the corresponding

device.

After getting the key words, there is a button “Simulate” for toggling to the tab page
“Control System”, which works for connecting with the VM, and driving the VM
forming the series of movements as the workflow data depicts. The button triggers the
functions of the Control System for historical data, including link with the simulation

software, load workstation layout and assign the key data to the related components.
4.3 Control Virtualization

Control Virtualization is the most critical module to work for controlling and realizing
the virtualization. Behind the module, the 3D simulation software 3DCreate is applied
by calling its APIs. CS realizes the virtualization for the workflow data by controlling
3DCreate working. After that, the module sends the virtualization result to PCS via
corresponding TCP/IP socket.

41-

Doctoral Dissertation Control System

Figure 4.9 shows the workflow of the CV module. On one hand, CS calls COM APIs
of 3DCreate to load the workstation layout into the embedded-in GUI, list the names
of components of the workstation layout, and assign the workflow data to the related
components for creating most of their behaviors. On the other hand, the system calls
Python APIs of 3DCreate to compile behavior properties of devices, trajectories of
robots, and so on. At last, the system creates movement sequences for the components
in the layout. All these behaviors, trajectories and sequences form whole workflow
movements, which could be saved into a layout as .vcem, or recorded as .pdf animation.
Finally, the CV module feeds the virtualization result in the form of .pdf back to the
PCS via TCP/IP socket. The result is the basis for the PCS users to decide whether to

drive the workstation running in the LSA laboratory.

Choose workstation layout
from local folder

Load layout to 3D World

List components names.

Scheduling Simulation setting :
data Run, Stop, Reset, Simulation mode, Time size...

Assign data Save layout as .vem -

Define
workstation

Call 3DCreate OCX

h

Call COM API —————
Record simulation as .pdf j¢———
Create behaviors component creator, container for
> Call Python APT Incubators, microplate hotels...

Create behaviors as Servo Controller, RSL Program
Executor for servo devices...

l

Porgramming for Python Scripts

Movement parameters

Behaviors properties

(T3
N

Create behaviors for robots: Kinematics, Robot
Controller, RSL Program Executor, Singal, Interface...

l
P
&

N

\/

Create behavior Python Scripts for servoes, robots...

/’

Robot actions Create sequence of the movements for devices

U

Trajectories v

=

Virtualization result

TCP/IP Socket

PCS

Figure 4.9: Workflow of the module CV

42-

Doctoral Dissertation Control System

Control Virtualization module is shown as Fig. 4.10. There are six modules in the
interface:

I. Virtualization demonstration;

II. Import workstation layout;

III. Simulation setting;

IV. Save layout;

V. Send virtualization result (animation) to DTS;

VI. List components' names. In the module I, there are three key functions referred:
link with the VM, assign data, and show virtualization result. The module is
shown in the form of the embedded VM GUL

o2l Control System
PCS C: | Historical Data | Control Virtualization
{ Import models II
Workbench Motoman system =]
A
#”Simulation Setting

IV

@ Vitual Time

Simuation Step Size:

Simuigtion Run Time: secondis)
Simulation Mode ——

(@ Real Tme

I

Send animation
to PCS
b

{Componerts lst: VI ™

[RuSiop | [Rest | [Recod |

Ts
TipBox
ConvNX
CytoHotel
Computer
Track
HP3IC
EngineBox
SGO150

FenceAndTable
BiomekNX-Span
Biomek-FX
SMCshuttle
Assayplatte:Lid
Assayplatte

Figure 4.10: Control Virtualization

43

Doctoral Dissertation Control System

4.3.1 Link with the Virtualization Model

Either for virtualization on real-time data or historical data, once the tab page
“Control Virtualization” is triggered, the Control System will connect with the
simulation software — 3DCreate at soon. As Fig. 4.11 shows, when the data processing
module sends the request of virtualization, the CV module is activated. Then the

module tries to start 3DCreate program by calling its COM APIs.

Real-time data

Virtualization r&:qu% Control Virtualization

Historical data

APl

Start

APl

IDCreate

Figure 4.11: Link with the VM for virtualization request

There are two methods to start the 3DCreate program via its APIs: One is to open and
expand the software fully just as it runs generally; the other one is to run the software
by embedding its GUI into the system. The first one is realized by calling
corresponding program running commands of COM API, and the second one is by
calling a COM component of 3DCreate. At the stage of generating and checking
trajectories in 3DCreate, as well as the system-test stage, the first method is applied
frequently. For the finished system, the second method is applied for system
simplifies and more vivid virtualization. The embedded GUI, which is also called
3DWorld in 3DCreate, is presented as the Part I of the “Control Virtualization”
interface in Fig. 4.10. It is realized by calling the application component OCX of
3DCreate. On the back of the 3D World interface, there are strong functions of
3DCreate.

-44-

Doctoral Dissertation Control System

While the system links to 3DCreate and jumps to the control system interface,
3DCreate OCX is called, and the 3D World is embedded into the Demo Platform. The
related layout is loaded to the platform. Once experiment data is assigned to the
devices in the layout, the platform can show the virtualization result directly while the
simulation setting module is triggered. The platform makes the virtualization on real-

time data faster and more vivid.

To make sure no exception in the controlling process, there is just one 3DCreate
program permitted to run. So before the software is started, the system searches from
the computer processes whether 3DCreate program is running. If it is, the system will
force to end the software process, and restart it by calling its COM APIL. As shown in
Fig. 4.12, the judgment process is finished by the function IsRun(). For the GUI
embedded method, while the CS interface is closed, the 3DCreate process will also be
ended by the corresponding COM API command.

@equest for E’irtualizatina

IsRun()

[End 3DCreate }

.

Start 3DCreate |

Figure 4.12: Workflow of the reaction for virtualization request

4.3.2 Import of the Workstation Layout

After open 3DCreate or embed its COM component for application window in CS, the
system works following with the workflow data. Based on the extracted data, firstly,
the system judges which workstation the workflow data works on. Then it searches
the workstation layout file from a specified computer disk, and loads it into the
3DCreate GUL

45-

Doctoral Dissertation Control System

The workflow for importing the workstation layout is shown as Fig. 4.13.

Device
Motoman HP3JC, BiomekFX, BiomekNX-Span8, ; Workbench
SMCShuttle, ConvNX, CytoHotel, Cytomat 6001, Define
PHER Astar, NovoStar, RoboPeel, RoboSeal, i
Deckelstation, Regarip, Sigma, ELx403, Print & Apply Motoman system
Search
file
L .-
| - @
——
@U v[.. =« Control and Simu... » Layouts - | &,| | Layouts durchsuchen ,01

Organisieren v In Bibliothek aufnehmen « Freigeben far = » 3= = [l 0
MName Typ : Anderungsdatum GroBe
| posttions.bd Textdokument 29/05/2013 5:01 PM 3KB
% Biomek Workstation.vem Visual Component Model 12/04/2013 8:44 PM 8,564 KB
%% BiomekFX.vemn Visual Component Model 30/05/2013 11:52 AM 2901 KB

| ¥%» BiomekMNX Workstation.vem Visual Component Model 18/04/2013 10:56 AM 8,950 KB
¥2; Cell Culture System.vem Visual Component Model 30/05/2013 10:32 AM 2,909 KB
%% Motoman system.vem Visual Component Model 21/06/2013 2:26 PM 9,772 KB
%% Reactor System.vem Visual Component Model 16/04/2013 9:15 AM 4,404 KB
% Zymark system.vcm Visual Component Model 15/04/2013 9:38 PM 4, T14 KB

1] +

Load
layout

3IDCreate

Figure 4.13: Import workstation layout

46-

Doctoral Dissertation Control System

(a) Define workstation

There are many specific devices in every LSA workstation. Table 4.2 lists the
workstations at celisca and their corresponding devices. Based on the devices
information, it is easy to define which workstation the workflow runs on. For example,
if there is the word “Motoman” in the parameter “Device”, it is surely the working
workstation is “Motoman system”. So the workstation layout CS should load could be

determined by the key word “Device” in the workflow data.

Table 4.2 Workstations and their devices at celisca

Workstation Device

Motoman HP3JC, BiomekFX, BiomekNX-Span8, SMCShuttle,
ConvNX, CytoHotel, Cytomat 6001, PHER Astar, NovoStar,
RoboPeel, RoboSeal, Deckelstation, Regrip, Sigma, ELx405, Print &
Apply

Zymark XP, Adapter f Turbovap, Analysenwaage, Autodose, Biichi
Syncore, HPLC, PAL, CEM Discover, CTC Analytics

Motoman system

Zymark system

BiomekNX-Span8, Vi-Cell® XR, Zeutrifuge Vspin Velocityl1,
Cell Culture System Cytomat 6001, FX Device Controller, Port Selection Valve, Cooling

box, MasterFlex ® Console Drive

Biomek 2000, HPMR50-96, ORCA robot, HPLC system, Time-of-
Flight mass spectrometer, CTC Analytics

Reactor System

(b) Search layout file

There are many workstation layouts saved in a specified folder. They are the original
layouts with stationary components, which compose to a workstation and have no any

trajectory.

When the workstation name is defined, the system searches its layout file at once from
the specified folder, and shows the name in the system. For 3DCreate, the layout file

ends in .vcm as its extension.
(¢) Load layout into VM

Before loading a workstation layout into 3DCreate GUI, CS checks whether it has any
component. If it has, the system clears it. When the GUI is surely vacant, CS executes

the definition and search functions, and loads the layout into 3DWorld of 3DCreate.

47-

Doctoral Dissertation Control System

4.3.3 List Components’ Names

The module VI in the Fig. 4.10 is for listing the names of all components in the layout.
While the workstation layout is loaded into the GUI, all names of components are
listed in the box. Whenever there is any change in the GUI, the contents in the listing

box will be refreshed.

The module is realized by the COM API command, which gets the “name” property
from all components. In this process, CS gets the component one by one, and at the

same time, to get the name property from the component properties.

4.3.4 Assign Data

The assign data module works to transform the workflow data in strings to trajectories
of 3D models in VM. It is the most critical step in the data virtualization process. In
CS, the “Assign Data” works as an invisible module behind the Part I in Fig. 4.10.
Once the “Simulate” button in either ‘“real-time data processing” module or
“Historical data processing” module is clicked, the assign data module is called and

triggered with the Part I activated.

Although it works for data assigned literally, it is a complex process to create
behaviors, parameters and trajectories in 3DCreate by programming. Some of these
tasks are developed by calling COM API, such as joints, features and parameters
created; and some are written to the Python script behavior by calling both COM API
and Python API, such as behaviors, trajectories created. The first development way
applies Visual C# to call relative methods and properties of 3DCreate COM API,
which includes type libraries as vc3DCreate, vcCOM and vcCOMecat, etc. The
second way applies Visual C# to create behavior Python script by COM API, and
python language to add movement parameters, behaviors properties, robots actions

and trajectories, etc. into the Python script by calling Python API.

When one of the data processing modules triggers the CV module, CS finds and loads
the workstation layout into 3DWorld. After the layout is loaded into 3DCreate GUI,
the data assignment is started automatically. In this course, the system assigns the
processed data to the corresponding components of devices in the workstation. For the
real-time data, the system assigns them one by one with the data received, generates
components’ trajectories and run them in 3DCreate in real time, and finally forms a
whole series of movements until the scheduling experiment is finished. For the

historical data, the system assigns all the data to the corresponding devices in one time,

-48-

Doctoral Dissertation Control System

and then generates the whole virtualization when the data is assigned fully.

4.3.5 Data Analysis

Generally, there are four factors in one workflow data: run time, working device,
object, and activity. As for the “activity”, it refers to some factors as action, start point,

destination, tool and purpose, .etc.

To assign the activity of every data to devices, the system needs to separate it to many
factors and actions, which the related 3DCreate API could be called to generate.

Table 4.3 shows some workflow data of LSA experiment.

Table 4.3 Parts of the workflow data of a LSA experiment

No. Time Activity

1 8:54:07 - 8:54:07 | Place labware on Cytomat6001

Motoman move from Cytomat6001.transfer station to Regrip.BCR

2 8:54:31 - 8:54:45 using LidNarrow

SMCShuttle move from SMCShuttle. M1 to BiomekFX.Shuttle using

3 8:54:57 - 8:55:01 SelfGrip

BiomekFX:LeftPod get Assayplatte 1 from BiomekFX.Shuttle using

4 | 8:55:01-8:55:04 Attila_DefaultGrip

5 8:55:17 - 8:55:31 | Load tips for Transfer/9

6 8:55:31 - 8:55:36 | Transfer for Transfer/9

7 | 11:57:55-11:58:53 |Issue command to Teleshakel (1:00)

8 | 11:59:08 - 11:59:12 | Open PHERAstar.R for put

Motoman move from ConvNX.outer to PHERAstar.R using

9 | 11:59:17 - 11:59:28 |y b b

10 | 11:59:28 - 11:59:32 | Close PHERAstar.R from put

11 | 11:59:32 - 12:00:42 | Issue command to PHER Astar (1:47)

12 | 12:00:42 - 12:00:47 | Open PHERAstar.R for get

Motoman move from PHERAstar.R to ConvNX.outer using

13 | 12:00:47 - 12:00:59 WideReverse

14 | 12:00:59 - 12:01:03 | Close PHERAstar.R from get

-49-

Doctoral Dissertation Control System

Take the data No. 1 for an example, the activity “Place labware on CytoHotel” should
be separated to many actions (as Fig. 4.14 shows). It includes five steps of actions,
which refer to different commands, such as import, translate and rotate the component.
For the data No.2, No.3, No.9 and No.13 in Table 4.3, they all have factors as device,

action, start position, destination and tool.

Place labware on Cytomat6001

. Find labware component from local computer disk;

. Load labware component to 3DWorld;

. Find the Cytomat6001 position for labware component;
. Translate labware to the Cytomat600]1 position;

. Adjust the direction on the position.

L

Figure 4.14: Actions contained in the workflow data No.1

Figure 4.15 shows the factors separated from the data No.2. From Fig. 4.15, the
activity depicts that the “Device” Motoman takes an action “move”, from the position
Cytomat6001.transfer, to the position Regrip.BCR. In this course, Motoman applies

its tool -- gripper with the condition “LidNarrow”.

Motoman move from Cytomat6001 .transfer station to Regrip.BCR using LidNarrow

¥ i r ¥ A A

Device Action Start position Destination Tool

h 4
¥

Motoman move Cytomat6001 transfer Regrip. BCR LidNarrow
&

Figure 4.15: Factors in the workflow data No.2

-50-

Doctoral Dissertation Control System

4.3.6 Information Mining and Collection

Just knowing the objects of the factors is not enough to realize the data assignment.
More detailed information is needed for the CS to start assigning data, such as the

motion method of the robot, the coordinates of the start position and destination, etc.

In fact, there is a large number of information implicit in every factor of the data.
Parts of it are the ones that data assignment needs. They could supply sources and
basis for the data assignment. They are critical in the conversion process from strings
data to 3D motions. So before assigning data to the VM, it is necessary to mine and

collect the important information from the factors of every data.

Table 4.4 shows a case to mine some important information from the factors of the
data @ in Table 4.3. From Table 4.4, for the factor “Device” Motoman, the robot
original position, tool center point (TCP) coordinates, robot joints value, and the
kinematics of the robot, etc could be mined for next system work; for the “Action”,
many motions could be designed for the robot; as for the factors “Start position” and
“Destination”, from the names of the devices, the target frames on them could be
mined, and at the same time, the respective coordinate values of the frames in the
robot parent coordinate system could be extracted for the robot moving; the factor
“Tool” supplies important condition for the tool of the robot. It tells the robot
Motoman which gesture its tool should apply to work on the target object. All these

information could be extracted from the related 3D components in the layout.

Table 4.4 A case of information mined from workflow data

Factor Content Information referred

Original position of the robot, Tool Center Point (TCP), Tool

direction; joints’ values, kinematics...

Device | Motoman

Action | move Many motions with tool targets should be created.

the first place robot Motoman should go; the coordinate

Start . . o
i Cytomat6001.transfer | information of the target position; the frame of the tool target;
position
second action for Motoman: pick up ...
Destinat the destination position robot Motoman should go; the
ion Regrip.BCR coordinate information of the end position in the activity; aimed

frame for tool; third action for Motoman: put down

Tool LidNarrow The working condition of the tool Gripper

-51-

Doctoral Dissertation Control System

After CS mines all information the assignment process needs from one data, the
system collects them together for the related device. The full-collected information
tells CS which functions it should realize in VM. The collection work does
preparation for the full assignment to the device, which will be taught to convert all

the mined information to some motions.

4.3.7 Data Assignment

The trajectories of devices are generated in the simulation software when CS sends
the data to VM and drives it to create corresponding movement routes via the APIs of
VM. This will be done by the third tab page “Control System”.

This is an API programming and application process to develop the simulation
software 3DCreate secondarily. When the CS receives the full information
virtualization required for every data, the system starts to assign the information to the
related components in the layout. In this process, based on the information, the
module calls and programs COM API of 3DCreate to generate corresponding 3D

motions for the components, and form 4D trajectories which could be run in VM.

To shorten the trajectories generation time for the virtualization on real-time data,
every possible trajectory is created in 3DCreate. When the data is separated to
detailed information, the system calls corresponding trajectories to realize its 3D
simulation. So in the data assignment, the system just needs to get and separate data in
real time, and then based on the extracted workflow in the data to call its trajectories
in 3DCreate. This concept of data assignment greatly saves time in trajectory

generation, and ensures the virtualization speed.

In the data assignment, at first, the CS searches the component from the layout
according to the “Device” name. Then the system assigns the corresponding
commands to the component. If the component is a robot or a servo, the CS finds its
executor and controller, and creates or calls motions for them. If the component is

stationary, the system set its corresponding properties as the data requires.

-52-

Doctoral Dissertation Control System

Figure 4.16 shows a case to assign a data to the related components in VM. For the
data “Motoman move from Cytomat6001.transfer station to Regrip.BCR using
LidNarrow”, at first, based on the factor “Device”, the system finds the component
“Motoman” in the GUI of 3DCreate. Then the system extracts the component’s
original status information (including original position, tool gesture (narrow or wide),
tool location, configuration method, joints’ conditions, etc), and the start position for
its first movement. Between original position and start position of the tool frame,
there are many motions created for the tool frame of Motoman. When the tool frame
in Motoman arrives at the position “Cytomat6001.transfer”, the system goes into the
component Motoman to check whether its tool gesture is right for next movement. In
this data, the tool should be as “LidNarrow” for grasp the labware. So if the tool is not
in gesture “LidNarrow”, the system adjusts its gesture and position to narrow at the lid
height. That is realized by remote calling the routines of the gripper SG0150. The
SGO150 routines are the ones having corresponding motions, which change the
gripper sizes, gestures and directions to grasp or release object. Then, the CS calls the
action statement “pick” to get the labware on Cytomat6001.transfer, and creates a
motion for the labware “up”. All the above motions, remote routines and grasp actions
form a workflow trajectory “from_Cytomat6001.transfer” of Motoman. After that, a
routine “NarrowtoRegrip” of Motoman is called to realize the action “move” to the

destination position “Regrip.BCR” in the narrow gesture of the gripper SGO150.

Action

ase, tool, Parameters: base, tool,
ation method, configuration method,

1 dh“ are move labware
' - ES
s Motions N Mntlons

I | [i

-~ | motion] |

{ ! — —

‘!;--.._ | motion2 motion2 }

- { !
Device ! motion3 Start position motion3 | Destination

: R — I
Motoman —— R | Cytomat6001.transfer —— }—» Regrip.BCR

|

J

|

I

I

|

|

|

zoordinate. .. target coordinate

Cel coordinate values | | | Get coordinate values :
| 2

|
= _oftheposition | | of'the position !

Find Create motions I Adjust tool itions ! Create motions
> | JLlh[00 'P()Slt](]l'lh | — —] - 2111, < |
component for Motoman | ___ for Motoman | it (el i I

Tool &
Check
LidNarrow
| Chanee ool or 1
Change tool or]

-’? No | _ itsdirection |

Figure 4.16: Workflow of the data assignment

-53-

Doctoral Dissertation Control System

Algorithm 4.1 A case of data assignment in the CS

Data: Motoman move from Cytomat6001.transfer station to Regrip.BCR using LidNarrow

. Find component “Motoman”
. Find executor and controller of “Motoman™
. Find the main routine in the executor

: Statement #1: Define tool location for “Motoman”

1

2

3

4

5: Search the action in “actions” ...

6: if the action is “move” do

7 Search the start position in the “‘fromDevice” group...

8 if the start position is “Cytomat6001.transfer” do

9: Statement #2: Call routine “from_Cytomat6001.transfer”

10: Search the tool in the “tool” group...

11: if the tool is “LidNarrow” do

12: Statement #3: Call remote routine “SG0150_ForNarrow” to
from_Cytomat6001.transfer”.

13: Statement #4: Create motion for tool frame to Cytomat6001.transfer.

14: Statement #5: Create action statement “pick” to ‘‘from_Cytomat6001.transfer”.

15: Statement #6: Call remote routine “SG0150 Narrow” to

“from_Cytomat6001.transfer”.

16: Statement #7: Create motion “up” from Cytomat600]1 .transfer.

17: Search the destination in the “toDevice” group...

18: if the destination is “Regrip.BCR” do

19: Statement #8: Call routine “NarrowtoRegrip” to the reach position near Regrip

20: Statement #9: Create action statement “put down” to “NarrowtoRegrip”.

21: Statement #10: Create remote routine “SG0150 ForNarrow”.

22: end if
23: end if
24 end if

25: end if

return a 3D trajectory

(a) Assign real-time data

The assignment for real-time data in the CS is triggered by the command “Simulate”
in the “PCS Communication” tab. When the PCS workflow data enters into the CS,
the system assigns every data to the workstation layout for corresponding trajectories
generation one by one, and shows the 3D movement in its interface synchronously. In
the virtualization process, it is feasible to add new trajectories into the movement, and
show the new ones with the moving going. If there is some interruption in the data

transmission, the virtualization for the received data will not stop until there is no data

-54-

Doctoral Dissertation Control System

left. Once the data is gotten again, the data assignment and virtualization will go on
from the breakpoint. When the data is received totally, the trajectories will also be
generated in a specified sequence. After that, the virtualization is finished, and the

whole movement for the experiment workflow is generated.

In a word, the real-time data assignment works in real time, and its virtualization
result is also generated and shown with it in real time. The full virtualization result
could be gotten until all the data is received and assigned. The processes for real-time

data transmission and virtualization work as Fig. 4.17.

T T -
Byte ! String AY String
_____________________ . |
data data
—_— —_— —"'—I
2 data2 data2 |
(1 1 il i
data3 d da data3 |
PCS atad DTS . — Transform |
1 latas ilas - datas
—_— E—— it e, > :
. |
. - ., H
|
_______________________________________ N e
SILAS OCX TCP/IP Socket Decoder Time, Activity, Status :
(02
- . - <

COM API, Python API

VM
-—{simulation... H movement... }1—{ trajectory... }1
1—{ simulationd H movementd }1—{ trajectoryd }17
whole
virtualization g ; :
- simulation3 movement3 trajectory3
for the sl
workflow N N | [|
ki 1—{ simulation2 Hmovemle i l trajectory2
1—{ simulation] H movement| H trajectoryl }17

b

Figure 4.17: Real-time data transmission and virtualization
(b) Assign historical data

The assignment for historical data is triggered by the command “Simulate” in the
“Historical Data” tab. For the historical data, it is a full workflow data for a whole
experiment. So the assignment for historical data is done in one time, and the full

virtualization result could be generated after that.

The assignment process of historical data also runs in the order of the data one by one,
which makes decision of the movement sequence. Finally, all the motions for the data

virtualization form an integral workflow layout, which can run by the simulation

-55-

Doctoral Dissertation Control System

setting module of the Control System. The processes for historical data virtualization

work as Fig. 4.18.

- ™ i '
Cs VM
e A
! latal —— » trajectoryl >
[
|
|
| -
: dat: : » trajectory2 Lo whole
. - virualization
: data3 —— E—OM Al l)‘ » trajectory3 » forthe
: : Python API workflow
! datad — » trajectory4 » data
|
: |
| : » [rajectory... »
o o
: Workflow data ! \ 4

Figure 4.18: Historical data virtualization

4.3.8 Motions Sequence

The workflow data implies information about the sequence of device motions. With
the motions for one data being generated, the CS creates sequence for it and the
following one data. After the sequence for all data is created, a complete and coherent

virtualization for the experiment workflow data is produced.

The sequence of components’ motions in 3DCreate is generated by calling remote
routines. Correspondingly, the CS calls the COM API to create new statements for
remote routines. Taking the virtualization on Motoman system as an example, the CS
defines the robot Motoman as the main moving robot. When there is a motion of other
component generated, the Motoman robot controller will create a statement to call the
remote routine of the motion, and another statement to wait for the motion being
finished. After that, the call for remote routine is over, and then following with it, the
next motion of the Motoman is generated and added to the sequence. With the whole
data is assigned, all the motions of other components are inserted to the Motoman
movements. At last, an orderly motions sequence is generated in the Motoman
executor. The motions with their sequence constitute an integrated 4D movement

virtualization on the workflow data.

-56-

Doctoral Dissertation Control System

4.3.9 Simulation Setting

To control the virtualization demonstration, it is more flexible if there is a simulation
player to operate the virtualization process. The module “Simulation Setting”, which
is shown as the Part III in Fig. 4.11, is just the one developed as a player. The module
has all functions for simulation setting and controlling as 3DCreate. It is also realized
by calling the corresponding COM API of 3DCreate. The functions are depicted as

followings:

(1) Simulation run time: There is an input box for users to set the simulation time
length. Many time units could be chosen, e.g. hours, minutes, seconds or years,
months, days. The default unit is second(s). The module works to set the property

“SimulationRunTime” in 3DCreate.

(2) Simulation mode: There are two simulation modes supplied for users to choose:
virtual time mode and real time mode. The former is dependent on the computer speed,

and the later means the time in the simulation is the one in real time.

(3) Simulation Step Size: Both of the time modes can be accelerated and decelerated

by setting the step size for the simulation.

(4) Run/Stop: The module works to switch the functions between start and pause the

simulation. It is realized by setting the property “simulation running” in 3DCreate.

(5) Reset: The module resets the simulation to its initial state. It starts the

corresponding simulation command of 3DCreate COM APL
4.3.10 Post Processing

When the virtualization on experiment workflow is finished, the CS needs to back it
up and feed the virtualization result back to the PCS. The related post processing for

the virtualization result includes the followings:
(1) Save layout as 3DCreate format

The module saves the layout with the simulation movement as a 3DCreate file
(*.vem), which is backed up for being reused and modified. In this module, the CS
gets the command from COM API, and then executes it in 3DCreate.

(2) Record as animation file

-57-

Doctoral Dissertation Control System

In 3DCereate, it is feasible to record the virtualization result as an animation in .pdf
format, which could show the animation vividly in flexible 3D views and sizes in
Adobe Reader. The module could not only save historical data virtualization result
into a whole animation, but also save the online virtualization into many parts, which
could be sent and shown in PCS synchronously. The function is also realized by

setting corresponding property of the 3DCreate COM API.
(3) Send animation to the DTS

In the online virtualization, there is a requirement to send the virtualization result
instantly back to DTS, which works at the PCS side. As the above context depicting,
in the online virtualization process, the virtualization result is separated into many
parts of .pdf animations step by step. So in this module, the CS applies the TCP/IP
socket technology to send these .pdf parts one by one to the DTS with their gradual

generation.

As Fig. 4.19 shows, once the animation file is generated, the CS socket gets an
encoder in Unicode form to covert the .pdf file into datastream for transmission from
the CS to the DTS. While there is an interruption in the communication, the CS socket
will try to call the DTS socket again. Until the communication is created once more,

the CS socket starts to send the animation files from the breakpoint.

d atastreamd
e ——
datastream. ..

Figure 4.19: Virtualization result transmission
4.4 Discussions

The Control System realizes the data conversion from text to three-dimensional

kinematics and dynamics in real time. It links all other modules as a whole

-58-

Doctoral Dissertation Control System

virtualization system, and controls its working for realistic LSA workstations and

laboratories.

However, the CS itself has no simulation functions just by programming. So it
requires a third 3D simulation tool to demonstrate the converted kinematic and
dynamic data graphically, and control the tool to form a virtualization result in 4D.

The selection and applications of the 3D tool are presented in detail in chapter 5.

-59-

Doctoral Dissertation Virtualization Module

Chapter 5 Virtualization Module

5.1 Introduction

The Virtualization Module is the last and very important module in the virtual
virtualization for the LSA workflow. It should prepare the workstation layout for the
VS, and supply strong 3D simulation functions for nice virtualization effects. In
addition, the module should have the feasibility for CS to control and drive. To meet
the requirements of the VM, the dissertation applied 3D virtualization technology. The
technology refers to some 3D simulation software, which has strong virtualization

functions and strong API for CS calling.

Currently, there are lots of popular 3D CAD software and animation-making software.
In the dissertation, besides of the general animation functions, the simulation tool
should have strong functions to create kinematic trajectories and dynamic actions for

mechanical models. From the demands of the virtualization, some related mature 3D

simulation tools are compared in Table 5.1.

Table 5.1 Comparisons of 3D simulation software [117]-[122]

Solidworks 3DCreate 3ds Max Maya Easy-Rob
Main application meghamf:al .D1g1t§1 Games Film . Robo.t
areas engineering simulation simulation
Rendering good Excellent slow slow slow
speed
Anz::)z;:lon good Excellent Very good Excellent simple
Modeling Excellent week Excellent Very good week
CAD d.at:.l Excellent Excellent good good Not too
communiation much
Vi Aflls; i | COM/Pyt-
suz;or asie hon API;

API 6: d Applications V\l/s;;{alla{Béilc, SDK; Visual API(;:Xjrsual API; Visual
supporte (VBA), 1al A, C++ C++
language VB.NET Visual

o ; C++,C++
Visual C#, Buii der
Visual C++
: Multl_. No Yes Yes Yes Yes
kinematics

.Rob(?t No Yes No No Yes

libraries

-60-

Doctoral Dissertation Virtualization Module

Integrating factors as virtualization object, graphics, rendering speed and application
areas, .etc, we chose 3DCreate for the 4D virtualization. The software 3DCreate is the
premium package of the Visual Components' software family. It could work for multi-
robots kinematics simulations synchronized, and supply very good graphics and high
speed rending [123]-[125], which is necessary for online virtualization. The software
users could create new simulation components from existing 3D CAD data by adding
custom functionality with behaviors and parameters, and simulate complete factory
layouts. What's more, the software supplies strong COM API and Python API [126]-
[128] for application developers. Fig. 5.1 is a case of 3D manufacturing virtualization

with 3DCreate. The process for creating a 3D virtualization using 3DCreate is as
followings:

i. Prepare 3D models for 3DCreate;
ii. Create component in 3DCreate;

iii. Teach robots how to work.

\

4%
an
q
%

Figure 5.1: 3D manufacturing virtualization with 3DCreate

61-

file:///E:/Animation/realplay/3D manufacturing simulation and visualization, 3DCreate - Yo

Doctoral Dissertation Virtualization Module

5.2 Modeling

Due to 3DCreate is simulation software with week 3D modeling functions, there is
other 3D CAD modeling software needed. In this dissertation, SolidWorks, an
outstanding 3D CAD tool, is utilized to build the 3D models of devices mounted in
the workstations at celisca, and to describe their mechanism characters. That is the

preparation of models for components creation in 3DCreate.

The models created by SolidWorks are in real sizes and structures. They do not have
characters of joints, interfaces among models, behaviors, and movement trajectories,
etc. They are exported as step format, and transferred to components in 3DCreate by

adding kinetic properties and behaviors.
5.3 Create Components

To make a 3D model moving and working together with other models in 3DCreate,
the model should be converted to a component, which is a 3D graphical representation

of a machine/product with simulated behaviors.
5.3.1 Component Structure

Technically, a component is a "container" of different virtualization objects, including
frames, features and behaviors, as well as their relations. Some of the objects define
"the looks", while others are the behaviors and interaction with other components in

the virtualization.

-62-

Doctoral Dissertation Virtualization Module

The relations among the objects form a tree structure, which is shown as Fig. 5.2. As
Fig. 5.2 shows, a component is composed of nodes and parameters. For the nodes,
they have three factors: features, interface and behaviors. They form the kinematics
characters for the component. As for the features, they consist of geometry factors of

the 3D model, such as points, lines and faces [129].

‘ Component ‘
‘ Nodes ‘ | Parameters ‘
‘ Features ‘ | Interfaces ‘ ‘ Behaviors |

|

|«!3em::hm&tr1ur Sets ‘
|

I | |

‘ Faces ‘ ‘ Lines ‘ ‘ Points ‘

Figure 5.2: Internal frame of a component in 3DCreate [129]
5.3.2 Organizing the Geometry

Generally, a component includes many moving parts, which are called nodes. The
features and behaviors of a node are based on geometries. Therefore, when a 3D
model imported into 3DCreate, the first work of component creation is to break the
geometries of the model into many logical features, and then organize the features to

their corresponding nodes.

-63-

Doctoral Dissertation Virtualization Module

Take a 6-axis robot for example, due to there are six joints and one plate for tool
setting, the robot component has seven nodes under the root node (as shown in Fig.
5.3). The root node is the base of the robot, and every sub-node has its own physical
joint and kinematic parameters. In the Fig. 5.3, the front six sub-nodes are
corresponding to the six axes of Motoman HP3JC, and the last sub-node “mountplate”

is the one to connect a tool into the robot system.

Component Mode Tree

=-#} HP3IC
-y Az
EI‘ Bz
=My Asis3
EI‘ Bizd
=My Awiss
El‘. Bxizh

------ Bl rmountplate

Figure 5.3: Node tree of a 6-axis robot

Besides of the physical features, frames in coordinate system are necessary to create
for the definition of component location and movement positions. That is important

for assembling layouts and creating trajectories.
5.3.3 Add Behaviors

Behaviors are the definitions of kinematics, characters, tasks and object links for
components. Without behaviors, a component is just a stationary and isolated model.
So it is necessary to add many kinds of behaviors for components, especially for

servos and robots, which have moving parts in it.
5.3.3.1 Robot Behaviors

To make a 3D robot model working, the behaviors such as moving joints, kinematics,

executor, etc, should be created for the robot component.

-64-

Doctoral Dissertation Virtualization Module

Take the robot Motoman HP3JC in the Motoman system workstation for example, as
Fig. 5.4 shows, to make it work as a real robot, it requires behaviors including

kinematics, controller, signals, executor, interfaces, Python script, etc.

Behavior Atomz

Bl B S

R-E-W-E-&-

e - [F] ~ @, -

M arme |Type
%4, Kinematics Articulated Kinematics
W@ NxXC100 Robat Controller
i Inputs Boolean Signal Map
ik Outputs Boolean Signal Map
B E ecutor R5L Frogram Executor
[F] Statistics Statisticz
ﬁ RobotPositioner One to One Interface
¥ workpiecePasitionersloints One to Many Interface
3 Accessones Orne to Many Interface
%,.ﬁ.c:tianﬁ cript Puython Script
(B Actions Action Container
% Enginelnterface One to One Interface
% Connecttdany One to One Interface

Figure 5.4: Behaviors of motoman HP3JC
(a) Robot Controller

Robot Controller is a behavior to control motions of independent joints using forward
and inverse kinematics. The joints are defined in the controller with their type and
properties, such as limit values, maximum speed and acceleration. They are
corresponding to the kinematic properties of the real robot joints. For the Motoman

HP3JC, it has six rotate joints for its six axes movements.

In the robot controller, basements and tool frames, which are similar to ones in real
robots, are defined to make it easy to program robot movements -- node movements in
robots and other inverse kinematics supported components. The initial basement and

tool before moving are defined in the controller for the robot initial condition.

Similarly, the controller defines the kinematics behavior being used when calculating
the inverse kinematics. Once inverse kinematics is defined, it will provide its related

properties to the robot controller.

-65-

Doctoral Dissertation Virtualization Module

In addition, the robot controller attaches the joints to corresponding nodes for the

definitions of their kinematic characteristics (moving type, limit values, .etc).
(b) Articulated kinematics

The articulated kinematics provides additional properties related to kinematics,
including joint length, angle, positioning, coupling, configuration and tolerance levels

dealing with robotic movement.

The most common robot kinematics in LSA is shown as Fig. 5.5. This solver can
calculate the forward and inverse kinematics of a robot that has 6 rotational joints in
the following order: RotZ, RotY, RotY, RotX, RotY, RotX [129]-[131]. In the Fig. 5.5,
the parameters of LinkLengthl - LinkLength5 are the lengths of the joints, and the

ones of JointOffset1- JointOffset3 are the distances among axes.

LinkLength3 LinkLength4a

JointOffset3

;

LinkLength2

LinkLengthS

LinkLengthl

-1
JointOffsetl

Figure 5.5: Articulated kinematics for a robot with 6 rotational joints [129]

-66-

Doctoral Dissertation Virtualization Module

Motoman HP3JC is a typical 6-axis robot in Motoman system workstation at
celisca[132], [133]. Its dimensional parameters for kinematics are shown as Fig. 5.6.
Once the robot nodes are attached with these kinematics parameters and the right arm

configurations, all nodes could work together coordinately as the real robot.

531 232
20 270 90
~7 BN
-~ ™~
]/ AL N\
= \L‘ ™ A
;]
! / s \\.
260 |f / \\\ 1 822
| | \
659 | \ |

f??’&.

\:\l‘__ (] -

Figure 5.6: Articulated Kinematics of Motoman (Unit:mm) [134]

(¢) RSL program executor

The RSL program executor executes RSL language sequences for robots and
manipulators. RSL is a simple language for programming logics for robots and other
Components [135]. RSL language consists of 3 levels: program, sequence and a
statement. As long as the executor is created, the robot could be taught with motions,

which is created in statements and sequence.

The RSL program executor attaches other behaviors such as robot controller, signals,
and handlers to it. So it could call the properties of these behaviors when it teaches the
robot moving. In addition, the action mode could be setting in the executor for the
component to work together with other components. This is useful for peripheral
components such as grippers and fixtures. If the component is connected to other
components through interface that connects the RSL publisher field, the sequences of
the RSL program can be launched from other components with help of “Remote
Routine Call”.

(d) Interface

Interfaces are special behaviors used to make components to work together without

exposing the internal details to other components, promoting component reuse [129].

-67-

mk:@MSITStore:C:/Program%20Files/Visual%20Components/3DCreate%202012/Doc/English/3DCreateUserManual.chm::/Reference_Guide/Behaviour_Reference/One_to_One_Interface.htm

Doctoral Dissertation Virtualization Module

It could connect different components together either in shape or in communication.

There are two kinds of interfaces for connecting components: one to one interface,
and one to many interface [125], [136]. The first one is typically used for material
flow, component attachments, signal communication and RSL execution. For example,
when there is a tool required to set toward a robot, both of the robot and tool need
such an interface for their connection. The second one allows connecting with
multiple other interfaces using abstract connection. It is typically used with "remote"

RSL execution. That is the critical technology for components working synchronously.
(e) Python script

The behavior atom Action Script is the one that uses a python script editor to perform
different actions with robots and their tools, such as grasp/release, trace, mount and

unmount actions.

Python script customizes component behavior by controlling other objects. The Python

script execution may use signals and other events to control script execution [137]-[139].

In the behavior Python script, every kind of properties and motions of a component
could be created and set. Parameters, behaviors, properties of a component, as well as
its trajectories could all be created into the Python Script by Python API [125], [131],
[140]. The script is programmed by Python language. In the virtualization of the VS,
the Python script behavior is created for defining the physical characteristics for

components, as well as properties of actions, and so on.
(f) Jog information

The JogInfo behaviors are created for independent moving nodes. It defines the
degree of freedom (DOF) of the node, and attaches it with a joint for getting its type

and properties.
5.3.3.2 Servo Behaviors

The servo behaviors are created for movements of mechanisms. To make a servo or its
nodes moving, generally, the behaviors Servo Controller, Python script, and RSL

program executor are necessary.

(a) Servo Controller

-68-

Doctoral Dissertation Virtualization Module

Servo Controller controls the motion of independent joints. It supports forward
kinematics only, and cannot be used in robots. It is typically used in external axis

systems, grippers, fixtures, weld guns and other simple mechanical structures.

The Servo Controller is "a container for joints". Each joint has a type, either rotational
or translational, and properties such as limits, maximum speed and acceleration. The
Servo Controller can calculate the execution time of a motion based on the slowest
joint and synchronize the other joints so that it takes them the same amount of time to

execute the motion. It also defines the root node and flange node for the servo.
(b) Python script

The motions, parameters and properties of a servo could all be written into Python
script. They are defined in the script python code as text, which can be edited in the
separate python editor.

(c) RSL program executor

To teach a servo motion as well as connect it to other components, the RSL program
executor is required. When the action mode is set to true in the executor, the
sequences with different motions could be remotely called by other component, which

has connected with the servo executor.
(d) Interface

To connect a servo executor to other components, the interface behavior (“one to one
interface” or “one to many interface”) is required for their connection. That makes
multi-movements possible since the components could be connected by the interface,

and the routines of the servo could be called remotely by other connected components.

Taking the workstation “Motoman system” for example, except for the regrip and the
Motoman robot, as well as the BiomekNX and the BiomekFX, all the other
components could move as servo. So for each of those components, servo controller is
created for its nodes moving. In addition, for other components to remotely call its
motions, the RSL program executor and interface are added into its behaviors. The
action mode of the executor and the IsAbstract property of the interface are the critical

factors in remote-routine calling.

-69-

Doctoral Dissertation Virtualization Module

5.3.4 Make Component Parametric
For a component, there are many factors parametric in its creation.
(1) Geometry parametric

The geometries of a component are made parametric by using parameters to control
the properties of the features [129]. There are two approaches to the geometries
parametric: (a) control the properties of the primitive features directly with a

parameter; (b) do the desired parametric manipulation with the Transform feature.
(2) Behavior parametric

Some of the behaviors of a component are parametric for its conditions and properties

setting.
(3) Parameters

Besides of the geometries and behaviors parametric, there are many parameters
created for component parametric. As Fig. 5.7 shows, there are six parameters created
for setting properties of a robot component. Among the parameters in Fig. 5.7, the
parameter “Configure” in SignalActions is for setting output signals [147]-[148].
Firstly, all robots have a built in functionality to grasp and release components. By
default grasp is done by setting any of the outputs 1- 16 that matches the tool number
to true and release is done by setting the same output to false. For every output signal,
when the tool is chosen, the parameters about detection volume size in axis X, Y and
Z could be set for grasp accuracy. Secondly, a tool frame can draw a trace, which is
turned on and off with a signal. The output signals 17 - 32 are by default mapped to
tools 1 - 16, with true turning the trace on and false turning it off. Thirdly, the robot
can mount or dismount a tool by setting a signal. The output signals 33 - 48 are by
default mapped to tools 1 - 16, with true mounting the tool and false dismounting the
tool [140]-[143].

Gec-metr_l,l] Behavior Parameter]

Add a Parameter

|3 HEO®®B

Mame | Type | " alue
@ Signaldctions: Configure Button

> E Signaldctions:Displayheszager Boolean Falke
* E Signaldchions:: MultiGrasp Boolean False
@ E Signaldctionz:ReleaseToWworld Boolean False
@ EWnrkSpace::Profile Boolean False
+ M \warkSpace:Envelope Boolean Falze

Figure 5.7: Paramters created for the robot Motoman HP3JC

-70-

Doctoral Dissertation Virtualization Module

5.4 Teach Components

The module “Teach” provides the functions to teach and program components that
have servo or robot controllers. It teaches robots and servos motions and actions for

their trajectories in the movement.

In 3DCreate, to teach a component with controller, statement and sequence are

referred in creating motions:

1) Statements appear in the RSL programs in the RSL executors, and control the
function of robot controllers. There are many kinds of statements to depict the
motions and actions of robots and servos [144]-[147], such as “Linear (LIN)” or
“Point to Point (PTP)” motions, grasp or release actions, executor delay, etc. Each
statement has a list of properties, which can also be available through the COM
and Python APIs.

2) A sequence is a series of statements in order. It is executed by logic executors.
The main sequence holds the default storage area for initial positional data. Sub-
sequence represents an action or a trajectory, which depicts a process that the
component moves from one position to another target position [148]-[149]. All
sub-sequences could be called by each other or the main sequence. The call
sequence statement is used to execute other sequences in the same RSL program.
The sequence specified in the statement is executed synchronously. It is

completely executed before the next statement is executed.

In this dissertation, to save time for online virtualization, sub-sequences of all possible
trajectories are created in advance for every component with controller. When some
trajectories are referred to the experiment workflow data, corresponding sequences
will be called and added into movements of a specified robot by programming
3DCreate API, which includes both COM API and Python API.

In the following, the Motoman system is taken as an example to explain the teaching
process in the dissertation. In the workstation, except for the regrip, all the other
components have their own movements. So motions and actions should be taught to

every component to realize their movements.

71-

Doctoral Dissertation Virtualization Module

5.4.1 Teach Servo

Generally, motions of a servo component (component with servo controller) are
depicted as moving from one frame to another frame, and actions of that are depicted
as open, close, issue, or incubate. For example, there are three possible actions for the
component “PHERAstar”: open, close, and issue command. Correspondingly, three

sequences should be created for them.

As Fig. 5.8 shows, there are three statements for the “open” sequence. The first
motion P1 is keep the all of the PHERAstar joints as original conditions. Then, the
second motion P2 is created to change the value of joint2 from 0° to -180°, which
makes the door of PHER Astar from close to open. After that, the motion P4 changes
the value of joint3 in P3 from Omm to 104mm. That makes the door keep open, and
the position for labware putting being pulled out. It is fully the open condition of
PHERAstar to prepare getting a labware. As for the “close” sequence, its statements
are just in opposite order of the “open” sequence. For the issue command, all of its
actions and motions take place in the inner of PHERAstar. So it is unnecessary to
simulate these invisible works. The “issue command” is just consisted of the “Delay”

statement with the same issue time.

| Statement Properties @ [Statement Properties @ Statement Properties @
Mame F1 Name F3 Hame ’F“ii
Jaint 0 mm Jointl 0 mmn Jaint1 ’07 mm
Jairt2 - Jaint2 180 ? deint2 [eo 2
Jaint3 0 mm Joint3 0 mmn Joint3 ’1047 mm
JointSpeed 100 :> JointSpeed 100 :> JointSpeed 'wui
JointForce ’Wﬂi JointForce 100 JointForce ’1007

Synchranize v Synchronize v Synchronize v

CycleTime 0 E CycleTime 0 S CyecleTime 0]

Figure 5.8: The statements of sequence “Open” in teaching PHER Astar

For the servo SGO150, which is the gripper tool of Motoman HP3JC, it is some
different with other translate-moving servos. As normal gripper, it grasps or releases
things. However, what’s more for SG0150, it works with different sizes for different
target positions. That is depicted as “using Narrow” or “using WideLow” in the
workflow data. These two conditions work correspondingly to different planes of a

labware.

72

Doctoral Dissertation Virtualization Module

As shown in Fig. 5.9, due to the gripper needs to change its condition and position
time by time, there are four statements created for its corresponding conditions:
Narrow, WideLow, ForWide, and ForNarrow. When the robot needs its gripper to
grasp a labware using Narrow, the gripper should operate the “ForNarrow” sequence
at first to make itself wider than the Narrow condition. That is the preparation for
grasping in Narrow. Conversely, when the gripper puts a labware down on some
position in the Narrow condition, the sequence “ForNarrow” should also be operated
for releasing the labware. So the four sequences are corresponding to different sizes

and angles of the gripper.

(c) ForWide (d) WideLow

Figure 5.9: Sequences of the gripper SG0150

-73-

Doctoral Dissertation Virtualization Module

5.4.2 Teach Robots

A robot could have many different actions, such as move, grasp, release, etc. All the
actions are taught firstly to robots before they could work. Generally, the teaching
process for a robot is complex. It will take lots of time for developers to teach the
robots, especially when there are many robots working in one case. Therefore, the
dissertation presents a flexible method for robot teaching: once a robot component
with many taught sequences is created, other robots with similar structures could copy
the characters of the defined robot, and then make some changes for characters of the
new robot. The method saves a lot of time and is very convienient for system

developers when some new virtualization has to be created for other workstations.

The Motoman system is a typical modern LSA workstation. The following sub-
sections will intepret the teaching process for the three robots (Motoman HP3JC,
BiomekFX and BiomekNX-Span8) in Motorman system in detailed. Based on the
teaching information, developers could create a new robot component with similar

structures easily.
5.4.2.1 Preparation
Before teaching robots to work, some factors should be created and set:

(1) Frames and robot positions: All robot positions are represented by robot position
frames in 3Dworld. That is the same to target positions for tool grasping. So
many frames are created in every component for robot moving and working. In
creating a new motion for the robot, it just needs to snap corresponding frames in
the trajectory, and makes the end frame as the tool target.

(2) Base: It 1s a coordinate system that the robot positions (motion statements) are
relative to. When the base moves, all the motion statements referencing the base
also move. It’s especially useful in repetitive transportations.

(3) Tool: It is a Tool Center Point (TCP), typically relative to the robot flange plate.
There is usually no need to change the tool value programmatically. However, the
interpolation mode (IPO mode) for either a base or tool can be set to inverse
motion targeting and use an external coordinate system, i.e. from External TCP to
Base target solution.

(4) Output signals: It defines actions for a robot, such as grasp/release, trace, mount
and unmount a tool. Different signals have different variables and parameters.

They are corresponding to different actions for robots. It could be defined or set

“74-

Doctoral Dissertation Virtualization Module

in either the Action Script editor (python) or an Action Map editor that is
automatically created by the Action Script behavior.

(5) External TCP: An External TCP is a tool that is not attached to the robot, but
another object (typically a static object, but can be something moving as well).
Setting the IPO mode to TCP in either a Base or Tool sets External TCP to True.
In contrast, the IPO mode set to Base sets External TCP to False. By default, the
IPO mode is set to zero for all bases and tools which allows a user to turn the
External TCP on or off from via the Teach tab.

(6) Configuration: It is an alternative way to reach the same goal position.
Configurations are used only if the motion interpolation type is set to Joint (point
to point). In Linear motion interpolation the closest configuration is automatically

selected. The number of configurations depends on the robot type.

With the above factors, the teach module in 3DCreate could call them to teach a robot
detail information about target positions, configuration mode, etc for motions
generation. There are three robots defined in 3DCreate for the Motoman system
workstation: BiomekFX, BiomekNX-Span, and Motoman HP3JC. The teaching

processes for their motions are shown as followings.
5.4.2.2 Teach Biomek FX

Biomek FX is a laboratory automation workstation, which is composed by deck,
towers, bridges, Automated Labware Positioners (ALPs), multichannel pods and
heads (or Span-8 Pod and its liquid system), as well as a pair of grippers [150]-[153].

Its structures and characteristics are shown as Appendix A.

In the Motoman system workstation, the Biomek FX has the structure with
multichannel pod. It has six joints for its movements and works. Among the moving
and working components, the bridges could hold the pod, heads and grippers together
to move along its rail for defining positions (shown as Fig. A.3). It has a joint with an
X-axis linear DOF. The multichannel pod, which holds the heads and grippers, has
two joints for Y-axis and Z-axis linear movements separately. As for the grippers, to
grasp labware flexibly and avoid affecting the head’s works, there are three joints to
ensure its motions in X-axis and Z-axis directoins. The limit values for these joints are

based on the movement regions of the real components.

There are 21 frames on corresponding ALPs (see as Appendix A.4) of Biomek FX for

locating labwares onto target positions in movements. The location could be for either

-75-

Doctoral Dissertation Virtualization Module

grasping or pipetting, which is executed by grippers or tips in mandrels. So there are
two tool basements created for Biomek FX: one tool base for grippers, the other one

for tips.

The following works could be done by Biomek FX workstation in a LSA assay:
location for labware, load and unload tips, aspirate/dispense liquid, wash tips, drain
and refill a reservoir. In the location process, the joints of bridges and pods are
assigned to the specified value of the target position. Then based on the task, the tool
basement of grippers or mandrels is moved to the target frame. At last, the grippers
change their distance through setting their joints’ values to prepare for grasping or
releasing, or the tips set in mandrels pipette liquid. If the workflow refers gripper
actions, the output signal of the grippers’ tool should be set correspondingly for
grasping labware from the target ALP or release it to the ALP. In the loading and
unloading tips process, at first, the tool basement of mandrels should be located to the
TL1 frame, and then the output signal of the mandrels’ tool is set for loading or
unloading tips in the TL1 ALP. When the pipetting work is referred in the workflow
data, tips should aspirate or dispense liquid in some specified ALP also through
setting their output signals. In all, every work of Biomek FX refers to location tool
basement to target frame, and then call corresponding output signal of related

component to realize the task in the workflow data.

-76-

Doctoral Dissertation Virtualization Module

Figure 5.10 shows frames created in Biomek FX ALPs, and parts of the sequences
taught to it. As Fig. 5.10 (b) shows, in the VM of VS, all possible locations and
actions for different ALPs are defined to their corresponding sequences. Every
sequence has its own statements in order, which include those motions and actions for
its task. For instance, the sequence “FromP1” means to get a labware from the P1 ALP.
It includes statements of location the tool basement of grippers to the frame P1, and
set the joints of grippers to the labware width, and then set its output signal as “pick
up”. As for the sequence “ToP1”, except for the same location statement, other
statements are all opposite with the “FromP1” sequence. For the “Tip-" sequences,
they have actions insist of locating mandrels tool basement, loading tips, aspirating

liquid from a specified ALP, and dispensing liquid to target ALPs, etc.

Rlobot [BiomelcPx -

. B & B
§ Tl |Tou\1 j >

ExtemallCP [Fakse -

r EH

FromBT Tob1 FromPT ToP1

ToP1E FromP14 TaP14 FromP15

FromP3 TaP3 FromP4 TaP4

TaP2 FromP5 TaP5 FromP

FromP? TaP? FromPg TaPg

TaP3 FromP10 TaP10 FromP'11

FromP12 TaP12 FromP13 FromTA

Fromiw/51 Taw/S1 FromTL1 TipP1

TiP14 TigP15 TigP2 TP

TipP5 TipP5 TigP? TipP3

BTt B B TigP12 B TPt

ByToP13 B TiP16 =
(a) Frames on Biomek FX (b) Seuqgnces for Biomek FX actions

Figure 5.10: Frames and sequences of Biomek FX
5.4.2.3 Teach Biomek NX Span-8

The Biomek NX is a multiaxis instrument designed with an open architecture to allow
expandability of the system [154]-[155]. As shown in Fig. B.1 in Appendix B, the
main-function components of the Biomek NX Span-8 in the Motoman system at

celisca are deck, towers, and bridges, Span-8 Pod with probes, grippers, ALPs.

There are two groups of bridges installed in the Biomek NX Span-8 workstation [156]
—[157]. One has a joint with X-axis DOF for holding the gripper to move along the X-
axis rail of the workstation. The other one also has a joint for X-axis movement of the
Span-8 Pod and its components. To make the gripper work, there are four joints
created for its Z-axis movement (up and down), Y-axis movement (left and right, one
joint for each finger), and C-axis movement (rotate with Z-axis). As for the Span-8

Pod, it has one joint for its eight probes moving along Y-axis simultaneously, 8 joints

77-

Doctoral Dissertation Virtualization Module

to move every probe in the Z-axis independently, and 8 joints for probes to pipette in
the D-axis with the assistance of the pumps independently, as well as 8 joints to make

the span between probes expand and collapse.

There are three devices named Teleshake installed in the right ALPs of Biomek NX
Span-8 workstation. In the Motoman system workstation at Celsica, the Teleshakes
hold microplate and spin with it around the center axis of the corresponding ALP. So
there is one rotate joint for every Teleshake created when the component is generated
in 3DCreate.

To define target positions for the tool basements of grippers and pod in virtualization,
there are 11 frames created on ALPs (see as Appendix B.4) of Biomek NX Span-8 for
snap and definition. When a frame definition is required for the gripper or the pod,
corresponding joints of bridges and their own components take movements along their
moving axes and make the tool basement coincided with the frame. Then the motions

of grasp, release, or pipette could be executed by corresponding components.

-78-

Doctoral Dissertation Virtualization Module

Figure 5.11(a) shows frames created in Biomek NX Span-8 ALPs. Except for them, a
ConvNXFrame is created for plug and play connection with the component ConvNX;
FlangeFrame is created to grasp for the gripper; eight frames are created for eight
probes separately, so that the probes could aspirate or dispense liquid with specified
quantity. Figure 5.11(b) shows parts of the sequences taught to the Biomek NX Span-
8. The sequence “Initialize” works for setting all components to their initial conditions.
The sequence named as “PickFromP1” include motions of definite the gripper tool
basement to P1 frame, get the gripper fingers down and wider to prepare grasp
labware and adjust the gripper fingers as grasp condition, as well as an action of pick
up the labware, which is realized by an output signal. As for the sequence as
“PutToP1”, it has opposite order of motions and an action for putting the labware
down to the P1 ALP. For the components Teleshake, besides of the sequences for
gripper motions to pick up or put on their ALPs, there is another kind of sequence
which works for shaking the labware on them. For example, the sequence

“TeleshakeS1” includes motions to shake the components by setting the values of the

Teleshake joints.
Robot | Biomek N Span-8 |
Baze |F"I ﬂ)
Tool [Toon =]
ExternalTCP | Falze j

Sequences

DéBa ¢ =4

tain Initialize PickFromF1
PutT oM PickFramP2 PutToP2
PickFromP3 PutToP3 PickFromC1
PutToC1 PickFromP5 PutToP5
PickFromPE PutToPS PickFromP?
PutToP? FickFromPg PutToPg
PickFromS1 PutToS1 PickFromS2
PutTa52 PickFromS3 PutTo53
TeleShakeS1 TeleShake52 TeleShakeS3
Taw TaTR1

(a) Frames on Biomek NX Span-8 (b) Seugnces of Biomek NX Span-8

Figure 5.11: Frames and sequences of Biomek NX Span-8
5.4.2.4 Teaching Robot Motoman

The robot Motoman HP3JC is the main transport robot in the Motoman system. It
moves along its track and shifts the assay labware from one device position to another
one. In the virtualization, the Motoman not only does its own transportation tasks, but

also links the movements of all components together and forms a sequence for them

-79-

Doctoral Dissertation Virtualization Module

to generate a full virtualization for the experiment workflow.

Among the actions of the Motoman in the virtualization, the works about its own
transportation and calling other components’ movements are set as the sequences in
the simulation layout beforehand, which is shown in Fig. 5.12. They will be called
when there are related processes in the experiment workflow data. As for the sequence

of all movements in the virtualization, it is generated in the CS with the sequences

being called.

Robot | HPAIC B
Base [NULL |
Teol [NULL o
ExtemalTCP ‘Fa\se j
Configuration ‘ cfx0 j
Sequences

O & ¢ -

Main Qrigin fromCytamat toFlugstar fromFluostar fromSigmal toRoboseal fromPRoboseal toDeckelstation fromMaovaStar a

toMovoStar fromDeckelstation B toPrint fromPrint fromCytoHote! toCptoHatel fromPHERAstar toPHE Ristar RegripWide2Nanow

SG0150-Forwide SGE050WideLow 2 SG050-FoManow) $G0150-H armow RegipNarowZifide PHERAstar-Open PHERAstar-Close Nanow20uter [Wide2Outer
NanowFromOuter 2 WideFromOuter OuterC1 C1-Outer BackCptomat Framh4C1 ToHCT Talx51 FromhP1 TolxP1
FromMxP2 ToNxP2 Fromh<P3 ToMxP3 FromhxPa ToNxPS FromNXPE ToMxPE FromhxP? TaoNxP7
FromhXPa TaNxXP8 OutCytomat Fromhl52 Tohx52 Fromi53 ToNKS3 Fromt451 toCytomat fromSMCShuttls
toSMCShuitle h1-81 B1-m1 FromFShutle ToFxShuttle FromFF1 ToFP1 FromFP14 ToRxF14 FromFxP15
ToFXP15 FromFXP16 TaFxP16 FromFXP3 ToFxP3 FromFxP4 TaFAP4 FromFXPS ToFxP5 FromFxP2
ToFxP2 FromF>PE ToFxPE FiomF<P? ToFxP? FromF>Pg ToFXP8 FiomF<P3 ToRxPa FromFF10
ToFXP10 FramFxP11 TaFxP11 FromPXP12 ToFxP12 FromFxP13 TaF¥P13 FromPXw51 ToFxwS1 FromPxTL1
TeReTLY FramFTR ToRXTR TEF<TR TiFeP1 TigFP2 TigF¥P3 TiFePe TiFxPs TigFPe
TipFAP7 TipFP8 TipFP3 TipFAP10 TipRxP11 TipFP12 TipF¥P13 TipFAP14 TipFP15 TipFXP16 o

Figure 5.12: Sequences of Motoman HP3JC
(1) Origin and tool location

The sequence “Origin” has motions to drive the Motoman back to its specified
original position. It is created mainly for backing up the original positions information
of its all nodes. When there is some collision or error as run out of limit values, it

could restore the robot to its normal state.

The robot itself has a tool frame in its tool interface. It is a Tool Center Point (TCP),
typically relative to the robot flange plate. When the gripper SG0150 is installed into
the robot in the tool interface, a new tool frame is created for grasping labware using

the gripper.

-80-

Doctoral Dissertation Virtualization Module

As Fig. 5.13 shows, the tool frame is set in the middle of the two fingers of the gripper
so that it could easily snap other target frames for grasping or releasing. That is done
in the CS at the beginning of the data-assign stage. After that, in the motion creation
process, all robot target positions could be set for the tool frame of the gripper
SGO150.

Figure 5.13: Tool frame of the robot gripper
(2) Pick labware

There are many possible positions the robot Motoman could reach in the workstation.
When the workflow data refers actions of the Motoman to get labware from some
position, a sequence named “from” with device name (such as “fromCytomat”) is
called by the CS.

For example, the motions in the sequence “fromCytomat” are all based on the frame
tooll (as Fig. 5.13). There are three steps in the statements of the sequence: 1) move
the robot to the target position near the Cytomat6001; 2) adjust the gripper to the
right working condition; 3) pick up the labware from the Cytomat6001 ALP. To drive
the robot to the target position, many point to point (PTP) statements are created for
joints’ movement of the robot. In every PTP creation, the tool, base, External TCP and
configuration are defined and chosen, and the target position values in the six DOF
are also defined. Beside of them, the value of ExternalJoint is important for the

position definition of the robot base.

-81-

Doctoral Dissertation Virtualization Module

The External Joint is set on the position near Cytomat (Fig. 5.14 (b)), which makes the
movements of the seven joints and the action “pick up” possible. After the robot
arrives at the position where it could touch the Cytomat frame, it changes its joints
values and adjusts its tool (the gripper) condition to the right direction and gesture (Fig.
5.14 (c)), which could press the labware from both sizes in its middle height. These
actions need to remotely call corresponding sequences of SG0150 to adjust it to its
narrow grip condition. After that, an output signal is called and set as the action “pick”
(Fig. 5.14 (d)). At last, a PTP motion is created to raise the gripper from the Cytomat
frame (Fig. 5.14 (e)), and another one is generated to make all nodes of the robot back

to their conditions as the one when it arrived (Fig. 5.14 (f)).

(c) Adjust tool (d) Pick/grasp

-82-

Doctoral Dissertation Virtualization Module

(e) Get up () Condition back

Figure 5.14: Get a labware from Cytomat

(3) Putdown

The sequence “To” with device name (such as “toCytomat”) has statements in the
opposite order of the “From” one. Take the sequence “toCytomat” for example, it also
has three steps in its statements: 1) move the robot with a labware to the target
position near Cytomat6001; 2) adjust the gripper to the right working condition; 3)
put the labware down to the Cytomat6001 ALP. Among them, the statement for the
action “put down” calls an output signal of release. After that, sequences of SG0150
are remotely called to make the distance between its two fingers wider so that it could

get up freely.

(4) Call Remote routine

As the above depicted, when the robot grasp or release a labware, some sequences of
the gripper SGO150 should be run to get a right gesture for the action. That is realized
by calling remote routines of SGO150 in the Motoman statements. It is also the same

to generate a full sequence for the experiment workflow.

To call the remote routine of other components, it is necessary to create many
connections. In the dissertation, every component has to connect with more than one
component so that it could call or be called with many components. So for every
component, a behavior “One to Many interface” is created. The behavior allows
connecting with multiple other interfaces using abstract connection. It uses one
template interface section to describe the elements that are connected. Template
Interface Section has user definable Interface Fields, which are used to define what is
interfaced when components are connected. The “One to many interface” behavior is

used with the "remote" RSL execution, because it is abstract in nature (not bound

-83-

Doctoral Dissertation Virtualization Module

physically as material flow or hierarchy attachment).

The process of calling the remote routine has two steps: one is to start a remote
routine, and the other one is to wait the remote routine finish. The Start Remote
Routine statement signals another RSL executor to start the execution of a specified
sequence. The remote RSL executor has to be associated with this executor through an
RSL field, and its ActionMode property must be set to true. Remote routines are
executed asynchronously, so execution continues immediately after this routine is
done. The Wait for Remote Routine Statement is used to wait for the remote routine to

complete.
5.5 Creating Layouts

When all components are created with their geometries, parameters and behaviors,
they are assembled together to a workstation based on their relative positions in the

realistic workstation, and formed as a layout in 3DCreate.

Figure 5.15 shows the workstation layout of the Motoman system. All the components
dimensions and their distances are in actual size. There is a basement frame for every
component to be installed to the workstation platform. In the layout of Motoman
system, all possible motions and trajectories have been created and kept into the

layout for being called by the CS.

Figure 5.15: Workstation layout of Motoman system

-84-

mk:@MSITStore:C:/Program%20Files/Visual%20Components/3DCreate%202012/Doc/English/3DCreateUserManual.chm::/Reference_Guide/RSL_Statement_Reference/Wait_for_Remote_Routine_Statement.htm

Doctoral Dissertation Virtualization Module

5.6 Discussions

The Vitualization Module prepares kinematic components for the CS to call and drive.

It supplies a platform to generate virtualization results for the 4D virtualization system.

Since there are different devices in different LSA workstation, to make a new
workstation virtualization, developers should create new models, components, and
layouts in the VM module in advance for the CS. The dissertation presents a
convenient way to make the following creation of components easier. Developers just
needs to copy existing component to the new model with same structures, and then
make some small changes for the new model to get its component in the VM. The
work in the dissertation to create components for devices and robots in Motoman
System, takes much convience and saves much time for the components generation of

the other workstations.

-85-

Doctoral Dissertation System Test and Application

Chapter 6 System Test and Application

The modules of theVS are connected together all by interfaces, including the SILAS
OCX between the PCS and the DTS, the TCP/IP socket between the DTS and the CS,
the COM and Python API between the CS and the VM. When there is an interrupt in
any interface, other modules still go on work based on existing data. To demonstrate
and verify the VS for life science applications, this dissertation uses a whole
application case for example. The case is executed as steps as followings. The test and
application results confirm that the system could simulate the experiment workflow of

LSA not only in real time but also in history well and smoothly.
6.1 Connections among Modules

Before running the PCS to get original experiment workflow data, the connections
among modules in the VS should be created. Once the DTS is running, it activates the
SILAS OCX at once and waits for the data generation. While the connections between
the CS and the DTS are created by two TCP/IP sockets for the transmissions of
workflow data and .pdf file separately, the DTS shows the IP address and the separate

transmission port at the side of the client CS in its interfaces.

The connection statuses of the two TCP/IP socket are shown as Figure 6.1. The
Fig.6.1 (a) shows the port-bind statuses of the two different modules in the DTS;

Fig.6.1 (b) demonstrates the socket connection statuses of them.

Data Transfer System

% Data Transfer System

Commuricaion vih PCS | Fieabine Dala Trander | Vihefzsion Rissul Fecepin
acannechin 4 port 7010, @ Commurication Test

B2 Data Transfer System

Communcaion wih PC5 | Reabime Data Tiarsfer | Viiuelzaion Reaull Receplion

Status: Cornecied: 133,30 204 13650071 @ Commncabon Test

Commuricafion Condiior:

Stehus
Commuricaton Condion

Walingfor

2 Data Transfer System

Conmunicaion vith PCS | eabine Dl Trangler | Vitusieation Resck Recepfon Commericdion sth PCS | Reattine Deda Trandes| Vihuazation Resul Reseplion

S Wiaiing for a comnection & pait 030 @ DisConnect S Comeded TN BT @ @
(a) Waiting for connections (b) connected

Figure 6.1: Connection statuses of the two sockets

-86-

Doctoral Dissertation System Test and Application

6.2 Method in the Process Control System

In this case, at first, a method for one-plate assay is designed in SAMI EX Editor of
the PCS. As shown in Figure 6.2, in SAMI EX Editor, the workflow for this
experiment is demonstrated in the form of icons. The method of this case contains

parameters and activities of components in the LSA workstation -- Motoman system.

96-er Matrix-Reservoir,
ausreichend fuer 21 Platten

Figure 6.2: Method for one-plate assay

After scheduling and running the method, the SILAS system in the PCS generates the
workflow data for the LSA experiment. Since the data are complicated and lenghy,
Table 6.1 lists parts of important and representative processes in the data of this
method. The processes will be demonstrated in the 4D virtualization results in the

following context.

Table 6.1 Parts of the workflow data of the method “One Plate FX”

Time Activities No.
8:54:07 -

Place labware on Cytomat6001 (1
8:54:07
8:54:12 -)

Place labware on BiomekFX)
8:54:13
8:54:31 - Motoman move from Cytomat6001.transfer station to Regrip.BCR using 3)
8:54:45 LidNarrow
8:54:45 -) . .
8:54:57 Motoman move from Regrip.BCR to SMCShuttle. M1 using WideLow 4)
8:54:57 - SMCShuttle move from SMCShuttle. M1 to BiomekFX.Shuttle using)
8:55:01 SelfGrip

-87-

Doctoral Dissertation

System Test and Application

8:55:06 - BiomekFX:LeftPod put Assayplatte 1 to BiomekFX.P15 using ©)
8:55:09 Attila_DefaultGrip
8:55:17 -)

Load tips for Transfer/9 7
8:55:31
8:55:31 -

Transfer for Transfer/9 ®)
8:55:36
8:55:36 -

Transfer for Transfer/9)
8:55:43
8:55:43 -))

Tip handling for Transfer/9 (10)
8:55:50
8:56:03 - BiomekFX:LeftPod put Assayplatte 1 to BiomekFX.Shuttle using (11
8:56:07 Attila_DefaultGrip
8:56:07 - SMCShuttle move from BiomekFX.Shuttle to SMCShuttle.M1 using (12)
8:56:11 SelfGrip
8:56:11 - . . .
8:56:23 Motoman move from SMCShuttle.M1 to Regrip.BCR using WideLow (13)
8:56:23 - Motoman move from Regrip.BCR to Cytomat6001.transfer station using (13)
8:56:33 LidNarrow
8:57:18 -
11:57:18 Incubate Assayplatte 1 at Cytomat6001.2-1 for 3:00:00 (a)
11:57:30 - | Motoman move from Cytomat6001.transfer station to ConvNX.outer (15)
11:57:43 using LidNarrow
11:57:43 - | ConvNX move from ConvNX.outer to BiomekNX-Span.C1 using (16)
11:57:46 SelfGrip
11:57:53 - | BiomekNX-Span:LeftPod put Assayplatte 1 to BiomekNX-Span.S1 using (17)
11:57:55 Chimera_DefaultGrip
11:57:55 - | Issue command to Teleshakel (1:00) (b)

-88-

Doctoral Dissertation

System Test and Application

11:58:53
11:58:58 - | BiomekNX-Span:LeftPod put Assayplatte 1 to BiomekNX-Span.P3 using (18)
11:59:01 Chimera_DefaultGrip
11:59:08 -

Open PHERAstar.R for put (19)
11:59:12
11:59:11 - | BiomekNX-Span:LeftPod put Assayplatte 1 to BiomekNX-Span.C1 20)
11:59:14 using Chimera_DefaultGrip
11:59:14 - | ConvNX move from BiomekNX-Span.C1 to ConvNX.outer using @
11:59:17 SelfGrip
11:59:17 - . .
11:50:8 Motoman move from ConvNX.outer to PHERAstar.R using WideReverse | (22)
11:59:28 -

Close PHERAstar.R from put (23)
11:59:32
11:59:32 -

Issue command to PHERAstar (1:47) (©)
12:00:42
12:00:42 -

Open PHERAstar.R for get (24)
12:00:47
12:00:47 -))
12:00:59 Motoman move from PHERAstar.R to ConvNX.outer using WideReverse | (25)
12:00:59 - | ConvNX move from ConvNX.outer to BiomekNX-Span.C1 using 26)
12:01:02 SelfGrip
12:00:59 -

Close PHERAstar.R from get 27)
12:01:03
12:01:06 - | BiomekNX-Span:LeftPod put Assayplatte 1 to BiomekNX-Span.P3 using 28)
12:01:08 Chimera_DefaultGrip
12:01:19 - | BiomekNX-Span:LeftPod put Assayplatte 1 to BiomekNX-Span.C1 29)
12:01:21 using Chimera_DefaultGrip
12:01:21 - | ConvNX move from BiomekNX-Span.C1 to ConvNX.outer using (30)
12:01:24 SelfGrip

-89-

Doctoral Dissertation System Test and Application

12:01:24 - | Motoman move from ConvNX.outer to Cytomat6001.transfer station

. . (31)
12:01:36 using LidNarrow

12:01:46 -

12:01:51 Cytomat6001 put Assayplatte 1 to Cytomat6001.1-1 using SelfGrip (32)

6.3 Data Transmission in the Data Transfer System

Figure 6.3 shows the two parts of the data transmission in the DTS. The part QO
demonstrates the workflow data from the PCS is received in real time successfully in
the DTS, and it is extracted for some factors including start time, duration time,
activity and status, but not all factors of the data. On the other hand, the part @
demonstrates the successful connection of the DTS by the CS socket, and the real-
time data has been sent to the CS and received by the CS one by one, which could be
certificated in the interface by the feedback information about the data reception

conditions from the CS.

ata Transfer System EI @l E‘

Commurication with PCS | Realtime Data Transfer | ittualization Result Reception

StartTime:Duration Time:dctivit:Status

41522 6184330671 110 nitiahze Biomek BiomekFx Complete

41522 6184330671 210:Initialize Biomek BiomekMNx-5pan Complete

41522 £184352315; B:Place labware on Biomek P Complete

41522 6184437269; B:Resume light curtain on BiomekF< Complete

41522 61844372 .CytomatB007 prepare bo move from CytomatE001.7-1 to CybomatE007 . bransfer station wsing SelfGrip Complete
41522 618445; 37 Cotomate007 get &
41522.61844571 76: 53:CytomatB00 Data Transfer System
41522 6184466204: 168

Communication with PCS | Realtime Data Transter

Status: Cornected: 139,30 204.198:50271

Communication Conditior:

Wirtualization Fesult Reception

9/5/2013 8:54:07 AM: Received SAMI PARAMETERS A
9/5/2013 8:54:07 AM: Received SAMI PARAMETERS ®
9/5/2013 8:54:07 AM: Received SAMI PARAMETERS

9/5/2013 8:54:08 AM: Received SAMI PARAMETERS

9/5/2013 8:54:08 AM: Received SAMI PARAMETERS

9/5/2013 8:54:08 AM: Received SAMI PARAMETERS

9/5/2013 8:54:08 AM: Received SAMI PARAMETERS

9/5/2013 8:54:08 AM: Received SAMI PARAMETERS

9/5/2013 8:54:08 AM: Received SAMI PARAMETERS

9/5/2013 8:54:08 AM: Received SAMI PARAMETERS

9/5/2013 8:54:08 AM: Received SAMI PARAMETERS

9/6/2013 8:54:09 AM: Received S4M| PARAMETERS

9/6/2013 B:54:09 AM: Received S4M| PARAMETERS

9/6/2013 8:54:09 AM: Received S4M| PARAMETERS

9/6/2013 8:54:09 AM: Received S4M| PARAMETERS

9/6/2013 8:54:09 AM: Received S4M| PARAMETERS

9/5/2013 8:54:09 AM: Recaived SAMI PARAMETERS

9/5/2013 8:54:09 AM: Received SAMI PARAMETERS

9/5/2013 8:54:09 AM: Received SAMI PARAMETERS

9/5/2013 8:54:09 AM: Received SAMI PARAMETERS

9/5/2013 8:54:09 AM: Received SAMI PARAMETERS

9/5/2013 8:54:10 AM: Received SAMI PARAMETERS

9/5/2013 8:54:10 AM: Received SAMI PARAMETERS

9/5/2013 8:54:10 AM: Received SAMI PARAMETERS

9/5/2013 8:54:10 AM: Received SAMI PARAMETERS

9/5/2013 8:54:10 AM: Received SAMI PARAMETERS

9/5/2013 8:54:10 AM: Received SAMI PARAMETERS 3

Figure 6.3: Data transmission in the DTS

-90-

Doctoral Dissertation System Test and Application

6.4 Online Virtualization in the Control System

While the CS receives the real-time data one by one, it converts the data to 3D
trajectories and actions in 3DCreate at soon. Figure 6.4 shows the movements the CS
generated in 3DCreate. First of all, the tool base is located to define the working TCP
of robot Motoman. Every movement is called from sequences of its corresponding
component, and integrated to form a whole experiment workflow in 4D under the
main sequence of the robot Motoman. Among the statements of the main sequence of
the Motoman HP3JC, the three delay statements respond respectively the activities No.
(a), No. (b) and No. (c), which refer to the action “incubate” or “issue” inside some

components or inside the labware (microplate).

eCat] F'alam] Cieate Teach]

Robat HFZIC | -
Sequences
0 & o EZH

tain Origin -
=5 romLytarmat toFluostar

frammFluostar fromGigmal il
[Y T R | | S R e |

Statements

B

AT
GREICEECEEIGEE
GEEEEEICECEEEE

EEEEEE

Figure 6.4: Signs of movements generated by the VS

Figure 6.5(1) - Figure 6.5(16) compare the virtualization results with the movements
on the realistic workstation at different moments. Every figure shows a condition of
the workstation in a workflow step, which is corresponding to the data listed in table
6.1. In every figure, there are two pictures: the left one is a part of the realistic
workstation photo at the running time, the right one is a screenshot from the
virtualization result, which is shown as an animation. The figures show all actions and
movements the virtualization system creates are the same as the realistic ones. They
verify the movements in the virtualization are the same as the real workflow in the
workstation, and the virtualization is an on-line simulation for the running workflow
in the realistic workstation. From the figures, many components work together
sometimes. Taking Figure 6.5(3) for example, while the robot adjusts its gesture for
picking the plate up from the regrip position, its gripper SG0150 changes its condition

from “Lidnarrow” to “WideLow”. Then the Motoman could move the plate from

91-

Doctoral Dissertation System Test and Application

Regrip.BCR position to SCShuttle. M1 position using WideLow gesture of the gripper.
Figure 6.5 (7) shows the tips in the tip-box (ALP: TLI1) is loaded to the BiomekFX
head; Figure 6.5 (8) and Figure 6.5 (9) separately demonstrate the aspirate and
dispense action for chemical liquid; and Figure 6.5 (10) is the condition that the head
releases the tips back to the tip-box. Figure 6.5(14) shows while the plate is
transferred on ConvNX, PHERAstar opens its ALP PHERAstar.R for putting the plate;
Figure 6.5(16) shows after Motoman puts the plate on PHERAstar.R position,
PHERAstar closes its ALP, and at the same time, Motoman raises its joints to avoid
collision with the door of PHER Astar when it is closed. At the opposite, as the table
and figures show, after Motoman gets the plate from PHERAstar.R to ConvNX.outer,
PHERAstar.R closes its ALP from the “get” condition, and ConvNX moves the plate
from ConvNX.outer to BiomekNX-Span.C1 synchronously. It could be clear to

demonstrate from their time factor in table 6.1.

(a) Actions in realistic workstation (b) Virtualization result

(1) Motoman move from Cytomat6001.transfer station (Time: 8:54:31)

(a) Actions in realistic workstation (b) Virtualization result

(2) Motoman move to Regrip.BCR using Lidnarrow (Time: 8:54:45)

-92-

Doctoral Dissertation System Test and Application

(a) Actions in realistic workstation (b) Virtualization result

(3) Motoman move from Regrip.BCR using WideLow (Time: 8:54:45)

(a) Actions in realistic workstation (b) Virtualization result

(4) Motoman move to SMCShuttle. M1 using WideLow (Time: 8:54:57)

e

(a) Actions in realistic workstation (b) Virtualization result

(5) SMCShuttle move to BiomekFX.Shuttle using SelfGrip (Time: 8:55:01)

-93.

Doctoral Dissertation System Test and Application

(a) Actions in realistic workstation (b) Virtualization result

(6) BiomekFX:LeftPod put to BiomekFX.P15 (Time: 8:55:09)

(a) Actions in realistic workstation (b) Virtualization result

(7) Load tips for Transfer/9 (Time: 8:55:31)

(a) Actions in realistic workstation (b) Virtualization result

(8) Transfer for Transfer/9 (Time: 8:55:36)

-94-

Doctoral Dissertation System Test and Application

(a) Actions in realistic workstation (b) Virtualization result

(9) Transfer for Transfer/9 (Time: 8:55:43)

(a) Actions in realistic workstation (b) Virtualization result

(10) Tip handling for Transfer/9 (Time: 8:55:50)

(a) Actions in realistic workstation (b) Virtualization result

(11) Motoman move to ConvNX.outer using LidNarrow (Time: 11:57:43)

-95-

Doctoral Dissertation System Test and Application

(a) Actions in realistic workstation (b) Virtualization result

(12) ConvNX move to BiomekNX-Span.C1 using SelfGrip (Time: 11:57:46)

it T

(a) Actions in realistic workstation (b) Virtualization result

(13) BiomekNX-Span:LeftPod put to BiomekNX-Span.S1 (Time: 11:57:55)

(a) Actions in realistic workstation (b) Virtualization result

(14) Motoman move from ConvNX.outer using WideReverse (Time: 11:59:17)

-96-

Doctoral Dissertation System Test and Application

(a) Actions in realistic workstation (b) Virtualization result

(15) Motoman move to PHERAstar.R using WideReverse (Time: 11:59:28)

(a) Actions in realistic workstation (b) Virtualization result
(16) Close PHERAstar.R from put (Time: 11:59:32)

Figure 6.5: Comparation of realistic workstation workflow and virtualization results
6.5 Virtualization Result Transmission

After the virtualization result — a .pdf animation file is generated, the CS triggers its
TCP/IP socket to connect with the client DTS and send the file to the DTS in data

stream format.

-97-

Doctoral Dissertation System Test and Application

As Figure 6.6 shows, the connection is created, and the file has been sent to the DTS
successfully. Figure 6.7 shows the file has been received fully in the DTS side, and

been opened in the DTS interface.

725 Control Sytem ==

PCS Communication | Historical Data | Control Virtualization

mport models

Workbench: Motoman system -
Simulstion Setting

Simulation Run Time: 300 secondls) =
Simulation Mode: @ Vrtual Tme € Real Time
Simulation Step Size: 3

(" Send animation to PCS

TCP/IP socket: Connected

Comeet | [Dscomneet | [Sendthe newest on=

Filename: E:Corttrol and Simulation System\PDF Animatior ~

Stws, Thefie has been sent successfuly!

\
Componeris list

Tips
TipBox
ConvhNX
CytoHatel
Computer

Figure 6.6: Virtualization result transmission in the CS

£ pata Transfer System

| Communication with PCS | Reaktime Data Transfer | Yirtualization Result Reception |

Status: | Connected: 133.30.204.198 56257 | [DisConnect |

& B view B l-ege ©-E- &

" VISUAL
&P corronents

Figure 6.7: Online feedback information from the CS

-08-

Doctoral Dissertation Conclusion and Outlook

Chapter 7 Conclusion and Outlook

7.1 Conclusion

In this dissertation, a virtualization system named VS is developed for experiment
workflows of LSA. It integrates LSA hardware, PCS and simulation software to a
whole, and realizes the virtualization for a PCS in life science applications. The
system could simulate a scheduling workflow for both experiment shows and tests. It
saves time and cost for users, and makes the demonstration on LSA experiment
workflow flexibly. The achievements and functions of the VS are partly shown in

publications [35]-[37], and [92]. They are summarized as followings:

(1) The system integrates the functions of realistic LSA workstations, PCS, and 4D-
virtualization by many interfaces. It refers to technologies of SILAS OCX,
TCP/IP socket, Visual C#, COM API, Python API and Python script, as well as

3D simulation.

(2) The PCS module drives the LSA workstations working as its design method. In
addition, it supplies workflow data for the other modules of VS via SILAS OCX.

(3) The DTS module applies some technologies and realizes corresponding functions

as:

1. applies SILAS OCX technology to get the real-time workflow data from PCS;

ii. sends the received workflow data also in real time to CS via TCP/IP socket as
a server. In this part, the server socket binds its port to wait for and accept the
requirement of communication, and encodes the real-time received data one by

one in Unicode form for the data transmission towards CS;

1ii. tests communication through sending test data and getting feedback

information from CS;

1v. receives the virtualization result in the form of data stream from CS also via
TCP/IP socket as a server. The socket receives the data stream, decodes it back
to the .pdf animation format, and automatically opens the animation in its

interface.

-99.-

Doctoral Dissertation Conclusion and Outlook

(4) The CS module realizes following functions by TCP/IP socket, programming and

API technologies:

ii.

iil.

1v.

Vi.

Vil.

connects with the DTS, gets the real-time workflow data from the DTS, and
feeds data reception conditions back to the DTS via its TCP/IP socket, which

works as a client.
processes the received data and extracts key information for the virtualization;

connects with the simulation software 3DCreate, and drives it working through

COM API and Visual C# programming technologies;
extracts the components’ information from 3DCreate via COM API,

assigns the workflow data to related components and layout, sets parameters
and creates behaviors for them through Visual C# programming, COM API
and Python API technologies;

creates movements for the workflow data, forms animation via COM API;

connects with DTS, and sends it the virtualization result in data stream form

via TCP/IP socket technology.

(5) The VM module applies 3DCreate simulation technology to:

il.

1il.

1v.

creates components which have characters of nodes, behaviors and motions

besides of other 3D properties;

teaches components motions and actions by jogging joints or calling Python
APIL;

simulates movements of components synchronously;

be driven by other system via its strong APL

The scientific meanings in the dissertation are demonstrated as followings: (1) it

presents an idea to make experiment workflow in LSA laboratory virtualization in

real-time, and drive the realistic workstations running as the scheduled process based

on the virtualization result; (2) it simulates the real experiment workflow, rather than

virtual design; (3) most importantly, among the system modules, the Control System

(CS) converts workflow data in text to dynamic parameters, kinematic parameters and

actions, which the Simulation Module (SM) can recognize; (4) the system embed
Python scripts into Visual C# (VC#), and applies VC# to call Python language to

create and set dynamic and kinematic parameters for SM; (5) CS extracts model

-100-

Doctoral Dissertation Conclusion and Outlook

parameters from PCS data and assigns them to original 3D models to convert them as
components in SM; (6) CS controls SM to generate kinematic trajectories and actions,
and then integrates all kinematics in specific sequences to a whole virtualization result;
(7) CS controls SM to generate virtualization result as .pdf form, which could
demonstrate the virtualization result for customers in dynamitic form; (8) the system
developed could display the real-time virtualization result in any occasion—Ilaboratory,
meeting room, or conference hall in business trip, etc. It just asks for customers
having network; (9) because the technology problems have been solved, the system

could applied in any workstation with different PCS, and in any LSA laboratory.
7.2 QOutlook

The Virtualization System could already simulate experiment workflows on
workstations of LSA, and makes the workstation hardware, PCS and virtualization
simulation a whole. However, its functions and virtualization objects are still limited.

In the future, the system could be modified and improved to be stronger as followings:

(1) Simulate experiment workflow for different PCS: At present, the VS aims at the
workflow virtualization for PCS SAMI EX. There are many other different PCS
in LSA, which also need to realize virtualization for them. The virtualization is
the need and trend in LSA development. So it will be more flexible and stronger
if the VS could be used in any PCS of LSA.

(2) Simulate workflows of workstations synchronously: VS could simulate one LSA
workstation at one time currently. When there are other workstations in the
laboratory, it will be more vivid to show the LSA laboratory to visitors or

business partners if the system could simulate all workstations together.

(3) Simulate workflows for the whole laboratory system: In the future, there are
more laboratories integrated as a whole laboratory system, which could be
connected by moving robots or some other devices. So the system is hoped to
realize visual virtualization on not only one laboratory, but also for a whole

laboratory system, such as a laboratory building with many floors.

(4) Validation of the developed virtulization system: In the Section 6.4 of this
dissertation, the validation of the behaviors in the VS has been considered and
provided. However, the validation of the time performance has not been included,

which will be one of our future tasks.

-101-

Doctoral Dissertation References

References

(1]

(2]

(3]

(4]

(3]

(6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

R. C. Anderson, X. Su, G. J. Bogdan, and J. Fenton, “A miniature integrated device for
automated multistep genetic assays”, Nucleic Acids Res., vol. 28, no. 12, e 60, 2000.

I. Meyvantsson, J. W. Warrick, S. Hayes, A. Skoien, and D. J. Beebe, “Automated cell
culture in high density tubeless microfluidic device arrays”, Lab. Chip, vol. 8, no. 5, pp.
717-724, 2008.

A. McCabe, M. Dolled-Filhart, R. L. Camp, and D. L. Rimm, “Automated quantitative
analysis (AQUA) of in situ protein expression, antibody concentration, and prognosis”, J.
Natl. Cancer Inst., vol. 97, no. 24, pp. 1808-1815, 2005.

F. Kong, L. Yuan, Y. F. Zheng, and W. Chen, “Automatic Liquid Handling for Life Science
A Critical Review of the Current State of the Art”, J. Lab. Autom., vol. 17, no. 3, pp. 169—
185, 2012.

T. Gopel, F. Hirtl, A. Schneider, M. Buss, and H. Feussner, “Automation of a suturing
device for minimally invasive surgery”, Surg. Endosc., vol. 25, no. 7, pp. 2100-2104, 2011.
M. Vaqué, A. Arola, C. Aliagas, and G. Pujadas, “BDT: an easy-to-use front-end application
for automation of massive docking tasks and complex docking strategies with AutoDock”,
Bioinformatics, vol. 22, no. 14, pp. 1803—1804, 2006.

J. P. McMullen and K. F. Jensen, “Integrated microreactors for reaction automation: new
approaches to reaction development”, Annu. Rev. Anal. Chem., vol. 3, pp. 19-42, 2010.

K. K. Unger, R. Ditz, E. Machtejevas, and R. Skudas, “Liquid chromatography—its
development and key role in life science applications”, Angew. Chem. Int. Ed., vol. 49, no.
13, pp. 2300-2312, 2010.

Y. WU, Q. XIE, X. ZHANG, and X. LIU, “Measures to Improve Undergraduates’ Research
Experimental Level”, Res. Explor. Lab., vol. 8, pp. 33, 2009.

H. Liu, N. Stoll, S. Junginger, and K. Thurow, “Mobile Robot for Life Science Automation”,
Int. J. Adv. Robot. Syst., vol. 10, n0.288, pp. 1-14, 2013.

M. Panchal, “The automation of nested clade phylogeographic analysis”, Bioinformatics,
vol. 23, no. 4, pp. 509-510, 2007.

M. J. He, W. J. Cai, W. Ni, and L. H. Xie, “RNGA based control system configuration for
multivariable processes”, J. Process Control, vol. 19, no. 6, pp. 1036-1042, 2009.

M. Brundle and M. Naedele, “Security for process control systems: An overview”, Secur:
Priv. IEEE, vol. 6, no. 6, pp. 24-29, 2008.

M. P. Groover, "Automation, production systems, and computer-integrated manufacturing",
Prentice Hall Press, pp.257-273, 2007.

M. Vidyasagar, "Control system synthesis: a factorization approach". Morgan & Claypool
Publishers, pp.36-47, 2011.

A. Mehta, P. Wojsznis, W. K. Wojsznis, and T. L. Blevins, “Integrated model predictive
control and optimization within a process control system”, U.S. Patent 7,050,863. 2006-5-
23.

G. K. Law, D. L. Deitz, T. D. Schleiss, and J. Naidoo, “Integrated electronic signatures for

-102-

Doctoral Dissertation References

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

approval of process control and safety system software objects”, U.S. Patent 7,076,312.
2006-7-11.

F. Leymann and D. Roller, “Production workflow: concepts and techniques”, Upper Saddle
River: Prentice Hall PTR, 2000.

M. Flattery, “Workflow systems”, Tessella Support Serv. Tech. Rep. April, 2005.

E. Deelman, D. Gannon, M. Shields, and 1. Taylor, “Workflows and e-Science: An overview
of workflow system features and capabilities”, Future Gener. Comput. Syst., vol. 25, no. 5,
pp. 528-540, 2009.

B. Ludischer, 1. Altintas, S. Bowers, .etc, “Scientific process automation and workflow
management”, Sci. Data Manag. Challenges Exist. Technol. Deploy. Comput. Sci. Ser., pp.
476-508, 20009.

H. A. Reijers and W. M. V. D. Aalst, “The effectiveness of workflow management systems:
Predictions and lessons learned”, Int. J. Inf. Manag., vol. 25, no. 5, pp. 458-472, 2005.

P. Romano, “Automation of in-silico data analysis processes through workflow
management systems”, Brief. Bioinform., vol. 9, no. 1, pp. 57—68, 2008.

C. J. Huang, A. J. Trappey, and Y. H. Yao, “Developing an agent-based workflow
management system for collaborative product design”, Ind. Manag. Data Syst., vol. 106, no.
5, pp. 680-699, 2006.

A. P. Kalogeras, J. V. Gialelis, and C. E. Alexakos, “Vertical integration of enterprise
industrial systems utilizing web services”, Ind. Informatics IEEE Trans., vol. 2, no. 2, pp.
120-128, 2006.

D. Miiller, J. Herbst, and M. Hammori, “IT support for release management processes in the
automotive industry”, in Business Process Management, Springer, pp. 368-377, 2006.

C. V. Trappey, A. J. Trappey, and C. J. Huang, “The design of a JADE-based autonomous
workflow management system for collaborative SoC design”, Expert Syst. Appl., vol. 36, no.
2, pp. 2659-2669, 2009.

P. Réant, M. Dijos, and F. Arsac, “Validation of a new bedside echoscopic heart
examination resulting in an improvement in echo-lab workflow”, Arch. Cardiovasc. Dis.,
vol. 104, no. 3, pp. 171-177, 2011.

K. Kochut, J. Amold, and A. Sheth, “IntelliGEN: A distributed workflow system for
discovering protein-protein interactions”, Distrib. Parallel Databases, vol. 13, no. 1, pp.
43-72,2003.

K. Thurow, B. Gode, and U. Dingerdissen, “Laboratory information management systems
for life science applications”, Org. Process Res. Dev., vol. 8, no. 6, pp. 970-982, 2004.

H. Yin, Y. Gao, H. Yan, and J. Wang, “Simulation Data and Process Management System in
the Development of Virtual Prototype”, in Web Intelligence and Intelligent Agent
Technology (WI-IAT), 2010 IEEE/WIC/ACM International Conference on, vol. 3, pp. 152—
155, 2010.

L. Chun-quan and W. Zhao-hua, “Process management system analysis and design of SMT
reflow soldering process”, in Electronic Packaging Technology, 2005 6th International
Conference on, pp. 279-284, 2005.

-103-

Doctoral Dissertation References

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

Q. Zhang, “Development and application of process management system for coal chemical
industry”, in Intelligent Control and Automation, 2006. WCICA 2006. The Sixth World
Congress on, vol. 2, pp. 6709—6713, 2006.

“SAMI workstation EX software”, Analis. [Online]. Available:
http://www.analis.be/bin/site/render.cgi?id=0066774 item to_sell. [Accessed: 04-Nov-
2013].

Y. Li, S. Junginger, N. Stoll, and K. Thurow, “4D Simulation and Control System for Life
Science Automation”, in Robotics and Biomimetics (ROBIO), 2012 IEEE International
Conference on, pp. 802-807, 2012.

Y. Li, S. Junginger, N. Stoll and K. Thurow, “Real-time Simulation on Workflow of Life
Science Automation Laboratory”, in Computer Science and Automation Engineering
(CSAE), 2013 IEEE International Conference on, pp. 1331-1335, 2013.

Y. Li, S. Junginger, N. Stoll and K. Thurow: Visualization System Development for Life
Science Automation. in Robotics and Biomimetics (ROBIO), 2013 IEEE International
Conference on, pp. 191-196, 2013.

P.J.,S.J.,and W. M., “SILAS Integration Software for Laboratory Automation” .

M. Jansen-Vullers and M. Netjes, “Business process simulation—-a tool survey”, in
Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools, Aarhus,
Denmark, 2006.

W. M. van der Aalst, “Business process simulation revisited”, in Enterprise and
Organizational Modeling and Simulation, Springer, vol.63, pp. 1-14, 2010.

W. M. van der Aalst, J. Nakatumba, A. Rozinat, and N. Russell, “Business process
simulation,” in Handbook on Business Process Management 1, Springer, pp. 313-338, 2010.
S. L. Mansar and H. A. Reijers, “Best practices in business process redesign: validation of a
redesign framework”, Comput. Ind., vol. 56, no. 5, pp. 457471, 2005.

A. Barker and J. Van Hemert, “Scientific workflow: a survey and research directions”, in
Parallel Processing and Applied Mathematics, Springer, pp. 746—753, 2008.

W. Aalst, A. Ter Hofstede, and M. Weske, “Business process management: A survey”,
Springer Berlin Heidelberg, 2003.

K. Gorlach, M. Sonntag, D. Karastoyanova, F. Leymann, and M. Reiter, “Conventional
workflow technology for scientific simulation”, in Guide to e-Science, Springer, pp. 323—
352,2011.

W. M. van der Aalst, “Trends in business process analysis”, in Proceedings of the 9th
International Conference on Enterprise Information Systems (ICEILS) 2007, Madeira,
Institute for Systems and Technologies of Information, Control and Communication, pp. 12—
22,2007.

E. Verbeek, M. van Hattem and H. Reijers, “Protos 7.0: Simulation made accessible”, in
Applications and Theory of Petri Nets 2005, Springer, pp. 465-474, 2005.

M. J. Blechar and J. Sinur, “Magic quadrant for business process analysis tools”, Gart. RAS
Core Res. Note G 148777, 2007.

M. Kovécs and L. Gonczy, “Simulation and Formal Analysis of Workflow Models”,

-104-

Doctoral Dissertation References

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

Electron. Notes Theor. Comput. Sci., vol. 211, pp. 221-230, 2008.

W. M. van der Aalst, “Business alignment: using process mining as a tool for Delta analysis
and conformance testing”, Requir. Eng., vol. 10, no. 3, pp. 198-211, 2005.

A. Rozinata, M.T. Wynn, WM.P. van der Aalst, A.H.M. ter Hofstede,and C.J. Fidge,
“Workflow simulation for operational decision support”, Data Knowl. Eng., vol. 68, no. 9,
pp. 834-850, 2009.

D. Eichhorn, A. Koschmider,Y. Li, P. Sturzel, A. Oberweis, and R.Trunko, “3D Support for
Business Process Simulation”, in Computer Sofiware and Applications Conference, 2009.
COMPSAC °09. 33rd Annual IEEE International, vol. 1, pp. 73-80, 2009.

M. H. Zaroukian and A. Sierra, “Benefiting from ambulatory EHR implementation:
solidarity, six sigma, and willingness to strive”, J. Healthc. Inf. Manag., vol. 20, no. 1, p. 53,
2006.

P. Yellowlees, J. N. Cook, and S. L. Marks, “Can virtual reality be used to conduct mass
prophylaxis clinic training? A pilot program”, Biosecurity Bioterrorism Biodefense Strat. Pr.
Sci., vol. 6, no. 1, pp. 3644, 2008.

J. J. Saleem, E. S. Patterson, and L. Militello, “Impact of clinical reminder redesign on
learnability, efficiency, usability, and workload for ambulatory clinic nurses”, J. Am. Med.
Inform. Assoc., vol. 14, no. 5, pp. 632-640, 2007.

J. Paul, “VMWare ESX server workload analysis: how to determine good candidates for
virtualization”, in Int. CMG Conference, pp. 483-484, 2007.

J. O. Cleary, M. Modat, and F. C. Norris, “Magnetic resonance virtual histology for
embryos: 3D atlases for automated high-throughput phenotyping”, Neurolmage, vol. 54, no.
2, pp. 769-778, 2011.

M. Graafland, J. M. Schraagen, M. P. Schijven, “Systematic review of serious games for
medical education and surgical skills training”, British Journal of Surgery, vol. 99, no. 10,
pp. 1322-1330, 2012.

A. Guerra, “Virtual improvements. Idaho's St. Luke's Regional Medical Center embraced
application virtualization to empower users and reduce downtime”, Healthcare informatics:
the business magazine for information and communication systems, vol. 23, no.5, pp. 34, 36,
38, 2006.

Z. Niazkhani, H. Pirnejad, and M. Berg, “The impact of computerized provider order entry
systems on inpatient clinical workflow: a literature review”, J. Am. Med. Inform. Assoc., vol.
16, no. 4, pp. 539-549, 2009.

G. Bruinsma and R. de Hoog, “Exploring protocols for multidisciplinary disaster response
using adaptive workflow simulation”, in International Conference on Information System
for Crisis Response and Management (ISCRAM). Newark, New Jersey, pp. 1-13, 2006.

T. Glatard, C. Lartizien, B. Gibaud, .etc, “A Virtual Imaging Platform for Multi-Modality
Medical Image Simulation”, IEEE Trans. Med. Imaging, vol. 32, no. 1, pp. 110-118, 2013.
S. A. Schendel and C. Lane, “3D Orthognathic Surgery Simulation Using Image Fusion”,
Semin. Orthod., vol. 15, no. 1, pp. 4856, 2009.

A. W. Kushniruk and V. L. Patel, “Cognitive and usability engineering methods for the

-105-

Doctoral Dissertation References

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

evaluation of clinical information systems”, J. Biomed. Inform., vol. 37, no. 1, pp. 56-76,
2004.

A. W. Kushniruk, M. M. Triola, and E. M. Borycki, “Technology induced error and
usability: the relationship between usability problems and prescription errors when using a
handheld application”, Int. J. Med. Inf., vol. 74, no. 7-8, pp. 519-526, 2005.

A. Boejen and C. Grau, “Virtual reality in radiation therapy training”, Surg. Oncol., vol. 20,
no. 3, pp. 185188, 2011.

X. Mao and X. Zhang, “Construction Process Reengineering by Integrating Lean Principles
and Computer Simulation Techniques”, J. Constr. Eng. Manag., vol. 134, no. 5, pp. 371—
381, 2008.

K. W. Chau, M. Anson, and J. P. Zhang, “4D dynamic construction management and
virtualization software: 1. Development”, Autom. Constr., vol. 14, no. 4, pp. 512-524, 2005.
R. J. Scherer and S. E. Schapke, “A distributed multi-model-based Management
Information System for simulation and decision-making on construction projects”, Adv. Eng.
Informatics, vol. 25, no. 4, pp. 582-599, 2011.

M. Kugler and V. Franz, “Development of a Simulation System for the Preparation of Work
in Building Construction”, in Computation in Civil Engineering—Tagungsband zur EG-ICE
Conference, pp. 186—193, 2009.

V. Kamat, J. Martinez, and M. Fischer, “Research in Visualization Techniques for Field
Construction”, J. Constr. Eng. Manag., vol. 137, no. 10, pp. 853-862, 2011.

D. Gaiotto, G. Moore, and A. Neitzke, “Four-dimensional wall-crossing via three-
dimensional field theory”, Communications in Mathematical Physics, vol. 299, no.1, pp.
163-224, 2010.

T. Sider, “Four-dimensionalism: An ontology of persistence and time”, Oxford, 2003.

K. W. Chau, M. Anson, and J. P. Zhang, “Implementation of visualization as planning and
scheduling tool in construction”, Build. Environ., vol. 38, no. 5, pp. 713-719, 2003.

H. J. Wang, J. P. Zhang, and K. W. Chau, “4D dynamic management for construction
planning and resource utilization”, Autom. Constr., vol. 13, no. 5, pp. 575-589, 2004.

K. W. Chau, M. Anson, and J. P. Zhang, “Four-dimensional virtualization of construction
scheduling and site utilization”, J. Constr. Eng. Manag., vol. 130, no. 4, pp. 598-606, 2004.

K. W. Chau, M. Anson, and D. D. De Saram, “4D dynamic construction management and
visualization software: 2. Site trial”, Autom. Constr., vol. 14, no. 4, pp. 525-536, 2005.

T. Anderson, L. Peterson, and S. Shenker, “Overcoming the Internet impasse through
virtualization”, Computer, vol. 38, no. 4, pp. 34-41, 2005.

J. Bond, D. Frush, and E. Samei, “Simulation of anatomical texture in voxelized XCAT
phantoms”, in SPIE Medical Imaging, p. 86680N—-86680N, 2013.

X. Tian, X. Li, and W. P. Segars, “Patient-and cohort-specific dose and risk estimation for
abdominopelvic CT: a study based on 100 patients”, in SPIE Medical Imaging, p. 83131R—
83131R, 2012.

K. Taguchi, Z. Sun, and W. P. Segars, “Image-domain motion compensated time resolved
4D cardiac CT”, in Medical Imaging, pp. 651016-651016, 2007.

-106-

Doctoral Dissertation References

[82]

[83]

(84]

(85]

[86]

[87]

(88]

(89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

W. P. Segars, G. Sturgeon, and S. Mendonca, “4D XCAT phantom for multimodality
imaging research”, Med. Phys., vol. 37, p. 4902, 2010.

W. P. Segars, S. Mori, and G. T. Y. Chen, “Modeling respiratory motion variations in the 4D
NCAT phantom”, in Nuclear Science Symposium Conference Record, 2007. NSS'07. IEEE,
vol. 4, pp. 2677-2679, 2007.

W. P. Segars, M. Mahesh, and T. Beck, “Validation of the 4D NCAT simulation tools for use
in high-resolution x-ray CT research”, in Proc. of SPIE Vol, vol. 5745, pp. 828-834, 2005.
W. P. Segars, M. Mahesh, and T. J. Beck, “Realistic CT simulation using the 4D XCAT
phantom”, Med. Phys., vol. 35, p. 3800-3808, 2008.

W. P. Segars, B. M. W. Tsui, and E. C. Frey, “Extension of the 4D NCAT phantom to
dynamic X-ray CT simulation”, in 2003 IEEE Nuclear Science Symposium Conference
Record, vol. 5, pp. 3195-3199, 2003.

C. Kim, H. Kim, and T. Park, “Applicability of 4D CAD in civil engineering construction:
Case study of a cable-stayed bridge project”, J. Comput. Civ. Eng., vol. 25, no. 1, pp. 98—
107, 2010.

J. Zhang, and D. Li, “Research on 4D virtual construction and dynamic management
system based on BIM”, in Proceedings of the International Conference on Computing in
Civil and Building Engineering, ICCBE, pp.78-83, 2010.

L.-S. Kang, H.-S. Moon, and S.-Y. Park, “Improved link system between schedule data and
3D object in 4D CAD system by using WBS code”, KSCE J. Civ. Eng., vol. 14, no. 6, pp.
803-814, 2010.

W. Li, G. Jods, and J. Bélanger, “Real-time simulation of a wind turbine generator coupled
with a battery supercapacitor energy storage system”, Ind. Electron. IEEE Trans., vol. 57,
no. 4, pp. 1137-1145, 2010.

M. Karkee, B. L. Steward, and A. G. Kelkar, “Modeling and real-time simulation
architectures for virtual prototyping of off-road vehicles”, Virtual Real., vol. 15, no. 1, pp.
83-96, Mar. 2011.

Y. Li, S. Junginger, N. Stoll, and K. Thurow, “4D simulation system for laboratory
workflow of life science automation”, in Instrumentation and Measurement Technology
Conference (I2ZMTC), 2012 [EEE International, pp. 1886—-1890, 2012.

B. Rooks, “Robotics outside the metals industries”, Ind. Robot Int. J., vol. 32, no. 3, pp.
205-208, 2005.

M. N. Rooker, T. Strasser, and G. Ebenhofer, “Modeling flexible mechatronical based
assembly systems through simulation support”, in [EEE International Conference on
Emerging Technologies and Factory Automation, pp. 452—455, 2008.

B. Ludischer, 1. Altintas, and S. Bowers, “Scientific process automation and workflow
management”, Sci. Data Manag. Challenges Exist. Technol. Deploy. Comput. Sci. Ser., pp.
476-508, 2009.

B. Ludéscher, 1. Altintas, and C. Berkley, “Scientific workflow management and the Kepler
system”, Concurr. Comput. Pr. Exp., vol. 18, no. 10, pp. 1039-1065, 2006.

J. G. Hollands, and C. D. Wickens, "Engineering psychology and human performance",

-107-

Doctoral Dissertation References

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

Prentice Hall New Jersey, 1999.

R. H. Dieck, “Measurement uncertainty: methods and applications”. Research Triangle
Park, NC: Instrument Society of America, 1992.

E. Deelman, D. Gannon, and M. Shields, “Workflows and e-Science: An overview of
workflow system features and capabilities”, Future Gener. Comput. Syst., vol. 25, no. 5, pp.
528-540, 2009.

H. V. Westerhoff and B. O. Palsson, “The evolution of molecular biology into systems
biology”, Nat. Biotechnol., vol. 22, no. 10, pp. 1249-1252, 2004.

W. M. van der Aalst, “The application of Petri nets to workflow management”, J. Circuits
Syst. Comput., vol. 8, no. 01, pp. 21-66, 1998.

T. Oinn, P. Li, and D. B. Kell, “Taverna/myGrid: aligning a workflow system with the life
sciences community”, in Workflows for e-Science, Springer, pp. 300-319, 2007.

J. W. Hong and S. R. Quake, “Integrated nanoliter systems”, Nat. Biotechnol., vol. 21, no.
10, pp. 1179-1183, 2003.

S. Finger and J. R. Dixon, “A review of research in mechanical engineering design. Part II:
Representations, analysis, and design for the life cycle”, Res. Eng. Des., vol. 1, no. 2, pp.
121-137, 1989.

R. Brooks, “A robust layered control system for a mobile robot”, Robot. Autom. IEEE J.,
vol. 2, no. 1, pp. 14-23, 1986.

“World News,” J. Assoc. Lab. Autom., vol. 12, no. 6, pp. A14—A43, 2007.

J. G. Houston and M. Banks, “The chemical-biological interface: developments in
automated and miniaturised screening technology”, Curr. Opin. Biotechnol., vol. 8, no. 6,
pp. 734-740, 1997.

S. D. Garrett, D. J. Appleford, and G. M. Wyatt, “Production of a recombinant anti-
parathion antibody (scFv); stability in methanolic food extracts and comparison to an anti-
parathion monoclonal antibody”, J. Agric. Food Chem., vol. 45, no. 10, pp. 41834189,
1997.

V. M. Bohaychuk, G. E. Gensler, and R. K. King, “Evaluation of detection methods for
screening meat and poultry products for the presence of foodborne pathogens”, J. Food
Prot., vol. 68, no. 12, pp. 2637-2647, 2005.

G. M. Banowetz, J. R. Hess, and J. G. Carman, “A monoclonal antibody against the plant
growth regulator, abscisic acid”, Hybridoma, vol. 13, no. 6, pp. 537-541, 1994.

D. Katz, W. Shi, M. Wildes, and J. K. Hilliard, “Automation of serological diagnosis for
herpes B virus infections using robot-assisted integrated workstations”, J. Assoc. Lab.
Autom., vol. 7, no. 6, pp. 108—113, 2002.

D. B. Kaber, N. Segall, and R. S. Green, “Using multiple cognitive task analysis methods
for supervisory control interface design in high-throughput biological screening processes”,
Cogn. Technol. Work, vol. 8, no. 4, pp. 237-252, 2006.

R. S. Green, “Cognitive Task Analyses for Life Science Automation Training Program
Design”, ProQuest, 2008.

H. Dong, M. Goldberg, and D. Nguyen, “Automated high-throughput microarray system”,

-108-

Doctoral Dissertation References

US20040191807 A1, 2003.

[115] “SAMI EX CUSTOMER TRAINING” [Online]. https://www.beckmancoulter.com/
wsrportal/wsr/research-and-discovery/products-and-services/research-automation/sami-
scheduling-software/index.htm.

[116] “SILAS Class Presentation” [Online]. https://www.beckmancoulter.com/wsrportal/
bibliography?docname=BR-8270C.pdf.

[117] A. Morbidoni, C. Favi, and M. Germani, “CAD-Integrated LCA Tool: Comparison with
dedicated LCA Software and Guidelines for the improvement”, Glocalized Solutions for
Sustainability in Manufacturing. Springer Berlin Heidelberg, pp. 569-574, 2011.

[118] L. Q. Dong. “Applications of Three-dimensional CAD in Mechanical Design”, Coal Technology,
vol. 9, p. 8, 2009.

[119] A. Staranowicz, and G. L. Mariottini, “A survey and comparison of commercial and open-source
robotic simulator software”. In Proceedings of the 4th International Conference on PErvasive
Technologies Related to Assistive Environments, p. 56. ACM, 2011.

[120] “Comparison of 3D computer graphics software” [Online]. http://en.wikipedia.org/wiki/

Comparison_of 3D computer graphics_software.
[121] “Comparison of computer-aided design editors” [Online]. http://en.wikipedia.org/wiki/
Comparison_of computer-aided design_editors.
[122] “Comparison of 3D computer graphics software” [Online]. http://en.wikipedia.org/wiki/
Comparison_of 3D computer graphics software.

[123] O. Roulet-Dubonnet and P. A. Nyen, “A method and application to simulate and validate
manufacturing control systems based on a discrete manufacturing simulation platform”, in
Industrial Applications of Holonic and Multi-Agent Systems, Springer, pp. 152—-162, 2013.

[124] J. Kriiger, V. Katschinski, and D. Surdilovic, “PISA: Next Generation of Flexible Assembly
Systems-From Initial Ideas to Industrial Prototypes”, in Robotics (ISR), 41st International
Symposium on and 6th German Conference on Robotics (ROBOTIK), pp. 1-6, 2010.

[125] L. Ferrarini and C. Veber, “3D graphic simulation of flexible manufacturing systems with
Day Dream Daemon and 3DCreate”, in 6th IEEE International Conference on Industrial
Informatics, pp. 1401-1406, 2008.

[126] M. Sacco, G. Dal, and F. Milella, “Virtual factory manager”, Virtual and Mixed Reality-
Systems and Applications, Springer Berlin Heidelberg, pp. 397-406, 2011.

[127] M. Rooker, T. Strasser, and G. Ebenhofer. “Modeling flexible mechatronical based
assembly systems through simulation support”, IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA), pp. 452-455, 2008.

[128] B. Rooks. “Robotics outside the metals industries”, Industrial Robot: An International
Journal, vol. 32, no. 3, pp.205-208, 2005.

[129] “Visual Components 3DCreate 2012 - User Manual and Reference Guide”, Visual
Components, 11-Sep-2011.

[130] L. Dupuy L, T. Fourcaud, and P. Lac, “A generic 3D finite element model of tree anchorage
integrating soil mechanics and real root system architecture”, American Journal of Botany,
vol. 94, no. 9, pp. 1506-1514, 2007.

-109-

Doctoral Dissertation References

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

I. Dressier, M. Haage, and K. Nilsson, “Configuration support and kinematics for a
reconfigurable Gantry-Tau manipulator”, 2007 IEEE International Conference on Robotics
and Automation, pp. 2957-2962, 2007.

T. Shi, “A Robot Simulation of the Tower of Hanoi Puzzle using OpenRAVE with Sensor
Feedback”, Vanderbilt University, U.S., 2013.

J. L. Rojas, “Autonomous cooperative assembly by force feedback using a control basis
approach”, Vanderbilt University, U.S., 2009.

“Yaskawa Motoman Robotics, Solutions in Motions, HP3JC data sheet”, Yaskawa America,
Inc., 2011 DS-264-D.

H. Zhu, C. Li, and J. Gu. “Implementation of Paralleling Genetic Annealing Algorithm on
Grid”, 3" IEEE International Conference on Intelligent Networks and Intelligent Systems
(ICINIS), pp. 471-474, 2010.

C. Wogerer, H. Bauer, and M. Rooker, “LOCOBOT-low cost toolkit for building robot co-
workers in assembly lines”, Intelligent Robotics and Applications, Springer Berlin
Heidelberg, pp. 449459, 2012.

S. Zenoni, A. Ferrarini, and E. Giacomelli, “Characterization of transcriptional complexity
during berry development in Vitis vinifera using RNA-Seq”, Plant Physiol., vol. 152, no. 4,
pp. 1787-1795, 2010.

R. Darken, P. McDowell, and E. Johnson, ‘“Projects in VR: the Delta3D open source game
engine”, Comput. Graph. Appl. IEEE, vol. 25, no. 3, pp. 10-12, 2005.

T. Brezmes, J.-L. Gorricho, and J. Cotrina, “Activity recognition from accelerometer data
on a mobile phone”, in Distributed computing, artificial intelligence, bioinformatics, soft
computing, and ambient assisted living, Springer, pp. 796—799, 2009.

J. Heilala, J. Montonen, and O. Véétiinen, “Life cycle and unit-cost analysis for modular
reconfigurable flexible light assembly systems”, Proc. Inst. Mech. Eng. Part B J. Eng.
Manuf., vol. 222, no. 10, pp. 1289—-1299, 2008.

B. Uekert and D. Dancy, State courts and elder abuse: Ensuring justice for older
Americans. Williamsburg, VA: National Center for State Courts, 2007.

M. Wang, J. Hong, and W. Wu, “An improved model of motorized spindle for transient
thermo-structural analysis”, in Assembly and Manufacturing (ISAM), 2013 IEEE
International Symposium on, pp. 1-7, 2013.

A. Ji, Z. Xu, and L. Lu, “Customization Research on Collaborative Simulation of the Parts
of Truck-Mounted Crane”, Applied Mechanics and Materials, , vol. 201, pp. 569-573, 2012.
A. Pichler, P. Barattini, and C. Morand, “Tailor Made Robot Co Workers Based on a
Plug&Produce Framework”, in Robotics in Smart Manufacturing, Springer, pp. 113—-126,
2013.

L. Lindqgvist, “Unified infrastructure for simulation, communication and execution of
robotic systems”, M. SC. thesis, Helsinki University of Technology, Finland, 2007.

F. Wickert, “A test for personal goal-values”, J. Soc. Psychol., vol. 11, no. 2, pp. 259274,
1940.

K. Khairunnisa, “Kinematic Analysis Of 6-Axis Comau Robot”, Universiti Teknikal

-110-

Doctoral Dissertation References

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

Malaysia Melaka, Malaysia, 2008.

D. Palm, K. Johansson, and A. Ozin, “Molecular epidemiology of human pathogens: how to
translate breakthroughs into public health practice, Stockholm, November 20117, Euro
Surveill, vol. 17, no. 2, pp. 1-4, 2012.

J. R. Alvarado, R. V. Osuna, and R. Tuokko, “Distributed simulation in manufacturing using
high level architecture”, Micro-assembly Technologies and Applications, Springer US, pp.
121-126, 2008.

T. R. Keeney, C. Bock, and L. Gold, “Automation of the Somalogic proteomics assay: a
platform for biomarker discovery”, Journal of the Association for Laboratory Automation,
vol. 14, no. 6, pp. 360-366, 2009.

M. A. Jensen, L. Jauregui, and R. W. Davis, “A Rapid, Cost-Effective Method of Assembly
and Purification of Synthetic DNA Probes> 100 bp”, PloS One, vol. 7, no. 4, €34373, pp.1-
4,2012.

J. DelProposto, C. Y. Majmudar, and J. L. Smith, “Mocr: a novel fusion tag for enhancing
solubility that is compatible with structural biology applications”, Protein Expr. Purif., vol.
63, no. 1, pp. 40-49, 20009.

M. de Arruda, V. I. Lyamichev, and P. S. Eis, “Invader technology for DNA and RNA
analysis: principles and applications”, Expert Rev. Mol. Diagn., vol. 2, no. 5, pp. 487496,
2002.

D. E. Burger, L. Wang, and L. Ban, “Novel automated blood separations validate whole cell
biomarkers”, PloS One, vol. 6, no. 7, €22430, pp.1-11, 2011.

K. Allison, “The first automated high content screening system”, J. Assoc. Lab. Autom., vol.
8, no. 3, pp. 27-29, 2003.

P. P. So, E. Zeldich, and K. 1. Seyb, “Lowering of amyloid beta peptide production with a
small molecule inhibitor of amyloid-p precursor protein dimerization”, Am. J.
Neurodegener. Dis., vol. 1, no. 1, pp. 75-87, 2012.

D. Meyre, K. Proulx, and H. Kawagoe-Takaki, “Prevalence of loss-of-function FTO

mutations in lean and obese individuals”, Diabetes, vol. 59, no. 1, pp. 311-318, 2010.

-111-

Doctoral Dissertation Appendixes

Appendixes

Appendix A: Biomek FX

The Biomek® FX Laboratory Automation Workstation is a multi-axis liquid-handling
instrument used in the drug discovery laboratory. Its system components described

below correspond to the components shown in Fig. A. 1.

Figure A.1 Biomek FX main components

-112-

Doctoral Dissertation Appendixes

A.1 Towers

The Biomek FX towers form the rear vertical and horizontal uprights of the base unit
along which the bridges travel in the X-axis (see as Fig. A.2). The links for master
control of Biomek FX, plus utility hook-ups and ALP connections, are on the towers.
Built into the towers are green and amber indicator lights that keep users aware of the

current operational status of Biomek FX instrument.

X-axi ¢ S ‘ Inside tower connections |
) -amsl ' m\b‘\ Tl
linear rail W[[. /1
\\ \\Q\ ey |
\Q e I.'

l’*’
LB

Qutside left tower
connections

Outside right tower
connections

15

Figure A.2 Main components and connections of the Biomek FX towers

-113-

Doctoral Dissertation Appendixes

A.2 Bridges

As Fig.A.3 shows, the Biomek FX bridges are structures that move in the X-axis, and
the pods are self-contained components supported and positioned by the bridges. The
bridges hold the pods and move them in the Y- (front to back) and Z-axes (up and
down). One or two bridges are available on the Biomek FX instrument to create a
single- or dual-pod instrument. In a dual-pod system, the pods can work together to

expand liquid-handling capabilities.

\\\\

Elrldges ona

instrument e o

Multichannel >(
Pod —=] N

Figure A.3 Bridges move in the X-axis, hold and move pod in the Y- and Z-axes
A.3 Multichannel Pod

The Multichannel Pod is a self-contained working unit installed on the right, left, or
both bridges of Biomek FX. The Multichannel Pod is a full microplate replication tool
incorporating a gripper and interchangeable heads to accommodate a variety of

functions. It interacts with ALPs located over the entire deck area of Biomek FX.

-114-

Doctoral Dissertation Appendixes

The main components of the Multichannel Pod are (as Fig. A.4):

* Pod — Houses operating mechanism, pneumatic air line, communication and
electrical power connections to the base unit, and moves in the Y-, Z-, and D-axes for

liquid-handling functions.

 Interchangeable Heads — Holds mandrels and tips for performing full-plate

replication.

* Gripper — Grip labware along the long side of the labware.

Head

Figure A.4 Multichannel Pod — main components

The Multichannel Pod performs movements in the Y-, Z-, and D-axes (see as Table
A.l).

Table A.1 Multichannel Pod Axes Movement

Axis Movement

Y- Entire pod moves front-to-back.

Z- Entire pod moves up-and-down.

D- Up-and-down aspirate/dispense, disposable tip shucking, and close/open

-115-

Doctoral Dissertation Appendixes

A.4 Automated Labware Positioners

Automated Labware Positioners (ALPs) are removable and interchangeable platform
structures that are installed on the Biomek deck to allow automated assays to be

performed.
ALPs are either:

* Passive ALPs — some hold labware in place on the deck while others act as
receptacles for by-products from methods, such as system fluid and disposed tips, tip

boxes, and labware.
OR

* Active ALPs — contain mechanisms that may hook to power and/or air sources for
mechanical operation, such as tip loading, tip washing, mixing/stirring, shaking, and

precisely positioning labware.

Figure A.5 shows the ALPs of Biomek FX. Among them, the positions P1-P16 are
passive ALPs that hold labware on the deck during liquid-handling procedures; TL1 is
an active ALP that loads disposable tips onto a 96-well head or a 384-well head
mounted on a Multichannel Pod; the Shuttle is a passive position for setting one end
of SMCShuttle; WS1 is an active ALP that washes fixed or disposable tips on the
deck; the Top1 and Res1 are belong to one single active ALP featuring a reservoir that
can be drained and refilled automatically using steps in a Biomek Software method or

manually using Advanced Manual Control.

Figure A.5 ALPs of Biomek FX

-116-

Doctoral Dissertation Appendixes

Appendix B: Biomek NX Span-8

The Biomek® NX Span-8 Laboratory Automation Workstation is a multi-axis liquid-
handling instrument used in the life sciences and bioresearch laboratory. The

components of the workstation are described as Fig. B. 1.

l Indicator light
u

Tower

Span-8 Pod
and probes

Ty
L TRy

Figure B.1 Biomek NX with Span-8 Pod and optional gripper
B.1 Bridges

As Fig.B.1 shows, there are two groups of bridges that move along the X-axis in
Biomek NX. They have separated components for different tasks: one for gripper
movement, and the other one for the Span-8 pod and probes. The bridges hold their

components and move them in the Y- (front to back) and Z-axes (up and down).
B.2 Span-8 Pod

The Span-8 Pod is a self-contained working unit installed on the Biomek NX Span-8.
It is a liquid-handling tool capable of performing liquid transfers from test tubes and

large pieces of labware to smaller pieces of labware, or vice versa.

The Span-8 Pod houses the operating mechanisms, communications, and electrical
connections to the base unit. It performs liquid transfers using a series of eight probes

that can move independently in the Z-axis, pipette independently in the D-axis with

-117-

Doctoral Dissertation Appendixes

the assistance of the pumps, and span from 9mm to 20mm between the probes in the

S-axis (see Table B.1). The main components of a Span-8 Pod are shown as Fig. B. 2.

Table B.1. Span-8 Pod Axes Movement

Axis Movement
Y- The probes move simultaneously front to back.
Z- The probes move up and down independently.

D- The aspirate/dispense action is controlled independently by the pumps.

S- The span (or distance) between the eight probes can expand and collapse.

Probes

g

- o wm mm n f—w

|

-,

L

Span-8 Podl[

I
L
Tips are attached to the probes
at the ip mterface. I

.

Figure B.2. Span-8 Pod with gripper (detailed view)

B.3 Gripper

The Biomek NX gripper tool grasps and moves labware from one location on the
Biomek NX deck to another. The gripper moves independently of the pod and can
move in the Y-axis (back to front) and Z-axis (up and down). It can also rotate to
access positions that are oriented at different angles in relation to the front of the

Biomek NX instrument.

-118-

Doctoral Dissertation Appendixes

As Fig.B.3 shows, the gripper tool contains two sets of finger pads:
* A double finger pad located to the front of the tool

* A single finger pad located to the back of the tool

-::::—«.J_L ///__’:'.'
— — T
™ /f-_
S J _
- — e ey
- (_f—'-g-_ﬁg’?i:‘; = o
e
=iy
=
Double | ‘
finger pad e
Single ﬁﬁﬁéifﬁ
finger pad =

Figure B.3. Factory-installed gripper tool

B.4 Automated Labware Positioners

As the description of Biomek FX ALPs, there are also some passive and active ALPs
installed on the deck of the Biomek NX instrument to allow automated assays to be
performed. Figure B.4 shows the ALPs of Biomek NX Span-8: C1 is an active ALP
for setting ConvNX; P1-P8 are passive ALPs for holding labware on the deck during
liquid-handling procedures; S1-S3 are the ALP for the device Teleshake to shake a
microplate in the chosen direction (as Fig. B.5); W1 is a passive ALP used to wash
fixed tips on the probes of a Span-8 Pod while the reservoir side of the Span-8 Tip
Wash ALP is used to dispose of system fluid used; TR1 is a Half-Position Disposal

ALP with slide, which provides a means to dispose of tips, tip boxes, and labware.

|

Figure B.4 ALPs of Biomek NX Span-8

™ Shake
" Stop
™ Stat

Initialize

B VARIOMAG Teleshake (A=
Update | Cancel | Options | Time Estimate: [25
Actior Positions Direction Speed
® e R R0
" Close Hlﬁ- iR e
* Initialize Power [%] |50

& l " vertical
H l " horizontal Set as Incubation P.
»—ql " diagonal

Figure B.5 Action commands of the Teleshake

-119-

Doctoral Dissertation Declaration

Declaration

This dissertation ‘Virtualization System for Life Science Automation Laboratory’ is a
presentation of my original research work. Wherever contributions of others are
involved, every effort is made to indicate this clearly, with due reference to the
literature, and acknowledgement of collaborative research and discussions. The work
of this dissertation has been done by myself under the guidance of Prof. Dr.-Ing. habil.
Kerstin Thurow and Prof. Dr.-Ing. Norbert Stoll at the University of Rostock,
Germany. Also the dissertation has not been accepted for any degree and is not

concurrently submitted in candidature of any other degree.

Rostock, 29 January, 2014

Yanfei Li

-120-

Doctoral Dissertation Theses

Theses

10.

Virtualization System (VS) for Life Science Automation (LSA) integrates many
technologies which include PCS, SILAS OCX, TCP/IP socket, COM API, Python
API, Visual C# programming, Python scripts, and 3D Simulation.

VS for LSA has four modules: Process Control System (PCS), Data Transfer
System (DTS), Control System (CS), and Virtualization Module (VM).

VS for LSA could not only simulate real-time experiment workflow, but also
simulate historical workflow data for demonstrations in conference or business

occasions.

PCS generates real-time workflow data for VS via SILAS integration system, and
transmits the data to DTS via SILAS OCX.

DTS receives workflow data in real time from PCS by calling SILAS OCX, and
sends the data to CS via TCP/IP socket synchronously. The TCP/IP socket in DTS

woks as a server for sending workflow data.

DTS receives simulation results in the format of .pdf animation from CS via
TCP/IP socket, which also works as a server. The animation results are received
as data stream, and transferred back to .pdf file. They are opened automatically in

the DTS interface after being transferred wholly.

CS receives the real-time workflow data from DTS via TCP/IP socket, which
works as a client. At the same time, CS extracts key information from the

complex workflow data to do preparation for simulation.

CS links and drives the simulation software 3DCreate to do simulation by calling
its COM API and Python API.

COM API of 3DCreate is called to create behaviors, trajectories, and actions for
components, set properties and parameters of components, and invoke commands
of the software for file operations, simulation setting, etc. The COM API is called

and programmed by Visual C# in CS.

Python API of 3DCreate is called and programmed in Python language. It is

edited in Python scripts, which is a behavior of a component. It’s called to define

-121-

Doctoral Dissertation Theses

11.

12.

13.

14.

15.

16.

properties of a component, create basements for robots and servos, and perform

different actions with robots and their tools.

CS assigns the workflow data to related components in the workstation layout,
teaches robots and servos motions and actions, and creates specified sequences
for motions and actions of components to form experiment workflow as the data

depicts.

CS forms the orderly movements of components to a whole experiment workflow
of LSA once the real-time data is generated fully in PCS. It saves the workflow
with 3D trajectories to .pdf animation, and backs up the simulation result as

3DCreate layout for modification.

PDF animation could be showed in Adobe Reader. It could be demonstrated in
various views and sizes. When it is opened in the reader, the sizes of components
and distances in the layout could be measured. Customers could get all

information about the layout just from the .pdf animation.

CS embeds 3DCreate OCX into its interface, which could intuitively show the
workstation layout and simulation results to users in real time with the workflow

data received.

Once the simulation result (.pdf animation file) is generated, CS extracts the
result and sends it to DTS by TCP/IP socket. That is the second socket in CS,
which is also works as a client. The socket works to connect the server socket,
and send the .pdf animation file in the form of data stream when the connection

requirement is accepted.

Beside processing and simulating real-time workflow data, CS could also extract
and process historical workflow data, and then simulate it by driving 3DCreate
working. The system generates the simulation result and shows it in its interface
to the users, or generates .pdf animation file for demonstrations of LSA

laboratories to business partners.

-122-

Doctoral Dissertation Abstract

Abstract

In Life Science Automation (LSA), Process Control System (PCS) could realize
automatic control for experiment workflows in workstations of laboratories. However,
the virtualization for workflows is lacked and becomes more and more necessary. This
dissertation developed a Virtualization System (VS) to simulate LSA experiment
workflows virtually in a flexible and fast way, which solves the virtualization problem

for LSA experiments.

Virtualization System integrates technologies of PCS, TCP/IP socket, database, Visual
C#, Python Script, Visual Component 3DCreate and 3D modeling. It mainly has four
modules to realize their separate functions in the system: (1) PCS module for
generating workflow data, and sending the data through its SILAS OCX, as well as
driving realistic workstations running sync with the virtualization process; (2) Data
Transfer System (D7S) module for receiving the workflow data from PCS by calling
its SILAS OCX, transferring the workflow data to Control System (CS) module and
getting the virtualization result from CS both by TCP/IP socket technology, as well as
showing the virtualization result automatically at the side of PCS by calling Adobe
PDF Reader DLL; (3) CS module for getting workflow data via TCP/IP socket, and
simulating not only real-time but also historical workflow data in 4D animation form
through controlling the Virtualization Module (VM) by calling and expanding its
COM API and Python API, as well as sending the virtualization result to DTS via its
TCP/IP socket; (4) VM for generating 3D models of devices in Solidworks, and
transferring the 3D models to components and layouts in 3DCreate, teaching robots
and servos with motions and actions, as well as being controlled to generate the
virtualization result via its COM API and Python API.

In the VS, DTS and CS are developed by Visual C# to connect workstation hardware,
PCS and 3D simulation tool as a whole. The system realizes virtualization on LSA
experiment workflows not only in real time but also in historical. It supplies a vivid
and flexible 4D virtualization on LSA experiment workflows for customers, and

makes demonstrations for LSA laboratories more convenient.

-123-

Doctoral Dissertation Zusammenfassung

Zusammenfassung

Im Bereich der Life Science Automatisierung (LSA) kann die automatische Steuerung
von Arbeitsabldufen bei Experimenten an Laborarbeitspldtzen durch ein
Prozesssteuerungssystem (PSS) realisiert werden. Es fehlte jedoch bisher die immer
wichtiger werdende Mdglichkeit, die entsprechenden Arbeitsabldufe zu visualisieren.
Im Rahmen dieser Dissertation wurde ein Virtualisierung Steuersystem (VS)
entwickelt, das die Arbeitsabldufe bei Experimenten im Bereich der LSA schnell und

flexibel simuliert und so das Problem fehlender Virtualisierung 16st.

Das VS integriert die folgenden Technologien: PSS, TCP/IP Sockets, Datenbanken,
Visual C#, Python Script, Visual Components 3DCreate und 3D Modellierung. Es
besteht im Wesentlichen aus vier Modulen, die im System verschiedene Aufgaben
tibernehmen: (1) Das PSS-Modul generiert Daten {liber die Arbeitsabldufe, die es
anschlielend iiber sein SILAS OCX sendet und es steuert die realen Arbeitsplitze
synchron zum virtualisierten Prozess. (2) Das Datentransfersystem (DTS) empfingt
die Arbeitsablauf-Daten vom PSS-Modul indem es dessen SILAS OCX aufruft und
tibertrdgt diese Daten an das Steuerungssystem (SS). Das DTS nutzt die TCP/IP
Socket-Technologie um die Virtualisierung Ergebnisse vom SS zu erhalten und die
Adobe PDF Reader DLL um die Virtualisierung Ergebnisse im PSS anzuzeigen. (3)
Das SS-Modul erhilt Arbeitsablauf-Daten iiber TCP/IP-Sockets und verarbeitet
Echtzeitdaten ebenso wie gespeicherte Arbeitsabldufe zu einer 4D-Simulation durch
Steuerung des Virtualisierungsmoduls (VM) mittels Aufruf und Expansion von dessen
COM API und Python API. AnschlieBend werden die Virtualisierung Ergebnisse iiber
TCP/IP-Sockets an das DTS gesendet. (4) Die Funktion des VM besteht darin, 3D-
Modelle von Gerdten in Solidworks zu generieren und diese in 3DCreate in
Komponenten und Layouts umzuwandeln. Hier werden die Bewegungen und
Aktionen von Robotern und Servos definiert. Die Berechnung der Virtualisierung
Ergebnisse wird gesteuert {iber eine COM API und eine Python API.

In dem VS wurden das DTS und SS in Visual C# implementiert um die Arbeitsplatz-
Hardware mit dem PSS und dem 3D-Simulationswerkzeug zu verbinden. Das System
realisiert die Virtualisierung von Arbeitsabldufen bei LSA-Experimenten sowohl fiir
Echtzeitdaten als auch Archivdaten. Es liefert eine anschauliche und flexible 4D-
Virtualisierung der Arbeitsabldufe in LSA-Experimenten fiir Kunden und vereinfacht

Demonstrationen fur LSA-Labore.

-124-

	Contents
	List of Figures
	Chapter 1 Introduction
	1.1 Background of this Dissertation
	1.2 Literature Review
	1.2.1 Process Control System Workflow
	1.2.2 Workflow Virtualization
	1.2.3 4D Virtualization
	1.2.4 Real-time Virtualization
	1.2.5 Discussions

	1.1
	1.3 Virtualization Strategy

	Chapter 2 Process Control System
	2.1 Introduction
	2.2 Work Principle
	1.1
	1.1
	2.3 Workflow Data
	2.4 Discussions

	Chapter 3 Data Transfer System
	3.1 Communication with the Process Control System
	3.2 Real-time Data Transfer
	3.3 Virtualization Result Reception
	3.4 Discussions

	Chapter 4 Control System
	4.1 Communication with the Data Transfer System
	4.2 Data Processing
	4.3 Control Virtualization
	4.4 Discussions

	Chapter 5 Virtualization Module
	5.1 Introduction
	5.2 Modeling
	5.3 Create Components
	5.4 Teach Components
	5.5 Creating Layouts
	5.6 Discussions

	Chapter 6 System Test and Application
	6.1 Connections among Modules
	6.2 Method in the Process Control System
	6.3 Data Transmission in the Data Transfer System
	6.4 Online Virtualization in the Control System
	6.5 Virtualization Result Transmission

	Chapter 7 Conclusion and Outlook
	7.1 Conclusion
	7.2 Outlook

	References
	Appendixes
	Declaration
	Theses
	Abstract
	Zusammenfassung

