
 

Virtualization System for Life Science 

Automation Laboratory 

 

 

 

 

 

Submitted by: 

Yanfei Li 

from Rostock, 2014   

born on 25th, August 1981 in Longyou, China 

zef007
Schreibmaschinentext

zef007
Schreibmaschinentext
urn:nbn:de:gbv:28-diss2015-0218-3



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gutachter: 

1. Gutachter:  

Prof. Dr.-Ing. habil. Kerstin Thurow, 

Institut für Automatisierungstechnik, Universität Rostock, Germany 

2. Gutachter: 

Prof. Dr. Hartmut Pfüller, 

Institut für Angewandte Mikroelektronik und Da-tentechnik,  

Universität Rostock, Germany 

3. Gutachter: 

Professor David Kaber, 

Department of Industrial and Systems Engineering, 

North Carolina State University, USA 

 

 

 

Datum der Einreichung: 05. February 2014 

Datum der Verteidigung: 28. May 2014             



 

 

Acknowledgement: 

There are many thanks to several persons as followings in this doctoral dissertation. 

Without them, the dissertation would not be completed. 

First of all, I would like to express my pretty gratitude to Prof. Thurow and Prof. Stoll 

for providing such an interesting topic, and for giving me so much guidance, supports 

and helps in the whole dissertation process. They are always nice, tolerant, and patient 

to me when I met difficulties or had halts in the work. Without their continuous 

motivation and trusts, it’s impossible for me to insist on and finish this dissertation 

finally. 

Besides, many thanks I would like to say to my colleagues of the Institute of 

Automation and the Center for Life Science Automation (celisca). They are always so 

nice to supply helps and supports when I met problems no matter in work or in daily 

life. Especially I’d like to thank Dr. Steffen Junginger, Dr. Thomas Roddelkopf, Mr. 

Lars Woinar and Dr. Hui Liu for their professional guidance and helps in my work. 

Also sincere thanks go to Mrs. Anett Ahrens, Mr. Peter Passow and Ms. Ricarda 

Lehmann for their helps in work affairs and daily life. 

Specially, I would like to express my pretty appreciations to Dr. Steffen Junginger and 

his family for all helps and concerns for my family. Their kindness and sincerity give 

us the feeling of family members. 

Last but not least, I would like to express my heartfelt gratitude and love to my family 

-- my husband Dr. Hui Liu, my little boy Mr. Xing Liu, my parents Mr. Meiyou Li and 

Mrs. Zhangwen Liu, and my sister Yanyu Li for their selfless love, support and 

encouragement. They are always my motivations in my life. 



 

-I- 

 

Contents 

Contents….… ...................................................................................................................... I 

List of Figures ................................................................................................................... III 

Chapter 1 Introduction .................................................................................................... 1 

1.1 Background of this Dissertation .......................................................................................... 1 

1.2 Literature Review ................................................................................................................ 4 

1.2.1 Process Control System Workflow ............................................................................ 4 

1.2.2 Workflow Virtualization ............................................................................................ 5 

1.2.3 4D Virtualization ....................................................................................................... 7 

1.2.4 Real-time Virtualization ............................................................................................ 8 

1.2.5 Discussions ................................................................................................................ 8 

1.3 Virtualization Strategy ......................................................................................................... 9 

1.3.1        Virtualization Ideas .................................................................................................. 9 

1.3.2        System Modules...................................................................................................... 10 

1.3.3        Execution Methods ................................................................................................. 12 

Chapter 2 Process Control System ............................................................................. 14 

2.1 Introduction ....................................................................................................................... 14 

2.2 Work Principle ................................................................................................................... 16 

2.3 Workflow Data................................................................................................................... 17 

2.4 Discussions ........................................................................................................................ 20 

Chapter 3 Data Transfer System .................................................................................. 22 

3.1 Communication with the Process Control System ............................................................ 22 

3.2 Real-time Data Transfer ..................................................................................................... 25 

3.3 Virtualization Result Reception ......................................................................................... 29 

3.4 Discussions ........................................................................................................................ 31 

Chapter 4 Control System ............................................................................................. 32 

4.1 Communication with the Data Transfer System ................................................................ 33 

4.2 Data Processing ................................................................................................................. 38 

4.2.1       Real-time Data Processing ...................................................................................... 38 

4.2.2       Historical Data Processing ...................................................................................... 39 

4.3 Control Virtualization..…… .............................................................................................. 41 

4.3.1       Link with the Virtualization Module........................................................................ 44 

4.3.2       Import of the Workstation Layout ........................................................................... 45 

4.3.3       List Components’ Names ........................................................................................ 48 

4.3.4       Assign Data ............................................................................................................. 48 

4.3.5       Data Analysis........................................................................................................... 49 

4.3.6       Information Mining and Collection......................................................................... 51 

4.3.7       Data Assignment ..................................................................................................... 52 

4.3.8       Motions Sequence.................................................................................................... 56 



 

-II- 

 

4.3.9       Simulation setting .................................................................................................... 57 

4.3.10      Post processing ....................................................................................................... 57 

4.4 Discussions ........................................................................................................................ 58 

Chapter 5 Virtualization Module ................................................................................... 60 

5.1 Introduction ....................................................................................................................... 60 

5.2 Modeling ............................................................................................................................ 62 

5.3 Create Components ............................................................................................................ 62 

5.3.1         Component structure.............................................................................................. 62 

5.3.2         Organize geometry ................................................................................................ 63 

5.3.3         Add behaviors ........................................................................................................ 64 

5.3.4         Make component parametric ................................................................................. 69 

5.4 Teach Components............................................................................................................. 71 

5.4.1        Teach servo ............................................................................................................. 71 

5.4.2        Teach robots ........................................................................................................... 74 

5.5 Creating Layouts ................................................................................................................ 84 

5.6 Discussions ........................................................................................................................ 85 

Chapter 6 System Test and Application ...................................................................... 86 

6.1 Connections among Modules ............................................................................................ 86 

6.2 Method in the Process Control System .............................................................................. 87 

6.3 Data Transmission in the Data Transfer System ................................................................ 90 

6.4 Online Virtualization in the Control System ...................................................................... 91 

6.5 Virtualization Result Transmission .................................................................................... 97 

Chapter 7 Conclusion and Outlook.............................................................................. 99 

7.1 Conclusion ......................................................................................................................... 99 

7.2 Outlook ............................................................................................................................ 101 

References ...................................................................................................................... 102 

Appendixes ..................................................................................................................... 112 

Declaration ..................................................................................................................... 120 

Theses…… ..................................................................................................................... 121 

Abstract….  ...................................................................................................................... 123 

Zusammenfassung ........................................................................................................ 124 

 

  



 

-III- 

 

List of Figures 

Figure 1.1: Motoman system at celisca                                                     2 

Figure 1.2: Reactor System at celisca                                                     3  

Figure 1.3: Zymark System at celisca                                                      3 

Figure 1.4: Cell Culture System at celisca                                                4 

Figure 1.5: Definition of “4D Virtualization”                                           9 

Figure 1.6: Relationships among the integrated system modules of the VS                   10 

Figure 1.7: Working framework of the VS                                                    12 

Figure 2.1: SAMI EX software interfaces                                                   15 

Figure 2.2: Working principle of SAMI EX                                                  16 

Figure 2.3: Communications in the SILAS system                                                17 

Figure 2.4: SILAS environment                                                             18 

Figure 2.5: Keeper Editor                                                                 19 

Figure 2.6: Messages in AllWatcher                                                       20 

Figure 3.1: Workflow of the Data Transfer System                                          22 

Figure 3.2: Workflow of the communication with PCS                                        23 

Figure 3.3: Message extraction in the DTS                                                     24 

Figure 3.4: Communication with PCS                                                        25 

Figure 3.5: Workflow of data transfer between DTS and CS                                  26 

Figure 3.6: The TCP/IP socket interface of the DTS                                            27 

Figure 3.7: Workflow of the TCP/IP socket for Data Transfer                               28 

Figure 3.8: The Interface for virtualization result demonstration in DTS                      30 

Figure 4.1: Workflow of the TCP/IP socket for Data Transfer                               32 

Figure 4.2: Data Transfer between the server and the client                               33 

Figure 4.3: Data conversion in the CS socket                                                  34 

Figure 4.4: Internal functions structure of the CS socket                                     35 

Figure 4.5: Workflow of the CS socket (black arrow: be called; red arrow: be nested)           36 

Figure 4.6: Receive and process real-time data – the CS communication interface               38 



 

-IV- 

 

Figure 4.7: Workflow of the function TransformTime()                                      39 

Figure 4.8: Historical data processing                                                    40 

Figure 4.9: Workflow of the module CV                                                42 

Figure 4.10: Control Virtualization                                                           43 

Figure 4.11: Link with the VM for virtualization request                                          44 

Figure 4.12: Workflow of the reaction for virtualization request                              45 

Figure 4.13: Import workstation layout                                                   46 

Figure 4.14: Actions contained in the workflow data (1)                                     50 

Figure 4.15: Factors in the workflow data (2)                                              50 

Figure 4.16: Workflow of the data assignment                                                  53 

Figure 4.17: Real-time data transmission and virtualization                                   55 

Figure 4.18: Historical data virtualization                                                   56 

Figure 4.19: Virtualization result transmission                                               58 

Figure 5.1: 3D manufacturing virtualization with 3DCreate                             61 

Figure 5.2: Internal frame of a component in 3DCreate                              63 

Figure 5.3: Node tree of a 6-axis robot                                                   64 

Figure 5.4: Behaviors of Motoman HP3JC                                                     65 

Figure 5.5: Articulated kinematics for a robot with 6 rotational joints                   66 

Figure 5.6: Articulated Kinematics of Motoman (Unit:mm)                                   67 

Figure 5.7: Parameters created for the robot Motoman HP3JC                                     70 

Figure 5.8: The statements of sequence “Open” in teaching PHERAstar                       72 

Figure 5.9: Sequences of the gripper SG0150                                               73 

Figure 5.10: Frames and sequences of Biomek FX                                            77 

Figure 5.11: Frames and sequences of Biomek NX Span-8                                     79 

Figure 5.12: Sequences of Motoman HP3JC                                                   80 

Figure 5.13: Tool frame of the robot gripper                                              81 

Figure 5.14: Get a labware from Cytomat                                                   82-83 

Figure 5.15: Workstation layout of Motoman system                                         84 

Figure 6.1: Connection statuses of the two sockets                                        86 



 

-V- 

 

Figure 6.2: Method for one-plate assay                                                    87 

Figure 6.3: Data transmission in the DTS                                                      90 

Figure 6.4: Signs of movements generated by the VS                                        91 

Figure 6.5:  Comparation of realistic workstation workflow and virtualization results      92-97 

Figure 6.6: Virtualization result transmission in the CS                                         98 

Figure 6.7: Online feedback information from the CS                                        98 

Figure A.1:  Biomek FX main components                                                                            112 

Figure A.2:  Main components and connections of the Biomek FX towers                           113 

Figure A.3:  Bridges move in the X-axis, hold and move pod in the Y- and Z-axes              114 

Figure A.4:  Multichannel Pod — main components                                                             115 

Figure A.5:  ALPs of Biomek FX                                                                                           116 

Figure B.1:  Biomek NX with Span-8 Pod and optional gripper                                            117 

Figure B.2:  Span-8 Pod with gripper (detailed view)                                                            118 

Figure B.3:  Factory-installed gripper tool                                                                              119 

Figure B.4:  ALPs of Biomek NX Span-8                                                                              119 

Figure B.5:  Action commands of the Teleshake                                                                   119 

 

 



 

-VI- 

 

List of Tables 

Table 1.1 Functions and applied technologies of the VS modules                        10 

Table 4.1 Functions of the TCP/IP socket class in CS                                      37 

Table 4.2 Workstations and their devices at celisca                                        47 

Table 4.3 Parts of the workflow data of a LSA experiment                                  49 

Table 4.4  A case of information mined from workflow data                                 51 

Table 5.1 Comparisons of 3D simulation software                                          60 

Table 6.1 Parts of the workflow data of the method “One Plate_FX”                         80-83 

Table A.1 Multichannel Pod Axes Movement                                                                      115 

Table B.1. Span-8 Pod Axes Movement                                                                               118 

 

 

 



 

-VII- 

 

List of Algorithms 

Algorithm 3.1 The Data transfer logic for TCP/IP socket of DTS                                      29 

Algorithm 4.1  A case of data assignment in CS                                                 54 

 



 

-VIII- 

 

List of Abbreviations 

3D Three-dimensional 

4D Four-dimensional 

VS Virtualization System 

ALP Automated Labware Positioner 

API/APIs Application Program Interface/ Application Program Interfaces 

CAD Computer-aided Design 

CAE Computer-aided Engineering 

celisca Center for Life Science Automation 

COM Component Object Model 

COMS Complementary Metal Oxide Semiconductor 

CS Control System 

CV Control Virtualization 

DDE Dynamic Data Exchange 

DOF Degree of Freedom 

DTS Data Transfer System 

GUI Graphical User Interface 

HIL Hardware-in-the-loop 

IP Internet Protocol 

IPC Inter Process Communication 

LIN Liner 

LSA Life Science Automation 

OLE Object Linking and Embedding 

OCX OLE Control Extension 

PCS Process Control System 

PTP Point to Point 

RSL Resource Specification Language 



 

-IX- 

 

RW Realistic Workstation 

SAMI EX SAMI Workstation EX Software 

SDK Software Development Kit 

TCP Tool Center Point 

TCP/IP Transmission Control Protocol / Internet Protocol 

US Unvisited Set 

VM Virtualization Module 

VR Virtual Reality 

WBS Work Breakdown Structure  

Wi-Fi Wireless Fidelity 

WMS Workflow Management System 

XML Extensible Markup Language 



Doctoral Dissertation                                                                                   Introduction 

-1- 

 

Chapter 1  Introduction 

1.1 Background of this Dissertation 

Nowadays, highly developed automation improves the efficiency and accuracy for 

industrial productions and science experiments in Life Science Automation (LSA) 

[1]–[11]. It brings great convenience for scientists and engineers. Especially with 

Process Control System (PCS) developing, scientists get relief from heavy experiment 

works. They just need to design and schedule the workflows of experiments in PCS, 

and then the PCS will realize them by controlling the workstations [12]–[17].  

However, when PCS drives automation devices working, the users have to stay at the 

laboratory to avoid the workflow wrong. In addition, all works about design testing, 

workstation display, and laboratory showing have to be done by PCS and the 

platforms set only in laboratory, other than in office or meeting rooms. That greatly 

limits researchers’ works, especially when they do reports or show their automated 

workstations to customers out of the laboratories. The limitation makes it impossible 

to give any vivid demonstration. At the same time, running automation workstation 

frequently for testing designs induces high cost and some waste for human and 

materials resources. Additionally, automation laboratories have limited free area. If 

there are too many visitors, most of them could just watch a part of the experiment 

workflow, which makes them no comprehensive cognitive for the automation 

workstation. 

These problems of PCS are also occurred in the laboratories of Center for Life 

Science Automation (celisca). There are many automation workstations which are also 

driven by some PCS, which are shown as Fig. 1.1 ~ Fig. 1.4. For example, Figure 1.1 

shows an automated workstation composed of many automated devices for life 

science assays, including robot Motoman HP3JC, BiomekFX, BiomekNX-Span8, 

CytomatHotel, Cytomat6001, PHERAstar, Fluostar, ELx405, SIGMA, etc. All these 

automated devices are set in the Biomek workstation, and driven by PCS SAMI EX.  

To solve the same problems as general PCS, the dissertation presents to make the 

experiment workflows virtualization in real-time for LSA workstations at celisca. The 

research result of the dissertation should make the experiment workflow virtualization 

in screen synchronously with the workflow data generated, and integrate the 



Doctoral Dissertation                                                                                   Introduction 

-2- 

 

virtualization steps as a whole experiment process, which could be shown wherever 

and whenever. It should also work in a flexible and controllable way, which reacts 

onto the control information for the workflow.   

 

Figure 1.1: Motoman system at celisca 



Doctoral Dissertation                                                                                   Introduction 

-3- 

 

 

Figure 1.2: Reactor System at celisca 

 

Figure 1.3: Zymark System at celisca 



Doctoral Dissertation                                                                                   Introduction 

-4- 

 

 

Figure 1.4: Cell Culture System at celisca 

1.2 Literature Review  

Virtualization for real-time experiment workflow of LSA refers to many fields, such 

as PCS, virtual simulation, data management, three-dimensional (3D) Computer-aided 

Design (CAD), four-dimensional (4D) simulation, etc. There are many relevant 

contributions from these fields be referenced and learnt in this dissertation. 

1.2.1 Process Control System Workflow 

Workflow is a depiction of a sequence of operations, which serve as a virtual 

representation of actual work [18]–[19]. In industry field and many automation 

laboratories, workflow is usually managed and defined by some workflow 

management system (WMS) or PCS within an organization to produce a final 

outcome [20]–[33]. The workflow data designed by the management or control 

system supplies a chance for researchers to do some virtual simulation. 

Process Control System for Motoman System at celisca is SAMI Workstation EX 

Software (SAMI EX), which is utilized for developing scheduling, monitoring and 

running assays streamline operations on Beckman Coulter integrated systems [34]. 



Doctoral Dissertation                                                                                   Introduction 

-5- 

 

SAMI EX software works with Biomek software and SILAS Integration system 

together for the whole workflow design and controlled operation [35]–[36].  

SILAS Integration system works with SAMI EX as a communication router, which 

routes commands to and from the integrated devices. It allows SAMI EX to provide 

consistent dialog screen for device control, while invisibly translating commands and 

data between SAMI and the individual device's software [37]. In the SILAS system, 

instruments communicate with a module, which has an ActiveX software component 

(SILAS OCX) to connect itself with other modules. SILAS OCX control provides the 

writer of a new module with the means to communicate with other SILAS modules. It 

has built-in functions to create, place, send, request and save messages for later use. In 

addition, it includes an event that is triggered when a previously requested message 

arrives At that time, the programmer can get information out of the message using 

methods of SIALS OCX [38]. 

Therefore, it is feasible to register a module for a user to get the messages data from 

PCS via SILAS OCX. The function supplies the virtualization resource for the 

workflow virtualization of LSA experiments. That makes the virtualization possible to 

be realized. 

1.2.2 Workflow Virtualization 

At present, with WMS and PCS development, workflow virtualization becomes more 

and more popular in application fields [39]–[47], especially in business, medical and 

construction. It supplies virtualization effect for complex workflows. Its function of 

virtual reality saves testing and experiment cost for every application field, and brings 

much convenience for users to estimate work plans and demonstrate work ideals 

vividly. It is a flexible way to simulate workflow virtually in research or business 

occasions. 

In business field, virtualization is widely used as a tool for business processes analysis 

and operational decision making [37]–[41], [44]–[48]. In the reference [49], M. 

Kovács and L. Gönczy presented a framework for the virtualization and formal 

analysis of workflow models, which are transformed into dataflow network models by 

BPEL language, and verified by SPIN model checker. A. Rozinat, etc., developed a 

simulation system for operational decision support by combining the workflow 

management system YAWL and the process mining framework ProM. [51]. In the 

IEEE conference COMPSAC'09, D. Eichhorn described his 3D simulation research 



Doctoral Dissertation                                                                                   Introduction 

-6- 

 

which added a third dimension into the graphical representation of process and data 

objects. The author referred future research on 3D virtualization and animation of 

other process objects (e.g. process metrics such as time, cost, etc.) [52]. 

In medical field, medical virtualization is a new method to facilitate skill training and 

assessment [53]–[60]. G. Bruinsma et al. proposed and demonstrate a method for 

simulating disasters for work and protocol optimization in disasters response (TAID), 

based on the multi-agent modeling and simulation language BRAHMS [61]. In the 

reference [62], the authors present a virtual imaging platform to facilitates the sharing 

of object models and medical image simulators, and provides access to distributed 

computing and storage resources. SA Schendel applied image fusion technology to 

increase further increased the importance and accuracy of virtual treatment planning 

[63]. A. W. Kushniruk et al. presented computer-based simulations that attempt to 

model human behavior [64], and simulations that are developed to test specific system 

components  through health care information systems [65]. In clinic training programs, 

virtual reality (VR) tools become important in radiotherapy training for enabling 

students to simulate clinical situations without interfering with the clinical workflow, 

and without the risk of making errors. Immersive tools like a 3D linear accelerator and 

3D display of dose distributions have been integrated into training, together with IT-

labs with clinical software [66]. 

In construction filed, the technology of workflow virtualization is applied widely and 

developed in the leading. The researches on construction virtualization more relate to 

Computer Aided Design (CAD) and Computer Aided Engineering (CAE), which are 

developed vigorously. In the reference [67], by integrating lean principles and 

computer virtualization techniques, X. Mao and X. Zhang developed a construction 

process reengineering framework and methodologies, which classifies activities in the 

construction  workflow to make it more effective in modeling workflow and 

virtualization. K. W. Chau presented a prototype four-dimensional site management 

model (4DSMM), which applied AutoDesk AutoCAD and ObjectARX development 

platform to simulate the construction process based on the scheduling data [68]. R. J. 

Scherer et al. designed a distributed multi-model-based Management Information 

System for virtualization and decision-making on construction projects based on 

ontology framework and Building Information Modeling (BIM) technologies [69]. M. 

Kugler and V. Franz developed a simulation system for the preparation work in 

building construction by Visual Basic (VB). The system provides a simulation editor 

which is integrated into a CAD system, and applies SQL database to manage the data 

http://www.ncbi.nlm.nih.gov/pubmed?term=Kushniruk%20AW%5BAuthor%5D&cauthor=true&cauthor_uid=15016386
http://www.sciencedirect.com/science/article/pii/S0926580504001293


Doctoral Dissertation                                                                                   Introduction 

-7- 

 

of process model [70]. In the publication [71], the researches mentioned and 

compared two approaches of virtualization techniques for construction field: one is 

rooted in scheduling, and involves linking activity-based construction schedules and 

3D CAD of facilities to describe discretely evolving construction product 

virtualizations; the other one is rooted in discrete-event simulation, which concerns 

the virtualization of not only construction products, but also operations and processes 

in building courses.  

1.2.3 4D Virtualization 

With the development of the emerging technology Four-dimensional (4D), it is widely 

applied in virtual reality for several fields. 4D technology is a new virtualization 

method, which attaches time information to the traditional static 3D model, thus 

allowing planners to view workflow in a 4D environment [72]–[73]. 

In the researches of K. W. Chau et al. [68], [74]–[77], 4D technology is applied and 

extended into areas of resource management and site space utilization, in addition to 

planning of building construction solely; the papers delineate the development and 

implementation of a prototype 4D site management model (4DSMM) in a 

construction project. The prototype links a three-dimensional model and a 

construction schedule to furnish virtualization of the state of a site at any user-

specified date. The system development referred Visual C++ and AutoCAD 

ObjectARX for programming, AutoCAD for 3D modeling, and the construction 

software GrandSoft CAD, as well as MS Project for construction workflow designing. 

W. P. Segars et al. applied 4D technology for the development and improvement of 

some medical devices [85]. The excellent research achievement of the author is a 4D 

extended cardiac-torso (XCAT) phantom developed for multimodality imaging, which 

is a whole-body computer model of the human anatomy and physiology based on 

NURBS surfaces. In the phantom development process, x-ray projections of the 4D 

NCAT phantom were simulated using a cone-beam geometry and a standard x-ray 

energy spectrum [86]. 

C. Kim et al. used a 4D graphic simulation approach for analysis and modeling in a 

case study of cable-stayed bridge construction [87]. In the study, 4D CAD models 

were developed at levels as activity, discrete operation, and continuous operation. In J. 

Zhang’s research [88], after comparing four virtual construction approaches, the 

author attempted to develop a 4D Virtual Construction and Dynamic Management 



Doctoral Dissertation                                                                                   Introduction 

-8- 

 

System, which integrates 4D technology, BIM and virtual construction technology to 

simulate and manage construction process dynamically.  

In the reference [89], L. S. Kang et al. presented an information management 

methodology – a 4D simulation system, which uses Work Breakdown Structure (WBS) 

as an information center. In this research, the author supplies the same WBS codes for 

both scheduling and drawing information. The WBS codes are used as a library file, 

which is called and extracted throughout the whole process of the virtual simulation. 

1.2.4 Real-time Virtualization 

Real-time virtualization is related to the timeliness in the virtualization and 

application. It asks for not only high-performance computers, but also high flexibility 

and accuracy for virtualization tools, as well as the steady of the interface between 

reality and virtualization tool. 

In the reference [90], a hybrid flow-battery super capacitor energy storage system 

(ESS), is studied by real-time hardware-in-the-loop (HIL) virtualization for being 

coupled in a wind turbine generator to smooth wind power. The prototype controller is 

embedded in one real-time simulator, while the rest of the system is implemented in 

another independent simulator. 

K. Manoj et al. developed a distributed architecture for off-road vehicle dynamic 

models, 3D graphics virtualization and multi-rate model simulation to simulate 

various system dynamics with different integration time steps. The real-time 

simulation architecture includes three components: dynamic model simulator, virtual 

reality simulator for 3D graphics, and an interface to the controller and input hardware 

devices. Among the three components, the first one was developed by Matlab 

Simulink and SimMechanics for simulating dynamic models; the second one was 

realized by technologies of VR Juggler, OpensceneGraph and Extensible Markup 

Language (XML) data file; and the third one was developed by Visual C++, and 

applied Transmission Control Protocol / Internet Protocol (TCP/IP) socket technology 

for the communication between the first and the second components [91]. 

1.2.5 Discussions 

Based on the literatures reviews, virtualization refers to technologies about database, 

CAD, programming, etc. LSA workstations at celisca have their separate PCSs. PCS 

works to control the realistic workstation, and it has data interfaces which could be 



Doctoral Dissertation                                                                                   Introduction 

-9- 

 

called by other platforms. PCS also supplies the data sources for virtualization. All the 

conditions show that it is feasible to simulate the experiment workflow of LSA by 4D 

virtualization. Through attaching time factors to 3D models and forming a 4D 

virtualization environment, the virtualization on real-time laboratory workflow of 

LSA has been realized in the dissertation.  

1.3 Virtualization Strategy 

1.3.1 Virtualization Ideas 

 “4D virtualization” is one of the computer-based process simulations. In the 

dissertation, “4D virtualization” is different from 4D (which also called “spacetime”: 

space + time) in modern physics. It is defined according to Fig.1.5. Besides of the 

time factor added to 3D models, the “4D virtualization” includes 3D dynamic 

trajectories for all related components in every statement, and the links among 

statements to make the simulation coherent. The 4D virtualization system 

demonstrates the processes synchronously with the workflow data supplied. That’s 

why we call it “on-line process”. Due to the real-time data is generated with the 

realistic workflow running. However, virtualization is based on the workflow data. 

There is always time delayed for virtualization respect to the realistic workflow 

running.  So we called the virtualization for real-time workflow data and realistic 

workflow as online virtualization.  

 

Figure 1.5: Definition of “4D Virtualization” 

 



Doctoral Dissertation                                                                                   Introduction 

-10- 

 

There are many ways to get workflow data from PCS, which designs and schedules 

experiment then realizes it in physical workstations [92]. The dissertation should 

choose suitable and strong 3D software to simulate the scheduling workflow in real 

time and high quality graphic display. Between PCS and 3D software, there should be 

an interface working as an intermediary to get data from PCS, assign the real-time 

data to 3D software and drive it to realize the synchronous 4D virtualization. In 

addition, the interface should have the function to drive the PCS to control physical 

workstations working based on the virtualization results. In summary, this interface is 

critical to integrate PCS, 3D simulation software and physical workstations as a whole 

Virtualization System (VS) for LSA laboratories at celisca. In this whole system, we 

defined the intermediary interface as Control System. 

1.3.2 System Modules 

Due to VS for LSA referring to various technology fields as PCS, workflow, database, 

CAD, dynamic simulation and programming technologies, the system could be 

mainly divided to four work modules: PCS, Control System (CS), Virtualization 

Module (VM) and Realistic Workstation (RW). The relationships among the modules 

are presented in Fig. 1.6. As Fig. 1.6 shows, PCS generates the scheduling data (real-

time data in the figure) for CS. Based on the scheduling data, CS drives the VM to 

simulate the whole experiment process at once. Then CS receives the virtualization 

result from VM, and sends it back to PCS. Finally the virtualization process will be 

fully done with PCS driving RW to work. 

 

Figure 1.6: Relationships among the integrated system modules of the VS 

 

 

 



Doctoral Dissertation                                                                                   Introduction 

-11- 

 

As shown in Table 1.1, the dissertation applied some technologies and software to 

realize corresponding module functions of VS. Every module has their separated 

functions, which realize a part of the VS, and supply feasibility for other modules to 

realize the integration of them. Among the four modules, CS is mostly critical part, 

which connect other modules to an integration system and drives not only VM 

working but also the whole system running. Between PCS and CS, there is a data-

transfer interface needed for their communication. In the dissertation, we call it as 

Data Transfer System (DTS). DTS calls SILAS OCX of PCS to get the workflow data, 

and applies TCP/IP Socket technology to realize communication with CS.  

Table 1.1 Functions and applied technologies of the VS modules 

Module Functions Applied technologies or tools 

PCS 

 Schedule methods/experiments; 

 Generate scheduling workflow data; 

 Supply OCX for communication; 

 Drive RW to run as the scheduling methods. 

SAMI EX integration system, 

Biomek software, SILAS 

OCX 

CS 

 Connect with PCS for data sending; 

 Get workflow data from PCS; 

 Process and manage data: extract, classify, 

save, .etc; 

 Assign data to models in 3D simulation 

software; 

 Control 3D software to realize online 

virtualization;  

 Extract virtualization results from VM; 

 Send virtualization results back to PCS. 

Visual C#, TCP/IP Socket, 

database, COM API 

VM 

 Add models with behaviors and parameters; 

 Simulate components movements 

synchronously based on the workflow data; 

 Integrate all movements to an animation as 

virtualization result; 

 Form fluent, nice graphics animation; 

COM API, Python API, Visual 

C#, Python programming 

language, 3DCreate 

RW 

 Execute assay works for life science 

automatically based on the scheduling 

workflow. 

Biomek integration 

technology, Automation and 

Control technology 



Doctoral Dissertation                                                                                   Introduction 

-12- 

 

1.3.3 Execution Methods 

As Fig. 1.7 shows, to execute the virtualization idea of VS for the Biomek 

workstations at celisca, some interfaces are needed to connect the modules of the 

system: (1) SILAS between RW and PCS; (2) TCP/IP Socket between PCS and CS; (3) 

COM API and Python API between CS and VM. For SILAS, many devices modules 

in its system would be called for driving RW via PCS; for TCP/IP Socket, there are a 

Server and a Client for the data communication; for COM API and Python API, they 

are called to connect CS and VM for the driving and being driven in virtualization. To 

process and manage huge data, database is needed for PCS and CS. The database 

work could be assigned to the CS. 

 

Figure 1.7: Working framework of the VS 



Doctoral Dissertation                                                                                   Introduction 

-13- 

 

For the critical module – the Control System, its functions could be assigned to three 

parts: data transfer, data management, and virtualization control. Anyone of the three 

parts is indispensable. Data transfer works for calling to get experiment scheduling 

data from PCS. In this part, the works for receiving data are finished by SALAS OCX, 

and the works for transferring data are done by TCP/IP socket. For the TCP/IP socket 

system, the interface in the PCS side works as a server, which is always waiting for 

others’ calling, and prepares to send out the data; the interface at CS side works as a 

client, which calls for communication with PCS for receiving data when PCS is 

running. Data Management is in charge of saving and extracting important 

information from the scheduling data, which is send from PCS to CS. Due to huge 

amounts of experimental data especially for some complex experiments, here we use a 

database to save and manage the scheduling data. Either data transfer or data 

management is to make preparations for the virtualization. After CS received and 

extracted the experiment scheduling data, it will control and drive the simulation 

software to simulate the experiment process at once based on the data.  

In the dissertation, the VS is supposed to be used for longer time periods. It should be 

upgraded flexibly. Compared to other developing languages, Visual C# has all 

advantages of them. What’s more, Visual C# has an integrated development 

environment. It provides full COM / Platform support for integrated existing code. It 

also has easy and fast developing abilities, and the characteristics of upgrading 

packages. Thus C# has been used for system development in the dissertation.  

The simulation software in the system is 3DCreate [93], [94], which has strong 

component object model (COM) application programming interface (API) and Python 

API for CS to call, and has strong 3D simulation functions as well as 3D rendering 

effects. When the controlled simulation is finished, the CS gets the virtualization 

result from 3DCreate and sends it to PCS. These processes are respectively finished 

by calling the COM API of 3DCreate and the TCP/IP socket. 

The following chapters will analyze and expound the realization processes of every 

module and the integrated VS in detailed. 



Doctoral Dissertation                                                               Process Control System 

-14- 

 

Chapter 2  Process Control System 

2.1 Introduction 

Process Control System (PCS) is very popular and important today in the Life Science 

Automation (LSA) field. It does life science assays accurately and effectively, which 

saves much time for scientists and laboratory assistants [95]–[99]. It frees scientists 

from the heavy assays, makes more time work on data and results analysis, rather than 

doing repetitive and dull experiments work [100]–[105]. 

At celisca, SAMI® Workstation EX (SAMI EX) software is an important PCS for its 

LSA workstations, which are called Biomek Assay Workstations. Both of the Biomek 

Assay Workstations and SAMI EX are developed and designed by Beckman Coulter, 

Inc. for LSA assay works. The Biomek Assay Workstation is a flexible assay platform 

designed to provide complete automation of heterogeneous and homogeneous 

enzyme-linked immunosorbent assays (ELISAs) and cell-based assays in a walk-away 

mode [106]–[112]. It is operated from the host computer using SAMI EX. SAMI EX 

provides a graphical interface to scientists and technicians for developing, scheduling, 

optimizing, running, and viewing automated assays on the Biomek Assay Workstation. 

It makes researchers describe complex assays flexibly in a straightforward and easy-

to-understand way [107]. 

The SAMI EX software are shown as Fig. 2.1, which has two application interfaces 

for researchers: (a) Method Editor for creating methods and schedules – it’s easy to 

develop an assay by creating many graphic nodes, behind which there are some 

dialogs for setting corresponding parameters; (b) RunTime for running schedules -- 

which has four parts for process information views: method view, device view, 

system view and labware view. 



Doctoral Dissertation                                                               Process Control System 

-15- 

 

 

(a) Method Editor 

 

(b) Runtime 

Figure 2.1: SAMI EX software interfaces 



Doctoral Dissertation                                                               Process Control System 

-16- 

 

2.2 Work Principle  

To generate and receive workflow data from SAMI EX, it is necessary to know how 

SAMI EX works. As a PCS, SAMI EX does not work alone for driving automation 

workstation working. Behind its interface, there are Biomek software and SILAS 

which interact with SAMI EX to realize its controlling for the realistic workstation.  

SAMI Workstation EX is tightly integrated with Biomek Software. The Software 

creates techniques, templates, labware and tip definitions in methods for SAMI EX. 

Particularly precise, complex, or linear methods that require actions be executed with 

rigid timing and using specific resources, such as deck positions, may be configured 

in Biomek Software and then run on SAMI EX. 

SILAS is designed to simplify the integration of automated laboratory systems and to 

streamline the addition of new components. It works with SAMI EX as a 

communication router, routing commands to and from the integrated devices. It 

allows SAMI EX to provide consistent dialog screen for device control, while 

invisibly translating commands and data between SAMI and the individual device’s 

software [112]–[114]. 

Figure 2.2 shows the working principle of SAMI EX, which also illustrates the 

relationship between SAMI EX and other modules. As Fig. 2.2 shows, SAMI EX acts 

on top of the Biomek software and uses it to drive some devices, such as the liquid 

handler. At the same time, SAMI EX uses SILAS for all of its IPC (inter process 

communication), which includes the Method Editor, Transportation, Executive / 

Scheduling, and all device modules. 

 

Figure 2.2: Working principle of SAMI EX [115] 

 



Doctoral Dissertation                                                               Process Control System 

-17- 

 

In addition, SILAS steps operate devices on a Biomek deck during a method run by 

communicating between Biomek Software and the SILAS modules. In this module, 

SILAS stores all the information needed by an integrated system. The SILAS OCX 

provides the mechanism to attach modules to the rest of a SILAS system, and control 

resides in each module in the system that needs to communicate with other modules. 

So in the interface between PCS and Control System, the SILAS OCX is called to get 

workflow data from the PCS module. 

2.3 Workflow Data 

SAMI EX applies SILAS to generate and supply workflow data. SILAS provides a 

messaging protocol for laboratory integration based on ActiveX technology [38]. As 

Fig. 2.3 shows, there are three primary files with four items used in a basic SILAS 

system. The SILAS.exe file includes two core components of the SILAS system: 

Keeper and Router. The Router works to shuttle messages to the right places, and the 

Keeper tracks registration of modules in the system. The Keeper.rrg file holds the 

SILAS Keeper Registry, which stores all the information needed by an integrated 

system. In addition, message translations are also included in the Keeper Registry. For 

the MsgCtrl.ocx file, which works in the form of SILAS OCX, provides mechanism 

to attach modules to the rest of the SILAS system, and resides in every module for 

communication with each other in the system [116].  

Module.exe
SILAS Module (device, robot, data , other)

Keeper.rrg

Registry
SILAS.exe

Keeper Router

MsgCtrl.ocx

SILAS OCX

 

Figure 2.3: Communications in the SILAS system [116] 

  



Doctoral Dissertation                                                               Process Control System 

-18- 

 

Figure 2.4 shows the SILAS working environment. From the Fig. 2.4, some hardware 

and robot connect with the SILAS system through their corresponding device modules 

in serial communication, other hardware is connected with SILAS via the third party 

controller software, such as Biomek software, and the database is connected to the 

Data Logger of SILAS via dynamic data exchange (DDE). Among the SILAS 

modules, the communication either between the Registry and the Keeper, or between 

the Router and the Keeper is internal. The SILAS modules, which are shown as mint 

and ellipse in the figure, are connected with the Router by SILAS messages, which 

are controlled by SILAS OCX. 

Registry 

Keeper 

Executive 

Robot 

Module 

Data 

Logger 

Router 

Hardware 

Robot 

Device 

Module 

Database 

Internal 
Communication 

DDE or Other Software 

Communication 

Internal 
Communication 

Device 

Module 

Serial 

Communication 

Hardware Third Party 

Controller 

Software 

The SILAS Environment 

SILAS 

Messages 

 

Figure 2.4: SILAS environment [116] 

  



Doctoral Dissertation                                                               Process Control System 

-19- 

 

The SILAS modules, including device modules, robot modules, data logger, and 

SAMI executive, are registered in the Keeper Editor, which is shown in Fig. 2.5. For 

every registered module, there are many kinds of parameters and information inserted, 

which define messages the system should generate and transfer. Therefore, to get 

messages from the SAMI EX system, at first, there is needed to create and register a 

new module in the Keeper Editor, such as the module named “Workflow” in Fig. 2.5. 

 

Figure 2.5: Keeper Editor 

After scheduling a method in the Method Editor and running it in the Runtime of the 

SAMI EX software, there are a large number of assay messages generated.  

SAMI EX system, The SILAS messages depict the scheduling workflow of LSA 

assays, which include all information the 4D virtualization needs. It could be shown 

as AllWatcher interface of SAMI EX system.  

  



Doctoral Dissertation                                                               Process Control System 

-20- 

 

As Fig. 2.6 shows, the information in AllWatcher has characteristics as the followings: 

(1) Tree-like structure; 

(2) Messages can contain sub-messages and/or leaves; 

(3) Sub-messages can contain sub-messages and/or leaves; 

(4) Leaves contain strings of text or binary data. 

From Fig. 2.6, it could be found that all parameters and actions of the workflow are 

included, such as time, source, destination, grip and action, .etc, which is critical for 

the virtualization. Every message could be accessed by calling SILAS OCX. In 

addition, the SILAS messages are also shown in the Device Activity in the Runtime 

interface of SAMI EX software, as Fig. 2.1 (b). In that part, the workflow data could 

be saved as .csv format. 

 

Figure 2.6: Meassages in AllWatcher 

2.4 Discussions 

To realize the 4D virtualization for a LSA workstation, the PCS should have a 

tool/system to generate and export process data designed. For the PCS SAMI EX, it is 

possible to realize SAMI EX workstation system virtualization, because of the 



Doctoral Dissertation                                                               Process Control System 

-21- 

 

followings: 

(1) It has strong process data system, and adequate OCX files for managing and 

supplying data. They supplies objects for 4D virtualization; 

(2) It connects with the realistic workstation and has interface to control it working. It 

supplies functions for other system to call its OCX files. So SAMI EX software 

makes controlling the realistic workstation by other outer systems possible. 

However, the SAMI EX system itself has no graphic interface to demonstrate 

virtualization results.  Thus it is necessary to develop such an interface at the SAMI 

EX side for process designers to see the virtualization result directly. That is the Data 

Transfer System (DTS) detailedly depicted in the Chapter 3. 

 



Doctoral Dissertation                                                                   Data Transfer System 

-22- 

 

Chapter 3  Data Transfer System 

To create communication between PCS and CS, there is an interface needed to link 

them. In this dissertation, as Fig. 3.1 shows, such an interface named Data Transfer 

System (DTS) is developed by Visual C#. The DTS works to get scheduling workflow 

data, send the data to CS and receive the virtualization result from CS. The system 

refers to technologies including SILAS OCX, Visual C# programming, and TCP/IP 

socket. Corresponding to its functions, the DTS is consisted of three modules: (1) 

Communication with PCS; (2) Data transfer for real-time workflow data; (3) Data 

reception for virtualization result.  

 

Figure 3.1: Workflow of the Data Transfer System 

3.1 Communication with the Process Control System 

When the scheduling method is run in SAMI EX, the module “Workflow” gets the 

workflow data one by one in the form of tree-structure as shown in the AllWatcher 

interface (Fig. 2.6). In the “Workflow” module, there are many messages in one assay 

project, and many sub-messages for every message. Take the message “[Command] 

SAMI4 Executive.*--> Motoman.*” in Fig. 2.6 for example, there are five sub-

messages for this command, and under every sub-message, there are many sub-

messages for themselves. Not all messages are useful for the 4D virtualization. The 

important ones are in types of “%Time Stamp”, “Time”, “Action Description”, and 

the “Status”, .etc. In them, the sub-message "%Time Stamp" means the start time of 

every process in the experiment workflow, the “Time” means the duration time for 

every process, and the “Status” is generated automatically while a process is finished. 

All the messages generated in SILAS system are in the form of String. 

  



Doctoral Dissertation                                                                   Data Transfer System 

-23- 

 

As Fig. 3.2 shows, after running the DTS, SILAS OCX is called to connect with the 

SILAS system of PCS. While the connection is successful, the module “Workflow” is 

registered in the Keeper Registry by calling related commands. Then DTS calls 

corresponding OCX commands to initialize the message controller, and request some 

message translations for receiving the corresponding messages the virtualization 

needs, such as the “Command” translation for workflow information. Once the 

scheduling method is running in SAMI EX, the “Workflow” module gets the SILAS 

messages. At the same time, the event called RcvMsg will occurs in DTS for 

extracting messages in the “Workflow”. In this event, DTS defines the types of 

messages and sub-messages’ which it would extract. To make sure there will be no 

data loss in the transferring even when the link is interrupted, after the data 

transmission is finished, the saving-message command is called in the RcvMsg event 

for backing up the received data. Finally, the message controller is cleared for 

depositing new experiment data. 

 

Figure 3.2: Workflow of the communication with PCS 

In this dissertation, the messages with types of "%Time Stamp", "Time", "Action 

Description", and “Status” are enough to describe the experiment workflow. Therefore, 

DTS extracts these data from the SILAS messages.  

  



Doctoral Dissertation                                                                   Data Transfer System 

-24- 

 

Figure 3.3 shows the process of messages extraction. In the Fig. 3.3, the yellow 

modules are workflow data. When the “Workflow” module is registered, its 

“Command” translation is requested. Under the “Command” translation, there are 

many sub-messages and parameters. DTS calls corresponding commands of SILAS 

OCX to arrive at the target sub-messages and get the string of messages needed along 

the tree branches. 

 

Figure 3.3: Message extraction in the DTS 

The “Communication with PCS” module is developed as Fig. 3.4. Once SAMI EX 

Runtime is working and DTS is active, the textbox will show the received workflow 

data one by one. As Fig. 3.4 shows, every data has four parts of messages, which are 

all in string format. 

 

Figure 3.4: Communication with PCS 



Doctoral Dissertation                                                                   Data Transfer System 

-25- 

 

3.2 Real-time Data Transfer 

The works of the real-time data transfer in DTS include two factors: one is for sending 

real-time workflow data to CS, the other one is for getting the data-received condition 

from CS. They are realized by TCP/IP socket technology. In the data communication 

with CS, the DTS socket works as a server, which always waits for being called in 

some specified net port as a watchdog.  

For the workflow data communication, the server socket has two functions: data 

formats conversion and data transmission. On the one hand, since the data 

transmission works between two computers or two different ports in one computer, it 

is needed to convert data formats for users reading and computer recognizing. Due to 

the workflow data gotten from PCS is in string, and the data about received conditions 

from CS is in byte, there are corresponding encoder and decoder needed for data 

formats conversion. The encoder converts data from strings to bytes for computer 

understanding, and the decoder converts from bytes to strings for user reading. There 

are many trans-coding formats for data conversion, such as ASCII, Unicode, etc. To 

union the coding format in the whole data-transfer process, the dissertation applies the 

Unicode format. On the other hand, the server socket transfers the encoded workflow 

data and decoded data-received condition data with the client. 

  



Doctoral Dissertation                                                                   Data Transfer System 

-26- 

 

Figure 3.5 depicts the workflow of data transfer between DTS and CS. As Fig. 3.5 

shows, in the function “SendOutData()”, DTS creates an encoder to convert the 

strings data from PCS in the format Unicode.  In this function, the encoder encodes 

the data in string to Binary bytes, which computer CPUs could recognize. Then the 

DTS socket applies TCP/IP technology to send the bytes data in real time to the client 

which requests communication through its port. Similarly, DTS applies TCP/IP 

technology to get the data about received conditions from CS through its port. These 

data are in byte format sent from the CS computer. To make the data readable, the 

socket creates the “DataReceived()” function to convert it to strings. In this function, 

the socket creates a decoder for decoding these bytes data to strings. It does just the 

opposite function of the encoder in this dissertation. 

 

Figure 3.5: Workflow of data transfer between DTS and CS 

  



Doctoral Dissertation                                                                   Data Transfer System 

-27- 

 

Figure 3.6 shows the working interface of TCP/IP socket of DTS in two different 

statuses. As Fig. 3.6 shows, the DTS socket module has three functions: showing 

working status, communication test, and listing feedback information from CS. There 

are three statues for the system. When the DTS socket is successfully bind to a 

specified endpoint/port, the status is shown as “Waiting for a connection” at the port. 

Otherwise, the system throws the information as “Socket errors”. Once the socket is 

connected by a client successfully, the status box will show the connected information 

as well as the calling client IP address. There is one button for testing communication 

with client computer. This function aims at testing whether the data transfer process 

could be executed rightly. It is helpful to check the communication between DTS and 

CS before DTS gets workflow data from PCS. The textbox at the bottom of the 

interface lists the communication condition which is replied from CS. As long as the 

communication between DTS and CS is created, either for communication test or for 

data communication, the textbox always shows the receiving information from CS. 

 

Figure 3.6: The TCP/IP socket interface of the DTS 

  



Doctoral Dissertation                                                                   Data Transfer System 

-28- 

 

Data transfer workflow in the DTS socket (server socket) could be presented as Fig. 

3.7. At the beginning of this socket, the system binds the listening socket to a 

specified port as a watchdog, which always keeps at the port for any calling. When 

DTS is activated, the socket begins to wait at the port for some connection requests. 

An error warning is throw out if there is some problem to bind the socket to the port. 

But if the socket bind course is successful, once CS calls for connection with DTS, the 

socket system will start an asynchronous operation to accept the request, and send the 

encoded data to CS.  

 

Figure 3.7: Workflow of the TCP/IP socket for Data Transfer 

  



Doctoral Dissertation                                                                   Data Transfer System 

-29- 

 

Algorithm 3.1 shows the running logic in sending data to CS. From Algorithm 3.1, the 

waiting work for communication begins with DTS being run. When the connection 

between DTS and CS is created, and the communication test is certified by the reply 

information from CS, it means data transmission channel is smooth. On this condition, 

DTS finishes its preparation for processing and sending workflow data to CS 

synchronized with receiving data from PCS. Once PCS runs scheduling method, DTS 

will receive the workflow data one by one in real time, and then encode and send the 

data in bytes to CS synchronously. 

Algorithm 3.1 The Data transfer logic for TCP/IP socket of the DTS 

Start: Run DTS 

Step #1: The DTS starts to listen. 

1:  Define IP address and server port. 

2:  Try: Bind the listening socket to the port. 

3:      if successful do 

4:          Listen… 

5:         Show socket status as "Waiting for a connection at port....". 

6:      else  

7:         Show socket status "Socket errors". 

Step #2: Waiting for the request of connection. 

8:   if connection is successful do 

9:       Accept the request ; 

10:    Show socket status "Connected” and show the Client IP 

address & port. 

11:  else  

12:     Waiting… 

Step #3: Wait for data from PCS 

13:  if data come in: 

14:      Encode data as bytes. 

15:      Send the encoded data to CS. 

16:   else  

17:       Waiting… 

3.3 Virtualization Result Reception 

The Virtualization System (VS) realizes the virtualization for PCS. So the 

virtualization result should be shown at the PCS side. That is also done by TCP/IP 

socket technology. Due to the works of sending workflow data and receiving 

virtualization result independent, there should be another TCP/IP socket for the 



Doctoral Dissertation                                                                   Data Transfer System 

-30- 

 

virtualization result receiving. The socket is also embedded into DTS, and works as 

server in the data communication. As shown in Fig. 3.8, there is an Adobe Reader 

OCX embedded into the DTS interface, which could show the virtualization result 

directly for PCS workflow designers and visitors. 

 

Figure 3.8: The Interface for virtualization result demonstration in DTS 

In the online virtualization for real-time data, with the data being simulated one by 

one in CS, the virtualization result is saved as many animation parts in .pdf format. 

After the connection request from CS socket is accepted by the DTS socket, the 

communication for virtualization results between DTS and CS is started.  

In the process of the virtualization result reception, the DTS socket receives the data 

stream of the virtualization results from CS socket one by one. The socket decodes the 

data stream back to .pdf file in Unicode format. Then the .pdf files are backed up in 

the DTS side and demonstrated synchronously in the DTS interface one by one. As for 

the historical data virtualization, since the virtualization result is also separated to 

many parts and sent to DTS in data stream, the DTS socket works as the same as the 

real-time data demonstration.  



Doctoral Dissertation                                                                   Data Transfer System 

-31- 

 

When there is some interruption for the virtualization result communication, the DTS 

socket begins to wait for being called again. However, the animation parts go on 

showing in the DTS interface until there is no one left. Once the communication is 

created once more, the DTS socket receives and saves the coming animation files 

from the last interrupt point. At the same time, the socket shows the new files in the 

GUI one by one.  

As the TCP/IP socket for workflow data transmission, while the DTS socket receives 

one data stream of animation from CS, the socket feeds the reception information 

back to CS socket at once.  

3.4 Discussions 

The Data Transfer System works at the side of the PCS. It supports the PCS in 

realizing the data transmission with the CS. It also supplies an institute visualization 

result for process-designers to check his design, rather than to expect the designed 

process could run successfully in the workstation. 

Because the performance and transmission forms of workflow data are generally 

different for different PCS. So within the DTS, the module for communication with 

PCS has a bit difference for different PCS. For a new PCS, based on its data format, 

the system developer needs to add a corresponding module into the DTS for data 

processing and transmission. 



Doctoral Dissertation                                                                             Control System 

-32- 

 

Chapter 4  Control System 

In the virtualization process, the Control System (CS) is the most critical and 

important module, which links PCS, DTS and 3D simulation module as a whole, and 

realizes online virtualization for experiment workflows in LSA flexibly. The VS 

functions are mainly reflected to users by the CS interface. 

The Control System has four modules to realize its control functions:  

1. TCP/IP socket module for the communication with DTS; 

2. Data processing; 

3. Virtualization control; 

4. Post process of the virtualization. 

 The relationships among these modules are shown as Fig. 4.1. The TCP&IP socket 

works for communication with DTS to get the real-time workflow data, and to feed 

back its data-received conditions to DTS. The socket also backs up the real-time data 

for historical data virtualization. In CS, there are two data processing modules for 

preparation of different type-data virtualizations. For either the real-time data or 

historical data, the CS module could realize the virtualization for the experiment 

workflow. That module links with the virtualization module (VM) by calling its COM 

API, and assign the data to related components in VM by calling both of COM API 

and Python API. CS drives the VM to create a series of movements as the data depicts, 

and makes VM to form the movements to an animation. At last, the CS calls COM 

API of VM to get the animation as the virtualization result, and sends the result to 

DTS via TCP/IP socket. 

 

Figure 4.1: Workflow of the TCP/IP socket for Data Transfer 



Doctoral Dissertation                                                                             Control System 

-33- 

 

4.1 Communication with the Data Transfer System 

The TCP/IP socket in the CS works as a client to request communication with DTS. 

As Fig. 4.2 shows, at first, the client CS calls the server -- DTS socket for connection 

(step ①). The calling has two results: accepted or failed. If it is accepted, the CS 

would wait for step ②; if it is failed or rejected, the CS socket will call repeatedly 

until it is accepted. As for the step ②, the DTS encodes the workflow data to bytes 

and sends them to CS via its TCP/IP socket, and correspondingly, the CS waits for and 

receives the data in byte via its own TCP/IP socket. Once the CS receives the data, its 

socket would reply the data-received conditions information back to the DTS (step 

③).  

 

Figure 4.2: Data Transfer between the server and the client 

Besides of the functions for connection and data transmission, the CS socket also does 

some parts of data processing works. That is for data format conversion. It is 

somehow similar but in opposite direction as the functions of the DTS socket. As 

described in the previous chapter, the DTS socket encodes the workflow data to bytes 

for computer to recognize. So when the computer with the Control System receives 

the bytes data, they should be decoded back to string format for users to read.  

  



Doctoral Dissertation                                                                             Control System 

-34- 

 

As showing in Fig. 4.3, the CS socket firstly creates a decoder, applies Unicode 

format to convert the bytes data to strings. Those works are realized in the function 

“ShowReceivedData()”. That is the original works for real-time data virtualization. 

For the feedback step of CS socket, there is another function “SendOutData()”, which 

is in charge of sending data-received conditions to the DTS computer via TCP/IP 

socket. The “SendOutData()” function works oppositely with the 

“ShowReceivedData()” function. It creates an encoder for converting the feedback 

data in string to bytes, which could be recognized and transferred between different 

computers. 

 

Figure 4.3: Data conversion in the CS socket 

  



Doctoral Dissertation                                                                             Control System 

-35- 

 

Figure 4.4 shows the internal functions structure of CS socket. In the CS module, 

there is a sub-class “ParameterSocket” created to realize the communication functions 

of TCP&IP socket. For functions in the main class “ControlSimSystem” and the sub-

class, they call related functions from each other. The left box lists the functions of 

TCP/IP socket in the main class named “ControlSimSystem”, and the right-bottom 

one contains the functions of the class “ParameterSocket”, which is defined specially 

for socket connection and communication. Among the functions of these two classes, 

when the commands are run to some stages, some functions in one class will call 

desired functions from the other class.  

 

Figure 4.4: Internal functions structure of the CS socket 

  



Doctoral Dissertation                                                                             Control System 

-36- 

 

The complex nested and inter-call workflow is shown in Fig. 4.5. When the 

connection request is generated, the function “StartSocketClient()” is activated to 

connect with the DTS socket. In this function, the class “ParameterSocket.cs” is 

visited for calling its function “Connect()”, which tries to connect the specified 

address and corresponding port of the server by calling the client socket function 

“BeginConnect()”.  In “BeginConnect()”, the function “ConnectCallback()” is nested. 

It calls “ShowConnectStatus()” from the class “ControlSimSystem” to show the 

connection status. In addition, the “ConnectCallback()” calls the function 

“BeginRead()” when the connection is successful. By embedding another function 

“ReadCallback()”, “BeginRead()” calls three functions from “ControlSimSystem.cs”: 

ShowConnectStatus(), ShowReceivedData() and HandleParameter(). As for the 

function “HandleParameter()”, it calls “SendOutData()” from ParameterSocket.cs” 

indirectly to feed the received conditions back to the server -- DTS.  

 

Figure 4.5: Workflow of the CS socket (black arrow:be called; red arrow: be nested) 

 

 

 

 

 

 



Doctoral Dissertation                                                                             Control System 

-37- 

 

Table 4.1 introduces the related functions of TCP/IP socket in the CS. 

Table 4.1 Functions of the TCP/IP socket class in the CS 

Functions Description 

Connect() Try to connect with the server. 

BeginConnect() 
Begin an asynchronous request for a remote connection with the 

server DTS socket. 

ConnectCallback() Start “BeginRead()” when the status is “Connected”. 

EndConnect() Asynchronously accepts an incoming connection attempt. 

GetStream() 
Return the System.Net.Sockets.NetworkStream used to send and 

receive data. 

BeginRead() 
Begin an asynchronous read from the 

System.Net.Sockets.NetworkStream. 

ReadCallback() 
Decode and show the received data, feed received conditions back to 

the server. 

GetDecoder() Obtain a decoder that converts encoded bytes into characters. 

EndRead() Handle the end of an asynchronous read. 

GetString() 
Decode a sequence of bytes from the specified byte array into a 

string. 

GetChars() 
Decode bytes array in the internal buffer into the specified character 

array. 

ShowConnectStatus() Show connection status in main interface of CS. 

ShowReceivedData() Show received data in CS interface after decoded. 

HandleParameter() Feed received conditions back to the server. 

SendOutData() Try to encode feedback data and send it to the server. 

GetBytes() 
Encode all the characters in the specified System.String into a 

sequence of bytes. 

NetworkStream.Write() Writes data to the System.Net.Sockets.NetworkStream. 

CloseSocket() 
Close the current stream and releases any resources associated with 

the current stream. 

  

  

  

  

  



Doctoral Dissertation                                                                             Control System 

-38- 

 

4.2 Data Processing  

4.2.1 Real-time Data Processing 

The real-time data CS originally gets is in bytes which could be recognized by 

computers. The CS socket receives and converts these data to strings, and shows them 

one by one with the PCS running.  The converted data should as the same as the data 

in Fig. 3.4. To demonstrate the data-received process more clearly, the real time for 

data reception is displayed before every data. The received data with local time 

information are shown as the Part I in Fig. 4.6.  

In case there are some checks needed after the experiment, for the original-received 

data shown one by one in the Part I of Fig. 4.6, the CS saves them as a file in .txt 

format without any change. The file is named by the local time automatically. As Part 

I of Fig. 4.6 shows, every data has been converted to strings. That is required for the 

device activity description, rather than for the start time and run time of every activity. 

In the strings, the duration time is shown in unit ms, which should be transformed to 

the unit s. So to make the received data more readable, the system converts the time 

data in string to time format, and combines the data to the form as Part II in Fig. 4.6 

shows. The time conversion is realized by the function TransformTime().  

 

Figure 4.6: Receive and process real-time data – the CS communication interface 



Doctoral Dissertation                                                                             Control System 

-39- 

 

The workflow of the function is shown as Fig. 4.7. After transformed, the time factor 

is converted to the time form with start time and end time. So the original-received 

data is separated to three parts: Time, Activity and Status. Correspondingly, for the 

processed data, the system saves it as .csv file, which is also named automatically by 

the local time. 

 

Figure 4.7: Workflow of the function TransformTime() 

With the data received and transformed in real time, the CS simulates the workflow 

data one by one. There is a button “Simulate” in the interface to trigger the next 

function module – “Control Virtualization” (CV), which converts the data in string to 

3D trajectories. At the same time, the button triggers many functions of the CV 

module, including defining workstation, loading workstation layout, assigning data 

and listing components’ names. 

4.2.2 Historical Data Processing 

Besides online virtualization for real-time data, at sometimes virtualization for 

historical data is necessary. For instance, when we need to show the advanced devices 

and work environments of the life science automation to customers out of the 

laboratory, it will be much better to show vivid virtualization of LSA experiment 

workflow in screen, other than to depict them in oral or draw in blackboard. So to 



Doctoral Dissertation                                                                             Control System 

-40- 

 

simulate historical workflow data (as whole data virtualization) visually is flexible 

and helpful for the demonstrations of LSA laboratories. 

As Chapter 2 depicts, the workflow data could be saved as .csv in PCS. As Fig. 2.1 

shows, the data includes three factors: time, activity and status. The data is generated 

with the scheduling method running in the Runtime module of PCS. It is complex and 

lengthy. In this dissertation, not all of the activity data are necessary for the 

virtualization, e.g. initializing internal parts of devices. So the “Historical Data” 

module in the CS develops functions to extract and process key information from the 

historical data in the .csv file (See as Part II and Part III in Fig. 4.8).  

 

Figure 4.8: Historical data processing 

As Fig. 4.8 shows, there is a drop-down box listing the names of .csv files from a 

defined folder automatically while the CS is started. That is the module for users to 

choose the historical data file. When the simulated file is open and loaded into the 

interface, there are three parts to extract and process the imported data. Part I works 

for showing the integral data in list; the Part II works for extracting useful data from 

Part I; and the Part III works for extracting key words from Part II. The final key 

words extraction is for simulating the workflow in shorter time. Except for useless 



Doctoral Dissertation                                                                             Control System 

-41- 

 

information and unimportant words, the system could save more time for data 

assigned and virtualization control in VM. As shown in Part III, to meet the needs of 

fast virtualization, the key words includes:  

1) Time (s) – to get the action duration time (unit: s) for the working device;  

2) Device – find the active device in VM directly based on its name;  

3) Action: teach the device which kind of actions it need to do, such as get, put, and 

move, etc;  

4) Object: teach the device which object it should work on;  

5) Target: teach the device where it should go in the activity (Note: the last target is 

the beginning position of the next activity);  

6) Tool: teach the device which tool it needs to activate and use. Owing to the above 

key words, the system could easily and fast assign the data to the corresponding 

device. 

After getting the key words, there is a button “Simulate” for toggling to the tab page 

“Control System”, which works for connecting with the VM, and driving the VM 

forming the series of movements as the workflow data depicts. The button triggers the 

functions of the Control System for historical data, including link with the simulation 

software, load workstation layout and assign the key data to the related components. 

4.3 Control Virtualization 

Control Virtualization is the most critical module to work for controlling and realizing 

the virtualization. Behind the module, the 3D simulation software 3DCreate is applied 

by calling its APIs. CS realizes the virtualization for the workflow data by controlling 

3DCreate working. After that, the module sends the virtualization result to PCS via 

corresponding TCP/IP socket. 

  



Doctoral Dissertation                                                                             Control System 

-42- 

 

Figure 4.9 shows the workflow of the CV module. On one hand, CS calls COM APIs 

of 3DCreate to load the workstation layout into the embedded-in GUI, list the names 

of components of the workstation layout, and assign the workflow data to the related 

components for creating most of their behaviors. On the other hand, the system calls 

Python APIs of 3DCreate to compile behavior properties of devices, trajectories of 

robots, and so on. At last, the system creates movement sequences for the components 

in the layout. All these behaviors, trajectories and sequences form whole workflow 

movements, which could be saved into a layout as .vcm, or recorded as .pdf animation. 

Finally, the CV module feeds the virtualization result in the form of .pdf back to the 

PCS via TCP/IP socket. The result is the basis for the PCS users to decide whether to 

drive the workstation running in the LSA laboratory. 

 

Figure 4.9: Workflow of the module CV 

  



Doctoral Dissertation                                                                             Control System 

-43- 

 

Control Virtualization module is shown as Fig. 4.10. There are six modules in the 

interface:  

I. Virtualization demonstration;  

II. Import workstation layout;  

III. Simulation setting;  

IV. Save layout;  

V. Send virtualization result (animation) to DTS;  

VI. List components' names. In the module I, there are three key functions referred: 

link with the VM, assign data, and show virtualization result. The module is 

shown in the form of the embedded VM GUI. 

 

Figure 4.10: Control Virtualization 

 

  



Doctoral Dissertation                                                                             Control System 

-44- 

 

4.3.1 Link with the Virtualization Model 

Either for virtualization on real-time data or historical data, once the tab page 

“Control Virtualization” is triggered, the Control System will connect with the 

simulation software – 3DCreate at soon. As Fig. 4.11 shows, when the data processing 

module sends the request of virtualization, the CV module is activated. Then the 

module tries to start 3DCreate program by calling its COM APIs. 

 

Figure 4.11: Link with the VM for virtualization request 

There are two methods to start the 3DCreate program via its APIs: One is to open and 

expand the software fully just as it runs generally; the other one is to run the software 

by embedding its GUI into the system. The first one is realized by calling 

corresponding program running commands of COM API, and the second one is by 

calling a COM component of 3DCreate. At the stage of generating and checking 

trajectories in 3DCreate, as well as the system-test stage, the first method is applied 

frequently. For the finished system, the second method is applied for system 

simplifies and more vivid virtualization. The embedded GUI, which is also called 

3DWorld in 3DCreate, is presented as the Part I of the “Control Virtualization” 

interface in Fig. 4.10. It is realized by calling the application component OCX of 

3DCreate. On the back of the 3D World interface, there are strong functions of 

3DCreate. 



Doctoral Dissertation                                                                             Control System 

-45- 

 

While the system links to 3DCreate and jumps to the control system interface, 

3DCreate OCX is called, and the 3D World is embedded into the Demo Platform. The 

related layout is loaded to the platform. Once experiment data is assigned to the 

devices in the layout, the platform can show the virtualization result directly while the 

simulation setting module is triggered. The platform makes the virtualization on real-

time data faster and more vivid.  

To make sure no exception in the controlling process, there is just one 3DCreate 

program permitted to run. So before the software is started, the system searches from 

the computer processes whether 3DCreate program is running. If it is, the system will 

force to end the software process, and restart it by calling its COM API. As shown in 

Fig. 4.12, the judgment process is finished by the function IsRun(). For the GUI 

embedded method, while the CS interface is closed, the 3DCreate process will also be 

ended by the corresponding COM API command. 

 

Figure 4.12: Workflow of the reaction for virtualization request 

4.3.2 Import of the Workstation Layout 

After open 3DCreate or embed its COM component for application window in CS, the 

system works following with the workflow data. Based on the extracted data, firstly, 

the system judges which workstation the workflow data works on. Then it searches 

the workstation layout file from a specified computer disk, and loads it into the 

3DCreate GUI.  



Doctoral Dissertation                                                                             Control System 

-46- 

 

The workflow for importing the workstation layout is shown as Fig. 4.13. 

 

Figure 4.13: Import workstation layout 

 

 



Doctoral Dissertation                                                                             Control System 

-47- 

 

(a) Define workstation 

There are many specific devices in every LSA workstation. Table 4.2 lists the 

workstations at celisca and their corresponding devices. Based on the devices 

information, it is easy to define which workstation the workflow runs on. For example, 

if there is the word “Motoman” in the parameter “Device”, it is surely the working 

workstation is “Motoman system”. So the workstation layout CS should load could be 

determined by the key word “Device” in the workflow data. 

Table 4.2 Workstations and their devices at celisca 

(b) Search layout file 

There are many workstation layouts saved in a specified folder. They are the original 

layouts with stationary components, which compose to a workstation and have no any 

trajectory.  

When the workstation name is defined, the system searches its layout file at once from 

the specified folder, and shows the name in the system. For 3DCreate, the layout file 

ends in .vcm as its extension. 

(c)  Load layout into VM 

Before loading a workstation layout into 3DCreate GUI, CS checks whether it has any 

component. If it has, the system clears it. When the GUI is surely vacant, CS executes 

the definition and search functions, and loads the layout into 3DWorld of 3DCreate. 

Workstation Device 

Motoman system 

Motoman HP3JC, BiomekFX, BiomekNX-Span8, SMCShuttle, 

ConvNX, CytoHotel, Cytomat 6001, PHERAstar, NovoStar, 

RoboPeel,  RoboSeal, Deckelstation, Regrip, Sigma, ELx405, Print & 

Apply 

Zymark system 
Zymark XP, Adapter f Turbovap, Analysenwaage, Autodose, Büchi 

Syncore, HPLC, PAL, CEM Discover, CTC Analytics 

Cell Culture System 

BiomekNX-Span8, Vi-Cell
®
 XR, Zeutrifuge Vspin Velocity11, 

Cytomat 6001, FX Device Controller, Port Selection Valve, Cooling 

box, MasterFlex
 ® 

Console Drive 

Reactor System 
Biomek 2000, HPMR50-96, ORCA  robot, HPLC system, Time-of-

Flight mass spectrometer, CTC Analytics 



Doctoral Dissertation                                                                             Control System 

-48- 

 

4.3.3 List Components’ Names 

The module VI in the Fig. 4.10 is for listing the names of all components in the layout. 

While the workstation layout is loaded into the GUI, all names of components are 

listed in the box. Whenever there is any change in the GUI, the contents in the listing 

box will be refreshed. 

The module is realized by the COM API command, which gets the “name” property 

from all components. In this process, CS gets the component one by one, and at the 

same time, to get the name property from the component properties.  

4.3.4 Assign Data 

The assign data module works to transform the workflow data in strings to trajectories 

of 3D models in VM. It is the most critical step in the data virtualization process. In 

CS, the “Assign Data” works as an invisible module behind the Part I in Fig. 4.10. 

Once the “Simulate” button in either “real-time data processing” module or 

“Historical data processing” module is clicked, the assign data module is called and 

triggered with the Part I activated. 

Although it works for data assigned literally, it is a complex process to create 

behaviors, parameters and trajectories in 3DCreate by programming. Some of these 

tasks are developed by calling COM API, such as joints, features and parameters 

created; and some are written to the Python script behavior by calling both COM API 

and Python API, such as behaviors, trajectories created. The first development way 

applies Visual C# to call relative methods and properties of 3DCreate COM API, 

which includes type libraries as vc3DCreate, vcCOM and vcCOMecat, etc. The 

second way applies Visual C# to create behavior Python script by COM API, and 

python language to add movement parameters, behaviors properties, robots actions 

and trajectories, etc. into the Python script by calling Python API. 

When one of the data processing modules triggers the CV module, CS finds and loads 

the workstation layout into 3DWorld. After the layout is loaded into 3DCreate GUI, 

the data assignment is started automatically. In this course, the system assigns the 

processed data to the corresponding components of devices in the workstation. For the 

real-time data, the system assigns them one by one with the data received, generates 

components’ trajectories and run them in 3DCreate in real time, and finally forms a 

whole series of movements until the scheduling experiment is finished. For the 

historical data, the system assigns all the data to the corresponding devices in one time, 



Doctoral Dissertation                                                                             Control System 

-49- 

 

and then generates the whole virtualization when the data is assigned fully.  

4.3.5  Data Analysis 

Generally, there are four factors in one workflow data: run time, working device, 

object, and activity. As for the “activity”, it refers to some factors as action, start point, 

destination, tool and purpose, .etc.  

To assign the activity of every data to devices, the system needs to separate it to many 

factors and actions, which the related 3DCreate API could be called to generate.  

Table 4.3 shows some workflow data of LSA experiment.  

Table 4.3 Parts of the workflow data of a LSA experiment 

No. Time Activity 

1 8:54:07 - 8:54:07 Place labware on Cytomat6001 

…… 
…… 

2 8:54:31 - 8:54:45 
Motoman move from Cytomat6001.transfer station to Regrip.BCR 

using LidNarrow 
…… 

…… 

3 8:54:57 - 8:55:01 
SMCShuttle move from SMCShuttle.M1 to BiomekFX.Shuttle using 

SelfGrip 

4 8:55:01 - 8:55:04 
BiomekFX:LeftPod get Assayplatte_1 from BiomekFX.Shuttle using 

Attila_DefaultGrip 
…… 

…… 

5 8:55:17 - 8:55:31 Load tips for Transfer/9 

…… 
…… 

6 8:55:31 - 8:55:36 Transfer for Transfer/9 

…… …… 

7 11:57:55 - 11:58:53 Issue command to Teleshake1 (1:00) 

…… 
…… 

8 11:59:08 - 11:59:12 Open PHERAstar.R for put 
…… 

…… 

9 11:59:17 - 11:59:28 
Motoman move from ConvNX.outer to PHERAstar.R using 

WideReverse 
…… …… 

10 11:59:28 - 11:59:32 Close PHERAstar.R from put 

11 11:59:32 - 12:00:42 Issue command to PHERAstar (1:47) 

12 12:00:42 - 12:00:47 Open PHERAstar.R for get 

13 12:00:47 - 12:00:59 
Motoman move from PHERAstar.R to ConvNX.outer using 

WideReverse 
…… …… 

14 12:00:59 - 12:01:03 Close PHERAstar.R from get 



Doctoral Dissertation                                                                             Control System 

-50- 

 

Take the data No. 1 for an example, the activity “Place labware on CytoHotel” should 

be separated to many actions (as Fig. 4.14 shows). It includes five steps of actions, 

which refer to different commands, such as import, translate and rotate the component. 

For the data No.2, No.3, No.9 and No.13 in Table 4.3, they all have factors as device, 

action, start position, destination and tool.  

 

Figure 4.14: Actions contained in the workflow data No.1 

Figure 4.15 shows the factors separated from the data No.2. From Fig. 4.15, the 

activity depicts that the “Device” Motoman takes an action “move”, from the position 

Cytomat6001.transfer, to the position Regrip.BCR. In this course, Motoman applies 

its tool -- gripper with the condition “LidNarrow”. 

 

Figure 4.15: Factors in the workflow data No.2 

  



Doctoral Dissertation                                                                             Control System 

-51- 

 

4.3.6 Information Mining and Collection 

Just knowing the objects of the factors is not enough to realize the data assignment. 

More detailed information is needed for the CS to start assigning data, such as the 

motion method of the robot, the coordinates of the start position and destination, etc.  

In fact, there is a large number of information implicit in every factor of the data. 

Parts of it are the ones that data assignment needs. They could supply sources and 

basis for the data assignment. They are critical in the conversion process from strings 

data to 3D motions. So before assigning data to the VM, it is necessary to mine and 

collect the important information from the factors of every data.  

Table 4.4 shows a case to mine some important information from the factors of the 

data ② in Table 4.3. From Table 4.4, for the factor “Device” Motoman, the robot 

original position, tool center point (TCP) coordinates, robot joints value, and the 

kinematics of the robot, etc could be mined for next system work; for the “Action”, 

many motions could be designed for the robot; as for the factors “Start position” and 

“Destination”, from the names of the devices, the target frames on them could be 

mined, and at the same time, the respective coordinate values of the frames in the 

robot parent coordinate system could be extracted for the robot moving; the factor 

“Tool” supplies important condition for the tool of the robot. It tells the robot 

Motoman which gesture its tool should apply to work on the target object. All these 

information could be extracted from the related 3D components in the layout. 

Table 4.4  A case of information mined from workflow data 

Factor Content Information referred 

Device Motoman 
Original position of the robot, Tool Center Point (TCP), Tool 

direction; joints’ values, kinematics… 

Action move 
Many motions with tool targets should be created. 

Start 

position 
Cytomat6001.transfer  

the first place robot Motoman should go; the coordinate 

information of the target position; the frame of the tool target; 

second action for Motoman: pick up … 

Destinat

ion 
Regrip.BCR 

the destination position robot Motoman should go; the 

coordinate information of the end position in the activity; aimed 

frame for tool; third action for Motoman: put down 

Tool LidNarrow The working condition of the tool Gripper 



Doctoral Dissertation                                                                             Control System 

-52- 

 

After CS mines all information the assignment process needs from one data, the 

system collects them together for the related device. The full-collected information 

tells CS which functions it should realize in VM. The collection work does 

preparation for the full assignment to the device, which will be taught to convert all 

the mined information to some motions. 

4.3.7 Data Assignment 

The trajectories of devices are generated in the simulation software when CS sends 

the data to VM and drives it to create corresponding movement routes via the APIs of 

VM. This will be done by the third tab page “Control System”. 

This is an API programming and application process to develop the simulation 

software 3DCreate secondarily. When the CS receives the full information 

virtualization required for every data, the system starts to assign the information to the 

related components in the layout. In this process, based on the information, the 

module calls and programs COM API of 3DCreate to generate corresponding 3D 

motions for the components, and form 4D trajectories which could be run in VM.  

To shorten the trajectories generation time for the virtualization on real-time data, 

every possible trajectory is created in 3DCreate. When the data is separated to 

detailed information, the system calls corresponding trajectories to realize its 3D 

simulation. So in the data assignment, the system just needs to get and separate data in 

real time, and then based on the extracted workflow in the data to call its trajectories 

in 3DCreate. This concept of data assignment greatly saves time in trajectory 

generation, and ensures the virtualization speed. 

In the data assignment, at first, the CS searches the component from the layout 

according to the “Device” name. Then the system assigns the corresponding 

commands to the component. If the component is a robot or a servo, the CS finds its 

executor and controller, and creates or calls motions for them. If the component is 

stationary, the system set its corresponding properties as the data requires. 

 

 

 

 



Doctoral Dissertation                                                                             Control System 

-53- 

 

Figure 4.16 shows a case to assign a data to the related components in VM. For the 

data “Motoman move from Cytomat6001.transfer station to Regrip.BCR using 

LidNarrow”, at first, based on the factor “Device”, the system finds the component 

“Motoman” in the GUI of 3DCreate. Then the system extracts the component’s 

original status information (including original position, tool gesture (narrow or wide), 

tool location, configuration method, joints’ conditions, etc), and the start position for 

its first movement. Between original position and start position of the tool frame, 

there are many motions created for the tool frame of Motoman. When the tool frame 

in Motoman arrives at the position “Cytomat6001.transfer”, the system goes into the 

component Motoman to check whether its tool gesture is right for next movement. In 

this data, the tool should be as “LidNarrow” for grasp the labware. So if the tool is not 

in gesture “LidNarrow”, the system adjusts its gesture and position to narrow at the lid 

height. That is realized by remote calling the routines of the gripper SG0150. The 

SG0150 routines are the ones having corresponding motions, which change the 

gripper sizes, gestures and directions to grasp or release object. Then, the CS calls the 

action statement “pick” to get the labware on Cytomat6001.transfer, and creates a 

motion for the labware “up”. All the above motions, remote routines and grasp actions 

form a workflow trajectory “from_Cytomat6001.transfer” of Motoman. After that, a 

routine “NarrowtoRegrip” of Motoman is called to realize the action “move” to the 

destination position “Regrip.BCR” in the narrow gesture of the gripper SG0150. 

 

Figure 4.16: Workflow of the data assignment 



Doctoral Dissertation                                                                             Control System 

-54- 

 

Algorithm 4.1  A case of data assignment in the CS 

Data: Motoman move from Cytomat6001.transfer station to Regrip.BCR using LidNarrow 

1:   Find component “Motoman” 

2:   Find executor and controller of “Motoman” 

3:   Find the main routine in the executor 

4:   Statement #1:  Define tool location for “Motoman” 

5:   Search the action in “actions”… 

6:   if the action is “move” do 

7:        Search the start position in the “fromDevice” group… 

8:        if the start position is “Cytomat6001.transfer” do 

9:   Statement #2:  Call routine “from_Cytomat6001.transfer” 

10:   Search the tool in the “tool” group… 

11:   if the tool is “LidNarrow” do 

12:   Statement #3:  Call remote routine “SG0150_ForNarrow” to 

from_Cytomat6001.transfer”. 

13:   Statement #4:  Create motion for tool frame to Cytomat6001.transfer. 

14:   Statement #5:  Create action statement “pick” to “from_Cytomat6001.transfer”. 

15:   Statement #6:  Call remote routine “SG0150_Narrow” to 

“from_Cytomat6001.transfer”. 

16:   Statement #7:  Create motion “up” from Cytomat6001.transfer. 

17:   Search the destination in the “toDevice” group… 

18:   if the destination is “Regrip.BCR” do 

19:   Statement #8:  Call routine “NarrowtoRegrip” to the  reach position near Regrip 

20:   Statement #9:  Create action statement “put down” to “NarrowtoRegrip”. 

21:   Statement #10:  Create remote routine “SG0150_ ForNarrow”. 

22:   end if 

23:   end if 

24:   end if 

25:   end if 

return a 3D trajectory 

 

(a) Assign real-time data 

The assignment for real-time data in the CS is triggered by the command “Simulate” 

in the “PCS Communication” tab. When the PCS workflow data enters into the CS, 

the system assigns every data to the workstation layout for corresponding trajectories 

generation one by one, and shows the 3D movement in its interface synchronously. In 

the virtualization process, it is feasible to add new trajectories into the movement, and 

show the new ones with the moving going. If there is some interruption in the data 

transmission, the virtualization for the received data will not stop until there is no data 



Doctoral Dissertation                                                                             Control System 

-55- 

 

left. Once the data is gotten again, the data assignment and virtualization will go on 

from the breakpoint. When the data is received totally, the trajectories will also be 

generated in a specified sequence. After that, the virtualization is finished, and the 

whole movement for the experiment workflow is generated.  

In a word, the real-time data assignment works in real time, and its virtualization 

result is also generated and shown with it in real time. The full virtualization result 

could be gotten until all the data is received and assigned. The processes for real-time 

data transmission and virtualization work as Fig. 4.17. 

 

Figure 4.17: Real-time data transmission and virtualization 

(b) Assign historical data 

The assignment for historical data is triggered by the command “Simulate” in the 

“Historical Data” tab. For the historical data, it is a full workflow data for a whole 

experiment. So the assignment for historical data is done in one time, and the full 

virtualization result could be generated after that. 

The assignment process of historical data also runs in the order of the data one by one, 

which makes decision of the movement sequence. Finally, all the motions for the data 

virtualization form an integral workflow layout, which can run by the simulation 



Doctoral Dissertation                                                                             Control System 

-56- 

 

setting module of the Control System. The processes for historical data virtualization 

work as Fig. 4.18. 

 

Figure 4.18: Historical data virtualization 

4.3.8 Motions Sequence 

The workflow data implies information about the sequence of device motions. With 

the motions for one data being generated, the CS creates sequence for it and the 

following one data. After the sequence for all data is created, a complete and coherent 

virtualization for the experiment workflow data is produced.  

The sequence of components’ motions in 3DCreate is generated by calling remote 

routines. Correspondingly, the CS calls the COM API to create new statements for 

remote routines. Taking the virtualization on Motoman system as an example, the CS 

defines the robot Motoman as the main moving robot. When there is a motion of other 

component generated, the Motoman robot controller will create a statement to call the 

remote routine of the motion, and another statement to wait for the motion being 

finished. After that, the call for remote routine is over, and then following with it, the 

next motion of the Motoman is generated and added to the sequence. With the whole 

data is assigned, all the motions of other components are inserted to the Motoman 

movements. At last, an orderly motions sequence is generated in the Motoman 

executor. The motions with their sequence constitute an integrated 4D movement 

virtualization on the workflow data. 

 

 



Doctoral Dissertation                                                                             Control System 

-57- 

 

4.3.9 Simulation Setting 

To control the virtualization demonstration, it is more flexible if there is a simulation 

player to operate the virtualization process. The module “Simulation Setting”, which 

is shown as the Part III in Fig. 4.11, is just the one developed as a player. The module 

has all functions for simulation setting and controlling as 3DCreate. It is also realized 

by calling the corresponding COM API of 3DCreate. The functions are depicted as 

followings: 

(1) Simulation run time: There is an input box for users to set the simulation time 

length. Many time units could be chosen, e.g. hours, minutes, seconds or years, 

months, days. The default unit is second(s). The module works to set the property 

“SimulationRunTime” in 3DCreate. 

(2) Simulation mode: There are two simulation modes supplied for users to choose: 

virtual time mode and real time mode. The former is dependent on the computer speed, 

and the later means the time in the simulation is the one in real time.  

(3) Simulation Step Size: Both of the time modes can be accelerated and decelerated 

by setting the step size for the simulation.  

(4) Run/Stop: The module works to switch the functions between start and pause the 

simulation. It is realized by setting the property “simulation running” in 3DCreate. 

(5) Reset: The module resets the simulation to its initial state. It starts the 

corresponding simulation command of 3DCreate COM API. 

4.3.10 Post Processing 

When the virtualization on experiment workflow is finished, the CS needs to back it 

up and feed the virtualization result back to the PCS. The related post processing for 

the virtualization result includes the followings: 

(1) Save layout as 3DCreate format 

The module saves the layout with the simulation movement as a 3DCreate file 

(*.vcm), which is backed up for being reused and modified. In this module, the CS 

gets the command from COM API, and then executes it in 3DCreate. 

(2) Record as animation file 



Doctoral Dissertation                                                                             Control System 

-58- 

 

In 3DCreate, it is feasible to record the virtualization result as an animation in .pdf 

format, which could show the animation vividly in flexible 3D views and sizes in 

Adobe Reader. The module could not only save historical data virtualization result 

into a whole animation, but also save the online virtualization into many parts, which 

could be sent and shown in PCS synchronously. The function is also realized by 

setting corresponding property of the 3DCreate COM API. 

(3) Send animation to the DTS 

In the online virtualization, there is a requirement to send the virtualization result 

instantly back to DTS, which works at the PCS side. As the above context depicting, 

in the online virtualization process, the virtualization result is separated into many 

parts of .pdf animations step by step. So in this module, the CS applies the TCP/IP 

socket technology to send these .pdf parts one by one to the DTS with their gradual 

generation.  

As Fig. 4.19 shows, once the animation file is generated, the CS socket gets an 

encoder in Unicode form to covert the .pdf file into datastream for transmission from 

the CS to the DTS. While there is an interruption in the communication, the CS socket 

will try to call the DTS socket again. Until the communication is created once more, 

the CS socket starts to send the animation files from the breakpoint. 

 

Figure 4.19: Virtualization result transmission 

4.4 Discussions 

The Control System realizes the data conversion from text to three-dimensional 

kinematics and dynamics in real time. It links all other modules as a whole 



Doctoral Dissertation                                                                             Control System 

-59- 

 

virtualization system, and controls its working for realistic LSA workstations and 

laboratories.  

However, the CS itself has no simulation functions just by programming. So it 

requires a third 3D simulation tool to demonstrate the converted kinematic and 

dynamic data graphically, and control the tool to form a virtualization result in 4D. 

The selection and applications of the 3D tool are presented in detail in chapter 5. 



Doctoral Dissertation                                                                     Virtualization Module 

-60- 

 

Chapter 5  Virtualization Module 

5.1 Introduction 

The Virtualization Module is the last and very important module in the virtual 

virtualization for the LSA workflow. It should prepare the workstation layout for the 

VS, and supply strong 3D simulation functions for nice virtualization effects. In 

addition, the module should have the feasibility for CS to control and drive. To meet 

the requirements of the VM, the dissertation applied 3D virtualization technology. The 

technology refers to some 3D simulation software, which has strong virtualization 

functions and strong API for CS calling.  

Currently, there are lots of popular 3D CAD software and animation-making software. 

In the dissertation, besides of the general animation functions, the simulation tool 

should have strong functions to create kinematic trajectories and dynamic actions for 

mechanical models. From the demands of the virtualization, some related mature 3D 

simulation tools are compared in Table 5.1. 

Table 5.1 Comparisons of 3D simulation software [117]-[122] 

 Solidworks 3DCreate 3ds Max Maya Easy-Rob 

Main application 

areas 

mechanical 

engineering 

Digital 

simulation 
Games Film 

Robot 

simulation 

Rendering 

speed 
good Excellent slow slow slow 

Animation 

tools 
good Excellent Very good Excellent simple 

Modeling Excellent week Excellent Very good week 

CAD data 

communiation 
Excellent Excellent good good 

Not too 

much 

API & 

supported 

language 

API; 

Visual Basic 

for 

Applications 

(VBA), 

VB.NET, 

Visual C#, 

Visual C++ 

COM/Pyt-

hon API; 

Visual Basic, 

Visual C#, 

Visual 

C++ ,C++ 

Builder 

SDK; Visual 

C++ 

API; Visual 

C++ 

 

API; Visual 

C++ 

Multi- 

kinematics 
No Yes Yes Yes Yes 

Robot 

libraries 

 

No Yes No No Yes 



Doctoral Dissertation                                                                     Virtualization Module 

-61- 

 

Integrating factors as virtualization object, graphics, rendering speed and application 

areas, .etc, we chose 3DCreate for the 4D virtualization. The software 3DCreate is the 

premium package of the Visual Components' software family. It could work for multi-

robots kinematics simulations synchronized, and supply very good graphics and high 

speed rending [123]–[125], which is necessary for online virtualization. The software 

users could create new simulation components from existing 3D CAD data by adding 

custom functionality with behaviors and parameters, and simulate complete factory 

layouts. What's more, the software supplies strong COM API and Python API [126]–

[128] for application developers. Fig. 5.1 is a case of 3D manufacturing virtualization 

with 3DCreate. The process for creating a 3D virtualization using 3DCreate is as 

followings:  

i. Prepare 3D models for 3DCreate; 

ii. Create component in 3DCreate; 

iii. Teach robots how to work. 

 

Figure 5.1: 3D manufacturing virtualization with 3DCreate 

file:///E:/Animation/realplay/3D manufacturing simulation and visualization, 3DCreate - Yo


Doctoral Dissertation                                                                     Virtualization Module 

-62- 

 

5.2 Modeling 

Due to 3DCreate is simulation software with week 3D modeling functions, there is 

other 3D CAD modeling software needed. In this dissertation, SolidWorks, an 

outstanding 3D CAD tool, is utilized to build the 3D models of devices mounted in 

the workstations at celisca, and to describe their mechanism characters. That is the 

preparation of models for components creation in 3DCreate. 

The models created by SolidWorks are in real sizes and structures. They do not have 

characters of joints, interfaces among models, behaviors, and movement trajectories, 

etc. They are exported as step format, and transferred to components in 3DCreate by 

adding kinetic properties and behaviors. 

5.3 Create Components 

To make a 3D model moving and working together with other models in 3DCreate, 

the model should be converted to a component, which is a 3D graphical representation 

of a machine/product with simulated behaviors. 

5.3.1 Component Structure 

Technically, a component is a "container" of different virtualization objects, including 

frames, features and behaviors, as well as their relations. Some of the objects define 

"the looks", while others are the behaviors and interaction with other components in 

the virtualization.  

  



Doctoral Dissertation                                                                     Virtualization Module 

-63- 

 

The relations among the objects form a tree structure, which is shown as Fig. 5.2. As 

Fig. 5.2 shows, a component is composed of nodes and parameters. For the nodes, 

they have three factors: features, interface and behaviors. They form the kinematics 

characters for the component. As for the features, they consist of geometry factors of 

the 3D model, such as points, lines and faces [129]. 

 

Figure 5.2: Internal frame of a component in 3DCreate [129] 

5.3.2 Organizing the Geometry 

Generally, a component includes many moving parts, which are called nodes. The 

features and behaviors of a node are based on geometries. Therefore, when a 3D 

model imported into 3DCreate, the first work of component creation is to break the 

geometries of the model into many logical features, and then organize the features to 

their corresponding nodes.  

  



Doctoral Dissertation                                                                     Virtualization Module 

-64- 

 

Take a 6-axis robot for example, due to there are six joints and one plate for tool 

setting, the robot component has seven nodes under the root node (as shown in Fig. 

5.3). The root node is the base of the robot, and every sub-node has its own physical 

joint and kinematic parameters. In the Fig. 5.3, the front six sub-nodes are 

corresponding to the six axes of Motoman HP3JC, and the last sub-node “mountplate” 

is the one to connect a tool into the robot system.  

 

Figure 5.3: Node tree of a 6-axis robot 

Besides of the physical features, frames in coordinate system are necessary to create 

for the definition of component location and movement positions. That is important 

for assembling layouts and creating trajectories. 

5.3.3 Add Behaviors 

Behaviors are the definitions of kinematics, characters, tasks and object links for 

components. Without behaviors, a component is just a stationary and isolated model. 

So it is necessary to add many kinds of behaviors for components, especially for 

servos and robots, which have moving parts in it. 

5.3.3.1 Robot Behaviors  

To make a 3D robot model working, the behaviors such as moving joints, kinematics, 

executor, etc, should be created for the robot component.  

  



Doctoral Dissertation                                                                     Virtualization Module 

-65- 

 

Take the robot Motoman HP3JC in the Motoman system workstation for example, as 

Fig. 5.4 shows, to make it work as a real robot, it requires behaviors including 

kinematics, controller, signals, executor, interfaces, Python script, etc. 

 

Figure 5.4: Behaviors of motoman HP3JC 

(a) Robot Controller 

Robot Controller is a behavior to control motions of independent joints using forward 

and inverse kinematics. The joints are defined in the controller with their type and 

properties, such as limit values, maximum speed and acceleration. They are 

corresponding to the kinematic properties of the real robot joints. For the Motoman 

HP3JC, it has six rotate joints for its six axes movements. 

In the robot controller, basements and tool frames, which are similar to ones in real 

robots, are defined to make it easy to program robot movements -- node movements in 

robots and other inverse kinematics supported components. The initial basement and 

tool before moving are defined in the controller for the robot initial condition. 

Similarly, the controller defines the kinematics behavior being used when calculating 

the inverse kinematics. Once inverse kinematics is defined, it will provide its related 

properties to the robot controller. 



Doctoral Dissertation                                                                     Virtualization Module 

-66- 

 

In addition, the robot controller attaches the joints to corresponding nodes for the 

definitions of their kinematic characteristics (moving type, limit values, .etc). 

(b) Articulated kinematics 

The articulated kinematics provides additional properties related to kinematics, 

including joint length, angle, positioning, coupling, configuration and tolerance levels 

dealing with robotic movement.  

The most common robot kinematics in LSA is shown as Fig. 5.5. This solver can 

calculate the forward and inverse kinematics of a robot that has 6 rotational joints in 

the following order: RotZ, RotY, RotY, RotX, RotY, RotX [129]–[131]. In the Fig. 5.5, 

the parameters of LinkLength1 - LinkLength5 are the lengths of the joints, and the 

ones of JointOffset1- JointOffset3 are the distances among axes. 

 

Figure 5.5: Articulated kinematics for a robot with 6 rotational joints [129] 

  



Doctoral Dissertation                                                                     Virtualization Module 

-67- 

 

Motoman HP3JC is a typical 6-axis robot in Motoman system workstation at 

celisca[132], [133]. Its dimensional parameters for kinematics are shown as Fig. 5.6. 

Once the robot nodes are attached with these kinematics parameters and the right arm 

configurations, all nodes could work together coordinately as the real robot. 

 

Figure 5.6: Articulated Kinematics of Motoman (Unit:mm) [134] 

(c) RSL program executor 

The RSL program executor executes RSL language sequences for robots and 

manipulators. RSL is a simple language for programming logics for robots and other 

Components [135]. RSL language consists of 3 levels: program, sequence and a 

statement. As long as the executor is created, the robot could be taught with motions, 

which is created in statements and sequence.  

The RSL program executor attaches other behaviors such as robot controller, signals, 

and handlers to it. So it could call the properties of these behaviors when it teaches the 

robot moving. In addition, the action mode could be setting in the executor for the 

component to work together with other components. This is useful for peripheral 

components such as grippers and fixtures. If the component is connected to other 

components through interface that connects the RSL publisher field, the sequences of 

the RSL program can be launched from other components with help of “Remote 

Routine Call”. 

(d) Interface 

Interfaces are special behaviors used to make components to work together without 

exposing the internal details to other components, promoting component reuse [129]. 

mk:@MSITStore:C:/Program%20Files/Visual%20Components/3DCreate%202012/Doc/English/3DCreateUserManual.chm::/Reference_Guide/Behaviour_Reference/One_to_One_Interface.htm


Doctoral Dissertation                                                                     Virtualization Module 

-68- 

 

It could connect different components together either in shape or in communication. 

There are two kinds of interfaces for connecting components: one to one interface, 

and one to many interface [125], [136]. The first one is typically used for material 

flow, component attachments, signal communication and RSL execution. For example, 

when there is a tool required to set toward a robot, both of the robot and tool need 

such an interface for their connection. The second one allows connecting with 

multiple other interfaces using abstract connection. It is typically used with "remote" 

RSL execution. That is the critical technology for components working synchronously. 

(e) Python script 

The behavior atom Action Script is the one that uses a python script editor to perform 

different actions with robots and their tools, such as grasp/release, trace, mount and 

unmount actions. 

Python script customizes component behavior by controlling other objects. The Python 

script execution may use signals and other events to control script execution [137]–[139]. 

In the behavior Python script, every kind of properties and motions of a component 

could be created and set. Parameters, behaviors, properties of a component, as well as 

its trajectories could all be created into the Python Script by Python API [125], [131], 

[140]. The script is programmed by Python language. In the virtualization of the VS, 

the Python script behavior is created for defining the physical characteristics for 

components, as well as properties of actions, and so on. 

(f) Jog information  

The JogInfo behaviors are created for independent moving nodes. It defines the 

degree of freedom (DOF) of the node, and attaches it with a joint for getting its type 

and properties. 

5.3.3.2 Servo Behaviors  

The servo behaviors are created for movements of mechanisms. To make a servo or its 

nodes moving, generally, the behaviors Servo Controller, Python script, and RSL 

program executor are necessary.  

(a) Servo Controller 



Doctoral Dissertation                                                                     Virtualization Module 

-69- 

 

Servo Controller controls the motion of independent joints. It supports forward 

kinematics only, and cannot be used in robots. It is typically used in external axis 

systems, grippers, fixtures, weld guns and other simple mechanical structures.  

The Servo Controller is "a container for joints". Each joint has a type, either rotational 

or translational, and properties such as limits, maximum speed and acceleration. The 

Servo Controller can calculate the execution time of a motion based on the slowest 

joint and synchronize the other joints so that it takes them the same amount of time to 

execute the motion. It also defines the root node and flange node for the servo.  

(b) Python script 

The motions, parameters and properties of a servo could all be written into Python 

script. They are defined in the script python code as text, which can be edited in the 

separate python editor.  

(c) RSL program executor 

To teach a servo motion as well as connect it to other components, the RSL program 

executor is required. When the action mode is set to true in the executor, the 

sequences with different motions could be remotely called by other component, which 

has connected with the servo executor. 

(d) Interface 

To connect a servo executor to other components, the interface behavior (“one to one 

interface” or “one to many interface”) is required for their connection. That makes 

multi-movements possible since the components could be connected by the interface, 

and the routines of the servo could be called remotely by other connected components.  

Taking the workstation “Motoman system” for example, except for the regrip and the  

Motoman robot, as well as the BiomekNX and the BiomekFX, all the other 

components could move as servo. So for each of those components, servo controller is 

created for its nodes moving. In addition, for other components to remotely call its 

motions, the RSL program executor and interface are added into its behaviors. The 

action mode of the executor and the IsAbstract property of the interface are the critical 

factors in remote-routine calling.  

 



Doctoral Dissertation                                                                     Virtualization Module 

-70- 

 

5.3.4 Make Component Parametric 

For a component, there are many factors parametric in its creation. 

(1) Geometry parametric 

The geometries of a component are made parametric by using parameters to control 

the properties of the features [129]. There are two approaches to the geometries 

parametric: (a) control the properties of the primitive features directly with a 

parameter; (b) do the desired parametric manipulation with the Transform feature.  

(2) Behavior parametric 

Some of the behaviors of a component are parametric for its conditions and properties 

setting.  

(3) Parameters 

Besides of the geometries and behaviors parametric, there are many parameters 

created for component parametric. As Fig. 5.7 shows, there are six parameters created 

for setting properties of a robot component. Among the parameters in Fig. 5.7, the 

parameter “Configure” in SignalActions is for setting output signals [147]–[148]. 

Firstly, all robots have a built in functionality to grasp and release components. By 

default grasp is done by setting any of the outputs 1- 16 that matches the tool number 

to true and release is done by setting the same output to false. For every output signal, 

when the tool is chosen, the parameters about detection volume size in axis X, Y and 

Z could be set for grasp accuracy. Secondly, a tool frame can draw a trace, which is 

turned on and off with a signal. The output signals 17 - 32 are by default mapped to 

tools 1 - 16, with true turning the trace on and false turning it off. Thirdly, the robot 

can mount or dismount a tool by setting a signal. The output signals 33 - 48 are by 

default mapped to tools 1 - 16, with true mounting the tool and false dismounting the 

tool [140]–[143]. 

 

Figure 5.7: Paramters created for the robot Motoman HP3JC 



Doctoral Dissertation                                                                     Virtualization Module 

-71- 

 

5.4 Teach Components 

The module “Teach” provides the functions to teach and program components that 

have servo or robot controllers. It teaches robots and servos motions and actions for 

their trajectories in the movement.  

In 3DCreate, to teach a component with controller, statement and sequence are 

referred in creating motions: 

1) Statements appear in the RSL programs in the RSL executors, and control the 

function of robot controllers. There are many kinds of statements to depict the 

motions and actions of robots and servos [144]–[147], such as “Linear (LIN)” or 

“Point to Point (PTP)” motions, grasp or release actions, executor delay, etc. Each 

statement has a list of properties, which can also be available through the COM 

and Python APIs. 

2) A sequence is a series of statements in order. It is executed by logic executors. 

The main sequence holds the default storage area for initial positional data. Sub-

sequence represents an action or a trajectory, which depicts a process that the 

component moves from one position to another target position [148]–[149]. All 

sub-sequences could be called by each other or the main sequence. The call 

sequence statement is used to execute other sequences in the same RSL program. 

The sequence specified in the statement is executed synchronously. It is 

completely executed before the next statement is executed.  

In this dissertation, to save time for online virtualization, sub-sequences of all possible 

trajectories are created in advance for every component with controller. When some 

trajectories are referred to the experiment workflow data, corresponding sequences 

will be called and added into movements of a specified robot by programming 

3DCreate API, which includes both COM API and Python API. 

In the following, the Motoman system is taken as an example to explain the teaching 

process in the dissertation. In the workstation, except for the regrip, all the other 

components have their own movements. So motions and actions should be taught to 

every component to realize their movements.  

 

 



Doctoral Dissertation                                                                     Virtualization Module 

-72- 

 

5.4.1 Teach Servo 

Generally, motions of a servo component (component with servo controller) are 

depicted as moving from one frame to another frame, and actions of that are depicted 

as open, close, issue, or incubate. For example, there are three possible actions for the 

component “PHERAstar”: open, close, and issue command. Correspondingly, three 

sequences should be created for them.  

As Fig. 5.8 shows, there are three statements for the “open” sequence. The first 

motion P1 is keep the all of the PHERAstar joints as original conditions. Then, the 

second motion P2 is created to change the value of joint2 from 0° to -180°, which 

makes the door of PHERAstar from close to open. After that, the motion P4 changes 

the value of joint3 in P3 from 0mm to 104mm. That makes the door keep open, and 

the position for labware putting being pulled out. It is fully the open condition of 

PHERAstar to prepare getting a labware. As for the “close” sequence, its statements 

are just in opposite order of the “open” sequence. For the issue command, all of its 

actions and motions take place in the inner of PHERAstar. So it is unnecessary to 

simulate these invisible works. The “issue command” is just consisted of the “Delay” 

statement with the same issue time.  

 

Figure 5.8: The statements of sequence “Open” in teaching PHERAstar   

For the servo SG0150, which is the gripper tool of Motoman HP3JC, it is some 

different with other translate-moving servos. As normal gripper, it grasps or releases 

things. However, what’s more for SG0150, it works with different sizes for different 

target positions. That is depicted as “using Narrow” or “using WideLow” in the 

workflow data. These two conditions work correspondingly to different planes of a 

labware.   

  



Doctoral Dissertation                                                                     Virtualization Module 

-73- 

 

As shown in Fig. 5.9, due to the gripper needs to change its condition and position 

time by time, there are four statements created for its corresponding conditions: 

Narrow, WideLow, ForWide, and ForNarrow. When the robot needs its gripper to 

grasp a labware using Narrow, the gripper should operate the “ForNarrow” sequence 

at first to make itself wider than the Narrow condition. That is the preparation for 

grasping in Narrow.  Conversely, when the gripper puts a labware down on some 

position in the Narrow condition, the sequence “ForNarrow” should also be operated 

for releasing the labware. So the four sequences are corresponding to different sizes 

and angles of the gripper. 

   

(a) ForNarrow                                                         (b) Narrow 

 

(c) ForWide                                                         (d) WideLow 

Figure 5.9: Sequences of the gripper SG0150 

 

 



Doctoral Dissertation                                                                     Virtualization Module 

-74- 

 

5.4.2 Teach Robots 

A robot could have many different actions, such as move, grasp, release, etc. All the 

actions are taught firstly to robots before they could work. Generally, the teaching 

process for a robot is complex. It will take lots of time for developers to teach the 

robots, especially when there are many robots working in one case. Therefore, the 

dissertation presents a flexible method for robot teaching: once a robot component 

with many taught sequences is created, other robots with similar structures could copy 

the characters of the defined robot, and then make some changes for characters of the 

new robot. The method saves a lot of time and is very convienient for system 

developers when some new virtualization has to be created for other workstations. 

The Motoman system is a typical modern LSA workstation. The following sub-

sections will intepret the teaching process for the three robots (Motoman HP3JC, 

BiomekFX and BiomekNX-Span8) in Motorman system in detailed. Based on the 

teaching information, developers could create a new robot component with similar 

structures easily.    

5.4.2.1 Preparation 

Before teaching robots to work, some factors should be created and set:  

(1) Frames and robot positions: All robot positions are represented by robot position 

frames in 3Dworld. That is the same to target positions for tool grasping. So 

many frames are created in every component for robot moving and working. In 

creating a new motion for the robot, it just needs to snap corresponding frames in 

the trajectory, and makes the end frame as the tool target.  

(2) Base: It is a coordinate system that the robot positions (motion statements) are 

relative to. When the base moves, all the motion statements referencing the base 

also move. It’s especially useful in repetitive transportations. 

(3) Tool: It is a Tool Center Point (TCP), typically relative to the robot flange plate. 

There is usually no need to change the tool value programmatically. However, the 

interpolation mode (IPO mode) for either a base or tool can be set to inverse 

motion targeting and use an external coordinate system, i.e. from External TCP to 

Base target solution. 

(4) Output signals: It defines actions for a robot, such as grasp/release, trace, mount 

and unmount a tool. Different signals have different variables and parameters. 

They are corresponding to different actions for robots. It could be defined or set 



Doctoral Dissertation                                                                     Virtualization Module 

-75- 

 

in either the Action Script editor (python) or an Action Map editor that is 

automatically created by the Action Script behavior.  

(5) External TCP: An External TCP is a tool that is not attached to the robot, but 

another object (typically a static object, but can be something moving as well). 

Setting the IPO mode to TCP in either a Base or Tool sets ExternalTCP to True. 

In contrast, the IPO mode set to Base sets ExternalTCP to False. By default, the 

IPO mode is set to zero for all bases and tools which allows a user to turn the 

ExternalTCP on or off from via the Teach tab. 

(6) Configuration: It is an alternative way to reach the same goal position. 

Configurations are used only if the motion interpolation type is set to Joint (point 

to point). In Linear motion interpolation the closest configuration is automatically 

selected. The number of configurations depends on the robot type. 

With the above factors, the teach module in 3DCreate could call them to teach a robot 

detail information about target positions, configuration mode, etc for motions 

generation. There are three robots defined in 3DCreate for the Motoman system 

workstation: BiomekFX, BiomekNX-Span, and Motoman HP3JC. The teaching 

processes for their motions are shown as followings. 

5.4.2.2 Teach Biomek FX 

Biomek FX is a laboratory automation workstation, which is composed by deck, 

towers, bridges, Automated Labware Positioners (ALPs), multichannel pods and 

heads (or Span-8 Pod and its liquid system), as well as a pair of grippers [150]–[153]. 

Its structures and characteristics are shown as Appendix A. 

In the Motoman system workstation, the Biomek FX has the structure with 

multichannel pod. It has six joints for its movements and works. Among the moving 

and working components, the bridges could hold the pod, heads and grippers together 

to move along its rail for defining positions (shown as Fig. A.3). It has a joint with an 

X-axis linear DOF. The multichannel pod, which holds the heads and grippers, has 

two joints for Y-axis and Z-axis linear movements separately. As for the grippers, to 

grasp labware flexibly and avoid affecting the head’s works, there are three joints to 

ensure its motions in X-axis and Z-axis directoins. The limit values for these joints are 

based on the movement regions of the real components. 

There are 21 frames on corresponding ALPs (see as Appendix A.4) of Biomek FX for 

locating labwares onto target positions in movements. The location could be for either 



Doctoral Dissertation                                                                     Virtualization Module 

-76- 

 

grasping or pipetting, which is executed by grippers or tips in mandrels. So there are 

two tool basements created for Biomek FX: one tool base for grippers, the other one 

for tips.  

The following works could be done by Biomek FX workstation in a LSA assay: 

location for labware, load and unload tips, aspirate/dispense liquid, wash tips, drain 

and refill a reservoir. In the location process, the joints of bridges and pods are 

assigned to the specified value of the target position. Then based on the task, the tool 

basement of grippers or mandrels is moved to the target frame. At last, the grippers 

change their distance through setting their joints’ values to prepare for grasping or 

releasing, or the tips set in mandrels pipette liquid. If the workflow refers gripper 

actions, the output signal of the grippers’ tool should be set correspondingly for 

grasping labware from the target ALP or release it to the ALP. In the loading and 

unloading tips process, at first, the tool basement of mandrels should be located to the 

TL1 frame, and then the output signal of the mandrels’ tool is set for loading or 

unloading tips in the TL1 ALP. When the pipetting work is referred in the workflow 

data, tips should aspirate or dispense liquid in some specified ALP also through 

setting their output signals. In all, every work of Biomek FX refers to location tool 

basement to target frame, and then call corresponding output signal of related 

component to realize the task in the workflow data. 

  



Doctoral Dissertation                                                                     Virtualization Module 

-77- 

 

Figure 5.10 shows frames created in Biomek FX ALPs, and parts of the sequences 

taught to it. As Fig. 5.10 (b) shows, in the VM of VS, all possible locations and 

actions for different ALPs are defined to their corresponding sequences. Every 

sequence has its own statements in order, which include those motions and actions for 

its task. For instance, the sequence “FromP1” means to get a labware from the P1 ALP. 

It includes statements of location the tool basement of grippers to the frame P1, and 

set the joints of grippers to the labware width, and then set its output signal as “pick 

up”. As for the sequence “ToP1”, except for the same location statement, other 

statements are all opposite with the “FromP1” sequence. For the “Tip-” sequences, 

they have actions insist of locating mandrels tool basement, loading tips, aspirating 

liquid from a specified ALP, and dispensing liquid to target ALPs, etc. 

  

(a) Frames on Biomek FX                                (b) Seuqnces for Biomek FX actions 

Figure 5.10: Frames and sequences of Biomek FX 

5.4.2.3 Teach Biomek NX Span-8 

The Biomek NX is a multiaxis instrument designed with an open architecture to allow 

expandability of the system [154]–[155]. As shown in Fig. B.1 in Appendix B, the 

main-function components of the Biomek NX Span-8 in the Motoman system at 

celisca are deck, towers, and bridges, Span-8 Pod with probes, grippers, ALPs.  

There are two groups of bridges installed in the Biomek NX Span-8 workstation [156] 

–[157]. One has a joint with X-axis DOF for holding the gripper to move along the X-

axis rail of the workstation. The other one also has a joint for X-axis movement of the 

Span-8 Pod and its components. To make the gripper work, there are four joints 

created for its Z-axis movement (up and down), Y-axis movement (left and right, one 

joint for each finger), and C-axis movement (rotate with Z-axis). As for the Span-8 

Pod, it has one joint for its eight probes moving along Y-axis simultaneously, 8 joints 



Doctoral Dissertation                                                                     Virtualization Module 

-78- 

 

to move every probe in the Z-axis independently, and 8 joints for probes to pipette in 

the D-axis with the assistance of the pumps independently, as well as 8 joints to make 

the span between probes expand and collapse.  

There are three devices named Teleshake installed in the right ALPs of Biomek NX 

Span-8 workstation. In the Motoman system workstation at Celsica, the Teleshakes 

hold microplate and spin with it around the center axis of the corresponding ALP. So 

there is one rotate joint for every Teleshake created when the component is generated 

in 3DCreate.  

To define target positions for the tool basements of grippers and pod in virtualization, 

there are 11 frames created on ALPs (see as Appendix B.4) of Biomek NX Span-8 for 

snap and definition. When a frame definition is required for the gripper or the pod, 

corresponding joints of bridges and their own components take movements along their 

moving axes and make the tool basement coincided with the frame. Then the motions 

of grasp, release, or pipette could be executed by corresponding components.  

  



Doctoral Dissertation                                                                     Virtualization Module 

-79- 

 

Figure 5.11(a) shows frames created in Biomek NX Span-8 ALPs. Except for them, a 

ConvNXFrame is created for plug and play connection with the component ConvNX; 

FlangeFrame is created to grasp for the gripper; eight frames are created for eight 

probes separately, so that the probes could aspirate or dispense liquid with specified 

quantity. Figure 5.11(b) shows parts of the sequences taught to the Biomek NX Span-

8. The sequence “Initialize” works for setting all components to their initial conditions. 

The sequence named as “PickFromP1” include motions of definite the gripper tool 

basement to P1 frame, get the gripper fingers down and wider to prepare grasp 

labware and adjust the gripper fingers as grasp condition, as well as an action of pick 

up the labware, which is realized by an output signal. As for the sequence as 

“PutToP1”, it has opposite order of motions and an action for putting the labware 

down to the P1 ALP. For the components Teleshake, besides of the sequences for 

gripper motions to pick up or put on their ALPs, there is another kind of sequence 

which works for shaking the labware on them. For example, the sequence 

“TeleshakeS1” includes motions to shake the components by setting the values of the 

Teleshake joints. 

  

(a) Frames on Biomek NX Span-8             (b) Seuqnces of Biomek NX Span-8 

Figure 5.11: Frames and sequences of Biomek NX Span-8 

5.4.2.4 Teaching Robot Motoman 

The robot Motoman HP3JC is the main transport robot in the Motoman system. It 

moves along its track and shifts the assay labware from one device position to another 

one. In the virtualization, the Motoman not only does its own transportation tasks, but 

also links the movements of all components together and forms a sequence for them 



Doctoral Dissertation                                                                     Virtualization Module 

-80- 

 

to generate a full virtualization for the experiment workflow.  

Among the actions of the Motoman in the virtualization, the works about its own 

transportation and calling other components’ movements are set as the sequences in 

the simulation layout beforehand, which is shown in Fig. 5.12. They will be called 

when there are related processes in the experiment workflow data. As for the sequence 

of all movements in the virtualization, it is generated in the CS with the sequences 

being called.  

 

Figure 5.12: Sequences of Motoman HP3JC 

(1) Origin and tool location 

The sequence “Origin” has motions to drive the Motoman back to its specified 

original position. It is created mainly for backing up the original positions information 

of its all nodes. When there is some collision or error as run out of limit values, it 

could restore the robot to its normal state. 

The robot itself has a tool frame in its tool interface. It is a Tool Center Point (TCP), 

typically relative to the robot flange plate. When the gripper SG0150 is installed into 

the robot in the tool interface, a new tool frame is created for grasping labware using 

the gripper.  

  



Doctoral Dissertation                                                                     Virtualization Module 

-81- 

 

As Fig. 5.13 shows, the tool frame is set in the middle of the two fingers of the gripper 

so that it could easily snap other target frames for grasping or releasing. That is done 

in the CS at the beginning of the data-assign stage. After that, in the motion creation 

process, all robot target positions could be set for the tool frame of the gripper 

SG0150. 

 

Figure 5.13: Tool frame of the robot gripper 

(2) Pick labware 

There are many possible positions the robot Motoman could reach in the workstation. 

When the workflow data refers actions of the Motoman to get labware from some 

position, a sequence named “from” with device name (such as “fromCytomat”) is 

called by the CS. 

For example, the motions in the sequence “fromCytomat” are all based on the frame 

tool1 (as Fig. 5.13). There are three steps in the statements of the sequence: 1) move 

the robot to the target position near the Cytomat6001; 2) adjust the gripper to the 

right working condition; 3) pick up the labware from the Cytomat6001 ALP. To drive 

the robot to the target position, many point to point (PTP) statements are created for 

joints’ movement of the robot. In every PTP creation, the tool, base, ExternalTCP and 

configuration are defined and chosen, and the target position values in the six DOF 

are also defined. Beside of them, the value of ExternalJoint is important for the 

position definition of the robot base. 

 

  



Doctoral Dissertation                                                                     Virtualization Module 

-82- 

 

The External Joint is set on the position near Cytomat (Fig. 5.14 (b)), which makes the 

movements of the seven joints and the action “pick up” possible. After the robot 

arrives at the position where it could touch the Cytomat frame, it changes its joints 

values and adjusts its tool (the gripper) condition to the right direction and gesture (Fig. 

5.14 (c)), which could press the labware from both sizes in its middle height. These 

actions need to remotely call corresponding sequences of SG0150 to adjust it to its 

narrow grip condition. After that, an output signal is called and set as the action “pick” 

(Fig. 5.14 (d)). At last, a PTP motion is created to raise the gripper from the Cytomat 

frame (Fig. 5.14 (e)), and another one is generated to make all nodes of the robot back 

to their conditions as the one when it arrived (Fig. 5.14 (f)).  

  

(a) Origin                                                        (b) Near Cytomat 

  

(c) Adjust tool                                                      (d) Pick/grasp  



Doctoral Dissertation                                                                     Virtualization Module 

-83- 

 

  

(e) Get up                                                     (f) Condition back   

Figure 5.14: Get a labware from Cytomat 

(3) Put down 

The sequence “To” with device name (such as “toCytomat”) has statements in the 

opposite order of the “From” one. Take the sequence “toCytomat” for example, it also 

has three steps in its statements: 1) move the robot with a labware to the target 

position near Cytomat6001; 2) adjust the gripper to the right working condition; 3) 

put the labware down to the Cytomat6001 ALP. Among them, the statement for the 

action “put down” calls an output signal of release. After that, sequences of SG0150 

are remotely called to make the distance between its two fingers wider so that it could 

get up freely. 

(4) Call Remote routine 

As the above depicted, when the robot grasp or release a labware, some sequences of 

the gripper SG0150 should be run to get a right gesture for the action. That is realized 

by calling remote routines of SG0150 in the Motoman statements. It is also the same 

to generate a full sequence for the experiment workflow. 

To call the remote routine of other components, it is necessary to create many 

connections. In the dissertation, every component has to connect with more than one 

component so that it could call or be called with many components. So for every 

component, a behavior “One to Many interface” is created. The behavior allows 

connecting with multiple other interfaces using abstract connection. It uses one 

template interface section to describe the elements that are connected. Template 

Interface Section has user definable Interface Fields, which are used to define what is 

interfaced when components are connected. The “One to many interface” behavior is 

used with the "remote" RSL execution, because it is abstract in nature (not bound 



Doctoral Dissertation                                                                     Virtualization Module 

-84- 

 

physically as material flow or hierarchy attachment). 

The process of calling the remote routine has two steps: one is to start a remote 

routine, and the other one is to wait the remote routine finish. The Start Remote 

Routine statement signals another RSL executor to start the execution of a specified 

sequence. The remote RSL executor has to be associated with this executor through an 

RSL field, and its ActionMode property must be set to true. Remote routines are 

executed asynchronously, so execution continues immediately after this routine is 

done. The Wait for Remote Routine Statement is used to wait for the remote routine to 

complete. 

5.5 Creating Layouts 

When all components are created with their geometries, parameters and behaviors, 

they are assembled together to a workstation based on their relative positions in the 

realistic workstation, and formed as a layout in 3DCreate.  

Figure 5.15 shows the workstation layout of the Motoman system. All the components 

dimensions and their distances are in actual size. There is a basement frame for every 

component to be installed to the workstation platform. In the layout of Motoman 

system, all possible motions and trajectories have been created and kept into the 

layout for being called by the CS. 

 

Figure 5.15: Workstation layout of Motoman system 

mk:@MSITStore:C:/Program%20Files/Visual%20Components/3DCreate%202012/Doc/English/3DCreateUserManual.chm::/Reference_Guide/RSL_Statement_Reference/Wait_for_Remote_Routine_Statement.htm


Doctoral Dissertation                                                                     Virtualization Module 

-85- 

 

5.6 Discussions 

The Vitualization Module prepares kinematic components for the CS to call and drive. 

It supplies a platform to generate virtualization results for the 4D virtualization system.  

Since there are different devices in different LSA workstation, to make a new 

workstation virtualization, developers should create new models, components, and 

layouts in the VM module in advance for the CS. The dissertation presents a 

convenient way to make the following creation of components easier. Developers just 

needs to copy existing component to the new model with same structures, and then 

make some small changes for the new model to get its component in the VM. The 

work in the dissertation to create components for devices and robots in Motoman 

System, takes much convience and saves much time for the components generation of 

the other workstations.  

 



Doctoral Dissertation                                                         System Test and Application 

-86- 

 

Chapter 6  System Test and Application 

The modules of theVS are connected together all by interfaces, including the SILAS 

OCX between the PCS and the DTS, the TCP/IP socket between the DTS and the CS, 

the COM and Python API between the CS and the VM. When there is an interrupt in 

any interface, other modules still go on work based on existing data. To demonstrate 

and verify the VS for life science applications, this dissertation uses a whole 

application case for example. The case is executed as steps as followings. The test and 

application results confirm that the system could simulate the experiment workflow of 

LSA not only in real time but also in history well and smoothly.  

6.1 Connections among Modules 

Before running the PCS to get original experiment workflow data, the connections 

among modules in the VS should be created. Once the DTS is running, it activates the 

SILAS OCX at once and waits for the data generation. While the connections between 

the CS and the DTS are created by two TCP/IP sockets for the transmissions of 

workflow data and .pdf file separately, the DTS shows the IP address and the separate 

transmission port at the side of the client CS in its interfaces.  

The connection statuses of the two TCP/IP socket are shown as Figure 6.1. The 

Fig.6.1 (a) shows the port-bind statuses of the two different modules in the DTS; 

Fig.6.1 (b) demonstrates the socket connection statuses of them. 

   

(a) Waiting for connections                                         (b) connected 

Figure 6.1: Connection statuses of the two sockets 

  



Doctoral Dissertation                                                         System Test and Application 

-87- 

 

6.2 Method in the Process Control System 

In this case, at first, a method for one-plate assay is designed in SAMI EX Editor of 

the PCS. As shown in Figure 6.2, in SAMI EX Editor, the workflow for this 

experiment is demonstrated in the form of icons. The method of this case contains 

parameters and activities of components in the LSA workstation -- Motoman system. 

 

Figure 6.2: Method for one-plate assay 

After scheduling and running the method, the SILAS system in the PCS generates the 

workflow data for the LSA experiment. Since the data are complicated and lenghy, 

Table 6.1 lists parts of important and representative processes in the data of this 

method. The processes will be demonstrated in the 4D virtualization results in the 

following context. 

Table 6.1 Parts of the workflow data of the method “One Plate_FX” 

Time Activities No. 

...... ......  

8:54:07 - 

8:54:07 
Place labware on Cytomat6001 (1) 

...... ......  

8:54:12 - 

8:54:13 
Place labware on BiomekFX (2) 

...... ......  

8:54:31 - 

8:54:45 

Motoman move from Cytomat6001.transfer station to Regrip.BCR using 

LidNarrow 
(3) 

...... .....  

8:54:45 - 

8:54:57 
Motoman move from Regrip.BCR to SMCShuttle.M1 using WideLow (4) 

...... .....  

8:54:57 - 

8:55:01 

SMCShuttle move from SMCShuttle.M1 to BiomekFX.Shuttle using 

SelfGrip 
(5) 



Doctoral Dissertation                                                         System Test and Application 

-88- 

 

...... .....  

8:55:06 - 

8:55:09 

BiomekFX:LeftPod put Assayplatte_1 to BiomekFX.P15 using 

Attila_DefaultGrip 
(6) 

...... .....  

8:55:17 - 

8:55:31 
Load tips for Transfer/9 (7) 

8:55:31 - 

8:55:36 
Transfer for Transfer/9 (8) 

8:55:36 - 

8:55:43 
Transfer for Transfer/9 (9) 

8:55:43 - 

8:55:50 
Tip handling for Transfer/9 (10) 

...... .....  

8:56:03 - 

8:56:07 

BiomekFX:LeftPod put Assayplatte_1 to BiomekFX.Shuttle using 

Attila_DefaultGrip 
(11) 

...... .....  

8:56:07 - 

8:56:11 

SMCShuttle move from BiomekFX.Shuttle to SMCShuttle.M1 using 

SelfGrip 
(12) 

...... .....  

8:56:11 - 

8:56:23 
Motoman move from SMCShuttle.M1 to Regrip.BCR using WideLow (13) 

...... .....  

8:56:23 - 

8:56:33 

Motoman move from Regrip.BCR to Cytomat6001.transfer station using 

LidNarrow 
(14) 

...... .....  

8:57:18 - 

11:57:18 
Incubate Assayplatte_1 at Cytomat6001.2-1 for 3:00:00 (a) 

...... .....  

11:57:30 - 

11:57:43 

Motoman move from Cytomat6001.transfer station to ConvNX.outer 

using LidNarrow 
(15) 

...... .....  

11:57:43 - 

11:57:46 

ConvNX move from ConvNX.outer to BiomekNX-Span.C1 using 

SelfGrip 
(16) 

...... .....  

11:57:53 - 

11:57:55 

BiomekNX-Span:LeftPod put Assayplatte_1 to BiomekNX-Span.S1 using 

Chimera_DefaultGrip 
(17) 

...... .....  

11:57:55 - Issue command to Teleshake1 (1:00) (b) 



Doctoral Dissertation                                                         System Test and Application 

-89- 

 

11:58:53 

...... .....  

11:58:58 - 

11:59:01 

BiomekNX-Span:LeftPod put Assayplatte_1 to BiomekNX-Span.P3 using 

Chimera_DefaultGrip 
(18) 

...... .....  

11:59:08 - 

11:59:12 
Open PHERAstar.R for put (19) 

...... ......  

11:59:11 - 

11:59:14 

BiomekNX-Span:LeftPod put Assayplatte_1 to BiomekNX-Span.C1 

using Chimera_DefaultGrip 
(20) 

...... ......  

11:59:14 - 

11:59:17 

ConvNX move from BiomekNX-Span.C1 to ConvNX.outer using 

SelfGrip 
(21) 

...... ......  

11:59:17 - 

11:59:28 
Motoman move from ConvNX.outer to PHERAstar.R using WideReverse (22) 

...... .....  

11:59:28 - 

11:59:32 
Close PHERAstar.R from put (23) 

11:59:32 - 

12:00:42 
Issue command to PHERAstar (1:47) (c) 

12:00:42 - 

12:00:47 
Open PHERAstar.R for get (24) 

12:00:47 - 

12:00:59 
Motoman move from PHERAstar.R to ConvNX.outer using WideReverse (25) 

...... .....  

12:00:59 - 

12:01:02 

ConvNX move from ConvNX.outer to BiomekNX-Span.C1 using 

SelfGrip 
(26) 

12:00:59 - 

12:01:03 
Close PHERAstar.R from get (27) 

...... .....  

12:01:06 - 

12:01:08 

BiomekNX-Span:LeftPod put Assayplatte_1 to BiomekNX-Span.P3 using 

Chimera_DefaultGrip 
(28) 

...... .....  

12:01:19 - 

12:01:21 

BiomekNX-Span:LeftPod put Assayplatte_1 to BiomekNX-Span.C1 

using Chimera_DefaultGrip 
(29) 

12:01:21 - 

12:01:24 

ConvNX move from BiomekNX-Span.C1 to ConvNX.outer using 

SelfGrip 
(30) 



Doctoral Dissertation                                                         System Test and Application 

-90- 

 

...... .....  

12:01:24 - 

12:01:36 

Motoman move from ConvNX.outer to Cytomat6001.transfer station 

using LidNarrow 
(31) 

...... .....  

12:01:46 - 

12:01:51 
Cytomat6001 put Assayplatte_1 to Cytomat6001.1-1 using SelfGrip (32) 

6.3 Data Transmission in the Data Transfer System 

Figure 6.3 shows the two parts of the data transmission in the DTS. The part  ①

demonstrates the workflow data from the PCS is received in real time successfully in 

the DTS, and it is extracted for some factors including start time, duration time, 

activity and status, but not all factors of the data. On the other hand, the part ② 

demonstrates the successful connection of the DTS by the CS socket, and the real-

time data has been sent to the CS and received by the CS one by one, which could be 

certificated in the interface by the feedback information about the data reception 

conditions from the CS. 

 

Figure 6.3: Data transmission in the DTS 



Doctoral Dissertation                                                         System Test and Application 

-91- 

 

6.4 Online Virtualization in the Control System 

While the CS receives the real-time data one by one, it converts the data to 3D 

trajectories and actions in 3DCreate at soon. Figure 6.4 shows the movements the CS 

generated in 3DCreate. First of all, the tool base is located to define the working TCP 

of robot Motoman. Every movement is called from sequences of its corresponding 

component, and integrated to form a whole experiment workflow in 4D under the 

main sequence of the robot Motoman. Among the statements of the main sequence of 

the Motoman HP3JC, the three delay statements respond respectively the activities No. 

(a), No. (b) and No. (c), which refer to the action “incubate” or “issue” inside some 

components or inside the labware (microplate). 

 

Figure 6.4: Signs of movements generated by the VS 

Figure 6.5(1) - Figure 6.5(16) compare the virtualization results with the movements 

on the realistic workstation at different moments. Every figure shows a condition of 

the workstation in a workflow step, which is corresponding to the data listed in table 

6.1. In every figure, there are two pictures: the left one is a part of the realistic 

workstation photo at the running time, the right one is a screenshot from the 

virtualization result, which is shown as an animation. The figures show all actions and 

movements the virtualization system creates are the same as the realistic ones. They 

verify the movements in the virtualization are the same as the real workflow in the 

workstation, and the virtualization is an on-line simulation for the running workflow 

in the realistic workstation. From the figures, many components work together 

sometimes. Taking Figure 6.5(3) for example, while the robot adjusts its gesture for 

picking the plate up from the regrip position, its gripper SG0150 changes its condition 

from “Lidnarrow” to “WideLow”. Then the Motoman could move the plate from 



Doctoral Dissertation                                                         System Test and Application 

-92- 

 

Regrip.BCR position to SCShuttle.M1 position using WideLow gesture of the gripper. 

Figure 6.5 (7) shows the tips in the tip-box (ALP: TL1) is loaded to the BiomekFX 

head; Figure 6.5 (8) and Figure 6.5 (9) separately demonstrate the aspirate and 

dispense action for chemical liquid; and Figure 6.5 (10) is the condition that the head 

releases the tips back to the tip-box. Figure 6.5(14) shows while the plate is 

transferred on ConvNX, PHERAstar opens its ALP PHERAstar.R for putting the plate; 

Figure 6.5(16) shows after Motoman puts the plate on PHERAstar.R position, 

PHERAstar closes its ALP, and at the same time, Motoman raises its joints to avoid 

collision with the door of PHERAstar when it is closed. At the opposite, as the table 

and figures show, after Motoman gets the plate from PHERAstar.R to ConvNX.outer, 

PHERAstar.R closes its ALP from the “get” condition, and ConvNX moves the plate 

from ConvNX.outer to BiomekNX-Span.C1 synchronously. It could be clear to 

demonstrate from their time factor in table 6.1.  

   

            (a)  Actions in realistic workstation                              (b) Virtualization result 

(1) Motoman move from Cytomat6001.transfer station (Time: 8:54:31) 

   

             (a)  Actions in realistic workstation                              (b) Virtualization result 

(2) Motoman move to Regrip.BCR using Lidnarrow (Time: 8:54:45) 



Doctoral Dissertation                                                         System Test and Application 

-93- 

 

   

             (a)  Actions in realistic workstation                              (b) Virtualization result 

(3) Motoman move from Regrip.BCR using WideLow (Time: 8:54:45) 

   

             (a)  Actions in realistic workstation                              (b) Virtualization result 

(4) Motoman move to SMCShuttle.M1 using WideLow (Time: 8:54:57) 

   

             (a)  Actions in realistic workstation                              (b) Virtualization result 

(5) SMCShuttle move to BiomekFX.Shuttle using SelfGrip (Time: 8:55:01) 



Doctoral Dissertation                                                         System Test and Application 

-94- 

 

   

             (a)  Actions in realistic workstation                              (b) Virtualization result 

(6) BiomekFX:LeftPod put to BiomekFX.P15 (Time: 8:55:09) 

   

             (a)  Actions in realistic workstation                              (b) Virtualization result 

(7) Load tips for Transfer/9 (Time: 8:55:31) 

   

             (a)  Actions in realistic workstation                              (b) Virtualization result 

(8) Transfer for Transfer/9 (Time: 8:55:36) 



Doctoral Dissertation                                                         System Test and Application 

-95- 

 

   

             (a)  Actions in realistic workstation                              (b) Virtualization result 

(9) Transfer for Transfer/9 (Time: 8:55:43) 

   

             (a)  Actions in realistic workstation                              (b) Virtualization result 

(10) Tip handling for Transfer/9 (Time: 8:55:50) 

   

             (a)  Actions in realistic workstation                              (b) Virtualization result 

(11) Motoman move to ConvNX.outer using LidNarrow (Time: 11:57:43) 



Doctoral Dissertation                                                         System Test and Application 

-96- 

 

   

             (a)  Actions in realistic workstation                              (b) Virtualization result 

(12) ConvNX move to BiomekNX-Span.C1 using SelfGrip (Time: 11:57:46) 

   

             (a)  Actions in realistic workstation                              (b) Virtualization result 

(13) BiomekNX-Span:LeftPod put to BiomekNX-Span.S1 (Time: 11:57:55) 

   

             (a)  Actions in realistic workstation                              (b) Virtualization result 

(14) Motoman move from ConvNX.outer using WideReverse (Time: 11:59:17) 



Doctoral Dissertation                                                         System Test and Application 

-97- 

 

   

             (a)  Actions in realistic workstation                              (b) Virtualization result 

(15) Motoman move to PHERAstar.R using WideReverse (Time: 11:59:28) 

   

             (a)  Actions in realistic workstation                              (b) Virtualization result 

(16) Close PHERAstar.R from put (Time: 11:59:32) 

Figure 6.5: Comparation of realistic workstation workflow and virtualization results  

6.5 Virtualization Result Transmission 

After the virtualization result – a .pdf animation file is generated, the CS triggers its 

TCP/IP socket to connect with the client DTS and send the file to the DTS in data 

stream format.  

  



Doctoral Dissertation                                                         System Test and Application 

-98- 

 

As Figure 6.6 shows, the connection is created, and the file has been sent to the DTS 

successfully. Figure 6.7 shows the file has been received fully in the DTS side, and 

been opened in the DTS interface. 

 

Figure 6.6: Virtualization result transmission in the CS  

 

Figure 6.7: Online feedback information from the CS 



Doctoral Dissertation                                                                Conclusion and Outlook 

-99- 

 

Chapter 7  Conclusion and Outlook 

7.1 Conclusion 

In this dissertation, a virtualization system named VS is developed for experiment 

workflows of LSA. It integrates LSA hardware, PCS and simulation software to a 

whole, and realizes the virtualization for a PCS in life science applications. The 

system could simulate a scheduling workflow for both experiment shows and tests. It 

saves time and cost for users, and makes the demonstration on LSA experiment 

workflow flexibly. The achievements and functions of the VS are partly shown in 

publications [35]-[37], and [92]. They are summarized as followings: 

(1) The system integrates the functions of realistic LSA workstations, PCS, and 4D-

virtualization by many interfaces. It refers to technologies of SILAS OCX, 

TCP/IP socket, Visual C#, COM API, Python API and Python script, as well as 

3D simulation. 

(2) The PCS module drives the LSA workstations working as its design method. In 

addition, it supplies workflow data for the other modules of VS via SILAS OCX. 

(3) The DTS module applies some technologies and realizes corresponding functions 

as:  

i. applies SILAS OCX technology to get the real-time workflow data from PCS;  

ii. sends the received workflow data also in real time to CS via TCP/IP socket as 

a server. In this part, the server socket binds its port to wait for and accept the 

requirement of communication, and encodes the real-time received data one by 

one in Unicode form for the data transmission towards CS;  

iii. tests communication through sending test data and getting feedback 

information from CS;  

iv. receives the virtualization result in the form of data stream from CS also via 

TCP/IP socket as a server. The socket receives the data stream, decodes it back 

to the .pdf animation format, and automatically opens the animation in its 

interface. 



Doctoral Dissertation                                                                Conclusion and Outlook 

-100- 

 

(4) The CS module realizes following functions by TCP/IP socket, programming and 

API technologies:  

i. connects with the DTS, gets the real-time workflow data from the DTS, and 

feeds data reception conditions back to the DTS via its TCP/IP socket, which 

works as a client.  

ii.  processes the received data and extracts key information for the virtualization;  

iii. connects with the simulation software 3DCreate, and drives it working through 

COM API and Visual C# programming technologies;  

iv. extracts the components’ information from 3DCreate via COM API;  

v. assigns the workflow data to related components and layout, sets parameters 

and creates behaviors for them  through Visual C# programming, COM API 

and Python API technologies;  

vi. creates movements for the workflow data, forms animation via COM API;  

vii. connects with DTS, and sends it the virtualization result in data stream form 

via TCP/IP socket technology.  

(5) The VM module applies 3DCreate simulation technology to:  

i. creates components which have characters of nodes, behaviors and motions 

besides of other 3D properties;  

ii. teaches components motions and actions by jogging joints or calling Python  

API;  

iii. simulates movements of components synchronously;  

iv. be driven by other system via its strong API. 

The scientific meanings in the dissertation are demonstrated as followings: (1) it 

presents an idea to make experiment workflow in LSA laboratory virtualization in 

real-time, and drive the realistic workstations running as the scheduled process based 

on the virtualization result; (2) it simulates the real experiment workflow, rather than 

virtual design; (3) most importantly, among the system modules, the Control System 

(CS) converts workflow data in text to dynamic parameters, kinematic parameters and 

actions, which the Simulation Module (SM) can recognize; (4) the system embed 

Python scripts into Visual C# (VC#), and applies VC# to call Python language to 

create and set dynamic and kinematic parameters for SM; (5) CS extracts model 



Doctoral Dissertation                                                                Conclusion and Outlook 

-101- 

 

parameters from PCS data and assigns them to original 3D models to convert them as 

components in SM; (6) CS controls SM to generate kinematic trajectories and actions, 

and then integrates all kinematics in specific sequences to a whole virtualization result; 

(7) CS controls SM to generate virtualization result as .pdf form, which could 

demonstrate the virtualization result for customers in dynamitic form; (8) the system 

developed could display the real-time virtualization result in any occasion—laboratory, 

meeting room, or conference hall in business trip, etc. It just asks for customers 

having network; (9) because the technology problems have been solved, the system 

could applied in any workstation with different PCS, and in any LSA laboratory. 

7.2 Outlook 

The Virtualization System could already simulate experiment workflows on 

workstations of LSA, and makes the workstation hardware, PCS and virtualization 

simulation a whole. However, its functions and virtualization objects are still limited. 

In the future, the system could be modified and improved to be stronger as followings: 

(1) Simulate experiment workflow for different PCS: At present, the VS aims at the 

workflow virtualization for PCS SAMI EX. There are many other different PCS 

in LSA, which also need to realize virtualization for them. The virtualization is 

the need and trend in LSA development. So it will be more flexible and stronger 

if the VS could be used in any PCS of LSA. 

(2) Simulate workflows of workstations synchronously: VS could simulate one LSA 

workstation at one time currently. When there are other workstations in the 

laboratory, it will be more vivid to show the LSA laboratory to visitors or 

business partners if the system could simulate all workstations together. 

(3) Simulate workflows for the whole laboratory system: In the future, there are 

more laboratories integrated as a whole laboratory system, which could be 

connected by moving robots or some other devices. So the system is hoped to 

realize visual virtualization on not only one laboratory, but also for a whole 

laboratory system, such as a laboratory building with many floors. 

(4) Validation of the developed virtulization system: In the Section 6.4 of this 

dissertation, the validation of the behaviors in the VS has been considered and 

provided. However, the validation of the time performance has not been included, 

which will be one of our future tasks. 



Doctoral Dissertation                                                                                    References 

-102- 

 

References  

[1] R. C. Anderson, X. Su, G. J. Bogdan, and J. Fenton, “A miniature integrated device for 

automated multistep genetic assays”, Nucleic Acids Res., vol. 28, no. 12, e 60, 2000. 

[2] I. Meyvantsson, J. W. Warrick, S. Hayes, A. Skoien, and D. J. Beebe, “Automated cell 

culture in high density tubeless microfluidic device arrays”, Lab. Chip, vol. 8, no. 5, pp. 

717–724, 2008. 

[3] A. McCabe, M. Dolled-Filhart, R. L. Camp, and D. L. Rimm, “Automated quantitative 

analysis (AQUA) of in situ protein expression, antibody concentration, and prognosis”, J. 

Natl. Cancer Inst., vol. 97, no. 24, pp. 1808–1815, 2005. 

[4] F. Kong, L. Yuan, Y. F. Zheng, and W. Chen, “Automatic Liquid Handling for Life Science 

A Critical Review of the Current State of the Art”, J. Lab. Autom., vol. 17, no. 3, pp. 169–

185, 2012. 

[5] T. Göpel, F. Härtl, A. Schneider, M. Buss, and H. Feussner, “Automation of a suturing 

device for minimally invasive surgery”, Surg. Endosc., vol. 25, no. 7, pp. 2100–2104, 2011. 

[6] M. Vaqué, A. Arola, C. Aliagas, and G. Pujadas, “BDT: an easy-to-use front-end application 

for automation of massive docking tasks and complex docking strategies with AutoDock”, 

Bioinformatics, vol. 22, no. 14, pp. 1803–1804, 2006. 

[7] J. P. McMullen and K. F. Jensen, “Integrated microreactors for reaction automation: new 

approaches to reaction development”, Annu. Rev. Anal. Chem., vol. 3, pp. 19–42, 2010. 

[8] K. K. Unger, R. Ditz, E. Machtejevas, and R. Skudas, “Liquid chromatography—its 

development and key role in life science applications”, Angew. Chem. Int. Ed., vol. 49, no. 

13, pp. 2300–2312, 2010. 

[9] Y. WU, Q. XIE, X. ZHANG, and X. LIU, “Measures to Improve Undergraduates’ Research 

Experimental Level”, Res. Explor. Lab., vol. 8, pp. 33, 2009. 

[10] H. Liu, N. Stoll, S. Junginger, and K. Thurow, “Mobile Robot for Life Science Automation”, 

Int. J. Adv. Robot. Syst., vol. 10, no.288, pp. 1–14, 2013. 

[11] M. Panchal, “The automation of nested clade phylogeographic analysis”, Bioinformatics, 

vol. 23, no. 4, pp. 509–510, 2007. 

[12] M. J. He, W. J. Cai, W. Ni, and L. H. Xie, “RNGA based control system configuration for 

multivariable processes”, J. Process Control, vol. 19, no. 6, pp. 1036–1042, 2009. 

[13] M. Brundle and M. Naedele, “Security for process control systems: An overview”, Secur. 

Priv. IEEE, vol. 6, no. 6, pp. 24–29, 2008. 

[14] M. P. Groover, "Automation, production systems, and computer-integrated manufacturing", 

Prentice Hall Press, pp.257-273, 2007. 

[15] M. Vidyasagar, "Control system synthesis: a factorization approach". Morgan & Claypool 

Publishers, pp.36-47, 2011. 

[16] A. Mehta, P. Wojsznis, W. K. Wojsznis, and T. L. Blevins, “Integrated model predictive 

control and optimization within a process control system”, U.S. Patent 7,050,863. 2006-5-

23. 

[17] G. K. Law, D. L. Deitz, T. D. Schleiss, and J. Naidoo, “Integrated electronic signatures for 



Doctoral Dissertation                                                                                    References 

-103- 

 

approval of process control and safety system software objects”, U.S. Patent 7,076,312. 

2006-7-11. 

[18] F. Leymann and D. Roller, “Production workflow: concepts and techniques”, Upper Saddle 

River: Prentice Hall PTR, 2000. 

[19] M. Flattery, “Workflow systems”, Tessella Support Serv. Tech. Rep. April, 2005. 

[20] E. Deelman, D. Gannon, M. Shields, and I. Taylor, “Workflows and e-Science: An overview 

of workflow system features and capabilities”, Future Gener. Comput. Syst., vol. 25, no. 5, 

pp. 528–540, 2009. 

[21] B. Ludäscher, I. Altintas, S. Bowers, .etc, “Scientific process automation and workflow 

management”, Sci. Data Manag. Challenges Exist. Technol. Deploy. Comput. Sci. Ser., pp. 

476–508, 2009. 

[22] H. A. Reijers and W. M. V. D. Aalst, “The effectiveness of workflow management systems: 

Predictions and lessons learned”, Int. J. Inf. Manag., vol. 25, no. 5, pp. 458–472, 2005. 

[23] P. Romano, “Automation of in-silico data analysis processes through workflow 

management systems”, Brief. Bioinform., vol. 9, no. 1, pp. 57–68, 2008. 

[24] C. J. Huang, A. J. Trappey, and Y. H. Yao, “Developing an agent-based workflow 

management system for collaborative product design”, Ind. Manag. Data Syst., vol. 106, no. 

5, pp. 680–699, 2006. 

[25] A. P. Kalogeras, J. V. Gialelis, and C. E. Alexakos, “Vertical integration of enterprise 

industrial systems utilizing web services”, Ind. Informatics IEEE Trans., vol. 2, no. 2, pp. 

120–128, 2006. 

[26] D. Müller, J. Herbst, and M. Hammori, “IT support for release management processes in the 

automotive industry”, in Business Process Management, Springer, pp. 368–377, 2006. 

[27] C. V. Trappey, A. J. Trappey, and C. J. Huang, “The design of a JADE-based autonomous 

workflow management system for collaborative SoC design”, Expert Syst. Appl., vol. 36, no. 

2, pp. 2659–2669, 2009. 

[28] P. Réant, M. Dijos, and F. Arsac, “Validation of a new bedside echoscopic heart 

examination resulting in an improvement in echo-lab workflow”, Arch. Cardiovasc. Dis., 

vol. 104, no. 3, pp. 171–177, 2011. 

[29] K. Kochut, J. Arnold, and A. Sheth, “IntelliGEN: A distributed workflow system for 

discovering protein-protein interactions”, Distrib. Parallel Databases, vol. 13, no. 1, pp. 

43–72, 2003. 

[30] K. Thurow, B. Göde, and U. Dingerdissen, “Laboratory information management systems 

for life science applications”, Org. Process Res. Dev., vol. 8, no. 6, pp. 970–982, 2004. 

[31] H. Yin, Y. Gao, H. Yan, and J. Wang, “Simulation Data and Process Management System in 

the Development of Virtual Prototype”, in Web Intelligence and Intelligent Agent 

Technology (WI-IAT), 2010 IEEE/WIC/ACM International Conference on, vol. 3, pp. 152–

155, 2010. 

[32] L. Chun-quan and W. Zhao-hua, “Process management system analysis and design of SMT 

reflow soldering process”, in Electronic Packaging Technology, 2005 6th International 

Conference on, pp. 279–284, 2005. 



Doctoral Dissertation                                                                                    References 

-104- 

 

[33] Q. Zhang, “Development and application of process management system for coal chemical 

industry”, in Intelligent Control and Automation, 2006. WCICA 2006. The Sixth World 

Congress on, vol. 2, pp. 6709–6713, 2006. 

[34] “SAMI workstation EX software”, Analis. [Online]. Available: 

http://www.analis.be/bin/site/render.cgi?id=0066774_item_to_sell. [Accessed: 04-Nov-

2013]. 

[35] Y. Li, S. Junginger, N. Stoll, and K. Thurow, “4D Simulation and Control System for Life 

Science Automation”, in Robotics and Biomimetics (ROBIO), 2012 IEEE International 

Conference on, pp. 802–807, 2012. 

[36] Y. Li, S. Junginger, N. Stoll and K. Thurow, “Real-time Simulation on Workflow of Life 

Science Automation Laboratory”, in Computer Science and Automation Engineering 

(CSAE), 2013 IEEE International Conference on, pp. 1331-1335, 2013. 

[37] Y. Li, S. Junginger, N. Stoll and K. Thurow: Visualization System Development for Life 

Science Automation. in Robotics and Biomimetics (ROBIO), 2013 IEEE International 

Conference on, pp. 191-196, 2013. 

[38] P. J., S. J., and W. M., “SILAS Integration Software for Laboratory Automation” . 

[39] M. Jansen-Vullers and M. Netjes, “Business process simulation–a tool survey”, in 

Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools, Aarhus, 

Denmark, 2006. 

[40] W. M. van der Aalst, “Business process simulation revisited”, in Enterprise and 

Organizational Modeling and Simulation, Springer, vol.63, pp. 1–14, 2010. 

[41] W. M. van der Aalst, J. Nakatumba, A. Rozinat, and N. Russell, “Business process 

simulation,” in Handbook on Business Process Management 1, Springer, pp. 313–338, 2010. 

[42] S. L. Mansar and H. A. Reijers, “Best practices in business process redesign: validation of a 

redesign framework”, Comput. Ind., vol. 56, no. 5, pp. 457–471, 2005. 

[43] A. Barker and J. Van Hemert, “Scientific workflow: a survey and research directions”, in 

Parallel Processing and Applied Mathematics, Springer, pp. 746–753, 2008. 

[44] W. Aalst, A. Ter Hofstede, and M. Weske, “Business process management: A survey”, 

Springer Berlin Heidelberg, 2003. 

[45] K. Görlach, M. Sonntag, D. Karastoyanova, F. Leymann, and M. Reiter, “Conventional 

workflow technology for scientific simulation”, in Guide to e-Science, Springer, pp. 323–

352, 2011. 

[46] W. M. van der Aalst, “Trends in business process analysis”, in Proceedings of the 9th 

International Conference on Enterprise Information Systems (ICEIS) 2007, Madeira, 

Institute for Systems and Technologies of Information, Control and Communication, pp. 12–

22, 2007. 

[47] E. Verbeek, M. van Hattem and H. Reijers, “Protos 7.0: Simulation made accessible”, in 

Applications and Theory of Petri Nets 2005, Springer, pp. 465–474, 2005. 

[48] M. J. Blechar and J. Sinur, “Magic quadrant for business process analysis tools”, Gart. RAS 

Core Res. Note G 148777, 2007. 

[49] M. Kovács and L. Gönczy, “Simulation and Formal Analysis of Workflow Models”, 



Doctoral Dissertation                                                                                    References 

-105- 

 

Electron. Notes Theor. Comput. Sci., vol. 211, pp. 221–230, 2008. 

[50] W. M. van der Aalst, “Business alignment: using process mining as a tool for Delta analysis 

and conformance testing”, Requir. Eng., vol. 10, no. 3, pp. 198–211, 2005. 

[51] A. Rozinata, M.T. Wynn, W.M.P. van der Aalst, A.H.M. ter Hofstede,and C.J. Fidge, 

“Workflow simulation for operational decision support”, Data Knowl. Eng., vol. 68, no. 9, 

pp. 834–850, 2009. 

[52] D. Eichhorn, A. Koschmider,Y. Li, P. Sturzel, A. Oberweis, and R.Trunko, “3D Support for 

Business Process Simulation”, in Computer Software and Applications Conference, 2009. 

COMPSAC  ’09. 33rd Annual IEEE International, vol. 1, pp. 73–80, 2009. 

[53] M. H. Zaroukian and A. Sierra, “Benefiting from ambulatory EHR implementation: 

solidarity, six sigma, and willingness to strive”, J. Healthc. Inf. Manag., vol. 20, no. 1, p. 53, 

2006. 

[54] P. Yellowlees, J. N. Cook, and S. L. Marks, “Can virtual reality be used to conduct mass 

prophylaxis clinic training? A pilot program”, Biosecurity Bioterrorism Biodefense Strat. Pr. 

Sci., vol. 6, no. 1, pp. 36–44, 2008. 

[55] J. J. Saleem, E. S. Patterson, and L. Militello, “Impact of clinical reminder redesign on 

learnability, efficiency, usability, and workload for ambulatory clinic nurses”, J. Am. Med. 

Inform. Assoc., vol. 14, no. 5, pp. 632–640, 2007. 

[56] J. Paul, “VMWare ESX server workload analysis: how to determine good candidates for 

virtualization”, in Int. CMG Conference, pp. 483-484, 2007. 

[57] J. O. Cleary, M. Modat, and F. C. Norris, “Magnetic resonance virtual histology for 

embryos: 3D atlases for automated high-throughput phenotyping”, NeuroImage, vol. 54, no. 

2, pp. 769-778, 2011. 

[58] M. Graafland, J. M. Schraagen, M. P. Schijven, “Systematic review of serious games for 

medical education and surgical skills training”, British Journal of Surgery, vol. 99, no. 10, 

pp. 1322-1330, 2012. 

[59] A. Guerra, “Virtual improvements. Idaho's St. Luke's Regional Medical Center embraced 

application virtualization to empower users and reduce downtime”, Healthcare informatics: 

the business magazine for information and communication systems, vol. 23, no.5, pp. 34, 36, 

38, 2006. 

[60] Z. Niazkhani, H. Pirnejad, and M. Berg, “The impact of computerized provider order entry 

systems on inpatient clinical workflow: a literature review”, J. Am. Med. Inform. Assoc., vol. 

16, no. 4, pp. 539–549, 2009. 

[61] G. Bruinsma and R. de Hoog, “Exploring protocols for multidisciplinary disaster response 

using adaptive workflow simulation”, in International Conference on Information System 

for Crisis Response and Management (ISCRAM). Newark, New Jersey, pp. 1–13, 2006. 

[62] T. Glatard, C. Lartizien, B. Gibaud, .etc, “A Virtual Imaging Platform for Multi-Modality 

Medical Image Simulation”, IEEE Trans. Med. Imaging, vol. 32, no. 1, pp. 110–118, 2013. 

[63] S. A. Schendel and C. Lane, “3D Orthognathic Surgery Simulation Using Image Fusion”, 

Semin. Orthod., vol. 15, no. 1, pp. 48–56, 2009. 

[64] A. W. Kushniruk and V. L. Patel, “Cognitive and usability engineering methods for the 



Doctoral Dissertation                                                                                    References 

-106- 

 

evaluation of clinical information systems”, J. Biomed. Inform., vol. 37, no. 1, pp. 56–76, 

2004. 

[65] A. W. Kushniruk, M. M. Triola, and E. M. Borycki, “Technology induced error and 

usability: the relationship between usability problems and prescription errors when using a 

handheld application”, Int. J. Med. Inf., vol. 74, no. 7–8, pp. 519–526, 2005. 

[66] A. Boejen and C. Grau, “Virtual reality in radiation therapy training”, Surg. Oncol., vol. 20, 

no. 3, pp. 185–188, 2011. 

[67] X. Mao and X. Zhang, “Construction Process Reengineering by Integrating Lean Principles 

and Computer Simulation Techniques”, J. Constr. Eng. Manag., vol. 134, no. 5, pp. 371–

381, 2008. 

[68] K. W. Chau, M. Anson, and J. P. Zhang, “4D dynamic construction management and 

virtualization software: 1. Development”, Autom. Constr., vol. 14, no. 4, pp. 512–524, 2005. 

[69] R. J. Scherer and S. E. Schapke, “A distributed multi-model-based Management 

Information System for simulation and decision-making on construction projects”, Adv. Eng. 

Informatics, vol. 25, no. 4, pp. 582–599, 2011. 

[70] M. Kugler and V. Franz, “Development of a Simulation System for the Preparation of Work 

in Building Construction”, in Computation in Civil Engineering–Tagungsband zur EG-ICE 

Conference, pp. 186–193, 2009. 

[71] V. Kamat, J. Martinez, and M. Fischer, “Research in Visualization Techniques for Field 

Construction”, J. Constr. Eng. Manag., vol. 137, no. 10, pp. 853–862, 2011. 

[72] D. Gaiotto, G. Moore, and A. Neitzke, “Four-dimensional wall-crossing via three-

dimensional field theory”, Communications in Mathematical Physics, vol. 299, no.1, pp. 

163-224, 2010. 

[73] T. Sider, “Four-dimensionalism: An ontology of persistence and time”, Oxford, 2003. 

[74] K. W. Chau, M. Anson, and J. P. Zhang, “Implementation of visualization as planning and 

scheduling tool in construction”, Build. Environ., vol. 38, no. 5, pp. 713–719, 2003. 

[75] H. J. Wang, J. P. Zhang, and K. W. Chau, “4D dynamic management for construction 

planning and resource utilization”, Autom. Constr., vol. 13, no. 5, pp. 575–589, 2004. 

[76] K. W. Chau, M. Anson, and J. P. Zhang, “Four-dimensional virtualization of construction 

scheduling and site utilization”, J. Constr. Eng. Manag., vol. 130, no. 4, pp. 598–606, 2004. 

[77] K. W. Chau, M. Anson, and D. D. De Saram, “4D dynamic construction management and 

visualization software: 2. Site trial”, Autom. Constr., vol. 14, no. 4, pp. 525–536, 2005. 

[78] T. Anderson, L. Peterson, and S. Shenker, “Overcoming the Internet impasse through 

virtualization”, Computer, vol. 38, no. 4, pp. 34-41, 2005. 

[79] J. Bond, D. Frush, and E. Samei, “Simulation of anatomical texture in voxelized XCAT 

phantoms”, in SPIE Medical Imaging, p. 86680N–86680N, 2013. 

[80] X. Tian, X. Li, and W. P. Segars, “Patient-and cohort-specific dose and risk estimation for 

abdominopelvic CT: a study based on 100 patients”, in SPIE Medical Imaging, p. 83131R–

83131R, 2012. 

[81] K. Taguchi, Z. Sun, and W. P. Segars, “Image-domain motion compensated time resolved 

4D cardiac CT”, in Medical Imaging, pp. 651016–651016, 2007. 



Doctoral Dissertation                                                                                    References 

-107- 

 

[82] W. P. Segars, G. Sturgeon, and S. Mendonca, “4D XCAT phantom for multimodality 

imaging research”, Med. Phys., vol. 37, p. 4902, 2010. 

[83] W. P. Segars, S. Mori, and G. T. Y. Chen, “Modeling respiratory motion variations in the 4D 

NCAT phantom”, in Nuclear Science Symposium Conference Record, 2007. NSS’07. IEEE, 

vol. 4, pp. 2677–2679, 2007. 

[84] W. P. Segars, M. Mahesh, and T. Beck, “Validation of the 4D NCAT simulation tools for use 

in high-resolution x-ray CT research”, in Proc. of SPIE Vol, vol. 5745, pp. 828-834, 2005. 

[85] W. P. Segars, M. Mahesh, and T. J. Beck, “Realistic CT simulation using the 4D XCAT 

phantom”, Med. Phys., vol. 35, p. 3800-3808, 2008. 

[86] W. P. Segars, B. M. W. Tsui, and E. C. Frey, “Extension of the 4D NCAT phantom to 

dynamic X-ray CT simulation”, in 2003 IEEE Nuclear Science Symposium Conference 

Record, vol. 5, pp. 3195–3199, 2003. 

[87] C. Kim, H. Kim, and T. Park, “Applicability of 4D CAD in civil engineering construction: 

Case study of a cable-stayed bridge project”, J. Comput. Civ. Eng., vol. 25, no. 1, pp. 98–

107, 2010. 

[88] J. Zhang, and D. Li, “Research on 4D virtual construction and dynamic management 

system based on BIM”, in Proceedings of the International Conference on Computing in 

Civil and Building Engineering, ICCBE, pp.78-83, 2010. 

[89] L.-S. Kang, H.-S. Moon, and S.-Y. Park, “Improved link system between schedule data and 

3D object in 4D CAD system by using WBS code”, KSCE J. Civ. Eng., vol. 14, no. 6, pp. 

803–814, 2010. 

[90] W. Li, G. Joós, and J. Bélanger, “Real-time simulation of a wind turbine generator coupled 

with a battery supercapacitor energy storage system”, Ind. Electron. IEEE Trans., vol. 57, 

no. 4, pp. 1137–1145, 2010. 

[91] M. Karkee, B. L. Steward, and A. G. Kelkar, “Modeling and real-time simulation 

architectures for virtual prototyping of off-road vehicles”, Virtual Real., vol. 15, no. 1, pp. 

83–96, Mar. 2011. 

[92] Y. Li, S. Junginger, N. Stoll, and K. Thurow, “4D simulation system for laboratory 

workflow of life science automation”, in Instrumentation and Measurement Technology 

Conference (I2MTC), 2012 IEEE International, pp. 1886–1890, 2012. 

[93] B. Rooks, “Robotics outside the metals industries”, Ind. Robot Int. J., vol. 32, no. 3, pp. 

205–208, 2005. 

[94] M. N. Rooker, T. Strasser, and G. Ebenhofer, “Modeling flexible mechatronical based 

assembly systems through simulation support”, in IEEE International Conference on 

Emerging Technologies and Factory Automation, pp. 452–455, 2008. 

[95] B. Ludäscher, I. Altintas, and S. Bowers, “Scientific process automation and workflow 

management”, Sci. Data Manag. Challenges Exist. Technol. Deploy. Comput. Sci. Ser., pp. 

476–508, 2009. 

[96] B. Ludäscher, I. Altintas, and C. Berkley, “Scientific workflow management and the Kepler 

system”, Concurr. Comput. Pr. Exp., vol. 18, no. 10, pp. 1039–1065, 2006. 

[97] J. G. Hollands, and C. D. Wickens, "Engineering psychology and human performance", 



Doctoral Dissertation                                                                                    References 

-108- 

 

Prentice Hall New Jersey, 1999. 

[98] R. H. Dieck, “Measurement uncertainty: methods and applications”. Research Triangle 

Park, NC: Instrument Society of America, 1992. 

[99] E. Deelman, D. Gannon, and M. Shields, “Workflows and e-Science: An overview of 

workflow system features and capabilities”, Future Gener. Comput. Syst., vol. 25, no. 5, pp. 

528–540, 2009. 

[100] H. V. Westerhoff and B. O. Palsson, “The evolution of molecular biology into systems 

biology”, Nat. Biotechnol., vol. 22, no. 10, pp. 1249–1252, 2004. 

[101] W. M. van der Aalst, “The application of Petri nets to workflow management”, J. Circuits 

Syst. Comput., vol. 8, no. 01, pp. 21–66, 1998. 

[102] T. Oinn, P. Li, and D. B. Kell, “Taverna/myGrid: aligning a workflow system with the life 

sciences community”, in Workflows for e-Science, Springer, pp. 300–319, 2007. 

[103] J. W. Hong and S. R. Quake, “Integrated nanoliter systems”, Nat. Biotechnol., vol. 21, no. 

10, pp. 1179–1183, 2003. 

[104] S. Finger and J. R. Dixon, “A review of research in mechanical engineering design. Part II: 

Representations, analysis, and design for the life cycle”, Res. Eng. Des., vol. 1, no. 2, pp. 

121–137, 1989. 

[105] R. Brooks, “A robust layered control system for a mobile robot”, Robot. Autom. IEEE J., 

vol. 2, no. 1, pp. 14–23, 1986. 

[106] “World News,” J. Assoc. Lab. Autom., vol. 12, no. 6, pp. A14–A43, 2007. 

[107] J. G. Houston and M. Banks, “The chemical-biological interface: developments in 

automated and miniaturised screening technology”, Curr. Opin. Biotechnol., vol. 8, no. 6, 

pp. 734–740, 1997. 

[108] S. D. Garrett, D. J. Appleford, and G. M. Wyatt, “Production of a recombinant anti-

parathion antibody (scFv); stability in methanolic food extracts and comparison to an anti-

parathion monoclonal antibody”, J. Agric. Food Chem., vol. 45, no. 10, pp. 4183–4189, 

1997. 

[109] V. M. Bohaychuk, G. E. Gensler, and R. K. King, “Evaluation of detection methods for 

screening meat and poultry products for the presence of foodborne pathogens”, J. Food 

Prot., vol. 68, no. 12, pp. 2637–2647, 2005. 

[110] G. M. Banowetz, J. R. Hess, and J. G. Carman, “A monoclonal antibody against the plant 

growth regulator, abscisic acid”, Hybridoma, vol. 13, no. 6, pp. 537–541, 1994. 

[111] D. Katz, W. Shi, M. Wildes, and J. K. Hilliard, “Automation of serological diagnosis for 

herpes B virus infections using robot-assisted integrated workstations”, J. Assoc. Lab. 

Autom., vol. 7, no. 6, pp. 108–113, 2002. 

[112] D. B. Kaber, N. Segall, and R. S. Green, “Using multiple cognitive task analysis methods 

for supervisory control interface design in high-throughput biological screening processes”, 

Cogn. Technol. Work, vol. 8, no. 4, pp. 237–252, 2006. 

[113] R. S. Green, “Cognitive Task Analyses for Life Science Automation Training Program 

Design”, ProQuest, 2008. 

[114] H. Dong, M. Goldberg, and D. Nguyen, “Automated high-throughput microarray system”, 



Doctoral Dissertation                                                                                    References 

-109- 

 

US20040191807 A1, 2003. 

[115] “SAMI EX CUSTOMER TRAINING” [Online]. https://www.beckmancoulter.com/ 

 wsrportal/wsr/research-and-discovery/products-and-services/research-automation/sami-

scheduling-software/index.htm. 

[116] “SILAS Class Presentation” [Online].  https://www.beckmancoulter.com/wsrportal/ 

bibliography?docname=BR-8270C.pdf. 

[117] A. Morbidoni, C. Favi, and M. Germani, “CAD-Integrated LCA Tool: Comparison with 

dedicated LCA Software and Guidelines for the improvement”, Glocalized Solutions for 

Sustainability in Manufacturing. Springer Berlin Heidelberg, pp. 569-574, 2011. 

[118] L. Q. Dong. “Applications of Three-dimensional CAD in Mechanical Design”, Coal Technology, 

vol. 9, p. 8, 2009. 

[119] A. Staranowicz, and G. L. Mariottini, “A survey and comparison of commercial and open-source 

robotic simulator software”. In Proceedings of the 4th International Conference on PErvasive 

Technologies Related to Assistive Environments, p. 56. ACM, 2011. 

[120] “Comparison of 3D computer graphics software” [Online]. http://en.wikipedia.org/wiki/ 

Comparison_of_3D_computer_graphics_software. 

[121]  “Comparison of computer-aided design editors” [Online]. http://en.wikipedia.org/wiki/ 

Comparison_of_computer-aided_design_editors. 

[122] “Comparison of 3D computer graphics software” [Online]. http://en.wikipedia.org/wiki/ 

Comparison_of_3D_computer_graphics_software. 

 [123] O. Roulet-Dubonnet and P. A. Nyen, “A method and application to simulate and validate 

manufacturing control systems based on a discrete manufacturing simulation platform”, in 

Industrial Applications of Holonic and Multi-Agent Systems, Springer, pp. 152–162, 2013. 

[124] J. Krüger, V. Katschinski, and D. Surdilovic, “PISA: Next Generation of Flexible Assembly 

Systems-From Initial Ideas to Industrial Prototypes”, in Robotics (ISR), 41st International 

Symposium on and  6th German Conference on Robotics (ROBOTIK), pp. 1–6, 2010. 

[125] L. Ferrarini and C. Veber, “3D graphic simulation of flexible manufacturing systems with 

Day Dream Daemon and 3DCreate”, in 6th IEEE International Conference on Industrial 

Informatics, pp. 1401–1406, 2008. 

[126] M. Sacco, G. Dal, and F. Milella, “Virtual factory manager”, Virtual and Mixed Reality-

Systems and Applications, Springer Berlin Heidelberg, pp. 397-406, 2011. 

[127] M. Rooker, T. Strasser, and G. Ebenhofer. “Modeling flexible mechatronical based 

assembly systems through simulation support”, IEEE International Conference on 

Emerging Technologies and Factory Automation (ETFA), pp. 452-455, 2008. 

[128] B. Rooks. “Robotics outside the metals industries”, Industrial Robot: An International 

Journal, vol. 32, no. 3, pp.205-208, 2005. 

[129] “Visual Components 3DCreate 2012 - User Manual and Reference Guide”, Visual 

Components, 11-Sep-2011. 

[130] L. Dupuy L, T. Fourcaud, and P. Lac, “A generic 3D finite element model of tree anchorage 

integrating soil mechanics and real root system architecture”, American Journal of Botany, 

vol. 94, no. 9, pp. 1506-1514, 2007. 



Doctoral Dissertation                                                                                    References 

-110- 

 

[131] I. Dressier, M. Haage, and K. Nilsson, “Configuration support and kinematics for a 

reconfigurable Gantry-Tau manipulator”, 2007 IEEE International Conference on Robotics 

and Automation, pp. 2957–2962, 2007. 

[132] T. Shi, “A Robot Simulation of the Tower of Hanoi Puzzle using OpenRAVE with Sensor 

Feedback”, Vanderbilt University, U.S., 2013. 

[133] J. L. Rojas, “Autonomous cooperative assembly by force feedback using a control basis 

approach”, Vanderbilt University, U.S., 2009. 

[134] “Yaskawa Motoman Robotics, Solutions in Motions, HP3JC data sheet”, Yaskawa America, 

Inc., 2011 DS-264-D. 

[135] H. Zhu, C. Li, and J. Gu. “Implementation of Paralleling Genetic Annealing Algorithm on 

Grid”, 3
rd

 IEEE International Conference on Intelligent Networks and Intelligent Systems 

(ICINIS), pp. 471-474, 2010. 

[136] C. Wögerer, H. Bauer, and M. Rooker, “LOCOBOT-low cost toolkit for building robot co-

workers in assembly lines”, Intelligent Robotics and Applications, Springer Berlin 

Heidelberg, pp. 449–459, 2012. 

[137] S. Zenoni, A. Ferrarini, and E. Giacomelli, “Characterization of transcriptional complexity 

during berry development in Vitis vinifera using RNA-Seq”, Plant Physiol., vol. 152, no. 4, 

pp. 1787–1795, 2010. 

[138] R. Darken, P. McDowell, and E. Johnson, “Projects in VR: the Delta3D open source game 

engine”, Comput. Graph. Appl. IEEE, vol. 25, no. 3, pp. 10–12, 2005. 

[139] T. Brezmes, J.-L. Gorricho, and J. Cotrina, “Activity recognition from accelerometer data 

on a mobile phone”, in Distributed computing, artificial intelligence, bioinformatics, soft 

computing, and ambient assisted living, Springer, pp. 796–799, 2009. 

[140] J. Heilala, J. Montonen, and O. Väätäinen, “Life cycle and unit-cost analysis for modular 

reconfigurable flexible light assembly systems”, Proc. Inst. Mech. Eng. Part B J. Eng. 

Manuf., vol. 222, no. 10, pp. 1289–1299, 2008. 

[141] B. Uekert and D. Dancy, State courts and elder abuse: Ensuring justice for older 

Americans. Williamsburg, VA: National Center for State Courts, 2007. 

[142] M. Wang, J. Hong, and W. Wu, “An improved model of motorized spindle for transient 

thermo-structural analysis”, in Assembly and Manufacturing (ISAM), 2013 IEEE 

International Symposium on, pp. 1–7, 2013. 

[143] A. Ji, Z. Xu, and L. Lu, “Customization Research on Collaborative Simulation of the Parts 

of Truck-Mounted Crane”, Applied Mechanics and Materials, , vol. 201, pp. 569-573, 2012. 

[144] A. Pichler, P. Barattini, and C. Morand, “Tailor Made Robot Co Workers Based on a 

Plug&Produce Framework”, in Robotics in Smart Manufacturing, Springer, pp. 113–126, 

2013. 

[145] L. Lindqvist, “Unified infrastructure for simulation, communication and execution of 

robotic systems”, M. SC. thesis, Helsinki University of Technology, Finland, 2007. 

[146] F. Wickert, “A test for personal goal-values”, J. Soc. Psychol., vol. 11, no. 2, pp. 259–274, 

1940. 

[147] K. Khairunnisa, “Kinematic Analysis Of 6-Axis Comau Robot”, Universiti Teknikal 



Doctoral Dissertation                                                                                    References 

-111- 

 

Malaysia Melaka, Malaysia, 2008. 

[148] D. Palm, K. Johansson, and A. Ozin, “Molecular epidemiology of human pathogens: how to 

translate breakthroughs into public health practice, Stockholm, November 2011”, Euro 

Surveill, vol. 17, no. 2, pp. 1-4, 2012. 

[149] J. R. Alvarado, R. V. Osuna, and R. Tuokko, “Distributed simulation in manufacturing using 

high level architecture”, Micro-assembly Technologies and Applications, Springer US, pp. 

121–126, 2008. 

[150] T. R. Keeney, C. Bock, and L. Gold, “Automation of the SomaLogic proteomics assay: a 

platform for biomarker discovery”, Journal of the Association for Laboratory Automation, 

vol. 14, no. 6, pp. 360-366, 2009.  

[151] M. A. Jensen, L. Jauregui, and R. W. Davis, “A Rapid, Cost-Effective Method of Assembly 

and Purification of Synthetic DNA Probes> 100 bp”, PloS One, vol. 7, no. 4, e34373, pp.1-

4, 2012. 

[152] J. DelProposto, C. Y. Majmudar, and J. L. Smith, “Mocr: a novel fusion tag for enhancing 

solubility that is compatible with structural biology applications”, Protein Expr. Purif., vol. 

63, no. 1, pp. 40–49, 2009. 

[153] M. de Arruda, V. I. Lyamichev, and P. S. Eis, “Invader technology for DNA and RNA 

analysis: principles and applications”, Expert Rev. Mol. Diagn., vol. 2, no. 5, pp. 487–496, 

2002. 

[154] D. E. Burger, L. Wang, and L. Ban, “Novel automated blood separations validate whole cell 

biomarkers”, PloS One, vol. 6, no. 7, e22430, pp.1-11, 2011. 

[155] K. Allison, “The first automated high content screening system”, J. Assoc. Lab. Autom., vol. 

8, no. 3, pp. 27–29, 2003. 

[156] P. P. So, E. Zeldich, and K. I. Seyb, “Lowering of amyloid beta peptide production with a 

small molecule inhibitor of amyloid-β precursor protein dimerization”, Am. J. 

Neurodegener. Dis., vol. 1, no. 1, pp. 75-87, 2012. 

[157] D. Meyre, K. Proulx, and H. Kawagoe-Takaki, “Prevalence of loss-of-function FTO 

mutations in lean and obese individuals”, Diabetes, vol. 59, no. 1, pp. 311–318, 2010. 



Doctoral Dissertation                                                                                   Appendixes 

-112- 

 

Appendixes 

Appendix A: Biomek FX 

The Biomek® FX Laboratory Automation Workstation is a multi-axis liquid-handling 

instrument used in the drug discovery laboratory. Its system components described 

below correspond to the components shown in Fig. A. 1. 

 

Figure A.1 Biomek FX main components 

 

 

 

 



Doctoral Dissertation                                                                                   Appendixes 

-113- 

 

A.1 Towers 

The Biomek FX towers form the rear vertical and horizontal uprights of the base unit 

along which the bridges travel in the X-axis (see as Fig. A.2). The links for master 

control of Biomek FX, plus utility hook-ups and ALP connections, are on the towers. 

Built into the towers are green and amber indicator lights that keep users aware of the 

current operational status of Biomek FX instrument. 

 

Figure A.2 Main components and connections of the Biomek FX towers  

 

 

 

 

 



Doctoral Dissertation                                                                                   Appendixes 

-114- 

 

A.2 Bridges 

As Fig.A.3 shows, the Biomek FX bridges are structures that move in the X-axis, and 

the pods are self-contained components supported and positioned by the bridges. The 

bridges hold the pods and move them in the Y- (front to back) and Z-axes (up and 

down). One or two bridges are available on the Biomek FX instrument to create a 

single- or dual-pod instrument. In a dual-pod system, the pods can work together to 

expand liquid-handling capabilities.  

 

Figure A.3 Bridges move in the X-axis, hold and move pod in the Y- and Z-axes  

A.3 Multichannel Pod 

The Multichannel Pod is a self-contained working unit installed on the right, left, or 

both bridges of Biomek FX. The Multichannel Pod is a full microplate replication tool 

incorporating a gripper and interchangeable heads to accommodate a variety of 

functions. It interacts with ALPs located over the entire deck area of Biomek FX. 

 



Doctoral Dissertation                                                                                   Appendixes 

-115- 

 

The main components of the Multichannel Pod are (as Fig. A.4): 

• Pod — Houses operating mechanism, pneumatic air line, communication and 

electrical power connections to the base unit, and moves in the Y-, Z-, and D-axes for 

liquid-handling functions. 

• Interchangeable Heads — Holds mandrels and tips for performing full-plate 

replication. 

• Gripper — Grip labware along the long side of the labware. 

 

Figure A.4 Multichannel Pod — main components 

The Multichannel Pod performs movements in the Y-, Z-, and D-axes (see as Table 

A.1).  

Table A.1 Multichannel Pod Axes Movement 

Axis Movement 

Y- Entire pod moves front-to-back. 

Z- Entire pod moves up-and-down. 

D- Up-and-down aspirate/dispense, disposable tip shucking, and close/open 

gripper. 



Doctoral Dissertation                                                                                   Appendixes 

-116- 

 

A.4 Automated Labware Positioners 

Automated Labware Positioners (ALPs) are removable and interchangeable platform 

structures that are installed on the Biomek deck to allow automated assays to be 

performed. 

ALPs are either: 

• Passive ALPs — some hold labware in place on the deck while others act as 

receptacles for by-products from methods, such as system fluid and disposed tips, tip 

boxes, and labware. 

OR 

• Active ALPs — contain mechanisms that may hook to power and/or air sources for 

mechanical operation, such as tip loading, tip washing, mixing/stirring, shaking, and 

precisely positioning labware. 

Figure A.5 shows the ALPs of Biomek FX. Among them, the positions P1-P16 are 

passive ALPs that hold labware on the deck during liquid-handling procedures; TL1 is 

an active ALP that loads disposable tips onto a 96-well head or a 384-well head 

mounted on a Multichannel Pod; the Shuttle is a passive position for setting one end 

of SMCShuttle; WS1 is an active ALP that washes fixed or disposable tips on the 

deck; the Top1 and Res1 are belong to one single active ALP featuring a reservoir that 

can be drained and refilled automatically using steps in a Biomek Software method or 

manually using Advanced Manual Control. 

 

Figure A.5 ALPs of Biomek FX  



Doctoral Dissertation                                                                                   Appendixes 

-117- 

 

Appendix B: Biomek NX Span-8 

The Biomek® NX Span-8 Laboratory Automation Workstation is a multi-axis liquid-

handling instrument used in the life sciences and bioresearch laboratory. The 

components of the workstation are described as Fig. B. 1.  

 

Figure B.1 Biomek NX with Span-8 Pod and optional gripper 

B.1 Bridges 

As Fig.B.1 shows, there are two groups of bridges that move along the X-axis in 

Biomek NX. They have separated components for different tasks: one for gripper 

movement, and the other one for the Span-8 pod and probes. The bridges hold their 

components and move them in the Y- (front to back) and Z-axes (up and down).  

B.2 Span-8 Pod 

The Span-8 Pod is a self-contained working unit installed on the Biomek NX Span-8. 

It is a liquid-handling tool capable of performing liquid transfers from test tubes and 

large pieces of labware to smaller pieces of labware, or vice versa. 

The Span-8 Pod houses the operating mechanisms, communications, and electrical 

connections to the base unit.  It performs liquid transfers using a series of eight probes 

that can move independently in the Z-axis, pipette independently in the D-axis with 



Doctoral Dissertation                                                                                   Appendixes 

-118- 

 

the assistance of the pumps, and span from 9mm to 20mm between the probes in the 

S-axis (see Table B.1). The main components of a Span-8 Pod are shown as Fig. B. 2. 

Table B.1. Span-8 Pod Axes Movement 

Axis Movement 

Y- The probes move simultaneously front to back. 

Z- The probes move up and down independently. 

D- The aspirate/dispense action is controlled independently by the pumps. 

S- The span (or distance) between the eight probes can expand and collapse. 

 

Figure B.2. Span-8 Pod with gripper (detailed view) 

B.3 Gripper 

The Biomek NX gripper tool grasps and moves labware from one location on the 

Biomek NX deck to another. The gripper moves independently of the pod and can 

move in the Y-axis (back to front) and Z-axis (up and down). It can also rotate to 

access positions that are oriented at different angles in relation to the front of the 

Biomek NX instrument.  

 



Doctoral Dissertation                                                                                   Appendixes 

-119- 

 

As Fig.B.3 shows, the gripper tool contains two sets of finger pads: 

• A double finger pad located to the front of the tool 

• A single finger pad located to the back of the tool 

 

Figure B.3. Factory-installed gripper tool 

B.4 Automated Labware Positioners 

As the description of Biomek FX ALPs, there are also some passive and active ALPs 

installed on the deck of the Biomek NX instrument to allow automated assays to be 

performed. Figure B.4 shows the ALPs of Biomek NX Span-8: C1 is an active ALP 

for setting ConvNX; P1-P8 are passive ALPs for holding labware on the deck during 

liquid-handling procedures; S1-S3 are the ALP for the device Teleshake to shake a 

microplate in the chosen direction (as Fig. B.5); W1 is a passive ALP used to wash 

fixed tips on the probes of a Span-8 Pod while the reservoir side of the Span-8 Tip 

Wash ALP is used to dispose of system fluid used; TR1 is a Half-Position Disposal 

ALP with slide, which provides a means to dispose of tips, tip boxes, and labware. 

    

Figure B.4 ALPs of Biomek NX Span-8         Figure B.5 Action commands of  the Teleshake 



Doctoral Dissertation                                                                                    Declaration 

-120- 

 

Declaration 

This dissertation ‘Virtualization System for Life Science Automation Laboratory’ is a 

presentation of my original research work. Wherever contributions of others are 

involved, every effort is made to indicate this clearly, with due reference to the 

literature, and acknowledgement of collaborative research and discussions. The work 

of this dissertation has been done by myself under the guidance of Prof. Dr.-Ing. habil. 

Kerstin Thurow and Prof. Dr.-Ing. Norbert Stoll at the University of Rostock, 

Germany. Also the dissertation has not been accepted for any degree and is not 

concurrently submitted in candidature of any other degree. 

 

 

 

Rostock, 29 January, 2014 

 

 

Yanfei Li 

 

 



Doctoral Dissertation                                                                                          Theses 

-121- 

 

Theses 

1. Virtualization System (VS) for Life Science Automation (LSA) integrates many 

technologies which include PCS, SILAS OCX, TCP/IP socket, COM API, Python 

API, Visual C# programming, Python scripts, and 3D Simulation. 

2. VS for LSA has four modules: Process Control System (PCS), Data Transfer 

System (DTS), Control System (CS), and Virtualization Module (VM).  

3. VS for LSA could not only simulate real-time experiment workflow, but also 

simulate historical workflow data for demonstrations in conference or business 

occasions. 

4. PCS generates real-time workflow data for VS via SILAS integration system, and 

transmits the data to DTS via SILAS OCX. 

5. DTS receives workflow data in real time from PCS by calling SILAS OCX, and 

sends the data to CS via TCP/IP socket synchronously. The TCP/IP socket in DTS 

woks as a server for sending workflow data. 

6. DTS receives simulation results in the format of .pdf animation from CS via 

TCP/IP socket, which also works as a server. The animation results are received 

as data stream, and transferred back to .pdf file. They are opened automatically in 

the DTS interface after being transferred wholly. 

7. CS receives the real-time workflow data from DTS via TCP/IP socket, which 

works as a client. At the same time, CS extracts key information from the 

complex workflow data to do preparation for simulation. 

8. CS links and drives the simulation software 3DCreate to do simulation by calling 

its COM API and Python API.  

9. COM API of 3DCreate is called to create behaviors, trajectories, and actions for 

components, set properties and parameters of components, and invoke commands 

of the software for file operations, simulation setting, etc. The COM API is called 

and programmed by Visual C# in CS.  

10. Python API of 3DCreate is called and programmed in Python language. It is 

edited in Python scripts, which is a behavior of a component. It’s called to define 



Doctoral Dissertation                                                                                          Theses 

-122- 

 

properties of a component, create basements for robots and servos, and perform 

different actions with robots and their tools. 

11. CS assigns the workflow data to related components in the workstation layout, 

teaches robots and servos motions and actions, and creates specified sequences 

for motions and actions of components to form experiment workflow as the data 

depicts. 

12. CS forms the orderly movements of components to a whole experiment workflow 

of LSA once the real-time data is generated fully in PCS. It saves the workflow 

with 3D trajectories to .pdf animation, and backs up the simulation result as 

3DCreate layout for modification.  

13. PDF animation could be showed in Adobe Reader. It could be demonstrated in 

various views and sizes. When it is opened in the reader, the sizes of components 

and distances in the layout could be measured. Customers could get all 

information about the layout just from the .pdf animation. 

14. CS embeds 3DCreate OCX into its interface, which could intuitively show the 

workstation layout and simulation results to users in real time with the workflow 

data received. 

15. Once the simulation result (.pdf animation file) is generated, CS extracts the 

result and sends it to DTS by TCP/IP socket. That is the second socket in CS, 

which is also works as a client. The socket works to connect the server socket, 

and send the .pdf animation file in the form of data stream when the connection 

requirement is accepted. 

16. Beside processing and simulating real-time workflow data, CS could also extract 

and process historical workflow data, and then simulate it by driving 3DCreate 

working. The system generates the simulation result and shows it in its interface 

to the users, or generates .pdf animation file for demonstrations of LSA 

laboratories to business partners. 



Doctoral Dissertation                                                                                        Abstract 

-123- 

 

Abstract 

In Life Science Automation (LSA), Process Control System (PCS) could realize 

automatic control for experiment workflows in workstations of laboratories. However, 

the virtualization for workflows is lacked and becomes more and more necessary. This 

dissertation developed a Virtualization System (VS) to simulate LSA experiment 

workflows virtually in a flexible and fast way, which solves the virtualization problem 

for LSA experiments. 

Virtualization System integrates technologies of PCS, TCP/IP socket, database, Visual 

C#, Python Script, Visual Component 3DCreate and 3D modeling. It mainly has four 

modules to realize their separate functions in the system: (1) PCS module for 

generating workflow data, and sending the data through its SILAS OCX, as well as 

driving realistic workstations running sync with the virtualization process; (2) Data 

Transfer System (DTS) module for receiving the workflow data from PCS by calling 

its SILAS OCX, transferring the  workflow data to Control System (CS) module and 

getting the virtualization result from CS both by TCP/IP socket technology, as well as 

showing the virtualization result automatically at the side of PCS by calling Adobe 

PDF Reader DLL; (3) CS module for getting workflow data via TCP/IP socket, and 

simulating not only real-time but also historical workflow data in 4D animation form 

through controlling the Virtualization Module (VM) by calling and expanding its 

COM API and Python API, as well as sending the virtualization result to DTS  via its 

TCP/IP socket; (4) VM for generating 3D models of devices in Solidworks, and 

transferring the 3D models to components and layouts in 3DCreate, teaching robots 

and servos with motions and actions, as well as being controlled to generate the 

virtualization result via its COM API and Python API.  

In the VS, DTS and CS are developed by Visual C# to connect workstation hardware, 

PCS and 3D simulation tool as a whole. The system realizes virtualization on LSA 

experiment workflows not only in real time but also in historical. It supplies a vivid 

and flexible 4D virtualization on LSA experiment workflows for customers, and 

makes demonstrations for LSA laboratories more convenient. 



Doctoral Dissertation                                                                       Zusammenfassung 

-124- 

 

Zusammenfassung 

Im Bereich der Life Science Automatisierung (LSA) kann die automatische Steuerung 

von Arbeitsabläufen bei Experimenten an Laborarbeitsplätzen durch ein 

Prozesssteuerungssystem (PSS) realisiert werden. Es fehlte jedoch bisher die immer 

wichtiger werdende Möglichkeit, die entsprechenden Arbeitsabläufe zu visualisieren.  

Im Rahmen dieser Dissertation wurde ein Virtualisierung Steuersystem (VS) 

entwickelt, das die Arbeitsabläufe bei Experimenten im Bereich der LSA schnell und 

flexibel simuliert und so das Problem fehlender Virtualisierung löst.  

Das VS integriert die folgenden Technologien: PSS, TCP/IP Sockets, Datenbanken, 

Visual C#, Python Script, Visual Components 3DCreate und 3D Modellierung. Es 

besteht im Wesentlichen aus vier Modulen, die im System verschiedene Aufgaben 

übernehmen: (1) Das PSS-Modul generiert Daten über die Arbeitsabläufe, die es 

anschließend über sein SILAS OCX sendet und es steuert die realen Arbeitsplätze 

synchron zum virtualisierten Prozess. (2) Das Datentransfersystem (DTS) empfängt 

die Arbeitsablauf-Daten vom PSS-Modul indem es dessen SILAS OCX aufruft und 

überträgt diese Daten an das Steuerungssystem (SS). Das DTS nutzt die TCP/IP 

Socket-Technologie um die Virtualisierung Ergebnisse vom SS zu erhalten  und die 

Adobe PDF Reader DLL um die Virtualisierung Ergebnisse im PSS anzuzeigen. (3) 

Das SS-Modul erhält Arbeitsablauf-Daten über TCP/IP-Sockets und verarbeitet 

Echtzeitdaten ebenso wie gespeicherte Arbeitsabläufe zu einer 4D-Simulation durch 

Steuerung des Virtualisierungsmoduls (VM) mittels Aufruf und Expansion von dessen 

COM API und Python API. Anschließend werden die Virtualisierung Ergebnisse über 

TCP/IP-Sockets an das DTS gesendet. (4) Die Funktion des VM besteht darin, 3D-

Modelle von Geräten in Solidworks zu generieren und diese in 3DCreate in 

Komponenten und Layouts umzuwandeln. Hier werden die Bewegungen und 

Aktionen von Robotern und Servos definiert. Die Berechnung der Virtualisierung 

Ergebnisse wird gesteuert über eine COM API und eine Python API.  

In dem VS wurden das DTS und SS in Visual C# implementiert um die Arbeitsplatz-

Hardware mit dem PSS und dem 3D-Simulationswerkzeug zu verbinden. Das System 

realisiert die Virtualisierung von Arbeitsabläufen bei LSA-Experimenten sowohl für 

Echtzeitdaten als auch Archivdaten. Es liefert eine anschauliche und flexible 4D-

Virtualisierung der Arbeitsabläufe in LSA-Experimenten für Kunden und vereinfacht 

Demonstrationen für LSA-Labore.   


	Contents
	List of Figures
	Chapter 1  Introduction
	1.1 Background of this Dissertation
	1.2 Literature Review
	1.2.1 Process Control System Workflow
	1.2.2 Workflow Virtualization
	1.2.3 4D Virtualization
	1.2.4 Real-time Virtualization
	1.2.5 Discussions

	1.1
	1.3 Virtualization Strategy

	Chapter 2  Process Control System
	2.1 Introduction
	2.2 Work Principle
	1.1
	1.1
	2.3 Workflow Data
	2.4 Discussions

	Chapter 3  Data Transfer System
	3.1 Communication with the Process Control System
	3.2 Real-time Data Transfer
	3.3 Virtualization Result Reception
	3.4 Discussions

	Chapter 4  Control System
	4.1 Communication with the Data Transfer System
	4.2 Data Processing
	4.3 Control Virtualization
	4.4 Discussions

	Chapter 5  Virtualization Module
	5.1 Introduction
	5.2 Modeling
	5.3 Create Components
	5.4 Teach Components
	5.5 Creating Layouts
	5.6 Discussions

	Chapter 6  System Test and Application
	6.1 Connections among Modules
	6.2 Method in the Process Control System
	6.3 Data Transmission in the Data Transfer System
	6.4 Online Virtualization in the Control System
	6.5 Virtualization Result Transmission

	Chapter 7  Conclusion and Outlook
	7.1 Conclusion
	7.2 Outlook

	References
	Appendixes
	Declaration
	Theses
	Abstract
	Zusammenfassung



