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Zusammenfassung 

Die Effizienz von Verfahren zum Traffic Engineering (TE) hängt maßgeblich von 

der Optimierung der Routen ab. Die meisten Routing-Algorithem nutzen 

Informationen über die verfügbare Bandbreite, um die günstigsten Pfade zwischen 

Sender und Empfänger zu bestimmen. Die Dienstgüte (Quality of Service, QoS) 

hängt zusätzlich von der Genauigkeit der Messungen der verfügbaren Brandbreite 

ab. 

In aktuellen Verfahren zum dynamischen Routing wird der Zustand von Kanten 

im Netzwerk durch spezifische Gewichte repräsentiert. Diese Gewichte werden 

genutzt, um die günstigsten Routen zu berechnen. Die meisten Routing-Verfahren 

nutzen die aktuell gemessenen Bandbreiten, um die Gewichte der Kanten 

abzubilden. Auf Grund von häufigen Änderungen  der verfügbaren Bandbreiten 

ist dies jedoch ineffizient für die Berechnung der Verbindungsauslastung. 

Zusätzlich basiert die Entscheidung des Routing-Verfahrens lediglich auf einer 

einmaligen Messung der Bandbreite und ist daher per se nicht akkurat. 

Daher ist es eine sinnvolle Forschungsaktivität, die Verbindungsauslastung auf 

Basis des aktuellen Verkehrsaufkommen und der Nutzungsprofile für die nahe 

Zukunft abzuschätzen, um so die Leistung des Routing-Verfahrens zu verbessern. 

Es gibt nur wenige bekannte Forschungsanstrengungen in dieser Richtung, wie 

zum Beispiel den "Distribution-Free Prediction Interval (DF-PI) Algorithmus", 

der ein statistisches Modell der Verbindungsauslastung benutzt, oder den "Path 

Selection Algorithmus (PSA)", der Gleichungen in linearer Algebra nutzt, um die 

erwartete Verbindungsauslastung abzuschätzen. 

In dieser Arbeit wird ein neuer, effizienter Routing-Mechanismus namens 

"Prediction of Future Loadbased Routing (PFLR)" vorgestellt, der die Leistung 

des Routing-Verfahrens verbessert. Der vorgeschlagene Ansatz funktioniert mit 

beliebigen Routing-Algorithmen, bei denen die Routen-Berechnung die 

Bandbreite berücksichtigt. 

Mit Hilfe des PFLR-Algorithmus' wird die zukünftige Auslastung der 

Verbindungen im Netzwerk berücksichtigt. Diese Vorhersage trägt zu einer 

Reduzierung von Überlastungen im Netzwerk bei und ermöglicht insgesamt eine 

höhere Auslastung durch Nutzdaten. 

Die Hauptidee des PFLR-Algorithmus' ist die gemeinsame Betrachtung der 

vorausgesagten und der aktuellen Verbindungsauslastung, um die Gewichte der 

Verbindungen im Netzwerkgraphen zu reduzieren. Der vorgeschlagene Ansatz 
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nutzt ein künstliches neuronales Netzwerke (Artificial Neural Network - ANN) als 

Prediktor für die zukünftige Verbindungsauslastung. Weiterhin hat der 

vorgeschlagene Algorithmus die Fähigkeit zur Adaption der Parameter im 

Vorhersagemodell, wie zum Beispiel "Gültigkeit der Vorhersage" und "Weite der 

Vorhersage". Dies dient zur effizienten Vorhersage des Verkehrsaufkommens und 

damit zur Verbesserung der Routing-Leistung. 

Der Hauptgrund für die Nutzung von ANN ist die Tatsache, dass ANN eine der 

besten Möglichkeiten zum Modellieren und Vorhersagen der Verkehrsparameter 

sind. Ein ANN hat die Fähigkeit, verschiedene Funktionen zu approximieren, 

unabhängig von ihrem Grad der Nichtlinearität und ohne vorheriges Wissen der 

funktionalen Form. Daher bieten ANN eine akkurate Vorhersagemöglichkeit, für 

verschiedene Typen von Netzwerkverkehr. 

Basierend auf verschiedenen Simulationsszenarios (mit verschiedenartigen 

Topologien, verschiedenen Typen von Netzwerkverkehr und unterschiedlichen 

Lastbedingungen) hat der entwickelte Routing-Algorithmus PFLR Vorzüge in 

Bezug auf Zurückweisung von Requests, Bandbreitenbegrenzung und Rerouting 

bei Link-Ausfällen. 

Ein weiterer Forschungsgegenstand ist die Einführung eines neuen, effizienten 

TE-Algorithmus'. Dieser wird als Prediction-based Decentralized Routing (PDR) 

bezeichnet. Es handelt sich um einen vollständig dezentralen und 

selbstorganisierten Ansatz. PDR gehört zur Klasse der Ant Colony Routing 

(ACR)-Verfahren. Die Nutzung von Link-State-Informationen hilft dem Routing-

Algorithmus bei der Erreichung einer Bandbreitengarantie. Die Betrachtung der 

zukünftigen, vorhergesagten Werte für die Link-Auslastung reduziert die 

Interferenz. 

PDR-Algorithmen benutzen ähnliche Mechanismen wie der PFLR-Algorithmus, 

allerdings mit lokaler Implementierung. Weiterhin hat der PDR-Algorithmus die 

Fähigkeit zur lokalen Adaption der Gültigkeit der Vorhersagedauer abhängig von 

der Vorhersagegenauigkeit. Das dient der Vorhersage der Verbindungsauslastung. 

Die Leistungsfähigkeit des vorgeschlagenen PDR-Algorithmus wird unter 

anderem mit verschiedenen zentral arbeitenden und dezentralen Routing-

Verfahren und bei zwei verschiedenen Netzwerk-Topologien verglichen. Im 

Allgemeinen funktioniert der vorgeschlagene Algorithmus besser als die 

Vergleichsalgorithmen in Bezug auf verschiedene, zuvor genannte, 

Leistungsparameter. 
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Abstract 

The efficiency of Traffic Engineering (TE) schemes mainly depends on routing 

optimization. Most routing algorithms use the information of available bandwidth 

(BW) to choose the paths between the source and destination nodes. Additionally, 

the provided Quality of Service (QoS) depends on the accurate measurement of 

the available BW. 

In the current dynamic routing algorithms, the state of network links is 

represented by specific weights. These weights are used to compute the best paths 

between the source and destination pairs. Most routing approaches use the current 

measured BW information to represent the link weights. However, due to the 

varying nature of the available BW, updating the link state with the current 

measured BW is not an efficient approach to represent the link utilization. Also, 

the decisions of routing algorithm that depend on a single sample of measured 

available BW, which has not much significance due to the variable traffic nature, 

are not completely accurate. 

Therefore, the new research direction is to perform the estimation of the link 

utilization in the future based on the actual traffic profile and use the estimated 

values of traffic to enhance the routing performance. There is a very small effort 

in this research direction, such as the Distribution-Free Prediction Interval (DF-

PI) algorithm that uses the statistical model to estimate the link loads and the Path 

Selection Algorithm (PSA) algorithm that uses the linear algebra equations to 

estimate the link loads. 

In this study, a new efficient routing maintenance approach, called Predicting of 

Future Load-based Routing (PFLR), is introduced for optimizing the routing 

performance in IP-based networks. The proposed approach runs with any routing 

algorithm whose computations depend on the residual BW in network links.  

With the use of PFLR algorithm, the future status of the network link loads will be 

considered. The considering of future network link loads has a big impact in 

reducing the interference between the path requests in the future and so reduces 

the occurrence of network congestions and at the same time leads to increase the 

network utilization. 

The main idea of PFLR algorithm is combing the predicted link load with the 

current link load with an effective method in order to optimize the link weights 

and so reduce the occurrence of network congestions and increase the network 

utilization. The proposed approach uses the Artificial Neural Network (ANN) for 

building an adaptive traffic predictor in order to predict the future link loads. 

Furthermore, the proposed algorithm has the ability to adapt the parameters of the 
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prediction model, such as the length of prediction step and the prediction validity 

period, in order to efficiently estimate the link traffics and so effectively enhance 

the dynamic routing performance. 

The main reason of using the ANN is that: the ANN is one of the best proposed 

tools for modeling and predicting the traffic parameters. The ANN has the ability 

to approximate too many functions regardless of their degree of nonlinearity and 

without prior knowledge of its functional form. Therefore, ANN can offer an 

accurate prediction capability (especially in our on-line forecasting case) with 

different types of network traffic whose nature is nonlinear and has the ability to 

be adaptive. 

Based on different simulation scenarios (that have various network topologies, 

various traffic types and different network load conditions), the  bundled routing 

algorithms with PFLR algorithm reduces the rejection ratio of requests, minimizes 

the bandwidth blocking rate and reroutes the requests upon link failure in an 

optimal way. 

Another research objective is introducing a new efficient TE algorithm, called 

Prediction-based Decentralized Routing (PDR) algorithm, which is fully 

decentralized and self-organized approach. PDR algorithm is a new member of 

Ant Colony Routing (ACR) class. In this approach, an ant uses a combination of 

the link state information and the predicted link load instead of the ant’s trip time 

to determine the amount of pheromone to deposit, so that it has a simpler process 

and less control parameters. The use of link state information helps the routing 

algorithm to competently achieve the BW guarantee of the provided QoS. 

Moreover, the considering of future value of the network link loads leads to 

decrease the interference between the reserved requests in the future and so reduce 

the occurrence of network congestions and increases the network utilization. 

PDR algorithm uses a similar prediction mechanism to the PFLR algorithm but 

with local-based implementation. Also, the PDR algorithm has the ability to 

locally adapt the prediction validity period depending on the prediction accuracy 

in order to make the prediction of link traffics more efficient and so effectively 

enhance the routing performance. 

The performance of our proposed PDR algorithm is compared with various 

centralized and decentralized routing algorithms, within two different networks 

topologies, with different traffic types and under different network load 

conditions. In general, the proposed algorithm performs considerably better than 

the comparative algorithms with respect to different performance comparison 

criteria, such as the rejection ratio of requests, the bandwidth blocking rate. 
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CHAPTER 1 -  Introduction 

1.1 Study background 

The rapid growth of Internet makes the Internet Service Providers (ISPs) 

demanding for a new technology which have the capability to maximize the 

network utilization. They hope to increase their gains by deploying the concept of 

service differentiation and offering the higher quality service at a premium. To 

support such capabilities, the conventional IP technologies should use the TE.  

TE is defined as “the aspect of Internet network engineering dealing with the issue 

of performance evaluation and performance optimization of operational IP 

networks” [1]. TE aims to cover different optimization issues that are related to 

the network performance such as providing the requested Quality of Service 

(QoS), minimizing the total delay and maximizing the network throughput, 

improving the network resources utilization by optimally distributing the traffic 

over the network topology and handling the quick recovery in cases of failure.  

TE is an essential part in the network architecture for providing end-to-end QoS 

guarantees. QoS has many definitions. For example, in [2], QoS “is a set of 

service requirements to be met by the network while transporting a flow”. There 

are many factors influencing the QoS which is expected by customers. Parts of 

these factors are objective metrics while others are subjective criteria.  

The objective metrics are quantifiable factors such as the cost, the service 

reliability and the service level that meets the required throughput, loss and delay 

of the user applications. The subjective values are based on the opinions of the 

end-users, because users differ in their perception of what is good quality and 

what is not.  

TE is an efficient management technique to optimize the utilization of network 

resources. With the help of TE, the network administrators have a precise control 

over the traffic within the network topology. They have the ability to make the 

balance of traffic loads among the network links and reduce the network 

congestions. Using TE technique, different categorized services can be offered by 

ISPs to their customers. ISPs can provide faster and more reliable service 

guarantees to their customers depending on the customer requirements and who 
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are able to pay more. The efficiency of TE schemes mainly depends on routing 

optimization, so the routing topic is discussed in more details in the next sections. 

1.1.1 Routing in the Internet 

Network routing refers to the ability of an electronic communication network to 

send a unit of information from point A to point B by determining a path through 

the network as efficiently and quickly [3] as possible. The sent data units of 

information are called packets. Such packets perhaps visit many cross-points. 

Cross-points are named as routers.  

One of the router functions is to read the destination address of incoming packets, 

afterwards check an internal table for the best fitting outgoing link that the packets 

take towards its destination and then send the packets. Every link in the network 

has a specific limit of information which describes the maximum amount of bits 

which can be transferred per time unit, commonly named as link capacity. 

The goals of a routing algorithm are determined by many factors such as the 

requirement of the communication network and the required traffic service. While 

the routing goals depend on the type of communication networks, it is classified 

into two different categories: user-oriented and network-oriented.  

In the user-oriented type, the routing algorithm offers a good service to a specific 

user. However, the network-oriented routing algorithm offers an efficient and fair 

routing for most users, instead of providing the best service to a specific user.  

The main routing functions are as follows [4]: 

 Collecting the necessary information that is used to select and generate the 

paths and distributing it. This information includes service requirements 

and available resources within the network. 

 Using the distributed information, the routing algorithm will optimally 

select and generate the paths according to a specific performance 

objective. 

 Updating the router tables with the necessary information in order to 

forward the traffic along the selected paths. 

 Forwarding the user traffic along the selected paths. 
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In addition, if any link or node failure occurs, the routing algorithm has to detect 

this exception and determine an alternate path as fast as possible. 

1.1.2 Quality of service provision 

Using the traditional best-effort service, there is no guarantee for the resulting 

transmission rate and the end-to-end delay. The processing of packets in this type 

of service provision is always the same within the network. Any network 

congestion causes an increasing end-to-end delay and leads to poor network 

performance.  

The alternative mechanism is service provision with quality guarantees (QoS). 

The requested QoS depends on the application type [5]. Some applications 

demand for a guarantee of minimal useable bandwidth, another application needs 

a limit to the maximum end-to-end delay. The details of different QoS guarantees 

are discussed in the rest of this section. 

 Delay guarantees: There is a class of applications which demands for a 

limitation of the end-to-end delay and the delay variance, like the voice 

over IP services and video conference systems. The end-to-end delay 

consists of three components. First is the propagation delay which depends 

on the distance between the source and destination pairs. 

Second is the queuing delay which represents the sum of waiting time at 

every intermediate node queue in the path. Third is the transmission delay 

which is determined by the minimum link capacity on the path. 

 BW guarantees: Most multimedia applications require a specific level of 

BW guarantee. For this type of service, the routing algorithm reserves BW 

in all links of the path, which is equal to or higher than the traffic demand. 

1.1.3 Routing classifications 

The classification of routing algorithms depends on different point of views [6]. 

Here, a set of these classifications which are relevant for this work are presented: 

 Static vs. dynamic: Within the static routing, the network administrators 

compute off-line all possible routes using static information and update 

manually the routing tables. In the dynamic routing approach, protocol 

uses the current state of network topology to compute the requested route 
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on demand. All routing decisions in the dynamic approach are done during 

runtime to adapt changes of network states. Most routing protocols are 

dynamic ones, like the Routing Information Protocol (RIP) [7] and the 

Enhanced Interior Gateway Routing Protocol (EIGRP) [8].  

 Single-path vs. alternate and multi-path: Single-path routing algorithms 

determine the best available path according to the routing optimization 

goals and generate only one primary path between the source and 

destination pairs.  

Alternate path algorithms calculate in addition to the primary path another 

backup path to be used in case of any failure scenarios. The traditional 

routing example for this type is the Alternative Path Routing (APR) 

algorithm [9]. In the multi-path algorithms such as the Equal-Cost Multi-

Path (ECMP) algorithm [10], there are multiple paths which are computed 

and maintained. In this case, the routing uses multiple paths to send the 

flows between the same source and destination nodes.  

 Flat vs. hierarchical organization: Flat routing interprets every network 

node as separated peer and there exists one entry within the routing table 

for each node. In the routing algorithms which are based on the 

hierarchical organization such as the Fisheye State Routing (FSR) [11], all 

routers in the system are arranged in a hierarchical manner, where each 

hierarchy level is responsible for its own routing. 

 Centralized vs. decentralized: In the centralized routing approach such as 

the Dijkstra’s algorithm [27], each node has the complete link state 

information of a network’s topology. All routing decisions are computed 

and taken in one place.  

On the other hand, the routing decisions in the decentralized approach are 

taken in all intermediate nodes between the source and destination pairs. 

All decisions are done, based on local state information only and there is 

no need for global information. The Optimal Routing Soft Computing 

Agents (ORSCA) algorithm [13] is an example of such decentralized 

routing algorithms. 
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 Constructive vs. destructive routing table making: In the constructive 

approach, the routing table is empty in the beginning. Afterwards, the 

routing algorithm adds routes one by one until the entities of routing tables 

are filled. The constructive routing is the common approach when the 

network topology is highly dynamic, like Mobile Ad hoc Networks 

(MANETs) [14].  

On the other hand, destructive algorithms suppose existing of all possible 

paths in the first. In other words, it assumes the network topology is a fully 

connected graph. Then, the routing algorithm collects some information to 

be able to delete the nonexistent paths in the physical network topology. 

The routing algorithm that uses random strategies to strongly explore the 

network topology is a destructive routing approach such as the 

reinforcement learning based routing algorithms [15].  

 Proactive vs. reactive behavior: In the proactive routing approach such as 

the Optimized Link State Routing Protocol (OLSR) [16], the routes to all 

destinations are computed regardless of the route requests. While the 

reactive routing, like the Robust Secure Routing Protocol (RSRP) [17], 

searches for a route only as reaction to new routes or failure scenarios. 

1.1.4 Dynamic routing protocol 

A routing protocol is a set of processes, algorithms, and messages that are used to 

exchange routing information and populate the routing table with the routing 

protocol’s choice of best paths [18]. The dynamic routing has not a fixed view of 

routing tables. Using the dynamic routing protocol, the routers are able to detect 

updates in the network topology. Each router communicates with its neighbors 

and sends the updates of the network environment. However, in the dynamic 

routing protocols, a lot of router resources are used and the overhead is increased. 

Additionally, it should reduce the complexity of update mechanism. The dynamic 

routing protocol can be classified according to different features. Two different 

classifications are discussed only, see Figure 1.1: 

 Interior vs. Exterior Gateway Routing Protocols: The first classification 

depends on which level of network hierarchy that the protocol is to be 
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used. Part of routing protocols is used within a specific area, while the 

others are used among different areas. 

o Interior Gateway Protocols (IGPs): IGPs are used within a single 

organization or domain such as the RIP Protocol [7] which uses the 

hop count information to select the best path and the Open Shortest 

Path First (OSPF) protocol [12] which uses the BW metric to select the 

shortest path. Another example is the Intermediate System–to–

Intermediate System (IS-IS) protocol [19]. 

o Exterior Gateway Protocols (EGPs): In contrast to the IGPs, EGPs are 

used between the different organizations or domains such as the 

Border Gateway Protocol (BGP) [20] which is the most used exterior 

protocol between networks in the Internet. 

 Distance vector vs. Link state vs. Path vectors protocols: The second 

classification depends on which information is distributed between the 

routers and how this information is used to update the routing tables. 

o Distance vector routing protocols: In distance vector protocols, like the 

RIP and the Interior Gateway Routing Protocol (IGRP) [21], each 

router distributes every period vectors of information to its neighbors. 

These vectors contain pairs of information about how to reach the 

destinations.  

First, the distance for a destination such as the hop count. The second 

is the direction for a destination or the next hop that should be used to 

reach a destination. Afterwards, each neighbor router includes its 

announcements and sends them again to its neighbors. Therefore, the 

routing table contains a cumulative distance to each destination in the 

network topology. This routing protocol uses the Bellman-Ford 

algorithm for selecting the best paths. 

o Link state routing protocols: In link state routing protocols, like the 

OSPF and IS-IS protocol, each router has a complete overview over 

the network topology. This includes a list of network links and their 

states. With the help of broadcast, this information is distributed 

among the routers in the network. The complete view of network link 
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states can be constructed in each router. In this way, each router can 

select the paths to all its destinations. 

o Path vector protocols: In contrast to the previous two protocol classes, 

this protocol is used in the inter-domain such as the BGP [20]. The 

protocol behaves like a distance vector protocol but with advertising 

different kind of information. The advertised information contains the 

list of destination addresses and paths attributes to related destinations.  

 

Figure 1.1 Dynamic routing protocol classifications. 

1.2 Problem statement and motivation 

During the current section, the statement of dynamic routing problem is described 

in more details in the first sub section. Additionally, the brief description of the 

main idea for the common solution for this problem is presented. After clarifying 

the statement of dynamic routing problem, the main motivation of the dissertation 

work is discussed in more details. 

1.2.1 Problem statement 

One of the main routing functions [4], which are described in section 1.1.1, is to 

optimally select the best paths between the various sources and destination pairs 

according to specific performance objective. The routing algorithm uses the 

current information of available resources within the network to select the routes. 
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Basically, the problem of finding the best paths between the source and 

destination pair is called the shortest path problem, which is defined in [28] as the 

following statements:  

Given a weighted graph G = (V, E), where V is the nodes set in the network and E 

is the network links set.  Each link l (u, v)  E between nodes u and v (u, v  V) is 

specified by a single weight or cost w (u, v) ≥ 0. The link weight can represent any 

measured value like the distance, available BW or delay.  

The weight of a path p = {v0, v1, v2, …,vk} is the sum of link weights through this 

path:                                                      
 
    

The object is finding a shortest path p* between a given source node s  V and a 

given destination node v  V. 

                       

Figure 1.2 shows an illustrative example for a network weighted graph. In the 

example, V = {1, 2, 3, 4, 5, 6, 7, 8}, E = {l12, l13, l18, l23, l27, l28, l34, l35, l46, l56, l57, l67, 

l78 }. There is two attached values for every network line. The first attached value 

(in the left side of network link) is the link weight, which represent any measured 

value like the distance, available BW or delay. The second attached value (the 

underlined value in the right side of network link) is the available BW (capacity 

units). 

 

Figure 1.2 Illustrated example for a network weighted graph. 

Every routing algorithm has its own method to represent the network link weights 

(or states). However, there are two common steps between most dynamic routing 

algorithms. These common steps are: 
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 Considering only the links that have available BW more than or equals the 

requested BW of requested flow. For example, Consider there is a route 

request between nods 1 and 6 that requires traffic demand equals 50 

capacity units. In this case, all network links that have available BW less 

than 50 capacity units will be burnt and will not be considered. This means 

the network links l12, l27 and l35 will not be considered (See Figure 1.3). 

 Using Dijkstra's or Shortest Path First (SPF) algorithm [29], within 

reduced network, the shortest path is selected. 

 

Figure 1.3 Reduced network after burning the unsuitable links. 

1.2.2 Work motivation 

According to the illustrated example in the last section, the routing algorithm has 

various alternative paths between the source and destination pair. While the 

routing algorithm selects the shortest path between all alternative paths. The 

desired method for determining the link weight values is an important factor that 

makes the routes selection differs from a routing algorithm to other routing 

algorithms.  

The current dynamic routing algorithms update the link weights (states) with the 

current available BW. However, due to the varying nature of the available BW, 

updating the link state with the current measured BW is not an efficient approach 

to represent the link utilization. Also, the decisions of routing algorithm that 

depend on a single sample of measured available BW, which has not much 

significance due to the variable traffic nature, are not completely accurate. 
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Therefore, the new research direction is to perform the estimation of the link 

utilization in the future based on the actual traffic profile and incorporate the 

estimated values in the network link weights to enhance the routing performance. 

Of course, when the values of link weights will be changed, the shortest path 

between all alternative paths will be changed also. The considering of future 

network link loads has a big impact in reducing the interference between the path 

requests in the future and so reduces the occurrence of network congestions and at 

the same time leads to increase the network utilization. 

There is a very small effort in this research direction, such as the Distribution-Free 

Prediction Interval (DF-PI) [46] algorithm that uses the statistical model to 

estimate the link loads and the Path Selection Algorithm (PSA) [49] algorithm 

that uses the linear algebra equations to estimate the link loads. In the next 

section, our contribution in this research direction is discussed in more details. 

1.3 Dissertation contributions 

During this dissertation, an adaptive optimization mechanism is introduced which 

is based on a traffic prediction approach in order to improve the performance of 

dynamic routing algorithms. The work objective is reducing the network 

congestion, increasing the network utilization and efficiently re-routing the path 

requests upon link failure scenarios. During this dissertation, two different 

contributions are presented. The first contribution is introducing a new TE 

maintenance algorithm for centralized routing algorithms in order to enhance the 

performance of routing algorithms. The second contribution is developing a new 

TE prediction-based routing algorithm. The second approach is fully decentralized 

and self-organized algorithm. 

1.3.1 Enhancing the performance of centralized routing algorithms 

The first contribution is introducing a new TE routing maintenance algorithm for 

centralized routing algorithms in order to optimize the performance of routing 

algorithms. A new routing maintenance algorithm is proposed, called Predicting 

of Future Load-based Routing (PFLR) algorithm [22], [23], [24].  

The PFLR algorithm runs beside any routing algorithm that depends on the 

available BW information of network links in order to select the best paths 



CHAPTER 1 - Introduction 

 11 

between the source and destination pairs. The PFLR algorithm aims to efficiently 

represent the network link weights (states). 

With the use of PFLR algorithm, the future status of the network link loads will be 

considered. The considering of future network link loads has a big impact in 

reducing the interference between the path requests in the future and so reduces 

the occurrence of network congestions and at the same time leads to increase the 

network utilization. The most important feature of PFLR algorithm is the link 

weighs (states) representation. The proposed algorithm combines the predicted 

link load with the current link load with an effective method in order to optimize 

the link weights. The idea is to reduce the number of wrong and critical decisions 

in case of uncertain prediction accuracy. 

In contrast to the DF-PI and PSA algorithms, the proposed approach uses the 

Artificial Neural Network (ANN) for building an adaptive traffic predictor in 

order to predict future link loads. The main reason of using the ANN is that: the 

ANN is one of the best proposed tools for modeling and predicting the traffic 

parameters. The ANN has the ability to approximate too many functions 

regardless of their degree of nonlinearity and without prior knowledge of its 

functional form. Therefore, ANN can offer an accurate prediction capability 

(especially in our on-line forecasting case) with different types of network traffic 

whose nature is nonlinear and has the ability to be adaptive. The up-to-date 

articles that propose and demonstrate the use of ANN for building the traffic 

predictor are published in [95], [96], [97], [98], [99] and [100]. 

Additionally, the advanced version of PFLR algorithm (PFLRv.2) has the ability 

to adapt the parameters of prediction model, such as the length of prediction step 

and the prediction validity period, in order to efficiently estimate the link traffics 

and so enhance the routing performance. The parameters adaptation process 

depends on the measurement of prediction accuracy in order to adapt the 

parameters.  

Based on different simulation scenarios (that have various network topologies, 

various traffic types and different network load conditions), the bundled routing 

algorithms with PFLR algorithm reduces the rejection ratio of requests (In the best 

case, it rejects 17.45% less requests than the normal algorithms), minimizes the 
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bandwidth blocking rate (In the best case, it rejects 17.63% less BW than the 

normal algorithms) and reroutes the requests upon link failure in an optimal way. 

Additionally, a comparative study between the PFLRv.2 algorithm and different 

estimation-based routing algorithms is presented. The objective is to prove the 

efficiency of PFRLv.2algorithm, based on some test scenarios and discuss the 

results. The experiment results show that, the proposed mechanism of PFLRv.2 

algorithm enhances the performance of routing algorithms much more than 

statistical and linear prediction equations approaches. 

1.3.2 Developing a new prediction-based decentralized routing algorithm 

According to the great benefits of using the self-organizing systems, the second 

contribution for this dissertation is developing a fully decentralized and self-

organized algorithm. A new efficient TE algorithm is proposed, called Prediction-

based Decentralized Routing (PDR) [25], [26], [27].  

The PDR algorithm is a member of traffic-aware routing algorithms. At the same 

time, this algorithm is considered as a new member of Ant Colony Routing (ACR) 

class. The ACR algorithms are inspired from real ants' behaviors which have the 

ability of discovering the shortest path to a food source and their nest without any 

knowledge of geometry but with a keen sense of smell.  

According of the new aspects within the PDR approach, an ant uses a combination 

of the link state information and the predicted link load instead of the ant’s trip 

time, which is used within the traditional ACR algorithms, to determine the 

amount of pheromone to deposit, so that it has a simpler process and less control 

parameters. Using the information of link state helps the routing algorithm to 

efficiently achieve the BW guarantee of the provided QoS. Additionally, 

considering the future value of the network link loads leads to reduce the 

interference between the reserved requests in the future and so reduce the 

occurrence of network congestions and increases the network utilization. 

One of the good features within the PDR algorithm is the use of advanced and 

effective Ant-based framework, which is tested and evaluated in [45], to build the 

PDR approach. In addition to that, the link state information is represented by an 

efficient formula which is used in an advanced routing algorithm, called Least 

Interference Optimization Algorithm (LIOA) [73]. LIOA algorithm proves its 
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efficiency when compared to other routing approaches. Additionally, the PDR 

algorithm uses a similar prediction mechanism to the PFLR algorithm but with 

local-based implementation. Finally, PDR algorithm has the ability to locally 

adapt the prediction validity period depending on the prediction accuracy in order 

to efficiently predict the link traffics and so enhance the performance of PDR 

algorithm. 

The advanced version of PDR algorithm (PDRv.2) algorithm uses an efficient 

ant’s selection methods (for the intermediate nodes) which consider the predicted 

link load to better estimate for the congestion within network links. This feature 

gives the ability to efficiently distribute the ants on the network topology and 

accurately discover the best paths. 

The performance of our proposed PDR algorithm is compared with various 

decentralized algorithms and within two different networks topologies and with 

different traffic types. In general, the proposed algorithm performs considerably 

better than the comparative algorithms with respect to different performance 

comparison criteria, such as the rejection ratio of requests (In the best case, it 

rejects 63.40% less requests than the comparative algorithm) and the bandwidth 

blocking rate (It rejects 62.37% less BW than the comparative algorithms). 

Additionally, based on a comparative study between various versions of PDR 

algorithm and various centralized routing algorithms, the PDRv.2 algorithm (and 

In contrast to the PDRv.1 algorithm) performs considerably better than various 

centralized algorithms with respect to different performance comparison criteria, 

such as the rejection ratio of requests (In the best case, it rejects 32.89% less 

requests than the traditional centralized algorithm) and the bandwidth blocking 

rate (It rejects 35.86% less BW than the comparative algorithms). 

1.4 Dissertation Structure 

In the next chapter, a literature review for three different topics is introduced. The 

first part within the second chapter covers different centralized routing algorithms, 

the second part within the second chapter demonstrates different estimation-based 

routing algorithms and the third part within the second chapter represents various 

ACR algorithms.  
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Chapter three give in the first part an overview about the biological neuron model 

and the artificial neuron model. After that, the architecture of various ANN 

models is presented. The third part within chapter three demonstrates the details 

of different learning processes for the ANN. The forth part list the various 

applications of ANN in the different research area. The last part in this chapter 

discusses the traffic prediction capability using the ANN model. This part first 

defines the traffic prediction problem and presents the main characteristics of 

network traffic, which lead to the possibility of traffic prediction, are listed. 

Finally the survey of using the ANN within the traffic prediction field is 

presented. Additionally, the main features of ANN, that gives it the ability to be 

the best selected tool to predict the network traffic, are presented. 

Chapter four represents in more details the design of proposed model for both 

PFLR and PDR routing algorithms. For every proposed algorithm, the 

characteristics of innovative idea, the model architecture, the details of internal 

predictor processes and the pseudo code of algorithm are presented. Additionally, 

the complexity analysis for each algorithm is discussed in more details in the last 

section of their related algorithm. 

Chapter five presents the performance study of all proposed algorithms compared 

to the traditional and advanced routing algorithms and with respect to different 

performance criteria. The simulation sceneries consider four different network 

topologies, two different generated traffic types, various network load conditions 

and two different real traffic data sets. Additionally, a comparative study of PFLR 

algorithm and different estimation-based routing algorithms is introduced. Finally, 

Chapter six presents the final conclusion for this dissertation and shows the future 

work.  

Appendix A presents the analysis studies of PFLR and PDR algorithms that are 

performed in order to select the best values of parameters. Appendix B presents 

analysis studies for the PFLRv.2 and PDR algorithms in order to test the 

prediction accuracy of proposed algorithms for different load scenarios and with 

respect to different routing algorithms. Finally, Appendix C presents the 

stabilization of statistic results. 
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CHAPTER 2 - Routing literature review 

This chapter includes a literature review for different classes of routing 

algorithms. The first part presents related work in centralized routing approaches. 

The second part gives an overview of the estimation-based routing approaches. 

The last part focuses on the decentralized routing approach and demonstrates the 

basic concepts of ACR algorithms. 

2.1 Centralized routing algorithms 

In centralized routing algorithms, as described before in chapter one, the source 

node has all current state of network links and the route selection is done in one 

place. In this part, some conventional routing algorithms that don’t consider the 

future route requests are presented such as Dijkstra's [29], Widest Shortest Path 

(WSP) [34] and Constraint Shortest Path First (CSPF) [35] algorithms. 

Additionally, some advanced routing algorithms are presented, which consider the 

future route requests and plan to reduce or avoid the interference that may happen 

in the future between the route requests, such as Minimum Interference Routing 

Algorithm (MIRA) [36], Dynamic Online Routing Algorithm (DPRA) [43] and 

Least Interference Optimization Algorithm (LIOA) [45]. 

2.1.1 Shortest path routing algorithms 

There are two particular shortest path routing algorithms, Dijkstra and Bellman–

Ford algorithms [32]. Both of them target to find the shortest path between the 

source and destination pairs.  

2.1.1.1 Dijkstra's algorithm 

Dijkstra's or Shortest Path First (SPF) algorithm is proposed by E. Dijkstra [29] to 

give a solution for the shortest path problem. The basic idea of SPF algorithm is 

used in many routing protocols such as OSPF and IS-IS.  

Dijkstra’s algorithm depends on the fact that states, the subsections of shortest 

paths are also shortest paths. Also it does not compute the shortest path to a 

specific destination only, but it computes the shortest paths to all possible 

destinations in the network. Dijkstra’s algorithm divides all nodes into two 
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groups: group A that contains all visited nodes during the algorithm to search for 

the shortest path from the source node s to destination node v, group B that 

contains the remaining nodes. 

 

Algorithm 2.1 Dijkstra's algorithm. 

1) Put the source node s in the set A, put all other nodes in the set B. 

2) Assign Dist variable to every node which represent the minimum distance to 

the source node. The source node has zero value, the directly connected 

nodes have the distance value between them and the source node and the 

others have infinity.  

3) Do the following steps: 

a) Select the node u that is not in the current set A and has the minimum Dist 

value. 

b) Add node u to set A and remove it from set B. 

c) Stop the algorithm if set B is empty. 

4) Do the following steps: 

a) Indentify all neighbor nodes for node u that are not in the current set A. 

b) Check the improvement of Dist for every neighbor k, Dist (k) is equal to 

min (Dist (k), Dist (u) + w (u, k)). 

5) Go to step 3. 

 

Dijkstra's algorithm starts with initialization of the Dist variable to each node 

which represents the minimum distance to the source node. In the next step, the 

algorithm describes how to extend the set A. In each an iteration of the algorithm, 

it selects the unvisited node that has the minimum Dist value. Then, the algorithm 

tries to check if the Dist variable for every neighbor is reduced or not. If it is 

reduced then it updates the Dist variable with the new value, this step is called 

“relaxing” step. Finally, it returns to step number three until set B becomes empty. 

In the context of algorithms comparisons, it is helpful to be aware of the 

computational complexity for every algorithm. Any algorithm contains various 
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operations which should be considered when determining the computational 

complexity for this algorithm. One of the famous methods that represent the 

computational complexity is big-O notation which is defined as “a theoretical 

measure of the execution of an algorithm, usually the time or memory needed, 

given the problem size” [30]. 

In order to determine the computational complexity of Dijkstra’s algorithm, the 

worst case scenario should be considered. The worst case scenario is considering 

the complete graph of network topology. In this type of network topology, every 

node is connected to any node in the network topology.  Assume now Dijkstra’s 

algorithm is trying to find the shortest paths from the source node s to |V| -1 

destination nodes, where |V| is the number of vertices in the graph. In other words, 

|V| -1 comparison operations are made on |V| -1 network node. This means that 

the complexity of Dijkstra’s algorithm is O (|V|
2
). But using a good data structure 

[31], it can be improved to O (|E| + |V| log |V|), where |E| is the number of links 

in the network topology. 

2.1.1.2 Bellman–Ford algorithm 

The Bellman–Ford algorithm was proposed by R. Bellman and L. Ford [32], 

[33].In contrast to Dijkstra’s algorithm, this algorithm allows using of negative 

edge weights but it does not allow negative weigh cycle occurrence. The main 

core of Bellman–Ford is very similar to Dijkstra's algorithm, but instead of 

selecting only one node from the unvisited nodes that has the minimum distance 

to the source node s, it “relaxes” all the links and repeats this for |V| − 1 times. 

With these repetitions, the algorithm propagates the shortest distance to all 

destination nodes. In general, the Bellman–Ford algorithm is slower than 

Dijkstra's algorithm. The distributed version of Bellman–Ford algorithm is used in 

the RIP protocol. 

The algorithm starts with the initialization of Dist variable to each node which 

represents the minimum distance to the source nodes. It sets zero Dist value to the 

source nodes and infinity to the others. The algorithm in the second step tries to 

“relax” every link in the network and updates the Dist variable for every node 

depending on the improvement of the Dist variable. It repeat the previous step |V| 
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− 1 times. In this way, the algorithm continues through the graph by first checking 

the 1-hop paths, then the 2-hop paths up to paths with |V| − 1 hops. 

 

Algorithm 2.2 Bellman–Ford algorithm. 

1) Assign Dist variable to every node which represent the minimum distance to 

the source node. The source node has zero value and the others have infinity.  

2) Repeat the next step |V|-1 times. 

a) Repeat the next step for every link l (u, v) E. 

if Dist (v) > Dist (u) + w(u, v) then  

Dist (v) = Dist (u) + w(u, v)  

end if 

3) Repeat the next step for every link l (u, v) E. 

a) if Dist (u) + w(u, v)<Dist (v) then  

Return error "Graph contains a negative-weight cycle" 

end if 

 

As described before, the Bellman–Ford algorithm can be implemented with 

negative values for edge weights. In this case, the algorithm should have a 

validation step to verify that the final graph result does not contain any negative 

weight cycle.  Thus, the algorithm in the final step checks if there is any negative 

weight cycle exist and returns an error message in this case. If the graph does not 

contain any negative weight, the final step will be useless and can be omitted. 

The Bellman-Ford algorithm takes in the worst case |V| − 1 iterations. In each an 

iteration of the algorithm, |E| comparison operations are required to relax the 

network links. Therefore, the computational complexity of Bellman-Ford 

algorithm is O (|V||E|). 

2.1.2 Widest shortest path algorithm 

Roch A. Guerin [34] has introduced a modification to the shortest path algorithm, 

called Widest Shortest Path (WSP), which is based on the computation of the 

shortest paths in the first stage and if there is more than one of these shortest 
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paths, it chooses the path whose available BW (i.e., the smallest value on any of 

the links in the path) is maximal. This work is introduced to provide extensions to 

the OSPF protocol in order to support QoS routing in IP-based networks. 

WSP algorithm aims to select a path that satisfies the required BW of flow and 

minimize the use of network resources. WSP has different implementations based 

on either pre-computations or on-demand computations. The associated link cost 

or weight is a combination of hop count information and available BW in this 

link. WSP algorithm searches for a path with the minimum number of hops which 

can support the requested BW. If there is more than one, it prefers the path with 

maximum BW. The focus here is on the implementation of WSP algorithm for on-

demand computation of QoS paths which depends on the modification of 

Dijkstra's algorithm. 

 

Algorithm 2.3 WSP algorithm. 

1) Consider only the links that have available BW more than the requested BW 

of flow. 

2) Give every link l (u, v) E equal weights. 

3) Put the source node s in the set A, put all other nodes in the set B. 

4) Assign Dist variable to every node which represent the minimum distance to 

the source node. The source node has zero value, the directly connected 

nodes have an equal value and the others have infinity.  

5) Do the following steps: 

a) Select the node u that is not in the current set A and has the minimum Dist 

value. 

b) If there are more than nodes have the same minimum Dist value, select 

the node that belongs to a path that contains maximum BW. 

c) Add node u to set A and remove it from set B. 

d) Stop the algorithm if set B is empty. 

6) Do the following steps: 
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a) Indentify all neighbor nodes for node u that are not in the current set A. 

b) Check the improvement of Dist for every neighbor k, Dist (k) is equal to 

min (Dist (k), Dist (u) + w (u, k)). 

7) Go to step 5. 

 

WSP starts with neglecting the links that have not sufficient BW for the requested 

BW of flow. Another modification to Dijkstra's algorithm is to assume all network 

links have an equal weight or cost. In this way, the shortest path contains the 

minimums numbers of hops. Additionally, Dijkstra's algorithm is modified to 

keep only the maximum BW path among the equal hop paths. So, WSP algorithm 

selects the node that belongs to a path that contains maximum BW in case of 

existing of more than node with the same minimum Dist value. The computational 

complexity of WSP algorithm is similar to Dijkstra’s algorithm, it is O (|V|
2
) but 

using a good data structure, it can be improved to O (|E| + |V| log |V| 

2.1.3 Constraint shortest path first algorithm 

E. Crawley [35] proposed the Constraint Shortest Path First (CSPF) algorithm to 

overcome the problem of load balancing in OSPF which modifies the link cost to 

reflect the current resource availability. The cost of links is inversely proportional 

to the residual link capacities. The CSPF algorithm is introduced as an efficient 

component in the QoS-based routing framework in the Internet. The main 

objectives of QoS-based routing are: 

 Dynamic selection of requested paths: QoS-based routing should provide 

the requested QoS guarantee such as the end to end delay and BW. 

 Optimization of network resources: QoS-based routing target to improve 

the total network throughput in order to enhance the network resource 

utilization. 

 Graceful performance degradation: Another objective is giving an efficient 

reaction in the case of overload conditions. 

The link weights in QoS-based routing must reflect the QoS requirements. Of 

course, a combination of metrics can be considered, but it should be carefully 
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handled to reduce the complexity of computing paths. CSPF algorithm is used in 

the second version of OSPF protocol. 

CSPF can be considered as an advanced version of shortest path algorithm. The 

algorithm starts with pruning all the links that do not have sufficient BW for the 

requested BW of flow. As mentioned above, the algorithm aims to reflect the 

current resource availability; therefore CSPF algorithm sets all link weights equal 

to the inverse of their available BW. The rest of the CSPF algorithm is the same 

as Dijkstra’s algorithm. 

 

Algorithm 2.4 CSPF algorithm. 

1) Consider only the links that have available BW more than the requested BW 

of flow. 

2) Set the link weights w (u, v) equal to the inverse of their available BW. 

3) Put the source node s in the set A, put all other nodes in the set B. 

4) Assign Dist variable to every node which represent the minimum distance to 

the source node. The source node has zero value, the directly connected 

nodes have the inverse value of available BW for their link and the others 

have infinity.  

5) Do the following steps: 

a) Select the node u that is not in the set A and has the minimum Dist value. 

b) Add node u to set A and remove it from set B. 

c) Stop the algorithm if set B is empty. 

6) Do the following steps: 

a) Indentify all neighbor nodes for node u that are not in the current set A. 

b) Check the improvement of Dist for every neighbor k, Dist (k) is equal to 

min (Dist (k), Dist (u) + w (u, k)). 

7) Go to step 5. 
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2.1.4 Minimum interference routing algorithm 

Minimum Interference Routing Algorithm (MIRA) is an example of advanced 

routing algorithms [36]. The idea of MIRA is avoiding the routing over links that 

may interfere with another path requests in the future. This algorithm is proposed 

to define dynamic Label Switched Paths (LSPs) in Multi-Protocol Label Switched 

(MPLS) networks. In MPLS networks [37], the packets are assigned with labels at 

the ingress router of the network. These labels are used to forward the packets 

according to specific LSPs. Service providers can use LSPs to implement Virtual 

Private Networks (VPNs) or to satisfy other QoS agreements [38].  

Signaling protocols like Resource Reservation Protocol (RSVP-TE) [39] and 

Label Distribution Protocol (LDP) [40] are used to setup the paths. In other 

words, the route of LSPs is explicitly defined between the ingress and egress 

routers with the help of these signaling protocols. With the explicit LSPs routing 

in MPLS networks, the service providers have an important feature to engineer 

how their traffic will be routed, and have the ability to improve the network 

utilization, by minimizing the rejection ratio of requests. 

The key idea of MIRA algorithm is selecting the paths that have a little chance to 

interfere with future paths which are among other source and destination pairs. 

The definition of interference in MIRA depends on computing the maximum flow 

(max-flow) value between a given ingress and egress pair. The max-flow MV (s1, 

v1) value is defined as “An upper bound on the total amount of BW that can be 

routed between a given ingress and egress pair (s1, v1)” [41]. When the routing 

algorithm routes LSP with D units of BW between s1 and v1, the MV (s1, v1) value 

will be decreased by D value. However, the value of MV (s1, v1) may be also 

decreased when other LSPs are routed between other ingress and egress pairs. 

So, the amount of interference for a given (s1, v1) pair is defined as the decrease of 

MV (s1,v1) value because of routing LSPs between some other ingress and egress 

pairs .The links positions in the network topology have the great effect on 

reducing the max-flow values between different ingress and egress pairs. The 

algorithm defines the links that have a high priority to decrease the max-flow 

values of one or more ingress and egress pairs as critical links. 
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Therefore, the MIRA algorithm aims to pick up the minimum interference path 

for a given LSP that maximizes the minimum max-flow between all other source 

and destination pairs. It targets to reduce the routing over critical links. Thus, the 

algorithm represents the criticality properties by giving the critical links small 

weight values. The explicit route is commuted using a modified version of 

Dijkstra's shortest path algorithm. 

The problem of maximizing the minimum max-flow (MAX-MIN-MAX) between 

all source and destination pairs can be formalized as: For a given a path between a 

and b nodes, the objective function of MAX-MIN-MAX is 

               
                  

 

Since (sv) parameter is the weight of the ingress and egress pair which represents 

the relative importance of the ingress and egress pair to the network administrator. 

To compute the link weight w (u, v) for every link l (u, v) E, the set of critical 

links Csv for the ingress and egress pair (s, v) is determined in the first, so  

            
                   

 

If all ingress and egress pairs have the same priorities, w (u, v) represents the 

number of ingress and egress pairs for which link is critical. 

The flow residual graph theory [42] is used to determine the critical links set. 

After computing the max-flow between the node s and node v, let R be the set of 

nodes that are reachable from the source node s and T be the set of nodes that are 

reachable from the destination node v. A link l (i, j) Csv if: 

 Link l (i, j) is filled to capacity. 

 j R and i  T. 

 There no path between i and j in the flow residual graph 

MIRA algorithm in the first step computes the max-flow for all possible source 

and destination pairs excluding the (a, b) pair. Then it computes the set of critical 

links Csv. Depending on the previous step, the algorithm computes the weights 

that will be associated to every network link. In the fourth step, all the links that 

do not have sufficient BW to route D units are pruned. The rest of MIRA 

algorithm is using Dijkstra's shortest to find the shortest path between a, b nodes. 
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Algorithm 2.5 MIRA algorithm. 

Input: 

A graph G = (V, E) and a set B of all residual link capacities. 

An ingress node a and an egress node b between which a flow of D 

units have to be routed. 

Output: A route between a and b having a capacity of D units of BW. 

Algorithm: 

1) Compute the maximum flow values for all(s, v)  V \ (a, b). 

2) Compute the set of critical links Csv for all(s, v)  V \ (a, b). 

3) Compute the weights 

            
                   

 

4) Eliminate all links which have residual BW less than D and form a reduced 

network. 

5) Using Dijkstra’s algorithm, compute the shortest path in reduced network 

using w (u, v) as the weight on link l (u, v). 

6) Route the demand of D units from a to b along this shortest path and update 

the residual capacities. 

 

In general, MIRA is proposed for routing of BW guaranteed LSPs in MPLS 

networks. Also, it has the capability to include the hop-count constraints by using 

the Bellman-Ford algorithm instead of using Dijkstra’s algorithm. MIRA 

algorithm outperforms the WSP algorithm and (Minimum Hop Algorithm) MHA 

with respect to many performance metrics such as the rejection ratio of path 

requests and the successful re-routing of demands upon link failure scenario. 

On the other hand, MIRA algorithm has a higher computational complexity than 

the shortest path algorithm. In the worst case, every node can be a source node for 

all other nodes. Therefore, there are |V|
2
max-flow calculations are required. Since 
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each maximum flow calculation takes O (|V||E| log (|V|
2
/|E|)) [42], so the worst 

case runtime of MIRA is O (|V|
3
|E| log (|V|

2
/|E|)). 

2.1.5 Dynamic online routing algorithm 

R. Boutaba [43] introduced the Dynamic Online Routing Algorithm (DORA) that 

selects the BW guaranteed LSPs in MPLS-based networks. DORA aims to avoid 

routing over links that have a high potential to be part of any other paths in the 

future. Also it targets to balance the traffic load by preferring the paths that have 

more residual BW. DORA depends on computing the Path Potential Value (PPV) 

array associated with a source-destination pair to minimize the expected 

interference between the different paths. 

Both of MIRA, DORA and Profile-Based Routing (PBR) [44] algorithms have 

discussed the requirements and design issues for path selection algorithms within 

MPLS-based network. A brief description for these requirements is presented 

here: 

 Routing constraints: the routing algorithm should compute the optimal 

paths according to different constraint types such as delay, jitter, loss ratio 

and BW.  

 Online routing: Due to TE requirements, the routing algorithm should 

have the capability to compute the LSPs on demand. It has not any prior 

knowledge of the arrival time and required BW of LSPs. 

 Computational complexity: In the case of online routing, the time of 

routing Computation should be short enough to offer fast LSPs selection in 

MPLS-based network. 

 Re-routing performance: Another important routing objective is efficiently 

rerouting the requests upon node or link failure scenario. Also, it is 

important to spread the traffic onto the network in an optimal way to 

reduce the LSPs numbers that are affected by the link or node failures. 

 Link state distribution: All link state information must be present at the 

ingress node to compute the best path. Therefore, a new distribution 

technique is required to distribute all required routing information such as 

the network topology and the residual BW of links. 
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 Use knowledge of the ingress and egress of LSPs: Sometime, it is useful to 

know all possible combination of the ingress and egress of LSPs. The 

routing algorithm may use this knowledge to reflect the interference effect 

on the link weights.   

DORA algorithm has two stages. In the first stage, it computes the PPV for every 

source and destination pair. PPV represents how a specific link has the chance to 

be included in a path more than the other links. For every source and destination 

pair, the algorithm associates every link a PPV variable and initializes it by zero. 

 

Algorithm 2.6 DORA algorithm. 

Stage 1: 

1) For each source–destination pair (s, v), determine the set of all Disjointed 

Paths DP(s, v). One possible way is to use Dijsktra’s algorithm to find a 

shortest path (in terms of number of hops) for (s, v), add this path to DP(s, v), 

and then remove all links that are part of the resulting path, and repeat these 

steps until v is no longer reachable from s. 

2) For each source–destination pair (s, v), construct the PPV(s, v) array, and 

initialize all entries to zero. The array size equals the No. of network links. 

3) For the source–destination pair (s1, v1), 

a) For each link l in the network, if l is part of any path in DP (s1,v1), subtract 

1 from PPV(s1,v1)(l). 

b) For all the source–destination pairs other than (s1, v1), inspect each link l 

and determine the number of times n that l appears in DP(s, v), where (s, v) 

is not equal to (s1, v1). Increment PPV (s1, v1) (l) by n. 

4) Repeat Step 3 for all the other source–destination pairs. 

5) For each source–destination pair (s, v), normalize all entries in PPV (s1, v1), with 

the smallest PPV element over all source–destination pairs equal to 0 and the 

largest PPV element over all source–destination pairs equal to 100. Let NPPV 

(s1, v1) (l) be equal to the normalized value of PPV (s1, v1) (l). 
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Stage 2: (Suppose a request arrives to set up a path between s1 and v1 with D 

amount of BW) 

1) Remove links with a residual BW less than the requested BW D. 

2) For each network link l, determine its residual BWRB (l), take the reciprocal 

of RB (l), and normalize (RB (l))
-1

 to the range 0–100, with the smallest (RB 

(l))
-1

 value equal to 0 and the largest value equal to 100.Let NRB (l) be equal 

to the normalized value of (RB (l))
-1

. 

3) For the source–destination pair (s1, v1), construct a link weight table 

LWT(s1,v1), using the following equation: 

LWT(s1,v1)(l) = NPPV(s1,v1)(l) * (1-BWP) + NRB(l) * (BWP) 

Where BWP is the BW proportion parameter. 

4) Run Dijsktra’s algorithm to compute a link-weight optimized path between 

(s1, v1). 

 

Between the same source and destination pair, there is more than available 

Disjoint Path DP. When link l is included in a path between the source and 

destination (s1, v) pair, PPV (s1, v1) (l) will be decremented by one. When link l is 

included in a path between a different source and destination pair, PPV (s1, v1) (l) 

will be incremented by one. In the second stage, DORA prunes all links that do 

not have sufficient BW to route D units of BW. Then the algorithm combines the 

PPV value with residual link BW to form a weight value for each link that is used 

to compute a weight-optimized network path.  

If all nodes can be a source node for all other nodes, then the first stage computes 

paths for different |V|
2
 source and destination pairs. In each source and destination 

pair, the algorithm takes O(|E|) to compute different DPs. Since Dijsktra’s 

algorithm requires O (|E| + |V| log |V|), then the first stage of DORA requires O 

(|V|
2
|E|

2
 + |V|

3
|E| log |V|). The overall computational complexity of second stage 

is similar to Dijsktra’s algorithm which requires O (|E| + |V| log |V|). 
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2.1.6 Least interference optimization algorithm 

A.B. Bagula [45] introduced a Least Interference Optimization Algorithm (LIOA) 

which reduces the interference among competing flows by balancing the number 

and quantity of flows that are carried by a link to achieve efficient routing of 

MPLS BW guaranteed LSPs. In general, the simulation study demonstrates that 

LIOA outperforms many routing algorithms such as MHA, CSPF and MIRA 

algorithms. The comparative study of these algorithms is done with respect to 

different performance metrics including the rejection ratio of LSPs and the 

successful re-routing of LSPs upon single link failure [45]. 

According to the interference reduction technique, each algorithm has its own 

definition for the interference among competing paths. As mentioned before, 

MIRA aims to reduce the maximum flow in order to minimize the interference, 

while DORA computes the path potential value for every link in path to avoid 

routing over links that have a high potential to be part of any other paths in the 

future. In the LIOA algorithm, there is a big relationship between the interference 

and the number of flows which travel through a link.  

The main objective of LIOA is selecting the shortest path between the source and 

destination pair (s, v) which contains links with minimum number and magnitude 

of flows. Consider a link cost function: 

       
   

  

   
      

 

Where Iuv is the number of flows carried on the link, lc is the least interference 

control parameter which represents a trade-off between the number and the 

magnitude of the flows traversing a link and the link slack Suv = Ruv−ruv, where 

Ruv is the maximum link capacity, ruv is the total reserved BW. Depending on the 

desired link cost function, minimizing the number of flows Iuv and maximizing the 

link slake Suv leads to minimizing the link cost function. Therefore, there is a 

minimum number of LSPs that are required to be rerouted again in case of single 

link failure.  Note that the range of lc is (0, 1) and the special cases are: 
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Algorithm 2.7 LIOA algorithm. 

Input: 

A graph G = (V, E) and a set B of all residual link capacities. 

An ingress node s and an egress node v between which a flow of D 

units have to be routed. 

Output: A route between sand v having a capacity of D units of BW. 

Algorithm: 

1) Prune the network. Set w (u, v) = for each link l (u, v) whose slake  

                                                   (Ruv − ruv) ≤ D. 

2) Find the new least cost path. Apply Dijkstra’s algorithm to find the least cost 

path. 

                      

3) Route the traffic demand. Assign the traffic demand D to the best path p*. 

4) Update the link reserved BW, interference and costs. For each link, 

l (u, v)  p* : ruv =  ruv  + D; 

Iuv = Iuv + 1; 

       
   

  

   
      

 

 

In the first step of LIOA, all links that do not have sufficient BW to route D units 

are pruned. Then Dijkstra’s algorithm is used to find the shortest path between the 

source and destination pair. When the path is selected, the required D units of BW 

will be reserved in all links that belong to the best path. Finally, LIOA updates the 

link information within the best path. It decrements the available BW by D and 

increments the number of flows by one and then updates the link weight formula 
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with the new updates. In the context of commotional complexity, LIOA is similar 

to Dijkstra’s algorithm which requires in the worst case O (|V|
2
) to compute the 

shortest path.  

2.2 Estimation-based routing algorithms 

The provided QoS depends on the accurate measurement of the available BW. 

Due to the varying nature of the available BW, globally updating the link state of 

all nodes with the current measured BW is not an efficient approach to represent 

the link utilization. Therefore, new approaches perform an estimation of the link 

utilization in the future depending on the actual traffic profile. 

In the next sections, two different estimation-based routing algorithms are 

presented. In this type of routing algorithm, the future of link loads are estimated 

from the link load histories. These algorithms aim to reduce the interference 

between the paths in the future by incorporating the estimated available BW into 

the link weights formula. The first algorithm uses a statistical approach to 

estimate the available BW in the links. However the second algorithm depends on 

solving the linear algebra equations to estimate the available BW in the network 

links. 

2.2.1 Distribution-free prediction interval routing algorithm 

C. S. Yin and M. Yaacob introduced a statistical approach named Distribution-

Free Prediction Interval (DF-PI) [46] which uses the maximum, the minimum and 

the average of last recent samples of available BW during a past period to 

estimate the future of available BW. DF-PI uses the estimated available BW in the 

link weights to enhance the performance of the WSP algorithm. DF-PI is 

proposed to work in the hop by hop QoS routing approach, but it can also be used 

in the explicit QoS routing. In general, DF-PI outperforms WSP algorithm in 

terms of the link utilization, the packet loss and the average end-to-end delay. 

Additionally, it has less overhead in updating messages. 

Instead of estimating the future of available BW at random period, DF-PI 

proposes to use prediction intervals method. A prediction Interval (PI) is defined 

as “an interval that will, with a specified degree of confidence or prediction level, 

contain the next randomly selected observation(s) from a population” [47]. To 
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determine precisely PIs, the type of population distribution for a given random 

samples should be considered. In the available BW case, there are many factors 

which control these distribution characteristics such as the network topology, the 

arrival rates and the traffic distributions [48]. Due to the complexity of 

considering these distribution characteristics, DF-PI does not consider any kind of 

probability distribution to determine the available BW. In other words, the 

proposed mechanism uses the Distribution-Free (DF) approach. The general 

method of distribution-free PI construction is described using the following steps 

[46]: 

1. Let order statistics of the sample be x (1) ≤ x (2) ≤ ..≤x(n) whereby x1, x2,..,xn 

are independent and each with any continuous distribution function F(x). 

2. Specify the desired prediction level for the interval. 

3. Determine (from tabulations or calculations) the order statistics that 

provide the PI with at least the desired prediction level. If no such order 

statistics exist, use the extreme order statistics to obtain the interval end 

points and determine the associate prediction level. 

4. Use the selected order statistics as the endpoints of the distribution-free PI. 

Given a sample b(T) of size n which represent the observations of available BW, 

b(t1), b(t2), b(t3), …, b(tn) at related time t1, t2, t3, …, tn. The statistical estimated 

available BW, δ, for the previous period that has [bl, bn, bu] values is proposed as:  

  
                       

        
 

Where bl and bu are the minimum and maximum values in b (T) and bn is the 

current available BW that can be represented by the average of last five elements 

of sample b (T).While the control parameters {w1, w2, w3}are used to represent the 

effect of past and current states on δ calculation. In case of considering the 

importance of least future available BW, the control parameters should take 

values as w1> w2> w3. 

In the first step of the DF_PI algorithm, all the links that do not have sufficient 

BW to route D units are pruned. Then, the statistical available BW, δ, is 

calculated for every network link. In the rest of algorithm, the WSP algorithm is 

executed with a little modification. Instead of selecting the path with the 
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maximum available BW in case of existing equal shortest paths, DF-PI selects the 

path with the highest statistical available BW δ. 

 

Algorithm 2.8 DF-PI algorithm. 

Input: 

A graph G = (V, E) and a set B of all residual link capacities. 

An ingress node s and an egress node v between which a flow of D 

units have to be routed. 

Output: A route between s and v having a capacity of D units of BW. 

Algorithm: 

1) Consider only the links that have available BW more than the requested BW 

of flow. 

2) For each link l (u, v) E, calculate The statistical estimated available BW δuv:  

    
                       

        
 

3) Run the WSP algorithm to find the shortest path between s and v nodes with 

the following modification:- 

 If there are more than shortest path exist: 

a) Calculate the statistical available BW of a path p, 

δp = min(δuv,  l (u, v) p). 

b) Select the one with the highest δp. 

 

2.2.2 Path selection routing algorithm 

T. Anjali and C. Scoglio [49] have proposed a linear prediction approach, named 

Path Selection Algorithm (PSA), which solves the linear prediction equations to 

estimate the available BW and also tells the duration for which the estimate is 

valid with a high degree of confidence. PSA utilizes the estimated available BW 

as weights in the shortest widest path algorithm and achieve some improvement in 

the routing performance. 
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PSA algorithm considers that all network information is available at the source 

node. This information includes the network topology and the link state 

information such as the available BW. The available BW information can be 

measured using active and passive approaches. In the active approach such as 

Path load tool [50], test packets are sent to measure a specific service. Although 

the active approach produces additional traffic into the network, it has the 

capability to measure the desired quantities at the desired time. On the other hand, 

the passive approach like NetFlow tool [51] is able to observe the network traffic 

without sending any packets. 

PSA proposes to use the Simple Network Management Protocol (SNMP) [52] that 

gives the managed devices a means to store the management information and 

provides it to the management system on demand. With the help of SNMP 

framework, a modified version of the Multi Router Traffic Grapher (MRTG) [53] 

tool can be used to measure the average of available BW in a specific network 

link over 10 second durations. 

PSA starts with running the available BW estimation procedure. Then it uses the 

estimated available BW to select the best path using the shortest widest path 

algorithm that prefers the minimum hop path in case of existing equal widest 

paths.  

Algorithm 2.9 PSA algorithm. 

1) At time instant k, a request with D units arrives between nodes sand v. 

2) Run the available BW estimation procedure for links that has not estimated 

available BW. 

3) Compute the best path using the shortest widest path algorithm with weights 

as calculated in step 2. 

4) Obtain the available BW, A, on the bottleneck link of the path. 

5) If D > A   threshold, reject this path and return to step 3. Else, path is selected 

for the request. 

6) If no path available, request rejected and network is congested. 
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The PSA algorithm accepts the selected path if a certain fraction of the minimum 

available BW in this path more than the requested D of BW. If it is not more than 

the requested D of BW, then the algorithm rejects this path and tries to select 

another path between the source and destination pair. 

Using the modified version of MRTG tool, the PSA algorithm is able to obtain the 

link utilization statistics for 10 second intervals. For a given link l (u,v) E, the 

variables of available BW estimation algorithm are defined in Table 2.1. 

Table 2.1 The variables of available BW estimation algorithm. 

Variable Mean 

C Capacity of link in bits per sec. 

L (t) Traffic load at time t in bits per sec 

A (t) Available capacity at time t in bits per sec that is equal to C – L(t) 

τ Length of the averaging interval of MRTG. 

Lτ [k] Average load in [(k − 1) τ, kτ]. 

pm The number of past measurements in prediction. 

h The number of future samples reliably predicted. 

Ah[k] The estimate at kτ valid in [(k + 1) τ, (k + h) τ]. 

 

The problem of traffic load estimation after samples a  [1, h] can be formulated 

as linear prediction: 

                        

    

   

 Equation (2.1) 

Where wa (n) represents the prediction coefficients. In general, Wiener-Hopf 

equations [54] are used to solve this kind of problems. They are given in a matrix 

form as RL wa = ra, for a [1, h]: 

 
              
   

              
  

      
 

         
   

     
 

          
  

Where rL(n) is the autocorrelation of the sequence from the available 

measurements: 
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Since N is the requested estimation accuracy. If you need more precise, you 

should give N high value. To compute the autocorrelation value, the algorithm 

needs (n + N) measurement samples. PSA algorithm uses Levinson recursion 

method [55] to solve the Wiener-Hopf equations and compute wa vector. 

 

Algorithm 2.9.1 Available BW estimation procedure. 

1) At time instant k, available bandwidth measurement is desired. 

2) Find the vectors wa, a  [1, h] using Wiener-Hopf equations given pm and 

the previous measurements. 

3) Predict [   τ [k+1],…,   τ [k + h]]
T
 from Equation (2.1). 

4) Compute Ah[k] =C - max {   τ [k+1],…,   τ [k + h]}. 

5) At time (k + h) τ, get [Lτ [k+1],….,Lτ [k+h]]
T
. 

6) Find the error vector get [eτ [k+1],…., eτ [k+h]]
T 

since, 

eτ [k+a]=( Lτ [k+a]-   τ [k+a])
2
 for a  [1, h]. 

7) Set k = k + h. 

8) Run the interval variation procedure to obtain new values for pm and h. 

9) Go to step 1. 

 

The available BW estimation procedure solves the Wiener-Hopf equations and 

determines the wa vector. Then it substitutes with the wa and past measurement 

values in Equation (2.1) to get on the predicted load values. Depending on the 

predicted load values and the link capacity, the procedure computes the predicted 

available BW, where Ah[k] =C - max {   τ [k+1],…,   τ [k + h]}. 

In the fifth step, all the actual values of traffic load within the links are 

maintained. In step six, the error vector is calculated to maintain the prediction 

accuracy for the last prediction processes, where the error value is: 

eτ [k+a] = (Lτ [k+a]-   τ [k+a])
 2

  fora  [1, h]. 

Finally, the procedure sends the error vector to the interval variation procedure to 

obtain new values for pm and h and increments the k parameter with h value. 
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Firstly, the interval variation procedure calculates the mean (μ), standard deviation 

(σ) and the maximum value (M
2

E) of error eτ. Additionally, the procedure sets 

boundaries to both of pm and h values by defining pmmax, pmmin, hmin variables. 

Also it introduced the thresholds Th1 to Th4 to determine how the changes of pm 

and h happened. Depending on the comparison between the statistics values of 

error and the thresholds parameters, the new values of pm and hare determined 

and returned back again to be used in the available BW estimation procedure. 

 

Algorithm 2.9.2 Interval variation procedure. 

1) If σ/μ > Th1, decrease h till hmin and increase pm till pmmax multiplicatively. 

2) If Th1 > σ/μ > Th2, decrease h till hmin and increase pm till pmmax additively. 

3) If σ/μ < Th2, then: 

a) If μ > Th3 * M
2

E, decrease h till hmin and increase pm till pmmax additively. 

b) If Th3 * M
2

E> μ > Th4 * M
2

E, keep hmin and pm constant. 

c) If μ < Th4 * M
2

E, increase h and decrease pm till pmmin additively. 
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2.3 Decentralized routing algorithms 

In contrast to the centralized routing, in the decentralized routing, every node has 

only a local view of network status. Therefore, every node takes its own routing 

decision to forward the packets to an outgoing link. This means that multiple 

decisions are taken in all intermediate nodes between the source and destination 

pairs. While the decentralized routing approach is more tolerant in case of link or 

node failure and does not require advertising the changes to all network nodes, it 

requires an efficient framework to select the near optimal path because all routers 

are burdened with the route calculation. 

This part focuses on a self-organized and decentralized routing approach called 

Ant Colony Routing (ACR). ACR algorithms are inspired from real ants' 

behavior. The ants are able to discover the shortest way to a food source and their 

nest without any knowledge of geometry but with a keen sense of smell. 

ACR algorithms are considered as a member of Swarm Intelligence (SI) 

algorithms. SI is defined as “a computational technique for solving distributed 

problems inspired from biological examples provided by social insects such as 

ants and by swarm, flock and shoal phenomena such as fish shoals and bird 

flocks” [56]. In the SI system, there are many distributed agents with local views 

that can communicate with each other to solve different kind of problems. In 

general, the SI has the following features: 

 Autonomy: Each individual controls its own behavior without outside 

management or maintenance. 

 Adaptability: The individuals communicate with each other directly or 

indirectly via the local environment. Using the indirect communication 

method, the individuals are able to detect any change in the surrounding 

environment and have the ability to adapt their behavior to face the new 

changes. 

 Scalability: There is no degradation for the overall system performance 

when the number of individuals is increased. 

 Flexibility: Each individual in SI has the same priority and can be added, 

deleted or replaced. 
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 Robustness: In case of any failure, the overall system has the ability to be 

fast robust because there is no central control. 

 Massively parallel: Each individual is performing the same task.  

 Self-organization: SI system has all self-organization capabilities.  

 Cost effectiveness: As mentioned before, each individual has the 

autonomy feature and there is no central control. Thus, these features lead 

to reduce the cost of the design and implementation task. 

Many applications use the SI principles. For example, the solutions for discrete 

optimization problems can be found using the Ant Colony Optimization (ACO) 

meta-heuristic [57]. Another application of SI is the Particle Swarm Optimization 

(PSO) algorithm which is used to solve nonlinear optimization problems with 

constraints [58]. 

One of the important SI feature is the self-organization. Self-organization is 

defined as “a process in which pattern at the global level of a system emerges 

solely from numerous interactions among the lower-level components of a system 

without any external or centralized control” [59].The principles of self-

organization in social insects are interpreted through the following methods [60]: 

 Positive feedback: The ants aim to reinforce the good alternative solution 

for a problem more than the bad alternative solution. Therefore, it deposits 

an amount of pheromone depending on the quality of solution. 

 Negative feedback: In contrast to the positive feedback, an ant reduces the 

amount of pheromone for a solution. The negative feedback concept is 

always used to interpret the satiability among the collective pattern. The 

ants use the negative feedback concept when the food source is exhausted 

or during the competition among different sources. 

 Interactions among individuals and with the environment: The ants can not 

only communicate directly with each other, but can also communicate 

indirectly via the environment. In the indirect communication type, which 

is called “stigmergy”, an ant deposits a certain amount of pheromone in a 

path as a good sign for the food to let other ants follow this path? 
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 Probabilistic techniques: The randomness can be observed form the ant 

live. But in the artificial ant process, the ants use the stochastic process to 

move from one state to another state. 

ACR algorithms are based on the ACO meta-heuristic. The ACO meta-heuristic 

depends on a multi-agent structure to solve discrete optimization problems. Each 

autonomous agent has its own memory that is used to memorize the solution 

states and uses the stochastic process to take its decision. In general, ACO meta-

heuristic can be considered as a distributed learning approach. In addition to all 

inspired characteristics form the real ants, the artificial ants of ACO meta-

heuristic have other characteristics such as the look ahead [61], local optimization 

[62] and backtracking [63] capabilities. The ACO algorithm can be used to search 

for the near-optimal solution for different kind of problems such as scheduling 

[64], routing [65] and assignment [66] problems. The first ACO algorithm is the 

Ant System (AS) algorithm [67] which is proposed to solve the Travelling 

Salesman Problem (TSP). 

In the following sections, the AntNet algorithm, which is the oldest algorithm in 

the ACR class, is represented in more details. Then, an advanced algorithm from 

the same class, called Trail Blazer algorithm, is presented. 

2.3.1 AntNet routing algorithm 

AntNet [63], [68] is an ACO algorithm for distributed and adaptive best-effort 

routing in IP networks. AntNet is considered the first algorithm, which is inspired 

from the ant colony behavior, addressed for the use in routing. The behavior of 

AntNet depends on the mobile agents “ants’” framework. The main characteristics 

of AntNet algorithm comprise the following steps [69]: 

 At regular intervals, mobile agents or ants are forwarded form the source 

node s to the destination node d. During the forwarding phase, these 

mobile agents are called forward ants Fsd. 

 Each ant constructs a path by taking a sequence of decisions based on a 

stochastic policy parameterized by local pheromones and heuristic 

information. 
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 During the trip between the source and destination pair, the ants collect 

information about the trip time and identify the visited nodes. 

 Once it has arrived at the destination, the backward phase starts. The 

backward ants Bds retrace the route psd ={s, v1, v2,…, d} that was 

followed by their forward ants. 

 The backward ants update the local routing information in all the 

intermediate nodes vk  psd. The local routing information consists of 

two tables: The statistical model table M
vk 

that contains the expected end-

to-end delays, the pheromone or routing table Tvk
 that is used to route the 

data packets. 

 The backward ants are removed from the network when they have reached 

the source node s. 

 When the regular data packets arrive at anode, they are forward according 

to the information in the T k 
table. 

Figure 2.1 shows the node data structure in AntNet algorithm. The pheromone or 

routing table Tk 
contains N columns, one for each destination node. Each column 

has L entries, one for each outgoing link of the node. The entry ij contains the 

probability of sending a packet to destination j on the outgoing link i. Each entry 

has the same meaning of pheromone variable in the ACO meta-heuristic which 

represents the goodness of selecting an outgoing link to forward the date packets 

through it.  

 

Figure 2.1 The node data structure in AntNet algorithm. 
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The AntNet algorithm takes the optimal local decision by adapting the pheromone 

values during the continual search. The range of ij entry is [0, 1] and the sum of 

destination column is one: 

       

     

                                

The statistical model table M
k 

contains only one row which has an entry to each 

destination node. M
k 
contains the following statistical information:  

 µd is the mean of the traveling time to reach destination d from the current 

node, 

 σ
2

d is the variance of this traveling time and  

 Wd is the best traveling time to reach destination d during the window of 

the last w observations.  

The following exponential model is used to estimate the new µd and σ
2

d values: 

µd µd +  (okd - µd) Equation (2.2) 

σ
2

dσ
2

d +  ((okd - µd)
2
-σ

2
d) Equation (2.3) 

While okd is the new observation of the travelling time between node k and 

destination node d. The factor  controls the number of effective samples that is 

used to find the best traveling time Wd during it. With the experimental result, the 

effective relationship between w and is: w=5(c/), c [0, 1]. 

The AntNet algorithm proposes to use an adaptive reinforcement approach in 

order to compute the reinforcement parameter r which is used as a function of the 

goodness for the observed trip time. AntNet algorithm depends on the ant's trip 

time T and the statistical variables of M
k 
to compute the value of r parameter: 

     
  

 
     

         

                    
  Equation (2.4) 

The c1 and c2 parameters represent the importance of each term. Isup and Iinf are 

used to estimate the limits of an approximate confidence interval for µ: 

        Equation (2.5) 

          
   

  
  Equation (2.6) 

While    
 

      
 , where   is the confidence coefficient. 
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Using the calculated reinforcement parameter r, AntNet algorithm adjusts the 

probability entries of the pheromone table Tk
. the probability of selecting the 

outgoing link f when the destination is d,fd, will be increased by a value 

proportional to the reinforcement parameter r: 

fdfd + r (1 - fd) Equation (2.7) 

The probabilities of selection other outgoing links that are connected to Nk, nd, 

will be adjusted according to the following formula:  

ndnd - rnd, n f Equation (2.8) 
 

 

Algorithm 2.10 AntNet algorithm. 

1) At regular intervals t, a source node s sends the forward ant Fs d to a 

destination node d. The forward ants are created at node s with the following 

probability:    
   

    
 
   

   where fsd is the amount of traffic between s and d 

nodes. 

2) Each ant has an internal stack memory Ssd (k) which maintains the node 

identifier for node k that belong to the visited path and the time elapsed until 

arriving this k-th node. 

3) At each intermediate node k, the ant aims to select an outgoing link based on 

a stochastic policy parameterized by local pheromones and heuristic 

information. 

4) The forward ants aim to avoid the cycle occurrence by selecting the next hop 

that does not make any loop. If there is no any other choice, then the ant is 

destroyed. 

5) Once the forward ant arrives at the destination node, another backward ant 

Bds is generated and the stack memory of the forward ant is transferred to its 

memory. 

6) Using the stack memory Ssd, the backward ant takes the reversed path 

towards the source node.  
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7) At a node k that belongs to the reserved path, both of  the statistical model 

table M
k 

and the pheromone table Tk 
are updated according to the following 

steps: 

a) The backward ants use the information in the stack memory Ssd(k) to 

compute the mean µd and variance σ
2

d using Equations (2.2) and (2.3) and 

update Wd variable with the best traveling time value.  

b) Compute the reinforcement parameter r using Equations (2.4), (2.5) and 

(2.6). 

c) Update the pheromone table Tk 
entries by substituting with r value in 

Equations (2.7) and (2.8). 

 

In general, the AntNet algorithm shows superior performance under different 

experiment conditions compared to different routing algorithms from the machine 

learning fields such as Q-Routing [70] and Predictive Q-Routing [71] algorithms. 

A lot of algorithms have been proposed based on AntNet algorithm to overcome 

some limitations such as the adaptive routing algorithm that has been proposed by 

Yun and Zincir in order to reduce the information in the routing table [72]. 

2.3.2 The Trail Blazer routing algorithm 

The Trail Blazer (TB) algorithm is an intra-domain routing algorithm that aims to 

minimize the network congestion through local decisions, based on latency 

measurements collected by scout packets [73]. The TB algorithm is another 

example of ACR algorithms which maintains a probability table in each node to 

determine the probability of selecting an outgoing link in order to forward the data 

packets to a given destination. The TB algorithm is meant to be an extension of 

existing link-state protocols such as OSPF, which provides shortest path 

information to initialize the probability table. Therefore, TB does not require a 

learning period to discover the network topology. TB is also simpler than the 

AntNet algorithm. 
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Figure 2.2 The node data structure in TB algorithm. 

Figure 2.2 shows the node data structure in TB algorithm. In the TB design, each 

router has two tables: a link probability table Pt and an average transmission delay 

table avg. Pt contains m rows, one for each destination node. Each row has K 

entries, one for each outgoing link of the router. The entry pt[d,i] is the 

probability of sending a packet to destination d on the outgoing link i. The table 

avg has m entries, one for each destination node. The entry avg(d) is the average 

transmission delay from the current node to the destination d, which is computed 

from the last M scout packets that arrived from d. 

The TB algorithm sends an amount of scout packets depending on the amount of 

regular data traffic between the source and destination pair. Scout packets 

maintain the list of visited nodes to detect loops. TB algorithm can operate in two 

different modes. The first mode is One-way mode. In this mode the scout packets 

are sent from the destination toward its source. During the trip from the 

destination to the source, the latency is accumulated by the scout packets in order 

to update the probability tables in all intermediate nodes. The scout packets 

update their accumulated latency td in every intermediate node by td = td + t(i), 

where t(i) is the current latency of the outgoing link i. Once the scout packets 

arrive at the source, they will be destroyed. 

In the second mode which is called Two-way, the scout packets are sent from the 

source towards its destination in order to keep the local time stamp of all visited 

nodes. Once the scout packets arrive at the destination, they will take the reverse 

path back to the source. The latency from the current node to the destination on 

the return trip is computed by subtracting the saved time stamp at this node from 
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the saved time stamp at the destination node. Once the scout packets arrive at the 

source, they will be destroyed also. 

The Pt table is initialized with the collected information from the computed 

shortest paths by the underlying link-state protocol. Let SP (d) represents the set 

of outgoing links that belong to one or more shortest paths from the current node 

to destination. The initial value of pt is: 

         

 

       
          

                            

  

After computing the accumulated latency td, the scout packets use the td value to 

update the pt as follows: 

              
       

  
          Equation (2.9) 

∆p=  δ ×  f(td) Equation (2.10) 

         
                

        
 Equation (2.11) 

           
          

        
 Equation (2.12) 

The average latency avg(td) is used to scale the positive reinforcement value of 

the scout packet. A larger value of f (td) indicates a better (shorter) path. f(td) is 

limited to the range [0.1,10] to prevent wide fluctuations in ∆p, which is the 

reinforcement value of pt[d,j].δ defines the learning rate of the algorithm. All 

entries in Pt of the same destination d are scaled by 1+∆p to ensure that their sum 

remains is equal to one. 

 

Algorithm 2.11 TB algorithm (Two-way mode). 

1) Initialize the Pt table with the collected information from the computed 

shortest paths by the underlying link-state protocol. 

2) Send a scout packet every N regular data packets from the source node s to 

the destination node d. 

3) Each scout packet maintains the node identifier for node k that belongs to the 

visited path and the local time stamp of this node. 
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4) At each intermediate node k, the outgoing link is selected based on uses type 

of scout packets. There is two types of scout packets, Best-path scout packets 

and exploratory scout packets. 

5) The scout packet aim to avoid the cycle occurrence by selecting the next hop 

that does not make any loop. If there is no any other choice, then the scout 

packet is destroyed. 

6) Once the scout packet arrive the destination node, it will take the reserved 

path toward the source node s. 

7) At a node k that belongs to the reserved path, both of  the average 

transmission delay table avg and the probability table Pt are updated 

according to the following steps: 

a) Compute the latency from the node k to the destination d, t(i), by 

subtracting the saved time stamp at this node from the saved time stamp 

at the destination node. 

b) Update the average transmission delay table avg. 

c) Compute the reinforcement parameter ∆p using Equations (2.9) and 

(2.10). 

d) Update the probability table Pt entries by substituting with ∆p value in 

Equations (2.11) and (2.12). 

8) On the other hand, when a node receives the regular data packets, which 

needs to be forwarded, data packets will be routed according to the 

probabilities in pt table. 

 

In general, the communication overhead of TB algorithm is low because the 

number of scout packets is too small compared to the number of regular data 

packets. Also the TB algorithm aims to reduce the path oscillations by updating 

the probability table with a combination of old and new information. With the 

experimental result, TB algorithm has the least packet drop rate due to network 

congestion compared to the SPF algorithm. 
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CHAPTER 3 - Artificial neural network: Model selection 

and traffic prediction 

The objective of this chapter is to introduce an overview about the Artificial 

Neural Network (ANN) and present the qualification and efficiency of ANNs 

within the network traffic prediction field. In the first section, the ANN is defined 

and its properties are presented. The second section demonstrates the neuron 

biological model and the design of the emulated artificial model.  

Different methodologies of constructing ANN are discussed in section three. In 

section four, the differences between various learning processes are described. In 

section five, a lot of ANN applications are presented. The last section focuses on 

the use of ANNs as a traffic prediction model. Additionally, it presents the 

qualifications of ANNs that let it one of the most used traffic prediction models. 

3.1 Background 

The ANN is defined as “an information processing paradigm that is inspired by 

biological nervous systems, such as the brain, to process the information” [74]. 

ANN is constructed by interconnecting many information processing elements 

called neurons to solve different kinds of problems. The internal structure of ANN 

is changed during a learning phase based on a history of information called 

training samples. 

The first artificial neuron was proposed in 1943 by W. McCulloch and W. Pitts 

[75] to emulate the structure of a biological neuron. The first ANN model which 

was called Perceptron has been proposed by F. Rosenblatt in 1958 [76]. The 

perceptron model aims to emulate the processing of visual data in the human brain 

and the ability to recognize the objects. In general, ANNs is preferred to be used 

due to having the following features: 

 Adaptive learning: The ability to change the internal structure based on the 

training samples. 

 Self-organization: Each neuron works on its local information and all 

neurons communicate with each other to achieve a global object. 



CHAPTER 3 –  Artificial neural network: Model selection and traffic prediction 

 

 48 

 Real time operation: ANN aims to decrease the computation complexity. 

Therefore, the computation is done in a parallel manner. 

 Non-linear model: ANN can be represented as anon-linear model. It is the 

suitable technique when the linear approximation is not valid.  

 Fault tolerance via redundant Information: There is no degradation of 

ANN performance in case of any neuron failure. 

 VLSI implementation: the massively parallel nature of ANN makes it easy 

to implement it using the Very Large Scale Integrated (VLSI) technology.  

3.2 The neuron model 

This section focuses on the main structure and functions of a neuron element. The 

design of the artificial model for the neuron element is based on the biological 

neuron model. Therefore, the biological neuron model is firstly discussed in 

details during the next section. 

3.2.1 The biological model 

The human brain contains approximately 10 billion interconnected neurons [77]. 

The main objective of a neuron is processing the signal information and 

transmitting it to its neighbors. Figure 3.1 shows the biological neuron. The main 

core of neuron is the soma or the cell body which processes the signals and 

transmits it to other neurons through an extension called axon. The soma receives 

the signals from other neurons through many small extensions called dendrites. A 

neuron's dendrites tree is connected to very large numbers of neighboring 

neurons. The strengths of received signals are added through the processes of 

spatial and temporal summation. 

The neuron has only an axon which is connected to the soma at a point called 

axon hillock and the axon end is separated into several branches. At the end of 

branches, there are many connection points called synapses which in turns are 

connected to dendrites for other neurons to transmit the processed signal to them. 

The nature of transmitted signals is electrical which is called action potentials. 
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Figure 3.1 The biological neuron. 

3.2.2 The artificial model 

Figure 3.2 shows the neuron model that is widely used within the ANN field [78]. 

The artificial neuron has usually n inputs, named x1, x2, x3… xn and only one 

output y. The processing of information within the artificial neuron can be 

interpreted by the following mathematical operations: 

 Synaptic operation: The incoming signals to the neuron are assigned 

weights, named w1, w2, w3 ….wn. The weights role is similar to the 

synapses role within the biological model which represents the 

significance of corresponding incoming signals. The weighted signals, 

corresponding to the dendrites in the biological model, are forwarded 

directly to the next artificial neuron section. 

 Somatic operation: There are two different somatic functions, the 

aggregation and output (activation) functions. Firstly, the weighted signals 

are aggregated in a specific manner. The output or activation function 

controls the value of the output signal depending on a transfer function. 

The range of an output signal is usually between 0 and 1 or -1 and 1.  

Both of inputs and weights can represent real values. If the connection has a 

positive weight value, this indicates an excitatory effect. On the other hand, if the 

connection has a negative weight value, this indicates an inhibitory effect. 
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Figure 3.2 The artificial neuron. 

There are many aggregation functions. The most common one is the linear 

combination method. In the linear combination, the dot product concept is used to 

combine the inputs and weights values according to the following equation: 

           
 
      . 

There are a lot of output functions and the selection of the suitable output function 

depends on the application [79]. Figure 3.3 shows different output functions and 

the description of them is summarized as follow: 

 Step function: The oldest output function is the Step function which is 

proposed by W. McCulloch [75]. The output of artificial neuron, 

    
          
          

  , where zi is the aggregation of weighted signals. 

 Linear function: The neuron output value is proportional to the 

aggregation of weighted signals, yi =k*zi, where k is constant. If k is 

equal to 1, the function is called identity function. This type of 

function is used in the linear neural network [80]. 

 Ramp function: This function is a combination of the step and linear 

functions. The period between T and –T is linear. The function 

approximation is one of these function applications [81]. The ramp 

function equation is: 
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 Sigmoid function: The sigmoid function can be considered as a 

continuous version of the ramp function. Additionally, it provides a 

non-linear response. This function is usually used in the Multi Layered 

Perceptron (MLP) for classification tasks [82]. A common example of 

the sigmoid function is the logistic function which is represented by 

the following equation: 

   
 

       
 

 The Gauss function: The gauss function forms a sympatric shape 

around the origin. This function is controlled by a parameter called σ 

which forms the wide of function curve. The Radial Basis Function 

(RBF) neural network uses this function [83]. The gauss function is 

represented by the following equation: 

    
 
  
 

    

 

Figure 3.3 The output functions. 

3.3 Neural network models 

The next sections show the different methods that describe how the neurons are 

connected in order to form various models of neural networks. 
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3.3.1 Homogeneous vs. structured networks 

Most neural network models are homogeneous. The structure of a homogeneous 

neural network is very formal and regular such as the feed forward neural network 

that will be described in details later.  This model does not consider the 

knowledge about local connections or the relationship between the internal 

neurons. In the context of comparison between the homogeneous neural network 

and biological neural network, the architecture of them is not very similar.  

In contrast to the homogeneous neural network, the structured model allows the 

integration of structure knowledge by considering specific local connections or 

relations between the neurons in the network. This model is more similar to the 

biological neural network than the homogeneous neural network. An example of a 

structured neural network is the structure of local connections of the pyramidal 

cells in the visual cortex (see Figure 3.4). 

 

Figure 3.4 The pyramidal cells in the visual cortex. 

3.3.2 Feed forward vs. recurrent networks 

ANN can be categorized into Feed Forward Neural Network (FFNN) and 

Recurrent Neural Network (RNN), depending on the pattern of connections 

between the neurons and the propagation of signals inside the neural network.  

In the FFNN, the neurons are ordered in layers and each layer is connected to the 

following layer only. By default, each neuron is connected to all neurons in the 

following layer. There are no feedback connections are present in this kind of 

topology (see Figure 3.5). The data is forwarded from the input layer through the 

hidden layers to the output layer. In other words the propagation of data is done in 
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a unidirectional way. During the design of FFNN, the number of hidden layers 

and the number of neurons within it represent the ability of the neural network. 

The MLP is a classical example of FFNN [82]. 

 

Figure 3.5 Feed forward neural network. 

In contrast to the FFNN, each neuron in the RNN can be connected to any neuron 

regardless its position in the network (see Figure 3.6). In other words, this kind of 

neural network contains a feedback mechanism which allows it to exhibit a 

dynamic temporal behavior. The feedback mechanism gives the ability to create 

an internal state which can be used as internal memory to process arbitrary 

sequences of inputs. The famous RNN model was invented by John Hopfield [84]. 

 

Figure 3.6 Recurrent neural network. 

3.3.3 Fully vs. partially connected networks 

In the fully connected neural network (see Figure 3.7), each neuron is connected 

to all other neurons in the network. This type of architecture is the most general 
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neural network architecture. However, it requires a considerable time to determine 

the internal weights values. An example for this neural network model is the fully 

connected RNN that is used as auto-associative memory for the pattern 

memorization task. 

 

Figure 3.7 Fully connected neural network. 

On the other hand, the partially connected neural network contains only a sub-set 

out of all possible connections between the neurons (see Figure 3.8). The main 

purpose of pruning some connections is to reduce the training time of the neural 

network and to simplify the implementation process in order to reduce the overall 

cost. An example of this neural model is the Partially Connected Feed Forward 

Neural Network (PCFNN) [85]. 

Figure 3.8 Partially connected neural network. 

3.4 The learning process 

The internal structure of ANN is constructed during the learning or training 

process. There are different methods to set the weight values of the neural 
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network in order to achieve the desired function. Three different learning methods 

are described in the next sections. 

3.4.1 Error-driven learning 

The error-driven learning is supervised learning. In this learning method, the 

ANN has a priori set of output classes into which the input patterns will be 

classified. The ANN is trained on data samples called a training data set. A part of 

this data is formed as inputs for the neural network and another part is formed as 

desire output named target.  

The standard training process uses the back-propagation method [86].  During the 

training process, each weight in the network takes a specific value depending on 

the desire target. At the beginning of the training process, each weight takes an 

initial random value and then the errors of weights are computed. To minimize the 

total error, the gradient decent method is used to adjust the weight values 

depending on the errors of weights. 

The last step of the training process is to validate the weight settings on another 

data set called validation data set in order to check the correctness of the desired 

neural network function. The traditional examples of feed forward topologies, 

which use the supervised learning method, are the MLP and the Time Delay 

Neural Nets (TDNN) [87]. The examples of recurrent topologies are the Jordan 

network [88] and the Elman network [89]. 

3.4.2 Unsupervised learning 

In contrast to the error-driven learning, the ANN, that uses the unsupervised 

learning, has not any priori set of output classes into which the input patterns will 

be classified. During the unsupervised learning process, all input patterns, which 

are similar in the statistics, are grouped into a specific cluster. The clustering is 

based on the property distribution function of input data. 

Typical examples of the unsupervised learning algorithms are the Hebbian 

learning algorithm, and the competitive learning algorithm. The main idea of the 

Hebbian algorithm bases on increasing the weight between two neurons when the 

two neurons have highly correlated outputs at the same time. The main objective 
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of the competitive learning algorithm is to give the weights specific values in 

order to let some neurons in the network respond to a subset of input data. 

The traditional examples of feed forward topologies, which use the unsupervised 

learning method, are the Self-Organizing Feature Maps (SOFM) [90] and the 

Neural Gas (NG) [91]. The examples of recurrent topologies are the Hopfield 

networks and the Boltzmann-Machine [92]. 

3.4.3 Reinforcement learning 

The reinforcement learning can be considered a specific learning type in between 

the supervised and unsupervised learning. In this type, there is a feedback signal 

from the environment after a sequence of inputs that decides if the output is right 

or wrong. However the feedback signal nature is only evaluative, not instructive. 

The reinforcement learning has three components: the agent, the environment and 

the actions. The agent is the decision maker that takes action according to specific 

responses from the environment. After each action, the agent receives a reward. 

The main target of an agent is to select the nearly optimal actions in order to 

maximize the received reward during a specific period of time. In general, ANNs 

are usually used in the reinforcement learning as part of the overall algorithm such 

as the Q-learning Neural Network (QNN) that is used to approximate value 

functions in the Q-learning approach [93]. 

3.5 Neural network applications 

The ANNs have a lot of real life applications within different fields. The 

applications of ANNs can be categorized depending on the desired task. Some of 

these applications are presented in the following: 

 Classification: the typical ANN application is the classification including 

the pattern recognition.  

 Data compression: ANN has the ability to receive a big amount of data, 

such as image data, and process it in parallel in order to represent an 

efficient compression schema. 

 Prediction: ANNs have introduced high prediction accuracy within linear 

and non-linear data sets. 

 Clustering: The SOFM is usually used in the clustering task. 

http://www-cs-faculty.stanford.edu/~eroberts/courses/soco/projects/2000-01/neural-networks/Applications/character.html
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 Function approximation: As described before, the QNN is used to 

approximate value functions in the Q-learning approach.  

 Filtering: One of the traditional applications is using the ANNs as data 

filter in the control field. 

The main idea of this thesis depends on the network traffic prediction, therefore, 

in the next section; the use of ANN in the traffic prediction application will be 

discussed in more details. 

3.6 Traffic Prediction Using ANN Model 

The network traffic prediction is classified as a Time Series Forecasting (TSF) 

problem. In particular, the TSF problem concerns with the systems that have a 

strong correlation between their chronologically ordered values [94], such as the 

network traffic.  The TSF objective is to model these systems and predict their 

behavior based in a historical data without the awareness of their internal structure 

and main functions. 

The network traffic has some remarkable characteristics which make the 

prediction of their future values possible. The main characteristics of network 

traffic are listed in the following points: 

 Highly non-linear nature: The authors of scientific work in [101] 

demonstrate the evidence of nonlinear nature of network traffic. 

 Strong correlation: Network traffic presents a strong correlation between 

its chronologically ordered values. 

 Self-Similarity: This property is defined in [102] as “It is a specific 

phenomenon where a certain property of an object is preserved with 

respect to scaling in space and/or time”. 

 Long Range Dependence: This property is defined in [103] as “It is a 

behavior of a time-dependent process that shows statistically significant 

correlations across large time scales”. 

 Burstiness: This property is defined in [104] as “The intermittent increases 

and decreases in activity or frequency of an event”. This feature can be 

measured by the ratio of peak rate to mean rate. Also, Bursty events are 

characterized by heavy tailed distributions. 
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There are several efforts have been introduced in the traffic prediction research 

direction. These can be classified into two categories: linear prediction and 

nonlinear prediction [95]. The previously discussed prediction techniques within 

the DF-PI [46] and PSA [49] algorithms (See chapter Two) are classified as linear 

prediction models. The most common example of nonlinear prediction model is 

the ANN model, that is used to predict the real network traffic in the following 

recently research works [95], [96], [97], [98], [99] and [100]. 

The comparative study between the linear and nonlinear predictions in [95], 

shows that traffic prediction using the ANN model outperforms the traffic 

prediction using the linear forecasting models. Additionally, based on experiment 

result in chapter five, our proposed prediction model (ANN-based) outperforms 

the linear forecasting models within DF-PI and PSA algorithms [24]. 

On the whole, the ANN model is one of the best proposed tools for modeling and 

predicting the traffic parameter whereas the ANN has the following properties: 

 Simple architecture: ANN achieves an efficient performance with a simple 

architecture in several research fields. 

 Flexibility: ANN is not restricted on a specific system with predefined   

type of relationship between their parameters. 

 Learning capability: The most interested property of ANN over the 

traditional modeling techniques is the learning capability. Based on the 

provided historical data, the underlying relationship between system inputs 

and outputs can be efficiently recognized by ANN without prior 

knowledge of the system functional form. 

  Non-linear modeling capability: ANN has the ability to approximate too 

many functions regardless of their degree of nonlinearity. 
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CHAPTER 4 - System model 

In the first chapter, the model details of proposed algorithms are presented and 

discussed. The main objective of this dissertation is to introduce a new 

optimization mechanism which uses the predicted traffic in order to improve the 

performance of dynamic routing algorithms. Two different contributions are 

introduced. The first contribution is enhancing the performance of centralized 

routing algorithms [22], [23], [24] and the second contribution is developing a 

new prediction-based decentralized routing algorithm [25], [26], [27]. 

4.1 Predicting of Future Load-based Routing (PFLR) 

This section provides a detailed description for the Predicting of Future Load-

based Routing (PFLR) algorithm. The first part of this section discusses the main 

characteristics of the new innovative idea of PFLR algorithm. The second part 

describes the model structure, the proposed prediction models and pseudo code 

for the first version of PFLR algorithm (PFLRv.1).  The third part of this section 

describes the model structure, the new added features and pseudo code for the 

second version of PFLR algorithm (PFLRv.2). The last part discusses the 

complexity analysis of PFLR algorithm.  

4.1.1 The characteristics of innovative idea 

Before going ahead to describe the PFLR algorithm in more details, this section 

summarizes the main characteristics of the new innovative idea and outlines the 

new features for this proposed algorithm. 

 The proposed approach is routing maintenance algorithm, which can run 

with any routing algorithm whose computations depend on the residual 

BW in network links. 

 With the use of PFLR algorithm, the future status of the network link loads 

will be considered. The considering of future network link loads has a big 

impact in reducing the interference between the path requests in the future 

and so reduces the occurrence of network congestions and at the same time 

leads to increase the network utilization. 



CHAPTER 4 – System Model  

 

 60 

 The most important feature of PFLR algorithm is the link state (weight) 

representation. The proposed algorithm combines the predicted link load 

with the current link load with an effective method in order to optimize the 

link weights. The idea is to reduce the number of wrong and critical 

decisions in case of uncertain prediction accuracy.  

 The proposed approach uses the Artificial Neural Network (ANN) for 

building an adaptive traffic predictor in order to predict future link loads. 

The main reason of using the ANN is that: the ANN is one of the best 

proposed tools for modeling and predicting the traffic parameters. The 

ANN has the ability to approximate too many functions regardless of their 

degree of nonlinearity and without prior knowledge of its functional form. 

Therefore, ANN can offer an accurate prediction capability (especially in 

our on-line forecasting case) with different types of network traffic and 

has the ability to be adaptive. The up-to-date scientific researches that 

propose and demonstrate the use of ANN for building the traffic predictor 

are presented in [95], [96], [97], [98], [99] and [100]. 

 The PFLR algorithm has the ability to adapt the length of prediction step 

depending on the prediction accuracy in order to efficiently estimate the 

link traffics and so enhance the routing performance. 

4.1.2 The PFLRv.1 approach 

Figure 4.1 outlines the operations of PFLRv.1. The white color boxes represent 

the typical routing components. In the traditional dynamic routing, there are 

requests for routes among different source and destination pairs. The routing 

algorithm takes the current information of the network links and computes the 

best path based on a pre-defined method. After selecting the best path, the routing 

algorithm forwards the packets through the network and updates the reserved BW 

of each link that belongs to the best path between the source and the destination. 

The dark color boxes are the components of the proposed algorithm. The idea 

behind design of PFLR algorithm is to consider the future link load to enhance the 

performance of dynamic routing algorithms. Therefore, a traffic predictor is 
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proposed in order to accurately predict the traffic behavior. The ANN is used for 

building an adaptive traffic predictor in order to predict future link loads. 

  

Figure 4.1 Predicting of Future Load-based Routing (PFLRv.1) model. 

In the detailed implementation, every link has a predictor which is placed on one 

of the directly connected nodes. Each predictor works on its link history and has 

its own parameter values. In other words, the predictions are made decentralized 

to achieve a fast prediction and to conquer the complexity of prediction. 

The proposed predictor has two different processes: the training and prediction 

processes. In the training process, the internal structure of dynamic FFNN is 

constructed by a learning process based on the history of link loads. During the 

prediction process, the future link load on every link is estimated after (and 

during) a specified period of time, named Window Size (WS). During this 

dissertation, the WS parameter (or length of prediction step) is defined as “the 

number of representative sample steps used to determine the next prediction 

point”.  

4.1.2.1 Proposed prediction models 

There are two different prediction models are proposed within the PFLRv.1 

algorithm. The first is the single step-ahead prediction model and the second is the 

multi steps-ahead prediction model. Each prediction model has different training 

and prediction processes. In the next sub sections, the description of each model 

will be introduced in more details.  
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4.1.2.1.1 The single step-ahead prediction model 

The single step-ahead model is considered as an event-based approach. In the 

event-based approach, if a new route is requested in the network, a new event is 

generated. In general, the network traffic is sampled at every new route request. 

Therefore, the lengths of sample steps are different and the length of each step 

equals to the time difference between the occurrences of current and previous 

route requests. 

In the single step-ahead prediction model, the structure of used dynamic FFNN is 

shown in Figure 4.2. It consists of three layers: The input layer which contains 

sixteen neurons; the hidden layer which contains 20 neurons and only one neuron 

in the output. The Levenberg-Marquardt [105] training algorithm is used because 

it is the fastest and most accurate one in this case. A lot of experiments are made 

with various numbers of input neurons, various hidden layer numbers and various 

neurons in the hidden layer. After that, the best structure of FFNN, which 

achieves the best training results, is selected. Additionally, different values of 

training period size are tested to achieve an efficient predictor. 

 

Figure 4.2 Dynamic FFNN architecture (Single step-ahead model). 

During the training process, a history of the last thousand (plus WS) of sampled 

link traffic are used for training purpose. One training pattern contains sixteen 

sampled traffic values from the history in row as input values and one expected 

output value. The expected output value is a history value WS time after the input 

values. By shifting, one thousand training patterns are generated (see Figure 4.3). 

Additionally, the training process is triggered every a specific fixed period (e.g. a 

hundred traffic samples).  
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Figure 4.3 The training process (PFLR algorithm - Single step-ahead model). 

Figure 4.4 demonstrates the details of prediction process. In the prediction process 

within the single step-ahead prediction model, the last sixteen traffic values are 

used as inputs for the FFNN. Then, the FFNN predicts a value for the link load 

after a WS period. In this model, the prediction process is triggered every WS 

period. In the first version of PFLR, an analysis study is done to select the best 

value of WS. In other words, WS period has fixed value during the whole 

simulation time. 

 

Figure 4.4 The prediction process (PFLR algorithm). 

4.1.2.1.2 The multi steps-ahead prediction model 

In the single step-ahead prediction model, the network traffic is sampled at every 

new route request. However, the new route request changes only the reserved BW 

of the links within selected path between the source and destination pair. This 

means that, if the traffic values within each network link at every new route 

request are considered, it will cause a lot of data redundancy.  

In order to clarify the previous situation, an illustrative example, that shows the 

changes of reserved BW within a specific link, is considered. Figure 4.5 shows the 

reserved BW graph within a specific link. In this figure, the X axis represents the 

time units (the red labels). At the same time, it shows the occurrences time of 

consequence route requests (the black labels). Additionally, the Y axis represents 

the reserved BW values. 
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Figure 4.5 The sample step representation. 

In this illustrative example, the considered link only was a part of the route 

requests no. 2 and 9. Therefore, the reserved BW within this link is increased at 

the time of route requests no. 2 and 9. Additionally, at the occurrence time of 

route request no. 5 and 12, the holding time for other rout requests are finished. 

Therefore, the reserved BW within this link is decreased at the occurrence time of 

route request no. 5 and 12. However, the reserved BW values are fixed at the 

occurrence time of all other route requests, because the considered link is not part 

of their selected paths. 

In single step-ahead prediction model, the network traffic is sampled at every new 

route request. Thus, the sampled traffic data contains a lot of repeated data. To 

overcome the data redundancy problem, there is another method is proposed to 

represent the effective sample step. The new proposed method is to use the mean 

of inter-update intervals to represent the effective sample step.  

The inter-update interval term represents the number of consequence requests that 

occurred between two successive changes (updates) of the reserved BW. 

Considering the data within Figure 4.5, there are four changes at the occurrence    

time of requests no. 2, 5, 9 and 12. Thus, the inter-update intervals for the four 

changes in the reserved BW are two, three, four and three requests. This means 

that, the mean of inter-update intervals equals to three requests. The green ditched 

lines within Figure 4.5 represent the proposed effective sample steps. 

The second proposed feature in the multi steps-ahead prediction model is the 

prediction of link load values at multiple points in the future. In the single step-

ahead prediction model, the future link load information is represented by the 

predicted link load value at the end of WS period. However, in the multi steps-
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ahead prediction model, the future link load information is represented by the 

average of all predicted link load values during the WS period. 

In multi steps-ahead prediction model, the structure of the used dynamic FFNN is 

shown in Figure 4.6. It consists of three layers: The input layer which contains 

seventy six neurons; the hidden layer which contains thirty five neurons. The 

number of neurons within the output layer equals to the used WS value in the 

considered performance test.  

Also, the Levenberg-Marquardt [105] training algorithm is used. A lot of 

experiments are made with various numbers of input neurons, various hidden 

layer numbers and various neurons in the hidden layer. After that, the best 

structure of FFNN, which achieves the best training results, is selected. 

Additionally, different values of training period size are tested to achieve an 

efficient predictor. 

 

Figure 4.6 Dynamic FFNN architecture (Multi steps-ahead model). 

During the training process, the histories of the last ten thousands of effective 

sampled link traffic are used for training purpose. One training pattern contains 

seventy six effective sampled traffic values from the history in row as input values 

and WS expected output values. The expected output values are the effective 

sampled link values within the WS time period after the input values. By shifting, 

ten thousands (minus WS values) training patterns are generated (see Figure 4.7).  
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According to the prediction process within the multi steps-ahead prediction 

models, the last seventy six traffic values are used as inputs for the FFNN. Then, 

the FFNN predicts all values for the link load during WS period. Also, in this 

model, the prediction process is triggered every WS period. 

 

Figure 4.7 The training process (PFLR algorithm - Multi steps-ahead model). 

4.1.2.2 PFLRv.1 pseudo code  

The main core of PFLRv.1 algorithm is divided into four stages. The first stage is 

the prediction of the future traffic load on every link after (or during) WS period. 

The predicted available BW is calculated in the second stage using the next 

equation: 

The predicted available BW = link capacity – Predicted Load Equation (4.1) 

In the third stage, the predicted available BW and current residual BW of each 

link are combined to represent the reciprocal of available BW (RBW) using the 

following formula: 

    
    

            
 



                       
 Equation (4.2) 

The RBW formula is controlled by a parameter, named α, which represents a 

weight for the predicted value. A low α reduces the influence of the predicted 

value on the BW. A high value of α increases the influence and suppresses the 

current value of available BW.  

Finally, the normal (unchanged) routing algorithm runs to compute a weight-

optimized path. In other words, PFLR algorithm does not change the routing 

algorithm that is already running in the network; it just modifies the links weights 

by taking the future link load into account. Thus the proposed algorithm has the 
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capability to run with any dynamic routing algorithm which depends on the 

residual BW during its computation. 

Algorithm 4.1: PFLRv.1 algorithm. 

Input: 
The network topology and residual available BW.  

The route requests between the ingress-egress pairs. 

Output: Routed paths through the network. 

Algorithm: 

1) Repeat the following steps for a specific fixed period (e.g. a hundred traffic 

samples). 

a) Predict the future traffic load on all network links after a WS period. 

b) Obtain the predicted available BW in each link using Equation (4.1). 

c) Repeat the following steps until the time of the WS elapses. 

i. Compute the reciprocal of available BW using equation (4.2). 

ii. Compute the best path using the normal routing algorithm without 

changing anything. 

2) Train the predictor according to the link load histories.  

3) Go to step 1. 

 

In the PFLRv.1 algorithm, the training process is triggered every a specific fixed 

period (e.g. a hundred traffic samples).  

4.1.3 The PFLRv.2 approach 

The new proposed feature of the PFLRv.2 algorithm is the parameters adaptation 

process (see Figure 4.8). Two parameters are adapted and optimized depending on 

the prediction accuracy: The WS parameter and the Prediction Validity Period 

(PVP) that represents the duration of period for which the prediction is valid with 

a high degree of confidence. In the PFLRv.2 algorithm, the aim is to give the 

proposed algorithm the ability to adapt the prediction parameters in order to 

efficiently predict the traffic load and optimize the routing performance. 
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Figure 4.8 Predicting of Future Load-based Routing (PFLRv.2) model. 

4.1.3.1 The new features of PFLRv.2 algorithm 

In the PFLRv.2 algorithm, a new adaptive feature is proposed, called parameters 

adaptation process. The main objective for this process is to give the proposed 

predictor the ability to optimize the prediction parameters such as WS and PVP 

parameters. As described before, the prediction takes place every WS period and 

the predictor structure is not changed until PVP period has elapsed. A PVP period 

contains multiple WS periods. In other words, PVP represents how many times the 

prediction is happened. If the PN parameter is the Prediction Numbers, then: 

PVP = WS * PN Equation (4.3) 

The parameters adaptation process depends on the predictions accuracy that is 

calculated by comparing the actual and predicted traffic loads. Therefore, two 

archiving processes are required to archive the actual and predicted traffic loads 

during the run of algorithm. The prediction accuracy can be represented by the 

prediction error. There are many error representation methods [106]. In this work, 

the Root Mean Square Error (RMSE) is used to represent the prediction accuracy. 

If AL is the actual traffic load and PL is the predicted traffic load, then the RMSE 

value is: 

      
           
 
   

 
 Equation (4.4) 

The relationship between the RMSE for the prediction and the WS parameter is 

studied in order to correctly adjust the WS parameter depending on the RMSE 

value. 
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Figure 4.9 The relationship between the RMSE and WS parameters. 

Figure 4.9 shows the relationship between the RMSE and WS parameter with 

respect to the WSP_PFLR (WSP algorithm with PFLR modification) algorithm. 

In this relationship study, the WSP_PFLR algorithm runs within the MIRA 

topology [36] and with respect to generated traffic. During this experiment, 

different WS values are tested and the RMSE for the prediction is measured. The 

results show that, the RMSE increases when the WS parameter increases. 

Therefore, the algorithm aims to decrease the WS parameter when the RMSE 

value increases. 

The parameters adaptation procedure consists of four steps. The first step is the 

computation of RMSE using Equation (4.4). In the second step, the PN parameter 

is adjusted based on the comparison between the RMSE and the Error Threshold 

(ETh) parameters (see Figure 4.10). For example, if RMSE value equals to or less 

than Eth value, this means that the prediction accuracy is very good and the 

number of predictions should be increased by two. 

 

Figure 4.10 The PN parameter adaptation. 

In the third step, the procedure compares PNn+1 and PNBase parameters where 

PNBase contains the last value of PN when WS is changed. If PNBase is increased by 
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PNTh, then WS should be incremented by one. If PNBase is decreased by PNTh, 

then WS should be decremented by one. 

 

The last procedure step is calculating the new value of PVP parameter using 

Equation (4.3). Figure 4.11 shows an example that demonstrates how to adapt WS 

parameter depending on the comparison between the PNn+1andPNBase parameters. 

 

Figure 4.11 The WS parameter adaptation. 

4.1.3.2 PFLRv.2 pseudo code 

In the PFLRv.1 algorithm, the training process is triggered every a specific fixed 

period (e.g. a hundred traffic samples). In the PFLRv.2 algorithm, the training 

process is triggered every PVP period which is adapted depending on the 

Algorithm 4.2: Parameters adaptation procedure. 

1) Compute the RMSE of prediction using Equation (4.4). 

2) Update the PN parameter with respect to the following comparisons:  

a) If RMSE≤ ETh, PNn+1=PNn +2. 

b) If RMSE>Eth & RMSE ≤ ETh*1.33, PNn+1=PNn +1. 

c) If RMSE>ETh*1.66 & RMSE≤ ETh*2, PNn+1=PNn -1. 

d) If RMSE>ETh*2, PNn+1=PNn -2. 

3) Update the WS parameter with respect to the following comparisons: 

a) If PNn+1 ≥ PNBase+ PNTh, WS=WS+1, PNBase= PNn+1. 

b) If PNn+1 ≥ PNBase- PNTh, WS=WS-1, PNBase= PNn+1. 

4) Compute the new PVP value, PVP=WS * PNn+1. 
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prediction accuracy. When the time of PVP has elapsed, the parameters adaptation 

procedure will be called to adapt the WS and PVP parameters. Then the training 

process will be triggered. 

Algorithm 4.3: PFLRv.2 algorithm. 

Input: 
The network topology and residual available BW.  

The route requests between the ingress-egress pairs. 

Output: Routed paths through the network. 

Algorithm: 

1) Repeat the following steps until the time of the PVP period has elapsed. 

a) Predict the future traffic load on all network links after a WS period. 

b) Obtain the predicted available BW in each link using Equation (4.1). 

c) Repeat the following steps until the time of the WS has elapsed. 

i. Compute the reciprocal of available BW using equation (4.2). 

ii. Compute the best path using the normal routing algorithm. 

2) Call parameters adaptation procedure (Algorithm 4.2) to adapt WS and PVP. 

2) Train the predictor according to the link load histories.  

3) Go to step 1. 

4.1.4 Complexity analysis of PFLR algorithm 

The PFLR algorithm requires additional computational time to achieve an 

enhanced routing performance. This time consists of two parts, the training time 

and the prediction time of the predictors. As mentioned before, the predictors are 

distributed on the nodes. Therefore, every node is responsible for an average of 

(|E|/|V|) operation. Where |E| is the number of links and |V| is the number of 

nodes. The training operation happens only one time every PVP period. The 

prediction also happens every WS period. Thus, the training requires O ((|E| Tt) / 

(|V| PVP)) time steps, where Tt is the training time of one predictor and the 

prediction operation requires O ((|E| Pt) / (|V| WS)) time steps, where Pt is the 

prediction time of one predictor. 
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4.2 Prediction-based Decentralized Routing (PDR) 

This section provides a detailed description for the Prediction-based Decentralized 

Routing algorithm (PDR). The first part of this section discusses the main 

characteristics of the new innovative idea of PDR algorithm.  The second part 

describes the model structure of PDR algorithm. The third part of this section 

describes the PDR algorithm methodology. The forth part of this section describes 

the proposed prediction model and pseudo code for the first version of PDR 

algorithm (PDRv.1). The fifth part of this section describes the proposed 

prediction model, the new features and pseudo code for the second version of 

PDR algorithm (PDRv.2). The sixth part discusses the parameter adaptation 

process which exists in both PDR algorithm versions. The last part discusses the 

complexity analysis of PDR algorithm. 

4.2.1 The characteristics of innovative idea 

Before going ahead to describe the proposed algorithm in more details, this 

section summarizes the main characteristics of the new innovative idea and 

outlines the new features for this proposed routing algorithm: 

 The proposed approach is fully decentralized and self-organized approach 

and is based on the Ant Colony Optimization (ACO) technique.  

 In this approach, an ant uses a combination of the link state information 

and the predicted link load instead of the ant’s trip time to determine the 

amount of pheromone to deposit, so that it has a simpler process and less 

control parameters. 

 The use of link state information helps the routing algorithm to efficiently 

achieve the BW guarantee of the provided QoS. Additionally, considering 

the future value of the network link loads leads to reduce the interference 

between the reserved requests in the future and so reduce the occurrence of 

network congestions and increases the network utilization. 

 PDR algorithm uses an efficient ant’s selection methods (for the 

intermediate nodes) which considers the predicted link load to better 

estimate for the congestion within network links. This feature gives the 
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ability to efficiently distribute the ants on the network topology and 

accurately discover the best paths. 

 The PDR algorithm uses similar prediction mechanism to the PFLR 

algorithm but with local-based implementation. 

 Additionally, the PDR algorithm has the ability to locally adapt to the 

internal algorithm parameters, such as the prediction validity period, in 

order to efficiently predict the link traffics and so effectively enhance the 

routing performance. 

4.2.2 The PDR model 

Figure 4.12 outlines the operations of PDR. In the algorithm, ants are distributed 

through the network to discover the best paths. The ants use a combination of the 

link state information and the predicted link load instead of the ant’s trip time to 

determine the amount of pheromone to deposit. This is simpler and requires less 

control parameters. After selecting the best path, the routing algorithm forwards 

the packets through the network and updates the reserved BW of each link that 

belongs to the best path between the source and the destination. 

 

Figure 4.12 Prediction-based Decentralized Routing (PDR) algorithm. 

The idea behind design of PDR algorithm is similar to the idea of PFLR algorithm 

which depends on the consideration of the future link load to enhance the 

performance of Ant-based routing algorithms. Therefore, a traffic predictor is 

proposed to accurately predict the traffic behavior. The ANN is used for building 

an adaptive traffic predictor in order to predict future link loads. 
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The proposed predictor has two different processes: the training, and the 

prediction process. In the training process, the internal structure of FFNN is 

constructed by a training based on traffic samples of link histories. During the 

prediction processes, the future link load on every link is estimated after WS 

period. In the detailed implementation, each link has a predictor which is placed 

on one of the directly connected nodes. Each predictor works on its link history 

and has its own parameter values. In other words, the predictions are made 

decentralized to achieve a fast prediction and to conquer the complexity of 

prediction. 

In the parameter adaptation process, The Prediction Validity Period (PVP) 

parameter is adapted and self-optimized depending on the prediction accuracy. 

The PVP parameter represents the duration of a period for which the prediction is 

valid with a high degree of confidence. With the help of this feature, the training 

of each predictor is triggered independently of each other.    

4.2.3 The PDR methodology 

The PDR algorithm is built on the principles of the TB routing framework. In the 

TB design (see Figure 2.2), each router has two tables: a link probability table Pt 

and an average transmission delay table avg. Pt contains m rows, one for each 

destination node. Each row has K entries, one for each outgoing link of the router. 

The entry pt [d,i] is the probability of sending a packet to destination d on the 

outgoing link i. The table avg has m entries, one for each destination node. The 

entry avg (d) is the average transmission delay from the current node to the 

destination d, which is computed from the last M scout packets that arrived from 

node d. A scout packet is sent from the source to the destination to explore the 

network. At every intermediate node, the scout packet selects the outgoing link 

randomly or according to various probabilities that will be described later. When 

scout packets find their destination, they return to their source on the same path 

they have arrived on and update their accumulated latency td in every 

intermediate node by td =td + t (i), where t (i) is the current latency of the 

outgoing link i. Then, the scout packets use the accumulated latency td to update 

the pt as follows: 
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          Equation (4.5) 

∆p=  δ ×  f(td) Equation (4.6) 

         
                

        
 Equation (4.7) 

           
          

        
 Equation (4.8) 

The average latency avg (td) is used to scale the positive reinforcement value of 

the scout packet. A larger value of f (td) indicates a better (shorter) path. f(td) is 

limited to the range [0.1,10] to prevent wide fluctuations in ∆p, which is the 

reinforcement value of pt[d, j].The δ parameter defines the learning rate of the 

algorithm. All entries in Pt of the same destination d are scaled by 1+∆p to ensure 

that their sum remains equal to one. 

In this approach, an ant uses a combination of the link state information and the 

predicted link load instead of the ant’s trip time to determine the amount of 

pheromone to deposit, so that it has a simpler process and less control parameters. 

The current latency t (i) of an outgoing link i in the TB algorithm is replaced by 

the Link Weight formula LW (i). LW (i) represents a combination of PFLR and 

LIOA to reduce the interference among competing flows by balancing the number 

of flows and the required BW reserved by a link to achieve efficient routing.  

The LIOA algorithm represents a cost metric which balances the number and the 

intensity of the flows offered to the routes. In the LIOA algorithm, the link weight 

LW (i) = I 
lc
 / (Available BW) 

(1-lc)
, whereas I is the number of flows carried on the 

link and lc is the least interference control parameter which represents a trade-off 

between the number and the magnitude of the flows traversing a link. On the other 

hand, the PFLR algorithm proposes to incorporate the Predicted Available BW 

(PABW) in the link weight formula to optimize the performance of routing. Based 

on the previous considerations, the formula for calculating LW (i) is: 

           
    

                    
 



            
  Equation (4.9) 
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The LW (i) formula is controlled by a parameter α, which represents the prediction 

weight. A low α reduces the influence of the predicted value on the available BW. 

A high value of α increases the influence and suppresses the current value of the 

available BW. 

On the other hand, when a node receives a data packet, which needs to be 

forwarded, data packets will be routed according to the probabilities in the pt table 

that is maintained by the PDR algorithm. 

4.2.4 The PDRv.1 approach 

In this section, the proposed prediction model and pseudo code for the PDRv.1 

approach are presented and discussed in more details.  

4.2.4.1 Proposed prediction model 

In the PDRv1 algorithm, the static FFNN is used. The structure of the used static 

FFNN is shown in Figure 4.13. It consists of three layers: The input layer which 

contains three neurons; the hidden layer which contains fifteen neurons and only 

one neuron in the output. The Levenberg-Marquardt [105] training algorithm is 

used because it is the fastest and most accurate one in this case. Different FFNN 

design and different values of training period size are tested to achieve an efficient 

predictor. In contrast to the training process in the previous version of PDR 

algorithm that is event-based, the training process in PDR algorithm is time-

based.  

 

Figure 4.13 Static feed forward neural network architecture. 

In the event-based approach, if a new path is requested in the network, a new 

event is generated. During the training process of PFLR algorithm, a history of the 

last thousand events (plus WS) of the link traffic values is used for training 
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purpose. However in the training process of PDRv.1 algorithm, a history of the 

last hundred time units of the link traffic values is used for training purpose. One 

training pattern contains the minimum, maximum and average of traffic during a 

time unit. This pattern is formed in a row as input values and one expected output 

value. The expected output value is a history value WS time after the input values. 

By shifting, one hundred of training patterns are generated. In PDRv.1 algorithm, 

the training process is triggered every PVP period which is adapted depending on 

the prediction accuracy. 

 

Figure 4.14 The training process (PDRv.1 algorithm). 

In the prediction process of PDRv.1 algorithm, the minimum, maximum and 

average of the traffic during the last time unit are used as inputs for the static 

FFNN. Then, the static FFNN predicts a value for the link load after a WS period. 

The prediction process is triggered every WS period. In other words, the 

prediction happens every WS period and the predictor structure is not changed 

until PVP period has elapsed. An analysis study is done to select the best value of 

WS parameter. 

4.2.4.2 PDRv.1 pseudo code  

The following table lists and describes the internal steps of PDRv.1 algorithm. 

Algorithm 4.4: PDRv.1 algorithm. 

Input: 
The network topology and residual available BW.  

The route requests between the ingress-egress pairs. 

Output: Routed paths through the network. 
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Algorithm: 

1) Repeat the following steps until the time of the PVP elapses. 

a) At regular intervals of WS, predict the available BW on all links in the 

network after a specified WS. 

b) At regular intervals of N, each node generates and sends an ant to a 

destination.  

c) When a node receives an ant:  

i. It will forward the ant and selects the next link for the ant´s route 

randomly.  

ii. The ant never selects an outgoing link that leads to a node that has 

been visited earlier in its path (a loop). If there is no such outgoing 

link, the ant will die. 

d) When the current node is the destination, then, the ant will return to the 

source on the same path on which it has arrived. 

e) At each intermediate node : 

i. Compute LW (i) of the outgoing link i on every link in the backward 

path using Equation (4.9). 

ii. Compute td, td=td+ LW (i). 

iii. Update the pt and avg tables using Equations (4.5, 4.6, 4.7 and 4.8). 

3) Call the parameter adaptation procedure to adapt the PVP parameter (See 

Algorithm 4.6). 

2) Train the predictor on the link load histories.  

3) Go to step 1. 
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4.2.5 The PDRv.2 approach 

In this section, the proposed prediction model, the new features and pseudo code 

for the PDRv.2 approach are presented and discussed in more details.  

4.2.5.1 Proposed prediction model 

In the PDRv2 algorithm, the dynamic FFNN is used. The used dynamic FFNN 

consists of three layers: The input layer contains eight neurons; the hidden layer 

contains 15 neurons and only one output neuron (See Figure 4.3). The training 

process within PDRv.2 algorithm has different procedure than the PDRv.1 

algorithm.  

During the training process within PDRv.2 algorithm, a history of the last hundred 

time units of link traffic values is used for training purpose. The traffic value is 

saved in the history at each quarter of time unit. One training pattern contains 

eight traffic values (during two time units) from the history in row as input values 

and one expected output value. The expected output value is the traffic value after 

WS time from the last input. By shifting, four hundreds of training patterns are 

generated. This process is triggered every PVP period which is adapted depending 

on the prediction accuracy. 

In the prediction process of PDRv.2 algorithm, the last eight traffic values are 

used as inputs for the dynamic FFNN. Then, the dynamic FFNN predicts a value 

for the link load after WS period.  

4.2.5.2 The new features of PDRv.2 algorithm 

In the PDRv.1 algorithm, all network links are considered in the selection of best 

paths between the source and destination pairs. Additionally, the scout packet 

selects the outgoing link randomly at every intermediate node. While in the 

PDRv.2 algorithm, there are two proposed features of Ant-based mechanism in 

order to enhance the performance of PDR algorithm.  

There are two proposed new features of Ant-based mechanism are incorporated in 

PDRv.2 algorithm. The first new feature is that, PDRv.2 algorithm burns the links 

that do not have enough available BW in order to serve the next traffic demand. 

The second new feature is the ant’s selection method for the intermediate nodes in 

the discovered paths. In the PDRv.2 algorithm, there are three selection methods: 
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1) The random method: the ant selects randomly the next hop. 

2) The best method: the ant check Pt table and selects the outgoing link that 

has the highest Pt entity. The idea is to measure the quality of best paths. 

3) The exploratory method: the ant uses a combination of the best path 

information and the congestion of network link in order to select the next 

hop. This ant selects the outgoing link that has the maximum value of the 

following formula: 

Prob_exp[d,i] =  pt[d,i] + (θ × cn[d,i]) Equation (4.10) 

The congestion of network link cn[d,i] is computed according to the 

following formula: 

        
     

      
 

   

 Equation (4.11) 

The S parameter is the number of outgoing links and θ is the weight of the 

congestion term. 

The probability for choosing one from the three selection methods in PDRv.2 

algorithm is uniformly distributed. 

4.2.5.3 PDRv.2 pseudo code  

The following table lists and describes the internal steps of PDRv.2 algorithm. 

Algorithm 4.5: PDRv.2 algorithm. 

Input: 
The network topology and residual available BW. 

The route requests between the ingress-egress pairs. 

Output: Routed paths through the network. 

Algorithm: 

1) Repeat the following steps until the time of the PVP elapses. 

a) At regular intervals of WS, predict the available BW on all links in the 

network after a specified WS. 

b) At regular intervals of N, each node generates and sends an ant to a 

destination.  
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c) Burn all network links that have not enough available BW to serve the 

next request demand. 

d) When a node receives an ant:  

i. It will forward the ant and selects the next link for the ant´s route 

according to one from the three selection methods that are discussed in 

details in section 4.5.2.1.  

ii. The ant never selects an outgoing link that leads to a node that has 

been visited earlier in its path (a loop). If there is no such outgoing 

link, the ant will die. 

e) When the current node is the destination, then, the ant will return to the 

source on the same path on which it has arrived. 

f) At each intermediate node : 

i. Compute LW (i) of the outgoing link i on every link in the backward 

path using Equation (4.9). 

ii. Compute td, td=td+ LW (i). 

iii. Update the pt and avg tables using Equations (4.5, 4.6, 4.7 and 4.8). 

4) Call the parameter adaptation procedure to adapt the PVP parameter (See 

Algorithm 4.6). 

5) Train the predictor on the link load histories. 

6) Go to step 1. 

4.2.6 Parameter adaptation process 

In the both PDR algorithm versions, there is common process called parameter 

adaptation process. The main objective for adaptation process is to give the 

predictor the ability to optimize the PVP parameter. A PVP parameter contains 

multiple WS periods to represent how many times the prediction is done.  

The parameter adaptation process depends on the predictions accuracy that is 

calculated by comparing the actual and predicted traffic loads. Therefore, two 

archiving processes are required to archive the actual and predicted traffic loads 
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during the run of algorithm. The prediction accuracy can be represented by the 

prediction error. There are different error representation methods. In this work, the 

RMSE is used to represent the prediction accuracy. During this process, the PN 

parameter is adjusted depending on the comparison between the RMSE and ETh 

parameters. Then, the PVP parameter is updated. 

The parameters adaptation procedure consists of three steps. The first step is the 

computation of RMSE using Equation (4.4). In the second step, PN parameter is 

adjusted based on the comparison between the RMSE and the Error Threshold 

(ETh) parameters. For example, if RMSE value is equal to or less than Eth value, 

this means that the prediction accuracy is very good and the number of predictions 

should be increased by two. The last procedure step is calculating the new value 

of PVP parameter using Equation (4.3). 

4.2.7 Complexity analysis of PDR algorithm 

In general, the communication overhead of PDR algorithm is low because the 

scout packets are sent every too many data packets. The PDR algorithm requires 

additional computational time to enhance the performance of ant-based routing 

algorithm. As mentioned before, this time consists of two parts, the training time 

and the prediction time of the predictors. As described in section 4.1.4, the 

training operation requires O ((|E| Tt) / (|V| PVP)) time steps and the prediction 

operation requires O ((|E| Pt) / (|V| WS)) time steps. 

Algorithm 4.6: Parameters adaptation procedure. 

1) Compute the RMSE of prediction using Equation (4.4). 

2) Update the PN parameter with respect to the following comparisons:  

a) If RMSE≤ ETh, PNn+1=PNn +2. 

b) If RMSE>Eth & RMSE ≤ ETh*1.33, PNn+1=PNn +1. 

c) If RMSE>ETh*1.66 & RMSE≤ ETh*2, PNn+1=PNn -1. 

d) If RMSE>ETh*2, PNn+1=PNn -2. 

3) Compute the new PVP value, PVP=WS* PNn+1. 
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CHAPTER 5 - Simulation results 

During this chapter, the performance of the proposed algorithms is presented and 

the experimental results are discussed. In the first section, the “performance 

study” term is defined. Additionally, the details of the following simulation 

environment are discussed with high concern.  

In the second section, the performance of PFLRv.1 algorithm (using the single 

step-ahead prediction model) is tested and the enhancement of the dynamic 

routing performance is demonstrated. Additionally, the experimental results are 

presented with respect to different performance criteria and under different 

network load scenarios. In the third section, the performance of PFLRv.1 

algorithm (using the multi steps-ahead prediction model) is tested and the 

enhancement of the dynamic routing performance is demonstrated. 

In the forth section, the performance of PFLRv.1 and PFLRv.2 is compared with 

each other and the effect of the new proposed features in the PFLRv.2 is 

presented. In the fifth section, a comparative study between PFLRv.2 algorithm 

and various estimation-based routing algorithms is presented. 

The sixth section focuses on the decentralized routing algorithms and the 

performance of various versions of PDR and two ACR algorithms is compared. 

The experimental result, within this section, shows that the PDR algorithm 

outperforms the traditional ACR algorithms with respect to different network load 

scenarios. In the last section, the performance of various versions of PDR and two 

centralized routing algorithms is compared. The experimental result, within this 

section, shows that the PDRv.2 algorithm outperforms the comparative 

centralized routing algorithms. 

5.1 Performance studies 

In this chapter, the “performance study” term means the experiments that target to 

test and evaluate the performance of routing algorithms. Furthermore, the 

“analysis study” term means the experiments that target to select the parameters 

values of proposed algorithms which achieve the best routing performance. All 

the experiments are implemented using Microsoft Visual Studio [107] and the 

ANN toolbox in MATLAB [108].  
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Table 5.1 summarizes the details of the following performance studies and shows 

the properties of every performance study. In section 5.2, the performance of 

PFLRv.1 algorithm (using the single step-ahead prediction model) is tested. 

In section 5.3, the performance of PFLRv.1 algorithm (using the multi steps-ahead 

prediction model) is tested. Section 5.4 demonstrates the performance 

enhancement of PFLRv.2 algorithm compared to the PFLRv.1 algorithm. Section 

5.5 presents a comparative study between the PFLRv.2 algorithm and various 

estimation-based routing algorithms. Section 5.6 focuses on the comparison 

between PDR algorithm and ACR algorithms. Section 5.7 focuses on the 

comparison between PDR algorithm and centralized routing algorithms.  

In section 5.1.1, the network topologies, which are considered during these 

performance studies, are described in details. The details of the used generated 

and real traffics are discussed in section 5.1.2. Section 5.1.3 gives a short 

overview about the compared routing algorithms for each performance study. In 

section 5.1.4, the definitions of the measured parameters are defined. 

Table 5.1 The details of performance studies. 

Details 

The performance studies 

PFLRv.1 algorithm PFLRv.2 algorithm PDR algorithm 

(Single 

step-

ahead 

model) 

(Multi 

steps-

ahead 

model) 

Vs. 

PFLRv.1 

algorithms 

Vs. 

estimation-

based 

algorithms 

Vs. ACR 

algorithms 

Vs. 

Centralized 

algorithms 

Sec. No. 5.2 5.3 5.4 5.5 5.6 5.7 

Network 

topology 

MIRA 

COST266bt 

MIRA 

GÉANT 
MIRA 

Internet2 

MIRA 

Internet2 

MIRA 

Internet2 

MIRA 

Internet2 

Traffic 

types 
Generated 

Generated 

Real 

Generated 

Real 

Generated 

Real 

Generated 

Real 

Generated 

Real 

Load 

scenarios 

Moderate 

Heavy 

Moderate 

Heavy 

Moderate 

Heavy 

Moderate 

Heavy 

Moderate 

Heavy 

Moderate 

Heavy 

Compared 

algorithms 

WSP 

CSPF 

WSP 

LIOA 

WSP 

LIOA 

DF-PI 

PSA 

AntNet 

TB 

CSPF 

LIOA 

Approach Centralized Centralized Centralized Centralized Decentralized 
Centralized 

Decentralized 
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5.1.1 Network topologies 

Four network topologies are considered during the following performance studies. 

The first is the MIRA network topology, which was used to evaluate the MIRA 

algorithm [36]. The second is the COST266bt network topology [109]. The third 

is a real network topology named Internet2 [110]. The forth is a real network 

topology named GÉANT [111]. Table 5.2 presents the properties of network 

topologies. Additionally, all network topologies are described in more details in 

the next subsections.  

Table 5.2 The properties of network topologies. 

Network topology No. of nodes No. of links Average of node degree 

MIRA 15 28 3.73 

COST266bt 28 41 3.54 

Internet2 9 13 2.89 

GÉANT 20 32 3.2 

According to the experimental results of the performance study in section 5.2, the 

PFLRv.1 algorithm enhances the routing performance within both of MIRA and 

COST266bt network topologies based on generated traffic demands. Therefore, 

only one network topology, MIRA, is selected to be considered with respect to the 

generated traffic demands in all performance studies.  

In general, all proposed algorithms, PFLRv.1, PFLRv.2 and PDR, are tested 

within MIRA network topology based on generated traffic demands and within 

Internet2 network topology based on real traffic demands.  

 

Figure 5.1 MIRA network topology [36]. 
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5.1.1.1 MIRA network 

The first network topology is the MIRA network [36] that is often used in the 

validation of many advanced routing algorithms, such as MIRA [36], DORA [43], 

PBR [44] and LIOA [45] algorithms.  

As described in Chapter 2, the objective of MIRA, DORA, PBA and LIOA 

algorithms is to enhance the routing performance within the MPLS-based routing. 

All the previous algorithms aim to consider the future of route requests in order to 

reduce the interference that happen between the requests in the future. 

The MIRA topology has 15 nodes and 28 links as shown in Figure 5.1. The 

thicker links have a capacity of 4800 capacity units while the thinner links have a 

capacity of 1200 capacity units. 

 

Figure 5.2 COST266bt network topology [109]. 

5.1.1.2 COST266bt network 

The second network topology is a real network topology that is shown in Figure 

5.2. It is a reference topology suited for a pan-European fiber-optic network and is 

named COST266bt [109]. The COST266bt topology has 28 nodes and 41 links, 

which is bigger than the MIRA topology. COST266bt topology was used in the 
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validation of many routing algorithms, such as Interference Minimizing Routing 

Algorithm (IMRA) [112], [113] and Fast Minimum Interference Routing 

Algorithm (FMIRA) [114]. Also, both of IMRA and FMIRA algorithms are 

proposed in order to enhance the routing performance within the MPLS-based 

routing. 

In the COST266bt topology, the thicker links have a capacity of 4800 capacity 

units while the thinner links have a capacity of 1200 capacity units. Both of 

MIRA and COST266bt topologies were used with respect to a generated traffic. 

5.1.1.3 Internet2 network 

The third network topology is a real network topology that is shown in Figure 5.3. 

It is a reference topology suited for an advanced hybrid optical and packet 

network in U.S. named Internet2 [110]. The Internet2 topology has 9 nodes and 

13 links. All the links of Internet2 network topology have the same capacity 

which is equal to 149,000 Bps. 

 

Figure 5.3 Internet2 network topology [110]. 

The Internet2 network topology was used in the evolution of many traffic 

engineering algorithms, such as [115], [116], and [117]. In [115], The Internet2 

topology was used to evaluate the performance of a new link-state routing 

protocol, called Penalizing Exponential Flow-splitting (PEFT), which target to 

achieve optimal traffic engineering. In [116], The Internet2 topology was used to 

evaluate the performance of a new selective protection scheme for handling 

failures in link state routing protocol. In [117], the Internet2 topology was used to 

compare the performance of different TE techniques that exploit path diversity. 
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The Internet2 network topology is tested with respect to a real traffic demands. 

The real traffic demands are collected from the trace files of the NetFlow tool for 

the first day of the year 2009 [118]. 

5.1.1.4 GÉANT network 

The forth network topology is a real network topology named GÉANT [111] (See 

Figure 5.4). The GÉANT network is a pan-European research network that 

interconnects the European National. The GÉANT topology has 20 nodes and 32 

links. All the links of GÉANT network topology have the same capacity which 

equals to 1200 Mbps. 

 

Figure 5.4 GÉANT network topology [111]. 

The GÉANT network topology is tested with respect to a real traffic demands. 

The real traffic demands are collected from the trace files of the NetFlow tool for 

the first two days of the year 2005 [119]. 

5.1.2 Traffic demands  

The performance studies of the proposed algorithms are done based on generated 

and real traffic demands. In the first subsection, the details of generated traffic are 

presented. After that, the description of real traffic is presented. 
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5.1.2.1 Generated traffic 

In the generated traffic, all possible combinations of source and destination pairs 

are assumed in order to consider the most general case. This means that, every 

node can be a source or a destination. This leads to 210 source and destination 

pairs for the MIRA network topology and 765 sources and destination pairs for 

the COST266bt network topology. From the reservation point of view, the total 

number of source and destination pairs may be decreased. The reason is that, the 

best path from node A to node B is not necessary different than the best path from 

node B to node A, especially in the centralized routing approach. The traffic is 

evenly distributed among all source and destination pairs. Each source and 

destination pair has the same probability to request a path. During the simulation, 

each request is served one at a time. 

During the performance study, there are two different generated traffic models are 

considered. The first generated traffic model is the Poisson traffic model and the 

second is the ON-OFF traffic model. In the next sub sections, the description of 

both of them will be presented in more details.  

5.1.2.1.1 Poisson traffic model 

The Poisson traffic model is the traditional traffic model used to generate the 

traffic demands in order to evaluate the routing algorithms [36], [43], [46], [113], 

[114] and [121]. In this model, the number of requests per time unit follows a 

Poisson distribution with mean (λ) and the holding time of the requests is 

exponentially distributed with mean (1/μ).  

During the performance studies, the performance of proposed algorithms is tested 

under different network loads. For statistical purposes, each load scenario is 

executed five times with the same λ and μ values. In the first load scenario, called 

Moderate Load (ML), λ is equal to 15 requests per time unit and (1/μ) is equal to 

35 time unit. In the second load scenario, called Heavy Load (HL), λ is equal to 

20 requests per time unit and (1/μ) is equal to 29 time unit. 

Within the same network topology, the “traffic intensity” term represents the 

mean number of simultaneous served requests in progress, which is defined in 

[121], as (λ/μ). In the ML scenario, the traffic intensity, (i.e. (λ/μ) or (λ × (1/μ)), is 

equal to ((15 × 35) = 525. In the HL scenario, the traffic intensity is equal to 
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(20×29) = 580. The objective here is to obtain different rejection ratios under the 

previous network load scenarios. For example, within the MIRA topology and the 

WSP algorithm, the rejection ratio of requests for the HL scenario is more than 

the double of rejection ratio for ML scenario.   

The request capacities are randomly distributed among 5, 10, 15, …, and 50 

capacity units. The difference between the link capacities and request capacities is 

large in order to allow testing thousands of requests. However, if the difference is 

too large, a huge number of requests are needed in order to reach the state of 

rejected requests. Furthermore, the used range of request capacities was used to 

evaluate advanced routing algorithms within the MPLS-based network, such as 

[43] and [121].  

Additionally, both of link capacities, request capacities, arrival rate of requests 

and holding time of requests is assumed with these values to obtain the state of 

rejection for requests. Of course, if there is no rejection for requests, it is not 

possible to demonstrate the improvement of routing performance. 

5.1.2.1.2 ON-OFF traffic model 

The second used generated traffic model is the ON-OFF model. The main reason 

for using another generated traffic model is to efficiently generate a self-similar 

traffic that can exhibit the main characteristics of real network traffic. According 

to our discussion in section 3.6, the main characteristics of real network traffic are 

the burstiness, self-similarity and long rage dependency. There is various traffic 

models have been proposed to generate self-similar traffic. The common features 

between all of them are the representing of heavy-tailed phenomena [122].  

The ON-OFF traffic model [123] and [124] is one of the most popular self-similar 

traffic models. It is used in many research works, such as [125], [126], [127] and 

[128]. The generated traffic using the ON-OFF model is an output of 

superposition operation of many independent ON-OFF sources. During the ON 

period, the source transmits the data. However, there is no any data is sent during 

the OFF Model (See Figure 5.5). The duration of ON and OFF periods are subject 

to heavy-tailed probability distributions. The common used heavy-tailed 

distribution in the ON-OFF traffic model is the Pareto distribution. 



CHAPTER 5–Simulation results 

 

 91 

 

Figure 5.5 ON-OFF Traffic Model [124]. 

According to the generated Self-similar traffic in the next performance studies, the 

number of individual sources is thirty two sources. The duration of ON and OFF 

periods are represented using the Pareto distribution. The Mean of ON period 

equals five and Pareto shape parameter equals 1.3. However, The Mean of OFF 

period equals five and Pareto shape parameter equals 1.7. The holding time for 

requests follows another member of heavy-tailed probability distributions class, 

named Weibull distributions.  

During the performance studies, the performance of proposed algorithms is tested 

under different network loads. In the moderate network load scenario, the used 

value for the Weibull scale parameter is 3 and Weibull shape parameter equals 

0.7.  However, In the heavy network load scenario, the used value for the Weibull 

scale parameter is 3.2 and Weibull shape parameter equals 0.7. The objective here 

is to obtain different rejection ratios under the previous network load scenarios. 

For statistical purposes, each load scenario is executed fifteen times with the same 

parameter values of used heavy tailed distributions. 

In general, According to the referenced scientific researches that use of ON-OFF 

traffic model, the previously mentioned values of model parameters are selected 

in order to achieve a generated traffic that exhibits the main characteristics of real 

network traffic. Additionally, in the section 5.3, the experiment results that 

measure the burstiness and self- similarly for the generated traffic will be 

demonstrated. 
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In the reaming part in the current section, the use of ON-OFF approach to model 

the World Wide Web (WWW) traffic will be discussed in more details.  

 Web Traffic Model (ON-OFF Approach) 

The ON-OFF traffic model is traditionally used to model the web traffic [129], 

[130] and [131]. In order to understand how the ON-OFF approach is used to 

model the web traffic, the detailed structure of web traffic must be explained first. 

The main building block of the web traffic molding is the web page. The web 

page is constructed using Hypertext Markup Language (HTML) code. The 

structure of web page (named main object) is defined using the HTML code. In 

the main object, the HTML code is usually refers to other files (named inline 

objects), such as the images or other Web objects that are created with scripting 

languages. 

When the user requests a web page, the Hypertext Transfer Protocol (HTTP) 

sends a request message to the desired server. After that, the Transmission Control 

Protocol (TCP) is used to manage the transmission of the web page from the 

server to the user. When the server receives the HTTP request, it sends the main 

object to the user. Furthermore, if the web page contains other inline objects, it 

will be subsequently sent. 

 

Figure 5.6 The behavioral web traffic model [129]. 

The proposed model in [129], known as the behavioral model, is the most famous 

model in the web traffic modeling spot. The behavioral model consists of three 

levels (See Figure 5.6). The first level is the HHTP connection level, the second is 

the web object level and the third is the TCP level. In this level, the HTTP level 

has two phases, HTTP-ON and HTTP-OFF phases. When the user requests a web 



CHAPTER 5–Simulation results 

 

 93 

page, the HTTP-ON phase will start. This period represents the downloading and 

the viewing in parallel. During the download for parts of a web-request, the user 

can view the finished downloaded part of web page. However, the HTTP-OFF 

phase represents the inactive period between two successive web-requests. 

In addition to the mentioned scientific researches for the ON-OFF approach (as a 

web traffic model), the use of ON-OFF traffic approach to model the web traffic 

is confirmed and recommended during the following evaluation methodology 

studies, IEEE wireless broadband standard (IEEE 802.16m) [132], Worldwide 

Interoperability for Microwave Access (WiMAX) system [133] and Code 

Division Multiple Access (CDMA) 2000 system [134]. 

Furthermore, according to the analytical studies of real web traffic, there are two 

studies aim to validate and verify the use of ON-OFF approach to model the web 

traffic. The first study examines the web traces collected at the department of 

computer science within Boston University [135].  The authors in this research 

work explain the observed phenomena of long range dependence in the web 

traffic. Also, in this study, the proposed methodology to demonstrate the long 

range dependence behavior follows the main idea of ON-OFF traffic model in 

[123] and [124] (which proposes the superposing of heavy-tailed ON/OFF sources 

in order to exhibit the long-range dependence).  

The second analytical study introduces a framework for web traffic model that 

aims to reproduce the presence of heavy-tailed distributions in traffic 

characteristics by implementing the superposition of multiple ON-OFF traffic 

sources [136]. The authors have validated their model when they have compared 

the characteristics of generated traffic with the attributes of captured HTTP traffic 

from the Sprint PCS CDMA-1xRTT access network. 

5.1.2.2 Real traffic 

During the performance study, two different datasets of extracted network traffic 

are considered. The first dataset is a real traffic matrix that is collected from the 

trace files of the Internet2 network for the first day of the year 2009 [118]. The 

second dataset is a real traffic matrix that is collected from the trace files of the 

GÉANT network for the first two days of the year 2005 [119]. In the next 

sections, the description for both of them will be presented in more details.  
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5.1.2.2.1 Internet2 dataset  

This dataset is extracted from the trace files of the Internet2 network. These trace 

files are collected on all the edge links using the NetFlow tool. It contains the 

TCP/UDP traffic for the first day of the year 2009 [118]. The range of request 

capacities is between 50 to 5000 Bps. The request capacities are consistent with 

heavy-tailed distribution. In the rest of this part, the extraction process of traffic 

demands is explained in details.  

In the real scenario, when a specific traffic demand is requested, the routing 

algorithm selects the best path and forwards the packets in this path. After that, 

the NetFlow tool archives all flows that go through every network node. There are 

nine trace files that are collected from the Internet2 network nodes. Each trace file 

contains the records of flows that go through related network node. Each flow 

record contains the source IP address, the destination IP address, the time, the 

total number of bytes in this flow and other related information to this flow.  

There is a searching process is preformed in the all nine trace files in order to 

extract the real traffic demand. The objective here is to take every flow and search 

about it in all nine trace files. After that, all occurrences of this flow, in all trace 

files, are ordered by the time in a list. This means, the first occurrence of this flow 

in the list is the first node which is visited by this flow. In other words, this is the 

source node. Also, the last occurrence of this flow in the list is the last node which 

is visited by this flow. In other words, this is the destination node. 

In addition to the source and destination information, the request time and the 

holding time of this flow can be extracted from this list. The request time is the 

time of occurrence at the source node and the holding time is the difference 

between the time of occurrence at the destination node and the time of occurrence 

at the source node. 

According to the simulation, all required information of the real traffic demands 

are extracted now. This means that, the extracted traffic demands can be handled 

like the generated traffic. During the simulation, the actual used values of link 

capacities of Internet2 topology are decreased. The objective here is to obtain the 

state of rejection for requests and test the performance of proposed algorithms 

under this simulated rejection condition. 
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5.1.2.2.2 GÉANT dataset 

This dataset is extracted from the trace files of the GÉANT network. These trace 

files are collected on all the edge links using the NetFlow tool. It contains the 

traffic for the first two days of the year 2005 [119]. The range of request 

capacities is between 1 to 640 Mbps. In the rest of this part, the extraction process 

of traffic demands is explained in more details. 

The traffic matrices are constructed with the help of the IGP routing information, 

collected Netflow data and BGP routing information of the GÉANT network. The 

extraction process of traffic matrices are done by the TOTEM toolbox [137]. 

TOTEM toolbox is an open-source framework for integrating various TE 

algorithms.  

TOTEM toolbox follows three steps in order to create the traffic matrixes. The 

first is to build the desired network structure with the help of the one-day IS-IS 

protocol trace. The next step is computing the routes known by each router to 

reach each destination prefix. The routes computations are done using an internal 

module which follows the desired methodology of the BGP routing algorithm. 

With the help of these computed routes, the received traffic at each ingress route 

will be routed within the network until it reaches the egress router for this 

destination. The matrix is constructed by the summation of traffic going from any 

ingress router to any egress router. 

Furthermore, in the section 5.3, the experiment results that measure the burstiness 

and self- similarly for this real traffic will be demonstrated. 

5.1.3 Routing algorithms 

The performance of PFLRv.1 algorithm is evaluated with respect to two 

traditional routing algorithms, WSP and CSPF algorithms, which had been 

described in section 2.1.2 and 2.1.3. Furthermore, the performance of PFLRv.1 

algorithm is evaluated with respect to an advanced routing algorithm, LIOA 

algorithm, which had been described in section 2.1.6.  

The performance of PFLRv.2 algorithm is evaluated with respect to WSP, which 

is a traditional routing algorithm, and LIOA, which is an advanced routing 

algorithm. Furthermore, the PFLRv.2 algorithm is compared with two estimation-
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based routing algorithms, the DF-PI and PSA algorithms, which had been 

described in section 2.2. 

The two versions of PDR algorithm (PDRv.1 and PDRv.2) are compared with two 

different ACR routing algorithms, the AntNet and TB algorithms, which had been 

described in section 2.3. Additionally, the two versions of PDR algorithm are 

compared with two different centralized routing algorithms, the CSPF and LIOA 

algorithms, which had been described in sections 2.1.3 and 2.1.6 

5.1.4 Measured parameters and statistical analysis 

Three measured parameters are presented during the following studies:  

o The rejection ratio of requests:   

  
                       

                         
      

o The bandwidth blocking rate: 

   
                      

                              
      

o The rejection ratio of re-routed requests upon link failure: 

  
                                            

                                            
      

5.1.5 The comments on expected results 

The objective of proposed algorithms is to enhance the dynamic routing 

performance by reducing the rejection ratio of path requests, minimizing the 

bandwidth blocking rate and rerouting the requests upon the link failure. In the 

rest of this section, the comments and reasons of these enhancements are 

discussed in details. 

The current dynamic routing algorithms update the link states with the current 

available BW. But, due to the varying nature of the available BW, updating the 

link state with the current measured BW is not an efficient approach to represent 

the link utilization. Also, the decisions of routing algorithm that depend on a 

single sample of measured available BW, which has not much significance due to 
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the variable traffic nature, are not completely accurate. Therefore, it is very 

important to consider the changes of link loads according to the future path 

request in order to reduce the interference between the requests in the future and 

so reduce the occurrence of network congestions and increase the network 

utilization. 

There is small effort in this research direction, such as the DF-PI algorithm that 

uses the statistical model to estimate the link loads and the PSA algorithm that 

uses the linear algebra equations to estimate the link loads. In contrast to the DF-

PI and PSA algorithms, in the proposed algorithms, the ANN is used to build the 

adaptive predictor in order to predict future link loads because the ANN offers 

accurate prediction capabilities with different types of network traffic and has the 

ability to be adaptive. 

One of the important features of the proposed algorithm is the link state 

representation. The proposed algorithms combine the predicted link load with the 

current link load with an effective method in order to optimize the link weights. 

The idea is to reduce the number of wrong and critical decisions in case of 

uncertain prediction accuracy.  

Finally, In addition to the adaptability of the used ANN, the proposed algorithms 

have the ability to adapt the internal algorithm parameters, such as the length of 

prediction step, depending on the prediction accuracy in order to efficiently 

estimate the link traffics and so enhance the routing performance.  
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5.2 The evaluation of PFLRv.1 algorithm: Single step-ahead 

model 

In this section, the performance of PFLRv.1 algorithm (Single step-ahead model) 

is evaluated based on several test scenarios and the results are discussed [22], 

[23]. The PFLRv.1 algorithm is bundled with the WSP and CSPF algorithms. 

During this performance study, the bundled versions are compared with the 

unbundled versions. In section 5.2.1, the simulation details are presented. In 

section 5.2.2, the MIRA topology is considered and the performance of the 

compared algorithms is tested. In section 5.2.3, the COST266bt topology is 

considered and the performance of the compared algorithms is tested. In section 

5.2.4, the link failure scenario is considered and the performance of the compared 

algorithms is tested. 

5.2.1 The simulation details 

The simulation details are presented in the following points:-   

 Simulation workflow:- 

o Three performances parameters are measured:  

o The rejection ratio of requests. 

o The bandwidth blocking rate. 

o The rejection ratio of re-routed requests upon link failure. 

o 10,000 of requests are generated using the Poisson model in each single 

simulation run.  

o The routing performance will be tested under two different network load 

scenarios. In each load scenario, an analysis study is performed on the 

2,000 requests, which are requested after the first 4,000, in order to select 

the best values of WS and α parameters. The reason is to be sure that, the 

traffic behavior already reached the steady state within all network links.  

o In the previous analysis study, the experiment is repeated 100 times (WS 

parameter ranges from 6 to 10 and α parameter ranges from 0 to 1 with 

0.05 steps). In each repetition, PFLRv.1 algorithm is tested with different 

combination of the WS and α parameters. At the end of every repetition, 
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the rejection ratio of requests is measured. The best values of WS and α 

parameters that achieve the lowest rejection ratio of requests.  

o After selecting the best WS and α parameters, the PFLRv.1 algorithm starts 

running after the first 4,000 requests, again, but until the last request of the 

10,000 requests. This means that, all the comparisons between the bundled 

and unbundled routing algorithms are based on 6,000 requests. 

o The box plot graph is used in all experiments in order to represent the 

comparison between the different routing algorithms. Each column in the 

box plot graph shows six statistical values for many simulation runs: the 

minimum value, lower quartile (Q1) value, median (Q2), upper quartile 

(Q3) value, average value and maximum value [138]. The Q1 value, which 

is the bottom of the box, cuts off lowest 25% of data. The Q2 value, which 

is the inner line inside the box, separates the higher half of data set from 

the lower half of data set. The Q3 value, which is the top of the box, cuts 

off lowest 75% of data set. 

 The parameters of PFLRv.1 algorithm:- 

Table 5.3 summarizes the result of the analysis studies that are performed in order 

to select the best values of WS and α parameters for the PFLRv.1 algorithm in 

every scenario (see Appendix A.1). 

Table 5.3 The best values of WS and α parameters (PFLRv.1). 

Network load 

scenario 
Algorithm 

MIRA topology COST266bt topology 

WS α WS α 

ML WSP 7 0.15 7 0.2 

CSPF 7 0.15 6 0.15 

HL WSP 7 0.1 10 0.1 

CSPF 8 0.05 8 0.25 
 

5.2.2 The MIRA topology 

In the following scenarios, the MIRA topology is considered and the performance 

of routing algorithms is tested in both ML and HL scenarios. 

5.2.2.1 The ML scenario 

Figure 5.7 shows the rejection ratio of requests for the ML scenario in the MIRA 

topology. The average of results shows that, both of the WSP_PFLRv.1 and 
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CSPF_PFLRv.1 algorithms outperform the WSP and CSPF algorithms. The 

WSP_PFLRv.1 algorithm rejects 12.09% less requests than the normal WSP 

algorithm. Also, the CSPF_PFLRv.1 algorithm rejects 7.14% less requests than 

the normal CSPF algorithm. 

 

Figure 5.7 The rejection ratio of requests for the ML scenario. 

The experimental results show that, combining the predicted available BW with 

the current available BW is an effective method in order to optimize the link 

weights. Because of that, the routing performance is improved. The PFLRv.1 

algorithm has the same objective of advanced routing algorithms. It aims to 

consider the future of route requests in order to reduce the interference that 

happen between the requests in the future and so reduces the occurrence of 

network congestions and also increase the network utilization. 

According to the compared routing algorithms, both of WSP and CSPF algorithms 

use the current available BW information in order to select the best path between 

the source and destination nodes. The WSP algorithm prefers the widest path from 

the equal shortest paths, which contain the minimum number of hops. The widest 

path is the path in which the bottleneck link (i.e. link with smallest bandwidth) has 

the largest bandwidth among other bottlenecks in other shortest paths. 

Furthermore, The CSPF algorithm runs the Dijkstra's algorithm depending on link 

weights that are inversely proportional to the residual link capacities. The shortest 

path, which is found by the Dijkstra's algorithm, is the path that has the least total 

of link weights.  

Another remarkable result is that, the CSPF algorithm does not profit from the 

PFLRv.1 algorithm in the same way as the WSP algorithm does. Both of 
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WSP_PFLRv.1 and CSPF_PFLRv.1 algorithms combine the predicted available 

BW with the current available BW in order to represent the available BW 

information. The WSP_PFLRv.1 algorithm compares all the equal shortest paths 

and selects the widest path. However, the CSPF_PFLRv.1 algorithm selects the 

shortest path that is firstly found by the Dijkstra's algorithm without comparing 

the equal shortest paths. Therefore, the PFLRv.1 algorithm has a better chance to 

enhance the performance of WSP algorithm more than the CSPF algorithm.  

Furthermore, the performance of CSPF algorithm is better than the WSP 

algorithm and whenever the routing selection is closer to the optimal selection, the 

enhancement becomes harder. 

Figure 5.8 shows the bandwidth blocking rate for the ML scenario in the MIRA 

topology. The results show that, the WSP_PFLRv.1 algorithm rejects 14.74% less 

bandwidth than the normal WSP algorithm. Also, the CSPF_PFLR algorithm 

rejects 5.79% less bandwidth than the normal CSPF algorithm. 

The PFLR algorithm does not only target to enhance the rejection ratio of 

requests, but also it targets to enhance the bandwidth blocking rate at the same 

time. It is not a significant improvement to reduce the rejection ratio of requests 

and increase the bandwidth blocking rate at the same time. 

 

Figure 5.8 The bandwidth blocking rate for the ML scenario. 

As described before in the result comments of rejection ratio comparative study, 

The CSPF algorithm does not profit from the PFLRv.1 algorithm in the same way 

as the WSP algorithm does. Therefore, the enhancement of BW blocking rate with 

WSP_PFLRv.1 algorithm is better than the enhancement of BW blocking rate 

with CSPF_PFLRv.1 algorithm. 
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5.2.2.2 The HL scenario 

Figure 5.9 shows the rejection ratio of requests for the HL in the MIRA topology. 

The average of results shows that, the WSP_PFLRv.1algorithm rejects 6.30% less 

requests than the normal WSP algorithm. Also, the CSPF_PFLRv.1 algorithm 

rejects 4.79% less requests than the normal CSPF algorithm. 

 

Figure 5.9 The rejection ratio of requests for the HL scenario. 

In the HL scenario, the rejection ratio of requests is increased because the requests 

reserve the BW of the network links for a larger number of events than the ML 

scenario. Additionally, the total available BW of network links is decreased and 

this has direct effects on the optimization of the routing algorithms. This means 

that, the PFLRv.1 algorithm does not have the same large numbers of competitive 

decisions in order to optimize the routing performance. Thus, the performance 

enhancement of the routing algorithms using the PFLRv.1 algorithm is affected by 

network load scenario. 

Figure 5.10 shows the bandwidth blocking rate for the HL scenario. The average 

of results shows that, the WSP_PFLRv.1 algorithm rejects 5.24% less bandwidth 

than the normal WSP algorithm. Also, the CSPF_PFLR algorithm rejects 4.70% 

less bandwidth than the normal CSPF algorithm. 

As mentioned before, the PFLR algorithm does not only target to enhance the 

rejection ratio of requests, but also it targets to enhance the bandwidth blocking 

rate at the same time. It is not a significant improvement to reduce the rejection 

ratio of requests and increase the bandwidth blocking rate at the same time. 
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Figure 5.10 The bandwidth blocking rate for the HL scenario. 

Furthermore, as described before within the result comments of rejection ratio 

comparative study (in ML scenario), The CSPF algorithm does not profit from the 

PFLRv.1 algorithm in the same way as the WSP algorithm does. Therefore, the 

enhancement of BW blocking rate with WSP_PFLRv.1 algorithm is better than 

the enhancement of BW blocking rate with CSPF_PFLRv.1 algorithm. 

5.2.3 The COST266bt topology 

In the following scenarios, the COST266bt topology is considered and the 

performance of the routing algorithms is tested in both ML and HL scenarios. 

5.2.3.1 The ML scenario 

Figure 5.11 shows the rejection ratio of requests for the ML in the COST266bt 

topology. The average of results shows that, the WSP_PFLRv.1 algorithm rejects 

6.55% less requests than the normal WSP algorithm. Also, the CSPF_PFLRv.1 

algorithm rejects 4.76% less requests than the normal CSPF algorithm. 

The rejection ratio of requests increased in the COST266bt topology compared to 

the MIRA topology. The reason is the difference between their features. The node 

network degree for the MIRA topology is equal to 3.73. While the node network 

degree for the COST266bt topology, which is equal to 3.54, is smaller. 

Furthermore, the percentage of links with the high capacity within the MIRA 

topology is equal to 32.14%. While the percentage of links with the big capacity 

within the COST266bt topology, which is equal to 24.39%, is smaller.  
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Figure 5.11 The rejection ratio of requests for the ML scenario. 

Figure 5.12 shows the bandwidth blocking rate for the moderate ML in the 

COST266bt topology. The average of results shows that, the WSP_PFLRv.1 

algorithm rejects 5.47% less bandwidth than the normal WSP algorithm. Also, the 

CSPF_PFLR algorithm rejects 5.72% less bandwidth than the normal CSPF 

algorithm. 

 

Figure 5.12 The bandwidth blocking rate for the ML scenario. 

Also, the bandwidth blocking rate increases within the COST266bt topology 

compared to the bandwidth blocking rate within the MIRA topology. This is for 

the same reason which causes the increment for the rejection ratio of requests (See 

the result comments of rejection ratio comparative study in the current scenario).  

5.2.3.2 The HL scenario 

Figure 5.13 shows the rejection ratio of requests for the HL in the COST266bt 

topology. The average of results shows that, the WSP_PFLRv.1 algorithm rejects 
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4.25% less requests than the normal WSP algorithm. Also, the CSPF_PFLRv.1 

algorithm rejects 2.96% less requests than the normal CSPF algorithm. As 

described before in section 5.2.2.2, the rejection ratio of requests increases for the 

HL scenario compared to the rejection ratio of requests increased for the ML 

scenario. 

 

Figure 5.13 The rejection ratio of requests for the HL scenario. 

Figure 5.14 shows the bandwidth blocking rate for the HL scenario in the 

COST266bt topology. The average of results shows that, the WSP_PFLRv.1 

algorithm rejects 3.47% less bandwidth than the normal WSP algorithm. Also, the 

CSPF_PFLR algorithm rejects 2.98% less bandwidth than the normal CSPF 

algorithm. 

 

Figure 5.14 The bandwidth blocking rate for the HL scenario. 
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5.2.4 Rejection ratio of re-routed requests upon link failure 

In each trial of the next experiment, one link of the network links is taken down, 

one at a time. Then the routing algorithms recover the requests which require the 

rerouting. The previous steps are repeated for each network link. Table 5.4 shows 

the average rejection ratio for rerouted requests.  

Table 5.4 The rejection ratio of rerouted requests upon link failure scenario. 

Network load 

scenario 

Algorithm  Rejection ratio for rerouted LSPs (%)  

MIRA network  COST266bt network  

ML scenario WSP 31.18 47.52 

WSP_PFLR  30.98 47.39 

CSPF 37.25 39.72 

CSPF_PFLR  37.03 39.56 

HL scenario WSP 57.37 65.89 

WSP_PFLR  57.03 65.84 

CSPF 36.28 70.19 

CSPF_PFLR  35.78 70.11 

 

The results show that, the WSP_PFLR and CSPF_PFLR algorithms have a better 

chance to reroute the requests than the normal WSP and CSPF algorithms.  The 

main reason of this enhancement is the effective mechanism of PFLR algorithm. 

With the use of PFLR algorithm, the future statuses of the network link loads are 

considered. The considering of future network link loads has a big impact in 

reducing the interference between the path requests in the future. Because of that, 

the traffic load will be efficiently distributed on the network topology. In other 

words, the traffic load balancing with the help of PFLR algorithm is much better.  

Thus, when the traffic load will be efficiently distributed, this gives a good chance 

for the routing algorithm to reroute the requests upon link failure scenario. 
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5.3 The evaluation of PFLRv.1 algorithm: Multi steps-ahead 

model 

In this section, the performance of PFLRv.1 algorithm (Multi steps-ahead model) 

is evaluated based on several test scenarios and the results are discussed. During 

this performance study, the PFLRv.1 algorithm is bundled with the WSP and 

LIOA algorithms. After that, the bundled versions are compared with the 

unbundled versions. In section 5.3.1, the simulation details are presented. In 

section 5.3.2, the experimental results for measuring the burstiness and self-

similarity of used generated and real traffic are presented. In section 5.3.2, the 

MIRA topology is considered and the performance of the compared algorithms is 

tested. In section 5.3.3, the GÉANT topology is considered and the performance 

of the compared algorithms is tested.  

5.3.1 The simulation details 

The simulation details are presented in the following points:-   

 Simulation workflow:- 

o Two performances parameters are measured:  

o The rejection ratio of requests and  

o The bandwidth blocking rate. 

o 30,000 of requests are generated using the ON-OFF traffic model in each 

single simulation run.  

o The routing performance will be tested under two different network load 

scenarios. In each load scenario, an analysis study is performed on the 

5,000 requests, which are requested after the first 20,000, in order to select 

the best values of WS and α parameters. The reason is to be sure that, the 

traffic behavior already reached the steady state within all network links.  

o In the previous analysis study, the experiment is repeated 120 times (WS 

parameter ranges from 1 to 12 with and α parameter ranges from 0 to 1 

with 0.1 steps). In each repetition, the PFLRv.1 algorithm is tested with 

different combination of the WS and α parameters. At the end of every 

repetition, the rejection ratio of requests is measured. The best values of 
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WS and α parameters are the values that achieve the lowest rejection ratio 

of requests.  

o After selecting the best WS and α parameters, the PFLRv.1 algorithm starts 

again running after the first 20,000 requests, but until the last request of 

the 30,000 requests. This means that, all the comparisons between the 

bundled and unbundled routing algorithms are based on 10,000 requests. 

o Also, the box plot graph is used in all experiments in order to represent the 

comparison between the different routing algorithms. 

 The parameters of PFLRv.1 algorithm:- 

Table 5.5 summarizes the result of analysis studies that are performed in order to 

select the best values of WS and α parameters for the PFLRv.1 algorithm within 

MIRA and GÉANT topologies. 

Table 5.5 The best values of WS and α parameters. 

Compared 

algorithms 
Algorithm 

parameter 

MIRA 
GÉANT 

ML HL 

WSP 
WS 12 12 8 

α 0.4 0.3 0.3 

LIOA 
WS 10 10 5 

α 0.3 0.3 0.25 

5.3.2 The approve of self-similar traffic   

Before going ahead to test and show the routing performance for the comparative 

algorithms, the self-similar traffic features for the generated and real traffic will 

be presented first. For each traffic type, the burstiness and self-similarity features 

will be demonstrated. 

Figures 5.15, 5.16 and 5.17 show the values of aggregated traffic with respect to 

different time scales for the generated traffic using Poisson, the generated traffic 

using ON-OFF model and the real traffic of GÉANT topolgy respectively.  

 

Figure 5.15 The burstiness of generated traffic using Poisson model. 
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Figure 5.16 The burstiness of generated traffic using ON-OFF model.  

 

 Figure 5.17 The burstiness of real traffic of GÉANT topology. 

Figure 5.15 show that, the curve of aggregated generated traffic using the Poisson 

model is going to be smooth in the large time scale. In the contrast of aggregated 

generated traffic using the Poisson model, the curves still bursty in the aggregated 

generated traffic using ON-OFF model and real traffic even in the large time 

scales (See Figures 5.16 and 5.17).  

According to the self-similarity feature, the variance time plot is used in order to 

measure the self-similar parameter H (Hurst parameter [139]). The Hurst 

parameter is an index for the long rang dependency. If the H value of a process is 

larger than 0.5 and less than one, this means that, this process exhibits long range 

dependency. In order to draw the variance time plot, the traffic is aggregated at 

different scales m. Then, the variance of aggregated traffic X(m) is calculated. 

After that, the variance of X(m) is plotted versus m on log-log plot. Finally, the 

fitting least square line that goes through the points is drawn. The H parameter is 

calculated base on the measured line slope, H = (1-(Line Slope/2)). 

Figures 5.18, 5.19 and 5.20 show the variance time plot for the generated traffic 

using Poisson, the generated traffic using ON-OFF model and the real traffic of 

GÉANT topolgy respectively.  
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Figure 5.18 The variance time plot of generated traffic using Poisson model. 

 

Figure 5.19 The variance time plot of generated traffic using ON-OFF model. 

 

Figure 5.20 The variance time plot of real traffic of GÉANT topology. 

Figure 5.18 show that, the H parameter of generated traffic using the Poisson 

model is less than 0.5. This means that, it does not exhibit the long range 

dependency feature. In the contrast of generated traffic using the Poisson model, 

the H parameter is more than 0.5 in the generated traffic using ON-OFF model 

and in the real traffic (See Figures 5.19 and 5.20). This means that, both of them 

exhibit the long range dependency feature.  

5.3.3 The MIRA topology 

In the following scenarios, the MIRA topology is considered and the performance 

of routing algorithms is tested in both ML and HL scenarios. 
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5.3.3.1 The ML scenario 

Figure 5.21 shows the rejection ratio of requests for the ML scenario in the MIRA 

topology. The average of results shows that, the WSP_PFLRv.1 algorithm (Multi 

steps-ahead model) rejects 17.45% less requests than the normal WSP algorithm. 

Also, the LIOA_PFLRv.1 algorithm (Multi steps-ahead model) rejects 14.36% 

less requests than the normal LIOA algorithm. 

 

Figure 5.21 The rejection ratio of requests for the ML scenario. 

However, with considering the same network load condition, the WSP_PFLRv.1 

(Single step-ahead model) algorithm rejects 6.29% less requests than the normal 

WSP algorithm and rejects 5.24% less bandwidth than the normal WSP algorithm. 

Also, the LIOA_PFLRv.1 (Single step-ahead model) algorithm rejects 5.73% less 

requests than the normal LIOA algorithm and rejects 3.57% less bandwidth than 

the normal LIOA algorithm. This means that, the performance enhancement using 

the multi steps-ahead model is much better than the performance enhancement 

using the Single step-ahead model. 

The main reason of this enhancement of performance is that, the multi steps-ahead 

mode provides more accurate traffic prediction. Moreover, there are two reasons 

for this accurate prediction. The first reason is the use of efficient representation 

methods for both the traffic samples and future link loads. In the multi steps-ahead 

model, the traffic sample length is determined by the mean of inter-update interval 

for the traffic on this network link. However, in the Single step-ahead model, the 

traffic sample is considered every new route request on the complete network 
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topology. The sample representation method in the Single step-ahead model cause 

a lot of data redundancy because not all network links will be updated after every 

route request. This data redundancy affects the prediction accuracy and increase 

the prediction overhead.  

Additionally, the future link load in the Single step-ahead model is the predicted 

load value after WS period. However, in the multi steps-ahead model, the future 

link load is the average of multiple predicted load values during WS period. The 

good representation methods within the multi steps-ahead model lead to more 

accurate traffic predictor. 

The second reason for this accurate prediction of multi Steps-ahead prediction 

mode is that, the measured results in the current scenario are based on the used 

self-similar traffic model in the current simulation scenario. However, the 

measured results in the scenario of single step-ahead model are based on the used 

Poisson traffic model. Of course, the prediction of self-similar traffic model is 

much easier and accurate. According to the previous mentioned two reasons, the 

RMSE in the multi steps-ahead model reached to 0.1.   

According to the compared routing algorithms, both of WSP and LIOA 

algorithms use the current available BW information in order to select the best 

path between the source and destination nodes. The WSP algorithm prefers the 

widest path from the equal shortest paths, which contain the minimum number of 

hops. The LIOA algorithm is an advanced routing algorithm which aims to reduce 

the interference among competing flows by giving the link weights balanced 

values of number and quantity of flows. After that, LIOA algorithm runs the 

Dijkstra's algorithm depending on link weights in order to select the shortest path. 

The shortest path, which is found by the Dijkstra's algorithm, is the path that has 

the least total of link weights.  

Another remarkable result is that, the LIOA algorithm, like the CSPF algorithm, 

does not profit from the PFLRv.1 algorithm in the same way as the WSP 

algorithm does. The WSP_PFLRv.1 algorithm compares all the equal shortest 

paths and selects the widest path. The selection of widest path here does not 

depend on the current available BW only, but it depends on the predicted 

available BW also. However, the link weights within LIOA_PFLRv.1 algorithm 



CHAPTER 5–Simulation results 

 

 113 

are represented by combining the predicted available BW with the current 

available BW and the number of flows. After that, it selects the shortest path that 

is firstly found by Dijkstra's algorithm without comparing the equal shortest paths. 

Therefore, PFLRv.1 algorithm has a better chance to enhance the performance of 

WSP algorithm more than LIOA algorithm.  Furthermore, the performance of 

LIOA algorithm is better than WSP algorithm. Whenever the routing selection is 

closer to the optimal selection, the enhancement becomes harder. 

Figure 5.22 shows the bandwidth blocking rate for the ML scenario in the MIRA 

topology. The results show that, the WSP_PFLRv.1 algorithm rejects 17.63% less 

bandwidth than the normal WSP algorithm. Also, the LIOA_PFLRv.1 algorithm 

rejects 14.19% less bandwidth than the normal LIOA algorithm. 

 

Figure 5.22 The bandwidth blocking rate for the ML scenario. 

The PFLR algorithm does not only target to enhance the rejection ratio of 

requests, but also it targets to enhance the bandwidth blocking rate at the same 

time. It is not a significant improvement to reduce the rejection ratio of requests 

and increase the bandwidth blocking rate at the same time. 

As described before in the result comments of rejection ratio comparative study, 

The LIOA algorithm does not profit from the PFLRv.1 algorithm in the same way 

as the WSP algorithm does. Therefore, the enhancement of BW blocking rate with 

WSP_PFLRv.1 algorithm is better than the enhancement of BW blocking rate 

with LIOA_PFLRv.1 algorithm. 
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5.3.3.2 The HL scenario 

Figure 5.23 shows the rejection ratio of requests for the HL in the MIRA 

topology. The average of results shows that, both of the WSP_PFLRv.1 and 

LIOA_PFLRv.1 (Multi steps-ahead model) algorithms outperform the WSP and 

LIOA algorithms. The average of results shows that, the WSP_PFLRv.1 

algorithm rejects 12.23% less requests than the normal WSP algorithm. Also, the 

LIOA _PFLRv.1 algorithm rejects 10.91% less requests than the normal LIOA 

algorithm. 

 

Figure 5.23 The rejection ratio of requests for the HL scenario. 

The rejection ratio of requests is increased within In the HL scenario compared to 

its value within the ML scenario. The main reason is that, the holding time of 

requests is larger in the HL scenario. Thus, the BW will be reserved within the 

network links for a larger period and this causes more rejection of further requests 

in the future.  

Additionally, in the HL scenario, the performance enhancement of the routing 

algorithms using the PFLRv.1 algorithm is decreased compared to ML scenario. 

The reason is that, the total available BW of network links is decreased and this 

has direct effects on the optimization of the routing algorithms. This means that, 

the PFLRv.1 algorithm does not have the same large numbers of competitive 

decisions in order to optimize the routing performance. Thus, the performance 

enhancement of the routing algorithms using the PFLRv.1 algorithm is affected by 

network load scenario. 
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Figure 5.24 shows the bandwidth blocking rate for the HL scenario. The average 

of results shows that, the WSP_PFLRv.1 algorithm rejects 12.46% less bandwidth 

than the normal WSP algorithm. Also, the LIOA_PFLR algorithm rejects 10.96% 

less bandwidth than the normal LIOA algorithm. 

 

Figure 5.24 The bandwidth blocking rate for the HL scenario. 

In general, as mentioned before, The PFLR algorithm (within both network load 

scenarios) does not only target to enhance the rejection ratio of requests, but also 

it targets to enhance the bandwidth blocking rate at the same time. It is not a 

significant improvement to reduce the rejection ratio of requests and increase the 

bandwidth blocking rate at the same time. 

5.3.4 The GÉANT topology   

Figure 5.25 shows the rejection ratio of requests for the real traffic scenario. The 

real dataset is extracted from the trace files of the GÉANT network. It contains 

the traffic for the first two days of the year 2005 [119]. The average of results 

shows that, the WSP_PFLRv.1 algorithm rejects 8.97% less requests than the 

normal WSP algorithm. Also, the LIOA_PFLRv.1 algorithm rejects 7.09% less 

requests than normal LIOA algorithm. 

With the help of PFLRv.1 algorithm, it is remarkable that the performance 

enhancement within the GÉANT network is less than the performance 

enhancement using the PFLR algorithm within the MIRA network. There are two   

reasons for this behavior. The first reason is that, the size range of requested flows 



CHAPTER 5–Simulation results 

 

 116 

BW within the GÉANT network is larger than their respective value within MIRA 

topology. This wide range of requested BW size leads to higher prediction error 

and so cause less performance enhancement. 

The second reason is that, the generated traffic within MIRA topology between 

the various source and destination pairs is uniformly distributed. However, the 

real traffic within GÉANT topology between the various source and destination 

pairs is not uniformly distributed. This leads to easier and more balanced 

prediction process in MIRA network case.  

 

Figure 5.25 The rejection ratio of requests for the real traffic scenario. 

Figure 5.26 shows the bandwidth blocking rate for the real traffic scenario. The 

average of results shows that, the WSP_PFLRv.1 algorithm rejects 3.50% less 

bandwidth than the normal WSP algorithm. Also, LIOA_PFLRv.1 algorithm 

rejects 4.07% less bandwidth than the normal LIOA algorithm. 

 

Figure 5.26 The bandwidth blocking rate for the real traffic scenario. 
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5.4 The evaluation of PFLRv.2 algorithm 

In this section, the performance of the PFLRv.2 algorithm is evaluated based on 

several test scenarios and the experimental results are discussed [24]. The PFLR 

(v.1 and v.2 – Single step-ahead prediction model) algorithms are bundled with 

WSP and LIOA algorithms and compared with the unbundled versions. In section 

5.4.1, the simulation details are presented. In section 5.4.2, MIRA topology is 

considered and the performance of compared algorithms is tested. In section 5.4.3, 

Internet2 topology is considered and the performance of the compared algorithms 

is tested. In section 5.4.4, the computation time of PFLR versions is measured. 

5.4.1 The simulation details 

The simulation details are presented in the following points:-   

 Simulation workflow:- 

o Three performances parameters are measured:  

o The rejection ratio of requests,  

o The bandwidth blocking rate and  

o The computation time. 

o This experiment uses the same procedure of the analysis study in section 

5.2 in order to focus on the steady state of network traffic and select the 

best values for the parameters of PFLRv.1 algorithm, (i.e. WS and α), in all 

tested scenarios. 

o According to the parameters of PFLRv.2 algorithm, the same procedure of 

the analysis study is done in order select the best values of ETh and α 

parameters that achieve the lowest rejection ratio of requests. 

 The parameters of PFLRv.1 and PFLRv.2 algorithms for MIRA topology:- 

Table 5.6 summarizes the result of analysis studies that are performed in order 

to select the best values of WS and α parameters for the PFLRv.1 algorithm 

and select the best values of Eth and α parameters for the PFLRv.2 algorithm 

in the MIRA topology (see Appendix A.1 and A.2). 

 The parameters of PFLRv.1 and PFLRv.2 algorithms for Internet2 topology: 

Table 5.7 summarizes the result of analysis studies that are performed in order 

to select the best values of WS and α parameters for the PFLRv.2 algorithm 
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and select the best values of Eth and α parameters for the PFLRv.2 algorithm 

in the Internet2 scenario (see Appendix A.1 and A.2). 

Table 5.6 The best values of WS and ETh and α and parameters (MIRA). 

Network load 

scenario 
Algorithm 

PFLRv.1 PFLRv.2 

WS α ETh α 

ML 
WSP 7 0.15 51 0.25 

LIOA 8 0.2 60 0.2 

HL 
WSP 7 0.1 51 0.05 

LIOA 10 0.15 54 0.1 

 

Table 5.7 The best values of WS and ETh and α and parameters (Internet2). 

Algorithm 
PFLRv.1 PFLRv.2 

WS α ETh α 

WSP 6 0.85 1800 0.8 

LIOA 9 0.8 2500 0.65 
 

5.4.2 The MIRA topology 

In the following scenarios, the MIRA topology is considered and the performance 

of routing algorithms is tested in both ML and HL scenarios. 

5.4.2.1 The ML scenario 

Figure 5.27 shows the rejection ratio of requests for the ML scenario. The average 

of results shows that, the WSP_PFLRv.2 algorithm rejects 3.42% less requests 

than the WSP_PFLRv.1 algorithm and 15.1% less requests than the normal WSP 

algorithm. Also, the LIOA_PFLRv2 algorithm rejects 6.74% less requests than 

the LIOA_PFLRv.1 algorithm and 12.79% less requests than the normal LIOA 

algorithm. 

The main reason for the more enhancements using the PFLRv.2 algorithm is that, 

PFLRv.2 algorithm has an additional adaptive parameter process. The PFLRv.1 

algorithm uses a fixed value of WS parameter and the training process is triggered 

every a hundred event. However, The PFLRv.2 algorithm has the ability to adapt 

the WS and PVP parameters and the training process is triggered depending on the 

prediction accuracy. Therefore, the PFLRv.2 algorithm has a better chance in 

order to outperform the PFLRv.1 algorithm with respect to many performance 

criteria. 
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Figure 5.27 The rejection ratio of requests for the ML scenario. 

According to the compared algorithms, the LIOA algorithm is an advanced 

routing algorithm which aims to reduce the interference among competing flows 

by balancing the number and quantity of flows. The MIRA algorithm outperforms 

the WSP and CSPF algorithms. 

The LIOA algorithm, like the CSPF algorithm, does not profit from the PFLRv.1 

algorithm in the same way as the WSP algorithm does. The WSP_PFLRv.1 

algorithm compares all the equal shortest paths and selects the widest path. The 

selection of widest path here does not depend on the current available BW only, 

but it depends on the predicted available BW also. However, the link weights 

within the LIOA_PFLRv.1 algorithm are represented by combining the predicted 

available BW with the current available BW and the number of flows. After that, 

it selects the shortest path that is firstly found by the Dijkstra's algorithm without 

comparing the equal shortest paths. Therefore, the PFLRv.1 algorithm has a better 

chance to enhance the performance of WSP algorithm more than the LIOA 

algorithm.  Furthermore, the performance of LIOA algorithm is better than the 

WSP algorithm. Whenever the routing selection is closer to the optimal selection, 

the enhancement becomes harder. 

Figure 5.28 shows the bandwidth blocking rate for the ML scenario. The average 

of results shows that, the WSP_PFLRv.2 algorithm rejects 2.57% less bandwidth 

than the WSP_PFLRv.1algorithm and 16.93% less bandwidth than the normal 

WSP algorithm. 
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Figure 5.28 The bandwidth blocking rate for the ML scenario. 

Also, the LIOA_PFLRv.2 algorithm rejects 7.73% less bandwidth than the 

LIOA_PFLRv.1algorithm and 12.13% less bandwidth than the normal LIOA 

algorithm. 

In general, the PFLR algorithm does not only target to enhance the rejection ratio 

of requests, but also it targets to enhance the bandwidth blocking rate at the same 

time. It is not a significant improvement to reduce the rejection ratio of requests 

and increase the bandwidth blocking rate at the same time. Furthermore, the 

PFLRv.2 algorithm enhances the bandwidth blocking rate more than the PFLRv.1 

algorithm. This is for the same reason that causes the more enhancements for the 

rejection ratio of requests. 

As described before in the result comments of rejection ratio comparative study, 

The LIOA algorithm does not profit from the PFLRv.1 algorithm in the same way 

as the WSP algorithm does. Therefore, the enhancement of BW blocking rate with 

WSP_PFLRv.2 algorithm is better than the enhancement of BW blocking rate 

with CSPF_PFLRv.2 algorithm. 

5.4.2.2 The HL scenario 

Figure 5.29 shows the rejection ratio of requests for the HL scenario. The average 

of results shows that, the WSP_PFLRv.2 algorithm rejects 4.31% less requests 

than the WSP_PFLRv.1algorithm and 10.34% less requests than normal the WSP 

algorithm. Also, The LIOA_PFLRv.2 algorithm rejects 4.08% fewer requests than 

the LIOA_PFLRv.1 algorithm and 9.58% less requests than the normal LIOA 

algorithm. As described before in section 5.2.1.2, the performance enhancement 
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of routing algorithms using the PFLRv.1 algorithm is affected by load scenario. 

Also the network load scenario has the same effect on the PFLRv.2 algorithm. 

 

Figure 5.29 The rejection ratio of requests for the HL scenario. 

Figure 5.30 shows the bandwidth blocking rate for the HL scenario. The average 

of results shows that, the WSP_PFLRv.2 algorithm rejects 4.42% less bandwidth 

than the WSP_PFLRv.1algorithm and 9.43% less bandwidth than the normal 

WSP algorithm. Also, the LIOA_PFLRv.2 algorithm rejects 6.02% less 

bandwidth than the LIOA_PFLRv.1algorithm and 9.38% less bandwidth than the 

normal LIOA algorithm. 

 

Figure 5.30 The bandwidth blocking rate for the HL scenario. 

5.4.3 Real traffic scenario 

Figure 5.31 shows the rejection ratio of requests for the real traffic scenario. The 

following result is a real trace file that contains the TCP/UDP traffic for the first 

day of 2009 year [118] with in Internet2 topology. The average of results shows 
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that, WSP_PFLRv.2 algorithm rejects 2.77% less requests than WSP_PFLRv.1 

algorithm and 9.22% less requests than the normal WSP algorithm. Also, the 

LIOA_PFLRv.2 algorithm rejects 3.91% less requests than the LIOA_PFLRv.1 

algorithm and 11.24% less requests than the normal LIOA algorithm. 

With the help of PFLR algorithm, it is remarkable that the performance 

enhancement within the Internet2 network is less than the performance 

enhancement using the PFLR algorithm within the MIRA network. There are two   

reasons for this behavior. The first reason is that, the size range of requested flows 

BW within the Internet network is larger than their respective value within MIRA 

topology. This wide range of requested BW size leads to higher prediction error 

and so cause less performance enhancement. 

The second reason is that, the generated traffic within MIRA topology between 

the various source and destination pairs is uniformly distributed. However, the 

real traffic within Internet2 topology between the various source and destination 

pairs is not uniformly distributed. This leads to easier and more balanced 

prediction process in MIRA network case.  

 

Figure 5.31 The rejection ratio of requests for the real traffic scenario. 

Figure 5.32 shows the bandwidth blocking rate for real traffic scenario. The 

average of results shows that, WSP_PFLRv.2 algorithm rejects 0.08% less 

bandwidth than WSP_PFLRv.1 algorithm and 0.54% less bandwidth than normal 

WSP algorithm. Also, LIOA_PFLRv.2 algorithm rejects 0.27% less bandwidth 

than LIOA_PFLRv.2 algorithm and 1.32% less bandwidth than normal LIOA 

algorithm. 
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Figure 5.32 The bandwidth blocking rate for the real traffic scenario. 

5.4.4 Computation time 

Table 5.8 shows the computation time of PFLR versions for different load 

scenarios. In the following Experiments, the used processor speed is 1.8 GHZ and 

1 GB RAM. In order to calculate the computation time of PFRL algorithm, firstly, 

the simulation time of normal routing algorithm,(T (Alg)), is measured, Then, the 

simulation time of bundled routing algorithm with PFLR algorithm, (T 

(Alg_PFLR)), is measured.  As described before in chapter four, the prediction 

and training operations are made in parallel on all network links. Therefore, the 

computation time of PFRL (v1 or v2) algorithm is equal to:   

(T (Alg_PFLR) - T (Alg)) / Numbers of network links. 

In general, the PFLRv.2 algorithm is faster than the PFLRv.1 algorithm in all 

scenarios. The main reason is the new adaptive feature within the PFLRv.2 

algorithm. In the PFLRv.1 algorithm, the training process is triggered every 

hundred event and the WS is always fixed. However in the PFLRv.2 algorithm, 

the PVP and WS parameters are dynamic. They are adjusted depending on the 

prediction accuracy. Therefore, the training process is not triggered as long as the 

prediction accuracy is good enough. 

Table 5.8 The computation time of PFLR versions (Sec.). 

Algorithm 
Network Load scenario 

ML HL 

PFLRv.1 1.36 Sec. 1.33 Sec. 

PFLRv.2 0.66 Sec. 0.62 Sec. 
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5.5 The PFLRv.2algorithm vs. estimation-based routing 

algorithms 

In this section, a new comparative study between the PFLRv.2 algorithm and 

different estimation-based routing algorithms is introduced [24]. The objective is 

to prove the efficiency of PFRLv.2 algorithm, based on some test scenarios and 

discuss the results. The DF-PI, PSA and PFLRv.2 algorithms are bundled with the 

WSP algorithm and compared with each other. In section 5.5.1, the simulation 

details are presented. In section 5.5.2, the MIRA topology is considered and the 

performance of the compared algorithms is tested. In section 5.5.3, the Internet2 

topology is considered and the performance of the compared algorithms is tested.  

5.5.1 The simulation details 

The simulation details are presented in the following points:-    

 Simulation workflow:- 

o Two performances parameters are measured:  

o The rejection ratio of requests and 

o The bandwidth blocking rate. 

o This experiment uses the same procedure in section 5.2 in order to focus 

on the steady state of network traffic. 

o This experiment uses the same procedure of the analysis study in section 

5.4 in order to select the best values for the parameters of PFLRv.2 

algorithm, (i.e. ETh and α),in all tested scenarios. 

 The parameters of PFLRv.2 algorithm:- 

Table 5.9 summarizes the result of analysis studies that are performed in order to 

select the best values of Eth and α parameters for the PFLRv.2 algorithm (see 

Appendix A.2 for more details).  

Table 5.9 The best values of ETh and α and parameters (WSP_PFLRv.2). 

Algorithm 

parameter 

MIRA 
Internet2 

ML HL 

ETh 54 0.1 1800 

α 48 0.3 0.8 
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5.5.2 The MIRA topology 

In the following scenarios, the MIRA topology is considered and the performance 

of routing algorithms is tested in both ML and HL scenarios. 

5.5.2.1 The ML scenario 

Figure 5.33 shows the rejection ratio of requests for the ML scenario. The average 

of results shows that, the WSP_PFLRv.2 algorithm rejects 6.32% less requests 

than the WSP_PSA algorithm and 8.37% less than the DF-PI_WSP algorithm and 

15.1% less than the WSP algorithm. 

 

Figure 5.33 The rejection ratio of requests for the ML scenario. 

The DF-PI algorithm is a statistical which uses the maximum, the minimum and 

the average of last recent samples of available BW during a past period to 

estimate the future of available BW. Then, it uses the estimated available BW in 

the link weights to enhance the performance of the WSP algorithm. While, the 

PSA is a linear prediction approach which solves the linear prediction equations to 

estimate the available BW and also tells the duration for which the estimate is 

valid with a high degree of confidence.  

The experiment results show that, the proposed mechanism of PFLRv.2 algorithm 

enhances the performance of routing algorithms much more than statistical and 

linear prediction equations approaches. The PFLRv.2 mechanism combines the 

predicted available BW with the current available BW and incorporates both of 

them in the link weight formula to optimize the performance of routing algorithm. 
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Additionally, both of the length of prediction step and prediction validity period is 

adapted depending on the prediction accuracy. 

Figure 5.34 shows the bandwidth blocking rate for the ML scenario. The average 

of results shows that, the WSP_PFLRv.2 algorithm rejects 12.12% less bandwidth 

than the WSP_PSA algorithm and 12.47% less than the WSP_DF-PI algorithm 

and 16.93% less than the WSP algorithm. 

 

Figure 5.34 The bandwidth blocking rate for the ML scenario. 

5.5.2.2 The HL scenario 

Figure 5.35 shows the rejection ratio of requests for the HL scenario. The average 

of results shows that, the WSP_PFLRv.2 algorithm rejects 4.37% less requests 

than the WSP_PSA algorithm and 7.08% less than the DF-PI_WSP algorithm and 

10.34% less than the WSP algorithm.  

 

Figure 5.35 The rejection ratio of requests for the HL scenario. 
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As described before in section 5.2.2.2, the performance enhancement of routing 

algorithms using the PFLRv.2 algorithm is affected by network load scenario. 

Figure 5.36 shows the bandwidth blocking rate for the HL scenario. The average 

of results shows that, the WSP_PFLRv.2 algorithm rejects 3.47% less bandwidth 

than the WSP_PSA algorithm and 5.92% less than WSP_DF-PI algorithm and 

9.43% less than the WSP algorithm. 

 

Figure 5.36 The bandwidth blocking rate for the HL scenario. 

5.5.3 Real traffic scenario 

Figure 5.37 shows the average of rejection rate for the real traffic scenario related 

to the simulation time. The average of results shows that, the WSP_PFLRv.2 

algorithm rejects the fewest number of requests.  

 

Figure 5.37 The rejection ratio of requests for the real traffic scenario. 
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Based on the results, the WSP_PFLRv.2 algorithm rejects 4.65% less requests 

than WSP_PSA algorithm and 5.38% less than DF-PI_WSP algorithm and 9.22% 

less than WSP algorithm. 

Figure 5.38 shows the bandwidth blocking rate for the real traffic scenario related 

to the simulation time. The average of results shows that, the WSP_PFLRv.2 

algorithm rejects 0.35% less bandwidth than the WSP_PSA algorithm and 0.38% 

less than the WSP_DF-PI algorithm and 0.54% less than the WSP algorithm. 

 

Figure 5.38 The bandwidth blocking rate for the real traffic scenario. 
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5.6 The PDR algorithm vs. ACR algorithms 

In this section, the performance of PDR v.1 and PDRv.2 are evaluated based on 

some test scenarios and discuss the results [25], [26] and [27]. The AntNet and TB 

algorithms are modified, by replacing the transmission delay with the available 

BW information to be able to compare the PDR algorithm with them. In section 

5.6.1, the simulation details are presented. In section 5.6.2, the MIRA topology is 

considered and the performance of the compared algorithms is tested. In section 

5.6.3, the Internet2 topology is considered and the performance of the compared 

algorithms is tested. 

5.6.1 The simulation details 

The simulation details are presented in the following points:-    

 Simulation workflow:- 

o Three performances parameters are measured:  

o The rejection ratio of requests and 

o The bandwidth blocking rate. 

o The effect of prediction use. 

o This experiment uses the same procedure in section 5.2 in order to focus 

on the steady state of network traffic.  

o This experiment uses the same procedure of the analysis study in section 

5.4 in order to select the best values for the parameters of PDR algorithm, 

(i.e. ETh and α), in all tested scenarios. 

 The parameters of PDR algorithm:- 

Table 5.10 describes the parameters of PDR algorithm and shows the used value 

in this simulation. Table 5.11 summarizes the result of analysis studies in 

Appendix A.3 that are performed in order to select the best values of Eth and α 

parameters for the PDR algorithm.  

Table 5.10 The parameters of PDR algorithm. 

Variable Value 

lc (least interference control parameter) 0.1 

M (keep the average of the last M of td) 15 

δ (learning rate) 0.01 
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θ (congestion weight) 0.25 

WS (window size) 1 

 

Table 5.11 The best values of ETh and α and parameters (PDR). 

Algorithm MIRA 
Internet2 

ML HL 

ETh 60 54 1800 

α 0.6 0.5 0.25 

5.6.2 The MIRA topology 

In the following scenarios, the MIRA topology is considered and the performance 

of routing algorithms is tested in both ML and HL scenarios. 

5.6.2.1 The ML scenario 

Figure 5.39 shows the rejection ratio of requests for the ML scenario. The average 

of results shows that, the PDRv.2 algorithm rejects 38.76% less requests than 

PDRv.1 algorithm, 46.17% less requests than TB algorithm and 63.40% less 

requests than AntNet algorithm. However, the PDRv.1 algorithm rejects 12.10% 

less requests than the TB algorithm and 40.24% less requests than the AntNet 

algorithm. 

 

Figure 5.39 The rejection ratio of requests for the ML scenario. 

The AntNet algorithm is considered the first algorithm that is inspired by ant 

colony behavior to solve the routing problem. However, The TB algorithm, which 
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is an advanced ant-based routing algorithm, is meant to be an extension of 

existing link-state protocols such as OSPF, which provides shortest-path 

information to initialize the probability table. Therefore, TB does not require a 

learning period to discover the network topology.  

The experiment result shows that, the PDR mechanism is an effective approach 

which combines the current available BW and the predicted available BW in order 

to determine the amount of pheromone to deposit. Additionally, the proposed 

predictor uses an adaptive mechanism to be able to locally adapt the prediction 

validity period depending on the prediction accuracy in order to efficiently predict 

the link traffics. 

The PDRv.2 algorithm outperforms the PDRv.1 algorithm because the PDRv.2 

algorithm uses a new adaptive Ant-based mechanism to be able to efficiently 

distribute the ants on the network topology and accurately discover the best paths.  

Additionally, the used Ant-based mechanism is incorporated with a new efficient 

prediction approach, which uses the dynamic FFNN instead of the static FFNN 

that is used in the previous version. 

Figure 5.40 shows the bandwidth blocking rate for the moderate load scenario. 

The average of results shows that, the PDRv2 algorithm rejects 38.34% less BW 

than PDRv.1 algorithm, 44.97% less BW than the TB algorithm and 62.37% less 

BW than the AntNet algorithm. However, the PDRv.1 algorithm rejects 10.75% 

less bandwidth than the TB algorithm and 38.96% less bandwidth than the AntNet 

algorithm. 

 

Figure 5.40 The bandwidth blocking rate for the ML scenario. 
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5.6.2.2 The HL scenario 

Figure 5.41 shows the rejection ratio of requests for the HL scenario. The average 

of results shows that, PDRv.2 algorithm rejects 29.04% less requests than PDRv.1 

algorithm, 33.77% less requests than TB algorithm and 45.82% less requests than 

AntNet algorithm. However, PDRv.1 algorithm rejects 6.66% less requests than 

TB algorithm and 23.65% less requests than AntNet algorithm.  

 

Figure 5.41 The rejection ratio of requests for the HL scenario. 

Figure 5.42 shows the bandwidth blocking rate for the HL scenario. The average 

of results shows that, PDRv.2 algorithm rejects 27.78% less BW than PDRv.1 

algorithm, 32.06% less BW than TB algorithm and 44.55% less BW than AntNet 

algorithm. However, PDRv.1 algorithm rejects 5.93% less bandwidth than TB 

algorithm and 23.23% less bandwidth than AntNet algorithm. 

 

Figure 5.42 The bandwidth blocking rate for the HL scenario. 
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5.6.3 Real traffic scenario 

Figure 5.43 shows the rejection ratio of requests for the real traffic scenario. 

Based on the results, PDRv.2 algorithm rejects 7.30% less requests than PDRv.1 

algorithm, 18.80% less requests than TB algorithm and 29.64% less requests than 

AntNet algorithm. However, the PDRv.1 algorithm rejects 12.41% less requests 

than the TB algorithm and 24.10% less requests than the AntNet algorithm. 

 

Figure 5.43 The rejection ratio of requests for the real traffic scenario. 

Figure 5.44 shows the bandwidth blocking rate for the real traffic scenario. Based 

on the results, PDRv.2 algorithm rejects 6.13% less BW than PDRv.1 algorithm, 

4.21% less BW than the TB algorithm and 11.47% less BW than the AntNet 

algorithm. However, the PDRv.1 algorithm rejects 4.17% less bandwidth than the 

TB and 5.68% less bandwidth than the AntNet algorithm. 

 

Figure 5.44 The bandwidth blocking rate for the real traffic scenario. 
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5.6.4 The effect of prediction use 

Table 5.12 shows the enhanced performance for the rejection ratio of requests (%) 

depending on the prediction use. In this section, we aim to study the effect of 

prediction use. Therefore, we run the PDRv.1 and PDRv.2 algorithms one time 

without the prediction use (α=0) and another time with the prediction use.  

In general, the prediction use within the PDRv.2 algorithm has a positive impact 

on the routing performance more than the prediction use within PDRv.1 

algorithm. The main reason for this enhancement is the new structure of used 

dynamic FFNN. 

Table 5.12 The enhanced performance depending on the prediction use. 

Network Load 

scenario 

PDRv.1 

algorithm 

PDRv.2 

algorithm 

ML scenario 6.27 (%) 8.37 (%) 

HL scenario 3.32 (%) 4.20 (%) 
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5.7 The PDR algorithm vs. centralized routing algorithms 

In this section, the performance of PDR v.1 and PDRv.2 are evaluated based on 

some test scenarios and discuss the results [27]. During this section, the various 

versions of PDR algorithm are compared with two different centralized routing 

algorithms, CSPF and LIOA algorithm. In section 5.7.1, the simulation details are 

presented. In section 5.7.2, the MIRA topology is considered and the performance 

of the compared algorithms is tested. In section 5.7.3, the Internet2 topology is 

considered and the performance of the compared algorithms is tested. 

5.7.1 The simulation details 

The simulation details are presented in the following points:-    

 Simulation workflow:- 

o Two performances parameters are measured:  

o The rejection ratio of requests and 

o The bandwidth blocking rate. 

o This experiment uses the same procedure in section 5.2 in order to focus 

on the steady state of network traffic.  

o This experiment uses the same procedure of the analysis study in section 

5.4 in order to select the best values for the parameters of PDR algorithm, 

(i.e. ETh and α), in all tested scenarios. 

o This experiment uses the same parameter values of the PDRv.1 and 

PDRv.2 algorithms in section 5.6.1. 

5.7.2 The MIRA topology 

In the following scenarios, the MIRA topology is considered and the performance 

of routing algorithms is tested in both ML and HL scenarios. 

5.7.2.1 The ML scenario 

Figure 5.45 shows the rejection ratio of requests for the ML scenario. The average 

of results shows that, the PDRv.2 algorithm rejects 32.89% less requests than the 

CSPF algorithm and 28.77% less than the LIOA algorithm. However, the PDRv.1 

algorithm rejects more requests than the CSPF and LIOA algorithms. The PDRv.2 

algorithm outperforms the PDRv.1 algorithm because the PDRv.2 algorithm uses 
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a new adaptive Ant-based mechanism to be able to efficiently distribute the ants 

on the network topology and accurately discover the best paths. Additionally, the 

used Ant-based mechanism is incorporated with a new efficient prediction 

approach, which uses the dynamic FFNN instead of the static FFNN that is used 

in the previous version. 

 

Figure 5.45 The rejection ratio of requests for the ML scenario. 

Figure 5.46 shows the bandwidth blocking rate for the ML scenario. The average 

of results shows that, the PDRv2 algorithm rejects 35.86% less BW than the 

CSPF algorithm and 31.55% less BW than the LIOA algorithm. However, the 

PDRv.1 algorithm rejects more bandwidth than the CSPF and LIOA algorithms. 

 

Figure 5.46 The bandwidth blocking rate for the ML scenario. 
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5.7.2.2 The HL scenario 

Figure 5.47 shows the rejection ratio of requests for the HL scenario. The average 

of results shows that, the PDRv.2 algorithm rejects 19.60% less requests than 

CSPF algorithm and 16.17% less than the LIOA algorithm. However, the PDRv.1 

algorithm rejects more requests than the CSPF and LIOA algorithms. 

 

Figure 5.47 The rejection ratio of requests for the HL scenario. 

Figure 5.48 shows the bandwidth blocking rate for the HL scenario. The average 

of results shows that, the PDRv2 algorithm rejects 22.77% less BW than the 

CSPF algorithm and 19.27% less BW than the LIOA algorithm. However, the 

PDRv.1 algorithm rejects more bandwidth than the than the CSPF and LIOA 

algorithms. 

 

Figure 5.48 The bandwidth blocking rate for the HL scenario. 
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5.7.3 Real traffic scenario 

Figure 5.49 shows the rejection ratio of requests for the real traffic scenario. The 

average of results shows that, the PDRv.2 algorithm rejects 6.49% less requests 

than CSPF algorithm and 10% less than the LIOA algorithm. However, the 

PDRv.1 algorithm rejects more requests than the CSPF and LIOA algorithms. 

 

Figure 5.49 The rejection ratio of requests for the real traffic scenario. 

Figure 5.50 shows the bandwidth blocking rate for the real traffic scenario. The 

average of results shows that, the PDRv2 algorithm rejects 6.88% less BW than 

the CSPF algorithm and 6.47% less BW than the LIOA algorithm. However, the 

PDRv.1 algorithm rejects more bandwidth than the than the CSPF and LIOA 

algorithms. 

 

Figure 5.50 The bandwidth blocking rate for the real traffic scenario. 
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CHAPTER 6 - Conclusions and future work 

6.1 Conclusions 

In this dissertation, two different algorithms are introduced within the research 

area of dynamic routing. The first algorithm is routing maintenance algorithm that 

runs beside the centralized routing algorithm. The second algorithm is a new fully 

decentralized and self-organized routing algorithm.  

6.1.1 The PFLR algorithm 

In this dissertation, a new TE routing maintenance algorithm, named Predicting of 

Future Load-based Routing (PFLR) algorithm, is introduced [22], [23], [24] that 

can efficiently enhance the performance of dynamic routing algorithms. The 

PFLR algorithm runs beside any routing algorithm that depends on the available 

BW information of network links in order to select the best paths between the 

source and destination pairs.  

With the use of PFLR algorithm, the future status of the network link loads will be 

considered. The considering of future network link loads has a big impact in 

reducing the interference between the path requests in the future and so reduces 

the occurrence of network congestions and at the same time leads to increase the 

network utilization.  

The most important feature of PFLR algorithm is the link state (weight) 

representation. The proposed algorithm combines the predicted link load with the 

current link load with an effective method in order to optimize the link weights. 

The idea is to reduce the number of wrong and critical decisions in case of 

uncertain prediction accuracy. This approach uses an ANN to build an adaptive 

predictor that predicts future link loads. ANN offers accurate prediction 

capabilities with different types of network traffic (generated and real traffic) and 

has the ability to be adaptive. Additionally, the advanced version of PFLR 

algorithm (PFLRv.2) has the ability to adapt the parameters of prediction model, 

such as the length of prediction step and the prediction validity period, in order to 

efficiently estimate the link traffics and so enhance the routing performance.  
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The performance of the PFLR algorithm is compared with respect to the WSP, 

CSPF and LIOA algorithms, within four different network topologies, with 

different traffic types and under different network traffic conditions. In general, 

the PFLR algorithm performs considerably better than the comparative algorithms 

with respect to various performance comparison criteria, such as the rejection 

ratio of requests (In the best case, it rejects 17.45% less requests than the normal 

algorithms), the bandwidth blocking rate (In the best case, it rejects 17.63% less 

BW than the normal algorithms) and the rejection ratio of re-routed requests upon 

link failure scenario. 

Additionally, a comparative study between the PFLR algorithm and different 

estimation-based dynamic routing algorithms are presented. The DF-PI, PSA and 

PFLR algorithms are bundled with WSP algorithm. After that, they are 

experimentally compared with each other using generated and real traffic 

scenarios. In general, the PFRL algorithm performs considerably better than the 

PSA and DF-PI algorithms with respect to different performance comparison 

criteria. 

According to limitations of PFLR algorithm, there are three issues should be 

considered during the use of PFLR algorithms. The first issue is that, the predicted 

available BW information should be also distributed to all network nodes. The 

distribution for additional information increases the routing overhead a little bit. 

The second issue is that, while the network load condition becomes heavier (the 

rejection ratio of requests is high), the performance enhancement of the routing 

algorithms using the PFLR algorithm is decreased compared to the lighter load 

condition scenario. Therefore, the recommended advice is that, it must be a 

significance improvement for the performance in order to balance the overhead 

cost of information distribution. 

The third issue is that, in case of very wide range for the BW of requests, the 

ANN requires more time in order to efficiently estimate the future values of 

network traffic. Although the overhead of ANNs processes is reduced by 

distributing the predictors on the various network nodes, the cost of ANN training 

still must be carefully considered (specially, in dynamic routing  case).  
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6.1.2 The PDR algorithm 

According to the second contribution in this dissertation, a new fully decentralized 

and self-organized routing algorithm is proposed, named Prediction-based 

Decentralized Routing (PDR) algorithm [25], [26], [27]. This algorithm is a 

member of traffic-aware routing algorithms. In the same time, this algorithm is 

considered as a new member of Ant Colony Routing (ACR) class. ACR 

algorithms are inspired from real ants' behaviors which have the ability of 

discovering the shortest path to a food source from their nest without any 

knowledge of geometry but with a keen sense of smell. In this approach, an ant 

uses a combination of the link state information and the predicted link load 

instead of the ant’s trip time to determine the amount of pheromone to deposit, so 

that it has a simpler process and less control parameters. 

Using the information of link state helps the routing algorithm to efficiently 

achieve the BW guarantee of the provided QoS. Additionally, considering the 

future value of the network link loads leads to reduce the interference between the 

reserved requests in the future and so reduce the occurrence of network 

congestions and increases the network utilization. 

The PDR algorithm uses similar prediction mechanism to the PFLR algorithm but 

with local-based implementation.  Additionally, the PDR algorithm has the ability 

to locally adapt the prediction validity period depending on the prediction 

accuracy in order to efficiently predict the link traffics. 

The performance of our proposed PDR algorithm is compared with the TB and 

AntNet algorithms, within two different network topologies, with different traffic 

types and under different network traffic conditions. In general, the proposed 

algorithm performs considerably better than the comparative algorithms with 

respect to different performance comparison criteria, such as the rejection ratio of 

requests (In the best case, it rejects 63.40% less requests than the comparative 

algorithm), the bandwidth blocking rate (It rejects 62.37% less BW than the 

comparative algorithms). 

The advanced version of PDR algorithm (PDRv.2) outperforms the PDRv.1 

algorithm because it uses a new adaptive Ant-based mechanism to be able to 

efficiently distribute the ants on the network topology and accurately discover the 
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best paths. Additionally, the used Ant-based mechanism is incorporated with a 

new efficient prediction approach, which uses the dynamic ANN instead of the 

static ANN that is used in the previous version. Based on a comparative study 

between various versions of PDR and various centralized routing algorithms, such 

as CSPF and LIOA algorithms, PDR v.2 algorithm (In contrast to PDRv.1 

algorithm) performs considerably better than various centralized algorithms with 

respect to various performance comparison criteria, such as the rejection ratio of 

requests (In the best case, it rejects 32.89% less requests than the traditional 

centralized algorithm) and the bandwidth blocking rate (It rejects 35.86% less BW 

than the traditional centralized algorithm). 

6.2 Future work 

According to the performance study, the performance testing of PFLR and PDR 

algorithms is planed with more complex network topologies. Also, other 

generated traffic models and various real traffic demands will be tested. In 

addition, the testing of other performance criteria will be done. Finally, the 

comparison of the PFLR and PDR algorithms with other dynamic routing 

algorithms is planned.  

According to the methodology of proposed algorithms, the focus will be much 

more on the minimizing of computation time for proposed algorithms.  In 

addition, the use of other ANN structure is planned in order to increase the 

prediction accuracy of proposed predictors. Finally, the focus will be much more 

on the decentralized routing approaches. 

In this dissertation, all the works are only focusing on one type of QoS guarantees 

(BW guarantee). In the future work, the consideration of other QoS requirements, 

such as the end-to-end delay, is planned too.   
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Appendix A - Sensitivity analysis of algorithm parameters 

This appendix presents the analysis studies of PFLR and PDR algorithms that are 

performed in order to select the best values of parameters. The first part covers the 

analysis study of PFLRv.1 algorithm in all scenarios. The second part focuses on 

PFLRv.2 algorithm. Finally, the analysis study of PDR algorithm is presented. 

A.1 The PFLR v.1 algorithm 

In the next experiments, analysis studies are performed on two thousands of 

requests, which are requested after the first four thousands to focus on the steady 

state, in order to select the best values of WS and α parameters. The aim is to 

select the best combination of WS and α parameters that have the least average of 

rejection ratio. 

A.1.1 The MIRA topology 

A.1.1.1 The ML scenario 

Figure A.1 shows the average of rejection ratio for requests in the ML scenario 

using the WSP_PFLRv.1 algorithm with different combination of WS and α 

parameters. The result shows that, the WSP_PFLRv.1 algorithm has the least 

average of rejection ratio when WS equals 7 and α equals 0.15. 

 

Figure A.1 Average of rejection ratio for the ML scenario (WSP_PFLRv.1). 
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Figure A.2 shows the average of rejection ratio for requests in the ML scenario 

using the CSPF_PFLRv.1 algorithm with different combination of WS and α 

parameters. The result shows that, the CSPF_PFLRv.1 algorithm has the least 

average of rejection ratio when WS equals 7 and α equals 0.15 

 

Figure A.2 Average of rejection ratio for the ML scenario (CSPF_PFLRv.1). 

Figure A.3 shows the average of rejection ratio for requests in the ML scenario 

using the LIOA_PFLRv.1 algorithm with different combination of WS and α 

parameters. The result shows that, the LIOA_PFLRv.1 algorithm has the least 

average of rejection ratio when WS equals 8 and α equals 0.2. 

 

Figure A.3 Average of rejection ratio for the ML scenario (LIOA_PFLRv.1). 
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A.1.1.2 The HL scenario 

Figure A.4 shows the average of rejection ratio for requests in the HL scenario 

using the WSP_PFLRv.1 algorithm with different combination of WS and α 

parameters. The result shows that, the WSP_PFLRv.1 algorithm has the least 

average of rejection ratio when WS equals 7 and α equals 0.1. 

 

Figure A.4 Average of rejection ratio for the HL scenario (WSP_PFLRv.1). 

Figure A.5 shows the average of rejection ratio for requests in the HL scenario 

using the CSPF_PFLRv.1 algorithm with different combination of WS and α 

parameters. The result shows that, the CSPF_PFLRv.1 algorithm has the least 

average of rejection ratio when WSequals8 and α equals 0.05. 

 

Figure A.5 Average of rejection ratio for the HL scenario (CSPF_PFLRv.1). 
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Figure A.6 shows the average of rejection ratio for requests in the HL scenario 

using the LIOA_PFLRv.1 algorithm with different combination of WS and α 

parameters. The result shows that, the LIOA_PFLRv.1 algorithm has the least 

average of rejection ratio when WS equals10 and α equals 0.15. 

 

Figure A.6 Average of rejection ratio for the HL scenario (LIOA_PFLRv.1). 

A.1.2 The COST266bt topology 

A.1.2.1 The ML scenario 

Figure A.7 shows the average of rejection ratio for requests in the ML scenario 

using the WSP_PFLRv.1 algorithm with different combination of WS and α 

parameters. The result shows that, the WSP_PFLRv.1 algorithm has the least 

average of rejection ratio when WS equals7 and α equals 0.2. 

 

Figure A.7 Average of rejection ratio for the ML scenario (WSP_PFLRv.1). 
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Figure A.8 shows the average of rejection ratio for requests in the ML scenario 

using the CSPF_PFLRv.1 algorithm with different combination of WS and α 

parameters. The result shows that, the CSPF_PFLRv.1 algorithm has the least 

average of rejection ratio when WS equals 6 and α equals 0.15. 

 

Figure A.8 Average of rejection ratio for the ML scenario (CSPF_PFLRv.1). 

A.1.2.2 The HL scenario 

Figure A.9 shows the average of rejection ratio for requests in the HL scenario 

using the WSP_PFLRv.1 algorithm with different combination of WS and α 

parameters. The result shows that, the WSP_PFLRv.1 algorithm has the least 

average of rejection ratio when WS equals 10 and α equals 0.1. 

 

Figure A.9 Average of rejection ratio for the HL scenario (WSP_PFLRv.1). 

Figure A.10 shows the average of rejection ratio for requests in the HL scenario 

using the CSPF_PFLRv.1 algorithm with different combination of WS and α 
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parameters. The result shows that, the CSPF_PFLRv.1 algorithm has the least 

average of rejection ratio when WS equals 7 and α equals 0.4. 

 

Figure A.10 Average of rejection ratio for the HL scenario (CSPF_PFLRv.1). 

A.1.3 Internet2scenario 

Figure A.11 shows the average of rejection ratio for requests in the Internet2 

scenario using the WSP_PFLRv.1 algorithm with different combination of WS 

and α parameters. The result shows that, the WSP_PFLRv.1 algorithm has the 

least average of rejection ratio when WS equals 6 and α equals 0.9. 

 

Figure A.11 Average of rejection ratio for the real scenario (WSP_PFLRv.1). 
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Figure A.12 shows the average of rejection ratio for requests in the Internet2 

scenario using the LIOA_PFLRv.1 algorithm with different combination of WS 

and α parameters. The result shows that, the LIOA_PFLRv.1 algorithm has the 

least average of rejection ratio when WS equals 9 and α equals 0.8. 

 

Figure A.12 Average of rejection ratio for the real scenario 

(LIOA_PFLRv.1). 

A.2 The PFLR v.2 algorithm 

In the next experiments, analysis studies are performed on two thousands of 

requests, which are requested after the first four thousands to focus on the steady 

state, in order to select the best values of ETh and α parameters. The aim is to 

select the best combination of Eth and α parameters that have the least average of 

rejection ratio. 

A.2.1 The MIRA topology 

A.2.1.1 The ML scenario 

Figure A.13 shows the average of rejection ratio for requests in the ML scenario 

using the WSP_PFLRv.2 algorithm with different combination of ETh and α 

parameters. The result shows that, the WSP_PFLRv.2 algorithm has the least 

average of rejection ratio when Eth equals 51 and α equals 0.25. 
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Figure A.13 Average of rejection ratio for the ML scenario (WSP_PFLRv.2). 

Figure A.14 shows the average of rejection ratio for requests in the ML scenario 

using the LIOA_PFLRv.2 algorithm with different combination of ETh and α 

parameters. The result shows that, the LIOA_PFLRv.2 algorithm has the least 

average of rejection ratio when Eth equals 60 and α equals to 0.2. 

 

Figure A.14 Average of rejection ratio for the ML scenario 

(LIOA_PFLRv.2). 

A.2.1.2 The HL scenario 

Figure A.15 shows the average of rejection ratio for requests in the HL scenario 

using the WSP_PFLRv.2 algorithm with different combination of ETh and α 

parameters. The result shows that, the WSP_PFLRv.2 algorithm has the least 

average of rejection ratio when ETh equals to 51 and α equals to 0.05. 
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Figure A.15 Average of rejection ratio for the HL scenario (WSP_PFLRv.2). 

Figure A.16 shows the average of rejection ratio for requests in the HL scenario 

using the LIOA_PFLRv.2 algorithm with different combination of ETh and α 

parameters. The result shows that, the LIOA_PFLRv.2 algorithm has the least 

average of rejection ratio when Eth equals 54 and α equals 0.1. 

 

Figure A.16 Average of rejection ratio for the HL scenario (LIOA_PFLRv.2). 

A.2.2 The Internet2 scenario 

Figure A.17 shows the average of rejection ratio for requests in the Internet2 

scenario using the WSP_PFLRv.2 algorithm with different combination of ETh 

and α parameters. The result shows that, the WSP_PFLRv.2 algorithm has the 

least average of rejection ratio when Eth equals 1800 and α equals 0.8. 
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Figure A.17 Average of rejection ratio for the real scenario (WSP_PFLRv.2). 

Figure A.18 shows the average of rejection ratio for requests in the Internet2 

scenario using the LIOA_PFLRv.2 algorithm with different combination of ETh 

and α parameters. The result shows that, the LIOA_PFLRv.2 algorithm has the 

least average of rejection ratio when Eth equals 2500 and α equals 0.65. 

 

Figure A.18 Average of rejection ratio for the real scenario 

(LIOA_PFLRv.2). 



Appendix A 

 

 XI 

A.3 The PDR algorithm 

In the next experiments, analysis studies are performed on two thousands of 

requests, which are requested after the first two hundred of time unit to focus on 

the steady state, in order to select the best values of ETh and α parameters. The 

aim is to select the best combination of ETh and α parameters that have the least 

average of rejection ratio. 

A.3.1 The MIRA topology 

A.3.1.1 The ML scenario 

Figure A.19 shows the average of rejection ratio for requests in the ML scenario 

using the PDR algorithm with different combination of ETh and α parameters. 

The result shows that, the PDR algorithm has the least average of rejection ratio 

when Eth equals 60 and α equals 0.6. 

 

Figure A.19 Average of rejection ratio for the ML scenario (PDR). 

A.3.1.2 The HL scenario 

Figure A.20 shows the average of rejection ratio for requests in the HL scenario 

using the PDR algorithm with different combination of ETh and α parameters. 

The result shows that, the PDR algorithm has the least average of rejection ratio 

when Eth equals 54 and α equals 0.5. 
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Figure A.20 Average of rejection ratio for the HL scenario (PDR). 

A.3.2 The Internet2 scenario 

Figure A.21 shows the average of rejection ratio for requests in the Internet2 

scenario using the PDR algorithm with different combination of ETh and α 

parameters. The result shows that, the PDR algorithm has the least average of 

rejection ratio when Eth equals 1800 and α equals 0.25. 

 

Figure A.21 Average of rejection ratio for the real scenario (PDR)
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Appendix B - The prediction accuracy of proposed 

algorithms 

During this appendix, the analysis studies for the PFLRv.2 and PDR algorithms 

are introduced in order to test the prediction accuracy of proposed algorithms for 

different load scenarios and with different routing algorithms. Firstly, the focus is 

on the PFLRv.2 algorithm. After that, the prediction accuracy of the PDR 

algorithm is presented. 

 Network topology:- 

o The experiments are done on MIRA [36] network topology that is often 

used in evolution of many routing algorithms. The MIRA topology has 15 

nodes and 28 links (see Figure 5.1). 

o In the MIRA topology, the thicker links have a capacity of 4800 capacity 

units while the thinner links have a capacity of 1200 capacity units. 

 Generated traffic:- 

o All possible combination of source and destination pairs is considered. 

o The request capacities are randomly distributed among 5-50 capacity units.  

o The arrival of requests follows a Poisson distribution with mean (λ) and 

the holding time of the requests is based on an exponential distribution 

with mean (1/μ). 

o Three different network loads are considered. In the first load scenario, 

called Light Load (LL), (λ/μ) equals (10×47) = 470.  In the second, called 

Moderate Load (ML), (λ/μ) equals (15×35) = 525. In the third, called 

Heavy Load (HL), (λ/μ) equals (20×29) = 580. 

o In each load scenario, three different traffics are generated with different 

seeds and with the same (λ/μ) values. 

o Ten thousands of requests are generated. However, to focus on the steady 

state of network load, the performance of routing algorithms is evaluated 

after four thousands of requests. 

 Performance study:- 

o The prediction error is calculated in every scenario.  
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B.1 The PFLR v.2 algorithm 

Two analysis studies are presented in this section. Firstly, the prediction accuracy 

of the PFLRv.2 algorithm is presented for different load scenarios. Then, the 

focus is on the prediction accuracy of PFLRv.2 algorithm for different routing 

algorithms. 

B.1.1 The prediction accuracy for different load scenarios 

In the following section, the prediction accuracy of the PFLR algorithm is 

presented for different load scenarios. Figure B.1 shows the average and variance 

of prediction errors for different load scenarios with respect to the WSP_PFLRv.2 

algorithm. The results show that, the average of prediction error is decreased 

when the network load is heavier because the changes on the reserved BW within 

the network links are decreased when the network load is heavier. 

 

Figure B.1 The prediction error for different load scenarios (PFLRv.2). 

Depending on the results in Figure B.1, the average of prediction accuracy for the 

proposed predictor ranges from 90.15% to 96.70% depending on the network load 

scenarios, since the Prediction Accuracy (PA) is computed according to the 

following equation: 

                                              Equation (B.1) 

The prediction errors and the network load scenarios have this relationship 

because the PFLRv.2 algorithm is event-based approach. In case of the heavy load 

scenario, there are no wide changes within the link loads because the links are 
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loaded most of the time. Therefore, the error prediction is the smallest in this case. 

In contrast to the heavy load scenario, there are wide changes in the link loads for 

the light load scenario because the links have a lot of available BW most of the 

time. 

As described in the parameters adaptation process of the PFLRv.2 algorithm, 

when the prediction error increases above a specific threshold, the training process 

is triggered. Since the average of prediction error is decreased when the network 

load is heavier, the number of requests between the sequent training processes is 

decreased when the load is heavier (see Figure B.2). 

 

Figure B.2 Average number of requests between the sequent training. 

B.1.2 The prediction accuracy for different routing algorithms 

Figure B.3 shows the prediction error for different load scenarios with respect to 

different routing algorithms. The main continuation of this study is to prove the 

accuracy of the proposed predictor regardless the routing algorithm. This study 

aims to compare the prediction accuracy of MHA_PFLRv.2 algorithm and other 

BW-based routing algorithms such as WSP and LIOA algorithms.    

The MHA algorithm does not depend on the available BW to compute the routes, 

but depends on the number of hops between the source and the destination. In 

other words, the MHA algorithm does not influence the prediction process and the 

prediction process has not effect on the routing decisions. The results show that, 

the prediction accuracy of the PFLRv.2 algorithm, in case of the (non-influenced) 
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MHA routing algorithm, ranges approximately in the same range of (influenced) 

WSP and LIOA routing algorithms. 

 

Figure B.3 The prediction error for different routing algorithms (PFLRv.2). 

B.2 The PDR algorithm 

In the following section, the prediction accuracy of the PDR algorithm is 

presented for different load scenarios. Figure B.4 shows the average and variance 

of prediction errors for different load scenarios with respect to the PDR algorithm. 

The results show that, the average of prediction error is decreased when the 

network load is heavier. Depending on the results in Figure B.4, the average of 

prediction accuracy for the proposed predictor ranges from 92.14% to 94.1% 

depending on the network load scenarios. 

 

Figure B.4 The prediction error for different load scenarios (PDR).
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Appendix C - The stabilization of statistic results 

In this section, the experiment results of the ML scenario for ten simulation runs 

(rather than five) with different seeds within the MIRA topology are presented. 

The main objective of the following study is to stabilize the statistic result of the 

PFLRv.1 algorithm. The following experiment is preformed with the simulation 

details that are described in section 5.2.1.  

Figure c.1 shows the rejection ratio of requests for the ML scenario within the 

MIRA topology. The average of results shows that, the WSP_PFLRv.1algorithm 

rejects 12.40% less requests than the normal WSP algorithm. Also, the 

CSPF_PFLRv.1 algorithm rejects 7.04% less requests than the normal CSPF 

algorithm. 

 

Figure C.1 The rejection ratio of requests for the ML scenario (Ten times). 

Figure c.2 shows the bandwidth blocking rate for the ML scenario in the MIRA 

topology. The average of results shows that, the WSP_PFLRv.1 algorithm rejects 

12.60% less bandwidth than the normal WSP algorithm. Also, the CSPF_PFLR 

algorithm rejects 6.50% less bandwidth than the normal CSPF algorithm. 
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Figure C.2 The bandwidth blocking rate for the ML scenario (Ten times). 

The comparison between the results of Figure 5.4 (five simulation runs) and 

Figure c.1 (ten simulation runs) shows that, both results have the same range and 

have approximately the close conclusions. Therefore, all the experiments in the 

chapter 5 are done based on five simulation runs. 
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Theses 

1) The efficiency of Traffic Engineering (TE) schemes mainly depends on 

routing optimization. Additionally, the provided Quality of Service (QoS) 

depends on the accurate measurement of the available BW.  

2) In the current dynamic routing algorithms, the state of network links is 

represented by specific weights. These weights are used to compute the best 

paths between the source and destination pairs.  

3) Most routing algorithms use the available BW information to represent the 

link weights. However, due to the varying nature of the available BW, this is 

not an efficient approach to represent the link utilization.  

4) The new research direction is to perform the estimation of the link utilization 

in the future based on the actual traffic profile and use the estimated values of 

traffic to enhance the routing performance.  

5) In the first contribution, a new efficient routing maintenance approach, called 

Predicting of Future Load-based Routing (PFLR), is introduced for optimizing 

the routing performance.  

6) PFLR algorithm runs with any routing algorithm whose computations depend 

on the residual BW. With the use of PFLR algorithm, the future status of the 

network link loads will be considered.  

7) Considering of future network link loads has a big impact in reducing the 

interference between the requests in the future and so reduces the network 

congestions and at the same time leads to increase the network utilization.  

8) The main idea of PFLR algorithm is combing the predicted link load with the 

current link load with an effective method in order to optimize the link 

weights and so enhance the routing performance.  

9) The proposed approach uses the Artificial Neural Network (ANN) for building 

an adaptive traffic predictor in order to predict the future link loads.  



 

 

 

10) Additionally, the proposed algorithm has the ability to adapt the parameters of 

the prediction model, such as the length of prediction step and the prediction 

validity period, in order to efficiently estimate the link traffics.  

11) According to different simulation scenarios, the bundled routing algorithms 

with PFLR reduces the rejection ratio of requests, minimizes the bandwidth 

blocking rate and reroutes the requests upon link failure in an optimal way.  

12) The second contribution is introducing a new efficient TE algorithm, called 

Prediction-based Decentralized Routing (PDR) algorithm, which is fully 

decentralized and self-organized approach.  

13) PDR algorithm is a member of ant colony routing class. In PDR algorithm, an 

ant uses a combination of the link state information and the predicted link load 

instead of the ant’s trip time to determine the amount of pheromone to deposit. 

14) Using the link state information helps the routing algorithm to efficiently 

achieve the BW guarantee of the provided QoS. Additionally, the considering 

of future of network link loads leads optimizes the routing performance.  

15) PDR algorithm uses a similar prediction mechanism to the PFLR algorithm 

but with local-based implementation. Additionally, the PDR algorithm has the 

ability to locally adapt the prediction validity period depending on the 

prediction accuracy in order to efficiently predict the link traffics. 

16) PDR algorithm is compared with centralized and decentralized routing 

algorithms. In general, PDR algorithm performs considerably better than the 

comparative algorithms with respect to various performance comparison 

criteria. 
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