
Functional characterization
and annotation of

trait-associated genomic regions
by transcriptome analysis

Dissertation

zur

Erlangung des akademischen Grades

Doktor-Ingenieur (Dr.-Ing.)

Promotionsgebiet Bioinformatik

Fakultät für Informatik und Elektrotechnik

Universität Rostock

vorgelegt von

Yang Du, geboren am 03. Feburar 1983 in Tianjin

aus Rostock

Rostock, 2014

zef007
Schreibmaschinentext
urn:nbn:de:gbv:28-diss2014-0196-0



Gutachter:

Prof. Dr.-ing. Thomas Kirste (MMIS, Universität Rostock)

Prof. Dr. rer. nat. Klaus Wimmers (Leibniz-Institut für Nutztierbiologie, Dummer-

storf)

Prof. Dr. rer. nat. Georg Füllen (IBIMA, Universitätsmedizin Rostock)

Prof. Dr. rer. nat. Mario Stanke (MNF, Universität Greifswald)

Datum der Einreichung: 16. Juni 2014

Datum der Verteidigung: 20. November 2014



To my beautiful daughter and beloved wife



Acknowledgements

I would like to first express my very great appreciation to my supervisor at FBN,

Prof. Klaus Wimmers, for his generosity, support and patience throughout my work, for

which I will always be grateful. With my deepest gratitude, I would also like to thank

Prof. Thomas Kirsteand Prof. Georg Füllen, for accepting me and supporting my work,

and their insightful comments and useful critiques of this research work. Without their

guidance and encouragement, I would not be able to finish this dissertation.

My grateful thanks are also extended to Dr. Siriluck Ponsuksili, Dr. Eduard Murani

and Dr. Nares Trakooljul, for their valuable advices and resultful discussions. It has

been a great pleasure and learning opportunity to work with them in those past and

on-going projects.

I am particularly grateful for the lab assistance given by Ms Hannelore Tychsen during

the tiling array experiments. Despite the occasional language barrier, it has been a truly

rewarding experience to work with her, and to see for oneself how experiments are done

in real world.

I would like to offer my special thanks to Dr. Ronald Brunner, Frieder Hadlich, and

also Peter Havemann from the IT department, for their excellent technical support with

computational servers and web hosting.

I would also like to extend my thanks to many people from the university, for their

openness to help, and for their suggestions and comments in many stages of my thesis

preparation. It was truely uneasy for an external PhD student to walk though these

process alone.

I wish to thank all my colleagues and friends at FBN, Au, Philipp, Ta, Wiebke, Tum,

Milan..., it is impossible to name you all, for those German / Biology 101s, for helping

me settle down and get through those tough transitions, for those laughters we shared

and those fun get-togethers. Thank you all who had been kind to me and made my stay

in Germany both scientifically and socially rewarding.

Last but not least, I want to specially thank my family and friends, here and at home,

for their love, continuous encouragement and support during the time that I was en-

gaged in this study.



Abstract

Functional genomics is the subject of studying biological data recorded in the com-

plete state of a genomic system using high-throughput techniques, to describe the func-

tion of DNA and its interactions with intermediate RNA transcripts and functional pro-

tein products. One of the most crucial issues to deal with in genomics is the ambiguity

arising from sequence homology. Duplicated DNA sequences of variable length com-

monly exist in most organisms, which impose a great challenge on the technologies used

in genome research. As the two flagship high-throughput techniques used to character-

ize genomes and trnascriptomes and to quantify the level of various biological activities

and redundancy, tiling array and next-generation sequencing both require careful han-

dling of non-uniquely mapped features to ensure their accuracies. Thus many works

have been done in the field of array probe design and in mapping sequencing reads

back to reference or in de novo genome assembly. According to the recent result from

the international collaboration effort, The ENCODE project, 80 percent of the human

genome are either transcribed or biochemically functional, a number much higher than

the known protein coding segments scientists used to believe even in 2003, when the

human genome was fully sequenced. As a consequence of the growing availability

of new high-throughput techniques, many of such novel functional fragments need to

be identified and further functionally characterized. In this work, two novel imple-

mentations have been presented, which could assist in the design and data analysis of

high-throughput genomic experiments. An efficient and flexible tiling probe selection

pipeline utilizing the penalized uniqueness score has been implemented, which could

be employed in the design of various types and scales of genome tiling task, with high

coverage and resolution, while giving more control of the expected hybridization effi-

ciency. A novel hidden semi-Markov model (HSMM) implementation is made available

within the Bioconductor project, which provides a unified interface for segmenting ge-

nomic data in a wide range of research subjects. It was designed specifically for genomic

data analysis, with flexible distributional assumption and optional prior learning using

annotation or previous studies. The usages and performance of the two novel tools

have been illustrated and evaluated using simulation and published datasets. Moreover,

through an integrative and detailed case study, in which genome regions previously

show to exhibit quantitative trait loci (QTL) should be characterized in terms of en-

coding differentially expressed genes, the two implementations have been utilized. The

penalized uniqueness score was used to design 1M feature tiling arrays that covered a 18

Mb region of the porcine genome at a coverage of 49%. The HSMM was applied on the

data from hybridization experiments of divergent animals enabled detecting candidate

genes with trait-dependent expression.





Zusammenfassung

Die funktionale Genomik verfolgt als Ziele die allumfassende Auswertung biolo-

gischer Daten eines genomischen Systems mittels Hochdurchsatz-Technologien sowie

die funktionale Charakterisierung der DNA und ihrer Wechselwirkungen mit RNA-

Transkripten und funktionalen Proteinprodukten. Eine der größten Hürden in der

Genomik stellt hierbei die Uneindeutigkeit durch Sequenzhomologien dar. Redun-

dante DNA-Sequenzen variabler Länge existieren in vielen Organismen und bilden eine

enorme Herausforderung an die Technologien in der genomischen Forschung. Sogenan-

nte tiling arrays und Next-Generation-Sequenzierung sind Hochdurchsatz-Technologien,

deren Daten eine sorgfältige Überprüfung und Bearbeitung hinsichtlich mehrfach kartierter

Sequenzen zur Wahrung ihrer Präzision. Folglich wurden bereits viele Anstrengungen

unternommen zum Erstellen von Arrayproben und beim Assemblieren von Fragmenten

von Sequenzen gegen Referenzgenome bzw. bei der De-novo Assemblierung. Neueste

Ergebnisse aus dem ENCODE Projekt, einer internationaler Verbundarbeit, belegen,

dass 80 Prozent des menschlichen Genoms entweder transkribiert oder biochemisch

funktional sind, also deutlich mehr als Wissenschaftler noch 2003 bei der Vervollständi-

gung des Humangenoms angenommen haben. Als Konsequenz der stetig wachsenden

Verfügbarkeit neuer Hochdurchsatz-Technologien müssen viele der neu gefundenen

funktionalen Fragmente identifiziert und weiter funktional charakterisiert werden. In

dieser Arbeit werden zwei neuartige Implementierungen präsentiert, die im Design

und in der Datenanalyse von genomischen Hochdurchsatz-Experiment hilfreich sein

können. Die erste Implementierung bildet eine effiziente und flexible Auswahl-Pipeline

für tiling Proben basierend auf einem Eindeutigkeitsmaßmit einer Maluswertung (pe-

nalized uniqueness score), welches in vielfältigen Formen und Anwendungen für tiling

Sonden ein Sondendesign mit einer hohe Abdeckungs- und Auflösungsrate ermöglicht

und zudem mehr Kontrolle an erwarteter Hybridisierungeffizienz verspricht. Als zweite

Implementierung wurde ein neuartiges Hidden-Semi-Markov-Modell (HSMM) im Bio-

conductor Projekt verfügbar gemacht, welches speziell für die genomische Datenanalyse

mit flexibler Verteilungsannahme und optionalen Vorkenntnissen in Form von Annota-

tionen oder Vorstudien die Segmentierung genomischer Daten in einer weiten Band-

breite von Forschungsvorhaben durch ihre einheitliche Schnittstelle unterstützt. An-

wendbarkeit sowie Leistungsfähigkeit beider Programme sind mit Hilfe von simulierten

und publizierten Daten dargestellt. In einer integrativen und detaillierten Fallstudie am

Beispiel von Zuchttieren, bei dem zuvor identifizierte QTL (quantitativ trait loci) Regio-

nen hinsichtlich differentiell exprimierter Gene charakterisiert werden sollten, wurden

beide Implementationen angewendet Der penalized uniqueness score wurde genutzt

um einen tiling array mit 1mio Element abzuleiten der eine 18mb große region des porci-



nen Genoms mit 49% abdeckt. Das HSMM wurde bei der Auswertung von Daten aus

einem Hybridisierungsexperiment mit divergenten Tieren eingesetzt und ermöglichte

die Identifizierung von merkmalsabhängig exprimierten Kandidatengene.
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CHAPTER 1

Introduction

As an experimental science, biology used to be a time and labor intensive research

subject. While in the last few decades, thanks to laboratory automation and high-

throughput technologies, a new branch of contemporary genetics research, genomics,

has been created, which is the studying of structure and function of the complete set of

DNA from an organism. Transcriptome profiling is one of the first steps to understand

complex biological processes, which helps us to move forward from genomic DNA

sequences, the most basic genetic materials, to functional proteins. As the two most

widely adopted high through-put technologies to survey transcriptome, genome tiling

array and next-generation sequencing (NGS) give us the opportunity to unbiasedly cap-

ture the transcription activity across genomic regions. In this chapter, we will make brief

introduction of these two experimental technologies, and present the key objectives of

this dissertation.

1.1. Microarray

A DNA microarray or DNA chip is a highly compact assay of microscopic spots with se-

lected specific DNA sequence, the probe, deposited or attached to a solid surface which

normally taking the form of quartz slide or plastic chip. Alternative form also includes

using immobilized microscopic beads without a solid platform. After hybridization, the

signal intensity of the probe is then determined optically by the amount of fluorescently

labeled target sample binded to the probe sequence via laser agitation. A schematic illus-

tration of microarray is shown in Figure 1.11. The application of microarry dates back to

1980s, when some hundreds or thousands of complementary DNA (cDNA) sequences

1Image obtained from Wikipedia
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1. Introduction

were spotted onto filter paper to study tissue or treatment specific gene expressions

[1; 2; 3]. The later introduction of computer assisted image scanning and quantification,

together with development of robotic spotting and in-situ oligonucleotide synthesizing

eventually set the standards of modern miniaturized microarray [4].

Figure 1.1.: A schematic illustration of probe hybridization mechanism of microarray.

Various types of microarray are commonly used in genetic research and medical diag-

nosis. Gene expression chip, the most popular microarray form, is highly cost efficient

to measure expression levels of known genes and transcripts genome-wide. Another fre-

quently adopted microarray is the single-nucleotide polymorphism (SNP) array, which

is used to survey nucleotide variation in genomic DNA. SNP array is commonly applied

in Genome Wide Association Studies (GWAS) of common and complex diseases. Also

SNP could serve as both indicators of chromosome copy number and genotype maker,

thus enabling the usage of SNP array to study copy number variation (CNV) and loss

of heterozygosity (LOH) in cancer.

As another unique variety of high throughout microarray, genome tiling array targets

not only known transcripts that are dispersed across the genome, but intensively covers

all known contiguous regions on the genome with overlapping or evenly-spaced probes

(See Figure 1.22), thus being more unbiased than common gene expression arrays. Other

than transcriptome profiling, tiling array also aids in discovering sites of DNA/protein

interaction (chromatin immunoprecipitation (ChIP)-chip), of DNA methylation (methy-

lated DNA immunoprecipitation (MeDIP)-chip) and of sensitivity to deoxyribonucle-

ase (DNase)-chip) and Microarray-based comparative genomic hybridization (aCGH).

Besides whole genome tiling array, region specific tiling also assists in refined transcrip-

2Image from Royce et al. [5]
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1.1. Microarray

Figure 1.2.: Common tiling array probe layouts, which could be either overlapping, end-

to-end or with an average spacing between neighbouring probes.

tome profiling of genome regions of interest.

Irrespective of specific microarray types, common work flow (See Figure 1.33) of mi-

croarray experiment design and data analysis includes statistical power analysis, array

quantification, array quality control (QC), statistical analysis and further mining of func-

tional genomics data [6].

3Image from Nadon and Shoemaker [6]

3



1. Introduction

Figure 1.3.: Typical microarray experiment design and data analysis flow.

4



1.2. NGS

1.2. NGS

DNA sequencing is the process of sequentially determining the exact order of the four

nucleotide bases—Adenine (A), Guanine (G), Cytosine (C), and Thymine (T) in the DNA

molecule. To date, the most widely used sequencing method is Sanger sequencing de-

veloped by Frederick Sanger and colleagues in 1977. In recent years with advancing

technology and lower costs, Next-generation sequencing (NGS) has gained unprece-

dented attention in genome research, which has the capability of running hundreds of

thousands sequencing operations in parallel (See Figure 1.44 for a simplified compari-

son of Sanger sequencing and NGS work flow). With its inherent single-base resolution,

NGS achieves higher accuracy in exon boundary mapping and can be used for SNP

detection. Furthermore, its unlimited dynamic range enables detection of any subtle

changes in gene expressions. Similar to genome tiling array, various types of genomics

application can also be addressed by NGS — to quantify mature transcripts and small

RNA using mRNA-seq, to survey transcription factor-binding sites with ChIP-seq, to

study DNA methylation by MeDIP-seq, and etc [8].

Unlike microarray, for which signals of probes targeting known reference genome

sequences can be easily subtracted from image background, the end products of se-

quencing experiments are millions of read segments which need to be quantified. The

analysis of NGS data is far from mature comparing to microarray data analysis. The

alignment of short reads to the reference genome, or de novo assembly of short reads

both pose significant challenges to NGS data analysis. Further normalization, visual-

ization and statistical modeling of genomic count data are also active fields of ongoing

bioinformatics and statistical genetics research.

4Image from Shendure and Ji [7]
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1. Introduction

Figure 1.4.: Simplified comparison of Sanger sequencing (a) and NGS (b) work flow. The

main differences include the substitution of in vivo cloning with sequencing libraries

construction using clonal amplification and the array based parallel cyclic sequencing.

6



1.3. Aim of this work

1.3. Aim of this work

In order to perform scientifically proof research and reveal statistically sensible findings

in biology, one of the most basic requirements, the experimental conditions, environ-

mental and biological, must be carefully designed and strictly controlled. In addition,

a sufficiently large sample of qualified experiment subjects must be available for ma-

nipulation. Thus animal models provide an ideal resource for applied agricultural and

experimental biology research. Also due to their immense similarities to human, genet-

ical and physiological, animal models have been widely used to study human diseases.

Functional genomics is the subject of studying biological data recorded in the com-

plete state of a genomic system using high-throughput techniques, to describe the func-

tion of DNA and its interactions with intermediate RNA transcripts and functional pro-

tein products. Genome tiling array and next-generation sequencing are the two flagship

high-throughput technologies for current functional genomics research.

Unlike gene expression arrays or SNP arrays, high density genome wide tiling arrays

are only commercially available for some model organisms, not to mention many other

customary tiling arrays of specific purposes. It is also important to note that, due to

the well known cross hybridization problem, which haunts microarray technology, and

other probe quality issues, successful array based experiment at genome scale requires

optimum and proper probe selection method. On the other hand, as the technology

progressing, the study of genomics has entered the era of big data. The newly prevailing

next-generation sequencing technology has the capability of generating hundreds of

gigabytes per run. The accompanying high volume data demands efficient and scalable

computational tools to assist in statistical modeling and data visualization.

In this work we will apply custom regional tiling array and next-generation sequenc-

ing experiments to identify and functionally characterize traits related genomic re-

gions using farm animal model, and contribute to the software development of high-

throughput computational biology.

The thesis work presented here is organized as the following,

• Chapter 2: "Methods and models", subdivided into two subsections, surveys and

summarizes the common methods and issues involved in tiling array design and

genomic segmentation related applications. The development made in the tilling

array design using penalized uniqueness score has been published as Yang Du

et al. [9]. The general-purpose genomic segmentation tool implemented has been

published in Yang Du et al. [10].

7



1. Introduction

• Chapter 3: "Case studies", illustrates the usage of tools developed and presented

in the previous chapter through a series of experiments carried out by the re-

search group at FBN (Leibniz Institute for Farm Animal Biology, Dummerstorf,

Germany).

• Chapter 4: "Discussion and Outlooks", further reviews in detail the miscellaneous

differences of the proposed methods and models with the existing ones, and dis-

cusses related issues in contemporary genomics research. Finally summarizes the

works done throughout this dissertation, and discusses further improvements and

outlooks in the research fields.

8



CHAPTER 2

Methods and Models

In this chapter, I will first review the common methodologies involved in array design,

then introduce the concept and usage of penalized uniqueness score in tiling array de-

sign. In the second half, the topic will be shifted from experimental design and prepa-

ration to statistical modeling and data visualization in genomics. A general-purpose

genomic segmentation model will be described and evaluated using simulation and

published datasets.

2.1. Custom tiling array design

2.1.1. Common methods and issues

The fundamental bio-chemical principle of microarray technology is the hybridization

between two strands of DNA formed by hydrogen bonding of complementary base

pairs. Strong and reliable microarray probe signal strength then largely depends on a

large number of specific complementary base paring with high sensitivity. Other influ-

ential factors contributing to hybridization efficiency are mostly nucleic acid thermody-

namics related, like melting temperature (Tm), sequence base compositions, sequence

complexity and propensity for secondary structure.

In a successful microarray design, selected probes should have similar hybridization

efficiencies under a specified narrow band of temperature, as well as minimal potential

for both self-hybridization and cross-hybridization [11]. Further guidelines for the speci-

ficity of long oligonucleotides array probe have been discussed in [12], in which the au-

thors suggest that candidate probes should exhibit less than 75% overall sequence sim-

ilarities with non-target sequences and contain no stretch of complementary sequence

9



2. Methods and Models

longer than 15 bases.

However, these selection constraints become much more difficult to satisfy when ap-

plied to tiling probes designed for a large genome region [13], and naive method of

using a uniform grid is clearly not optimum when considering hybridization efficiency.

Among these contributing factors, non-specific binding or cross-hybridization is most

problematic, when a non-targeted nucleotide sequence hybridizes to the designed probe.

A similar situation with lower specificity also troubles NGS, when short reads need to

be either aligned to a reference genome or assembled into contigs de novo [14].

Homogeneity and sensitivity

The melting temperature (Tm), defined as the temperature at which 50% of the oligonu-

cleotide and its perfect complement are in duplex and the other half are in the random

coil state, is essential for the success of stable hybridization, where a narrow band of

Tm across all probes is highly desirable [11; 13]. It has also been shown that the melting

temperature of the probe, among other oligonucleotide properties, might has the most

significant impact on hybridization signal intensities [15]. In general, the melting tem-

perature is affected by three major factors, oligo concentration, salt concentration and

oligo sequence [16]. Common thermodynamics prediction models utilizing only base

composition, like GC content or base counts, have been proposed and widely used in

practice for short oligonucleotides [17; 18; 19]. GC content plays a crucial role in probe

hybridization, since base pairings between G and C have three hydrogen bonds and are

more stable compared to the A / T pairing.

Tm = (#A + #T)× 2 + (#G + #C)× 4 (2.1)

Tm = 64.9 + 41 × (#G + #C − 16.4)/(#A + #T + #G + #C) (2.2)

Assuming a standard oligo concentration of 50 nM and pH neutral annealing envi-

ronment, Equation (2.1) is valid for sequences shorter than 14 nucleotides [17], while

Equation (2.2) is more accurate for sequences longer than 13 nucleotides [18]. Salt ad-

justed Tm approximation has also been considered and proposed in length specific se-

tups [19]: Equation (2.3) is accurate when oligo length falls in the range of 18-25 mer;

10



2.1. Custom tiling array design

when sequence is longer than 50 nucleotides Equation (2.4) gives better estimation.

Tm = 100.5 + 41 × (#G + #C)/(#A + #T + #G + #C)

− 820/(#A + #T + #G + #C) + 16.6 × log10[Na+]
(2.3)

Tm = 81.5 + 41 × (#G + #C)/(#A + #T + #G + #C)

− 500/(#A + #T + #G + #C) + 16.6 × log10[Na+]− 0.62 × F
(2.4)

However, these simple models do not consider the actual probe sequence and base

position, but rather use only the summary statistics of the sequence. The loss of in-

formation will inevitably lead to lower prediction power. Assuming a set of sequences

with same length and GC content but different nucleotides arrangement, all simple

models above will yield the same prediction, which would hardly be the real case. The

nearest-neighbor model later proposed, taking into account of the nucleotides forma-

tion, is considered more robust and accurate [20; 21], which could also account for other

influential factors like oligo concentration and ionic concentration. Thus in this work,

the adapted prediction model of Tm (Equation (2.5)) using the same parameters as in

[22; 23; 20] is utilized, with salt correction approximation,

Tm =
∑ ∆Hd + ∆Hi

∑ ∆Sd + ∆Si + ∆Ssel f + R × log CT/b
+ 16.6 × log[Na+] (2.5)

where R is the ideal gas law constant (1.987 cal/K·mol), [Na+] is the given sodium

concentration, CT is the total oligonucleotide strand concentration (b=4, if the strands are

in equal concentration). Thermodynamics parameters ∆H and ∆S each represents the

enthalpy (the amount of heat energy possessed by substances) change and the entropy

(the amount of disorder a system exhibits) change. The subscript ’d’ and ’i’ indicate

the di-nucleotide pairs parameter values of each nearest neighbor base pair and the

initiation parameter. ∆Ssel f is the additional entropic penalty for the maintenance of the

C2 symmetry of self-complementary duplexes. Values of the nearest-neighbor model

parameters estimated in [22] are given in Table 2.1.

Complexity and repetitive sequence

Given that DNA / RNA sequence are both composed of only 4 possible nucleotide

bases, respectively, the chance of seeing some particular pattern of nucleotides, a k-mer,

11



2. Methods and Models

Table 2.1.: Nearest-Neighbor parameters for DNA/DNA duplex

Stack ∆H◦(kcal.mol−1) ∆S◦(cal.mol−1.K−1)

5’ AA / TT 3’ -7.9 -22.2

5’ AT / TA 3’ -7.2 -20.4

5’ TA / AT 3’ -7.2 -21.3

5’ CA / GT 3’ -8.5 -22.7

5’ GT / CA 3’ -8.4 -22.4

5’ CT / GA 3’ -7.8 -21

5’ GA / CT 3’ -8.2 -22.2

5’ CG / GC 3’ -10.6 -27.2

5’ GC / CG 3’ -9.8 -24.4

5’ GG / CC 3’ -8 -19.9

The initiation parameter with G/C 0.1 -2.8

The initiation parameter with A/T 2.3 4.1

Symmetry correction 0 -1.4

repeating itself somewhere else across all chromosomes is unsurprisingly high. Assum-

ing that we are looking at a mammalian genome like human, which contains around

3 × 109 nucleotide bases on a single strand, we want to know the probability of a 15 bp

(k=15) sequence P occurs only once in the whole genome. First, there are 4k different

sequence formations, given only 4 possible bases to choose from. So for any specific lo-

cation, the chance of seeing this particular 15 bp sequence P is only 1/415 = 9.31E − 10,

which is not very likely. However there are N = 3E9 locations one could check against,

which would lead to on average 3E9/415 = 2.79 occurrences of this pattern, and this

is only counting one strand of the DNA. The chance of a single occurrence is there-

fore (1 − 1/415)(3E9−1) × (1/415)× 3E9 = 0.17. In probability theory and statistics, the

number of occurrence (X) of such a random pattern could be considered to follow a

Binomial distribution, B(N, p), with the probability of exact matching p = 1/4k and

the number of comparisons equals to N. Thus by applying the cumulative distribution

function (CDF) of Binomial distribution, one can easily get the probability of having

this sequence more than once in the genome, P(X > 1) = 1 − P(X ≤ 1) = 0.77, which

is quite high. However when, k, the length of P increases, the success rate (p) drops

exponentially, thus in turn the chance of having more than 1 occurrences decreases.

In real genomics, repetitive genomic sequences are sequences that show high degree

of similarity or are identical to other parts of the genome. Their existences could be co-

incidental combinatorial events or products of complex cellular mechanisms. However

such repetitive sequences are observed more frequently than expected. Studies have
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shown for well-characterized genome like human that, nearly 50% of human genome

are covered by repeats [24; 25]. Such high degrees of repetitiveness are also present in

other lines of organism; for example, in plants, arabidopsis [26] and maize [27] have been

found to exhibit large scale genome wide duplication. In prokaryotic microorganisms,

repetitive sequences are also detected at a large proportion [28].

For these repetitive sequences, further categorization could be made depending on

their sizes, positions and structural adjacency. In general, there are two types of re-

peats. Tandem repeats are those with the repeated copies in their immediate adjacency.

Centromere and telomere of chromosome are largely comprised of tandem repeats. If

the reoccurring copies of the transposable segments are located far from each other,

they are termed as interspersed repeats. Due to the nature of complimentary base

pairing of nucleotides, there is also another type of repeats, inverted repeats, which

are sequences followed by their reverse complements, either immediately (tandem) or

intervened by other random sequences (interspersed). When there is no intervening se-

quence between the copies, this inverted repeat is also called palindromic. According

to RepeatMasker [29; 30], classification of interspersed repeats can be further charac-

terize by 4 sub-types, short interspersed nuclear elements (SINEs), long interspersed

nuclear elements (LINEs), retrovirus-like elements or long terminal repeat (LTR) and

DNA transposons. There are also many forms of tandem repeats, mainly characterized

by repeat length, like microsatellites, minisatellites and satellites, which are frequently

used as molecular markers in forensic science and population genetics studies.

Most repeats are considered not functional, while some are involved in the evolution

process [31; 32; 33], uncoupling intra- and inter-chromosomal gene conversion. Tandem

repeats have also been shown to be associated with regulation of transcription factor

binding [34], aging process [35], various disease forms including cancer [36; 37]. In-

verted repeat and palindromic sequence, unlike most other types of repeats, are not

well characterized by tools like RepeatMasker. Due to the special self-complementary

structure, they can form secondary structure like stem-loop or hairpin, thus directly af-

fecting genome stability [38]. In Figure 2.1, a summary of annotated human repetitive

DNA reported by RepeatMasker are cited from [14].

Repetitive regions, as one major source of cross-hybridization and hybridization in-

stablity, have been shown to account for a large proportion of mammalian genomes.

For normal gene expression array and tilling chip used for transcriptom profiling, such

repetitive segments are generally ignored in the probe selection process [13]. The most

commonly adopted approach to handle repetitive regions is to exclude them using tools

like RepeatMasker [29]or Window Masker [39]. However for tiling array, features re-

side in the repetitive proportions identified by repeat masking tools may have particular
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2. Methods and Models

Figure 2.1.: Summary of repetitive DNA sequences in the human genome (hg19)

significance [40]. Thus their inclusion should be considered in the chip design, and ef-

forts have been made for the selection and interpretation of probes containing repetitive

sequences [41; 42].

Specificity and probe uniqueness

Probe specificity is the most crucial and problematic factor in microarray design, many

experimental techniques and analytical methods have been developed to overcome this

issue. Commonly, approaches to evaluate probe uniqueness are mostly alignment based,

like using Basic Local Alignment Search Tool (BLAST) [43], other researchers also em-

ploy suffix array [44] for faster indexing and matching. There are also attempts to ap-

proximate the cross-hybridization potential using thermodynamic models to assess the

binding-free energy between probes and non-targeted sequences [45]. Most of these de-

velopments are done for the probe selection of gene expression array, where all known

transcripts of the organism are targeted.

However when tackling tilling array designs, for mammals like us human (Homo sapi-
ens), or other domestic animals like cow (Bos taurus) and pig (Sus scrofa), the total amount

of DNA contained within one copy of a single genome is around 3 billion base pairs. To

check if one particular query sequence is unique among the whole genome essentially

involves approximately 2 × 3 × 109 comparisons, not to mention that for a high-density

chip the number of probe sequence easily exceeds 1 million. For those alignment based

14



2.1. Custom tiling array design

methods, repetitive searches are accumulatively slow and are not readily capable to han-

dle large scale tiling tasks. A simplest form of suffix arrays for the reference genome can

be implemented in 1
8 × n × log2 n bytes in space, which leads to a memory consumption

of around 23 GB. Although those suffix array or suffix tree based approaches can deliver

matched pattern in log-linear or linear time, the intensive memory usage could render

most modern desktop PC infeasible. Thus a compressed index structure like Full-text

index in Minute space (FM-index) [46], which is efficient in both query time and space

consumption, is an ideal alternative for biological sequence analysis.

2.1.2. BWT and FM-index

FM-index is a compressed full-text sub-string index structure pairing the Burrows—

Wheeler transform (BWT) [47] with suffix array, originally introduced by Ferragina, P.

and Manzini, G.. The BWT was proposed by Burrows, M. and Wheeler, David J., which

is a technique that reversibly rearrange the sequence in a way that similar characters

from reoccurring subsequence would be sorted together. The nature of having consecu-

tive runs of repetitive characters allows easy compression using schemes like run-length

encoding (RLE).

Here I will first illustrate how BWT works and its pairing with suffix array via R code

(see Appendix (A)). The R code here is only used for illustration purpose, thus may not

be well optimized for real implementation. The transform function bwt() starts with

appending an extra character like ’$’ , which is lexicographically smaller than any of

the characters present in S, to the beginning of the input sequence S. Then construct

a matrix M with rows representing all possible cyclic shifts of S, then have rows of

M sorted lexicographically. The BWT transformation of the input, T, is then the last

column of the sorted matrix M. The original sequence S can also be reconstructed from

the BWT transformed string T, via the inversion function ibwt().

On the other hand, a suffix of S could be denoted as S[i, N], where i = 1, 2, . . . , N,

with the starting position i as pointer to each suffix S[i, N]. A suffix array could then be

constructed by sorting all suffixes in the lexicographical order, and assign the associated

pointer to each array element. The core of FM-index is the pairing of BWT with suffix

array, their connection could be easily seen if we place the suffix array next to the BWT

transformed sequence. The jth character in the BWT transformed sequence is just the

character one position before the jth suffix. For example, considering S = ’mississippi’,

the only ’m’ in the BWT encoded sequence T is ranked at the 5th position, while the

corresponding suffix has an index of 2. The character before that suffix with index 2 is

just the first character of the (2 − 1)th suffix which lies in the 6th row.
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> exStr<-’mississippi’

> cbind(suffixArray(exStr), T=strsplit(bwt(exStr), ’’)[[1]])

S i T

1 | $ 12 i

2 | i$ 11 p

3 | ippi$ 8 s

4 | issippi$ 5 s

5 | ississippi$ 2 m

6 | mississippi$ 1 $

7 | pi$ 10 p

8 | ppi$ 9 i

9 | sippi$ 7 s

10| sissippi$ 4 s

11| ssippi$ 6 i

12| ssissippi$ 3 i

When looking at exact pattern matching problem, any matched pattern is essentially

a prefix or a suffix of the full sequence. For a suffix array, since rows of suffixes have

been sorted lexicographically, all occurrences of the pattern will be stacked together in

consecutive rows. With the help of another two auxiliary data utilities, C and Occ, any

suffix starts with the given query pattern can then be returned using backward search.

C[c] is a look-up table containing the number of occurrences of characters in the full

sequence which are alphabetically smaller than c. Occ(k, c) is a function which counts

the occurrences of the character c in the k-th prefix of T, T[1, k]. Here I pre-computed all

possible values of Occ(k, c) as a matrix for the example sequence.

> occMat(bwt(exStr))

$ i m p s

1 | 0 1 0 0 0

2 | 0 1 0 1 0

3 | 0 1 0 1 1

4 | 0 1 0 1 2

5 | 0 1 1 1 2

6 | 1 1 1 1 2

7 | 1 1 1 2 2

8 | 1 2 1 2 2

9 | 1 2 1 2 3

10| 1 2 1 2 4
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11| 1 3 1 2 4

12| 1 4 1 2 4

> cMat(exStr)

$ i m p s

0 1 5 6 8

For a query pattern P of length p, the start index s and end index e of the sorted

suffix array which contains P can be returned in a maximum of p steps. The searching

starts with the last character of the query pattern, P[p], with s = 1 and e = p. The two

index are then iteratively recalculated using the following mapping scheme for each

character P[i] in the pattern, s′ = C[c] + Occ(s − 1, P[i]) + 1 and e′ = C[c] + Occ(e, P[i]).
The mapping process is illustrated in the example below with P = ’iss’. At the last step

(p = 3), the start and end index of suffix which starts with ’iss’ have been located, s = 4

and e = 5.

S i T 0 1 2 3

1 | $ 12 i | s

2 | i$ 11 p |

3 | ippi$ 8 s |

4 | issippi$ 5 s | s

5 | ississippi$ 2 m | e

6 | mississippi$ 1 $ |

7 | pi$ 10 p |

8 | ppi$ 9 i |

9 | sippi$ 7 s | s

10| sissippi$ 4 s |

11| ssippi$ 6 i | s

12| ssissippi$ 3 i | e e e

2.1.3. Penalized uniqueness score

Gräf et al. [42] proposed the idea of using uniqueness score (U), which is the total

number of minimum unique substring (MUS) in a given range, for cross-hybridization

control in tiling probe selection. Following their original definition, a genome sequence

in question is called G, which is a part of the whole genome assembly GS. If a substring

X of G occurs only once in GS and each substring of X occurs more than once in GS, then

this substring X is called a minimum unique substring (MUS) of G. At each position of

G, if the substring from this position to the end of G is unique within GS, then there
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exists one shortest unique prefix starting from that position, which is called a minimum

unique prefix (MUP) at that position. The uniqueness score is then determined by

counting the distinct end positions of MUP within the region.

> MUP(exStr, exStr)

MUP.length m i s s i s s i p p i

1 *| 1 m

2 | 5 i s s i s

3 | 4 s s i s

4 *| 3 s i s

5 | 5 i s s i p

6 | 4 s s i p

7 | 3 s i p

8 *| 2 i p

9 *| 2 p p

10*| 2 p i

11 | 0 -

In the code chunk above, using the same example string S from last section, the

function MUP returns the length of the MUP at each position for string ’mississippi’,

with no MUP found at the last position. The searching of MUP takes the advantage of

the relationship between suffix and prefix, since each prefix of the sequence is a suffix

of the reversed sequence, and thus could be efficiently calculated with FM-index. Each

minimum unique substring within are indicated by asterisk (∗). In real implementation,

MUP are efficiently located via an external library GenomeTools [48].

However, in this definition of the uniqueness score, the author only considered the

absolute number of MUS without accounting for the distribution of length and coverage

within the probe range. Hypothetically, the first half of a probe could contain no MUS,

while the remainder might harbor a large number of MUS (which could be up to the

user-specified cut-off). In certain extreme cases, for longer oligonucleotide probes, the

original definition would give a score higher than the specified threshold, even though

the actual coverage of these MUS is only 50%, and cross-hybridization could still occur.

Another possible scenario is that compared to sequences with shorter MUS, probes

with longer and near-window-sized MUS are more vulnerable to cross hybridization. A

schematic illustration of the 2 aforementioned cases is shown in Figure 2.2.
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Figure 2.2.: Schematic diagram of low MUS coverage and long MUS. Hypothetically

extreme cases showing low MUS coverage (above) and long MUS (below).

Hence the penalized uniqueness score Up is defined as the following in Equation (2.6),

Up = U × Cmus × (1 − mean(Lmus)/Lmax) (2.6)

Cmus is the proportion of the probe covered by all MUS within. Lmus is the length of

individual MUS within the candidate probe. Lmax is the maximum possible length of

MUP, which defaults to 30 and could be changed in the MUP searching step according

to specific technical limits posed by the chip manufacture. U is the number of MUS

within the candidate probe. So in the best case scenario, all MUS cover the whole probe

and the coverage will induce no penalty on the uniqueness score. And regarding the

average length of MUS, it will normally give a coefficient between 0 (only if all MUS

within the probe have maximal length) and 1 (only when there is no MUS available).

Thus as a rational number instead of integer count, the Up provides a wider dynamic

range.

To further illustrate the potential role of MUS coverage and length in probe unique-

ness, the Agilent catalog array Human Whole Genome ChIP-on-Chip Set 244K (available

via Agilent’s eArray, see Appendix (B)) were fetched, which in total contains 5930500

probes spanning the whole human genome (hg19:GRCh37). All probes were processed

for the two uniqueness scores and other oligonucleotide quality related measures. In ad-

dition, BLAST-Like Alignment Tool (BLAT) [49] was used to find hybridization-quality

alignments, which is defined as having at most one gap, at least 60% identity of the

probe length, and gap length or mismatched bases not more than 3. Such alignments

are considered to be hybridized well, thus the number of qualified alignment could be

19



2. Methods and Models

Table 2.2.: Summary of Agilent ChIP-on-Chip Set probe properties

Measurement Min. 1st Qu. Median Mean 3rd Qu. Max.

Cmus
a

0.23 0.96 0.97 0.97 0.98 1

mean(Lmus) b
13.26 16.91 17.32 17.33 17.76 30

U c
0 21 24 23.06 26 38

Up
d

0 8.46 9.53 9.41 10.49 16.06

No. BLAT Hits 1 1 1 1.015 1 112

Probe Length 45 58 60 57.4 60 60

GC content (%) 10 26.67 33.33 34.19 39.66 86.67

Tm (◦C) e
58.29 67.98 70.73 70.59 73.08 92.07

Palindromic content (%) f
0 19.23 20 22.39 26.67 100

Repetitive proportion(%) 0 0 0 4.95 0 100

Max Base (%) g
25 35 38.33 39.13 43.33 71.67

a the percentage of the probe region covered by MUS
b the average length of all MUS within the probe
c the original uniqueness score
d the penalized uniqueness score
e the melting temperature evaluated using Equation (2.5)
f maximal proportion of inverted repeat (IR)
g maximal proportion of the four nucleotide bases

used as an indicator for cross hybridization potential. According to the chromosomal co-

ordinates provided in the GEO files shipped together, probes were back-mapped to the

same version of RepeatMasker-masked genome sequence (hg19:GRCh37). Proportion of

masked bases was calculated for each mapped probe.

In Table 2.2, the calculated probe characteristics are summarized, which gives an

overview of the general probe quality of the chip (figures of all parameters’ distribution

could be found in Additional files of [9]. In general, the catalog probes show similar hy-

bridization efficiency, with an inter quartile range of melting temperature from 67.98◦C
to 73.08◦C ; low cross hybridization potential, with an average uniqueness score (U) of

23.06 (median 24) and the penalized uniqueness score (Up) of 9.412 (median 9.53); lim-

ited self-hybridization potential, having a mean palindromic content of 22.39% (median

20%). Back-mapping of Agilent chip targets to the reference sequence also suggests in-

clusion of repetitive sequence, with 411292 probes having repetitive proportion greater

than zero, and 199471 probes being completely masked as repetitive.

After BLAT alignment, 99.4% of the probes found to have unique quality alignment,

while only 34274 probes had been mapped to multiple locations. A back-to-back box-

plot (Figure 2.3) was made for the two scores to visualize the general group differences
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Figure 2.3.: Back-to-back box-plot of original uniqueness score (U, left) and the penal-

ized uniqueness score (Up, right) distribution within different BLAT hits groups (1,

aligned to 1 position; 2, aligned to 2 positions; ≥ 3, aligned to at least 3 positions)

in their distributions. Both plots show similar overall pattern, probes with unique align-

ment tend to have higher scores than those with multiple hits. A visible difference

of the grouping effect between the two scores could be found that, for the penalized

uniqueness score the difference of median between group 2 and 3 is much lower than

the difference of median between group 2 and group 1.

In Table 2.3, some exploratory probes are selected from this chip which are potentially

vulnerable for cross-hybridization. The four 60 bp probes all show relatively high U

values, close to the average level (mean=23.06, median=24) of all probes on the chip, and

multiple quality alignments. The first two probes show relatively low coverage, which

are far below the first quantile of all probes. The other two probes show relatively long

average MUS length, which are above the third quantile (17.76) of all probes. However,

when looking at the penalized uniqueness score, all four of them exhibit relatively low

level of Up, below the first quantile (8.46) of all probes on the chip. It is then suggestive

that the penalized uniqueness score is more sensitive in assessing cross-hybridization

potential, when taking into account of the size and positional distribution of MUS in the

analysis.
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Table 2.3.: Example of problematic 60-mer probes from Agilent ChIP-on-Chip Set

Probe ID No. BLAT Hits a MUS Coverage b MUS Average Length c U d Up
e

A_17_P01761220 2 75% 17.55 22 6.85

A_17_P17428106 2 73.33% 16.42 24 7.97

A_17_P04386305 2 98.33% 20.86 22 6.59

A_17_P10898621 12 91.67% 20.86 22 6.14

a Number of hybridization-quality alignment to the reference genome.
b The percentage of the probe region covered by MUS.
c The average length of all MUS within the probe.
d The original uniqueness score.
e The penalized uniqueness score.

2.1.4. Tiling probe selection algorithm

Tiling probes can be selected in the most straightforward way, either using an end-to-

end fashion or with a fixed distance or overlap between neighboring tiles. However,

these simple strategies will easily encounter problems like cross-hybridization and low

hybridization potential, problems that would eventually contaminate the data. Also,

instead of having a high coverage up to 100% initially, the number of probes with valid

signals could fall significantly after data processing. Thus an optimized and uniform

tiling path is highly desirable [13]. Most of the available methods employ a window

approach, which first divide the whole target region into non-overlapping fixed-size

windows, and then select optimal probes within each window. Thus the resolution of

the probe mapping will depend on the initial window size, this approach is preferred

in CHIP-on-chip design when studying protein-DNA interaction or when high probe

density is not of interest. However when mapping transcriptome, overlapping probes

will provide better resolution in locating exon boundaries. To gain more control of

the expected quality while giving better resolution and coverage, the following design

strategy and pipeline which embed the previously defined penalized uniqueness score

is presented. Full selection parameters could be seen in Table 2.4.

The algorithm, namely OTAD, searches for candidate probes in an intuitive growing

fashion, from the 5’ of the sequence to the 3’ end. In general, neighboring probes is

made to have a fixed size of overlap, if the targeted probe satisfied the user-specified

constraints. Otherwise, the adjacent positions overlapping with 1 nucleotide more or

less would be tested, and the search would keep shifting until the next valid probe is

found or the boundary of the genomic region is reached. The shifting and checking is

done intelligently to avoid unnecessary calculation.
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Table 2.4.: Parameters of tiling probe selection algorithm

Parameter Type Description

-h print help
-P Integer maximal parallel process (default: 1)
-f Directory path of folder containing fasta files with extension ’.(m)fa(.gz)’
-w Char strand to be designed ’b’ (both), ’+’, or ’-’ (default: +)

-l Integer maximal length of the probe (like: 60)
-v Integer maximal shrinking of probe length (default: 0)
-o Integer maximal length of overlapping (like: 20)

-u Integer minimal uniqueness score (like: 21)
-U Real minimal penalized uniqueness score (like: 9)

-T Real range of Tm calculated with nearest-neighbor model (like: 70-80)
-G Real range of GC content (default: 0.2-0.6)

-s Integer maximal single nucleotide repeats (default: 6)
-d Integer maximal di-nucleotide repeats (default: 4)
-b Real maximal proportion of each bases (default: 0.6)
-c Integer maximal number of synthesis cycles allowed (default: 148)
-p Real maximal proportion of palindromic sequence (like: 0.3)
-r Real maximal proportion of repetitive masked bases (like: 0.1)

then the files in the input folder must contain ’mfa(.gz)’

Pseudo code of the detailed selection mechanism is shown in Appendix (C). An

evenly-spaced, non-overlapping tiling path can also be achieved by specifying a neg-

ative value for the overlap size. Another separate option of variable probe length can

be combined with the overlapping option to compensate for coverage in regions where

fixed-length probes cannot be placed. The variable length design is also advantageous

in selecting isothermal probes to reduce sequence bias [15]. Strand-specific design is

also possible; if both strands are present on the same array, offsets between reverse

complimentary tiles on the two strands are determined internally.

2.1.5. Penalized uniqueness score evaluation

Comparison of sensitivity and specificity

To further validate and evaluate the relative performance of the penalized uniqueness

score against the uniqueness score, the previously processed Agilent Human ChIP-on-

Chip Set was used. Receiver operating characteristic (ROC) measuring the trade-off

between sensitivity and specificity was adopted to directly compare the discrimina-

tive power in non-unique probe classification. After the BLAT alignment, number of
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hybridization-quality alignment was determined for each probe. In order to construct

the curve, a series of values ranging from the minimum to the maximum of the unique-

ness score are used as cut-offs to predict whether the probe has only one hybridization-

quality alignment or more. If the probe has a uniqueness score higher than the cut-off,

then it is classified as positive and estimated to have only one quality alignment, and

negative otherwise. Sensitivity is defined as the true positive rate (TPR), which is the

number of probes identified as positive and indeed having only one quality alignment

divided by the number of probes with an alignment score equalled to one. Specificity

is defined as 1 minus the false positive rate (FPR), which is the number of probes iden-

tified as positive but having more than one quality alignment divided by the number

of probes actually having one quality alignment. Curves for both scores are overlaid in

Figure 2.4. It could be seen that both scores work quite well and strongly deviate from

the diagonal. However a visible trace of difference could be observed at the upper left

corner, suggesting a clear gain of advantage by the penalized uniqueness score.

Figure 2.4.: ROC curves of using original uniqueness score (U, red) and the penalized

uniqueness score (Up, blue) for BLAT hits group classification.

Benchmarking of public array data

To further illustrate the discriminative power of the penalized uniqueness score, ar-

ray data from public repository were evaluated. One popular platform from Agilent
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was chosen, human whole-genome expression array 4x44K (ArrayExpress platform ID:

A-AGIL-28), which contains 41000 unique probes. 14 single color array datasets are ran-

domly selected from this platform, all having proper replicate (at least 2) for each factor

level. Probes were scored using the penalized uniqueness score. For each experiment,

like running a practical microarray analysis, pre-processing and filtering were done us-

ing Bioconductor[50] package Agi4x44PreProcess Pedro Lopez-Romero [51]. Experimen-

tal designs were derived according to individual experiment description. Procedural

and parametric settings of background-correction, normalization and filtering were set

to default, and common to all experiments. The filtering in Agi4x44PreProcess is done

sequentially: first, control probes are filtered; then probes with signal not well above the

local background are filtered; the third criteria is by the Agilent’s FeatureExtraction flag

’gIsFound’; for the next step, probes with signal not well above the negative controls

are filtered. So far, the remaining probes all have detectable and valid signal. In the

next stage, over-saturated probes are removed, which could be linked to severe cross-

hybridization or possible contamination to the slide; In the end, population outliers and

non-uniform outliers are filtered, which could also be related to cross-hybridization or

other variations in experimental conditions. In this work, probes filtered out in the last 2

stages were considered as potential victims of cross-hybridization and had them further

investigated for uniqueness.

Table 2.5.: Summary of experiments from ArrayExpress

EXP_ID Array Factor Filtered Filtered Filtered Normal t-test
No. level No. average a std. dev. average a p-value

E-GEOD-22072 5 2 18 9.306 / 8.798 3.235 9.131 / 10.04 NAb

E-GEOD-23131 31 3 61 8.735 / 9.796 3.492 9.132 / 10.04 NA
E-GEOD-23558 32 2 136 4.784 / 3.503 4.246 9.146 / 10.05 2.20E-016

E-GEOD-23697 70 2 1 0 / 0 NA 9.131/ 10.04 NA
E-GEOD-24536 52 5 11 7.508 / 9.957 4.973 9.132 / 10.04 NA
E-GEOD-25623 32 3 1 4.655 / 4.655 NA 9.131/ 10.04 NA
E-GEOD-27915 20 5 6 9.633 / 9.899 2.824 9.131/ 10.04 NA
E-GEOD-29288 132 9 9 8.641 / 9.957 3.965 9.131/ 10.04 NA
E-GEOD-32155 21 7 23 8.48 / 9.613 3.642 9.132 / 10.04 NA
E-GEOD-32988 48 10 145 6.618 / 8.636 4.383 9.14 / 10.04 1.34E-010

E-GEOD-33264 49 16 31 9.428 / 9.957 2.76 9.131 / 10.04 NA
E-GEOD-35635 57 3 1 12.79 / 12.79 NA 9.131 / 10.04 NA
E-GEOD-35756 32 8 458 4.229 / 3.396 3.876 9.187 / 10.04 2.20E-016

E-GEOD-37827 87 29 32 9.078 / 9.701 2.837 9.131 / 10.04 NA

a Up average column is formated as ’mean / median’.
b NA stands for ’Not Applicable’ due to low number of filtered probe.
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In the end, summary statistics of the penalized uniqueness score for filtered probes

were derived, in Table 2.5, which are over-saturated or outlying and thus could be re-

lated to cross-hybridization. For the analyzed experiments, the number of probe filtered

varies from 1 to 458. Interestingly, for all except one experiment (E-GEOD-35635), those

filtered-out probes exhibit lower average Up score and thus are less unique according

to the uniqueness measurement. Difference in group mean of penalized uniqueness

score was assessed using formal statistical test. In order to achieve statistical power of

0.9 when using a two sided t-test to detect a mean difference of 0.5 with standard de-

viation of 1, it would require at least 85 observations in each sample. Therefore t-test

are only performed for those experiments which has more than 85 probes filtered out.

For all three qualified experiments, significantly lower uniqueness are detected for those

filtered-out probes. So re-analyzing public array data provided further support of us-

ing the penalized uniqueness score to discriminate non-specific probes for microarray

design and data analysis.

2.1.6. Design comparison with commercial array

To address the coverage and resolution of the proposed probe selection pipeline, once

again the previously processed Agilent Human ChIP-on-Chip Set was used. To simplify

the comparison, only those probes targeting chromosome 22 (GenBank: NC_000022.10)

were chosen rather than the whole set. The reference genome sequence was downloaded

from the NCBI archive. Knowing that, for experiments like CHIP-chip, the sheared chro-

matin fragment is generally around 500bp [52], using short oligonucleotides (< 100-mer)

makes it more cost-efficient to choose an optimal distance between tiles than to solely

increase the number of probes and the tiling density. To compare with Agilent’s catalog

design, the distribution of the distance between neighboring tiles in the catalog array

is summarized, with a median of 202 nucleotides and a mean of 426 nucleotides be-

tween adjacent probes. The probe length also varies, ranging from 45-mer to 60-mer

(median=53 and mean=52.85). With the proposed implementation, several overlapping

sizes (from -325 nt to -250 nt) have been tested to make the overall probe number close

to the Agilent catalog design. The minimum probe length was set to 45-mer, while

initial probe length always starts at 60- mer. For probe melting temperature, in Gräf

et al. [42] they used the simple GC model like Equation (2.4) and tested two ranges of

temperatures, 73− 76◦C and 77− 80◦C, which in turn correspond to a GC content range

of around 30-50% for a 50-mer oligo. In contrast, by considering the Tm distribution in

the Agilent catalog array, a Tm range of 69 − 74◦C was selected for the nearest neighbor

model Equation (2.5) and combined with a controlled GC content range of 30-50% as

the criteria for optimal hybridization efficiency. For cross-hybridization control, a pe-
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nalized uniqueness score of 9 was used as the empirical cut-off. A threshold of 30% for

palindromic content was used, while all other parameters were kept as the following:

no base proportion higher than 60%, single nucleotide repeats not exceeding 6 and not

having more than 4 di-nucleotide repeats.

With the proposed implementation, it took around 2 hours on a 3.0 Ghz single core PC

to finish the process, without enabling the parallel mode. In Table 2.6, the Agilent cata-

log design and several custom designs are summarized, showing that the proposed flex-

ible strategy could achieve higher coverage with fewer and, on average, longer probes.

The coverage was assessed using two types of measurement, the raw non-redundant

bases covered (ambiguous base ’N’ adjusted) and the total length of unit-sized (1000 bp)

windows in which at least one probe was placed.

Table 2.6.: Design summary and coverage comparison

Design Probe No. Probe Len. c Inter-Probe Dist. d Base Coverage Window Coverage e

Agilent a
73373 53 / 52.85 202 / 426 11.11% 51.25%

-o -250
b

75036 60 / 57.16 246 / 411.9 12.29% 53.60%
-o -275 72087 60 / 57.11 269 / 431.1 11.80% 53.66%
-o -300 69491 60 / 57.02 292 / 449.4 11.35% 53.74%
-o -325 67074 60 / 56.92 313 / 467.7 10.94% 53.81%

a Agilent Human Whole Genome ChIP-on-Chip Set 244K (Chromosome 22 only)
b Overlapping size set to -250, probe length range [45, 60], Tm range [69, 74], Up range [9, Inf),

palindromic content range [0, 30%], GC content range [30%, 50%]
c Average probes length in nucleotide, cell is formatted as median / mean
d Average inter-probe distance in nucleotide, cell is formatted as median / mean
e Using the length of all unit-sized (1000 bp) windows in which at least one probe was placed

2.1.7. Uniqueness of palindromic sequence

With increasing potential for self-hybridization, palindrome sequences play an impor-

tant structural role in the biogenesis of microRNA [53; 54; 55] and also have other func-

tional characteristics like acting as restriction enzyme sites [56]. Interestingly, unlike in

Gräf et al. [42], where the author claimed that palindromic sequences are more unique in

the genome, an opposing relationship between palindromes (measured as the maximal

proportion of inverted repeat) and uniqueness are observed (Figure 2.5): Agilent’s cata-

log probes with higher palindromic content tends to have lower mean uniqueness scores,

which causes a left-shifting of their distributions when using a high palindrome cutoff.

Small yet significant correlations could also be detected for both uniqueness scores [U,

-0.0736428 (p<2.2e-16); Up, -0.1050423 (p<2.2e-16)] and BLAT hits [0.00209 (p=3.578e-
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07)] with palindromic content. However, the distribution of BLAT scores is extremely

left-tilted, since most probes are aligned only once, therefore, despite supporting our

findings, the correlation test may not be valid.

Figure 2.5.: Distributions of the original uniqueness score (U, left) and penalized unique-

ness score (Up, right) of the Agilent Human Whole Genome ChIP-on-Chip Set 244K

(1 to25) probes, using different level of palindromic content as cut-off.

To investigate further the relationship between sequence uniqueness and palindromic

content, data from a separate experiment were utilized, in which the proposed imple-

mentation has been used to design tiling arrays for several chromosome regions of the

pig genome. For one of them, on Sus Scrofa chromosome 14 (GenBank: NC_010456.3)

from 74377028 bp to 78176022 bp, the profiles of previously listed design parameters

were evaluated for all possible 60-mer probes in the indicated region. In total 3328358

candidates were evaluated.

For the two uniqueness scores (Figure 5), unlike for the Agilent catalog array, their

distributions are far from normal, both having a peak at zero and a flat, uniform interval

followed by a narrow, bell-shaped region. This "twin-peak" distribution makes any

formal statistical tests infeasible. However, by thresholding on palindromic content, the

density of uniqueness scores were determined for candidates with palindromic content

higher than the cut-off; in this way, sequences with higher palindromic content are

directly visualized, which are subject to removal in the probe selection process. When

using a higher cut-off of palindromic content, the trend of differences resembles that

observed for the Agilent chip: the density curves tilt left, with both peaks shrinking

and the saddle region raising. In particular, the proportion of sequences with close to

0 uniqueness score remains large in the high-palindrome group (>60%), yet the high
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uniqueness peak vanishes.

Figure 2.6.: Distributions of the original uniqueness score (upper-left) and penalized

uniqueness score (upper-right) using different level of palindromic content as cut-off

for 60-mer candidate probes on pig chromosome 14 (Sus Scrofa Build 10, NC_010456.3)

region from 74377028 bp to 78176022 bp, and on the lower panel shows their distri-

butions after filtering with standard probe selection criteria.

Finally, candidates violating those probe selection parameters were further filtered

out, which include a narrow band of melting temperature (69 − 74◦C), moderate GC

content (30%-50%), no base exceeding 60%, and no single and di-nucleotide repeats

exceeding the thresholds of 6 and 4 respectively. After filtering, a similar pattern per-

sists, yet is not so pronounced, suggesting that the filtering removed more candidates

with low uniqueness scores. One particular feature is that the candidates with high

palindrome (>60%) and 0 uniqueness scores were removed by filtering.
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The results suggest that with higher palindromic content the sequence tends to have

a lower uniqueness score, contrary to what has been previously claimed in [42]. Aside

from nucleotide sequence, studied the palindrome in protein sequence using a linguistic

measurement, in which they also related palindromes with low sequence complexity.

Under the defined uniqueness measurement, lower complexity normally leads to fewer

and longer MUS in the region, resulting in a lower penalized uniqueness score. The

experimental observations made here could also be explained in plain theory, since

a highly palindromic sequence will share a large identical segment with its reverse

complement strand; thus there should be fewer unique substrings found in such regions.
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2.2. Genomic segmentation

2.2. Genomic segmentation

2.2.1. Common methods and issues

With high throughput experiments like tiling array and massively parallel sequencing,

large scale genomic data are growing at an unforeseeable velocity. Researchers applying

these experiments often look at genome-wide data searching for continuous homoge-

neous segments or signal peaks, which would represent regulatory regions [57; 58],

transcripts [59; 60; 61; 62] or genome regions of deletion or amplification [63; 64]. The

objective of these investigations could be generalized as the segmentation problem of

partitioning the genome into non-overlapping homogeneous segments and assign bio-

logically sensible class to each segment. As a long standing statistical problem, segmen-

tation models have been widely studied. The origin of this field can be traced back to

quality control in the manufacturing industry and the introduction of control charts by

Walter Shewhart in 1920s, in which a 2 states model was built under the assumption of

the process being homogeneously normal.

Various models and computational tools have been proposed to handle either the

general segmentation problem or particular types of partitioning task in genomics. Some

of the most addressed areas are copy number analysis with aCGH [65; 66; 67; 68; 69;

70; 71; 72; 73; 74] or SNP array [75; 76; 77; 78; 79], transcriptom profiling [80; 81] and

protein-binding site detection [82; 83] with tiling array. In recent years, growing efforts

have been devoted to the development of computational tools to deal with read-count

data generated from next-generation sequencing (NGS) [84; 85; 86; 87; 88; 89].

Many of these computational tools utilize Hidden Markov Model (HMM) [65; 69; 75;

76; 78; 79; 82; 86; 88], since its natural capability of solving segmentation task and simul-

taneous labeling. However it is not straightforward for a standard HMM to take into

account of a very basic property of genomic data—the physical position of the feature.

To my knowledge, there have been some but limited attempts to incorporate this posi-

tional information into HMM [90; 82; 69; 78; 75; 79] or to adopt more complex dynamic

Bayesian network (DBN) models [89]. Hidden semi-Markov Model (HSMM) on the

other hand, as a generalized form of HMM, could be applied to take advantage of the

extra information. Indeed, It has been presented to model aCGH data using HSMM [74],

however without actually utilizing the positional information and the implementation

is no longer publicly available.

In this section, I will introduce a novel HSMM implementation designed for vari-

ous types of genomic segmentation applications. Its performance will be evaluated via

31



2. Methods and Models

simulation benchmarking with other published tools. Various use cases will also be

illustrated using published datasets.

2.2.2. Hidden semi-Markov Model

HMM was introduced by Baum and Petrie in the late 1960s. Soon afterwards, it has

been widely used in engineering for speech or handwriting recognition [92; 93]. The

application of HMM in biological sequence analysis exploded as the growing efforts in

DNA-sequencing been made along the initiation of Human Genome Project [94], par-

ticularly in identifying RNA secondary structure and inferring phylogenies of different

organismal DNA sequences.

HSMM, as an extension of HMM, was first proposed by Ferguson in the early 1980s,

later but also in the field of speech recognition and signal processing. Its applications in

biology and genomics are limited. Guédon et al. used HSMM to study branching and

flowering patterns in plants. A variant of HSMM, termed Generalized Hidden Markov

Model, was employed in GENSCAN [90] for gene prediction. It has also been used

in protein structure prediction [97]. A full review of the HSMM methodology and its

applications could be found in [98].

In the R/Bioconductor package biomvRCNS, a novel HSMM implementation is made

available in function biomvRhsmm [10], which is specially designed to handle genomic

data and tailored to serve as a general segmentation tool for various types of genomic

profile, arising from both traditional microarray-based experiments and the recent NGS

platform, with native support for modeling spatial pattern carried by genomic position.

Model definition

To start with, I will make a brief summary of the concepts involved and introduce the

hidden semi-Markov model formulation. For some experimental data X, we have a

vector of observations xt = (x1
t , . . . , xN

t ) made for N samples at each time or position

t, t = 1, . . . , T. At each t, there is an underlying unobserved state St ∈ S = {1, . . . , J},

which depends only on the previous states chain at t − 1, thus forming a length T
discrete Markov chain with a finite number J possible states. The initial state probability

is determined by distribution π, πj = P(S1 = j), j = 1, . . . , J, with ∑J
j=1 πj = 1 and

πj ≥ 0. The conditional probability distribution of the observed variable xt given the

unobserved (or hidden) state J, bj(xt) = P(Xt = xt | St = j), is controlled via the

emission probability distribution B. The transition probability distribution A, governing
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the probability of moving from one state to another, is formulated as aij = P(St+1 = j |
St = i), with ∑J

j=1 aij = 1 and aij ≥ 0. Thus a HMM can be defined by θ = (π, A, B), for

which a schematic of the model parametrization is shown in Figure 2.7.

Figure 2.7.: Schematic of HMM parametrization

A semi-Markov chain could be considered as a two-layer mixture, an embedded first-

order Markov chain representing the transitions between distinct states—which follows

the standard definition of HMM—and an occupancy distribution attached to each non-

absorbing state of the embedded first-oder Markov chain.

The discrete state occupancy distribution or the sojourn distribution, D, is defined as

the probability of spending u consecutive time steps in state j,

dj(u) = P(St+u+1 ̸= j, St+u−v = j,v = 0, . . . , u − 2 | St+1 = j, St ̸= j),

u = 1, . . . , Mj

(2.7)

where Mj denotes the upper bound to the time spent in state j. For a normal HMM, the

sojourn time could be simply deducted to dj(u) = au−1
jj (1 − ajj), which is geometrically

distributed. HSMM, with the sojourn distribution explicitly specified using a common

distribution or non-parametrically estimated using a pseudo sample, could be defined

by θ = (π, A, B, D). A complete likelihood of the HSMM is given in Guédon [99] with

survivor function Dj(u) = ∑v≥u dj(v) representing the sojourn time spent in the last
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state and number of distinct states R,

L(θ) = πS1 dS1(u1)


R

∏
r=2

P(Sr | Sr−1)dSr(ur)



· P(SR | SR−1)DSR(uR)
T

∏
t−1

P(Xt | St)

(2.8)

where Sr is the rth state visited in the first-order Markov chain transition and SR is the

last states visited.

With likelihood function defined (Equation (2.8)), the optimal model parameters θ

could then be estimated using the expectation—maximization (EM) algorithm. A forward-

backward algorithm for the estimation step and a Viterbi algorithm to derive the most

likely state sequence are explained in Guédon [99], where the author also shows the

possibility of replacing the non-parametric M-step of the EM algorithm in sojourn dis-

tribution parameters re-estimation with a parametric M-step in practice, to simplify

model and prevent over-fitting.

2.2.3. Estimation of hidden semi-Markov model

For the estimation step, as have been illustrated in Guédon [99], the forward recursion

is first given by,

Fj(t) = P(St+1 ̸= j, St = j | Xt
1 = xt

1)

=
bj(xt)

Nt

 t

∑
u=1


u−1

∏
v=1

bj(xt−v)

Nt−v


dj(u)∑

i ̸=j
aijFi(t − u)

+


t

∏
v=1

bj(xt−v)

Nt−v


dj(t + 1)πj


,

(2.9)

where t = 1, . . . , T − 1, j = 1, . . . , J, and Nt is the normalizing factor, which could be

derived during the forward recursion using Equation (2.10). Xt
1 = xt

1 is the shorthand

form of (X1 = x1, X2 = x2, . . . , Xt = xt), the same analogous abbreviation is also used

for St
1 = st

1. For the last state visited when t = T, the exact duration of the stay is

unknown, however using the minimal staying time, the sojourn density dj(u) could be
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replaced by the survivor function Dj(u).

Nt = P(Xt = xt | Xt−1
1 = xt−1

1 )

= ∑
j

bj(xt)

 t

∑
u=1


u−1

∏
v=1

bj(xt−v)

Nt−v


Dj(u)∑

i ̸=j
aijFi(t − u)

+


t

∏
v=1

bj(xt−v)

Nt−v


Dj(t + 1)πj


,

(2.10)

The smoothed probability Lj(t) = P(St = j | Xt
1 = xt

1) at each position for a hidden

semi-Markov chain can be decomposed and written as,

Lj(t) = P(St = j | Xt
1 = xt

1)

= L1j(t) + Lj(t + 1)− P(St+1 = j, St ̸= j | XT
1 = xT

1 ),
(2.11)

where L1j(t) = P(St+1 ̸= j, St = j | XT
1 = xT

1 ) = Bj(t)Fj(t) gives the conditional

independence between future and past at transition between distinct states, which also

provides the entry point for the backward recursion. Lj(T) is initialized as Lj(T) =

P(ST = j | XT
1 = xT

1 ) = Fj(T) for t = T and all j.

The backward recursion is done by pre-calculating another auxiliary variable, Gj(t +
1), which helps reduce the complexities of the forward-backward procedure to O(JT(J +
T)) time and O(JT) space in the worst case. L1j(t) and the third term in Equation (2.11)

could then be written as,

L1j(t) =


∑
k ̸=j

Gk(t + 1)ajk


Fj(t), (2.12)

P(St+1 = j, St ̸= j | XT
1 = xT

1 ) = Gj(t + 1)∑
i ̸=j

aijFi(t), (2.13)

where Gj(t + 1) = ∑T−t
u=1 Gj(t = 1, u), and

Gj(t + 1, u) =
L1j(t + u)
Fj(t + u)


u−1

∏
v=0

bj(xt+u−v)

Nt+u−v


dj(u), u = 1, . . . , T − 1 − t,

Gj(t + 1, T − t) =


T−1−t

∏
v=0

bj(xT−v)

NT−v


Dj(T − t).

(2.14)
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For the parameter re-estimation step, the initial probabilities and transition probabili-

ties could be updated at each EM iteration,

π̂j = P(S1 = j|XT
1 = xT

1 ; θ) = Lj(1), (2.15)

âij =
∑T−1

t=1 Gj(t + 1)aijFi(t)

∑T−1
t=1 L1i(t)

. (2.16)

Using components calculated during the forward-backward run, the updates of state

occupancy probabilities and emission probabilities are done as the following, Equa-

tion (2.17), depending on the assumptions imposed on the emission distribution (I(xt))

and sojourn distribution. Equation (2.18) gives the non-parametric E-step as shown in

[99].

b̂j(xt) =
∑T

t=1 Lj(t)I(xt)

∑T
t=1 Lj(t)

, (2.17)

d̂j(u) =
ηju

∑T−1
t=0 L1j(t) + Lj(T)

, (2.18)

where the quantities ηju could be computed during the backward procedure as in Equa-

tion (2.19).

ηju =
T−1

∑
t=1

P(St+u+1 ̸=j,St+u−v=j,v=0,...,u−1, St ̸= j | XT
1 = xT

1 ; θ)

+ P(Su ̸= j, Su−v = j, v = 1, . . . , u|XT
1 = xT

1 ; θ)

(2.19)

The first term in Equation (2.19) could be further re-written, when u ≤ T − 1 − t,

P(St+u+1 ̸=j,St+u−v=j,v=0,...,u−1, St ̸= j | XT
1 = xT

1 ; θ) = Gj(t + 1, u)∑
i ̸=j

aijFi(t), (2.20)

and for u > T − 1 − t,

P(St+u+1 ̸=j,St+u−v=j,v=0,...,u−1, St ̸= j | XT
1 = xT

1 ; θ) =


T−1−t

∏
v=0

bj(xT−v)

NT−v


dj(u)∑

i ̸=j
aijFi(t)

(2.21)

The second term in Equation (2.19) could also be represented using pre-computed

products, when u ≤ T,

P(Su ̸= j, Su−v = j, v = 1, . . . , u|XT
1 = xT

1 ; θ) =
L1j(u − 1)
Fj(u − 1)


u

∏
v=1

bj(xu−v)

Nu−v


dj(u)πj,

(2.22)
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and for u > T,

P(Su ̸= j, Su−v = j, v = 1, . . . , u|XT
1 = xT

1 ; θ) =


T

∏
v=1

bj(xT−v)

NT−v


dj(u)πj. (2.23)

The quantities ηju can also be treated as a pseudo-sample of some selected paramet-

ric sojourn distributions. Thus other parametric re-estimations basing on continuous

and discrete distributions like Gamma, Poisson, and Negative Binomial distribution can

be done ad hoc, using point estimation methods like moment estimator or maximum

likelihood estimator, with additional shift parameter d to control the minimum stay

duration in a state. The shift parameter d is determined by assessing possible values,

1, . . . , min(u | ηju > 0), of which gives the maximum likelihood of the re-estimated

sojourn mass.

To obtain the most likely state sequence, a Viterbi procedure, using a similar forward

recursion, could be applied by defining the quantities αj(t) as maximum conditional

likelihood of having a transition of state after the current t, αj(t) = max
S1,...,St

P(St+1 ̸=

j, St = j, St−1
1 = st−1

1 , Xt
1 = xt

1). For t ≤ T − 1, αj(t) could be re-written as,

αj(t) = max
S1,...,St−1

P(St+1 ̸= j, St = j, St−1
1 = st−1

1 , Xt
1 = xt

1)

=bj(xt)max


t

∏
v=1

bj(xt−v)


dj(t + 1)πj,

max
1≤u≤t


u−1

∏
v=1

bj(xt − v)


dj(u)max

i ̸=j
{pijαi(t − u)}

 
.

(2.24)

While for t = T again using Dj(t), the right censoring of the sojourn time in the last

state visited, αj(T) is formulated as the following,

αj(T) = max
S1,...,ST−1

P(ST = j, ST−1 = j, St−1
1 = st−1

1 , XT
1 = xT

1 )

=bj(xT)max


T

∏
v=1

bj(xT−v)


Dj(T + 1)πj,

max
1≤u≤T


u−1

∏
v=1

bj(xT − v)


Dj(u)max

i ̸=j
{pijαi(T − u)}

 
.

(2.25)

Thus the most likely state sequence associated with the observed data sequence could

then be backtracked by finding the state j which maximize αj(t).
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The E-step of the forward-backward EM procedure and the Viterbi algorithm de-

scribed in Guédon [99] has been implemented as C library in the R/Bioconductor pack-

age biomvRCNS, serving as the core of our proposed hidden semi-Markov segmentation

model.

2.2.4. R Implementation

The batch function biomvRhsmm accepts both basic R data matrix and more encapsulated

object like GenomicRanges [100] as input, for better interfacing with other Bioconductor

classes and methods. The function will sequentially process each region identified by

the distinctive sequence names in the positional input. A second layer of stratification is

introduced by a grouping argument, assigning each profile to a group, which could be

used to reflect experimental design. Sample columns within the same group could be

treated simultaneously in the modeling process as well as iteratively. The assumption

is that profiles from the same group could be considered homogeneous, thus processed

together. This joint analysis is only possible for emission distribution type set to multi-

variate normal distribution or multivariate t distribution. Additionally there is a built-in

automatic grouping method by hierarchical clustering.

Priors of the sojourn distribution parameters will be initialized as flat or estimated

from other related data source by calling function sojournAnno. State number could be

either assigned explicitly or inferred during the sojourn learning. The model complexity

is limited by a constant of M, which denotes the upper bound to the time spent in a state,

very similar to the approach adapted in the segmentation model in tilingArray [81]. The

constant could be explicitly given by the argument maxk or inferred by another constant

maxbp together with positional information. The modeling of sojourn time is done using

the positional information like genomic distance between markers, and regresses to a

rank-based position setting, like the original design in [99], when positional information

is not available. Starting state probabilities will be initialized as a flat vector. Initial

parameters for the emission distribution could be estimated using different levels of

quantile of the input or via a clustering process, assuming different states tend to have

different levels of emitted signal.

The function will then call the C library to compute the smoothed state probabil-

ity profile in the E-step, after which model parameters will be re-estimated in an M-

step. Eventually, the most likely state sequence could be inferred from the smoothed

state probability profile or estimated with the Viterbi algorithm. The complexity of the

forward-backward algorithm used in the E-step and the Viterbi algorithm is O(JT(J +
T)) time and O(JTM) space in the worst case.
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After the batch run, results will be combined and returned together with input data

plus model parameters as an object of class biomvRCNS, for which a plot method has

been implemented to provide integrative visualization of the segmentation results with

optional annotation. To relax the high memory burden from NGS data of base pair

resolution, RLE is used for the storage and handling of sequencing count data. Since

the mapping distribution of sequencing features is normally sparse across the genome,

which is due to the existence of large intergenic gaps between transcribed or functional

regions.

2.2.5. Simulation benchmarking

In order to show the reliability and relative performance of the proposed model, the

implementation biomvRhsmm has been compared with several other state-of-the-art seg-

mentation algorithms (Table 2.7) in Yang Du et al. [10], using a similar approach as

in Lai et al. [101], by calculating the receiver operating characteristic (ROC) curves on

simulated data.

Some of the models reviewed in Lai et al. [101] have evolved over the years. Venka-

traman and Olshen presented a faster and modified version of Circular Binary Segmen-

tation (CBS) in R/Bioconductor package DNAcopy. Picard et al. extended the univariate

dynamic programming procedure [68] to joint analysis of multiple CGH profiles in R

package cghseg, and adopted the modified Bayesian information criterion [102] for model

selection. The unsupervised hidden Markov model described in R package aCGH [65]

(labeled HMM hereafter) was also included, and the local adaptive weights smoothing

procedure in R package GLAD [66] in this comparison, which are considered to be the

early efforts in the field. Thus they could serve as baselines in the comparison, and also

to show advances and development in the field.

In recent years, several new methods and computational tools have also been in-

troduced. In R package bcp, Erdman and Emerson implemented an efficient Bayesian

change point model described by Barry and Hartigan [103]. Ben-Yaacov and Eldar sug-

gested an ultrafast segmentation model based on wavelet decomposition and thresh-

olding in R package HaarSeg. Marioni et al. implemented a heterogeneous hidden

Markov model bioHMM in R/Bioconductor package snapCGH, which can utilize posi-

tional information or clone quality in the modeling process, thus could be considered

as an extension of the HMM in package aCGH. Among these models, there has been no

comparison study between bcp, bioHMM and HaarSeg in recent literature.
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Table 2.7.: List of segmentation algorithms compared

ID Reference Method R package

bcp Erdman and Emerson [72] Product partition model bcp_3.0.1
bioHMM Marioni et al. [69] Heterogeneous HMM snapCGH_1.30.0
CBS Venkatraman and Olshen [70] Circular Binary Segmentation DNAcopy_1.34.0
cghseg Picard et al. [73] Joint CGH segmentation cghseg_1.0.1
GLAD Hupé et al. [66] Adaptive Weights Smoothing GLAD_2.24.0
HaarSeg Ben-Yaacov and Eldar [71] Wavelet decomposition HaarSeg_0.0.3
HMM Fridlyand et al. [65] Homogeneous HMM aCGH_1.38.0
hsmm Yang Du et al. [10] Hidden semi-Markov model biomvRCNS_1.3.1

Data Simulation

For the data simulation, I tried to make it conceptually similar to the scenario one

may encounter in real experiments. For copy number studies using CGH or using

sequencing with matched case control sample, three states are commonly assumed, and

regions of copy gain and loss are of major interest whose size may range from about

1 kb to some megabases [104]. For this purpose, pools of segments for each state was

first created; lengths of the segments were sampled from three Poisson distributions,

with lambda equals to 20, 270 and 10, respectively. The distance between data points

was assumed to be regular and equals to 1. Signal intensities were sampled from three

Normal distributions, N1(r, 1), N2(2 × r, 1), N3(3 × r, 1) for each state, respectively, with

state mean controlled via a ratio factor r varying from 1 to 3 at a step of 1. Segments

from different states were then randomly sampled and joined together to form one data

sequence.

For sequencing data, in order to check for splicing and novel transcripts or detect

peaks for transcript factor binding sites, one would be mainly interested in distinguish-

ing the true expression signal from the background. Normally, annotated coding or

non-coding transcripts are relatively much shorter comparing to intergenic regions. In

this case, we also first created pools of segments for three virtual states, intergenic, short

and relatively lowly expressed gene and protein coding sequence with high abundance;

length of the segments were sampled from three Poisson distributions, with mean pa-

rameter λ equals to 285, 5 and 10, respectively. Signal intensities for each segment were

then sampled from three pools of Poisson distribution, P1(1), P2(r), P3(r2), with mean

parameter λ controlled via a ratio parameter r varying from 1.5 to 2 at a step of 0.25

for each pool of segments. Segments from different states were then randomly sampled

and joined together to form one data sequence, representing one targeted region.
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2.2. Genomic segmentation

R code for data simulation is available in Appendix (D).

Performance comparison

The proposed HSMM was compared with several well tested segmentation algorithms,

all of which are available as R packages. Since different algorithms tend to be tuned

differently to suit their own methodologies for better sensitivity, I did not attempt to

alter their default settings and fed only the simulated signals without other information

to the models, thus achieving an essentially fair comparison and mimicking a common

use case for normal users.

Using simulated data with varying levels of inter-state ratio r, which is conceptually

similar to signal-to-noise ratio (SNR); since for both simulations, states with extreme

values are of interests, thus the differences in mean between the extreme states and the

intermediate states could be considered as signal, while the variation associated with

the intermediate state could be considered as noise. I calculated the TPR and the FPR

over 10000 iterations (100 simulations for each of the 100 random segments formations)

of simulation for each level of r. The TPR is defined as the number of points which are

from the states of interest and fall into the predicted states of interest divided by the

total number of points from the states of interest. The FPR is defined as the number

of points, which are not from the states of interest but fall into the predicted states of

interest divided by the total number of points not from the states of interest. The true

states of interest depend on the type of simulation, for normal data in simulation 1,

this is assigned to the first and the third state namely the abnormal state separately; for

count data in simulation 2, this is assigned to the third state, which is used to represent

signal peak. The prediction is done by comparing the estimated segment mean with

a threshold (t) varying from the maximum to the minimum of the simulated signal

value. For abnormal state of gain in simulation 1 and peak in simulation 2, segment

with estimated value above the threshold is considered as positive; while for state of

loss in simulation 1, segment with estimated value below the threshold is considered as

positive. Definition of TPR and FPR are formulated in Equation (2.26).

TPRloss =
N(x < t|s = 1)

N(s = 1)
,FPRloss =

N(x < t|s ̸= 1)
N(s ̸= 1)

TPRgain|s2 =
N(x > t|s = 3)

N(s = 3)
,FPRgain|s2 =

N(x > t|s ̸= 3)
N(s ̸= 3)

(2.26)

All calculations were carried out in the statistical language R (version 3.0.1). area

under the curve (AUC) was estimated using Bioconductor package ROC [105]. The
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system used for benchmarking is a standard 64-bits Linux desktop with Intel Core i7

3.07 GHz and 6 GB DDR3 memory.

R code for performance evaluation is also available in Appendix (D).

Benchmarking results

After two extensive simulation runs, the resulting ROC curves under different signal

to noise ratios for all compared models are shown in Figure 2.9. In Figure 2.8, two

sets of randomly simulated data (chosen from the 50th random grid formation and the

50th iteration of that formation), one from each simulation run (using the intermediate

r level, 2 for simulation 1 and 1.75 for simulation 2), have been illustrated as an example

together with estimated segments from competing models.

Figure 2.8.: Two sets of randomly simulated data (chosen from the 50th random grid

formation and the 50th iteration of that formation), one for each simulation run (us-

ing the intermediate r level, 2 for simulation 1 and 1.75 for simulation 2) have been

illustrated as an example together with estimated segments from competing models.

Segments are represented using the estimated segment averages. The true underlying

grid used for data simulation is shown as the solid line in beige.

In simulation 1 (Table 2.8), most algorithms except for HMM perform comparably

well at intermediate and low noise scenarios. The difference in detecting gain and loss

is consistent with our simulation setup, where the loss region is intentionally set to be

relatively longer making it much easier to detect. In general the competing algorithms

could be categorized into three classes, with our model, bioHMM and HaarSeg top the

charts, colsely followed by CBS and cghseg, and the other three algorithms perform less
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2.2. Genomic segmentation

Figure 2.9.: ROC curves for segmentation algorithms comparison under different signal

to noise settings (r). The curves were generated by measuring the sensitivity and the

specificity at different threshold levels. The x-axis and y-axis show the FPR and the

TPR respectively. The upper panel (a) shows the simulation 1 which is similar to an

aCGH analysis, and the lower panel (b) shows the simulation 2 which is similar to

peak identification using NGS. Compared algorithms are color coded as indicated

in the figure legend, while the up-triangle represents segment of gain in simulation

1 and peak in simulation 2, and hollow down-triangle represents segment of loss in

simulation 1. Models are labeled using lower case letters of their name. Our proposed

model is coded as ’hsmm’ for simplicity and the HMM in package aCGH is labeled as

’hmm’.
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satisfactorily. It is worth mentioning that, in simulation 1, bioHMM has surprisingly high

power in high noise setting. However, such advantage essentially disappears when sig-

nals get stronger. This could be related to its model selection process, where it attempts

to assign higher number of states thus more segments to compensate for the random

noise. There is also a clear difficulty for HaarSeg to detect short gain segments, which

could be related to the default model setting that is not well adapted to short aberra-

tions [71].The behavior of bcp indicates that in order to achieve higher power there is an

inevitably loss in specificity, even with high signal to noise setting.

For smoothing algorithm like GLAD, it only operates well under higher signal to

noise ratio. Due to the smoothing, segments boundaries became less accurate. And as

mentioned in Lai et al. [101], GLAD is sensitive to single outliers, which explains the de-

ficiency of sensitivity in detecting gain region even for low noise cases. HMM gets quite

high AUC when high noise exists (r = 1) in simulation 1, and performs comparably

worse when signals are stronger, eventually fails to identify most segments. This is in

accordance with Lai et al. [101], where HMM failed to identify any region in Glioblas-

toma Multiforme (GBM) data. It also fails to make any meaningful segmentation in

simulation 2.

Table 2.8.: Area under the ROC curves of simulation data 1

Sim 1 r=1 r=2 r=3 weighted

AUCg
a AUCl

a AUCg AUCl AUCg AUCl avg.rankb

bcp 0.675 3 0.758 0 0.912 0 0.956 0 0.921 1 0.963 4 6.416 5

bioHMM 0.685 6 0.875 2 0.977 1 0.990 2 0.995 1 0.997 6 3.408 4

CBS 0.633 3 0.795 9 0.974 0 0.985 5 0.996 1 0.995 4 4.491 1

cghseg 0.586 5 0.696 3 0.960 2 0.991 8 0.996 0 0.998 1 4.621 1

HaarSeg 0.649 7 0.763 7 0.923 4 0.993 7 0.995 9 0.998 4 3.887 0

GLAD 0.506 6 0.548 8 0.833 0 0.962 9 0.986 1 0.996 6 6.907 6

HMM 0.717 6 0.854 8 0.749 5 0.887 2 0.526 4 0.573 6 6.589 8

hsmm 0.619 5 0.729 7 0.982 2 0.988 7 0.999 1 0.998 5 3.528 4

a AUCg and AUCl are AUC for simulated gain and loss segments respectively for each

r.
b Weighted avg.rank is calculated as n + 1 − ∑

j=c
j=1 AUCi × rankj(AUCi)/c for each

model i, where c is the number of AUC columns and n is the number of competing

models.

In simulation 2 (Table 2.9), when data is a mixture of Poisson distributions, I failed

to run bioHMM due to an error in a foreign function call to the C library. I have to

assume that the implementation cannot work on discrete count data. However all other
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implementations are still operable and achieve similar performance as in simulation 1.

Though the mean parameter for Poisson data simulation is not considerably large, the

normal approximation could still achieve reasonably good power. Nonetheless, our ex-

plicit modeling of count data is still advantageous for segmenting count data, which has

the highest weighted average rank (Table 2.9), followed by bcp and HaarSeg. Comparing

to HaarSeg, the power boost for bcp essentially occurs under higher false positive rate. It

could be seen that algorithms like bcp perform better when stronger signal exists, which

could be due to the normal error assumption in the model.

Table 2.9.: Area under the ROC curves of simulation data 2

Sim 2 AUCr=1.5 AUCr=1.75 AUCr=2 weighted avg.ranka

bcp 0.821 9 0.928 1 0.965 6 2.616 6

CBS 0.682 8 0.874 4 0.954 9 5.487 9

cghseg 0.729 2 0.898 3 0.959 5 4.550 7

GLAD 0.541 8 0.736 7 0.897 1 6.730 2

HaarSeg 0.772 8 0.911 4 0.978 7 2.977 9

HMM 0.624 3 0.587 3 0.526 0 7.212 7

hsmm 0.762 3 0.942 4 0.984 9 2.232 4

a Weighted avg.rank is calculated as n + 1 − ∑
j=c
j=1 AUCi × rankj(AUCi)/c for each

model i, where c is the number of AUC columns and n is the number of competing

models.

For both simulations, as has been shown in Lai et al. [101], cghseg and CBS perform

consistently well under various scenarios. Three of the newly introduced methods,

bcp, bioHMM and HaarSeg also achieve comparable or better performance, whereas the

HSMM consistently ranks among the top 3 performing algorithms when considering

AUC. Across the two simulations, GLAD and HMM are considered to process lowest

power. Concerning computation time, HaarSeg is the fastest algorithm among all im-

plementations, by a factor of 50-100, while bioHMM is the slowest due to its internal

model selection process. bcp is the second slowest, as a result of long Markov chain

Monte Carlo (MCMC) run. The processing time of the HSMM is similar to cghseg, and

is slower comparing to CBS, which is about two times faster.

Concerning overall accuracy of estimated segments number, Occam’s razor states that

the best model should be the simplest yet still retaining the same power. For both sim-

ulations, on average 14 segments were joined into one sequence. In simulation 1, the

HSMM achieves the lowest rooted mean squared error (RMSE) and the mean absolute

error (MAE); whereas in simulation 2, HSMM finds fewer segments with the median

number of detected segments only 6 across three noise levels. Taking into account the
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Table 2.10.: Processing time and error estimates of the compared models

Simulation 1 Simulation 2

avg.ta maxcpb MAEc RMSEd maxcp MAE RMSE

hsmm 0.25645 13 5.756 3.476 9 18.73 6.31

bcp 1.46298 NAe NA NA NA NA NA

bioHMM 6.96811 192 8.655 7.376 NA NA NA

CBS 0.12168 15 7.444 4.178 10 20.762 7.068

cghseg 0.28938 13 9.059 4.783 17 14.83 5.533

GLAD 0.23725 11 13.128 6.071 12 22.139 7.668

HaarSeg 0.00268 27 12.896 4.984 22 10.117 4.018

HMM 0.28008 386 94.666 80.792 365 144.83 97.178

a avg.t is calculated as the mean run time of 2000 simulation iterations.
b maxcp is the maximal number of segments produced across 3 SNR settings.
c MAE = ∑ |est.no.seg − true.no.seg|/n.
d RMSE =


∑(est.no.seg − true.no.seg)2/n.

e NA indicates that the measurement is not applicable for this algorithm. For bcp, the

model output posterior means for each position that does not tend to form segments

with constant mean. For bioHMM, the model cannot be run, thus no results were

collected.
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power advantage of the HSMM method in the sensitivity analysis, it indicates that the

estimated segments boundaries are more accurate in HSMM. This could be due to the

fact that the simulated aberrant segments are sampled from the same distribution and

the sojourn modeling in the HSMM clearly takes advantage of such property. In the

second simulation, HaarSeg achieves lowest error estimates for both RMSE and MAE.

Moreover, cghseg also has similar error estimates as the HSMM. Like HaarSeg, this is

essentially achieved by fitting more segments. As has been pointed out in [68], as-

sumptions of the mean-variance relationship imposed on the model may lead to more

segments in order to satisfy such requirements.

2.2.6. Segmentation of copy number profiles

Microarray-based comparative genomic hybridization has been used to study DNA copy

number aberrations, and has been considered as an effective diagnostic tool in medical

genetics and cancer research. Extracted from packge DNACopy [70], the coriell data

contains two aCGH studies (GM05296 and GM13330) of Corriell cell lines taken from

Snijders et al. [63], with which I will first illustrate the usage of the proposed HSMM in

copy number analysis. In particular, the data contains normalized copy-number ratios

between cancer cell strains and normal reference DNA, in total with 2271 mapped fea-

tures across 22 autosomes and chromosome X. To get started, we first build a GRanges
object from data.frame, one can also supply a data matrix with optional positional infor-

mation as input.

> data(’coriell’, package=’biomvRCNS’)

> head(coriell, n=3)

Clone Chromosome Position Coriell.05296 Coriell.13330

1 GS1-232B23 1 1 0.000359 0.207470

2 RP11-82d16 1 469 0.008824 0.063076

3 RP11-62m23 1 2242 -0.000890 0.123881

> xgr<-GRanges(seqnames=coriell[,2],

+ IRanges(start=coriell[,3], width=1, names=coriell[,1]))

> values(xgr)<-DataFrame(coriell[,4:5], row.names=NULL)

> xgr<-sort(xgr)

> head(xgr, n=3)

GRanges with 3 ranges and 2 metadata columns:

seqnames ranges strand | Coriell.05296 Coriell.13330

<Rle> <IRanges> <Rle> | <numeric> <numeric>

GS1-232B23 1 [ 1, 1] * | 0.000359 0.20747

RP11-82d16 1 [ 469, 469] * | 0.008824 0.063076

RP11-62m23 1 [2242, 2242] * | -0.00089 0.123881

---
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seqlengths:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

Then by passing the input object to biomvRhsmm, the copy number states will be es-

timated using the hidden-semi Markov model. The batch function will sequentially

process each chromosome identified by their unique seqnames.

> rhsmm<-biomvRhsmm(x=xgr, maxbp=1E5, J=3, soj.type=’gamma’,

+ com.emis=T, emis.type=’norm’, prior.m=’quantile’)

> show(rhsmm)

Object is of class: ’biomvRCNS’

List of parameters used in the model:

J, maxk, maxbp, maxgap, soj.type, emis.type, q.alpha, r.var, iterative, cMethod, maxit, tol,

grp, cluster.m, avg.m, prior.m, trim, na.rm, soj.par, emis.par

The segmented ranges:

GRanges with 102 ranges and 3 metadata columns:

seqnames ranges strand | SAMPLE STATE AVG

<Rle> <IRanges> <Rle> | <Rle> <Rle> <Rle>

[1] 1 [ 1, 108746] * | Coriell.05296 2 0.0091220

[2] 1 [112204, 218166] * | Coriell.05296 2 0.0138270

[3] 1 [110293, 110293] * | Coriell.05296 1 -0.0791300

[4] 1 [220439, 240001] * | Coriell.05296 1 -0.0083905

[5] 1 [ 1, 36207] * | Coriell.13330 3 0.0874010

... ... ... ... ... ... ... ...

[98] 22 [ 20553, 33001] * | Coriell.13330 3 0.130433

[99] 23 [ 1, 155001] * | Coriell.05296 3 0.676184

[100] 23 [ 1, 98906] * | Coriell.13330 2 -0.053510

[101] 23 [125572, 155001] * | Coriell.13330 2 -0.012260

[102] 23 [103194, 122966] * | Coriell.13330 1 -0.101480

---

seqlengths:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

In the above run, we limited the model complexity by setting the maxbp to 1E5, which

will restrict the maximum evaluated sojourn length to maxbp. J is the number of states

in the HSMM, in which case three states can be assumed for aCGH studies, copy loss

region, normal region, or duplicated region.

Argument emis.type controls the distribution of emission probability, in this case the

log2 ratio of aCGH data is considered to follow Normal distribution. The emission

density could be estimated using all data or only data on the respective region or chro-
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mosome (identified by unique seqnames), controlling via com.emis. In this case, the

ratios cross chromosomes are directly comparable, thus com.emis was set to true. The

prior of the emission parameters could be controlled by supplying q.alpha and r.var
with prior.m=’quantile’, or automatically determined through a clustering process with

prior.m=’cluster’.

The function will then call C codes and estimate the most likely state sequence, with

either cMethod=’F-B’ or cMethod=’Viterbi’. The F-B method (default) uses a forward-

backward algorithm described in Guédon [99], which gives a smooth state sequence,

whereas the Viterbi algorithm with cMethod=’Viterbi’ will use the state profile estimated

by the forward-backward algorithm and rebuild the most likely state sequence. The

parameter maxit controls the maximum iteration of the EM algorithm. When assess-

ing aCGH data, the quantile method should be able to give a good estimation of the

emission density priors, one can also adjust q.alpha and r.var for better control over the

mean-variance relationships in extreme states. Since we are not training a prediction

model, but trying to derive the most likely state sequence, one iteration of the EM pro-

cedure is sufficient.

The function returns an object of class biomvRCNS, in which the res slot is a GRanges
object containing the summary of each estimated segments. There are three meta

columns: column SAMPLE gives the column name of which sample this segment be-

longs to; column STATE, the estimated state for each segment, the lower state number

represents state with lower mean value, thus in this example, a state of 1 could represent

region of deletion and 3 for region of duplication, whereas state 2 could be considered

copy neutral; column AVG, gives the segment average value, which could take the form

of (trimmed) mean or median controlled by avg.m. The original input is also kept and

returned in slot x with the estimated most likely state assignment and associated prob-

ability.

A plot method has been implemented for biomvRCNS object using R/Bioconductor

package Gviz, by default the plot method tries to output graphics to multiple EPS/PDF

files for each chromosome region and sample. Multiple samples could also be overlaid

on the same image, by passing sampleInOne=TRUE in the plot method. In Figure 2.10,

a copy loss region on chromosome 11 from sample Coriell.05296 is shown.

> obj<-biomvRGviz(exprgr=xgr[seqnames(xgr)==’11’, ’Coriell.05296’],

+ seggr=rhsmm@res[mcols(rhsmm@res)[,’SAMPLE’]==’Coriell.05296’])
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Figure 2.10.: Estimated copy number states of sample 05296 from the Coriell aCGH

dataset. A state of 1 could represent region of deletion and 3 for region of duplication,

whereas state 2 could be considered copy neutral.

2.2.7. Transcript detection with mRNA-seq data from ENCODE

The newly prevailing NGS technology has enabled the deep profiling of transcriptome

at an unprecedented depth, allowing base-pair resolution detection of novel transcripts

and splicing events. Recent study has shown that thousands of unannotated long non-

coding RNAs are transcriptionally active [106].

In this section, I will illustrate the usage of biomvRhsmm in transcriptome mapping. The

data contains gene expressions and transcript annotations in the region of the human

TP53 gene (chr17:7,560,001-7,610,000 from the Human February 2009 (GRCh37/hg19)

genome assembly), which is part of the long RNA-seq data generated by ENCODE [107]

/ Cold Spring Harbor Lab, containing 2 cell types (GM12878 and K562) with 2 replicates

each. The libraries were sequenced on the Illumina GAIIx platform as paired-ends for

76 or 101 cycles for each read. The average depth of sequencing is 200 million reads

(100 million paired-ends). The data were mapped against hg19 using Spliced Transcript

Alignment and Reconstruction (STAR).

To generate local read counts, alignment files were pulled from UCSC (1) using R /

Bioconductor package Rsamtools. And subsequently reads were counted in each non-

1http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeCshlLongRnaSeq/
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overlapping unit sized window for the region. In the pre-compiled data encodeTP53 , a

window size of 25 bp was used with the chunk of code below.

> winsize<-25

> cgr<-GRanges("chr17", strand=’-’,

+ IRanges(start=seq(7560001, 7610000, winsize), width =winsize))

> bf<-system.file("extdata", "encodeFiles.txt", package = "biomvRCNS")

> bamfiles<-read.table(bf, header=T, stringsAsFactors=F)

> library(Rsamtools)

> which<-GRanges("chr17", IRanges(7560001, 7610000))

> param<-ScanBamParam(which=which, what=scanBamWhat())

> for(i in seq_len(nrow(bamfiles))){

+ frd<-scanBam(bamfiles[i,1], param=param)

+ frdgr<-GRanges("chr17", strand=frd[[1]]$strand,

+ IRanges(start=frd[[1]]$pos , end = frd[[1]]$pos+frd[[1]]$qwidth-1))

+ mcols(cgr)<-DataFrame(mcols(cgr), DOC=countOverlaps(cgr, frdgr))

+ }

Alternatively one can also operate on base pair resolution, in which case a Rle object

should be preferred to store the count data for lower memory footprint and better effi-

ciency. Also to speed things up, one could set useMC=T to enable parallel processing of

multiple seqnames, the number of parallel process could be set by options(mc.cores=n).

> cgr<-GRanges("chr17", strand=’-’,

+ IRanges(seq(7560001, 7610000), width=1))

> bf<-system.file("extdata", "encodeFiles.txt", package = "biomvRCNS")

> bamfiles<-read.table(bf, header=T, stringsAsFactors=F)

> library(Rsamtools)

> which<-GRanges("chr17", IRanges(7560001, 7610000))

> param<-ScanBamParam(which=which, flag=scanBamFlag(isMinusStrand=TRUE))

> for(i in seq_len(nrow(bamfiles))){

+ cod<-coverage(BamFile(bamfiles[i,1]), param=param)[[’chr17’]][7560001:7610000]

+ mcols(cgr)<-DataFrame(mcols(cgr), DOC=cod)

+ }

The pre-compiled data encodeTP53 also includes the regional annotation of TP53

RNAs isoforms, gmgr, which were derived from the manually curated ENCODE Gene

Annotations (GENCODE) 2, and subset to only isoforms of TP53 gene and neighboring

genes in the region.

> af<-system.file("extdata", "gmodTP53.gff", package = "biomvRCNS")

2http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeGencodeV4/)
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> gtfsub<-read.table(af, fill=T, stringsAsFactors=F)

> idx<-gtfsub[,3]==’CDS’ | gtfsub[,3]==’UTR’

> gmgr<-GRanges("chr17", IRanges(start=as.integer(gtfsub[idx, 4]), end=as.integer(gtfsub[idx, 5]),

+ names=gtfsub[idx, 13]), strand=gtfsub[idx, 7], TYPE=gtfsub[idx, 3])

We first load the encodeTP53 data, pool the read counts for each cell type and add 1

to the base count to increase stability.

> data(encodeTP53, package=’biomvRCNS’)

> cgr<-encodeTP53$cgr

> gmgr<-encodeTP53$gmgr

> mcols(cgr)<-DataFrame(

+ Gm12878=1+rowSums(as.matrix(mcols(cgr)[,1:2])),

+ K562=1+rowSums(as.matrix(mcols(cgr)[,3:4])) )

For count data from sequencing, the emis.type could be set to either ’pois’ or ’nbinom’,

though ’pois’ is preferred for sharp boundary detection. For the sojourn settings, in-

stead of using the uninformative flat prior, we here use estimates from other data source

as a prior. We load the TxDb.Hsapiens.UCSC.hg19.knownGene (version 2.10.1) known

gene database, and pass the TranscriptDb object to parameter xAnno. Then internally so-

journ parameters and state number J will be estimated from xAnno by calling function

sojournAnno. When given a TranscriptDb object to xAnno, state number would be set to

3 and each represents ’intergenic’, ’intron’ and ’exon’, respectively. One can also supply

a named list object with initial values for parameters of distribution specified by soj.type.

Using the sojourn parameters estimated from the known transcripts database, one can

visualize the sojourn density and compare it with the empirical distribution of different

features, like in Figure 2.11 where Gamma distribution was used. There is no confirmed

biological justification for using any specific parametric distribution in modeling length

of genome units. The Gamma distribution used here could be considered relevant, since

Gamma distribution has been frequently used to model waiting time. For emission,

given the highly dispersed nature of count data, we set the prior for emission mean to

be more extreme, with q.alpha=0.01.

> library(TxDb.Hsapiens.UCSC.hg19.knownGene)

> txdb<-TxDb.Hsapiens.UCSC.hg19.knownGene

> sojournAnno(txdb)

$type

[1] "gamma"

$fttypes

[1] "intergenic" "intron" "exon"
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$J

[1] 3

$shape

[1] 0.07911853 0.08877242 0.16583121

$scale

[1] 2180784.013 70520.286 2053.809

> rhsmm<-biomvRhsmm(x=cgr, xAnno=txdb, maxbp=1E3, soj.type=’gamma’,

+ emis.type=’pois’, prior.m=’quantile’, q.alpha=0.01)

> rhsmm@res[mcols(rhsmm@res)[,’STATE’]==’exon’]

GRanges with 52 ranges and 3 metadata columns:

seqnames ranges strand | SAMPLE STATE AVG

<Rle> <IRanges> <Rle> | <Rle> <Rle> <Rle>

[1] chr17 [7571801, 7572125] - | Gm12878 exon 312

[2] chr17 [7572251, 7572350] - | Gm12878 exon 96

[3] chr17 [7572426, 7572550] - | Gm12878 exon 61

[4] chr17 [7572601, 7572625] - | Gm12878 exon 60

[5] chr17 [7572851, 7573050] - | Gm12878 exon 127

... ... ... ... ... ... ... ...

[48] chr17 [7588951, 7589400] - | K562 exon 20.0

[49] chr17 [7589426, 7589525] - | K562 exon 6.0

[50] chr17 [7589676, 7589825] - | K562 exon 9.0

[51] chr17 [7590701, 7590800] - | K562 exon 14.5

[52] chr17 [7592026, 7592050] - | K562 exon 6.0

---

seqlengths:

chr17

NA

As in the ENCODE guide [108], the study identified the p53 isoform observed in K562

cells has a longer 3’UTR than the isoform seen in the GM12878 cell line. So here we plot

our model estimates and consider the third state, namely ’exon’, to represent detected

transcripts. And the HSMM model clearly picked up the extra transcripts of the K562

cell line at the 3’UTR. Now we can also locate those novel detected fragments in K562

cell line comparing to the annotation and those detected in Gm12878 cell line. One can

then follow up these findings either by gene structure prediction using local nucleotides

composition or by experimental validation.

> g<-mcols(rhsmm@res)[,’STATE’]==’exon’ & mcols(rhsmm@res)[,’SAMPLE’]==’Gm12878’

> k<-mcols(rhsmm@res)[,’STATE’]==’exon’ & mcols(rhsmm@res)[,’SAMPLE’]==’K562’

> exon<-mcols(rhsmm@res)[,’STATE’]==’exon’

> obj<-biomvRGviz(exprgr=cgr[,’K562’], gmgr=gmgr, seggr=rhsmm@res[exon],
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Figure 2.11.: Sojourn distribution parameters estimated using Gamma distribution from

known gene database . The solid curve gives the segment length distribution of each

feature type, ’intergenic’, ’intron’ and ’exon’. The dotted line gives the estimated den-

sity of each state. k and θ are the shape and scale parameters for Gamma distribution.

+ plotstrand=’-’, regionID=’TP53’, tofile=FALSE)

> nK2gm<-findOverlaps(rhsmm@res[k], gmgr)@queryHits

> nK2G<-findOverlaps(rhsmm@res[k], rhsmm@res[g])@queryHits

> rhsmm@res[k][setdiff(seq_len(sum(k)), unique(c(nK2G, nK2gm)))]

GRanges with 19 ranges and 3 metadata columns:

seqnames ranges strand | SAMPLE STATE AVG

<Rle> <IRanges> <Rle> | <Rle> <Rle> <Rle>

[1] chr17 [7569151, 7569225] - | K562 exon 9

[2] chr17 [7569651, 7569925] - | K562 exon 15

[3] chr17 [7570301, 7570550] - | K562 exon 16

[4] chr17 [7570751, 7570850] - | K562 exon 10

[5] chr17 [7570901, 7571000] - | K562 exon 8

... ... ... ... ... ... ... ...

[15] chr17 [7587201, 7587225] - | K562 exon 8

[16] chr17 [7588826, 7588850] - | K562 exon 6

[17] chr17 [7589426, 7589525] - | K562 exon 6

[18] chr17 [7589676, 7589825] - | K562 exon 9

[19] chr17 [7592026, 7592050] - | K562 exon 6

---

seqlengths:

chr17

NA

After the model run, one also gets access to the updated sojourn and emission distri-

bution parameters, which could be used to generate summary of the states or used as

parameter input in other related modelings.

1> rhsmm@param$soj.par[’chr17’,]
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Figure 2.12.: Novel splicing detected in the UTR of TP53 gene in K562 sample. On the

upper panel, the annotated CDS (cyan) and UTR (green) elements within the region

are illustrated and grouped by transcript. The two rows (Gm12878 and K562) in the

center present the segments labeled as ’exon’ in the HSMM estimation. The lower

scatter plot shows the read coverage in K562 sample.
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$Gm12878

$Gm12878$shape

[1] 0.5963197 0.6214228 1.9855437

$Gm12878$scale

[1] 464.05423 456.93630 65.81886

$K562

$K562$shape

[1] 0.4838741 0.5038419 0.8982046

$K562$scale

[1] 484.0769 477.5418 113.6743

1> rhsmm@param$emis.par[’chr17’,]

$Gm12878

$Gm12878$mu

[1] 7.056160 8.156769 191.523558

$K562

$K562$mu

[1] 1.972035 2.112671 12.101558

2.2.8. Detection of differentially methylated regions

Differentially methylated regions (DMRs) are genomic regions with different methyla-

tion status, i.e. variable degree of DNA methylation between different samples, which

has been considered to have regulatory functions for gene transcription [109] and is

associated with cell differentiation and proliferation [110; 111]. Such regions could be

surveyed using high-throughput technology like tiling array [112] and sequencing [113].

As an example, we include a set of data extracted from BiSeq [114], which contains a

small subset of a published study [115], comprising intermediate differential methyla-

tion results prior to DMRs detection. We first load the variosm data,

> data(variosm, package=’biomvRCNS’)

The data contains a GRanges object variosm with two meta columns: meth.diff,

methylation difference between the two sample groups; p.val, significance level from

the Wald test. Our model could be applied on data from other pipelines as well, using

similar data input. In the BiSeq work-flow, they use an approach similar to the max-

gap-min-run algorithm to define DMRs boundaries, by prior filtering and comparing
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the differential test statistics with a user specified significance level in the candidate re-

gions. The positional information of methylation sites is taken into account by locating

and testing highly correlated cluster regions in the filtering process. With biomvRhsmm,

we utilize both types of information to detect DMRs: (1) the difference in the methy-

lation ratio and (2) the significance level from differential test. The methylation differ-

ence gives information about the directionality of the change as well as the size, and

the significance level gives the confidence in claiming differential events. We implic-

itly ask the model to give 3 states, since J is default to 3. Regarding the methylation

ratio (meth.diff), these levels may represent hypomethylated regions, undefined null

regions, or hypermethylated regions, respectively. When modeling significance levels

(p.val), these states would represent highly confident regions, lowly confident regions

or null results. For both scenarios, we are more interested in extreme states, where we

have consistent direction of differences and low P-values. However, the distribution

of p.val and meth.diff are both non-uniform and asymmetric around 0 (meth.diff)

and 0.5 (p.val), we thus enable the cluster mode for emission prior initialization by

setting prior.m=’cluster’. The ’cluster’ mode will employ the method described in Kauf-

man and Rousseeuw [116] to divide data into clusters, then using the centroid of each

cluster to represent the mean parameter, and also for the variance structure or other

distributional parameters can be estimated using the corresponding clusters. Due to

the non-uniformly located CpG sites, one may split inter-spreading long segments with

parameter maxgap=100.

> rhsmm<-biomvRhsmm(x=variosm, maxbp=100, prior.m=’cluster’, maxgap=100)

> hiDiffgr<-rhsmm@res[mcols(rhsmm@res)[,’STATE’]!=2

+ & mcols(rhsmm@res)[,’SAMPLE’]==’meth.diff’]

> dirNo<-mcols(hiDiffgr)[,’STATE’]==’1’ & mcols(hiDiffgr)[,’AVG’]>0 |

+ mcols(hiDiffgr)[,’STATE’]==’3’ & mcols(hiDiffgr)[,’AVG’]<0

> hiDiffgr<- hiDiffgr[!dirNo]

> loPgr<-rhsmm@res[mcols(rhsmm@res)[,’STATE’]==1

+ & mcols(rhsmm@res)[,’SAMPLE’]==’p.val’]

> DMRs<-reduce(intersect(hiDiffgr, loPgr), min.gapwidth=100)

> idx<-findOverlaps(variosm, DMRs, type=’within’)

> mcols(DMRs)<-DataFrame(cbind(TYPE=’DMR’, aggregate(as.data.frame(mcols(variosm[idx@queryHits])),

+ by=list(DMR=idx@subjectHits), FUN=median)[,-1]))

> names(DMRs)<-paste0(’DMRs’, seq_along(DMRs))

> DMRs

GRanges with 5 ranges and 3 metadata columns:

seqnames ranges strand | TYPE meth.diff p.val

<Rle> <IRanges> <Rle> | <factor> <numeric> <numeric>

DMRs1 chr1 [875227, 875470] * | DMR 0.31947418 6.677193e-06

DMRs2 chr1 [876807, 876958] * | DMR -0.06108219 6.500328e-02

DMRs3 chr1 [877684, 877738] * | DMR -0.06123008 2.844639e-02
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DMRs4 chr2 [ 46126, 46280] * | DMR 0.41008524 1.818530e-07

DMRs5 chr2 [ 46389, 46558] * | DMR 0.44823172 1.890819e-06

---

seqlengths:

chr1 chr2

NA NA

> plot(rhsmm, gmgr=DMRs, tofile=FALSE)

After the model fitting, by intersecting regions with extreme meth.diff and regions

with low p.val, we can locate those detected DMRs, returned with their average meth.diff

and p.val. Comparing to the regions detected in the BiSeq vignette, the two sets of re-

gions are largely similar except for two regions: (chr1:872335,872386), which in our

case the meth.diff has not been considered high enough due to the highly asymmet-

ric distribution of meth.diff; another region (chr2:46915,46937) resides in the tail of

chromosome 2 with low density of methylation sites, which has been sorted into the in-

termediate state due to the lack of support from both the emission level and the sojourn

time. However, it is worth mentioning that due to the filtering applied in their work-

flow, they built wider regions out of a smaller set of more significant sites; whereas in

our case, the regions are more refined and especially we identified two hypomethylated

regions (chr1:876807,876958 and chr1 :877684,877738). The two segmented profiles are

visualized in Figure 2.13 using the default plot method.
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Figure 2.13.: Detected differentially methylated regions (DMRs) in the example data,

together with estimated segmentation profiles. DMRs could be located by intersecting

resulting states ’1’ or ’3’ in meth.diff and segments ’1’ in p.val, indicated by boxes

in the third row.
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CHAPTER 3

Case studies

In this chapter, we will employ the previously described methods in our animal experi-

ments, to study water holding capacity (WHC), an economically important meat quality

trait, which also shares many similarities with pathological processes associated with

muscle injury. The objective is to use high-throughput technologies to survey regions

with known association with the trait, and to detect candidate genes or novel tran-

scriptional units which show differential regulation status between phenotypic groups.

Further their potential functional involvement in the related biological process will be

discussed.

3.1. Characterizing traits related regions using custom tiling

array

3.1.1. Animals and materials

Genomic DNA and phenotypic records were obtained from animals of an experimental

F2 population based on a reciprocal cross of Duroc × Pietrain (DuPi, n = 417) as well as

the commercial cross-breed and performance tested animals Pietrain × [German Large

White × German Landrace] (PiF1, n = 481). The commercial cross-breed populations

(PiF1) represent the typical end product in the German market. They were from different

breeding organizations and did not exhibit any genetic link for many generations.

The pigs were slaughtered at a commercial abattoirs and carcass and meat quality data

were collected according to guidelines of the German performance test. Meat quality

traits analyzed in this study cover indicators of WHC including meat color at 24 h
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p.m. (OPTO), drip loss (DRIP), thawing loss (THAW), cooking loss (COOK), pH at 45

min p.m. (pH1), pH at 24 h p.m. (pH24), conductivity at 45 min p.m. (CON1) and

conductivity at 24 p.m. (CON24). Meat for conductivity, color, and pH at 24 h p.m.

was stored at 4°C in the slaughterhouse. Conductivity and pH-value were measured by

using Star-series equipment (Rudolf Matthaeus Company, Germany) in M. longissimus

dorsi between 13th/14th ribs. Drip loss was scored based on a bag-method with a size

standardized sample from the M. longissimus dorsi collected at 24 h post mortem that

was weighed, suspended in a plastic bag, held at 4°C for 48 h, and thereafter re-weighed

[117; 118]. To determine cooking loss, a loin cube was taken from the M. longissimus

dorsi, weighed, placed in a polyethylene bag, and incubated in water at 75°C for 50 min

and the solid portion was re-weighed. Thawing loss was determined similarly after at

least 24 h freezing at -20°C. Drip loss, cooking loss, and thawing loss were calculated

as a percentage of weight loss based on the start weight of a sample. The numbers of

records, mean values, and standard deviations are shown in Table 3.1.

For the tiling array experiment, 11 animals were selected for the DuPi population

and 12 were chosen in the PiF1 population (Table 3.2) which show extreme drip loss

differences. Samples are labeled as ’HI’ if showing large value of drip loss, which in

turn indicates low water holding capacity.

Table 3.1.: Population summaries and phenotype data measured with means and stan-

dard deviations

DuPi PiF1

Number of animals 417 481

Number of sires 5 10

Number of litters 44 232

meat color at 24 h p.m. (OPTO) 68.57 ± 5.69 70.39 ± 8.83

pH at 45 min p.m. (pH1) 6.56 ± 0.21 6.24 ± 0.26

pH at 24 h p.m. (pH24) 5.51 ± 0.10 5.57 ± 0.11

conductivity at 45 min p.m. (CON1) 4.36 ± 0.62 2.91 ± 0.60

conductivity at 24 p.m. (CON24) 2.82 ± 0.85 3.45 ± 0.95

drip loss (DRIP) 2.10 ± 0.96 1.94 ± 0.79

thawing loss (THAW) 8.09 ± 1.98 9.08 ± 3.97

cooking loss (COOK) 24.97 ± 2.13 25.39 ± 2.07
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Table 3.2.: Experimental panel of tiling array samples

DuPi PiF1

SampleID Drip-Loss group Batch Sex SampleID Drip-Loss group Batch Sex

14 HI 1 Male 36 HI 9 Male
15 LO 1 Male 199 HI 9 Female
6 LO 2 Female 82 HI 10 Female
9 LO 2 Male 83 LO 10 Female

10 HI 2 Female 204 HI 11 Female
11 HI 2 Male 424 LO 11 Male
17 HI 3 Female 434 HI 11 Male
18 LO 3 Female 205 LO 12 Female
20 HI 3 Male 559 HI 12 Male
28 HI 3 Female 579 LO 12 Male
19 LO 4 Male 36 HI 13 Male
14 HI 5 Male 234 LO 13 Female
15 LO 5 Male 424 LO 13 Male
20 HI 5 Male 83 LO 14 Female
28 HI 5 Female 204 HI 14 Female
6 LO 6 Female 205 LO 15 Female
9 LO 6 Male 82 HI 15 Female

17 HI 6 Female 234 LO 15 Female
10 HI 7 Female 204 HI 16 Female
11 HI 7 Male 434 HI 16 Male
19 LO 7 Male 261 LO 16 Male
14 HI 8 Male 83 LO 17 Female
15 LO 8 Male 261 LO 17 Male

559 HI 17 Male
579 LO 18 Male
82 HI 18 Female

424 LO 18 Male
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Candidate regions

Earlier, QTLs for drip loss were identified on SSC5 and SSC18 in the DuPi population

[119; 120]. In order to further characterize the nature of the QTLs for drip loss identified

on SSC5 and SSC18 obtained in the DuPi population, region-specific bacterial artificial

chromosome (BAC) arrays were constructed for expression profiling in these QTL re-

gions [121]. To map these QTL regions, ends sequence of BAC features were retrieved

from National Center for Biotechnology Information (NCBI) and aligned to Sus scrofa
10 (GCF_000003025.4, NCBI Build 3.1) using NCBI BLAST (v2.2.25) [43], top alignments

with at least 80% identity were kept. Overall covered regions were then derived using

all mapped BAC clones.

Beside the QTL regions, we also managed to include several genomic regions contain-

ing SNPs associated with meat quality traits including drip loss and expression traits

highly correlated with WHC [122; 123]. Using all these SNPs, haplotype blocks were

constructed with HapView v4.2 [124], using Solid Spine of LD approach with default

parameters and filtering. By cross referencing common significant SNPs found in the

GWAS and eQTL results, 35 block regions were further located.

Genomic coordinates of all candidate regions are shown in Table 3.3, together with an

extra gene region of interest. The regions covers 18 Mb of genomic sequences comprised

of 254 annotated transcripts representing 234 genes (according to Ensembl Sus Scrofa 10.2

release 71).

3.1.2. Tiling array design and processing

Initially genomic sequences for candidate regions were obtained based on Sus scrofa 10

(GCF_000003025.4, NCBI Build 3.1). Tiling probes were selected using OTAD [9] for both

strands of the DNA, with the following parameters: predicted nearest-neighbour melt-

ing temperature between 62 to 82 degree; probe length between 60 bp and 45 bp; max-

imal overlapping size of neighboring probes as 20 bp; minimal penalized uniqueness

score of 9; GC content between 15% and 60%; single nucleotide repeats not exceeding

7 and di-nucleotide repeats not exceeding 4; no base exceeds 60% in probe composi-

tion; maximal palindrome content of 40%. In total, 957208 qualified probes provide a

coverage of 49% of our targeted regions.

Tiling array chips were manufactured using Agilent’s SurePrint G3 Custom Gene

Expression Microarray 1x1M (Agilent Technology, USA). Hybridization was made in

house using Tecan HS400 Pro (Tecan Group Ltd., Switzerland) according to Agilent’s
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Table 3.3.: Candidate genomic regions to be tiled on the array

Ssc from to ContigLength Ssc from to ContigLength

1 116599604 116643478 43875 8 78660962 78760549 99588

1 154956889 154979315 22427 9 66651045 67130079 479035

1 12629603 12689880 60278 9 67784010 68134921 350912

1 121107995 121595489 487495 12 74980 564152 489173

1 289904792 290058951 154160 12 25024663 25105512 80850

2 9736615 9960856 224242 12 25709780 25822853 113074

2 72155901 72405040 249140 13 24413648 24766488 352841

2 134222204 134350467 128264 13 33925637 34300217 374581

3 87379656 87816579 436924 13 34320248 34507047 186800

3 31866257 32220932 354676 13 66102694 66383309 280616

4 16438095 16566860 128766 14 76010942 76391082 380141

4 104379984 104675931 295948 14 51441662 51917769 476108

5 14154240 14225798 71559 14 113098480 113567260 468781

5 80424455 80428262 3808 14 152715621 153193779 478159

6 124842118 124895462 53345 15 128766900 129185062 418163

6 47852177 48278540 426364 17 13354121 13629686 275566

7 2967727 3024065 56339 5 3522373 7742411 4223998

7 94648080 95004183 356104 18 53586438 58018224 4534183

7 130657961 130805381 147421 2 151050000
a

151200000
a

150001

a Chromosomal coordinates relative to Ensembl Sus Scrofa 10.2 release 71 genomic sequence
assembly
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3. Case studies

protocol, with 2-3 technical replicates for each biological sample as have been shown in

Table 3.2. Processed arrays were scanned using Tecan PowerScanner (Tecan Group Ltd.,

Switzerland). Array signal intensities and local backgrounds were then summarized

using Array-Pro Analyzer 6.3 (Meida Cybernetics Inc., USA), with potentially unreliable

spots marked for removal.

3.1.3. Tiling array data analysis

Pre-processing of tiling array data

The analysis was conducted initially on the probe level, using R/Bioconductor package

limma (version 3.16.8) [125]. Prior to processing, probes marked as unreliable were

removed separately within each population. Given the nature of tiling array, with which

large number of probes should show no differential expression, background correction

and inter-array normalization were done with R/Bioconductor package vsn (version

3.28.0) [126], using spike-in controls and with local background subtracted. Due to the

relatively long time span of array processing and the two animal sources, the two distinct

populations were separately analyzed and batch effects were removed using the ComBat

function in R/Bioconductor package sva (version 3.6.0) [127]. QC were done separately

for each population with R/Bioconductor package arrayQualityMetrics (version 3.16.0)

[128] after preprocessing. Detailed QC reports can be found in Appendix (E). Processed

signals were then filtered to exclude lowly expressed probes. We first got the 95%

percentile of the negative control probes on each array, and latter probes were kept for

those with at least 10% higher expression than the negative controls on at least two

arrays. Probes were latter remapped to Ensembl Sus Scrofa 10.2 release 71 with BLAT

(v34) [49] using only exact matches for further analysis.

Correlation with previous Affymetrix GeneChip

Previously, gene expression profiling of DuPi (GSE11193 [129] and GSE10204 [122]) and

PiF1 (GSE32112 [130; 131]) animals have been conducted using Affymetrix Porcine gene

expression chip (GEO platform ID: GPL3533). We thus attempted to compare the tran-

script specific tiling array results with previous Affymetrix expression profiles. To ac-

complish this, first target and consensus sequences of Affymetrix array probeset were

obtained via Affymetrix chip annotation. The Affymetrix chip contains in total 24123

probesets, among which 23935 are expression profiling targets together with 124 con-

trols sets and 64 mapping reporters, while the tilling array constructed covers 113 genes
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3.1. Characterizing traits related regions using custom tiling array

that are not represented on the Affymetrix GeneChips.

For consensus sequences, first, genomic coordinates of probesets with unique En-

sembl gene ID assignment were located using the recent annotation (Ensembl 10.2.71);

for those without ID assignment, consensus sequences of their transcripts were used to

align to the genome assembly (10.2.71) with BLAT. Top alignment with highest match

size was kept as the target range. After that, a second BLAST run was carried out to

fill those unmapped ones after the first BLAT alignment. Sequences without acceptable

mapping so far were ignored (16 not mapped). Similarly for Affymetrix target sequence,

which is only a subset close to the 3’ of consensus sequence, it is more directly compa-

rable with our tiling probes. All target sequences were aligned to the genome assembly

(10.2.71) using BLAT, unmapped ones were then similarly processed (31 not mapped).

Correlations between tiling array probes and Affymetrix probesets were assessed using

those tiling probes which overlap with aligned Affymetrix feature. For each mapped

Affymetrix feature, normalized signals of overlapping tiling array probes across samples

from respective population were pooled using median. Similarly, normalized signals of

Affymetrix probesets were also averaged across samples using median. In Table 3.4,

Pearson’s correlation test has been carried out and summarized for the three previous

Affymetrix experiments, using both consensus and target sequence matches with exper-

iment specific populations. Clearly, our tiling array probes show good agreement with

those Affymetrix probesets aligned to our tiling regions. The correlations are also con-

sistently higher when matching with mapped target sequence, as have been expected.

In Figure 3.1, correlations of common features between the two platforms have been

illustrated using target sequence matches.

Table 3.4.: Correlation between Affymetrix GeneChip and customary tiling array

GEO Population Correlationa P-valuea Correlationb P-valueb

GSE11193 DuPi 0.5570741 < 2.2e-16 0.4274864 2.22e-15

GSE10204 DuPi 0.5552044 < 2.2e-16 0.4345732 6.661e-16

GSE32112 PiF1 0.6161726 < 2.2e-16 0.4893904 < 2.2e-16

a Matching aligned Affymetrix probesets with tiling probes using target sequence
b Matching aligned Affymetrix probesets with tiling probes using consensus sequence

Differential expression analysis

Differential expression of probes between ’HI’ and ’LO’ drip loss samples were assessed

using the moderated t-test implemented in the lmFit function of limma. Instead of

controlling the false discovery rate (FDR) with p-value adjustment, we approached this

multiple testing problem differently. Thanks to the overlapping tiling array design,
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3. Case studies

Figure 3.1.: Correlation between Affymetrix GeneChip and customary tiling array, using

common feature matched by Affymetrix probeset target sequence.

neighboring probes are overlapping with an average size of 20 bp, thus consecutive

probes could ideally form a continuous tiling path with high density. In our pipe line,

we first applied a threshold of 0.05 on the nominal p-value computed by limma. Using

this initial set of significant probes we then attempted to form continuous regions if

neighboring probes (overlapping or with a gap smaller than 25 bp) show same direction

of fold change. We solved this by applying a modified max-gap-min-run algorithm

with a maximum gap of 25 bp and minimum probe number of 3. We also borrowed

information from a concurrent mRNA-seq experiment run on the same PiF1 animals to

filter regions to which there are less than 12 reads in total mapped across all samples. We

will refer to these regions as significantly differentially expressed probes (DEPs) regions.

Schematic illustration of DEPs region definition and rules of commonality call are shown

in Figure 3.3. Incorporation of linear or quadratic terms of Guanine-Cytosine (GC)

content in the linear models has also been considered and tested, with derived DEPs

regions largely unchanged. There is also hardly any changes in the resulting DEPs

regions when including gender of the animal as additional experimental factor. Thus

for simplicity and better model interpretation, we excluded GC content and animal

gender from the final model.

For common DEPs shared by the two populations, we required the overlapping pair

to have consistent fold change direction. Common genes with exons overlapping with

significant DEPs in both population were selected as candidate differentially expressed

genes (DEGs). For genes with multiple exons covered by different DEPs regions, the

fold change direction has to be consistent across all DEPs regions. Special consideration

was given to those genes with exons overlapped with DEPs regions in both populations

though the individual DEPs regions are not overlapping. Details of the commonality

calling are illustrated in Figure 3.3. Resulting Venn diagrams for both Ensembl gene ID

and non-overlapping DEPs region are shown in Figure 3.2.
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3.1. Characterizing traits related regions using custom tiling array

Figure 3.2.: On the left-hand-side is the venn diagram of detected differentially ex-

pressed Ensembl gene IDs, and on the right-hand-side is the venn diagram for de-

tected differentially expressed probe regions (DEPs) of the two populations

Gene set and pathway enrichment analysis

We then attempted to conduct a Gene Ontology (GO) enrichment analysis. The re-

gions we tiled on the array cover 234 annotated genes (according to Ensembl Sus Scrofa
10.2 release 71), which were used as background. Unlike in the previous Venn diagram,

common genes with exons overlapping with significant DEPs region in both populations

were selected as candidate DEGs (14 in total), with relaxed fold change direction con-

straint between populations, yet the same fold change direction rule still holds within

individual population. Ensembl gene ID was then mapped to Entrez gene ID using

bioMart [132]. Common genes overlapping with DEPs regions are listed in Table 3.5

together with their functional annotations.
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3. Case studies

Figure 3.3.: To illustrate the definition of DEPs regions and how common DEPs regions

and DEPs genes are counted, we hypothesized a gene with two exons and two ex-

perimental population P1 and P2. In panel a), two DEPs regions are formed by over-

lapping up-regulated probes, one for each population. In P1, the set of probes over

exon2 show different fold change directions thus ignored, and the gene is considered

to be up-regulated in P1. However in P2, since DEPs2 is not overlapping with exon1,

we don’t count the gene as regulated. Across the two population, DEPs1 and DEPs2

are then considered as common DEPs since they are overlapping and with consistent

fold change direction. In panel b), DEPs1 and DEPs3 are found in P1, covering dif-

ferent exons of the same gene yet with consistent fold change direction, so we count

the gene as up-regulated in P1. While for P2, DEPs2 and DEPs4 are identified with

different fold change directions, so the gene is not counted but the DEPs calls are still

valid for these two. Across the populations, DEPs1 and DEPs2 are still considered

common, while for DEPs3 and DEPs4 commonality call is not made. In panel c),

DEPs are detected for different exons and exon parts in the two populations but with

consistent fold change direction, so we call the gene as common and up-regulated.

For common DEPs call, DEPs1 and DEPs4 are not overlapping thus not considered

common. However for DEPs1 and DPEs2, the two are not directly overlapping but

sharing the same exon, we then consider them as a special case and call exon1 as a

common DEPs region.
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3. Case studies

Over representation of GO terms of category Biological Process (BP), Cellular Com-

ponent (CC) and Molecular Function (MF) were tested with R/Bioconductor package

GOstats (version 2.26.0)[133] for the common DEPs genes. Significantly enriched GO

terms were selected with Hypergeomtric test p-values smaller than 0.05. In Table 3.6

and Table 3.7 resulting lists of over-representation of GO term category MF and BP are

presented.

We also submitted the common gene IDs (irrespective of their fold change directions

in the two populations) to Ingenuity pathway analysis (IPA) (Ingenuity Systems1). Sig-

nificantly enriched canonical pathways with -log(p-value) greater than 2 are shown in

Table 3.8 together with their functional annotation.

It could be seen clearly from the GO enrichment and the pathway analysis that, ATF4

and EP300, as two major contributors, are associated with several diseases and cancer

related signaling pathways, and many regulatory processes. ATF4 encodes a transcrip-

tion factor, which is a widely expressed DNA binding protein. Recent study has shown

that forced expression of ATF4 together with other regulator could caused ATP deple-

tion, oxidative stress and cell death [134]. Like ATF4, EP300 also encodes a transcrip-

tional co-activator protein and regulates transcription via chromatin remodeling. It has

been shown that the EP300 gene is a key player in the processes of cell proliferation

and differentiation [135; 136]. Interestingly, one probeset on the previously employed

Affymetrix GeneChip representing EP300 has also been found to show high expression

level in low drip loss samples [129]. From the Ingenuity pathway analysis, pathway

"NRF2-Mediated Oxidative Stress Response" appears to be interesting, which is related

to the imbalance of oxygen supply in post mortem muscle cells and has direct connection

to apoptosis and necrosis. Thus it could be linked to the drip loss during the conversion

from muscle to meat.

1http://www.ingenuity.com/products/ipa
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3. Case studies
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3.1. Characterizing traits related regions using custom tiling array

Table 3.8.: Ingenuity Canonical Pathways of common DEPs genes
Ingenuity Canonical Pathways -log(p-value) Ratio Molecules

Circadian Rhythm Signaling 3.68E00 5.26E-02 ATF4,EP300

Role of IL-17F in Allergic Inflammatory Airway Diseases 3.43E00 4.17E-02 ATF4,EP300

ATM Signaling 3.18E00 3.23E-02 ATF4,EP300

Estrogen-Dependent Breast Cancer Signaling 3.14E00 2.74E-02 ATF4,EP300

ERK5 Signaling 3.13E00 3.03E-02 ATF4,EP300

Hypoxia Signaling in the Cardiovascular System 3.1E00 2.99E-02 ATF4,EP300

Neurotrophin/TRK Signaling 3.08E00 2.63E-02 ATF4,EP300

Prolactin Signaling 3.01E00 2.5E-02 NR3C1,EP300

FLT3 Signaling in Hematopoietic Progenitor Cells 2.99E00 2.6E-02 ATF4,EP300

Prostate Cancer Signaling 2.9E00 2.02E-02 ATF4,EP300

Melanocyte Development and Pigmentation Signaling 2.87E00 2.15E-02 ATF4,EP300

FGF Signaling 2.87E00 2.17E-02 ATF4,EP300

NGF Signaling 2.69E00 1.68E-02 ATF4,EP300

Gαs Signaling 2.65E00 1.63E-02 ATF4,EP300

Corticotropin Releasing Hormone Signaling 2.64E00 1.45E-02 ATF4,EP300

p38 MAPK Signaling 2.6E00 1.69E-02 ATF4,EP300

Synaptic Long Term Potentiation 2.59E00 1.54E-02 ATF4,EP300

P2Y Purigenic Receptor Signaling Pathway 2.57E00 1.42E-02 ATF4,EP300

Estrogen Receptor Signaling 2.54E00 1.47E-02 NR3C1,EP300

GNRH Signaling 2.53E00 1.32E-02 ATF4,EP300

B Cell Receptor Signaling 2.35E00 1.17E-02 ATF4,EP300

Dopamine-DARPP32 Feedback in cAMP Signaling 2.33E00 1.08E-02 ATF4,EP300

CREB Signaling in Neurons 2.27E00 9.71E-03 ATF4,EP300

Ephrin Receptor Signaling 2.27E00 9.85E-03 ATF4,EP300

Dendritic Cell Maturation 2.25E00 9.57E-03 ATF4,EP300

NRF2-mediated Oxidative Stress Response 2.24E00 1.04E-02 ATF4,EP300

Calcium Signaling 2.24E00 9.39E-03 ATF4,EP300

ILK Signaling 2.21E00 1.03E-02 ATF4,EP300

ERK/MAPK Signaling 2.21E00 9.62E-03 ATF4,EP300

cAMP-mediated signaling 2.08E00 8.89E-03 ATF4,EP300

Huntington’s Disease Signaling 2.06E00 8.23E-03 ATF4,EP300

Phospholipase C Signaling 2.02E00 7.6E-03 ATF4,EP300

Data deposition

Raw and processed expression data for the present study has been submitted to the

NCBI Gene Expression Omnibus (GEO)2 with the accession number GSE52384, with

population specific subseries GSE50846 (DuPi) and GSE52383 (PiF1).

2http://www.ncbi.nlm.nih.gov/geo
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3. Case studies

3.2. Characterizing traits related regions using mRNA-seq

3.2.1. mRNA-seq preparation and preprocessing

We have also recently conducted mRNA-seq experiments on the same discordant PiF1

sibs selected for the array experiments. Two paired-end sequencing runs were done in-

house using Illumina GAIIx and following standard Illumina unstranded TruSeq proto-

col. Resulting FASTQ files were aligned to the reference genome assembly of Ensembl

Sus Scrofa 10.2 release 71 using TopHat[137] (v2.0.3) and Bowtie (v0.12.7.0) [138] . The

sequencing data provides approximately 10X coverage of those regions previously tar-

geted by the tiling array experiment. Experimental panel and sequencing library statis-

tics (for only reads mapped to tiled regions) are listed in Table 3.9, in which case we have

a slightly higher read depth in the ’HI’ samples, summed up to 1029593 comparing to

the 955932 total reads in ’LO’ samples.

Table 3.9.: Experimental panel of mRNA-seq samples

SampleID Drip-Loss group Sex lib.sizea norm.factorsb sizeFactorsc

36 HI Male 172075 1.0516186 1.1036386

199 HI Female 168200 0.9375786 0.9252544

82 HI Female 199407 1.0187227 1.3003812

83 LO Female 151324 1.0572419 1.0076013

204 HI Female 173684 0.8775684 0.9297538

205 LO Female 150139 1.0499616 0.9278158

559 HI Male 179061 0.9919174 1.1036646

579 LO Male 154341 1.0684607 0.9954937

234 LO Female 151342 0.9737174 0.8516431

424 LO Male 164388 0.9942177 1.0667615

434 HI Male 137166 1.0855224 0.8493345

261 LO Male 184398 0.9176182 1.1204193

a Total number of reads mapped to the tiling regions for each sample
b Normalization factors calculated by edgeR (version 3.2.4)
c sizeFactors calculated by DESeq (version 1.12.1)

3.2.2. Correlation with tiling array

In order to have a way to compare our previous tiling array results with the sequencing

data, a pseudo array was created which shares the same positional information as all the
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3.2. Characterizing traits related regions using mRNA-seq

probes we had earlier mapped. Pseudo array signals were then counted as the number

of reads mapped to the probe range with a minimum overlap of 45 bp (irrespective

of the strand direction of the probe). Reads overlapping with multiple probes were

counted multiple times, due to the overlapping nature of the tiling array. As have been

expected, owning to the high sparsity of transcriptional activity, a large majority of the

pseudo probes have no reads mapped to. Histograms of the pseudo array probe signals

in raw counts and log2RPKM are shown in Figure 3.4. The distribution of the sum of

pseudo array probe signals across samples is summarized in Table 3.10

Table 3.10.: Distribution of the sum of pseudo array probe signals across samples

No. probes Min. 1st Qu. Median Mean 3rd Qu. Max.

Raw counts 913399 0 < 2.2e-16 0 5.84 0 33180

log2RPKM 913399 -0.3576 -0.3576 -0.3576 0.1846 -0.2321 16.6600

Figure 3.4.: Histogram and density plot of the pseudo array probe signal

We then checked the correlation of the raw array signal with the pseudo array counts,

as well as the normalized array signal with log2RPKM value of the pseudo array. Due to

the high sparsity in the read mapping and relatively noisy array data, a set of filtering

criteria have been applied in order to get a high confidence set of probes. For both

raw and normalized array data, local background was first subtracted after removing

unreliable spots. For the next step, similar to the array analysis in the previous section,

but only probes overlapped with annotated exon and with signal which is 10% higher

than the 95% percentile of the negative controls on the array in all replicates of each

sample were kept. Tiling array probe signals were than averaged across replicates using

arithmetic mean. On the other hand, for the pseudo array probes, only non-zero pseudo

probes were kept. A two-sided Pearson’s correlation test was then conducted using the

intersection of these two sets of probes for each sample. Summary of the correlation
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3. Case studies

tests for all paired samples is shown in Table 3.11. It is clear that, in general, the two

sets of experiment data are in good agreement with each other. Also one could see that,

in Figure 3.5, for both raw expression and normalized data, the array data appears to be

more noisy, showing higher variation for those with low sequencing coverage.

Table 3.11.: Correlation of the high confident probes from the tiling array and the pseudo

array

Raw data Normalized data
Sample Probe Array p-value Correlation Probe Array p-value Correlation

ID Noa Cut-off b (Cor.) Noa Cut-off b (Cor.)

36 4785 137.4460 < 2.2e-16 0.6211 4903 6.4282 < 2.2e-16 0.3947

199 4800 115.0113 < 2.2e-16 0.6698 4644 6.4328 < 2.2e-16 0.3795

82 2198 106.3252 < 2.2e-16 0.5899 3968 6.5314 < 2.2e-16 0.3659

83 1815 103.8986 < 2.2e-16 0.5320 3486 6.6656 < 2.2e-16 0.3348

204 2054 97.2403 < 2.2e-16 0.4243 3345 6.5845 < 2.2e-16 0.3578

424 1930 98.9507 < 2.2e-16 0.4400 3145 6.7201 < 2.2e-16 0.3273

434 3178 110.2844 < 2.2e-16 0.5846 4277 6.6236 < 2.2e-16 0.3667

205 3899 112.7920 < 2.2e-16 0.5755 4087 6.5962 < 2.2e-16 0.3314

559 3037 105.3014 < 2.2e-16 0.4981 3553 6.6090 < 2.2e-16 0.3445

579 3469 110.7350 < 2.2e-16 0.5463 3929 6.6044 < 2.2e-16 0.3405

234 4442 127.7264 < 2.2e-16 0.5564 4374 6.4753 < 2.2e-16 0.3478

261 4487 123.6986 < 2.2e-16 0.6434 4816 6.4389 < 2.2e-16 0.3834

a Number of remaining high confident probes tested
b 1.1 × NegCtrl95% after local background subtraction

3.2.3. Segmentation of mRNA-seq data

Thanks to the high read abundance we got from the mRNA-seq data, we were able to use

the HSMM described earlier, biomvRhsmm, to segment sequencing data and detect novel

transcripts with high confidence. To start with, using the ranges with probe mapped to

and the gene annotation from Ensembl Sus Scrofa 10.2 release 71, we first derived a list

of ’gap’ regions complimentary to all annotated exons, which are combinations of inter-

genic and intron regions. Strandness of the exons were temporarily ignored to rule out

antisense transcription. Alignment BAM files were then read in, and coverage profiles

for each base in these ’gap’ regions were evaluated and summed over all samples to get

the total coverage for each base. For our paired-end reads, only those with proper mat-

ing pair were counted. We then run biomvRhsmm on the resulted gap coverage profile,

assuming a binary states model with emission density following Negative Binomial dis-

tribution. Prior of emission density was assumed to be common across all ’gap’ regions
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3.2. Characterizing traits related regions using mRNA-seq

Figure 3.5.: Correlation of the high confident probes from the tiling array and the pseudo

array. On the left is the raw data comparison, and normalized data on the right. Each

point represents a probe on the tiling array. mRNA-seq expression levels per probe

were measured using RPKM for normalized array comparison and raw count for

raw data comparison. The normalized array data were the same as in the previous

differential expression analysis.

and initialized by clustering all ’gap’ nucleotides into 2 groups. Sojourn density was

left as default using Gamma distribution, and maximum evaluated sojourn length set to

500 bp. Regions labeled with high emission state were further filtered with minimum

average read coverage of 12, which means every base within the region has been at least

covered once in all sequenced samples. In the end, 441 of such putative ’exon’ have

been located, among which 324 have also been found to be within the transcripts result-

ing from ’ab initio’ gene prediction by Ensembl (using algorithms like SNAP [139] and

GENSCAN [90]) indicating their structural potentials for protein coding. Interestingly

another 253 of these 441 putative ’exons’ sit within the intron regions of annotated tran-

scripts from Ensembl (Release 71) indicating novel splicing events, of which 235 ’exons’

also present in the ’ab initio’ prediction. These putative and transcriptionally active units

will be referred to as ’HSMMGxxx’ with ’xxx’ as their rank numbers hereafter.

We made automatic filtering and manual inspection of the coverage profile in these

intronic regions to see if any novel splicing events could be observed. Novel splicing

events were sorted into three categories, intron retention, 3’ UTR splicing and 5’ UTR

splicing. We further filtered these putative novel splicing events basing on the following

criteria. For predictions made in the intron regions or outside the flanking (1000 bp)

UTRs of annotated transcripts, instead of using a hard cut-off value for the coverage, we
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3. Case studies

utilized the coverage profile for the annotated exons of this transcript. If the predicted

feature has a coverage greater than all annotated exons, or if not higher than all those

annotated exons in the transcript, the cutoff is then determined by the maximum of a

empirically selected coverage threshold 120 and the minimum coverage of all annotated

exons of the associated transcript multiplied by a coefficient of 0.7. In this way the

filtering will account for both lowly expressed feature and also relatively low proportion

of the novel splicing event yet strong enough to be observed in our data. In the end we

have concluded a list of novel splicing events from the sequencing coverage profile,

where 35 intron retentions and 29 novel splicings in the UTRs were observed. Some of

the novel transcripts and splicing events are shown in Figure 3.6.

We then submitted these novel splicing segments for a BLAST search for similar tran-

scripts in the NCBI refseq_rna database. Among the 64 novel splicing transcripts, 41

were found to match to known and predicted transcripts and transcript variants with

high confidence. For example, HSMMG149 is found to be similar to a transcript variants

of ubiquitin specific peptidase 37 (USP37). To further confirm the novel splicing events

and also their regulation status with respect to our experimental setup, sets of qPCR

runs have been scheduled and will be performed in the near future. While for those

novel transcriptionally active units which show low level of homology to known tran-

scripts or proteins, their possible roles as non-coding RNA in transcription regulation

could also be investigated.

3.2.4. Differential expression analysis

Feature quantification

Predicted novel transcripts and annotated genes within mapped probe regions were

first exported as GTF files, which were in the next step separately supplied to htseq-
count 3 to get read counts for annotated genes and predicted novel transcripts using

mode ’intersection-nonempty’ and stranded ’no’.

A multidimensional scaling (MDS) plot using the top 500 features with largest stan-

dard deviations across all samples is shown in Figure 3.7 to illustrate group difference.

There is no clear separation of ’HI’ and ’LO’ samples using the first 2 leading dimen-

sions. However, it is indicative that the ’LO’ samples show more intra- and inter-group

variation. There is also no gender specific expression pattern among these genes.

3http://www-huber.embl.de/users/anders/HTSeq/
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3.2. Characterizing traits related regions using mRNA-seq

Figure 3.6.: Examples of novel splicing events are illustrated, with brown panel (green

feature) representing annotated transcripts, grey panel (cyan feature) representing

HSMM prediction and a scatter plot showing phenotype specific per-base converge of

the region by mRNA-seq reads.
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3. Case studies

Figure 3.7.: multidimensional scaling plot of mRNA-seq samples. Each point is labeled

with ’SampleID.Sex.Type’, color coded red if it is ’HI’ and blue otherwise.
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3.2. Characterizing traits related regions using mRNA-seq

Testing for differential expression

The count tables were then supplied to R/Bioconductor package edgeR (version 3.2.4)

[140] and DESeq (version 1.12.1) [141] for differential expression analysis. In the edgeR
pipeline, normalization factors were first computed using method ’TMM’, with sub-

sequent common and de-trended tag-wise dispersion estimation. In the end, likeli-

hood ratio tests were conducted with negative binomial generalized log-linear model.

When using DESeq, samples were also first normalized with the so called ’size fac-

tors’. Then dispersion parameters were estimated using ’pooled’ method combined

with ’sharingMode=maximum’. Finally differential regulation status was assessed using

nbinomTest, in which a conceptually similar negative binomial generalized log-linear

model is implemented. For both methods, p-values were corrected for multiple testing

with Benjamini—Hochberg methods [142]. Also we did not perform any independent

filtering due to the relatively low number of annotated features in the mapped regions.

Fast skimming through the two resulting top DEGs lists also suggests low significance

for most features. To proceed, an empirical threshold was determined using our previ-

ous findings. From the tiling array experiments, we have derived a list of common DEPs

genes. Though most showing contradicting fold change direction with the tiling arrary

results, four genes show consistent fold change direction in both populations. TIAM2,

OTUD7B and SLC20A2 show up-regulation from ’LO’ to ’HI’ samples, while NCAPD3

shows negative regulation. Three out of the four still have consistent fold change in

the mRNA-seq result except for NCAPD3 (ENSSSCG00000022192) which shows a mi-

nor up-regulation instead of the down-regulation we seen in the array experiments. For

the other three genes (TIAM2, SLC20A2 and OTUD7B), OTUD7B achieves the lowest

p-value in both edgeR and DESeq results, thus was chosen as baseline. From there, genes

with nominal p-values lower than the p-value associated with OTUD7B on both edgeR
and DESeq lists were selected as candidate DEGs. Differential expression status of can-

didate DEGs together with previous common DEPs genes are listed in Table 3.12. It is

also worth mentioning that the top 5 ranking genes all show relatively low expression,

all of which have not been identified by our previous array experiment.
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3.2. Characterizing traits related regions using mRNA-seq

Among the candidate genes listed in the first chunk of Table 3.12, H1F0 encodes a

member protein of the histone H1 family, which could be found in cells that exhibit low

cell division and differentiation. In this analysis, the ’HI’ samples tend to have lower

level of HIF0 expression. Since muscle cells, like nerve cells and red blood cells, are

highly specialized cells and normally show no further cell division, this observation

could be related to initial cell number in early muscle development. CLDN20 encodes a

integral membrane protein of the claudin family, which operates as a physical barrier to

restrain paracellular passing of water and solutes. The relatively low counts observed in

the high drip loss animals could therefore explain the phenotypic difference. TNRC6B

is a recently annotated protein coding gene, which sits within close proximity of several

QTLs reported previously for drip loss [119; 143; 144; 145]. It has been reported to play

a role in miRNA regulated gene silencing in human [146]. DLEC1, according to GO

annotation, is associated with negative regulation of cell proliferation, which accord-

ing to our observation is also lowly expressed in ’HI’ samples. Thus the results could

support the assumption of its involvement in the early muscle development. MGAT3

encodes an enzyme, according to UniProt [147], which is one of the most important

regulators involved in the biosynthesis of glycoprotein oligosaccharides. ssc-mir-425

encodes a miRNA gene of the mir-425 family. According to miRwalk [148], 6 out of

10 validated miRNA target genes of mir-425 have also been annotated in the Ensembl

GTF file used for feature counting. Therefore these 6 miRNA target genes were also in-

cluded in the differential analysis of mRNA-seq data (In the lower chunk of Table 3.12).

Half of the annotated miRNA target genes show negative regulation in the differential

expression analysis, indicating the potential miRNA interference of transcription. In a

previous study, we applied weighted gene co-expression network analysis to identify

co-expression modules correlated to meat quality phenotypes using miRNA chip and

gene expression chip [131]. Among the 4 probesets representing mir-425 family, three

mammal probesets (mmu.miR.425.star_st, hsa.miR.425.star_st , bta.miR.425.5p_st) were

found to be associated with module ’green’ and ’brown’, which have the highest nega-

tive correlation (cor=-0.13, p=0.07) with drip loss, consistent with the differential regu-

lation status observed here; whereas the one from frog (xtr.miR.425.5p_st) were sorted

into the more neutral module which has marginal correlation with drip loss (cor=0.045,

p=0.5).
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3. Case studies

3.3. Validation and calibration

3.3.1. Validating common DEPs using qPCR

For those commonly detected DEPs regions and exons with consistent fold change di-

rection across the two populations (See Table 3.13) in the customary regional tiling array

experiment, we further validated the existence of their transcripts using quantitative

polymerase chain reaction (qPCR). For all these regions we first cut out the corre-

sponding genomic sequences and then tried to locate open reading frame (ORF) using

NCBI ORF Finder4. For those with ORF detected we then used the predicted ORF start

and end position to limit the template range, and for those without predicted ORF the

whole sequence was used. The sequences were then passed to Primer-BLAST [149] to

select nested optimum primers for multilplex qPCR. DEPs region 11 and 12 belong to

the special case mentioned earlier, where region 11 was formed in the array result of

DuPi population and region 12 was the DEPs region derived with the PiF1 population.

The two regions are not directly overlapping, but both sitting on the same exon (EN-

SSSCE00000210352) of gene OTUD7B. So we initially used the whole exon sequence as

template, and primers were selected for the two predicted ORFs which closely cover the

two DEPs regions.

RPL32 was selected as reference house-keeping gene. The qPCR runs were done with

2 technical replicates for the same animals we have used for the tiling array experiment

in the PiF1 population. We used both target starting quantity and threshold cycle (CT)

as measurement for qPCR product and as well as for fold change calculation. One tailed

T-tests were latter conducted to test for up-regulation of corrected expression levels from

’LO’ to ’HI’ samples. Also Pearson’s correlation tests were carried out to test agreement

of array intensity with qPCR expression, with one tailed p-value for correlation greater

than 0. Probes within each DEPs region were averaged using median and then averaged

across each technical replicates of the same animal. Results of the t-tests and correlation

tests are shown in Table 3.14.

Although most t-test p-values don’t reach the 5% significance level, mainly due to the

power constraint when discriminating relatively small difference with limited sample

size, we do observe a slight up-regulation from the ’LO’ samples to the ’HI’ samples

and high correlation with the array signals for most regions except for region 6. Further

checking the pseudo array signals also gives poor agreement with the qPCR result of

DEPs region 6 (Pearson’s correlation = -0.01892477). While for DEPs region 11 and

4http://www.ncbi.nlm.nih.gov/projects/gorf/
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3.3. Validation and calibration

12, though targeting the same exon, region 11 shows poor correlation with both array

expressions and pseudo array counts, while region 12 gives better agreement between

the three. This could be due the fact that DEPs region 11 was initially found only in the

DuPi population, whereas the sequencing and qPCR runs were both made with samples

from the same PiF1 animals. All other DEPs regions exhibit rather consistent correlation

between the qPCR abundance and the array (or pseudo array) signals.
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3.3. Validation and calibration
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3. Case studies

3.3.2. Calibration of previous findings using mRNA-seq

We further used mapped reads from mRNA-seq to validate and calibrate results pre-

viously derived in the tiling array experiment, by visually inspecting the mRNA-seq

coverage profiles of flanking regions for each DEPs site. Unlike in the segmentation step

the reads were summed cross all samples at each base, two profiles ’HI’ and ’LO’, aggre-

gated over sample types, were separately generated in a similar fashion. Thus not only

the relative abundance of the DEPs feature to the annotated units could be identified,

but also evidences of their differential expression status.

For the three DEPs regions which locate within annotated introns of gene SUN2 (re-

gion 5) and MAFF (region 7 and 8), the coverage profiles from mRNA-seq were plotted

with biomvRGviz from package biomvRCNS (Figure 3.8). One could clearly see that, com-

paring to the annotated exon regions, the number of reads mapped to the array DEPs

regions are extremely low though still with weak transcriptional activities. This means

array signals can be noisy even after normalization and filtering, while sequencing gives

better dynamic range for the relative expression.

For the three DEPs regions which overlap with annotated exons of gene SLC20A2

(region 10) and gene OTUD7B (region 11 and 12), the coverage profiles from mRNA-seq

are shown in (Figure 3.9). The up-regulation of these two genes from ’LO’ samples to

’HI’ samples are rather strong, especially considering the relatively lower sequencing

depth in ’LO’ samples. It could also be seen that the boundaries of regions identified

by mapped probes do not coincide well with annotated exon boundaries of SLC20A2,

largely due to the overlapping resolution limits. The exon where DEPs region 11 and

12 are located is rather long, spanning 5143 bp, across which variation in the individual

probe hybridization efficiency makes it difficult to detect long interspersed trancrip-

tional fragments.

Multiple DEPs regions also fall in the regions without any annotated transcripts,

which match to our previously made prediction on the mRNA-seq profiles. DEPs region

6 is covered by the predicted feature HSMMG342, which is located downstream of the 3’

UTR of ST13. While DEPs regions 1, 3 and 4 are parts of prediction HSMMG288, which

sits outside the 3’ UTR of NR3C1 and upstream of gene ARHGAP26.

Two of the DEPs regions (2 and 9) are overlapping with the opposite strand of the

coding sequence of ST13 (exonID: ENSSSCE00000238865) and BHLHE40 (exonID: EN-

SSSCE00000102062). Both of the DEPs regions match to the end of the cooresponding

exons, but not necessarily on the 3’ end, which is different from the classic 3’ array

manufactured by Affymetrix. For BHLHE40, a predicted trancriptionally active feature
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3.3. Validation and calibration

Figure 3.8.: mRNA-seq profiles of intronic DEPs regions. Scatter plot shows the per-base

coverage of the region by mRNA-seq reads.
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3. Case studies

Figure 3.9.: mRNA-seq profiles of exonic DEPs regions, with brown panel (green feature)

representing annotated transcripts, grey panel (cyan feature) representing common

DEPs region detected in the tiling array experiments. Scatter plot shows the per-base

coverage of the region by mRNA-seq reads.
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3.3. Validation and calibration

Figure 3.10.: mRNA-seq profiles of DEPs regions with HSMM prediction, with brown

panel (green feature) representing annotated transcripts, grey panel (cyan feature)

representing common DEPs region detected in the tiling array experiments. Scatter

plot shows the per-base coverage of the region by mRNA-seq reads.
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3. Case studies

Figure 3.11.: mRNA-seq profiles of DEPs regions which match anti-sense genes, with

brown panel (green feature) representing annotated transcripts, grey panel (cyan fea-

ture) representing common DEPs region detected in the tiling array experiments or

novel transcriptionally active units detected by the HSMM segmentation of mRNA-

seq profile. Scatter plot shows the per-base coverage of the region by mRNA-seq

reads.
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3.3. Validation and calibration

is also found outside the 3’ UTR.

In Table 3.15, previous mRNA-seq DEGs analysis results for exonic DEPs genes (SLC20A2

and OTUD7B), anti-sense DEPs features and DEPs overlapping prediction from previ-

ous sequencing profile segmentation are listed. For most of the DEPs features, the

prevailing up-regulation in ’LO’ samples estimated from the tiling array data are largely

consistent with the sequencing results. DEPs feature 6, which overlaps with the strand-

less novel prediction HSMMG342, shows different regulation status in sequencing. A

similar relationship is found for DEPs feature 9, which sits in the opposite strand of

BHLHE40, while the novel splicing prediction HSMMG99 does agree with BHLHE40 in

their differential expression assessment.
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CHAPTER 4

Discussion and Outlooks

High throughput technologies are pushing genomics forward, allowing researchers to

survey genomic regions at base pair resolution. In the last few chapters, two novel

methods developed during this dissertation have been presented and their individual

performances and usages are illustrated. Also as a comprehensive use case, the two im-

plementations have been employed in the experiments carried out in the related research

project.

One of the most crucial issues to deal with in genomics is the ambiguity arising

from sequence homology. As have been shown in the section of repetitive sequence

and sequence complexity, duplicated DNA sequence of variable length are common

in the genome of most life forms. However, this imposes a great challenge on the

technologies used in genomic research. As the two flagship high-throughput techniques

used to quantify level of various biological activities, tiling array and NGS both require

careful handling of non-uniquely mapped features to ensure their accuracies. For each

microarray based experiment, one has to pre-select probes and deposit them on the array

surface for later hybridization reactions with labeled samples. The sequencing methods

are working the other way around, where one has to later map the generated short

reads back to a reference. Thus many works have been done in the field of array probe

design and mapping sequencing reads back to reference. However, unlike the constant

improvements made in the development of sequencing technology, like strand-specific

sequencing protocols and prolonged reads, which may help improve mapping rate and

also reduce ambiguity in de novo genome assembly, grounds for technical improvement

in array design are generally limited. Probe quality in microarray largely depends on

the pre-selection of uniquely aligned sequences.

The probe selection algorithm implemented in this study utilizes the proposed pe-
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4. Discussion and Outlooks

nalized uniqueness score as a controlling criterion of cross-hybridization, together with

several other parameters for the flexible tweaking of the positional distribution, opti-

mal hybridization efficiency, and essential constraints of sequence complexity. Profiling

Agilent’s catalog probes confirms the appropriateness of our parameter settings. The

intention of the algorithm is to allow a part of the probe to overlap with its neighboring

tiles, giving higher coverage and resolution for experiments, like a targeted sequencing

library preparation. However, it can also be used to design CHIP-chip experiments,

which require distantly-spaced probes across large genomic regions. To achieve this,

the selection algorithm behaves slightly differently when a negative overlap is specified,

and it will not attempt to shift to the 5’, if that would induce overlapping. Studies

have shown that sequence polymorphisms may affect probe hybridization efficiency

[151; 152; 153]. Thus common SNPs defined in databases, like dbSNP [154], could

be excluded in the input FASTA files by cutting the region into two new regions, or

SNP could be masked with lowercase letters and controlled like repetitive regions. The

design is done on a per-sequence basis thus the memory requirement of the implemen-

tation depends on the largest sequence contig in question. For each sequence header

defined in the source FASTA files, to calculate the uniqueness score all corresponding

MUP entries in the prefix file have to be imported and processed in RAM; each entry

will need two integers for the position and the length of the prefix, respectively, to be

stored in the array. This in turn suggests that for large genome tiling design - e.g., when

covering a whole mammalian chromosome, which could have a length of 3× 108 bp, the

memory requirement will exclude the possibility of applying the method on a normal

desktop PC. Additionally, the algorithm runs in linear time with various parameters

affecting the exact time expectation. Yet further parallelization is easily available either

on a per-sequence basis given sufficient memory or on a per-chunk basis, since, in our

implementation, the individual sequence is initially pieced into segments with contin-

uous non-ambiguous bases and sequentially processed. Simple per-chunk test utilizing

4 parallel processes further reduced the running time to approximately 45 min for the

same designing task that is presented in the coverage comparison section with Agilent

CHIP-on-chip set.

Compared to traditional BLAST-like alignment methods, this definition of the penal-

ized uniqueness score makes less parametric model assumptions for the homologous

estimation, letting it be more sequence-driven and less sensitive to arbitrary parameter

settings. The calculation of the score makes usage of GenomeTools [48], which is mem-

ory relaxed, and inherently benefit from the computational efficiency of the FM-index

[46]. As a rational variable, it provides a more continuous distribution and a wider

dynamic range for the uniqueness measurement without further increase in the com-

putational complexity, while showing higher sensitivity and specificity over the original
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count score, which only takes discrete integers ranging from 0 to the user specified

maximal length of MUP. The score itself, like the original count score, measures the de-

gree of uniqueness and dissimilarity of the sequence to the rest of the genome, which

means the lower the score the higher possibility for non-specific binding. Thus, it could

be further factored in the background correction model or at the normalization step

prior to the downstream array data analysis, to correct for cross-hybridization noises

using the uniqueness score. Such a correction model could take the typical form as

the exponential-normal convolution model in RMA algorithm [155; 156], by adding an

additional term for non-specific binding noise.

In recent years with advancing technology and lower costs, NGS starts to replace ar-

ray based experiments in large scale genomic experiments. Despite prevailing trend of

NGS, tiling array remains more cost-effective for large samples which typically provide

higher and more reliable statistical power — therefore, cross-platform collaboration be-

tween deep sequencing data and array data has been considered [157]. Additionally,

relatively few ongoing research projects seek to solve biological questions on a whole-

genome scale, so it is more likely that several linked QTL regions or intervals identified

in genome-wide association studies are pursued in detail, like I have shown in the case

study. Such specific interests can also be addressed by using capture oligos for targeted

enrichment of DNA fragments representing the genomic region of interest [158]. These

capture oligos might be applied either in solution-based or microarray-based methods,

thus combining the two platforms in the array assisted targeted sequencing approaches,

where targeted regions could be tiled on DNA capture arrays, and the hybridization

products could be used in the follow-up sequencing library preparation [159; 160; 161].

This customized tailoring tool selectively enriches only the regions of interest and pro-

vides the opportunity to reduce both cost and processing time, while retaining high

sensitivity through high-throughput technology. Also as have been illustrated in the

case study here and confirmed by other researchers [162] that, tiling array and RNA-seq

can provide complementary results in transcriptome profiling.

Moving one step forward into functional genomic data analysis, data generated from

experiments like expression tiling array and mRNA-seq requires to be first quantified us-

ing biological sensible unit typically taking the form of annotation, which many curated

databases may provide and only carries known information up to date. According to the

result from ENCODE project, 80 percents of the human genome are either transcribed

or biochemically functional [163]. In agreement with our regional investigation in the

case study, we also identified numbers of potentially coding and non-coding novel tran-

scripts. In applications other than transcriptome profiling, feature quantification could

be done through a naive "window" methods, like the one used here in the CHIP-on-chip
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4. Discussion and Outlooks

design comparison. Later on, signals quantified using these units can then be sequen-

tialized using the associated genomic positions. Then the detection of consecutive units

which exhibit homogeneous signals could be solved using segmentation models.

The segmentation problem in general is involved in many types of biological experi-

ment, and could naturally fit into the hidden Markov model framework with segment

boundaries modeled as transitions between hidden states. As a generalization of hid-

den Markov model, HSMM allows the sojourn distribution to be specified other than

the Geometric distribution implicitly used in common HMM. Given the complexity of

the genome, such an implicit assumption could be easily violated. Though the true

underlying sojourn distributions involving various genomic features remains unknown,

the HSMM implementation gives more flexible options in the modeling and thus might

provide more insights.

In this implementation biomvRhsmm, several types of sojourn distribution are imple-

mented. For example, with Gamma distributed sojourn, the neighboring position will

tend to stay in the same state, and transit to other states if far apart. Different from

the original design in Guédon [99], the R suite implemented in this work utilizes the

positional information that naturally comes with most genomic features for the sojourn

density estimation. Such an integrative approach is advantageous comparing to simply

using the rank of their positions since mapping positions are not always uniformly dis-

tributed and the spatial patterns may be of interest in experiments like DMRs detection.

It also differs from those models which embed these positions in a non-parametric fash-

ion like BioHMM [69] and QuantiSNP [75], or the "instability-selection" model for LOH

analysis [78; 79], which all employ variations of exponential function to account for ge-

nomic distance. The HSMM is considered more close to the DBN model employed in

Segway [89], yet being less experiment specific and easier to interpret, not to mention

the convenient communication with other analytical and visualization tools within the

Bioconductor community.

The explosion of data availability also provides another possibility of learning from

previous studies to benefit one’s current work. Other than the flat prior commonly

used in Bayesian inference, prior information for the sojourn density could be estimated

from annotation or previous studies, thus be effectively utilized together with posi-

tional information of features to guide the estimation of the most likely state sequence.

With its full probabilistic model, various emission densities are provided, enabling the

model to handle normally distributed data from traditional array platform as well as

count data from sequencing experiment. The proposed model has also been applied on

well-studied aCGH dataset from Coriell cell lines [63] and RNA-seq data generated by

ENCODE project [108; 107] to illustrate its functionalities. As have been shown with
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these experimental datasets, the underlying data distributions could be more complex

than any particular parametric distributions can recover. Thus it would be beneficial to

explore the usage of higher-order mixture of distributions to model the emission density

or the sojourn density.

Like each industry revolution in the human history, new technologies are the driving

force to reshape human recognition of science and our interaction with the world. The

future of genome biology, as an experimental science, will inevitably depend on the

technological renovation. As has been observed in the last few years, advent of NGS

has made microarrays largely replaced by this paradigm-shifting tool in many sectors

of genome research, for the additional information on genetic structure and variation

it conveys. However sequencing data analysis and modeling is still in its early age. In

many areas, like differentially expressed gene (DEG) analysis, general consensus has not

been reached and gold standard has not been set. Advanced analytical methods and sta-

tistical models to depict complex genomic data are highly needed and are under active

research. Thus for contemporary genome research, combining the power of different

technologies, and embedding prior knowledge in the optimized design of experiment,

in complex data analysis and interpretation, eventually with independent validation of

scientific findings, provides a unique opportunity to better understand genomics and

conduct reproducible research.
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APPENDIX A
R code of using BWT and suffix array to per-
form backward search

# c a l c u l a t e t h e BWT
bwt<−function ( x , i n s= ’ $ ’ ) {

s<−u n l i s t ( s t r s p l i t ( x , ’ ’ ) )
i f ( i n s %in% s )

stop ( " can ’ t have ’ ins ’ in the s t r i n g ! " )
# append $
s<−c ( s , i n s )
n<−length ( s )
# c r e a t e mat r i x o f r o t a t i o n
tab<−unname ( t ( cbind ( s ,

sapply ( 2 : n , function ( x ) c ( s [ x : n ] , s [ 1 : ( x−1) ] ) )
) ) )

# s o r t and r e t u r n
tab<−tab [ do . c a l l ( order , lapply ( 1 : n , function ( i ) tab [ , i ] ) ) , ]
return ( paste ( tab [ , n ] , c o l l a p s e = ’ ’ ) )

}

# c a l c u l a t e t h e i n v e r s e o f BWT
ibwt<−function ( t , in s= ’ $ ’ ) {

s<−u n l i s t ( s t r s p l i t ( t , ’ ’ ) )
i f ( table ( s ) [ i n s ] ! =1 )

stop ( " occurance of ’ ins ’ doesnot equal to 1 ! " )
n<−length ( s )
tab<−matrix ( ’ ’ , n , n )
for ( i in n : 1 ) {

# i n s e r t column
tab [ , i ]<−s
# s o r t row
tab<−tab [ do . c a l l ( order , lapply ( 1 : n , function ( i ) tab [ , i ] ) ) , ]

i



A. R code of using BWT and suffix array to perform backward search

}
# r e t u r n row ends with $
return ( paste ( tab [ which ( tab [ , n]== i n s ) ,−n ] , c o l l a p s e = ’ ’ ) )

}

# c r e a t e s u f f i x a r r a y as a d a t a . f r ame
suf f ixArray<−function ( x , i n s= ’ $ ’ ) {

x<−u n l i s t ( s t r s p l i t ( x , ’ ’ ) )
i f ( i n s %in% x )

stop ( " can ’ t have ’ ins ’ in the s t r i n g ! " )
x<−c ( x , i n s )
n<−length ( x )
# c r e a t e s u f f i x e s
suf<−sapply ( 1 : n , function ( i ) {

paste ( x [ i : n ] , c o l l a p s e = ’ ’ )
} )
# s o r t
suf<−data . frame ( S=suf [ order ( suf ) ] , i =order ( suf ) ,

s t r i n g s A s F a c t o r s =F )
return ( suf )

}

# t o t a l number o f c h a r which a r e a l p h a b e t i c a l l y s m a l l e r than c
cMat<−function ( x , i n s= ’ $ ’ ) {

s<−u n l i s t ( s t r s p l i t ( x , ’ ’ ) )
i f ( i n s %in% s )

stop ( " can ’ t have i n s in the s t r i n g ! " )
s<−c ( s , i n s )
n<−length ( s )
tab<−table ( s )
c<−cumsum( tab )−as . in teger ( tab )
return ( c )

}

# t h e mat r i x g i v e s o c c u r r e n c e s o f c h a r a c t e r c in t h e BWT p r e f i x .
occMat<−function ( t , i ns= ’ $ ’ ) {

t<−u n l i s t ( s t r s p l i t ( t , ’ ’ ) )
i f ( table ( t ) [ i n s ] ! =1 )

stop ( " occurance of ’ ins ’ doesnot equal to 1 ! " )
n<−length ( t )
odrchr<−names ( table ( t ) )
occ<−sapply ( odrchr , function ( c ) cumsum( t ==c ) )
return ( occ )

}

# s e a r c h p a t t e r n p in x
BackwardSearch<−function ( P , S , i n s= ’ $ ’ ) {

ii



P<−u n l i s t ( s t r s p l i t ( P , ’ ’ ) )
i f ( i n s %in% P )

stop ( " can ’ t have ’ ins ’ in the s t r i n g ! " )
S<−u n l i s t ( s t r s p l i t ( S , ’ ’ ) )
i f ( ! a l l ( P %in% S ) )

return ( " pa t te rn conta ins char not found in x ! " )
T<−bwt ( S , i n s= i n s )
Occ<−occMat ( T , in s= in s )
C<−cMat ( S , i ns= i n s )
p<−length ( P )
c<−P [ p ]
s<−C[ c ]+1

e<−C[ c ]+Occ [ nrow ( Occ ) , c ]
while ( s<=e && p>=2) {

c<−P [ p−1]
s<−C[ c ]+Occ [ s−1 , c ]+1

e<−C[ c ]+Occ [ e , c ]
p<−p−1

}
i f ( e<s )

return ( ’ no occurrence ! ’ )
e lse

return (unname ( c ( s , e ) ) )
}

MUP<−function ( P , S , i n s= ’ $ ’ ) {
P<−u n l i s t ( s t r s p l i t ( P , ’ ’ ) )
i f ( i n s %in% P )

stop ( " can ’ t have ’ ins ’ in the s t r i n g ! " )
S<−u n l i s t ( s t r s p l i t ( S , ’ ’ ) )
i f ( ! a l l ( P %in% S ) )

return ( " pa t te rn conta ins char not found in x ! " )
T<−bwt ( S , i n s= i n s )
Occ<−occMat ( T , in s= in s )
C<−cMat ( S , i ns= i n s )
p<−length ( P )
n<−length ( S )
mup<−rep ( 0 , p )
pp<−data . frame ( matrix (NA, p , p+1) )
colnames ( pp )<−c ( ’MUP. length ’ , S )
for ( i in seq_ len ( p ) ) {

s<−1+1

e<−n+1

j<− i
while ( j <=p && s<e ) {

c<−P [ j ]
s<−C[ c ]+Occ [ s−1 , c ]+1

iii
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e<−C[ c ]+Occ [ e , c ]
j<− j +1

}
i f ( e <= s ) {

mup[ i ]<− j − i
}
pp [ i , ]<−c (mup[ i ] , rep ( ’ ’ , i −1) ,

i f (mup[ i ] >0 ) S [ i : ( i +mup[ i ]−1) ] e lse ’− ’ ,
rep ( ’ ’ , p−i−mup[ i ] + 1 ) )

}
print ( pp )
return (mup)

}

iv



APPENDIX B
Agilent Human Whole Genome ChIP-on-Chip
Set 244K design ID

https://earray.chem.agilent.com/earray/

ADID16060

ADID16063

ADID16066

ADID16068

ADID16069

ADID16070

ADID16071

ADID16072

ADID16073

ADID16074

ADID16075

ADID16076

ADID16138

ADID16077

ADID16139

ADID16140

ADID16141

ADID16142

ADID16143

ADID16144

ADID16145
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ADID16146

ADID16147

ADID16148

ADID16149
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APPENDIX C
Pseudo code of tiling probe selection algo-
rithm

start from the 5’

while still enough space to place a probe

if probe temperature is too high

if all position to the 5’ has been checked

jump to last checked position to 3’, shift 1 nt to 3’ and re-check

else if probe length can be shorter

probe length minus 1 and re-check

else if it is ok to shift to 5’

shift 1 nt to 5’ and re-check

else if probe temperature is too low or not unique enough

if all possible positions to the 5’ has been checked

jump to last checked position to 3’, shift 1 nt to 3’ and re-check

else if probe length can be shorter and ok to shift to 5’

probe length plus 1, shift 1 nt to 5’ and re-check

else if it is ok to shift to 5’

shift 1 nt to 5’ and re-check

if other remaining checks failed

if all position to the 5’ has been checked

jump to last checked position to 3’, shift 1 nt to 3’ and re-check

else if probe length can be shorter and ok to shift to 5’

probe length plus 1, shift 1 nt to 5’ and re-check

else if it is ok to shift to 5’

shift 1 nt to 5’ and re-check

vii



C. Pseudo code of tiling probe selection algorithm

tile found

move to next candidate position

end loop
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APPENDIX D
R code of segmentation data simulation and
benchmarking

# #################################################
# h e l p e r f u n c t i o n s f o r t h e s i m u l a t i o n
# #################################################
reportROC<−function ( roc , er =1 , J =3 , nstep =100 ,

CorS= ’ S ’ , t o P l o t =T , main= ’SNR ’ , pcex =2)
{

#CorS , cgh or s e q u e n c i n g
i f ( CorS== ’ S ’ ) {

s r s<−seq (−1 , er ^( J −1)+2 , length . out=nstep )
} e lse {

s r s<−seq (−1 , er * ( J −1)+2 , length . out=nstep )
}
nsim<−nrow ( roc [ [ 1 ] ] [ [ ’ t ’ ] ] )
ngrid<−length ( roc )
methods<−names ( roc [ [ 1 ] ] [ [ ’ t ’ ] ] )
# g e t run t ime
c a t ( ’ algorithm names : ’ , methods , ’\n ’ , sep= ’\ t ’ )
avgt<−colMeans ( do . c a l l ( rbind , do . c a l l ( rbind , roc ) [ , ’ t ’ ] ) )
c a t ( ’ average run time : ’ , avgt , ’\n ’ , sep= ’\ t ’ )
# g e t summary o f b r e a k p o i n t no .
print ( apply ( do . c a l l ( rbind , do . c a l l ( rbind , roc ) [ , ’ ncp ’ ] ) , 2 , summary ) )
# g e t e r r o r e s t i m a t e
segmse<−apply (

do . c a l l ( rbind , lapply ( roc , function ( l l ) l l $ncp−length ( l l $L ) ) ) ,
2 , function ( x ) sum( x ^2) / nsim / ngrid )

c a t ( ’MSE f o r no . segs : ’ , segmse , ’\n ’ , sep= ’\ t ’ )
segame<−apply (

do . c a l l ( rbind , lapply ( roc , function ( l l ) l l $ncp−length ( l l $L ) ) ) ,
2 , function ( x ) sum( abs ( x ) ) / nsim / ngrid )

ix
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c a t ( ’AME f o r no . segs : ’ , segame , ’\n ’ , sep= ’\ t ’ )
# c a l c pos and t r u e pos
rmethods<−names ( roc [ [ 1 ] ] [ [ ’A ’ ] ] [ [ 1 ] ] )
tp<−Reduce ( ’+ ’ , lapply ( roc ,

function ( l l ) sapply ( rmethods ,
function (m) sapply ( seq_ len ( nstep ) ,

function ( i ) sum( sapply ( seq_ len ( nsim ) ,
function ( n ) l l $A[ [ n ] ] [ ,m] > s r s [ i ] & rep ( l l $S , t imes= l l $L ) ==3) ) ) ) ) )

p<−Reduce ( ’+ ’ , lapply ( roc ,
function ( l l ) sapply ( rmethods ,

function (m) sapply ( seq_ len ( nstep ) ,
function ( i ) sum( sapply ( seq_ len ( nsim ) ,

function ( n ) l l $A[ [ n ] ] [ ,m] > s r s [ i ] ) ) ) ) ) )
i f ( CorS== ’C ’ ) {

l t p<−Reduce ( ’+ ’ , lapply ( roc ,
function ( l l ) sapply ( rmethods ,

function (m) sapply ( seq_ len ( nstep ) ,
function ( i ) sum( sapply ( seq_ len ( nsim ) ,

function ( n ) l l $A[ [ n ] ] [ ,m] < s r s [ i ] & rep ( l l $S , t imes= l l $L ) ==1) ) ) ) ) )
lp<−Reduce ( ’+ ’ , lapply ( roc ,

function ( l l ) sapply ( rmethods ,
function (m) sapply ( seq_ len ( nstep ) ,

function ( i ) sum( sapply ( seq_ len ( nsim ) ,
function ( n ) l l $A[ [ n ] ] [ ,m] < s r s [ i ] ) ) ) ) ) )

}
# g e t AUC s t a t
c a t ( ’\nalgorithm runned : ’ , rmethods , ’\n ’ , sep= ’\ t ’ )
aucg<−sapply ( rmethods , function (m) callAUC (

tpr=tp [ ,m] / sum( sapply ( roc , function ( l l ) sum( l l $L [ l l $S== ’ 3 ’ ] ) ) ) / nsim ,
fpr =(p [ ,m]− tp [ ,m] ) / sum( sapply ( roc , function ( l l ) sum( l l $L [ l l $S ! = ’ 3 ’ ] ) ) ) / nsim )

)
c a t ( ’AUC f o r gain / 3 : ’ , aucg , ’\n ’ , sep= ’\ t ’ )
i f ( CorS== ’C ’ ) {

aucl<−sapply ( rmethods , function (m) callAUC (
tpr= l t p [ ,m] / sum( sapply ( roc , function ( l l ) sum( l l $L [ l l $S== ’ 1 ’ ] ) ) ) / nsim ,
fpr =( lp [ ,m]− l t p [ ,m] ) / sum( sapply ( roc , function ( l l ) sum( l l $L [ l l $S ! = ’ 1 ’ ] ) ) ) /

nsim )
)
c a t ( ’AUC f o r l o s s / 1 : ’ , aucl , ’\n ’ , sep= ’\ t ’ )

}
# o r d e r names f o r p l o t i n g
rmethods<−s o r t ( rmethods )
i f ( CorS== ’C ’ ) {

rmethods<−rmethods [ c ( 1 , 3 : 8 , 2 ) ]
}
i f ( t o P l o t ) {

# s e p e r a t e ga in and l o s s

x



co lo rs<−p a l e t t e ( ) [ 1 : 8 ] ; co lo rs [ 7 ]<− ’ orange ’
# p l o t background
plot ( c ( 0 , 0 ) , c ( 1 , 1 ) , col= ’ white ’ , x lab= ’FPR ’ , ylab= ’TPR ’ ,

xlim=c ( 0 , 1 ) , ylim=c ( 0 , 1 ) , main=main , cex . lab=pcex ,
cex . axis=pcex , cex . main=pcex , cex . sub=pcex )

for ( i in seq_ along ( rmethods ) ) {
m<−rmethods [ i ]
points (

( p [ ,m]− tp [ ,m] ) / sum( sapply ( roc , function ( l ) sum( l $L [ l $S ! = ’ 3 ’ ] ) ) ) / nsim ,
tp [ ,m] / sum( sapply ( roc , function ( l ) sum( l $L [ l $S== ’ 3 ’ ] ) ) ) / nsim ,
col=co lo rs [ i ] , cex=pcex , pch =17 , type= ’ b ’ )

i f ( CorS== ’C ’ ) {
points (

( lp [ ,m]− l t p [ ,m] ) / sum( sapply ( roc , function ( l ) sum( l $L [ l $S ! = ’ 1 ’ ] ) ) ) /
nsim ,

l t p [ ,m] / sum( sapply ( roc , function ( l ) sum( l $L [ l $S== ’ 1 ’ ] ) ) ) / nsim ,
col=co lo rs [ i ] , cex=pcex , pch =6 , type= ’ b ’ )

}
}
rmethods [ rmethods== ’ mine ’ ]<− ’hsmm ’
gandl<−c ( ’ gain ’ , ’ l o s s ’ )
i f ( CorS== ’C ’ ) {

legend ( ’ bottomright ’ , cex =3 , ncol =2 ,
paste0 ( rep ( rmethods , t imes =2) , ’ . ’ , rep ( gandl , each=length ( rmethods ) ) ) ,
col=co lo rs [ rep ( seq_ along ( rmethods ) , t imes =2) ] ,
pch=rep ( c ( 1 7 , 6 ) , each=length ( rmethods ) ) )

} e lse {
legend ( ’ bottomright ’ , rmethods , col=co lo rs [ seq_ along ( rmethods ) ] ,

pch =17 , cex=pcex )
}

}
}

# c r e a t e auc o b j f o r t e s t
callAUC<−function ( tpr , fpr ) {

r o c o b j<−new( ’ rocc ’ , sens=tpr , spec=1−fpr ,
caseLabel=" case " , markerLabel=" marker " )

return (AUC( r o c o b j ) )
}

# sim u n i v a r i a t e s e r i e s
simUvSegDat<−function ( n , j , param , seed=NULL) {

i f ( ! i s . null ( seed ) ) s e t . seed ( seed )
x<−switch ( param$ type ,

norm = rnorm ( n , mean=param$mean [ j ] , sd=param$sd [ j ] ) ,
t = r t ( n , ncp=param$ncp [ j ] , df=param$df [ j ] ) ,
gamma = rgamma ( n , shape=param$shape [ j ] , s c a l e =param$ s c a l e [ j ] ) ,
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pois = rpois ( n , lambda=param$ lambda [ j ] ) ,
nbinom = rnbinom ( n , mu=param$mu[ j ] , s i z e =param$ s i z e [ j ] ) )

}
# b a t c h sim d a t a and segment
simROCDataE<−function ( J =3 , nsim =4 , ngrid =2 , so j , emis , er ,

seed =832314 , pool =20 , t o P l o t =FALSE , bioHMM=FALSE) {
# c h e c k J t o s e e i f i t c on f o rms with s o j and emis
i f ( ! i s . null ( s o j ) ) {

i f ( ! s o j $ type %in% c ( ’gamma ’ , ’ pois ’ , ’ nbinom ’ ) ) {
stop ( " s o j type not supported " )

}
}
i f ( ! i s . null ( emis ) ) {

i f ( ! emis$ type %in% c ( ’norm ’ , ’ t ’ , ’ pois ’ , ’ nbinom ’ ) ) {
stop ( " emis type not supported " )

}
paraLen<−sapply ( emis , length )
i f ( ! a l l ( paraLen [ names ( paraLen ) ! = ’ type ’ ]== J ) ) {

stop ( " i n c o r r e c t length f o r the emis parameter " )
}

}
# c r e a t e p o o l o f segment l e n g t h f o r J s t a t e s
segLen<−sapply ( seq_ len ( J ) , function ( j ) simUvSegDat ( pool , j , so j , seed=seed ) )
nnres<−lapply ( seq_ len ( ngrid ) , function ( g ) {

# draw segments , and p i l e up
s e l<−sample ( seq_ len ( J ) , s i z e =pool , replace=T )
S<−runValue ( Rle ( s e l ) )
nse l<−length ( S )
L<−segLen [ ( S−1)* pool +1 : nse l ]
t rue . cp<−cumsum( L )
t rue . seg<−IRanges ( s t a r t =c ( 1 , t rue . cp[−( length ( t rue . cp ) ) ] + 1 ) , end=true . cp )
t rue . s t a t e<−rep ( S , t imes=L )
roc<− l i s t ( L=L , S=S , E=numeric ( ) , pdf= c h a r a c t e r ( ) , A= l i s t ( ) ,

ncp=data . frame ( matrix ( 0 , ncol =8 , nrow=nsim ) ) ,
t =data . frame ( matrix ( 0 , ncol =8 , nrow=nsim ) )

)
colnames ( roc [ [ ’ t ’ ] ] )<−colnames ( roc [ [ ’ ncp ’ ] ] )<−

c ( ’ bcp ’ , ’biohmm ’ , ’ cbs ’ , ’ cghseg ’ , ’ glad ’ , ’ haarseg ’ , ’hmm’ , ’ mine ’ )

e r f<−seq_ len ( J )−1

i f ( emis$ type == ’ pois ’ ) {
emis$ lambda <−er^ e r f

} e lse i f ( emis$ type == ’norm ’ ) {
emis$mean <− er * ( e r f +1)
emis$sd <− rep ( i f e l s e ( er >=1 , 1 , er ) , J )

} e lse i f ( emis$ type == ’ t ’ ) {
emis$ncp <− er * ( e r f +1)
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emis$df <− rep ( i f e l s e ( er >=1 , 1 , er ) , J )
} e lse {

stop ( ’ emis$ type not supported yet ! ’ )
}
for ( n in seq_ len ( nsim ) ) {

E<−u n l i s t ( sapply ( seq_ along ( S ) ,
function ( i ) simUvSegDat ( L [ i ] , S [ i ] , emis ) ) )

roc $E<−cbind ( roc $E , E )
i f ( t o P l o t ) {

f i lename<−paste0 ( ’ sim . ’ , gsub ( ’ : ’ , ’− ’ , date ( ) ) , ’ . pdf ’ )
pdf ( f i lename )
t s . plot ( E , type= ’p ’ )
dev . off ( )
roc $pdf<−c ( roc $pdf , f i lename )

}
xx<−as . matrix ( E , ncol =1)
ssxx<−ssxx

## biomvRhsmm
mine . t<−system . time (

mine . re s<−biomvRhsmm( x=xx , maxk=min ( 5 0 0 , nrow ( xx ) −1) ,
emis . type=emis$ type , s o j . type= ’gamma ’ , p r i o r .m= ’ q u a n t i l e ’ ,
q . alpha =0 .05 , r . var =0 .75 , avg .m= ’mean ’ ) )

mine . res@res<−s o r t ( mine . res@res )
mine . cp<−end ( mine . res@res )
roc $ t [ n , ’ mine ’ ]<−mine . t [ 3 ]
roc $ncp [ n , ’ mine ’ ]<−length ( mine . cp )
rm ( mine . t )

## bcp
bcp . t<−system . time ( bcp . re s<−bcp ( E ) )
bcp . cp<−cumsum( runLength ( Rle ( bcp . r es $ p o s t e r i o r . mean ) ) )
roc $ t [ n , ’ bcp ’ ]<−bcp . t [ 3 ]
roc $ncp [ n , ’ bcp ’ ]<−length ( bcp . cp )
rm ( bcp . t )

### CBS − DNAcopy
cbs . ob j<−CNA( xx , maploc=ssxx , chrom= ’ sseq ’ )
cbs . t<−system . time ( cbs . re s<−DNAcopy : : segment ( cbs . ob j ) )
cbs . cp<−cbs . re s $ output $ l o c . end
roc $ t [ n , ’ cbs ’ ]<−cbs . t [ 3 ]
roc $ncp [ n , ’ cbs ’ ]<−length ( cbs . cp )
rm ( cbs . obj , cbs . t )

### MAlist o b j − snapCGH
ma. ob j<− l i s t ( )
ma. ob j $ design<−1
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ma. ob j $M<−xx
ma. ob j $ genes<−data . frame ( Chr= ’ sseq ’ , P o s i t i o n =ssxx , S t a r t =ssxx , End=ssxx )
c l a s s (ma. ob j )<− ’ MAList ’

### bioHMM − snapCGH , when not us ing d i s t a n c e , r e v e r t t o HMM
i f (bioHMM) {

biohmm . t<−system . time (biohmm . r es<−runBioHMM(ma. obj , useCloneDists=T ) )
biohmm . cp<−cumsum( runLength ( Rle (biohmm . r es $ s t a t e ) ) )
roc $ t [ n , ’biohmm ’ ]<−biohmm . t [ 3 ]
roc $ncp [ n , ’biohmm ’ ]<−length (biohmm . cp )
rm (biohmm . t )

}

### HMM − snapCGH wraper f o r aCGH
hmm. t<−system . time (hmm. r es<−runHomHMM(ma. ob j ) )
hmm. cp<−cumsum( runLength ( Rle (hmm. r es $ s t a t e ) ) )
roc $ t [ n , ’hmm’ ]<−hmm. t [ 3 ]
roc $ncp [ n , ’hmm’ ]<−length (hmm. cp )
rm (hmm. t , ma. ob j )

###GLAD − o r i g i n a l
profV<−data . frame ( PosOrder=ssxx , LogRatio=xx , PosBase=ssxx , Chromosome= ’

999 ’ )
profileCGH<− l i s t ( p r o f i l e V a l u e s = profV )
c l a s s ( profileCGH ) <− " profileCGH "
glad . t<−system . time ( glad . r es <− glad ( profileCGH ) )
glad . cp<−c ( glad . r es $ BkpInfo $PosBase , sum( L ) )
roc $ t [ n , ’ glad ’ ]<−glad . t [ 3 ]
roc $ncp [ n , ’ glad ’ ]<−length ( glad . cp )
rm ( prof i l eValues , glad . t , profileCGH )

### m u l t i s e g − c g h s e g
cgh . ob j <− new( "CGHdata" ,Y=as . data . frame ( xx ) )
CGHo <− new( " CGHoptions " )
cghseg . t<−system . time ( cghseg . r es<−multiseg ( cgh . obj ,CGHo) )
cghseg . cp<−cghseg . res@mu [ [ 1 ] ] [ , ’ end ’ ]
roc $ t [ n , ’ cghseg ’ ]<−cghseg . t [ 3 ]
roc $ncp [ n , ’ cghseg ’ ]<−length ( cghseg . cp )
rm ( cgh . obj , cghseg . t , CGHo)

### h a a r s e g
haarseg . t<−system . time ( haarseg . r es<−haarSeg ( E ) )
roc $ t [ n , ’ haarseg ’ ]<−haarseg . t [ 3 ]
roc $ncp [ n , ’ haarseg ’ ]<−nrow ( haarseg . r es $ SegmentsTable )
rm ( haarseg . t )

i f (bioHMM) {
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roc $A<−c ( roc $A, l i s t ( data . frame (
bcp=bcp . r es $ p o s t e r i o r . mean ,
biohmm=biohmm . r es $M. predicted ,
cbs=rep ( cbs . r es $ output $ seg . mean , t imes=cbs . re s $ output $num. mark ) ,
cghseg=rep ( cghseg . res@mu [ [ 1 ] ] [ , ’mean ’ ] ,

t imes =( cghseg . res@mu [ [ 1 ] ] [ , ’ end ’ ]−cghseg . res@mu [ [ 1 ] ] [ , ’ begin ’ ] + 1 ) ) ,
haarseg=haarseg . r es $Segmented ,
glad=glad . r es $ p r o f i l e V a l u e s $Smoothing ,
hmm=hmm. re s $M. predicted ,
mine=rep ( as . numeric ( mcols ( mine . res@res ) [ , ’AVG’ ] ) ,

t imes=width ( mine . res@res ) )
) ) )

} e lse {
roc $A<−c ( roc $A, l i s t ( data . frame (

bcp=bcp . r es $ p o s t e r i o r . mean ,
cbs=rep ( cbs . r es $ output $ seg . mean , t imes=cbs . re s $ output $num. mark ) ,
cghseg=rep ( cghseg . res@mu [ [ 1 ] ] [ , ’mean ’ ] ,

t imes =( cghseg . res@mu [ [ 1 ] ] [ , ’ end ’ ]−cghseg . res@mu [ [ 1 ] ] [ , ’ begin ’ ] + 1 ) ) ,
haarseg=haarseg . r es $Segmented ,
glad=glad . r es $ p r o f i l e V a l u e s $Smoothing ,
hmm=hmm. re s $M. predicted ,
mine=rep ( as . numeric ( mcols ( mine . res@res ) [ , ’AVG’ ] ) ,

t imes=width ( mine . res@res ) )
) ) )

}
c a t ( ’ layout ’ , g , ’ s imulat ion ’ , n , ’ f i n i s h e d \n ’ )

}
return ( roc )

} )
return ( nnres )

}

# #################################################
# mode l s c o m p a r i s i o n with s i m u l a t e d d a t a
# #################################################
l i b r a r y (DNAcopy)
l i b r a r y ( bcp )
l i b r a r y ( cghseg )
l i b r a r y (biomvRCNS)
l i b r a r y (aCGH)
l i b r a r y ( HaarSeg )
l i b r a r y (GLAD)
l i b r a r y (snapCGH)
l i b r a r y (ROC)
seed<−832314

nsim<−1 0 0 ; ngrid =100 ;
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# p o i s count seq , s t a t e 3 o f i n t e r e s t
e rs<−c ( 1 . 5 , 1 . 7 5 , 2 )
s o j<− l i s t ( type= ’ pois ’ , lambda=c ( 2 8 5 , 5 , 10 ) , s h i f t =c ( 0 , 0 , 0 ) )
emis<− l i s t ( type= ’ pois ’ )
for ( er in e rs ) {

roc<−simROCDataE ( nsim=nsim , ngrid=ngrid , s o j =so j ,
emis=emis , seed=seed , er=er )

recName<−paste0 ( ’ emis . ’ , emis$ type , ’ . roc . nsim . ’ ,
nsim , ’ . ngrid . ’ , ngrid , ’ . er . ’ , er , ’ . RData ’ )

save ( roc , seed , nsim , ngrid , er , so j , emis , f i l e =recName )
dirName<−paste0 ( ’ emis . ’ , emis$ type , ’ . roc . nsim . ’ ,

nsim , ’ . ngrid . ’ , ngrid , ’ . er . ’ , er )
dir . c r e a t e ( dirName )
system ( paste ( ’mv * . pdf . / ’ , dirName , ’ / ’ , sep= ’ ’ ) )

}

# normal r a t i o cgh , s t a t e 1 and 3 o f i n t e r e s t
e rs<−c ( 1 , 2 , 3 )
nsim<−1 0 0 ; ngrid =100 ;
s o j<− l i s t ( type= ’ pois ’ , lambda=c ( 2 0 , 270 , 10 ) , s h i f t =c ( 0 , 0 , 0 ) )
emis<− l i s t ( type= ’norm ’ )
for ( er in er s ) {

roc<−simROCDataE ( nsim=nsim , ngrid=ngrid , s o j =so j ,
emis=emis , seed=seed , er=er , bioHMM=T )

recName<−paste0 ( ’ emis . ’ , emis$ type , ’ . roc . nsim . ’ ,
nsim , ’ . ngrid . ’ , ngrid , ’ . er . ’ , er , ’ . RData ’ )

save ( roc , seed , nsim , ngrid , er , so j , emis , f i l e =recName )
dirName<−paste0 ( ’ emis . ’ , emis$ type , ’ . roc . nsim . ’ ,

nsim , ’ . ngrid . ’ , ngrid , ’ . er . ’ , er )
dir . c r e a t e ( dirName )
system ( paste ( ’mv * . pdf . / ’ , dirName , ’ / ’ , sep= ’ ’ ) )

}

# i n t e g r a t e ou t pu t l o g and p l o t
e rs<−c ( 1 , 1 . 5 , 1 . 7 5 , 2 , 3 )
nstep<−1 0 0 ; nsim<−1 0 0 ; ngrid =100 ;
logName<−paste0 ( ’ roc . nsim . ’ , nsim , ’ . ngrid . ’ , ngrid , ’ . er . ’ ,

paste ( ers , c o l l a p s e = ’ , ’ ) , ’ . nstep . ’ , nstep , ’ . log ’ )
figName<−paste0 ( ’ roc . nsim . ’ , nsim , ’ . ngrid . ’ , ngrid , ’ . er . ’ ,

paste ( ers , c o l l a p s e = ’ , ’ ) , ’ . nstep . ’ , nstep , ’ . eps ’ )
sink ( logName )
setEPS ( )
p o s t s c r i p t ( figName , paper= ’ s p e c i a l ’ , f o n t s =c ( " sans " ) ,

colormodel=" rgb " , height =20 , width=10 * 3 )
par ( mfrow=c ( 2 , 3 ) )
for ( e . t in c ( ’norm ’ , ’ pois ’ ) ) {

i f ( e . t == ’ pois ’ ) {
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e rs<−c ( 1 . 5 , 1 . 7 5 , 2 )
} e lse {

e r s<−c ( 1 , 2 , 3 )
}
for ( er in e rs ) {

recName<−paste0 ( ’ emis . ’ , e . t , ’ . roc . nsim . ’ ,
nsim , ’ . ngrid . ’ , ngrid , ’ . er . ’ , er , ’ . RData ’ )

load ( recName )
c a t ( ’\n\n ’ , recName , ’\n ’ )
i f ( match ( er , e r s ) ==1) {

par ( mar=c ( 4 , 1 2 , 3 , 1 ) )
} e lse {

par ( mar=c ( 4 , 6 , 3 , 1 ) )
}
i f ( e . t == ’norm ’ ) {

reportROC ( roc , er=er , CorS= ’C ’ , nstep=nstep ,
main=paste0 ( ’ r= ’ , er ) , pcex =3)

i f ( match ( er , e r s ) ==1) {
t e x t ( par ( " usr " ) [1 ] −0 .1 , 0 . 5 ,

paste0 ( ’ ( ’ , l e t t e r s [ match ( e . t , c ( ’norm ’ , ’ pois ’ ) ) ] , ’ ) ’ ) ,
s r t = 360 , xpd = TRUE, pos = 2 , cex =3)

}
} e lse {

reportROC ( roc , er=er , CorS= ’ S ’ , nstep=nstep ,
main=paste0 ( ’ r= ’ , er ) , pcex =3)

i f ( match ( er , e r s ) ==1) {
t e x t ( par ( " usr " ) [1 ] −0 .1 , 0 . 5 ,

paste0 ( ’ ( ’ , l e t t e r s [ match ( e . t , c ( ’norm ’ , ’ pois ’ ) ) ] , ’ ) ’ ) ,
s r t = 360 , xpd = TRUE, pos = 2 , cex =3)

}
}

}
}
dev . off ( )
sink ( )

# #################################################
# t o c r e a t e example image o f one s i m u l a t i o n
# #################################################
nn<−5 0 ; J =3 ; nstep<−1 0 0 ; nsim<−1 0 0 ; ngrid =100 ;
e r f<−seq_ len ( J )−1

co lo rs<−p a l e t t e ( ) [ 1 : 8 ] ; co lo rs [ 7 ]<− ’ orange ’
figName<−paste0 ( ’ roc . example . co l2 . nsim . ’ , nn , ’ . ngrid . ’ , nn , ’ . eps ’ )
setEPS ( )
p o s t s c r i p t ( figName , paper= ’ s p e c i a l ’ , f o n t s =c ( " sans " ) ,

colormodel=" rgb " , height =10 * 1 , width=10 * 2 )
par ( mfrow=c ( 2 , 1 ) )
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for ( e . t in c ( ’norm ’ , ’ pois ’ ) ) {
# use p r i o r p a r a m e t e r
i f ( e . t == ’ pois ’ ) {

er<−1 . 7 5

m <−er^ e r f
main<− ’ S imulat ion 2 ( Poisson ) : r =1 .75 , J =3 , gr id =50 , nsim=50 ’
lpos<− ’ t o p r i g h t ’

} e lse {
er <− 2

m <− er * ( e r f +1)
main<− ’ S imulat ion 1 ( Normal ) : r =2 , J =3 , gr id =50 , nsim=50 ’
lpos<− ’ bottomright ’

}
recName<−paste0 ( ’ emis . ’ , e . t , ’ . roc . nsim . ’ ,

nsim , ’ . ngrid . ’ , ngrid , ’ . er . ’ , er , ’ . RData ’ )
load ( recName )
# p l o t s i m u l a t e d d a t a p o i n t s
plot ( seq_ len ( nrow ( roc [ [ nn ] ] $E ) ) , roc [ [ nn ] ] $E [ , nn ] , col= ’ bisque3 ’ ,

x lab= ’ P o s i t i o n s ’ , pch =18 , cex =1 , ylab= ’ Simulated s i g n a l s ’ ,
main=main , cex . main=3 , cex . lab = 1 . 5 , cex . axis =2)

# p l o t u n d e r l y i n g t r u e segments
l i n e s ( seq_ len ( nrow ( roc [ [ nn ] ] $A[ [ nn ] ] ) ) ,

as . vector ( Rle (m[ roc [ [ nn ] ] $S ] , roc [ [ nn ] ] $L ) ) , col= ’ bisque3 ’ , lwd=8)
# f o r e a c h model
mods<−colnames ( roc [ [ nn ] ] $A[ [ nn ] ] )
mods<−s o r t (mods)
i f ( e . t == ’norm ’ ) {

mods<−mods[ c ( 1 , 3 : 8 , 2 ) ]
}
for ( i in seq_ along (mods) ) {

l i n e s ( seq_ len ( nrow ( roc [ [ nn ] ] $A[ [ nn ] ] ) ) ,
roc [ [ nn ] ] $A[ [ nn ] ] [ , mods[ i ] ] , col=co lo rs [ i ] , l t y =i , lwd=3 , cex =2)

}
# l e g e n d
mods[mods== ’ mine ’ ]<− ’hsmm ’
legend ( lpos , mods , col=co lo rs [ seq_ along (mods) ] ,

l t y =seq_ along (mods) , ncol =3 , bty = "n" , cex = 1 . 5 , lwd=3)
}
dev . off ( )

xviii



APPENDIX E
Tiling array QC reports

The quality controls were done separately for each population using arrayQualityMetrics
after preprocessing.

The first set of reports is of samples from population 1 (DuPi). Among all samples

only the 17th array has been marked as outlying due to its relatively large distance from

the others, though it is still clustered close enough to its technical replicate of array 7.

Considering all other tests returned normal, so we kept it and treated it not as a real

outlier but rather a side effect of the batch bias removal process.

The second set is for population 2 (PiF1), for which parallel mRNA-seq runs have been

done on the same animals. Similarly some arrays marked for relatively large distance to

other arrays were kept considering the majority of tests have passed.

xix



arrayQualityMetrics report for yesobj

Section 1: Between array comparison

Distances between arrays

Principal Component Analysis

Section 2: Array intensity distributions

Boxplots

Density plots

Section 3: Variance mean dependence

Standard deviation versus rank of the mean

Section 4: Individual array quality

MA plots

Browser compatibility

This report uses recent features of HTML 5. Functionality has been tested on these browsers: Firefox 10, Chrome 17, Safari 5.1.2

- Array metadata and outlier detection overview

array sampleNames *1 *2 *3 Type Batch SampleID SampleNumber FileName Slot

1 D027038 HI 1 D027038 14 254451610064-532-Area1-B1-2013-01-15.txt 1

2 D027039 LO 1 D027039 15 254451610063-532-Area1-B1-2013-01-15.txt 3

3 D023016 LO 2 D023016 6 254451610062-532-Area1-B2-2013-01-17.txt 1

4 D026030 LO 2 D026030 9 254451610061-532-Area1-B2-2013-01-17.txt 2

5 D026048 HI 2 D026048 10 254451610060-532-Area1-B2-2013-01-17.txt 3

6 D026053 HI 2 D026053 11 254451610059-532-Area1-B2-2013-01-17.txt 4

7 D036028 HI 3 D036028 17 254451610058-532-Area1-B3-2013-01-18.txt 1

8 D036029 LO 3 D036029 18 254451610057-532-Area1-B3-2013-01-18.txt 2

9 D036058 HI 3 D036058 20 254451610056-532-Area1-B3-2013-01-18.txt 3

10 D049051 HI 3 D049051 28 254451610055-532-Area1-B3-2013-01-18.txt 4

11 D027038.1 HI 5 D027038 14 254451610050-532-Area1-B5-2013-01-23.txt 1

12 D027039.1 LO 5 D027039 15 254451610049-532-Area1-B5-2013-01-23.txt 2

13 D036058.1 HI 5 D036058 20 254451610048-532-Area1-B5-2013-01-23.txt 3

14 D049051.1 HI 5 D049051 28 254451610047-532-Area1-B5-2013-01-23.txt 4

15 D023016.1 LO 6 D023016 6 254451610046-532-Area1-B6-2013-01-24.txt 1

16 D026030.1 LO 6 D026030 9 254451610045-532-Area1-B6-2013-01-24.txt 2

17 D036028.1 x HI 6 D036028 17 254451610079-532-Area1-B6-2013-01-24.txt 3

18 D036029.1 LO 6 D036029 18 254451610078-532-Area1-B6-2013-01-24.txt 4

19 D026048.1 HI 7 D026048 10 254451610077-532-Area1-B7-2013-01-25.txt 1

20 D026053.1 HI 7 D026053 11 254451610076-532-Area1-B7-2013-01-25.txt 2

21 D036046 LO 7 D036046 19 254451610075-532-Area1-B7-2013-01-25.txt 3

22 D027038.2 HI 8 D027038 14 254451610073-532-Area1-B8-2013-01-29.txt 1

23 D027039.2 LO 8 D027039 15 254451610072-532-Area1-B8-2013-01-29.txt 2

The columns named *1, *2, ... indicate the calls from the different outlier detection methods:

outlier detection by Distances between arrays1.

outlier detection by Boxplots2.

outlier detection by MA plots3.

The outlier detection criteria are explained below in the respective sections. Arrays that were called outliers by at least one criterion are

marked by checkbox selection in this table, and are indicated by highlighted lines or points in some of the plots below. By clicking the

checkboxes in the table, or on the corresponding points/lines in the plots, you can modify the selection. To reset the selection, reload the
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HTML page in your browser.

At the scope covered by this software, outlier detection is a poorly defined question, and there is no 'right' or 'wrong' answer. These are hints

which are intended to be followed up manually. If you want to automate outlier detection, you need to limit the scope to a particular platform

and experimental design, and then choose and calibrate the metrics used.

Section 1: Between array comparison

- Figure 1: Distances between arrays.

Figure 1 (PDF file) shows a false color heatmap of the distances between arrays. The color scale is chosen to cover the range of distances

encountered in the dataset. Patterns in this plot can indicate clustering of the arrays either because of intended biological or unintended

experimental factors (batch effects). The distance d

ab

 between two arrays a and b is computed as the mean absolute difference (L

1

-distance)

between the data of the arrays (using the data from all probes without filtering). In formula, d

ab

 = mean | M

ai

 - M

bi

 |, where M

ai

 is the value of

the i-th probe on the a-th array. Outlier detection was performed by looking for arrays for which the sum of the distances to all other arrays, S

a

= Σ
b

d

ab

 was exceptionally large. One such array was detected, and it is marked by an asterisk, *.

- Figure 2: Outlier detection for Distances between arrays.

Figure 2 (PDF file) shows a bar chart of the sum of distances to other arrays S

a

, the outlier detection criterion from the previous figure. The

bars  are  shown in  the original  order  of  the arrays.  Based on the distribution of  the values across all  arrays,  a  threshold  of  26.1  was

determined, which is indicated by the vertical line. One array exceeded the threshold and was considered an outlier.

- Figure 3: Principal Component Analysis.
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Figure 3 (PDF file) shows a scatterplot of the arrays along the first two principal components. You can use this plot to explore if the arrays

cluster, and whether this is according to an intended experimental factor, or according to unintended causes such as batch effects. Move the

mouse over the points to see the sample names.

Principal component analysis is a dimension reduction and visualisation technique that is here used to project the multivariate data vector of

each array into a two-dimensional plot, such that the spatial arrangement of the points in the plot reflects the overall  data (dis)similarity

between the arrays.

Note: the figure is static - enhancement with interactive effects failed. This is either due to a version incompatibility of the 'SVGAnnotation' R

package and your version of 'Cairo' or 'libcairo', or due to plot misformating. Please consult the Bioconductor mailing list, or contact the

maintainer of 'arrayQualityMetrics' with a reproducible example in order to fix this problem.

Section 2: Array intensity distributions

- Figure 4: Boxplots.

Figure 4 (PDF file) shows boxplots representing summaries of the signal intensity distributions of the arrays. Each box corresponds to one

array. Typically, one expects the boxes to have similar positions and widths. If the distribution of an array is very different from the others, this

may indicate an experimental problem. Outlier detection was performed by computing the Kolmogorov-Smirnov statistic K

a

 between each

array's distribution and the distribution of the pooled data.
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- Figure 5: Outlier detection for Boxplots.

Figure 5 (PDF file) shows a bar chart of the Kolmogorov-Smirnov statistic K

a

, the outlier detection criterion from the previous figure. The bars

are shown in the original order of the arrays. Based on the distribution of the values across all arrays, a threshold of 0.0718 was determined,

which is indicated by the vertical line. None of the arrays exceeded the threshold and was considered an outlier.

- Figure 6: Density plots.

array

sampleNames

Type

Batch

SampleID

SampleNumber

FileName

Slot

Figure 6 (PDF file) shows density estimates (smoothed histograms) of the data. Typically, the distributions of the arrays should have similar

shapes and ranges. Arrays whose distributions are very different from the others should be considered for possible problems. Various features

of the distributions can be indicative of quality related phenomena. For instance, high levels of background will shift an array's distribution to

the right. Lack of signal diminishes its right right tail. A bulge at the upper end of the intensity range often indicates signal saturation.

Section 3: Variance mean dependence

- Figure 7: Standard deviation versus rank of the mean.

arrayQualityMetrics report for yesobj

4 of 6 10/02/2013 10:07 AM

xxiii



Figure 7 (PDF file) shows a density plot of the standard deviation of the intensities across arrays on the y-axis versus the rank of their mean

on the x-axis. The red dots, connected by lines, show the running median of the standard deviation. After normalisation and transformation to

a logarithm(-like) scale, one typically expects the red line to be approximately horizontal, that is, show no substantial trend. In some cases, a

hump on the right hand of the x-axis can be observed and is symptomatic of a saturation of the intensities.

Section 4: Individual array quality

- Figure 8: MA plots.

Figure 8 (PDF file) shows MA plots. M and A are defined as:

M = log

2

(I

1

) - log

2

(I

2

)

A = 1/2 (log

2

(I

1

)+log

2

(I

2

)),

where I

1

 is the intensity of the array studied, and I

2

 is the intensity of a "pseudo"-array that consists of the median across arrays. Typically, we

expect the mass of the distribution in an MA plot to be concentrated along the M = 0 axis, and there should be no trend in M as a function of A.

If there is a trend in the lower range of A, this often indicates that the arrays have different background intensities; this may be addressed by

background correction. A trend in the upper range of A can indicate saturation of the measurements; in mild cases, this may be addressed by

non-linear normalisation (e.g. quantile normalisation).

Outlier detection was performed by computing Hoeffding's statistic D

a

 on the joint distribution of A and M for each array. Shown are first the 4

arrays with the highest values of D

a

, then the 4 arrays with the lowest values. The value of D

a

 is shown in the panel headings. 0 arrays had

D

a

>0.15 and were marked as outliers. For more information on Hoeffing's D-statistic, please see the manual page of the function hoeffd in

the Hmisc package.

- Figure 9: Outlier detection for MA plots.
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Figure 9 (PDF file) shows a bar chart of the D

a

, the outlier detection criterion from the previous figure. The bars are shown in the original order

of the arrays. A threshold of 0.15 was used, which is indicated by the vertical line. None of the arrays exceeded the threshold and was

considered an outlier.

This report has been created with arrayQualityMetrics 3.16.0 under R version 3.0.0 (2013-04-03).

(Page generated on Fri Jul 12 11:17:52 2013 by hwriter )
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arrayQualityMetrics report for yesobj

Section 1: Between array comparison

Distances between arrays

Principal Component Analysis

Section 2: Array intensity distributions

Boxplots

Density plots

Section 3: Variance mean dependence

Standard deviation versus rank of the mean

Section 4: Individual array quality

MA plots

Browser compatibility

This report uses recent features of HTML 5. Functionality has been tested on these browsers: Firefox 10, Chrome 17, Safari 5.1.2

- Array metadata and outlier detection overview

array sampleNames *1 *2 *3 Type Batch SampleID SampleNumber FileName Slot

1 36 HI 9 36 36 254451610041-532-Area1-B9-2013-04-16.txt 1

2 199 HI 9 199 199 254451610042-532-Area1-B9-2013-04-16.txt 3

3 82 HI 10 82 82 254451610080-532-Area1-B10-2013-05-07.txt 1

4 83 LO 10 83 83 254451610067-532-Area1-B10-2013-05-07.txt 3

5 204 HI 11 204 204 254451610068-532-Area1-B11-2013-05-14.txt 1

6 424 x LO 11 424 424 254451610081-532-Area1-B11-2013-05-14.txt 3

7 434 HI 11 434 434 254451610082-532-Area1-B11-2013-05-14.txt 4

8 205 LO 12 205 205 254451610043-532-Area1-B12-2013-05-15.txt 1

9 559 HI 12 559 559 254451610065-532-Area1-B12-2013-05-15.txt 3

10 579 LO 12 579 579 254451610066-532-Area1-B12-2013-05-15.txt 4

11 36.1 HI 13 36 36 254451610083-532-Area1-B13-2013-05-16.txt 1

12 234 LO 13 234 234 254451610084-532-Area1-B13-2013-05-16.txt 3

13 424.1 LO 13 424 424 254451610085-532-Area1-B13-2013-05-16.txt 4

14 83.1 LO 14 83 83 254451610087-532-Area1-B14-2013-05-17.txt 3

15 204.1 HI 14 204 204 254451610088-532-Area1-B14-2013-05-17.txt 4

16 205.1 LO 15 205 205 254451610089-532-Area1-B15-2013-05-22.txt 1

17 82.1 HI 15 82 82 254451610090-532-Area1-B15-2013-05-22.txt 3

18 234.1 LO 15 234 234 254451610091-532-Area1-B15-2013-05-22.txt 4

19 204.2 HI 16 204 204 254451610092-532-Area1-B16-2013-05-23.txt 1

20 434.1 HI 16 434 434 254451610093-532-Area1-B16-2013-05-23.txt 3

21 261 LO 16 261 261 254451610094-532-Area1-B16-2013-05-23.txt 4

22 83.2 LO 17 83 83 254451610095-532-Area1-B17-2013-05-24.txt 1

23 261.1 LO 17 261 261 254451610096-532-Area1-B17-2013-05-24.txt 3

24 559.1 x HI 17 559 559 254451610097-532-Area1-B17-2013-05-24.txt 4

25 579.1 LO 18 579 579 254451610098-532-Area1-B18-2013-05-29.txt 1

26 82.2 HI 18 82 82 254451610099-532-Area1-B18-2013-05-29.txt 3

27 424.2 x LO 18 424 424 254451610100-532-Area1-B18-2013-05-29.txt 4

The columns named *1, *2, ... indicate the calls from the different outlier detection methods:

outlier detection by Distances between arrays1.
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outlier detection by Boxplots2.

outlier detection by MA plots3.

The outlier detection criteria are explained below in the respective sections. Arrays that were called outliers by at least one criterion are

marked by checkbox selection in this table, and are indicated by highlighted lines or points in some of the plots below. By clicking the

checkboxes in the table, or on the corresponding points/lines in the plots, you can modify the selection. To reset the selection, reload the

HTML page in your browser.

At the scope covered by this software, outlier detection is a poorly defined question, and there is no 'right' or 'wrong' answer. These are hints

which are intended to be followed up manually. If you want to automate outlier detection, you need to limit the scope to a particular platform

and experimental design, and then choose and calibrate the metrics used.

Section 1: Between array comparison

- Figure 1: Distances between arrays.

Figure 1 (PDF file) shows a false color heatmap of the distances between arrays. The color scale is chosen to cover the range of distances

encountered in the dataset. Patterns in this plot can indicate clustering of the arrays either because of intended biological or unintended

experimental factors (batch effects). The distance d

ab

 between two arrays a and b is computed as the mean absolute difference (L

1

-distance)

between the data of the arrays (using the data from all probes without filtering). In formula, d

ab

 = mean | M

ai

 - M

bi

 |, where M

ai

 is the value of

the i-th probe on the a-th array. Outlier detection was performed by looking for arrays for which the sum of the distances to all other arrays, S

a

= Σ
b

d

ab

 was exceptionally large. 3 such arrays were detected, and they are marked by an asterisk, *.

- Figure 2: Outlier detection for Distances between arrays.

Figure 2 (PDF file) shows a bar chart of the sum of distances to other arrays S

a

, the outlier detection criterion from the previous figure. The

bars  are  shown in  the original  order  of  the arrays.  Based on the distribution of  the values across all  arrays,  a  threshold  of  16.5  was

determined, which is indicated by the vertical line. 3 arrays exceeded the threshold and were considered outliers.

- Figure 3: Principal Component Analysis.
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Figure 3 (PDF file) shows a scatterplot of the arrays along the first two principal components. You can use this plot to explore if the arrays

cluster, and whether this is according to an intended experimental factor, or according to unintended causes such as batch effects. Move the

mouse over the points to see the sample names.

Principal component analysis is a dimension reduction and visualisation technique that is here used to project the multivariate data vector of

each array into a two-dimensional plot, such that the spatial arrangement of the points in the plot reflects the overall  data (dis)similarity

between the arrays.

Note: the figure is static - enhancement with interactive effects failed. This is either due to a version incompatibility of the 'SVGAnnotation' R

package and your version of 'Cairo' or 'libcairo', or due to plot misformating. Please consult the Bioconductor mailing list, or contact the

maintainer of 'arrayQualityMetrics' with a reproducible example in order to fix this problem.

Section 2: Array intensity distributions

- Figure 4: Boxplots.

Figure 4 (PDF file) shows boxplots representing summaries of the signal intensity distributions of the arrays. Each box corresponds to one

array. Typically, one expects the boxes to have similar positions and widths. If the distribution of an array is very different from the others, this

may indicate an experimental problem. Outlier detection was performed by computing the Kolmogorov-Smirnov statistic K

a

 between each
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array's distribution and the distribution of the pooled data.

- Figure 5: Outlier detection for Boxplots.

Figure 5 (PDF file) shows a bar chart of the Kolmogorov-Smirnov statistic K

a

, the outlier detection criterion from the previous figure. The bars

are shown in the original order of the arrays. Based on the distribution of the values across all arrays, a threshold of 0.0582 was determined,

which is indicated by the vertical line. None of the arrays exceeded the threshold and was considered an outlier.

- Figure 6: Density plots.

array

sampleNames

Type

Batch

SampleID

SampleNumber

FileName

Slot

Figure 6 (PDF file) shows density estimates (smoothed histograms) of the data. Typically, the distributions of the arrays should have similar

shapes and ranges. Arrays whose distributions are very different from the others should be considered for possible problems. Various features

of the distributions can be indicative of quality related phenomena. For instance, high levels of background will shift an array's distribution to

the right. Lack of signal diminishes its right right tail. A bulge at the upper end of the intensity range often indicates signal saturation.

Section 3: Variance mean dependence

- Figure 7: Standard deviation versus rank of the mean.
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Figure 7 (PDF file) shows a density plot of the standard deviation of the intensities across arrays on the y-axis versus the rank of their mean

on the x-axis. The red dots, connected by lines, show the running median of the standard deviation. After normalisation and transformation to

a logarithm(-like) scale, one typically expects the red line to be approximately horizontal, that is, show no substantial trend. In some cases, a

hump on the right hand of the x-axis can be observed and is symptomatic of a saturation of the intensities.

Section 4: Individual array quality

- Figure 8: MA plots.

Figure 8 (PDF file) shows MA plots. M and A are defined as:

M = log

2

(I

1

) - log

2

(I

2

)

A = 1/2 (log

2

(I

1

)+log

2

(I

2

)),

where I

1

 is the intensity of the array studied, and I

2

 is the intensity of a "pseudo"-array that consists of the median across arrays. Typically, we

expect the mass of the distribution in an MA plot to be concentrated along the M = 0 axis, and there should be no trend in M as a function of A.

If there is a trend in the lower range of A, this often indicates that the arrays have different background intensities; this may be addressed by

background correction. A trend in the upper range of A can indicate saturation of the measurements; in mild cases, this may be addressed by

non-linear normalisation (e.g. quantile normalisation).

Outlier detection was performed by computing Hoeffding's statistic D

a

 on the joint distribution of A and M for each array. Shown are first the 4

arrays with the highest values of D

a

, then the 4 arrays with the lowest values. The value of D

a

 is shown in the panel headings. 0 arrays had

D

a

>0.15 and were marked as outliers. For more information on Hoeffing's D-statistic, please see the manual page of the function hoeffd in

the Hmisc package.

- Figure 9: Outlier detection for MA plots.
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Figure 9 (PDF file) shows a bar chart of the D

a

, the outlier detection criterion from the previous figure. The bars are shown in the original order

of the arrays. A threshold of 0.15 was used, which is indicated by the vertical line. None of the arrays exceeded the threshold and was

considered an outlier.

This report has been created with arrayQualityMetrics 3.16.0 under R version 3.0.0 (2013-04-03).

(Page generated on Fri Jul 12 11:18:25 2013 by hwriter )
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Theses

Yang Du, Functional characterization and annotation of trait-associated genomic re-

gions by transcriptome analysis.

Major contributions

• Define and evaluate the penalized uniqueness score, which shows higher sensitiv-

ity and specificity in discriminating unique sequence. The tiling probe selection

pipeline, incorporating the penalized uniqueness score, could assist in the design

of various types and scales of genome tiling experiment.

• Adapt and implement a novel hidden semi-Markov model designed specifically

for genomic data segmentation. Through simulation benchmarking with other

published tools, the efficient implementation achieves comparable or better sensi-

tivity and specificity in genomic segmentation.

Findings and Insights

• Exploration of public datasets has shown that microarray probes with low penal-

ized uniqueness score could interfere with data quality, and the penalized unique-

ness score could serve as a better measurement for sequence heterogeneity.

• By incorporating previous knowledge in the genomic segmentation models, to-

gether with data type specific parametric settings, the package provides an unified

interface for various segmentation applications, and the results are more biologi-

cally and statistically sensible.

• Through an integrative case study, using genomic data from various experiment

platforms, functional candidate genes and novel transcriptional units with differ-

ential regulation status between phenotypically different groups can be detected.

The largely consistent and yet complementary results from different technologies

provide multiple evidences for their functional involvement in the related biologi-

cal processes.



Refereed Journal Publication

• Yang Du, Eduard Murani, Siriluck Ponsuksili, and Klaus Wimmers. biomvRhsmm:

Genomic segmentation with hidden semi-Markov model. BioMed Research Interna-
tional, 2014, 2014. ISSN 2314-6133. doi: 10.1155/2014/910390

Yang Du concieved the idea and implemented the package. Yang Du designed the

evaluation study and analyzed the data. Yang Du wrote the manuscript.

• Siriluck Ponsuksili, Yang Du, Frieder Hadlich, Puntita Siengdee, Eduard Murani,

Manfred Schwerin, and Klaus Wimmers. Correlated mRNAs and miRNAs from

co-expression and regulatory networks affect porcine muscle and finally meat

properties. BMC Genomics, 14(1):533, 2013. ISSN 1471-2164. doi: 10.1186/1471-

2164-14-533

Yang Du conducted the weighted gene co-expression network analysis. Yang Du

edited the manuscript.

• Yang Du, Eduard Murani, Siriluck Ponsuksili, and Klaus Wimmers. Flexible and

efficient genome tiling design with penalized uniqueness score. BMC Bioinformat-
ics, 13(1):323, 2012. ISSN 1471-2105. doi: 10.1186/1471-2105-13-323

Yang Du developed the methodology and implemented the algorithm. Yang Du

designed the evaluation study and analyzed the data. Yang Du wrote the manuscript.

• Siriluck Ponsuksili, Yang Du, Eduard Murani, Manfred Schwerin, and Klaus Wim-

mers. Elucidating molecular networks that either affect or respond to plasma cor-

tisol concentration in target tissues of liver and muscle. Genetics, 192(3):1109–1122,

2012. ISSN 0016-6731. doi: 10.1534/genetics.112.143081

Yang Du conducted the network edge orienting analysis. Yang Du edited the

manuscript.
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Conference Abstracts & Posters

Klaus Wimmers, Yang Du, Nares Trakooljul, Eduard Murani, and Siriluck Pon-

suksili. Addressing trait-dependent expression of genes in QTL-regions for WHC

by tiling array. In International Plant and Animal Genome XXII Conference, San Diego,
USA, 2014.

Yang Du, Eduard Murani, Siriluck Ponsuksili, and Klaus Wimmers. biomvRhsmm:

Genomic segmentation and copy number variation analysis with Hidden semi-

Markov model. In The joint 21st annual meeting of Intelligent Systems for Molecular
Biology (ISMB) and 12th European Conference on Computational Biology (ECCB), Berlin,
Germany, 2013.

Yang Du, Eduard Murani, Siriluck Ponsuksili, and Klaus Wimmers. Characteri-

zation of QTL regions by transcriptome profiling with genome tiling arrays. In

DGfZ-Jahrestagung und DGfZ-/GfT-Gemeinschaftstagung 2012, Halle/Saale, Germany,

2012.

Siriluck Ponsuksili, Yang Du, Eduard Murani, Bodo Brand, Manfred Schwerin,

and Klaus Wimmers. MicroRNAs and functionally linked mRNAs affecting meat

and carcass traits in pigs. In The 33rd Conference of The International Society for
Animal Genetics (ISAG), Cairns, Australia, 2012.

Klaus Wimmers, Eduard Murani, Yang Du, and Siriluck Ponsuksili. Genome-wide

expression and association analyses to identify genes either affecting or respond-

ing to plasma cortisol in pigs. In The 33rd Conference of The International Society for
Animal Genetics (ISAG), Cairns, Australia, 2012.

Marcel Adler, Yang Du, and Klaus Wimmers. GeneDialog: Funktionelle und

epistatische Netzwerke von Genen immunologischer und metabolischer Funktion-

swege sowie QTL für Immun- und Produktionsmerkmale. In FUGATO-Statusseminar
am 09./10. Februar 2011, Kassel, Germany, 2011.
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Time† AUC rank‡

biomvRhsmm 0.2565 2.9 / 1.8

bcp 1.4630 1.3 / 3.1

bioHMM 6.9681 3.9 / NA

CBS 0.1217 4.7 / 3.6

cghseg 0.2894 4.3 / 3.1

HaarSeg 0.0027 2.9 / 1.9

Performance comparisonPerformance comparison
We compared our model with 
several other state-of-the-art 
segmentation algorithms by 
calculating the Receiver 
Operating Characteristic 
(ROC) curves with simulated 
data (Normal and Poisson).
Our model consistently ranks 
among the top 3 performing 
models, with respect to area 
under the ROC curves (AUC) 
and computing time.

Background and IntroductionBackground and Introduction
With high throughput experiments like tiling array and Next-generation sequencing (NGS), researchers are looking for 
continuous homogeneous segments or signal peaks, which would represent transcripts and transcript variants, genome 
regions of deletion and amplification or genomic regions characterized by particular common features like chromatin 
states or DNA methylation difference. In the R/Bioconductor package biomvRCNS, we implement a novel hidden semi-
Markov model (HSMM) biomvRhsmm, which is specially designed to handle genomic data and tailored to serve as a 
general segmentation tool for various types of genomic profiles, arising from both microarray and NGS platforms, with 
native support for modeling spatial patterns carried by genomic position and optional prior learning using annotation or 
previous studies.

ApplicationsApplications
We have successfully applied our model on experiments like copy number variation using well studied aCGH dataset of 
Coriell cell lines from  Snijders et al. [2001] (bottom center) and transcriptome mapping using RNA-seq data generated 
by ENCODE project [2004, 2011] (bottom left). Also possibilities of using this model to detect differentially methylated
regions (DMRs) in downstream analysis of targeted bisulfite sequencing data has been illustrated, using data from a 
recent study of leukemia development from Schoofs et al. [2013] (bottom right).

Get Me ! In R/Get Me ! In R/BioCBioC, , 
biocLite(biocLite(‘‘biomvRCNSbiomvRCNS’’))

Also available,Also available,
@@GitHubGitHub

@R@R--ForgeForge

Receiver operating characteristic (ROC) curves for segmentation algorithms comparison under different signal to noise 
settings (r). The upper panel (a) shows the simulation 1 using normal data, and the lower panel (b) shows the simulation 
2 using count data. Compared algorithms are color coded as indicated in the figure legend, while the up-triangle 
represents segment of gain in simulation 1 and peak in simulation 2, and hollow down-triangle represents segment of 
loss in simulation 1. Models are labeled using lower case letters of their names. Our proposed model is coded as 'hsmm' 
for simplicity, and the hidden Makov model in package aCGH is labeled as 'hmm'.

† Run times are calculated as the mean run 
time of 2000 simulation iterations
‡ AUC ranks are calculated as the weighted 
average rank for each model of the two 
simulation runs ( normal / count )

Gentleman et al. Genome Biology, 5:R80 (2004)
Snijders et al. Nature genetics, 29:263-264 (2001)
Consortium. Science, 306, 636-640 (2004)
Consortium. PLoS Biol, 9:e1001046, 04 (2011)
Schoofs et al. Blood, 121:178-187 (2013)
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